text
stringlengths 0
3.06M
| meta
stringlengths 57
121
|
---|---|
{"mathlib_filename": "Mathlib.Tactic.Nontriviality.Core", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Tactic.Polyrith", "llama_tokens": 0} |
|
[GOAL]
R✝ : Type ?u.74090
inst✝¹ : CommSemiring R✝
R : Type u_1
inst✝ : Ring R
a b : R
⊢ a * -b = -(a * b)
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝ : CommSemiring R
⊢ Nat.rawCast 0 = 0
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝ : CommSemiring R
⊢ Nat.rawCast 1 = 1
[PROOFSTEP]
simp
[GOAL]
R✝ : Type ?u.76702
inst✝¹ : CommSemiring R✝
R : Type u_1
inst✝ : Ring R
⊢ Int.rawCast (Int.negOfNat 1) = -1
[PROOFSTEP]
simp [Int.negOfNat_eq]
[GOAL]
R✝ : Type ?u.78211
inst✝² : CommSemiring R✝
n : ℕ
R : Type u_1
inst✝¹ : Ring R
inst✝ : Nat.AtLeastTwo n
⊢ Int.rawCast (Int.negOfNat n) = -OfNat.ofNat n
[PROOFSTEP]
simp [Int.negOfNat_eq, OfNat.ofNat]
[GOAL]
R✝ : Type ?u.80333
inst✝¹ : CommSemiring R✝
n : ℤ
d : ℕ
R : Type u_1
inst✝ : DivisionRing R
⊢ Rat.rawCast n d = ↑n / ↑d
[PROOFSTEP]
simp
| {"mathlib_filename": "Mathlib.Tactic.Ring.RingNF", "llama_tokens": 452} |
{"mathlib_filename": "Mathlib.Tactic.Relation.Rfl", "llama_tokens": 0} |
|
[GOAL]
n a b n' a' b' : ℕ
H : IsFibAux n a b
hn : 2 * n = n'
h1 : a * (2 * b - a) = a'
h2 : a * a + b * b = b'
⊢ fib n' = a'
[PROOFSTEP]
rw [← hn, fib_two_mul, H.1, H.2, ← h1]
[GOAL]
n a b n' a' b' : ℕ
H : IsFibAux n a b
hn : 2 * n = n'
h1 : a * (2 * b - a) = a'
h2 : a * a + b * b = b'
⊢ fib (n' + 1) = b'
[PROOFSTEP]
rw [← hn, fib_two_mul_add_one, H.1, H.2, pow_two, pow_two, add_comm, h2]
[GOAL]
n a b n' a' b' : ℕ
H : IsFibAux n a b
hn : 2 * n + 1 = n'
h1 : a * a + b * b = a'
h2 : b * (2 * a + b) = b'
⊢ fib n' = a'
[PROOFSTEP]
rw [← hn, fib_two_mul_add_one, H.1, H.2, pow_two, pow_two, add_comm, h1]
[GOAL]
n a b n' a' b' : ℕ
H : IsFibAux n a b
hn : 2 * n + 1 = n'
h1 : a * a + b * b = a'
h2 : b * (2 * a + b) = b'
⊢ fib (n' + 1) = b'
[PROOFSTEP]
rw [← hn, fib_two_mul_add_two, H.1, H.2, h2]
| {"mathlib_filename": "Mathlib.Tactic.NormNum.NatFib", "llama_tokens": 486} |
{"mathlib_filename": "Mathlib.Tactic.Simps.NotationClass", "llama_tokens": 0} |
|
[GOAL]
α : Type u_1
inst✝ : Ring α
a✝ : ℕ
⊢ ↑(Int.ofNat a✝) = ↑a✝
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝ : Ring α
n✝ : ℕ
⊢ ↑n✝ = ↑(Int.ofNat n✝)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝ : Ring α
n : ℕ
⊢ ↑(Int.negOfNat n) = -↑n
[PROOFSTEP]
simp [Int.negOfNat_eq, Int.cast_neg]
[GOAL]
α : Type u_1
inst✝ : Ring α
a✝ : ℕ
inv : Invertible ↑1
this : Invertible 1
⊢ ↑(Int.ofNat a✝) * ⅟↑1 = ↑a✝
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝ : Ring α
n✝ : ℕ
⊢ 1 * ↑1 = 1
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝ : Ring α
n✝ : ℕ
⊢ ↑1 * 1 = 1
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝ : Ring α
n✝ : ℕ
⊢ ↑n✝ = ↑(Int.ofNat n✝) * ⅟↑1
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝ : Ring α
num✝ : ℤ
inv : Invertible ↑1
this : Invertible 1
⊢ ↑num✝ * ⅟↑1 = ↑num✝
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝ : Ring α
n✝ : ℤ
⊢ 1 * ↑1 = 1
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝ : Ring α
n✝ : ℤ
⊢ ↑1 * 1 = 1
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝ : Ring α
n✝ : ℤ
⊢ ↑n✝ = ↑n✝ * ⅟↑1
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
n : ℤ
d : ℕ
inst✝ : DivisionRing α
inv : Invertible ↑d
⊢ ↑n * ⅟↑d = Rat.rawCast n d
[PROOFSTEP]
simp [div_eq_mul_inv]
[GOAL]
α : Type u_1
inst✝ : DivisionRing α
n d : ℕ
inv✝ : Invertible ↑d
⊢ ↑(Int.negOfNat n) * ⅟↑d = -(↑n / ↑d)
[PROOFSTEP]
simp [div_eq_mul_inv]
[GOAL]
α : Type u_1
inst✝ : DivisionRing α
n d : ℕ
inv✝ : Invertible ↑d
⊢ ↑(Int.ofNat n) * ⅟↑d = ↑n / ↑d
[PROOFSTEP]
simp [div_eq_mul_inv]
[GOAL]
α : Type u_1
inst✝ : DivisionRing α
n : ℤ
d : ℕ
h : ↑d ≠ 0
this : Invertible ↑d
⊢ Rat.rawCast n d = ↑n * ⅟↑d
[PROOFSTEP]
simp [div_eq_mul_inv]
| {"mathlib_filename": "Mathlib.Tactic.NormNum.Core", "llama_tokens": 999} |
{"mathlib_filename": "Mathlib.Tactic.Relation.Trans", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Tactic.NormCast.Tactic", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Tactic.Relation.Symm", "llama_tokens": 0} |
|
[GOAL]
p : Prop
as ps as₁ : List Prop
⊢ as = List.reverseAux as₁ ps → implies (mk as) p ps (List.length as₁) → p
[PROOFSTEP]
induction ps generalizing as₁ with
| nil => exact fun _ ↦ id
| cons a as ih =>
refine fun e H ↦ @ih (a :: as₁) e (H ?_)
subst e; clear ih H
suffices ∀ n n', n' = List.length as₁ + n → ∀ bs, mk (as₁.reverseAux bs) n' ↔ mk bs n from this 0 _ rfl (a :: as)
induction as₁ with simp
| cons b as₁ ih => exact fun n bs ↦ ih (n + 1) _ (Nat.succ_add ..) _
[GOAL]
p : Prop
as ps as₁ : List Prop
⊢ as = List.reverseAux as₁ ps → implies (mk as) p ps (List.length as₁) → p
[PROOFSTEP]
induction ps generalizing as₁ with
| nil => exact fun _ ↦ id
| cons a as ih =>
refine fun e H ↦ @ih (a :: as₁) e (H ?_)
subst e; clear ih H
suffices ∀ n n', n' = List.length as₁ + n → ∀ bs, mk (as₁.reverseAux bs) n' ↔ mk bs n from this 0 _ rfl (a :: as)
induction as₁ with simp
| cons b as₁ ih => exact fun n bs ↦ ih (n + 1) _ (Nat.succ_add ..) _
[GOAL]
case nil
p : Prop
as as₁ : List Prop
⊢ as = List.reverseAux as₁ [] → implies (mk as) p [] (List.length as₁) → p
[PROOFSTEP]
| nil => exact fun _ ↦ id
[GOAL]
case nil
p : Prop
as as₁ : List Prop
⊢ as = List.reverseAux as₁ [] → implies (mk as) p [] (List.length as₁) → p
[PROOFSTEP]
exact fun _ ↦ id
[GOAL]
case cons
p : Prop
as✝ : List Prop
a : Prop
as : List Prop
ih : ∀ (as₁ : List Prop), as✝ = List.reverseAux as₁ as → implies (mk as✝) p as (List.length as₁) → p
as₁ : List Prop
⊢ as✝ = List.reverseAux as₁ (a :: as) → implies (mk as✝) p (a :: as) (List.length as₁) → p
[PROOFSTEP]
| cons a as ih =>
refine fun e H ↦ @ih (a :: as₁) e (H ?_)
subst e; clear ih H
suffices ∀ n n', n' = List.length as₁ + n → ∀ bs, mk (as₁.reverseAux bs) n' ↔ mk bs n from this 0 _ rfl (a :: as)
induction as₁ with simp
| cons b as₁ ih => exact fun n bs ↦ ih (n + 1) _ (Nat.succ_add ..) _
[GOAL]
case cons
p : Prop
as✝ : List Prop
a : Prop
as : List Prop
ih : ∀ (as₁ : List Prop), as✝ = List.reverseAux as₁ as → implies (mk as✝) p as (List.length as₁) → p
as₁ : List Prop
⊢ as✝ = List.reverseAux as₁ (a :: as) → implies (mk as✝) p (a :: as) (List.length as₁) → p
[PROOFSTEP]
refine fun e H ↦ @ih (a :: as₁) e (H ?_)
[GOAL]
case cons
p : Prop
as✝ : List Prop
a : Prop
as : List Prop
ih : ∀ (as₁ : List Prop), as✝ = List.reverseAux as₁ as → implies (mk as✝) p as (List.length as₁) → p
as₁ : List Prop
e : as✝ = List.reverseAux as₁ (a :: as)
H : implies (mk as✝) p (a :: as) (List.length as₁)
⊢ mk as✝ (List.length as₁) ↔ a
[PROOFSTEP]
subst e
[GOAL]
case cons
p a : Prop
as as₁ : List Prop
ih :
∀ (as₁_1 : List Prop),
List.reverseAux as₁ (a :: as) = List.reverseAux as₁_1 as →
implies (mk (List.reverseAux as₁ (a :: as))) p as (List.length as₁_1) → p
H : implies (mk (List.reverseAux as₁ (a :: as))) p (a :: as) (List.length as₁)
⊢ mk (List.reverseAux as₁ (a :: as)) (List.length as₁) ↔ a
[PROOFSTEP]
clear ih H
[GOAL]
case cons
p a : Prop
as as₁ : List Prop
⊢ mk (List.reverseAux as₁ (a :: as)) (List.length as₁) ↔ a
[PROOFSTEP]
suffices ∀ n n', n' = List.length as₁ + n → ∀ bs, mk (as₁.reverseAux bs) n' ↔ mk bs n from this 0 _ rfl (a :: as)
[GOAL]
case cons
p a : Prop
as as₁ : List Prop
⊢ ∀ (n n' : ℕ), n' = List.length as₁ + n → ∀ (bs : List Prop), mk (List.reverseAux as₁ bs) n' ↔ mk bs n
[PROOFSTEP]
induction as₁ with simp
| cons b as₁ ih => exact fun n bs ↦ ih (n + 1) _ (Nat.succ_add ..) _
[GOAL]
case cons
p a : Prop
as as₁ : List Prop
⊢ ∀ (n n' : ℕ), n' = List.length as₁ + n → ∀ (bs : List Prop), mk (List.reverseAux as₁ bs) n' ↔ mk bs n
[PROOFSTEP]
induction as₁ with simp
| cons b as₁ ih => exact fun n bs ↦ ih (n + 1) _ (Nat.succ_add ..) _
[GOAL]
case cons.cons
p a : Prop
as : List Prop
b : Prop
as₁ : List Prop
ih : ∀ (n n' : ℕ), n' = List.length as₁ + n → ∀ (bs : List Prop), mk (List.reverseAux as₁ bs) n' ↔ mk bs n
⊢ ∀ (n n' : ℕ), n' = List.length (b :: as₁) + n → ∀ (bs : List Prop), mk (List.reverseAux (b :: as₁) bs) n' ↔ mk bs n
[PROOFSTEP]
simp
[GOAL]
case cons.cons
p a : Prop
as : List Prop
b : Prop
as₁ : List Prop
ih : ∀ (n n' : ℕ), n' = List.length as₁ + n → ∀ (bs : List Prop), mk (List.reverseAux as₁ bs) n' ↔ mk bs n
⊢ ∀ (n : ℕ) (bs : List Prop), mk (List.reverseAux as₁ (b :: bs)) (Nat.succ (List.length as₁) + n) ↔ mk bs n
[PROOFSTEP]
| cons b as₁ ih => exact fun n bs ↦ ih (n + 1) _ (Nat.succ_add ..) _
[GOAL]
case cons.cons
p a : Prop
as : List Prop
b : Prop
as₁ : List Prop
ih : ∀ (n n' : ℕ), n' = List.length as₁ + n → ∀ (bs : List Prop), mk (List.reverseAux as₁ bs) n' ↔ mk bs n
⊢ ∀ (n : ℕ) (bs : List Prop), mk (List.reverseAux as₁ (b :: bs)) (Nat.succ (List.length as₁) + n) ↔ mk bs n
[PROOFSTEP]
exact fun n bs ↦ ih (n + 1) _ (Nat.succ_add ..) _
[GOAL]
case cons.nil
p a : Prop
as : List Prop
⊢ ∀ (n n' : ℕ), n' = List.length [] + n → ∀ (bs : List Prop), mk (List.reverseAux [] bs) n' ↔ mk bs n
[PROOFSTEP]
simp
[GOAL]
v : Valuation
f₁ : Fmla
a : Prop
f₂ : Fmla
b : Prop
h₁ : reify v f₁ a
h₂ : reify v f₂ b
⊢ reify v (and f₁ f₂) (a ∨ b)
[PROOFSTEP]
refine ⟨fun H ↦ by_contra fun hn ↦ H ⟨fun c h ↦ by_contra fun hn' ↦ ?_⟩⟩
[GOAL]
v : Valuation
f₁ : Fmla
a : Prop
f₂ : Fmla
b : Prop
h₁ : reify v f₁ a
h₂ : reify v f₂ b
H : ¬Valuation.satisfies_fmla v (and f₁ f₂)
hn : ¬(a ∨ b)
c : Clause
h : c ∈ and f₁ f₂
hn' : ¬Valuation.satisfies v c
⊢ False
[PROOFSTEP]
rcases List.mem_append.1 h with h | h
[GOAL]
case inl
v : Valuation
f₁ : Fmla
a : Prop
f₂ : Fmla
b : Prop
h₁ : reify v f₁ a
h₂ : reify v f₂ b
H : ¬Valuation.satisfies_fmla v (and f₁ f₂)
hn : ¬(a ∨ b)
c : Clause
h✝ : c ∈ and f₁ f₂
hn' : ¬Valuation.satisfies v c
h : c ∈ f₁
⊢ False
[PROOFSTEP]
exact hn $ Or.inl $ h₁.1 fun Hc ↦ hn' $ Hc.1 _ h
[GOAL]
case inr
v : Valuation
f₁ : Fmla
a : Prop
f₂ : Fmla
b : Prop
h₁ : reify v f₁ a
h₂ : reify v f₂ b
H : ¬Valuation.satisfies_fmla v (and f₁ f₂)
hn : ¬(a ∨ b)
c : Clause
h✝ : c ∈ and f₁ f₂
hn' : ¬Valuation.satisfies v c
h : c ∈ f₂
⊢ False
[PROOFSTEP]
exact hn $ Or.inr $ h₂.1 fun Hc ↦ hn' $ Hc.1 _ h
| {"mathlib_filename": "Mathlib.Tactic.Sat.FromLRAT", "llama_tokens": 2804} |
[GOAL]
M : Type u_1
inst✝¹ : Mul M
M' : Type u_2
inst✝ : Mul M'
⊢ commProb (M × M') = commProb M * commProb M'
[PROOFSTEP]
simp_rw [commProb_def, div_mul_div_comm, Nat.card_prod, Nat.cast_mul, mul_pow, ← Nat.cast_mul, ← Nat.card_prod, Commute,
SemiconjBy, Prod.ext_iff]
[GOAL]
M : Type u_1
inst✝¹ : Mul M
M' : Type u_2
inst✝ : Mul M'
⊢ ↑(Nat.card { p // (p.fst * p.snd).fst = (p.snd * p.fst).fst ∧ (p.fst * p.snd).snd = (p.snd * p.fst).snd }) /
(↑(Nat.card M) ^ 2 * ↑(Nat.card M') ^ 2) =
↑(Nat.card ({ p // p.fst * p.snd = p.snd * p.fst } × { p // p.fst * p.snd = p.snd * p.fst })) /
(↑(Nat.card M) ^ 2 * ↑(Nat.card M') ^ 2)
[PROOFSTEP]
congr 2
[GOAL]
case e_a.e_a
M : Type u_1
inst✝¹ : Mul M
M' : Type u_2
inst✝ : Mul M'
⊢ Nat.card { p // (p.fst * p.snd).fst = (p.snd * p.fst).fst ∧ (p.fst * p.snd).snd = (p.snd * p.fst).snd } =
Nat.card ({ p // p.fst * p.snd = p.snd * p.fst } × { p // p.fst * p.snd = p.snd * p.fst })
[PROOFSTEP]
exact
Nat.card_congr
⟨fun x => ⟨⟨⟨x.1.1.1, x.1.2.1⟩, x.2.1⟩, ⟨⟨x.1.1.2, x.1.2.2⟩, x.2.2⟩⟩, fun x =>
⟨⟨⟨x.1.1.1, x.2.1.1⟩, ⟨x.1.1.2, x.2.1.2⟩⟩, ⟨x.1.2, x.2.2⟩⟩, fun x => rfl, fun x => rfl⟩
[GOAL]
M : Type u_1
inst✝² : Mul M
α : Type u_3
i : α → Type u_2
inst✝¹ : Fintype α
inst✝ : (a : α) → Mul (i a)
⊢ commProb ((a : α) → i a) = ∏ a : α, commProb (i a)
[PROOFSTEP]
simp_rw [commProb_def, Finset.prod_div_distrib, Finset.prod_pow, ← Nat.cast_prod, ← Nat.card_pi, Commute, SemiconjBy,
Function.funext_iff]
[GOAL]
M : Type u_1
inst✝² : Mul M
α : Type u_3
i : α → Type u_2
inst✝¹ : Fintype α
inst✝ : (a : α) → Mul (i a)
⊢ ↑(Nat.card { p // ∀ (a : α), (p.fst * p.snd) a = (p.snd * p.fst) a }) / ↑(Nat.card ((a : α) → i a)) ^ 2 =
↑(Nat.card ((a : α) → { p // p.fst * p.snd = p.snd * p.fst })) / ↑(Nat.card ((a : α) → i a)) ^ 2
[PROOFSTEP]
congr 2
[GOAL]
case e_a.e_a
M : Type u_1
inst✝² : Mul M
α : Type u_3
i : α → Type u_2
inst✝¹ : Fintype α
inst✝ : (a : α) → Mul (i a)
⊢ Nat.card { p // ∀ (a : α), (p.fst * p.snd) a = (p.snd * p.fst) a } =
Nat.card ((a : α) → { p // p.fst * p.snd = p.snd * p.fst })
[PROOFSTEP]
exact
Nat.card_congr
⟨fun x a => ⟨⟨x.1.1 a, x.1.2 a⟩, x.2 a⟩, fun x => ⟨⟨fun a => (x a).1.1, fun a => (x a).1.2⟩, fun a => (x a).2⟩,
fun x => rfl, fun x => rfl⟩
[GOAL]
M : Type u_1
inst✝² : Mul M
α : Type u_2
β : Type u_3
inst✝¹ : Fintype α
inst✝ : Mul β
⊢ commProb (α → β) = commProb β ^ card α
[PROOFSTEP]
rw [commProb_pi, Finset.prod_const, Finset.card_univ]
[GOAL]
M : Type u_1
inst✝¹ : Mul M
inst✝ : Finite M
⊢ commProb M ≤ 1
[PROOFSTEP]
refine' div_le_one_of_le _ (sq_nonneg (Nat.card M : ℚ))
[GOAL]
M : Type u_1
inst✝¹ : Mul M
inst✝ : Finite M
⊢ ↑(Nat.card { p // Commute p.fst p.snd }) ≤ ↑(Nat.card M) ^ 2
[PROOFSTEP]
rw [← Nat.cast_pow, Nat.cast_le, sq, ← Nat.card_prod]
[GOAL]
M : Type u_1
inst✝¹ : Mul M
inst✝ : Finite M
⊢ Nat.card { p // Commute p.fst p.snd } ≤ Nat.card (M × M)
[PROOFSTEP]
apply Finite.card_subtype_le
[GOAL]
M : Type u_1
inst✝¹ : Mul M
inst✝ : Finite M
h : Nonempty M
⊢ commProb M = 1 ↔ Commutative fun x x_1 => x * x_1
[PROOFSTEP]
haveI := Fintype.ofFinite M
[GOAL]
M : Type u_1
inst✝¹ : Mul M
inst✝ : Finite M
h : Nonempty M
this : Fintype M
⊢ commProb M = 1 ↔ Commutative fun x x_1 => x * x_1
[PROOFSTEP]
rw [commProb, ← Set.coe_setOf, Nat.card_eq_fintype_card, Nat.card_eq_fintype_card]
[GOAL]
M : Type u_1
inst✝¹ : Mul M
inst✝ : Finite M
h : Nonempty M
this : Fintype M
⊢ ↑(card ↑{x | Commute x.fst x.snd}) / ↑(card M) ^ 2 = 1 ↔ Commutative fun x x_1 => x * x_1
[PROOFSTEP]
rw [div_eq_one_iff_eq, ← Nat.cast_pow, Nat.cast_inj, sq, ← card_prod, set_fintype_card_eq_univ_iff,
Set.eq_univ_iff_forall]
[GOAL]
M : Type u_1
inst✝¹ : Mul M
inst✝ : Finite M
h : Nonempty M
this : Fintype M
⊢ (∀ (x : M × M), x ∈ {x | Commute x.fst x.snd}) ↔ Commutative fun x x_1 => x * x_1
[PROOFSTEP]
exact ⟨fun h x y ↦ h (x, y), fun h x ↦ h x.1 x.2⟩
[GOAL]
M : Type u_1
inst✝¹ : Mul M
inst✝ : Finite M
h : Nonempty M
this : Fintype M
⊢ ↑(card M) ^ 2 ≠ 0
[PROOFSTEP]
exact pow_ne_zero 2 (Nat.cast_ne_zero.mpr card_ne_zero)
[GOAL]
M : Type u_1
inst✝² : Mul M
inst✝¹ : Finite M
G : Type u_2
inst✝ : Group G
⊢ commProb G = ↑(Nat.card (ConjClasses G)) / ↑(Nat.card G)
[PROOFSTEP]
rw [commProb, card_comm_eq_card_conjClasses_mul_card, Nat.cast_mul, sq]
[GOAL]
M : Type u_1
inst✝² : Mul M
inst✝¹ : Finite M
G : Type u_2
inst✝ : Group G
⊢ ↑(Nat.card (ConjClasses G)) * ↑(Nat.card G) / (↑(Nat.card G) * ↑(Nat.card G)) =
↑(Nat.card (ConjClasses G)) / ↑(Nat.card G)
[PROOFSTEP]
by_cases h : (Nat.card G : ℚ) = 0
[GOAL]
case pos
M : Type u_1
inst✝² : Mul M
inst✝¹ : Finite M
G : Type u_2
inst✝ : Group G
h : ↑(Nat.card G) = 0
⊢ ↑(Nat.card (ConjClasses G)) * ↑(Nat.card G) / (↑(Nat.card G) * ↑(Nat.card G)) =
↑(Nat.card (ConjClasses G)) / ↑(Nat.card G)
[PROOFSTEP]
rw [h, zero_mul, div_zero, div_zero]
[GOAL]
case neg
M : Type u_1
inst✝² : Mul M
inst✝¹ : Finite M
G : Type u_2
inst✝ : Group G
h : ¬↑(Nat.card G) = 0
⊢ ↑(Nat.card (ConjClasses G)) * ↑(Nat.card G) / (↑(Nat.card G) * ↑(Nat.card G)) =
↑(Nat.card (ConjClasses G)) / ↑(Nat.card G)
[PROOFSTEP]
exact mul_div_mul_right _ _ h
[GOAL]
M : Type u_1
inst✝³ : Mul M
inst✝² : Finite M
G : Type u_2
inst✝¹ : Group G
inst✝ : Finite G
H : Subgroup G
⊢ commProb { x // x ∈ H } ≤ commProb G * ↑(index H) ^ 2
[PROOFSTEP]
rw [commProb_def, commProb_def, div_le_iff, mul_assoc, ← mul_pow, ← Nat.cast_mul, mul_comm H.index, H.card_mul_index,
div_mul_cancel, Nat.cast_le]
[GOAL]
M : Type u_1
inst✝³ : Mul M
inst✝² : Finite M
G : Type u_2
inst✝¹ : Group G
inst✝ : Finite G
H : Subgroup G
⊢ Nat.card { p // Commute p.fst p.snd } ≤ Nat.card { p // Commute p.fst p.snd }
[PROOFSTEP]
refine' Finite.card_le_of_injective (fun p ↦ ⟨⟨p.1.1, p.1.2⟩, Subtype.ext_iff.mp p.2⟩) _
[GOAL]
M : Type u_1
inst✝³ : Mul M
inst✝² : Finite M
G : Type u_2
inst✝¹ : Group G
inst✝ : Finite G
H : Subgroup G
⊢ Function.Injective fun p =>
{ val := (↑(↑p).fst, ↑(↑p).snd), property := (_ : ↑((↑p).fst * (↑p).snd) = ↑((↑p).snd * (↑p).fst)) }
[PROOFSTEP]
exact fun p q h ↦ by simpa only [Subtype.ext_iff, Prod.ext_iff] using h
[GOAL]
M : Type u_1
inst✝³ : Mul M
inst✝² : Finite M
G : Type u_2
inst✝¹ : Group G
inst✝ : Finite G
H : Subgroup G
p q : { p // Commute p.fst p.snd }
h :
(fun p => { val := (↑(↑p).fst, ↑(↑p).snd), property := (_ : ↑((↑p).fst * (↑p).snd) = ↑((↑p).snd * (↑p).fst)) }) p =
(fun p => { val := (↑(↑p).fst, ↑(↑p).snd), property := (_ : ↑((↑p).fst * (↑p).snd) = ↑((↑p).snd * (↑p).fst)) }) q
⊢ p = q
[PROOFSTEP]
simpa only [Subtype.ext_iff, Prod.ext_iff] using h
[GOAL]
case h
M : Type u_1
inst✝³ : Mul M
inst✝² : Finite M
G : Type u_2
inst✝¹ : Group G
inst✝ : Finite G
H : Subgroup G
⊢ ↑(Nat.card G) ^ 2 ≠ 0
[PROOFSTEP]
exact pow_ne_zero 2 (Nat.cast_ne_zero.mpr Finite.card_pos.ne')
[GOAL]
M : Type u_1
inst✝³ : Mul M
inst✝² : Finite M
G : Type u_2
inst✝¹ : Group G
inst✝ : Finite G
H : Subgroup G
⊢ 0 < ↑(Nat.card { x // x ∈ H }) ^ 2
[PROOFSTEP]
exact pow_pos (Nat.cast_pos.mpr Finite.card_pos) 2
[GOAL]
M : Type u_1
inst✝⁴ : Mul M
inst✝³ : Finite M
G : Type u_2
inst✝² : Group G
inst✝¹ : Finite G
H : Subgroup G
inst✝ : Normal H
⊢ commProb (G ⧸ H) ≤ commProb G * ↑(Nat.card { x // x ∈ H })
[PROOFSTEP]
rw [commProb_def', commProb_def', div_le_iff, mul_assoc, ← Nat.cast_mul, ← Subgroup.index, H.card_mul_index,
div_mul_cancel, Nat.cast_le]
[GOAL]
M : Type u_1
inst✝⁴ : Mul M
inst✝³ : Finite M
G : Type u_2
inst✝² : Group G
inst✝¹ : Finite G
H : Subgroup G
inst✝ : Normal H
⊢ Nat.card (ConjClasses (G ⧸ H)) ≤ Nat.card (ConjClasses G)
[PROOFSTEP]
apply Finite.card_le_of_surjective
[GOAL]
case hf
M : Type u_1
inst✝⁴ : Mul M
inst✝³ : Finite M
G : Type u_2
inst✝² : Group G
inst✝¹ : Finite G
H : Subgroup G
inst✝ : Normal H
⊢ Function.Surjective ?f
case f
M : Type u_1
inst✝⁴ : Mul M
inst✝³ : Finite M
G : Type u_2
inst✝² : Group G
inst✝¹ : Finite G
H : Subgroup G
inst✝ : Normal H
⊢ ConjClasses G → ConjClasses (G ⧸ H)
[PROOFSTEP]
show Function.Surjective (ConjClasses.map (QuotientGroup.mk' H))
[GOAL]
case hf
M : Type u_1
inst✝⁴ : Mul M
inst✝³ : Finite M
G : Type u_2
inst✝² : Group G
inst✝¹ : Finite G
H : Subgroup G
inst✝ : Normal H
⊢ Function.Surjective (ConjClasses.map (QuotientGroup.mk' H))
[PROOFSTEP]
exact ConjClasses.map_surjective Quotient.surjective_Quotient_mk''
[GOAL]
case h
M : Type u_1
inst✝⁴ : Mul M
inst✝³ : Finite M
G : Type u_2
inst✝² : Group G
inst✝¹ : Finite G
H : Subgroup G
inst✝ : Normal H
⊢ ↑(Nat.card G) ≠ 0
[PROOFSTEP]
exact Nat.cast_ne_zero.mpr Finite.card_pos.ne'
[GOAL]
M : Type u_1
inst✝⁴ : Mul M
inst✝³ : Finite M
G : Type u_2
inst✝² : Group G
inst✝¹ : Finite G
H : Subgroup G
inst✝ : Normal H
⊢ 0 < ↑(Nat.card (G ⧸ H))
[PROOFSTEP]
exact Nat.cast_pos.mpr Finite.card_pos
| {"mathlib_filename": "Mathlib.GroupTheory.CommutingProbability", "llama_tokens": 4650} |
[GOAL]
G : Type u_1
inst✝¹ : LinearOrderedAddCommGroup G
inst✝ : Archimedean G
H : AddSubgroup G
a : G
ha : IsLeast {g | g ∈ H ∧ 0 < g} a
⊢ H = closure {a}
[PROOFSTEP]
obtain ⟨⟨a_in, a_pos⟩, a_min⟩ := ha
[GOAL]
case intro.intro
G : Type u_1
inst✝¹ : LinearOrderedAddCommGroup G
inst✝ : Archimedean G
H : AddSubgroup G
a : G
a_min : a ∈ lowerBounds {g | g ∈ H ∧ 0 < g}
a_in : a ∈ H
a_pos : 0 < a
⊢ H = closure {a}
[PROOFSTEP]
refine' le_antisymm _ (H.closure_le.mpr <| by simp [a_in])
[GOAL]
G : Type u_1
inst✝¹ : LinearOrderedAddCommGroup G
inst✝ : Archimedean G
H : AddSubgroup G
a : G
a_min : a ∈ lowerBounds {g | g ∈ H ∧ 0 < g}
a_in : a ∈ H
a_pos : 0 < a
⊢ {a} ⊆ ↑H
[PROOFSTEP]
simp [a_in]
[GOAL]
case intro.intro
G : Type u_1
inst✝¹ : LinearOrderedAddCommGroup G
inst✝ : Archimedean G
H : AddSubgroup G
a : G
a_min : a ∈ lowerBounds {g | g ∈ H ∧ 0 < g}
a_in : a ∈ H
a_pos : 0 < a
⊢ H ≤ closure {a}
[PROOFSTEP]
intro g g_in
[GOAL]
case intro.intro
G : Type u_1
inst✝¹ : LinearOrderedAddCommGroup G
inst✝ : Archimedean G
H : AddSubgroup G
a : G
a_min : a ∈ lowerBounds {g | g ∈ H ∧ 0 < g}
a_in : a ∈ H
a_pos : 0 < a
g : G
g_in : g ∈ H
⊢ g ∈ closure {a}
[PROOFSTEP]
obtain ⟨k, ⟨nonneg, lt⟩, _⟩ := existsUnique_zsmul_near_of_pos' a_pos g
[GOAL]
case intro.intro.intro.intro.intro
G : Type u_1
inst✝¹ : LinearOrderedAddCommGroup G
inst✝ : Archimedean G
H : AddSubgroup G
a : G
a_min : a ∈ lowerBounds {g | g ∈ H ∧ 0 < g}
a_in : a ∈ H
a_pos : 0 < a
g : G
g_in : g ∈ H
k : ℤ
right✝ : ∀ (y : ℤ), (fun k => 0 ≤ g - k • a ∧ g - k • a < a) y → y = k
nonneg : 0 ≤ g - k • a
lt : g - k • a < a
⊢ g ∈ closure {a}
[PROOFSTEP]
have h_zero : g - k • a = 0 := by
by_contra h
have h : a ≤ g - k • a := by
refine' a_min ⟨_, _⟩
· exact AddSubgroup.sub_mem H g_in (AddSubgroup.zsmul_mem H a_in k)
· exact lt_of_le_of_ne nonneg (Ne.symm h)
have h' : ¬a ≤ g - k • a := not_le.mpr lt
contradiction
[GOAL]
G : Type u_1
inst✝¹ : LinearOrderedAddCommGroup G
inst✝ : Archimedean G
H : AddSubgroup G
a : G
a_min : a ∈ lowerBounds {g | g ∈ H ∧ 0 < g}
a_in : a ∈ H
a_pos : 0 < a
g : G
g_in : g ∈ H
k : ℤ
right✝ : ∀ (y : ℤ), (fun k => 0 ≤ g - k • a ∧ g - k • a < a) y → y = k
nonneg : 0 ≤ g - k • a
lt : g - k • a < a
⊢ g - k • a = 0
[PROOFSTEP]
by_contra h
[GOAL]
G : Type u_1
inst✝¹ : LinearOrderedAddCommGroup G
inst✝ : Archimedean G
H : AddSubgroup G
a : G
a_min : a ∈ lowerBounds {g | g ∈ H ∧ 0 < g}
a_in : a ∈ H
a_pos : 0 < a
g : G
g_in : g ∈ H
k : ℤ
right✝ : ∀ (y : ℤ), (fun k => 0 ≤ g - k • a ∧ g - k • a < a) y → y = k
nonneg : 0 ≤ g - k • a
lt : g - k • a < a
h : ¬g - k • a = 0
⊢ False
[PROOFSTEP]
have h : a ≤ g - k • a := by
refine' a_min ⟨_, _⟩
· exact AddSubgroup.sub_mem H g_in (AddSubgroup.zsmul_mem H a_in k)
· exact lt_of_le_of_ne nonneg (Ne.symm h)
[GOAL]
G : Type u_1
inst✝¹ : LinearOrderedAddCommGroup G
inst✝ : Archimedean G
H : AddSubgroup G
a : G
a_min : a ∈ lowerBounds {g | g ∈ H ∧ 0 < g}
a_in : a ∈ H
a_pos : 0 < a
g : G
g_in : g ∈ H
k : ℤ
right✝ : ∀ (y : ℤ), (fun k => 0 ≤ g - k • a ∧ g - k • a < a) y → y = k
nonneg : 0 ≤ g - k • a
lt : g - k • a < a
h : ¬g - k • a = 0
⊢ a ≤ g - k • a
[PROOFSTEP]
refine' a_min ⟨_, _⟩
[GOAL]
case refine'_1
G : Type u_1
inst✝¹ : LinearOrderedAddCommGroup G
inst✝ : Archimedean G
H : AddSubgroup G
a : G
a_min : a ∈ lowerBounds {g | g ∈ H ∧ 0 < g}
a_in : a ∈ H
a_pos : 0 < a
g : G
g_in : g ∈ H
k : ℤ
right✝ : ∀ (y : ℤ), (fun k => 0 ≤ g - k • a ∧ g - k • a < a) y → y = k
nonneg : 0 ≤ g - k • a
lt : g - k • a < a
h : ¬g - k • a = 0
⊢ g - k • a ∈ H
[PROOFSTEP]
exact AddSubgroup.sub_mem H g_in (AddSubgroup.zsmul_mem H a_in k)
[GOAL]
case refine'_2
G : Type u_1
inst✝¹ : LinearOrderedAddCommGroup G
inst✝ : Archimedean G
H : AddSubgroup G
a : G
a_min : a ∈ lowerBounds {g | g ∈ H ∧ 0 < g}
a_in : a ∈ H
a_pos : 0 < a
g : G
g_in : g ∈ H
k : ℤ
right✝ : ∀ (y : ℤ), (fun k => 0 ≤ g - k • a ∧ g - k • a < a) y → y = k
nonneg : 0 ≤ g - k • a
lt : g - k • a < a
h : ¬g - k • a = 0
⊢ 0 < g - k • a
[PROOFSTEP]
exact lt_of_le_of_ne nonneg (Ne.symm h)
[GOAL]
G : Type u_1
inst✝¹ : LinearOrderedAddCommGroup G
inst✝ : Archimedean G
H : AddSubgroup G
a : G
a_min : a ∈ lowerBounds {g | g ∈ H ∧ 0 < g}
a_in : a ∈ H
a_pos : 0 < a
g : G
g_in : g ∈ H
k : ℤ
right✝ : ∀ (y : ℤ), (fun k => 0 ≤ g - k • a ∧ g - k • a < a) y → y = k
nonneg : 0 ≤ g - k • a
lt : g - k • a < a
h✝ : ¬g - k • a = 0
h : a ≤ g - k • a
⊢ False
[PROOFSTEP]
have h' : ¬a ≤ g - k • a := not_le.mpr lt
[GOAL]
G : Type u_1
inst✝¹ : LinearOrderedAddCommGroup G
inst✝ : Archimedean G
H : AddSubgroup G
a : G
a_min : a ∈ lowerBounds {g | g ∈ H ∧ 0 < g}
a_in : a ∈ H
a_pos : 0 < a
g : G
g_in : g ∈ H
k : ℤ
right✝ : ∀ (y : ℤ), (fun k => 0 ≤ g - k • a ∧ g - k • a < a) y → y = k
nonneg : 0 ≤ g - k • a
lt : g - k • a < a
h✝ : ¬g - k • a = 0
h : a ≤ g - k • a
h' : ¬a ≤ g - k • a
⊢ False
[PROOFSTEP]
contradiction
[GOAL]
case intro.intro.intro.intro.intro
G : Type u_1
inst✝¹ : LinearOrderedAddCommGroup G
inst✝ : Archimedean G
H : AddSubgroup G
a : G
a_min : a ∈ lowerBounds {g | g ∈ H ∧ 0 < g}
a_in : a ∈ H
a_pos : 0 < a
g : G
g_in : g ∈ H
k : ℤ
right✝ : ∀ (y : ℤ), (fun k => 0 ≤ g - k • a ∧ g - k • a < a) y → y = k
nonneg : 0 ≤ g - k • a
lt : g - k • a < a
h_zero : g - k • a = 0
⊢ g ∈ closure {a}
[PROOFSTEP]
simp [sub_eq_zero.mp h_zero, AddSubgroup.mem_closure_singleton]
[GOAL]
G : Type u_1
inst✝¹ : LinearOrderedAddCommGroup G
inst✝ : Archimedean G
H : AddSubgroup G
hbot : H ≠ ⊥
a : G
h₀ : 0 < a
hd : Disjoint (↑H) (Ioo 0 a)
⊢ ∃ b, IsLeast {g | g ∈ H ∧ 0 < g} b
[PROOFSTEP]
have hex : ∀ g > 0, ∃ n : ℕ, g ∈ Ioc (n • a) ((n + 1) • a) := fun g hg =>
by
rcases existsUnique_add_zsmul_mem_Ico h₀ 0 (g - a) with ⟨m, ⟨hm, hm'⟩, -⟩
simp only [zero_add, sub_le_iff_le_add, sub_add_cancel, ← add_one_zsmul] at hm hm'
lift m to ℕ
· rw [← Int.lt_add_one_iff, ← zsmul_lt_zsmul_iff h₀, zero_zsmul]
exact hg.trans_le hm
· simp only [← Nat.cast_succ, coe_nat_zsmul] at hm hm'
exact ⟨m, hm', hm⟩
[GOAL]
G : Type u_1
inst✝¹ : LinearOrderedAddCommGroup G
inst✝ : Archimedean G
H : AddSubgroup G
hbot : H ≠ ⊥
a : G
h₀ : 0 < a
hd : Disjoint (↑H) (Ioo 0 a)
g : G
hg : g > 0
⊢ ∃ n, g ∈ Ioc (n • a) ((n + 1) • a)
[PROOFSTEP]
rcases existsUnique_add_zsmul_mem_Ico h₀ 0 (g - a) with ⟨m, ⟨hm, hm'⟩, -⟩
[GOAL]
case intro.intro.intro
G : Type u_1
inst✝¹ : LinearOrderedAddCommGroup G
inst✝ : Archimedean G
H : AddSubgroup G
hbot : H ≠ ⊥
a : G
h₀ : 0 < a
hd : Disjoint (↑H) (Ioo 0 a)
g : G
hg : g > 0
m : ℤ
hm : g - a ≤ 0 + m • a
hm' : 0 + m • a < g - a + a
⊢ ∃ n, g ∈ Ioc (n • a) ((n + 1) • a)
[PROOFSTEP]
simp only [zero_add, sub_le_iff_le_add, sub_add_cancel, ← add_one_zsmul] at hm hm'
[GOAL]
case intro.intro.intro
G : Type u_1
inst✝¹ : LinearOrderedAddCommGroup G
inst✝ : Archimedean G
H : AddSubgroup G
hbot : H ≠ ⊥
a : G
h₀ : 0 < a
hd : Disjoint (↑H) (Ioo 0 a)
g : G
hg : g > 0
m : ℤ
hm : g ≤ (m + 1) • a
hm' : m • a < g
⊢ ∃ n, g ∈ Ioc (n • a) ((n + 1) • a)
[PROOFSTEP]
lift m to ℕ
[GOAL]
G : Type u_1
inst✝¹ : LinearOrderedAddCommGroup G
inst✝ : Archimedean G
H : AddSubgroup G
hbot : H ≠ ⊥
a : G
h₀ : 0 < a
hd : Disjoint (↑H) (Ioo 0 a)
g : G
hg : g > 0
m : ℤ
hm : g ≤ (m + 1) • a
hm' : m • a < g
⊢ 0 ≤ m
[PROOFSTEP]
rw [← Int.lt_add_one_iff, ← zsmul_lt_zsmul_iff h₀, zero_zsmul]
[GOAL]
G : Type u_1
inst✝¹ : LinearOrderedAddCommGroup G
inst✝ : Archimedean G
H : AddSubgroup G
hbot : H ≠ ⊥
a : G
h₀ : 0 < a
hd : Disjoint (↑H) (Ioo 0 a)
g : G
hg : g > 0
m : ℤ
hm : g ≤ (m + 1) • a
hm' : m • a < g
⊢ 0 < (m + 1) • a
[PROOFSTEP]
exact hg.trans_le hm
[GOAL]
case intro.intro.intro.intro
G : Type u_1
inst✝¹ : LinearOrderedAddCommGroup G
inst✝ : Archimedean G
H : AddSubgroup G
hbot : H ≠ ⊥
a : G
h₀ : 0 < a
hd : Disjoint (↑H) (Ioo 0 a)
g : G
hg : g > 0
m : ℕ
hm : g ≤ (↑m + 1) • a
hm' : ↑m • a < g
⊢ ∃ n, g ∈ Ioc (n • a) ((n + 1) • a)
[PROOFSTEP]
simp only [← Nat.cast_succ, coe_nat_zsmul] at hm hm'
[GOAL]
case intro.intro.intro.intro
G : Type u_1
inst✝¹ : LinearOrderedAddCommGroup G
inst✝ : Archimedean G
H : AddSubgroup G
hbot : H ≠ ⊥
a : G
h₀ : 0 < a
hd : Disjoint (↑H) (Ioo 0 a)
g : G
hg : g > 0
m : ℕ
hm : g ≤ Nat.succ m • a
hm' : m • a < g
⊢ ∃ n, g ∈ Ioc (n • a) ((n + 1) • a)
[PROOFSTEP]
exact ⟨m, hm', hm⟩
[GOAL]
G : Type u_1
inst✝¹ : LinearOrderedAddCommGroup G
inst✝ : Archimedean G
H : AddSubgroup G
hbot : H ≠ ⊥
a : G
h₀ : 0 < a
hd : Disjoint (↑H) (Ioo 0 a)
hex : ∀ (g : G), g > 0 → ∃ n, g ∈ Ioc (n • a) ((n + 1) • a)
⊢ ∃ b, IsLeast {g | g ∈ H ∧ 0 < g} b
[PROOFSTEP]
have : ∃ n : ℕ, Set.Nonempty (H ∩ Ioc (n • a) ((n + 1) • a))
[GOAL]
case this
G : Type u_1
inst✝¹ : LinearOrderedAddCommGroup G
inst✝ : Archimedean G
H : AddSubgroup G
hbot : H ≠ ⊥
a : G
h₀ : 0 < a
hd : Disjoint (↑H) (Ioo 0 a)
hex : ∀ (g : G), g > 0 → ∃ n, g ∈ Ioc (n • a) ((n + 1) • a)
⊢ ∃ n, Set.Nonempty (↑H ∩ Ioc (n • a) ((n + 1) • a))
[PROOFSTEP]
rcases(bot_or_exists_ne_zero H).resolve_left hbot with ⟨g, hgH, hg₀⟩
[GOAL]
case this.intro.intro
G : Type u_1
inst✝¹ : LinearOrderedAddCommGroup G
inst✝ : Archimedean G
H : AddSubgroup G
hbot : H ≠ ⊥
a : G
h₀ : 0 < a
hd : Disjoint (↑H) (Ioo 0 a)
hex : ∀ (g : G), g > 0 → ∃ n, g ∈ Ioc (n • a) ((n + 1) • a)
g : G
hgH : g ∈ H
hg₀ : g ≠ 0
⊢ ∃ n, Set.Nonempty (↑H ∩ Ioc (n • a) ((n + 1) • a))
[PROOFSTEP]
rcases hex |g| (abs_pos.2 hg₀) with ⟨n, hn⟩
[GOAL]
case this.intro.intro.intro
G : Type u_1
inst✝¹ : LinearOrderedAddCommGroup G
inst✝ : Archimedean G
H : AddSubgroup G
hbot : H ≠ ⊥
a : G
h₀ : 0 < a
hd : Disjoint (↑H) (Ioo 0 a)
hex : ∀ (g : G), g > 0 → ∃ n, g ∈ Ioc (n • a) ((n + 1) • a)
g : G
hgH : g ∈ H
hg₀ : g ≠ 0
n : ℕ
hn : |g| ∈ Ioc (n • a) ((n + 1) • a)
⊢ ∃ n, Set.Nonempty (↑H ∩ Ioc (n • a) ((n + 1) • a))
[PROOFSTEP]
exact ⟨n, _, (@abs_mem_iff (AddSubgroup G) G _ _).2 hgH, hn⟩
[GOAL]
G : Type u_1
inst✝¹ : LinearOrderedAddCommGroup G
inst✝ : Archimedean G
H : AddSubgroup G
hbot : H ≠ ⊥
a : G
h₀ : 0 < a
hd : Disjoint (↑H) (Ioo 0 a)
hex : ∀ (g : G), g > 0 → ∃ n, g ∈ Ioc (n • a) ((n + 1) • a)
this : ∃ n, Set.Nonempty (↑H ∩ Ioc (n • a) ((n + 1) • a))
⊢ ∃ b, IsLeast {g | g ∈ H ∧ 0 < g} b
[PROOFSTEP]
classical rcases Nat.findX this with ⟨n, ⟨x, hxH, hnx, hxn⟩, hmin⟩
[GOAL]
G : Type u_1
inst✝¹ : LinearOrderedAddCommGroup G
inst✝ : Archimedean G
H : AddSubgroup G
hbot : H ≠ ⊥
a : G
h₀ : 0 < a
hd : Disjoint (↑H) (Ioo 0 a)
hex : ∀ (g : G), g > 0 → ∃ n, g ∈ Ioc (n • a) ((n + 1) • a)
this : ∃ n, Set.Nonempty (↑H ∩ Ioc (n • a) ((n + 1) • a))
⊢ ∃ b, IsLeast {g | g ∈ H ∧ 0 < g} b
[PROOFSTEP]
rcases Nat.findX this with ⟨n, ⟨x, hxH, hnx, hxn⟩, hmin⟩
[GOAL]
case mk.intro.intro.intro.intro
G : Type u_1
inst✝¹ : LinearOrderedAddCommGroup G
inst✝ : Archimedean G
H : AddSubgroup G
hbot : H ≠ ⊥
a : G
h₀ : 0 < a
hd : Disjoint (↑H) (Ioo 0 a)
hex : ∀ (g : G), g > 0 → ∃ n, g ∈ Ioc (n • a) ((n + 1) • a)
this : ∃ n, Set.Nonempty (↑H ∩ Ioc (n • a) ((n + 1) • a))
n : ℕ
hmin : ∀ (m : ℕ), m < n → ¬Set.Nonempty (↑H ∩ Ioc (m • a) ((m + 1) • a))
x : G
hxH : x ∈ ↑H
hnx : n • a < x
hxn : x ≤ (n + 1) • a
⊢ ∃ b, IsLeast {g | g ∈ H ∧ 0 < g} b
[PROOFSTEP]
by_contra hxmin
[GOAL]
case mk.intro.intro.intro.intro
G : Type u_1
inst✝¹ : LinearOrderedAddCommGroup G
inst✝ : Archimedean G
H : AddSubgroup G
hbot : H ≠ ⊥
a : G
h₀ : 0 < a
hd : Disjoint (↑H) (Ioo 0 a)
hex : ∀ (g : G), g > 0 → ∃ n, g ∈ Ioc (n • a) ((n + 1) • a)
this : ∃ n, Set.Nonempty (↑H ∩ Ioc (n • a) ((n + 1) • a))
n : ℕ
hmin : ∀ (m : ℕ), m < n → ¬Set.Nonempty (↑H ∩ Ioc (m • a) ((m + 1) • a))
x : G
hxH : x ∈ ↑H
hnx : n • a < x
hxn : x ≤ (n + 1) • a
hxmin : ¬∃ b, IsLeast {g | g ∈ H ∧ 0 < g} b
⊢ False
[PROOFSTEP]
simp only [IsLeast, not_and, mem_setOf_eq, mem_lowerBounds, not_exists, not_forall, not_le] at hxmin
[GOAL]
case mk.intro.intro.intro.intro
G : Type u_1
inst✝¹ : LinearOrderedAddCommGroup G
inst✝ : Archimedean G
H : AddSubgroup G
hbot : H ≠ ⊥
a : G
h₀ : 0 < a
hd : Disjoint (↑H) (Ioo 0 a)
hex : ∀ (g : G), g > 0 → ∃ n, g ∈ Ioc (n • a) ((n + 1) • a)
this : ∃ n, Set.Nonempty (↑H ∩ Ioc (n • a) ((n + 1) • a))
n : ℕ
hmin : ∀ (m : ℕ), m < n → ¬Set.Nonempty (↑H ∩ Ioc (m • a) ((m + 1) • a))
x : G
hxH : x ∈ ↑H
hnx : n • a < x
hxn : x ≤ (n + 1) • a
hxmin : ∀ (x : G), x ∈ H ∧ 0 < x → ∃ x_1 h, x_1 < x
⊢ False
[PROOFSTEP]
rcases hxmin x ⟨hxH, (nsmul_nonneg h₀.le _).trans_lt hnx⟩ with ⟨y, ⟨hyH, hy₀⟩, hxy⟩
[GOAL]
case mk.intro.intro.intro.intro.intro.intro.intro
G : Type u_1
inst✝¹ : LinearOrderedAddCommGroup G
inst✝ : Archimedean G
H : AddSubgroup G
hbot : H ≠ ⊥
a : G
h₀ : 0 < a
hd : Disjoint (↑H) (Ioo 0 a)
hex : ∀ (g : G), g > 0 → ∃ n, g ∈ Ioc (n • a) ((n + 1) • a)
this : ∃ n, Set.Nonempty (↑H ∩ Ioc (n • a) ((n + 1) • a))
n : ℕ
hmin : ∀ (m : ℕ), m < n → ¬Set.Nonempty (↑H ∩ Ioc (m • a) ((m + 1) • a))
x : G
hxH : x ∈ ↑H
hnx : n • a < x
hxn : x ≤ (n + 1) • a
hxmin : ∀ (x : G), x ∈ H ∧ 0 < x → ∃ x_1 h, x_1 < x
y : G
hxy : y < x
hyH : y ∈ H
hy₀ : 0 < y
⊢ False
[PROOFSTEP]
rcases hex y hy₀ with ⟨m, hm⟩
[GOAL]
case mk.intro.intro.intro.intro.intro.intro.intro.intro
G : Type u_1
inst✝¹ : LinearOrderedAddCommGroup G
inst✝ : Archimedean G
H : AddSubgroup G
hbot : H ≠ ⊥
a : G
h₀ : 0 < a
hd : Disjoint (↑H) (Ioo 0 a)
hex : ∀ (g : G), g > 0 → ∃ n, g ∈ Ioc (n • a) ((n + 1) • a)
this : ∃ n, Set.Nonempty (↑H ∩ Ioc (n • a) ((n + 1) • a))
n : ℕ
hmin : ∀ (m : ℕ), m < n → ¬Set.Nonempty (↑H ∩ Ioc (m • a) ((m + 1) • a))
x : G
hxH : x ∈ ↑H
hnx : n • a < x
hxn : x ≤ (n + 1) • a
hxmin : ∀ (x : G), x ∈ H ∧ 0 < x → ∃ x_1 h, x_1 < x
y : G
hxy : y < x
hyH : y ∈ H
hy₀ : 0 < y
m : ℕ
hm : y ∈ Ioc (m • a) ((m + 1) • a)
⊢ False
[PROOFSTEP]
cases' lt_or_le m n with hmn hnm
[GOAL]
case mk.intro.intro.intro.intro.intro.intro.intro.intro.inl
G : Type u_1
inst✝¹ : LinearOrderedAddCommGroup G
inst✝ : Archimedean G
H : AddSubgroup G
hbot : H ≠ ⊥
a : G
h₀ : 0 < a
hd : Disjoint (↑H) (Ioo 0 a)
hex : ∀ (g : G), g > 0 → ∃ n, g ∈ Ioc (n • a) ((n + 1) • a)
this : ∃ n, Set.Nonempty (↑H ∩ Ioc (n • a) ((n + 1) • a))
n : ℕ
hmin : ∀ (m : ℕ), m < n → ¬Set.Nonempty (↑H ∩ Ioc (m • a) ((m + 1) • a))
x : G
hxH : x ∈ ↑H
hnx : n • a < x
hxn : x ≤ (n + 1) • a
hxmin : ∀ (x : G), x ∈ H ∧ 0 < x → ∃ x_1 h, x_1 < x
y : G
hxy : y < x
hyH : y ∈ H
hy₀ : 0 < y
m : ℕ
hm : y ∈ Ioc (m • a) ((m + 1) • a)
hmn : m < n
⊢ False
[PROOFSTEP]
exact hmin m hmn ⟨y, hyH, hm⟩
[GOAL]
case mk.intro.intro.intro.intro.intro.intro.intro.intro.inr
G : Type u_1
inst✝¹ : LinearOrderedAddCommGroup G
inst✝ : Archimedean G
H : AddSubgroup G
hbot : H ≠ ⊥
a : G
h₀ : 0 < a
hd : Disjoint (↑H) (Ioo 0 a)
hex : ∀ (g : G), g > 0 → ∃ n, g ∈ Ioc (n • a) ((n + 1) • a)
this : ∃ n, Set.Nonempty (↑H ∩ Ioc (n • a) ((n + 1) • a))
n : ℕ
hmin : ∀ (m : ℕ), m < n → ¬Set.Nonempty (↑H ∩ Ioc (m • a) ((m + 1) • a))
x : G
hxH : x ∈ ↑H
hnx : n • a < x
hxn : x ≤ (n + 1) • a
hxmin : ∀ (x : G), x ∈ H ∧ 0 < x → ∃ x_1 h, x_1 < x
y : G
hxy : y < x
hyH : y ∈ H
hy₀ : 0 < y
m : ℕ
hm : y ∈ Ioc (m • a) ((m + 1) • a)
hnm : n ≤ m
⊢ False
[PROOFSTEP]
refine disjoint_left.1 hd (sub_mem hxH hyH) ⟨sub_pos.2 hxy, sub_lt_iff_lt_add'.2 ?_⟩
[GOAL]
case mk.intro.intro.intro.intro.intro.intro.intro.intro.inr
G : Type u_1
inst✝¹ : LinearOrderedAddCommGroup G
inst✝ : Archimedean G
H : AddSubgroup G
hbot : H ≠ ⊥
a : G
h₀ : 0 < a
hd : Disjoint (↑H) (Ioo 0 a)
hex : ∀ (g : G), g > 0 → ∃ n, g ∈ Ioc (n • a) ((n + 1) • a)
this : ∃ n, Set.Nonempty (↑H ∩ Ioc (n • a) ((n + 1) • a))
n : ℕ
hmin : ∀ (m : ℕ), m < n → ¬Set.Nonempty (↑H ∩ Ioc (m • a) ((m + 1) • a))
x : G
hxH : x ∈ ↑H
hnx : n • a < x
hxn : x ≤ (n + 1) • a
hxmin : ∀ (x : G), x ∈ H ∧ 0 < x → ∃ x_1 h, x_1 < x
y : G
hxy : y < x
hyH : y ∈ H
hy₀ : 0 < y
m : ℕ
hm : y ∈ Ioc (m • a) ((m + 1) • a)
hnm : n ≤ m
⊢ x < y + a
[PROOFSTEP]
calc
x ≤ (n + 1) • a := hxn
_ ≤ (m + 1) • a := (nsmul_le_nsmul h₀.le (add_le_add_right hnm _))
_ = m • a + a := (succ_nsmul' _ _)
_ < y + a := add_lt_add_right hm.1 _
[GOAL]
G : Type u_1
inst✝¹ : LinearOrderedAddCommGroup G
inst✝ : Archimedean G
H : AddSubgroup G
a : G
h₀ : 0 < a
hd : Disjoint (↑H) (Ioo 0 a)
⊢ ∃ b, H = closure {b}
[PROOFSTEP]
rcases eq_or_ne H ⊥ with rfl | hbot
[GOAL]
case inl
G : Type u_1
inst✝¹ : LinearOrderedAddCommGroup G
inst✝ : Archimedean G
a : G
h₀ : 0 < a
hd : Disjoint (↑⊥) (Ioo 0 a)
⊢ ∃ b, ⊥ = closure {b}
[PROOFSTEP]
exact ⟨0, closure_singleton_zero.symm⟩
[GOAL]
case inr
G : Type u_1
inst✝¹ : LinearOrderedAddCommGroup G
inst✝ : Archimedean G
H : AddSubgroup G
a : G
h₀ : 0 < a
hd : Disjoint (↑H) (Ioo 0 a)
hbot : H ≠ ⊥
⊢ ∃ b, H = closure {b}
[PROOFSTEP]
exact (exists_isLeast_pos hbot h₀ hd).imp fun _ => cyclic_of_min
[GOAL]
G : Type u_1
inst✝¹ : LinearOrderedAddCommGroup G
inst✝ : Archimedean G
H : AddSubgroup ℤ
this : Ioo 0 1 = ∅
⊢ Disjoint (↑H) (Ioo 0 1)
[PROOFSTEP]
simp [this]
| {"mathlib_filename": "Mathlib.GroupTheory.Archimedean", "llama_tokens": 9053} |
[GOAL]
G : Type u_1
inst✝¹ : Group G
H K L : Subgroup G
G' : Type u_2
inst✝ : Group G'
f : G' →* G
hf : Function.Surjective ↑f
⊢ index (comap f H) = index H
[PROOFSTEP]
letI := QuotientGroup.leftRel H
[GOAL]
G : Type u_1
inst✝¹ : Group G
H K L : Subgroup G
G' : Type u_2
inst✝ : Group G'
f : G' →* G
hf : Function.Surjective ↑f
this : Setoid G := QuotientGroup.leftRel H
⊢ index (comap f H) = index H
[PROOFSTEP]
letI := QuotientGroup.leftRel (H.comap f)
[GOAL]
G : Type u_1
inst✝¹ : Group G
H K L : Subgroup G
G' : Type u_2
inst✝ : Group G'
f : G' →* G
hf : Function.Surjective ↑f
this✝ : Setoid G := QuotientGroup.leftRel H
this : Setoid G' := QuotientGroup.leftRel (comap f H)
⊢ index (comap f H) = index H
[PROOFSTEP]
have key : ∀ x y : G', Setoid.r x y ↔ Setoid.r (f x) (f y) :=
by
simp only [QuotientGroup.leftRel_apply]
exact fun x y => iff_of_eq (congr_arg (· ∈ H) (by rw [f.map_mul, f.map_inv]))
[GOAL]
G : Type u_1
inst✝¹ : Group G
H K L : Subgroup G
G' : Type u_2
inst✝ : Group G'
f : G' →* G
hf : Function.Surjective ↑f
this✝ : Setoid G := QuotientGroup.leftRel H
this : Setoid G' := QuotientGroup.leftRel (comap f H)
⊢ ∀ (x y : G'), Setoid.r x y ↔ Setoid.r (↑f x) (↑f y)
[PROOFSTEP]
simp only [QuotientGroup.leftRel_apply]
[GOAL]
G : Type u_1
inst✝¹ : Group G
H K L : Subgroup G
G' : Type u_2
inst✝ : Group G'
f : G' →* G
hf : Function.Surjective ↑f
this✝ : Setoid G := QuotientGroup.leftRel H
this : Setoid G' := QuotientGroup.leftRel (comap f H)
⊢ ∀ (x y : G'), x⁻¹ * y ∈ comap f H ↔ (↑f x)⁻¹ * ↑f y ∈ H
[PROOFSTEP]
exact fun x y => iff_of_eq (congr_arg (· ∈ H) (by rw [f.map_mul, f.map_inv]))
[GOAL]
G : Type u_1
inst✝¹ : Group G
H K L : Subgroup G
G' : Type u_2
inst✝ : Group G'
f : G' →* G
hf : Function.Surjective ↑f
this✝ : Setoid G := QuotientGroup.leftRel H
this : Setoid G' := QuotientGroup.leftRel (comap f H)
x y : G'
⊢ ↑f (x⁻¹ * y) = (↑f x)⁻¹ * ↑f y
[PROOFSTEP]
rw [f.map_mul, f.map_inv]
[GOAL]
G : Type u_1
inst✝¹ : Group G
H K L : Subgroup G
G' : Type u_2
inst✝ : Group G'
f : G' →* G
hf : Function.Surjective ↑f
this✝ : Setoid G := QuotientGroup.leftRel H
this : Setoid G' := QuotientGroup.leftRel (comap f H)
key : ∀ (x y : G'), Setoid.r x y ↔ Setoid.r (↑f x) (↑f y)
⊢ index (comap f H) = index H
[PROOFSTEP]
refine' Cardinal.toNat_congr (Equiv.ofBijective (Quotient.map' f fun x y => (key x y).mp) ⟨_, _⟩)
[GOAL]
case refine'_1
G : Type u_1
inst✝¹ : Group G
H K L : Subgroup G
G' : Type u_2
inst✝ : Group G'
f : G' →* G
hf : Function.Surjective ↑f
this✝ : Setoid G := QuotientGroup.leftRel H
this : Setoid G' := QuotientGroup.leftRel (comap f H)
key : ∀ (x y : G'), Setoid.r x y ↔ Setoid.r (↑f x) (↑f y)
⊢ Function.Injective (Quotient.map' ↑f (_ : ∀ (x y : G'), Setoid.r x y → Setoid.r (↑f x) (↑f y)))
[PROOFSTEP]
simp_rw [← Quotient.eq''] at key
[GOAL]
case refine'_1
G : Type u_1
inst✝¹ : Group G
H K L : Subgroup G
G' : Type u_2
inst✝ : Group G'
f : G' →* G
hf : Function.Surjective ↑f
this✝ : Setoid G := QuotientGroup.leftRel H
this : Setoid G' := QuotientGroup.leftRel (comap f H)
key✝ : ∀ (x y : G'), Setoid.r x y ↔ Setoid.r (↑f x) (↑f y)
key : ∀ (x y : G'), Quotient.mk'' x = Quotient.mk'' y ↔ Quotient.mk'' (↑f x) = Quotient.mk'' (↑f y)
⊢ Function.Injective (Quotient.map' ↑f (_ : ∀ (x y : G'), Setoid.r x y → Setoid.r (↑f x) (↑f y)))
[PROOFSTEP]
refine' Quotient.ind' fun x => _
[GOAL]
case refine'_1
G : Type u_1
inst✝¹ : Group G
H K L : Subgroup G
G' : Type u_2
inst✝ : Group G'
f : G' →* G
hf : Function.Surjective ↑f
this✝ : Setoid G := QuotientGroup.leftRel H
this : Setoid G' := QuotientGroup.leftRel (comap f H)
key✝ : ∀ (x y : G'), Setoid.r x y ↔ Setoid.r (↑f x) (↑f y)
key : ∀ (x y : G'), Quotient.mk'' x = Quotient.mk'' y ↔ Quotient.mk'' (↑f x) = Quotient.mk'' (↑f y)
x : G'
⊢ ∀ ⦃a₂ : G' ⧸ comap f H⦄,
Quotient.map' ↑f (_ : ∀ (x y : G'), Setoid.r x y → Setoid.r (↑f x) (↑f y)) (Quotient.mk'' x) =
Quotient.map' ↑f (_ : ∀ (x y : G'), Setoid.r x y → Setoid.r (↑f x) (↑f y)) a₂ →
Quotient.mk'' x = a₂
[PROOFSTEP]
refine' Quotient.ind' fun y => _
[GOAL]
case refine'_1
G : Type u_1
inst✝¹ : Group G
H K L : Subgroup G
G' : Type u_2
inst✝ : Group G'
f : G' →* G
hf : Function.Surjective ↑f
this✝ : Setoid G := QuotientGroup.leftRel H
this : Setoid G' := QuotientGroup.leftRel (comap f H)
key✝ : ∀ (x y : G'), Setoid.r x y ↔ Setoid.r (↑f x) (↑f y)
key : ∀ (x y : G'), Quotient.mk'' x = Quotient.mk'' y ↔ Quotient.mk'' (↑f x) = Quotient.mk'' (↑f y)
x y : G'
⊢ Quotient.map' ↑f (_ : ∀ (x y : G'), Setoid.r x y → Setoid.r (↑f x) (↑f y)) (Quotient.mk'' x) =
Quotient.map' ↑f (_ : ∀ (x y : G'), Setoid.r x y → Setoid.r (↑f x) (↑f y)) (Quotient.mk'' y) →
Quotient.mk'' x = Quotient.mk'' y
[PROOFSTEP]
exact (key x y).mpr
[GOAL]
case refine'_2
G : Type u_1
inst✝¹ : Group G
H K L : Subgroup G
G' : Type u_2
inst✝ : Group G'
f : G' →* G
hf : Function.Surjective ↑f
this✝ : Setoid G := QuotientGroup.leftRel H
this : Setoid G' := QuotientGroup.leftRel (comap f H)
key : ∀ (x y : G'), Setoid.r x y ↔ Setoid.r (↑f x) (↑f y)
⊢ Function.Surjective (Quotient.map' ↑f (_ : ∀ (x y : G'), Setoid.r x y → Setoid.r (↑f x) (↑f y)))
[PROOFSTEP]
refine' Quotient.ind' fun x => _
[GOAL]
case refine'_2
G : Type u_1
inst✝¹ : Group G
H K L : Subgroup G
G' : Type u_2
inst✝ : Group G'
f : G' →* G
hf : Function.Surjective ↑f
this✝ : Setoid G := QuotientGroup.leftRel H
this : Setoid G' := QuotientGroup.leftRel (comap f H)
key : ∀ (x y : G'), Setoid.r x y ↔ Setoid.r (↑f x) (↑f y)
x : G
⊢ ∃ a, Quotient.map' ↑f (_ : ∀ (x y : G'), Setoid.r x y → Setoid.r (↑f x) (↑f y)) a = Quotient.mk'' x
[PROOFSTEP]
obtain ⟨y, hy⟩ := hf x
[GOAL]
case refine'_2.intro
G : Type u_1
inst✝¹ : Group G
H K L : Subgroup G
G' : Type u_2
inst✝ : Group G'
f : G' →* G
hf : Function.Surjective ↑f
this✝ : Setoid G := QuotientGroup.leftRel H
this : Setoid G' := QuotientGroup.leftRel (comap f H)
key : ∀ (x y : G'), Setoid.r x y ↔ Setoid.r (↑f x) (↑f y)
x : G
y : G'
hy : ↑f y = x
⊢ ∃ a, Quotient.map' ↑f (_ : ∀ (x y : G'), Setoid.r x y → Setoid.r (↑f x) (↑f y)) a = Quotient.mk'' x
[PROOFSTEP]
exact ⟨y, (Quotient.map'_mk'' f _ y).trans (congr_arg Quotient.mk'' hy)⟩
[GOAL]
G : Type u_1
inst✝¹ : Group G
H K L : Subgroup G
G' : Type u_2
inst✝ : Group G'
f : G' →* G
⊢ comap f H = comap (MonoidHom.rangeRestrict f) (subgroupOf H (MonoidHom.range f))
[PROOFSTEP]
rfl
[GOAL]
G : Type u_1
inst✝¹ : Group G
H K✝ L : Subgroup G
G' : Type u_2
inst✝ : Group G'
f : G' →* G
K : Subgroup G'
⊢ relindex (comap f H) K = relindex H (map f K)
[PROOFSTEP]
rw [relindex, subgroupOf, comap_comap, index_comap, ← f.map_range, K.subtype_range]
[GOAL]
G : Type u_1
inst✝ : Group G
H K L : Subgroup G
hHK : H ≤ K
hKL : K ≤ L
⊢ relindex H K * relindex K L = relindex H L
[PROOFSTEP]
rw [← relindex_subgroupOf hKL]
[GOAL]
G : Type u_1
inst✝ : Group G
H K L : Subgroup G
hHK : H ≤ K
hKL : K ≤ L
⊢ relindex (subgroupOf H L) (subgroupOf K L) * relindex K L = relindex H L
[PROOFSTEP]
exact relindex_mul_index fun x hx => hHK hx
[GOAL]
G : Type u_1
inst✝ : Group G
H K L : Subgroup G
⊢ relindex (H ⊓ K) K = relindex H K
[PROOFSTEP]
rw [relindex, relindex, inf_subgroupOf_right]
[GOAL]
G : Type u_1
inst✝ : Group G
H K L : Subgroup G
⊢ relindex (H ⊓ K) H = relindex K H
[PROOFSTEP]
rw [inf_comm, inf_relindex_right]
[GOAL]
G : Type u_1
inst✝ : Group G
H K L : Subgroup G
⊢ relindex H (K ⊓ L) * relindex K L = relindex (H ⊓ K) L
[PROOFSTEP]
rw [← inf_relindex_right H (K ⊓ L), ← inf_relindex_right K L, ← inf_relindex_right (H ⊓ K) L, inf_assoc,
relindex_mul_relindex (H ⊓ (K ⊓ L)) (K ⊓ L) L inf_le_right inf_le_right]
[GOAL]
G : Type u_1
inst✝¹ : Group G
H K L : Subgroup G
inst✝ : Normal K
⊢ relindex K (K ⊔ H) = relindex K H
[PROOFSTEP]
rw [sup_comm, relindex_sup_right]
[GOAL]
G : Type u_1
inst✝ : Group G
H K L : Subgroup G
⊢ index H = 2 ↔ ∃ a, ∀ (b : G), Xor' (b * a ∈ H) (b ∈ H)
[PROOFSTEP]
simp only [index, Nat.card_eq_two_iff' ((1 : G) : G ⧸ H), ExistsUnique, inv_mem_iff, QuotientGroup.exists_mk,
QuotientGroup.forall_mk, Ne.def, QuotientGroup.eq, mul_one, xor_iff_iff_not]
[GOAL]
G : Type u_1
inst✝ : Group G
H K L : Subgroup G
⊢ (∃ x, ¬x ∈ H ∧ ∀ (x_1 : G), ¬x_1 ∈ H → x_1⁻¹ * x ∈ H) ↔ ∃ a, ∀ (b : G), b * a ∈ H ↔ ¬b ∈ H
[PROOFSTEP]
refine' exists_congr fun a => ⟨fun ha b => ⟨fun hba hb => _, fun hb => _⟩, fun ha => ⟨_, fun b hb => _⟩⟩
[GOAL]
case refine'_1
G : Type u_1
inst✝ : Group G
H K L : Subgroup G
a : G
ha : ¬a ∈ H ∧ ∀ (x : G), ¬x ∈ H → x⁻¹ * a ∈ H
b : G
hba : b * a ∈ H
hb : b ∈ H
⊢ False
[PROOFSTEP]
exact ha.1 ((mul_mem_cancel_left hb).1 hba)
[GOAL]
case refine'_2
G : Type u_1
inst✝ : Group G
H K L : Subgroup G
a : G
ha : ¬a ∈ H ∧ ∀ (x : G), ¬x ∈ H → x⁻¹ * a ∈ H
b : G
hb : ¬b ∈ H
⊢ b * a ∈ H
[PROOFSTEP]
exact inv_inv b ▸ ha.2 _ (mt (inv_mem_iff (x := b)).1 hb)
[GOAL]
case refine'_3
G : Type u_1
inst✝ : Group G
H K L : Subgroup G
a : G
ha : ∀ (b : G), b * a ∈ H ↔ ¬b ∈ H
⊢ ¬a ∈ H
[PROOFSTEP]
rw [← inv_mem_iff (x := a), ← ha, inv_mul_self]
[GOAL]
case refine'_3
G : Type u_1
inst✝ : Group G
H K L : Subgroup G
a : G
ha : ∀ (b : G), b * a ∈ H ↔ ¬b ∈ H
⊢ 1 ∈ H
[PROOFSTEP]
exact one_mem _
[GOAL]
case refine'_4
G : Type u_1
inst✝ : Group G
H K L : Subgroup G
a : G
ha : ∀ (b : G), b * a ∈ H ↔ ¬b ∈ H
b : G
hb : ¬b ∈ H
⊢ b⁻¹ * a ∈ H
[PROOFSTEP]
rwa [ha, inv_mem_iff (x := b)]
[GOAL]
G : Type u_1
inst✝ : Group G
H K L : Subgroup G
h : index H = 2
a b : G
⊢ a * b ∈ H ↔ (a ∈ H ↔ b ∈ H)
[PROOFSTEP]
by_cases ha : a ∈ H
[GOAL]
case pos
G : Type u_1
inst✝ : Group G
H K L : Subgroup G
h : index H = 2
a b : G
ha : a ∈ H
⊢ a * b ∈ H ↔ (a ∈ H ↔ b ∈ H)
[PROOFSTEP]
simp only [ha, true_iff_iff, mul_mem_cancel_left ha]
[GOAL]
case neg
G : Type u_1
inst✝ : Group G
H K L : Subgroup G
h : index H = 2
a b : G
ha : ¬a ∈ H
⊢ a * b ∈ H ↔ (a ∈ H ↔ b ∈ H)
[PROOFSTEP]
by_cases hb : b ∈ H
[GOAL]
case pos
G : Type u_1
inst✝ : Group G
H K L : Subgroup G
h : index H = 2
a b : G
ha : ¬a ∈ H
hb : b ∈ H
⊢ a * b ∈ H ↔ (a ∈ H ↔ b ∈ H)
[PROOFSTEP]
simp only [hb, iff_true_iff, mul_mem_cancel_right hb]
[GOAL]
case neg
G : Type u_1
inst✝ : Group G
H K L : Subgroup G
h : index H = 2
a b : G
ha : ¬a ∈ H
hb : ¬b ∈ H
⊢ a * b ∈ H ↔ (a ∈ H ↔ b ∈ H)
[PROOFSTEP]
simp only [ha, hb, iff_self_iff, iff_true_iff]
[GOAL]
case neg
G : Type u_1
inst✝ : Group G
H K L : Subgroup G
h : index H = 2
a b : G
ha : ¬a ∈ H
hb : ¬b ∈ H
⊢ a * b ∈ H
[PROOFSTEP]
rcases index_eq_two_iff.1 h with ⟨c, hc⟩
[GOAL]
case neg.intro
G : Type u_1
inst✝ : Group G
H K L : Subgroup G
h : index H = 2
a b : G
ha : ¬a ∈ H
hb : ¬b ∈ H
c : G
hc : ∀ (b : G), Xor' (b * c ∈ H) (b ∈ H)
⊢ a * b ∈ H
[PROOFSTEP]
refine' (hc _).or.resolve_left _
[GOAL]
case neg.intro
G : Type u_1
inst✝ : Group G
H K L : Subgroup G
h : index H = 2
a b : G
ha : ¬a ∈ H
hb : ¬b ∈ H
c : G
hc : ∀ (b : G), Xor' (b * c ∈ H) (b ∈ H)
⊢ ¬a * b * c ∈ H
[PROOFSTEP]
rwa [mul_assoc, mul_mem_cancel_right ((hc _).or.resolve_right hb)]
[GOAL]
G : Type u_1
inst✝ : Group G
H K L : Subgroup G
h : index H = 2
a : G
⊢ a * a ∈ H
[PROOFSTEP]
rw [mul_mem_iff_of_index_two h]
[GOAL]
G : Type u_1
inst✝ : Group G
H K L : Subgroup G
⊢ relindex H ⊤ = index H
[PROOFSTEP]
rw [← relindex_mul_index (show H ≤ ⊤ from le_top), index_top, mul_one]
[GOAL]
G : Type u_1
inst✝ : Group G
H K L : Subgroup G
⊢ relindex ⊥ H = Nat.card { x // x ∈ H }
[PROOFSTEP]
rw [relindex, bot_subgroupOf, index_bot]
[GOAL]
G : Type u_1
inst✝ : Group G
H K L : Subgroup G
⊢ relindex H ⊥ = 1
[PROOFSTEP]
rw [relindex, subgroupOf_bot_eq_top, index_top]
[GOAL]
G : Type u_1
inst✝ : Group G
H K L : Subgroup G
⊢ relindex H H = 1
[PROOFSTEP]
rw [relindex, subgroupOf_self, index_top]
[GOAL]
G : Type u_1
inst✝¹ : Group G
H✝ K L : Subgroup G
H : Type u_2
inst✝ : Group H
f : G →* H
⊢ index (MonoidHom.ker f) = Nat.card ↑(Set.range ↑f)
[PROOFSTEP]
rw [← MonoidHom.comap_bot, index_comap, relindex_bot_left]
[GOAL]
G : Type u_1
inst✝¹ : Group G
H✝ K L : Subgroup G
H : Type u_2
inst✝ : Group H
f : G →* H
⊢ Nat.card { x // x ∈ MonoidHom.range f } = Nat.card ↑(Set.range ↑f)
[PROOFSTEP]
rfl
[GOAL]
G : Type u_1
inst✝¹ : Group G
H✝ K✝ L : Subgroup G
H : Type u_2
inst✝ : Group H
f : G →* H
K : Subgroup G
⊢ relindex (MonoidHom.ker f) K = Nat.card ↑(↑f '' ↑K)
[PROOFSTEP]
rw [← MonoidHom.comap_bot, relindex_comap, relindex_bot_left]
[GOAL]
G : Type u_1
inst✝¹ : Group G
H✝ K✝ L : Subgroup G
H : Type u_2
inst✝ : Group H
f : G →* H
K : Subgroup G
⊢ Nat.card { x // x ∈ map f K } = Nat.card ↑(↑f '' ↑K)
[PROOFSTEP]
rfl
[GOAL]
G : Type u_1
inst✝ : Group G
H K L : Subgroup G
⊢ Nat.card { x // x ∈ H } * index H = Nat.card G
[PROOFSTEP]
rw [← relindex_bot_left, ← index_bot]
[GOAL]
G : Type u_1
inst✝ : Group G
H K L : Subgroup G
⊢ relindex ⊥ H * index H = index ⊥
[PROOFSTEP]
exact relindex_mul_index bot_le
[GOAL]
G✝ : Type u_1
inst✝² : Group G✝
H✝ K L : Subgroup G✝
G : Type u_2
H : Type u_3
inst✝¹ : Group G
inst✝ : Group H
f : G →* H
hf : Function.Injective ↑f
⊢ Nat.card G ∣ Nat.card H
[PROOFSTEP]
rw [Nat.card_congr (MonoidHom.ofInjective hf).toEquiv]
[GOAL]
G✝ : Type u_1
inst✝² : Group G✝
H✝ K L : Subgroup G✝
G : Type u_2
H : Type u_3
inst✝¹ : Group G
inst✝ : Group H
f : G →* H
hf : Function.Injective ↑f
⊢ Nat.card { x // x ∈ MonoidHom.range f } ∣ Nat.card H
[PROOFSTEP]
exact Dvd.intro f.range.index f.range.card_mul_index
[GOAL]
G✝ : Type u_1
inst✝² : Group G✝
H✝ K L : Subgroup G✝
G : Type u_2
H : Type u_3
inst✝¹ : Group G
inst✝ : Group H
f : G →* H
hf : Function.Surjective ↑f
⊢ Nat.card H ∣ Nat.card G
[PROOFSTEP]
rw [← Nat.card_congr (QuotientGroup.quotientKerEquivOfSurjective f hf).toEquiv]
[GOAL]
G✝ : Type u_1
inst✝² : Group G✝
H✝ K L : Subgroup G✝
G : Type u_2
H : Type u_3
inst✝¹ : Group G
inst✝ : Group H
f : G →* H
hf : Function.Surjective ↑f
⊢ Nat.card (G ⧸ MonoidHom.ker f) ∣ Nat.card G
[PROOFSTEP]
exact Dvd.intro_left (Nat.card f.ker) f.ker.card_mul_index
[GOAL]
G✝ : Type u_1
inst✝⁴ : Group G✝
H✝ K L : Subgroup G✝
G : Type u_2
H : Type u_3
inst✝³ : Group G
inst✝² : Group H
inst✝¹ : Fintype G
inst✝ : Fintype H
f : G →* H
hf : Function.Surjective ↑f
⊢ Fintype.card H ∣ Fintype.card G
[PROOFSTEP]
simp only [← Nat.card_eq_fintype_card, nat_card_dvd_of_surjective f hf]
[GOAL]
G : Type u_1
inst✝¹ : Group G
H K L : Subgroup G
G' : Type u_2
inst✝ : Group G'
f : G →* G'
⊢ index (map f H) = index (H ⊔ MonoidHom.ker f) * index (MonoidHom.range f)
[PROOFSTEP]
rw [← comap_map_eq, index_comap, relindex_mul_index (H.map_le_range f)]
[GOAL]
G : Type u_1
inst✝¹ : Group G
H K L : Subgroup G
G' : Type u_2
inst✝ : Group G'
f : G →* G'
hf : Function.Surjective ↑f
⊢ index (map f H) ∣ index H
[PROOFSTEP]
rw [index_map, f.range_top_of_surjective hf, index_top, mul_one]
[GOAL]
G : Type u_1
inst✝¹ : Group G
H K L : Subgroup G
G' : Type u_2
inst✝ : Group G'
f : G →* G'
hf : Function.Surjective ↑f
⊢ index (H ⊔ MonoidHom.ker f) ∣ index H
[PROOFSTEP]
exact index_dvd_of_le le_sup_left
[GOAL]
G : Type u_1
inst✝¹ : Group G
H K L : Subgroup G
G' : Type u_2
inst✝ : Group G'
f : G →* G'
hf : MonoidHom.ker f ≤ H
⊢ index H ∣ index (map f H)
[PROOFSTEP]
rw [index_map, sup_of_le_left hf]
[GOAL]
G : Type u_1
inst✝¹ : Group G
H K L : Subgroup G
G' : Type u_2
inst✝ : Group G'
f : G →* G'
hf : MonoidHom.ker f ≤ H
⊢ index H ∣ index H * index (MonoidHom.range f)
[PROOFSTEP]
apply dvd_mul_right
[GOAL]
G : Type u_1
inst✝¹ : Group G
H K L : Subgroup G
inst✝ : Fintype G
hH : Fintype { x // x ∈ H }
⊢ index H * Fintype.card { x // x ∈ H } = Fintype.card G
[PROOFSTEP]
rw [← relindex_bot_left_eq_card, ← index_bot_eq_card, mul_comm]
[GOAL]
G : Type u_1
inst✝¹ : Group G
H K L : Subgroup G
inst✝ : Fintype G
hH : Fintype { x // x ∈ H }
⊢ relindex ⊥ H * index H = index ⊥
[PROOFSTEP]
exact relindex_mul_index bot_le
[GOAL]
G : Type u_1
inst✝¹ : Group G
H K L : Subgroup G
inst✝ : Fintype G
⊢ index H ∣ Fintype.card G
[PROOFSTEP]
classical exact ⟨Fintype.card H, H.index_mul_card.symm⟩
[GOAL]
G : Type u_1
inst✝¹ : Group G
H K L : Subgroup G
inst✝ : Fintype G
⊢ index H ∣ Fintype.card G
[PROOFSTEP]
exact ⟨Fintype.card H, H.index_mul_card.symm⟩
[GOAL]
G : Type u_1
inst✝ : Group G
H K L : Subgroup G
hH : relindex H L ≠ 0
hK : relindex K L ≠ 0
⊢ relindex (H ⊓ K) L ≠ 0
[PROOFSTEP]
replace hH : H.relindex (K ⊓ L) ≠ 0 := mt (relindex_eq_zero_of_le_right inf_le_right) hH
[GOAL]
G : Type u_1
inst✝ : Group G
H K L : Subgroup G
hK : relindex K L ≠ 0
hH : relindex H (K ⊓ L) ≠ 0
⊢ relindex (H ⊓ K) L ≠ 0
[PROOFSTEP]
rw [← inf_relindex_right] at hH hK ⊢
[GOAL]
G : Type u_1
inst✝ : Group G
H K L : Subgroup G
hK : relindex (K ⊓ L) L ≠ 0
hH : relindex (H ⊓ (K ⊓ L)) (K ⊓ L) ≠ 0
⊢ relindex (H ⊓ K ⊓ L) L ≠ 0
[PROOFSTEP]
rw [inf_assoc]
[GOAL]
G : Type u_1
inst✝ : Group G
H K L : Subgroup G
hK : relindex (K ⊓ L) L ≠ 0
hH : relindex (H ⊓ (K ⊓ L)) (K ⊓ L) ≠ 0
⊢ relindex (H ⊓ (K ⊓ L)) L ≠ 0
[PROOFSTEP]
exact relindex_ne_zero_trans hH hK
[GOAL]
G : Type u_1
inst✝ : Group G
H K L : Subgroup G
hH : index H ≠ 0
hK : index K ≠ 0
⊢ index (H ⊓ K) ≠ 0
[PROOFSTEP]
rw [← relindex_top_right] at hH hK ⊢
[GOAL]
G : Type u_1
inst✝ : Group G
H K L : Subgroup G
hH : relindex H ⊤ ≠ 0
hK : relindex K ⊤ ≠ 0
⊢ relindex (H ⊓ K) ⊤ ≠ 0
[PROOFSTEP]
exact relindex_inf_ne_zero hH hK
[GOAL]
G : Type u_1
inst✝ : Group G
H K L : Subgroup G
⊢ relindex (H ⊓ K) L ≤ relindex H L * relindex K L
[PROOFSTEP]
by_cases h : H.relindex L = 0
[GOAL]
case pos
G : Type u_1
inst✝ : Group G
H K L : Subgroup G
h : relindex H L = 0
⊢ relindex (H ⊓ K) L ≤ relindex H L * relindex K L
[PROOFSTEP]
exact (le_of_eq (relindex_eq_zero_of_le_left inf_le_left h)).trans (zero_le _)
[GOAL]
case neg
G : Type u_1
inst✝ : Group G
H K L : Subgroup G
h : ¬relindex H L = 0
⊢ relindex (H ⊓ K) L ≤ relindex H L * relindex K L
[PROOFSTEP]
rw [← inf_relindex_right, inf_assoc, ← relindex_mul_relindex _ _ L inf_le_right inf_le_right, inf_relindex_right,
inf_relindex_right]
[GOAL]
case neg
G : Type u_1
inst✝ : Group G
H K L : Subgroup G
h : ¬relindex H L = 0
⊢ relindex H (K ⊓ L) * relindex K L ≤ relindex H L * relindex K L
[PROOFSTEP]
exact mul_le_mul_right' (relindex_le_of_le_right inf_le_right h) (K.relindex L)
[GOAL]
G : Type u_1
inst✝ : Group G
H K L : Subgroup G
⊢ index (H ⊓ K) ≤ index H * index K
[PROOFSTEP]
simp_rw [← relindex_top_right, relindex_inf_le]
[GOAL]
G : Type u_1
inst✝¹ : Group G
H K L : Subgroup G
ι : Type u_2
inst✝ : Finite ι
f : ι → Subgroup G
hf : ∀ (i : ι), index (f i) ≠ 0
⊢ index (⨅ (i : ι), f i) ≠ 0
[PROOFSTEP]
simp_rw [← relindex_top_right] at hf ⊢
[GOAL]
G : Type u_1
inst✝¹ : Group G
H K L : Subgroup G
ι : Type u_2
inst✝ : Finite ι
f : ι → Subgroup G
hf : ∀ (i : ι), relindex (f i) ⊤ ≠ 0
⊢ relindex (⨅ (i : ι), f i) ⊤ ≠ 0
[PROOFSTEP]
exact relindex_iInf_ne_zero hf
[GOAL]
G : Type u_1
inst✝¹ : Group G
H K L : Subgroup G
ι : Type u_2
inst✝ : Fintype ι
f : ι → Subgroup G
⊢ index (⨅ (i : ι), f i) ≤ ∏ i : ι, index (f i)
[PROOFSTEP]
simp_rw [← relindex_top_right, relindex_iInf_le]
[GOAL]
G : Type u_1
inst✝ : Group G
H K L : Subgroup G
hH : Finite (G ⧸ H)
⊢ index H ≠ 0
[PROOFSTEP]
cases nonempty_fintype (G ⧸ H)
[GOAL]
case intro
G : Type u_1
inst✝ : Group G
H K L : Subgroup G
hH : Finite (G ⧸ H)
val✝ : Fintype (G ⧸ H)
⊢ index H ≠ 0
[PROOFSTEP]
rw [index_eq_card]
[GOAL]
case intro
G : Type u_1
inst✝ : Group G
H K L : Subgroup G
hH : Finite (G ⧸ H)
val✝ : Fintype (G ⧸ H)
⊢ Fintype.card (G ⧸ H) ≠ 0
[PROOFSTEP]
exact Fintype.card_ne_zero
[GOAL]
G : Type u_1
inst✝¹ : Group G
H K L : Subgroup G
inst✝ : FiniteIndex H
⊢ FiniteIndex (normalCore H)
[PROOFSTEP]
rw [normalCore_eq_ker]
[GOAL]
G : Type u_1
inst✝¹ : Group G
H K L : Subgroup G
inst✝ : FiniteIndex H
⊢ FiniteIndex (MonoidHom.ker (MulAction.toPermHom G (G ⧸ H)))
[PROOFSTEP]
infer_instance
[GOAL]
G : Type u_1
inst✝² : Group G
H K L : Subgroup G
inst✝¹ : Finite ↑(commutatorSet G)
inst✝ : Group.FG G
⊢ FiniteIndex (center G)
[PROOFSTEP]
obtain ⟨S, -, hS⟩ := Group.rank_spec G
[GOAL]
case intro.intro
G : Type u_1
inst✝² : Group G
H K L : Subgroup G
inst✝¹ : Finite ↑(commutatorSet G)
inst✝ : Group.FG G
S : Finset G
hS : closure ↑S = ⊤
⊢ FiniteIndex (center G)
[PROOFSTEP]
exact ⟨mt (Finite.card_eq_zero_of_embedding (quotientCenterEmbedding hS)) Finite.card_pos.ne'⟩
[GOAL]
G : Type u_1
inst✝² : Group G
H K L : Subgroup G
inst✝¹ : Finite ↑(commutatorSet G)
inst✝ : Group.FG G
⊢ index (center G) ≤ Nat.card ↑(commutatorSet G) ^ Group.rank G
[PROOFSTEP]
obtain ⟨S, hS1, hS2⟩ := Group.rank_spec G
[GOAL]
case intro.intro
G : Type u_1
inst✝² : Group G
H K L : Subgroup G
inst✝¹ : Finite ↑(commutatorSet G)
inst✝ : Group.FG G
S : Finset G
hS1 : Finset.card S = Group.rank G
hS2 : closure ↑S = ⊤
⊢ index (center G) ≤ Nat.card ↑(commutatorSet G) ^ Group.rank G
[PROOFSTEP]
rw [← hS1, ← Fintype.card_coe, ← Nat.card_eq_fintype_card, ← Finset.coe_sort_coe, ← Nat.card_fun]
[GOAL]
case intro.intro
G : Type u_1
inst✝² : Group G
H K L : Subgroup G
inst✝¹ : Finite ↑(commutatorSet G)
inst✝ : Group.FG G
S : Finset G
hS1 : Finset.card S = Group.rank G
hS2 : closure ↑S = ⊤
⊢ index (center G) ≤ Nat.card (↑↑S → ↑(commutatorSet G))
[PROOFSTEP]
exact Finite.card_le_of_embedding (quotientCenterEmbedding hS2)
| {"mathlib_filename": "Mathlib.GroupTheory.Index", "llama_tokens": 10672} |
[GOAL]
α : Type u_1
G : Type u_2
inst✝ : Group G
f : α → G
rels : Set (FreeGroup α)
h : ∀ (r : FreeGroup α), r ∈ rels → ↑(↑FreeGroup.lift f) r = 1
g : PresentedGroup rels →* G
hg : ∀ (x : α), ↑g (PresentedGroup.of x) = f x
⊢ ∀ {x : PresentedGroup rels}, ↑g x = ↑(toGroup h) x
[PROOFSTEP]
intro x
[GOAL]
α : Type u_1
G : Type u_2
inst✝ : Group G
f : α → G
rels : Set (FreeGroup α)
h : ∀ (r : FreeGroup α), r ∈ rels → ↑(↑FreeGroup.lift f) r = 1
g : PresentedGroup rels →* G
hg : ∀ (x : α), ↑g (PresentedGroup.of x) = f x
x : PresentedGroup rels
⊢ ↑g x = ↑(toGroup h) x
[PROOFSTEP]
refine' QuotientGroup.induction_on x _
[GOAL]
α : Type u_1
G : Type u_2
inst✝ : Group G
f : α → G
rels : Set (FreeGroup α)
h : ∀ (r : FreeGroup α), r ∈ rels → ↑(↑FreeGroup.lift f) r = 1
g : PresentedGroup rels →* G
hg : ∀ (x : α), ↑g (PresentedGroup.of x) = f x
x : PresentedGroup rels
⊢ ∀ (z : FreeGroup α), ↑g ↑z = ↑(toGroup h) ↑z
[PROOFSTEP]
exact fun _ ↦ FreeGroup.lift.unique (g.comp (QuotientGroup.mk' _)) hg
| {"mathlib_filename": "Mathlib.GroupTheory.PresentedGroup", "llama_tokens": 492} |
[GOAL]
G : Type u_1
H : Type u_2
inst✝ : Monoid G
⊢ ¬IsTorsion G ↔ ∃ g, ¬IsOfFinOrder g
[PROOFSTEP]
rw [IsTorsion, not_forall]
[GOAL]
G : Type u_1
H : Type u_2
inst✝ : Monoid G
tG : IsTorsion G
src✝ : Monoid G := inst✝
g : G
⊢ g⁻¹ * g = 1
[PROOFSTEP]
erw [← pow_succ', tsub_add_cancel_of_le, pow_orderOf_eq_one]
[GOAL]
G : Type u_1
H : Type u_2
inst✝ : Monoid G
tG : IsTorsion G
src✝ : Monoid G := inst✝
g : G
⊢ 1 ≤ orderOf g
[PROOFSTEP]
exact orderOf_pos' (tG g)
[GOAL]
G : Type u_1
H : Type u_2
inst✝¹ : Group G
N : Subgroup G
inst✝ : Group H
f : G →* H
hf : Function.Surjective ↑f
tG : IsTorsion G
h : H
⊢ IsOfFinOrder h
[PROOFSTEP]
obtain ⟨g, hg⟩ := hf h
[GOAL]
case intro
G : Type u_1
H : Type u_2
inst✝¹ : Group G
N : Subgroup G
inst✝ : Group H
f : G →* H
hf : Function.Surjective ↑f
tG : IsTorsion G
h : H
g : G
hg : ↑f g = h
⊢ IsOfFinOrder h
[PROOFSTEP]
rw [← hg]
[GOAL]
case intro
G : Type u_1
H : Type u_2
inst✝¹ : Group G
N : Subgroup G
inst✝ : Group H
f : G →* H
hf : Function.Surjective ↑f
tG : IsTorsion G
h : H
g : G
hg : ↑f g = h
⊢ IsOfFinOrder (↑f g)
[PROOFSTEP]
exact f.isOfFinOrder (tG g)
[GOAL]
G : Type u_1
H : Type u_2
inst✝¹ : Group G
N : Subgroup G
inst✝ : Group H
f : G →* H
hN : N = MonoidHom.ker f
tH : IsTorsion H
tN : IsTorsion { x // x ∈ N }
g : G
⊢ ∃ n, 0 < n ∧ g ^ n = 1
[PROOFSTEP]
obtain ⟨ngn, ngnpos, hngn⟩ := (isOfFinOrder_iff_pow_eq_one _).mp (tH <| f g)
[GOAL]
case intro.intro
G : Type u_1
H : Type u_2
inst✝¹ : Group G
N : Subgroup G
inst✝ : Group H
f : G →* H
hN : N = MonoidHom.ker f
tH : IsTorsion H
tN : IsTorsion { x // x ∈ N }
g : G
ngn : ℕ
ngnpos : 0 < ngn
hngn : ↑f g ^ ngn = 1
⊢ ∃ n, 0 < n ∧ g ^ n = 1
[PROOFSTEP]
have hmem := f.mem_ker.mpr ((f.map_pow g ngn).trans hngn)
[GOAL]
case intro.intro
G : Type u_1
H : Type u_2
inst✝¹ : Group G
N : Subgroup G
inst✝ : Group H
f : G →* H
hN : N = MonoidHom.ker f
tH : IsTorsion H
tN : IsTorsion { x // x ∈ N }
g : G
ngn : ℕ
ngnpos : 0 < ngn
hngn : ↑f g ^ ngn = 1
hmem : g ^ ngn ∈ MonoidHom.ker f
⊢ ∃ n, 0 < n ∧ g ^ n = 1
[PROOFSTEP]
lift g ^ ngn to N using hN.symm ▸ hmem with gn h
[GOAL]
case intro.intro.intro
G : Type u_1
H : Type u_2
inst✝¹ : Group G
N : Subgroup G
inst✝ : Group H
f : G →* H
hN : N = MonoidHom.ker f
tH : IsTorsion H
tN : IsTorsion { x // x ∈ N }
g : G
ngn : ℕ
ngnpos : 0 < ngn
hngn : ↑f g ^ ngn = 1
gn : { x // x ∈ N }
h : ↑gn = g ^ ngn
hmem✝ hmem : ↑gn ∈ MonoidHom.ker f
⊢ ∃ n, 0 < n ∧ g ^ n = 1
[PROOFSTEP]
obtain ⟨nn, nnpos, hnn⟩ := (isOfFinOrder_iff_pow_eq_one _).mp (tN gn)
[GOAL]
case intro.intro.intro.intro.intro
G : Type u_1
H : Type u_2
inst✝¹ : Group G
N : Subgroup G
inst✝ : Group H
f : G →* H
hN : N = MonoidHom.ker f
tH : IsTorsion H
tN : IsTorsion { x // x ∈ N }
g : G
ngn : ℕ
ngnpos : 0 < ngn
hngn : ↑f g ^ ngn = 1
gn : { x // x ∈ N }
h : ↑gn = g ^ ngn
hmem✝ hmem : ↑gn ∈ MonoidHom.ker f
nn : ℕ
nnpos : 0 < nn
hnn : gn ^ nn = 1
⊢ ∃ n, 0 < n ∧ g ^ n = 1
[PROOFSTEP]
exact ⟨ngn * nn, mul_pos ngnpos nnpos, by rw [pow_mul, ← h, ← Subgroup.coe_pow, hnn, Subgroup.coe_one]⟩
[GOAL]
G : Type u_1
H : Type u_2
inst✝¹ : Group G
N : Subgroup G
inst✝ : Group H
f : G →* H
hN : N = MonoidHom.ker f
tH : IsTorsion H
tN : IsTorsion { x // x ∈ N }
g : G
ngn : ℕ
ngnpos : 0 < ngn
hngn : ↑f g ^ ngn = 1
gn : { x // x ∈ N }
h : ↑gn = g ^ ngn
hmem✝ hmem : ↑gn ∈ MonoidHom.ker f
nn : ℕ
nnpos : 0 < nn
hnn : gn ^ nn = 1
⊢ g ^ (ngn * nn) = 1
[PROOFSTEP]
rw [pow_mul, ← h, ← Subgroup.coe_pow, hnn, Subgroup.coe_one]
[GOAL]
G : Type u_1
H : Type u_2
inst✝¹ : Group G
N : Subgroup G
inst✝ : Group H
h : ExponentExists G
g : G
⊢ IsOfFinOrder g
[PROOFSTEP]
obtain ⟨n, npos, hn⟩ := h
[GOAL]
case intro.intro
G : Type u_1
H : Type u_2
inst✝¹ : Group G
N : Subgroup G
inst✝ : Group H
g : G
n : ℕ
npos : 0 < n
hn : ∀ (g : G), g ^ n = 1
⊢ IsOfFinOrder g
[PROOFSTEP]
exact (isOfFinOrder_iff_pow_eq_one g).mpr ⟨n, npos, hn g⟩
[GOAL]
G : Type u_1
H : Type u_2
R : Type u_3
M : Type u_4
inst✝² : AddCommMonoid M
inst✝¹ : Semiring R
inst✝ : Module R M
tR : IsTorsion R
f : M
⊢ ∃ n, 0 < n ∧ n • f = 0
[PROOFSTEP]
obtain ⟨n, npos, hn⟩ := (isOfFinAddOrder_iff_nsmul_eq_zero _).mp (tR 1)
[GOAL]
case intro.intro
G : Type u_1
H : Type u_2
R : Type u_3
M : Type u_4
inst✝² : AddCommMonoid M
inst✝¹ : Semiring R
inst✝ : Module R M
tR : IsTorsion R
f : M
n : ℕ
npos : 0 < n
hn : n • 1 = 0
⊢ ∃ n, 0 < n ∧ n • f = 0
[PROOFSTEP]
exact ⟨n, npos, by simp only [nsmul_eq_smul_cast R _ f, ← nsmul_one, hn, zero_smul]⟩
[GOAL]
G : Type u_1
H : Type u_2
R : Type u_3
M : Type u_4
inst✝² : AddCommMonoid M
inst✝¹ : Semiring R
inst✝ : Module R M
tR : IsTorsion R
f : M
n : ℕ
npos : 0 < n
hn : n • 1 = 0
⊢ n • f = 0
[PROOFSTEP]
simp only [nsmul_eq_smul_cast R _ f, ← nsmul_one, hn, zero_smul]
[GOAL]
G : Type u_1
H : Type u_2
inst✝ : CommMonoid G
x✝ : { x // x ∈ torsion G }
x : G
n : ℕ
npos : n > 0
hn : Function.IsPeriodicPt ((fun x x_1 => x * x_1) x) n 1
⊢ ↑(((fun x x_1 => x * x_1)
{ val := x, property := (_ : ∃ n, n > 0 ∧ Function.IsPeriodicPt ((fun x x_1 => x * x_1) x) n 1) })^[n]
1) =
↑1
[PROOFSTEP]
dsimp
[GOAL]
G : Type u_1
H : Type u_2
inst✝ : CommMonoid G
x✝ : { x // x ∈ torsion G }
x : G
n : ℕ
npos : n > 0
hn : Function.IsPeriodicPt ((fun x x_1 => x * x_1) x) n 1
⊢ ↑((fun x_1 => { val := x, property := (_ : ∃ n, n > 0 ∧ Function.IsPeriodicPt (fun x_2 => x * x_2) n 1) } * x_1)^[n]
1) =
1
[PROOFSTEP]
rw [mul_left_iterate]
[GOAL]
G : Type u_1
H : Type u_2
inst✝ : CommMonoid G
x✝ : { x // x ∈ torsion G }
x : G
n : ℕ
npos : n > 0
hn : Function.IsPeriodicPt ((fun x x_1 => x * x_1) x) n 1
⊢ ↑((fun x_1 => { val := x, property := (_ : ∃ n, n > 0 ∧ Function.IsPeriodicPt (fun x_2 => x * x_2) n 1) } ^ n * x_1)
1) =
1
[PROOFSTEP]
change _ * 1 = 1
[GOAL]
G : Type u_1
H : Type u_2
inst✝ : CommMonoid G
x✝ : { x // x ∈ torsion G }
x : G
n : ℕ
npos : n > 0
hn : Function.IsPeriodicPt ((fun x x_1 => x * x_1) x) n 1
⊢ ↑({ val := x, property := (_ : ∃ n, n > 0 ∧ Function.IsPeriodicPt (fun x_1 => x * x_1) n 1) } ^ n) * 1 = 1
[PROOFSTEP]
rw [_root_.mul_one, SubmonoidClass.coe_pow, Subtype.coe_mk, (isPeriodicPt_mul_iff_pow_eq_one _).mp hn]
[GOAL]
G : Type u_1
H : Type u_2
inst✝ : CommMonoid G
p : ℕ
hp : Fact (Nat.Prime p)
a✝ b✝ : G
hg₁ : a✝ ∈ {g | ∃ n, orderOf g = p ^ n}
hg₂ : b✝ ∈ {g | ∃ n, orderOf g = p ^ n}
⊢ ∃ m, (a✝ * b✝) ^ p ^ m = 1
[PROOFSTEP]
obtain ⟨m, hm⟩ := exists_orderOf_eq_prime_pow_iff.mp hg₁
[GOAL]
case intro
G : Type u_1
H : Type u_2
inst✝ : CommMonoid G
p : ℕ
hp : Fact (Nat.Prime p)
a✝ b✝ : G
hg₁ : a✝ ∈ {g | ∃ n, orderOf g = p ^ n}
hg₂ : b✝ ∈ {g | ∃ n, orderOf g = p ^ n}
m : ℕ
hm : a✝ ^ p ^ m = 1
⊢ ∃ m, (a✝ * b✝) ^ p ^ m = 1
[PROOFSTEP]
obtain ⟨n, hn⟩ := exists_orderOf_eq_prime_pow_iff.mp hg₂
[GOAL]
case intro.intro
G : Type u_1
H : Type u_2
inst✝ : CommMonoid G
p : ℕ
hp : Fact (Nat.Prime p)
a✝ b✝ : G
hg₁ : a✝ ∈ {g | ∃ n, orderOf g = p ^ n}
hg₂ : b✝ ∈ {g | ∃ n, orderOf g = p ^ n}
m : ℕ
hm : a✝ ^ p ^ m = 1
n : ℕ
hn : b✝ ^ p ^ n = 1
⊢ ∃ m, (a✝ * b✝) ^ p ^ m = 1
[PROOFSTEP]
exact ⟨m + n, by rw [mul_pow, pow_add, pow_mul, hm, one_pow, Monoid.one_mul, mul_comm, pow_mul, hn, one_pow]⟩
[GOAL]
G : Type u_1
H : Type u_2
inst✝ : CommMonoid G
p : ℕ
hp : Fact (Nat.Prime p)
a✝ b✝ : G
hg₁ : a✝ ∈ {g | ∃ n, orderOf g = p ^ n}
hg₂ : b✝ ∈ {g | ∃ n, orderOf g = p ^ n}
m : ℕ
hm : a✝ ^ p ^ m = 1
n : ℕ
hn : b✝ ^ p ^ n = 1
⊢ (a✝ * b✝) ^ p ^ (m + n) = 1
[PROOFSTEP]
rw [mul_pow, pow_add, pow_mul, hm, one_pow, Monoid.one_mul, mul_comm, pow_mul, hn, one_pow]
[GOAL]
G : Type u_1
H : Type u_2
inst✝ : CommMonoid G
p : ℕ
hp : Fact (Nat.Prime p)
⊢ orderOf 1 = p ^ 0
[PROOFSTEP]
rw [pow_zero, orderOf_one]
[GOAL]
G : Type u_1
H : Type u_2
inst✝ : CommMonoid G
p : ℕ
hp : Fact (Nat.Prime p)
g : { x // x ∈ primaryComponent G p }
⊢ ∃ n, orderOf g = p ^ n
[PROOFSTEP]
simpa [primaryComponent] using g.property
[GOAL]
G : Type u_1
H : Type u_2
inst✝ : CommMonoid G
p : ℕ
hp : Fact (Nat.Prime p)
p' : ℕ
hp' : Fact (Nat.Prime p')
hne : p ≠ p'
⊢ ∀ {x : G}, x ∈ primaryComponent G p → x ∈ primaryComponent G p' → x = 1
[PROOFSTEP]
rintro g ⟨_ | n, hn⟩ ⟨n', hn'⟩
[GOAL]
case intro.zero.intro
G : Type u_1
H : Type u_2
inst✝ : CommMonoid G
p : ℕ
hp : Fact (Nat.Prime p)
p' : ℕ
hp' : Fact (Nat.Prime p')
hne : p ≠ p'
g : G
hn : orderOf g = p ^ Nat.zero
n' : ℕ
hn' : orderOf g = p' ^ n'
⊢ g = 1
[PROOFSTEP]
rwa [pow_zero, orderOf_eq_one_iff] at hn
[GOAL]
case intro.succ.intro
G : Type u_1
H : Type u_2
inst✝ : CommMonoid G
p : ℕ
hp : Fact (Nat.Prime p)
p' : ℕ
hp' : Fact (Nat.Prime p')
hne : p ≠ p'
g : G
n : ℕ
hn : orderOf g = p ^ Nat.succ n
n' : ℕ
hn' : orderOf g = p' ^ n'
⊢ g = 1
[PROOFSTEP]
exact absurd (eq_of_prime_pow_eq hp.out.prime hp'.out.prime n.succ_pos (hn.symm.trans hn')) hne
[GOAL]
G : Type u_1
H : Type u_2
inst✝ : CommMonoid G
tG : IsTorsion G
⊢ torsion G = ⊤
[PROOFSTEP]
ext
[GOAL]
case h
G : Type u_1
H : Type u_2
inst✝ : CommMonoid G
tG : IsTorsion G
x✝ : G
⊢ x✝ ∈ torsion G ↔ x✝ ∈ ⊤
[PROOFSTEP]
tauto
[GOAL]
G : Type u_1
H : Type u_2
inst✝ : Monoid G
⊢ ¬IsTorsionFree G ↔ ∃ g, g ≠ 1 ∧ IsOfFinOrder g
[PROOFSTEP]
simp_rw [IsTorsionFree, Ne.def, not_forall, Classical.not_not, exists_prop]
[GOAL]
G : Type u_1
H : Type u_2
inst✝ : Group G
hN : Nontrivial G
tG : IsTorsion G
⊢ ∃ g, g ≠ 1 ∧ IsOfFinOrder g
[PROOFSTEP]
obtain ⟨x, hx⟩ := (nontrivial_iff_exists_ne (1 : G)).mp hN
[GOAL]
case intro
G : Type u_1
H : Type u_2
inst✝ : Group G
hN : Nontrivial G
tG : IsTorsion G
x : G
hx : x ≠ 1
⊢ ∃ g, g ≠ 1 ∧ IsOfFinOrder g
[PROOFSTEP]
exact ⟨x, hx, tG x⟩
[GOAL]
G : Type u_1
H : Type u_2
inst✝ : Group G
hN : Nontrivial G
tfG : IsTorsionFree G
⊢ ∃ g, ¬IsOfFinOrder g
[PROOFSTEP]
obtain ⟨x, hx⟩ := (nontrivial_iff_exists_ne (1 : G)).mp hN
[GOAL]
case intro
G : Type u_1
H : Type u_2
inst✝ : Group G
hN : Nontrivial G
tfG : IsTorsionFree G
x : G
hx : x ≠ 1
⊢ ∃ g, ¬IsOfFinOrder g
[PROOFSTEP]
exact ⟨x, (tfG x) hx⟩
[GOAL]
G : Type u_1
H✝ : Type u_2
inst✝ : Group G
tG : IsTorsionFree G
H : Subgroup G
h : { x // x ∈ H }
hne : h ≠ 1
⊢ ↑h ≠ 1
[PROOFSTEP]
norm_cast
[GOAL]
G : Type u_1
H : Type u_2
inst✝ : CommGroup G
g : G ⧸ torsion G
hne : g ≠ 1
hfin : IsOfFinOrder g
⊢ g = 1
[PROOFSTEP]
induction' g using QuotientGroup.induction_on' with g
[GOAL]
case H
G : Type u_1
H : Type u_2
inst✝ : CommGroup G
g✝ : G ⧸ torsion G
hne✝ : g✝ ≠ 1
hfin✝ : IsOfFinOrder g✝
g : G
hne : ↑g ≠ 1
hfin : IsOfFinOrder ↑g
⊢ ↑g = 1
[PROOFSTEP]
obtain ⟨m, mpos, hm⟩ := (isOfFinOrder_iff_pow_eq_one _).mp hfin
[GOAL]
case H.intro.intro
G : Type u_1
H : Type u_2
inst✝ : CommGroup G
g✝ : G ⧸ torsion G
hne✝ : g✝ ≠ 1
hfin✝ : IsOfFinOrder g✝
g : G
hne : ↑g ≠ 1
hfin : IsOfFinOrder ↑g
m : ℕ
mpos : 0 < m
hm : ↑g ^ m = 1
⊢ ↑g = 1
[PROOFSTEP]
obtain ⟨n, npos, hn⟩ := (isOfFinOrder_iff_pow_eq_one _).mp ((QuotientGroup.eq_one_iff _).mp hm)
[GOAL]
case H.intro.intro.intro.intro
G : Type u_1
H : Type u_2
inst✝ : CommGroup G
g✝ : G ⧸ torsion G
hne✝ : g✝ ≠ 1
hfin✝ : IsOfFinOrder g✝
g : G
hne : ↑g ≠ 1
hfin : IsOfFinOrder ↑g
m : ℕ
mpos : 0 < m
hm : ↑g ^ m = 1
n : ℕ
npos : 0 < n
hn : (fun x => x ^ m) g ^ n = 1
⊢ ↑g = 1
[PROOFSTEP]
exact
(QuotientGroup.eq_one_iff g).mpr
((isOfFinOrder_iff_pow_eq_one _).mpr ⟨m * n, mul_pos mpos npos, (pow_mul g m n).symm ▸ hn⟩)
| {"mathlib_filename": "Mathlib.GroupTheory.Torsion", "llama_tokens": 6120} |
{"mathlib_filename": "Mathlib.Tactic.Simps.Basic", "llama_tokens": 0} |
|
[GOAL]
n : ℕ
pn : NormNum.IsNat n 0
⊢ List.range n = []
[PROOFSTEP]
rw [pn.out, Nat.cast_zero, List.range_zero]
[GOAL]
n nn n' : ℕ
pn : NormNum.IsNat n nn
pn' : nn = Nat.succ n'
⊢ List.range n = 0 :: List.map Nat.succ (List.range n')
[PROOFSTEP]
rw [pn.out, Nat.cast_id, pn', List.range_succ_eq_map]
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
a : α
s : Multiset α
⊢ insert a s = a ::ₘ s
[PROOFSTEP]
ext
[GOAL]
case a
α : Type u_1
inst✝ : DecidableEq α
a : α
s : Multiset α
a✝ : α
⊢ Multiset.count a✝ (insert a s) = Multiset.count a✝ (a ::ₘ s)
[PROOFSTEP]
simp
[GOAL]
n : ℕ
pn : NormNum.IsNat n 0
⊢ Multiset.range n = 0
[PROOFSTEP]
rw [pn.out, Nat.cast_zero, Multiset.range_zero]
[GOAL]
n nn n' : ℕ
pn : NormNum.IsNat n nn
pn' : nn = Nat.succ n'
⊢ Multiset.range n = n' ::ₘ Multiset.range n'
[PROOFSTEP]
rw [pn.out, Nat.cast_id, pn', Multiset.range_succ]
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
a : α
s : Finset α
h : ¬a ∈ s
⊢ insert a s = Finset.cons a s h
[PROOFSTEP]
ext
[GOAL]
case a
α : Type u_1
inst✝ : DecidableEq α
a : α
s : Finset α
h : ¬a ∈ s
a✝ : α
⊢ a✝ ∈ insert a s ↔ a✝ ∈ Finset.cons a s h
[PROOFSTEP]
simp
[GOAL]
n : ℕ
pn : NormNum.IsNat n 0
⊢ Finset.range n = ∅
[PROOFSTEP]
rw [pn.out, Nat.cast_zero, Finset.range_zero]
[GOAL]
n nn n' : ℕ
pn : NormNum.IsNat n nn
pn' : nn = Nat.succ n'
⊢ Finset.range n = Finset.cons n' (Finset.range n') (_ : ¬n' ∈ Finset.range n')
[PROOFSTEP]
rw [pn.out, Nat.cast_id, pn', Finset.range_succ, Finset.insert_eq_cons]
[GOAL]
α : Type u_1
inst✝ : Fintype α
elems : Finset α
complete : ∀ (x : α), x ∈ elems
⊢ Finset.univ = elems
[PROOFSTEP]
ext x
[GOAL]
case a
α : Type u_1
inst✝ : Fintype α
elems : Finset α
complete : ∀ (x : α), x ∈ elems
x : α
⊢ x ∈ Finset.univ ↔ x ∈ elems
[PROOFSTEP]
simpa using complete x
[GOAL]
β : Type u_1
α : Type u_2
inst✝ : CommSemiring β
f : α → β
⊢ Finset.sum ∅ f = ↑0
[PROOFSTEP]
simp
[GOAL]
β : Type u_1
α : Type u_2
inst✝ : CommSemiring β
f : α → β
⊢ Finset.prod ∅ f = ↑1
[PROOFSTEP]
simp
| {"mathlib_filename": "Mathlib.Tactic.NormNum.BigOperators", "llama_tokens": 1035} |
[GOAL]
A : Type u_1
α : Type u_2
inst✝² : Monoid A
inst✝¹ : Pow A α
inst✝ : Zero α
H : ∀ {n : α}, n ≠ 0 → Function.Surjective fun a => a ^ n
x✝ : A
⊢ (fun a n => if x : n = 0 then 1 else Exists.choose (_ : ∃ a_1, (fun a => a ^ n) a_1 = a)) x✝ 0 = 1
[PROOFSTEP]
classical exact dif_pos rfl
[GOAL]
A : Type u_1
α : Type u_2
inst✝² : Monoid A
inst✝¹ : Pow A α
inst✝ : Zero α
H : ∀ {n : α}, n ≠ 0 → Function.Surjective fun a => a ^ n
x✝ : A
⊢ (fun a n => if x : n = 0 then 1 else Exists.choose (_ : ∃ a_1, (fun a => a ^ n) a_1 = a)) x✝ 0 = 1
[PROOFSTEP]
exact dif_pos rfl
[GOAL]
A : Type u_1
α : Type u_2
inst✝² : Monoid A
inst✝¹ : Pow A α
inst✝ : Zero α
H : ∀ {n : α}, n ≠ 0 → Function.Surjective fun a => a ^ n
n✝ : α
a : A
hn : n✝ ≠ 0
⊢ (fun a n => if x : n = 0 then 1 else Exists.choose (_ : ∃ a_1, (fun a => a ^ n) a_1 = a)) a n✝ ^ n✝ = a
[PROOFSTEP]
dsimp only
[GOAL]
A : Type u_1
α : Type u_2
inst✝² : Monoid A
inst✝¹ : Pow A α
inst✝ : Zero α
H : ∀ {n : α}, n ≠ 0 → Function.Surjective fun a => a ^ n
n✝ : α
a : A
hn : n✝ ≠ 0
⊢ (if x : n✝ = 0 then 1 else Exists.choose (_ : ∃ a_1, (fun a => a ^ n✝) a_1 = a)) ^ n✝ = a
[PROOFSTEP]
rw [dif_neg hn]
[GOAL]
A : Type u_1
α : Type u_2
inst✝² : Monoid A
inst✝¹ : Pow A α
inst✝ : Zero α
H : ∀ {n : α}, n ≠ 0 → Function.Surjective fun a => a ^ n
n✝ : α
a : A
hn : n✝ ≠ 0
⊢ Exists.choose (_ : ∃ a_1, (fun a => a ^ n✝) a_1 = a) ^ n✝ = a
[PROOFSTEP]
exact (H hn a).choose_spec
[GOAL]
A : Type u_1
inst✝ : AddCommGroup A
H : ∀ {n : ℤ}, n ≠ 0 → n • ⊤ = ⊤
a : A
n : ℤ
hn : ¬n = 0
⊢ a ∈ n • ⊤
[PROOFSTEP]
rw [H hn]
[GOAL]
A : Type u_1
inst✝ : AddCommGroup A
H : ∀ {n : ℤ}, n ≠ 0 → n • ⊤ = ⊤
a : A
n : ℤ
hn : ¬n = 0
⊢ a ∈ ⊤
[PROOFSTEP]
trivial
[GOAL]
A : Type u_1
inst✝ : AddCommGroup A
H : ∀ {n : ℤ}, n ≠ 0 → n • ⊤ = ⊤
n✝ : ℤ
a : A
hn : n✝ ≠ 0
⊢ n✝ • (fun a n => if hn : n = 0 then 0 else Exists.choose (_ : a ∈ n • ⊤)) a n✝ = a
[PROOFSTEP]
simp_rw [dif_neg hn]
[GOAL]
A : Type u_1
inst✝ : AddCommGroup A
H : ∀ {n : ℤ}, n ≠ 0 → n • ⊤ = ⊤
n✝ : ℤ
a : A
hn : n✝ ≠ 0
⊢ n✝ • Exists.choose (_ : a ∈ n✝ • ⊤) = a
[PROOFSTEP]
generalize_proofs h1
[GOAL]
A : Type u_1
inst✝ : AddCommGroup A
H : ∀ {n : ℤ}, n ≠ 0 → n • ⊤ = ⊤
n✝ : ℤ
a : A
hn : n✝ ≠ 0
h1 : a ∈ n✝ • ⊤
⊢ n✝ • Exists.choose h1 = a
[PROOFSTEP]
exact h1.choose_spec.2
[GOAL]
𝕜 : Type ?u.71834
inst✝¹ : DivisionRing 𝕜
inst✝ : CharZero 𝕜
q : 𝕜
⊢ (fun q n => q / ↑n) q 0 = 0
[PROOFSTEP]
norm_num
[GOAL]
𝕜 : Type ?u.71834
inst✝¹ : DivisionRing 𝕜
inst✝ : CharZero 𝕜
n : ℤ
q : 𝕜
hn : n ≠ 0
⊢ n • (fun q n => q / ↑n) q n = q
[PROOFSTEP]
rw [zsmul_eq_mul, (Int.cast_commute n _).eq, div_mul_cancel q (Int.cast_ne_zero.mpr hn)]
[GOAL]
A : Type u_1
inst✝¹ : Group A
inst✝ : RootableBy A ℕ
n : ℤ
a : A
hn : n ≠ 0
⊢ (fun a z =>
match z with
| ofNat n => RootableBy.root a n
| -[n+1] => (RootableBy.root a (n + 1))⁻¹)
a n ^
n =
a
[PROOFSTEP]
induction n
[GOAL]
case ofNat
A : Type u_1
inst✝¹ : Group A
inst✝ : RootableBy A ℕ
a : A
a✝ : ℕ
hn : ofNat a✝ ≠ 0
⊢ (fun a z =>
match z with
| ofNat n => RootableBy.root a n
| -[n+1] => (RootableBy.root a (n + 1))⁻¹)
a (ofNat a✝) ^
ofNat a✝ =
a
[PROOFSTEP]
change RootableBy.root a _ ^ _ = a
[GOAL]
case ofNat
A : Type u_1
inst✝¹ : Group A
inst✝ : RootableBy A ℕ
a : A
a✝ : ℕ
hn : ofNat a✝ ≠ 0
⊢ RootableBy.root a a✝ ^ ofNat a✝ = a
[PROOFSTEP]
norm_num
[GOAL]
case ofNat
A : Type u_1
inst✝¹ : Group A
inst✝ : RootableBy A ℕ
a : A
a✝ : ℕ
hn : ofNat a✝ ≠ 0
⊢ RootableBy.root a a✝ ^ a✝ = a
[PROOFSTEP]
rw [RootableBy.root_cancel]
[GOAL]
case ofNat.a
A : Type u_1
inst✝¹ : Group A
inst✝ : RootableBy A ℕ
a : A
a✝ : ℕ
hn : ofNat a✝ ≠ 0
⊢ a✝ ≠ 0
[PROOFSTEP]
rw [Int.ofNat_eq_coe] at hn
[GOAL]
case ofNat.a
A : Type u_1
inst✝¹ : Group A
inst✝ : RootableBy A ℕ
a : A
a✝ : ℕ
hn : ↑a✝ ≠ 0
⊢ a✝ ≠ 0
[PROOFSTEP]
exact_mod_cast hn
[GOAL]
case negSucc
A : Type u_1
inst✝¹ : Group A
inst✝ : RootableBy A ℕ
a : A
a✝ : ℕ
hn : -[a✝+1] ≠ 0
⊢ (fun a z =>
match z with
| ofNat n => RootableBy.root a n
| -[n+1] => (RootableBy.root a (n + 1))⁻¹)
a -[a✝+1] ^
-[a✝+1] =
a
[PROOFSTEP]
change (RootableBy.root a _)⁻¹ ^ _ = a
[GOAL]
case negSucc
A : Type u_1
inst✝¹ : Group A
inst✝ : RootableBy A ℕ
a : A
a✝ : ℕ
hn : -[a✝+1] ≠ 0
⊢ (RootableBy.root a (a✝ + 1))⁻¹ ^ -[a✝+1] = a
[PROOFSTEP]
norm_num
[GOAL]
case negSucc
A : Type u_1
inst✝¹ : Group A
inst✝ : RootableBy A ℕ
a : A
a✝ : ℕ
hn : -[a✝+1] ≠ 0
⊢ RootableBy.root a (a✝ + 1) ^ (a✝ + 1) = a
[PROOFSTEP]
rw [RootableBy.root_cancel]
[GOAL]
case negSucc.a
A : Type u_1
inst✝¹ : Group A
inst✝ : RootableBy A ℕ
a : A
a✝ : ℕ
hn : -[a✝+1] ≠ 0
⊢ a✝ + 1 ≠ 0
[PROOFSTEP]
norm_num
[GOAL]
A : Type u_1
inst✝¹ : Group A
inst✝ : RootableBy A ℤ
n : ℕ
a : A
hn : n ≠ 0
⊢ (fun a n => RootableBy.root a ↑n) a n ^ n = a
[PROOFSTEP]
simpa only [zpow_coe_nat] using RootableBy.root_cancel a (show (n : ℤ) ≠ 0 by exact_mod_cast hn)
[GOAL]
A : Type u_1
inst✝¹ : Group A
inst✝ : RootableBy A ℤ
n : ℕ
a : A
hn : n ≠ 0
⊢ ↑n ≠ 0
[PROOFSTEP]
exact_mod_cast hn
[GOAL]
A : Type u_1
B : Type u_2
α : Type u_3
inst✝⁵ : Zero α
inst✝⁴ : Monoid A
inst✝³ : Monoid B
inst✝² : Pow A α
inst✝¹ : Pow B α
inst✝ : RootableBy A α
f : A → B
hf : Surjective f
hpow : ∀ (a : A) (n : α), f (a ^ n) = f a ^ n
n : α
hn : n ≠ 0
x : B
y : A
hy : f y = x
⊢ f (RootableBy.root y n) ^ n = x
[PROOFSTEP]
rw [← hpow (RootableBy.root y n) n, RootableBy.root_cancel _ hn, hy]
| {"mathlib_filename": "Mathlib.GroupTheory.Divisible", "llama_tokens": 3070} |
[GOAL]
M : Type u_1
N : Type u_2
inst✝¹ : Monoid M
inst✝ : AddMonoid N
P : Submonoid M
x✝ : ∃ S, closure S = P ∧ Set.Finite S
S : Set M
hS : closure S = P
hf : Set.Finite S
⊢ closure ↑(Set.Finite.toFinset hf) = P
[PROOFSTEP]
simp [hS]
[GOAL]
M : Type u_1
N : Type u_2
inst✝¹ : Monoid M
inst✝ : AddMonoid N
P : Submonoid M
h : FG P
S : Set M
hS : closure S = P
hf : Set.Finite S
⊢ AddSubmonoid.closure (↑Additive.toMul ⁻¹' S) = ↑toAddSubmonoid P
[PROOFSTEP]
simp [← Submonoid.toAddSubmonoid_closure, hS]
[GOAL]
M : Type u_1
N : Type u_2
inst✝¹ : Monoid M
inst✝ : AddMonoid N
P : Submonoid M
h : AddSubmonoid.FG (↑toAddSubmonoid P)
T : Set (Additive M)
hT : AddSubmonoid.closure T = ↑toAddSubmonoid P
hf : Set.Finite T
⊢ closure (↑Multiplicative.ofAdd ⁻¹' T) = P
[PROOFSTEP]
simp [← AddSubmonoid.toSubmonoid'_closure, hT]
[GOAL]
M : Type u_1
N : Type u_2
inst✝¹ : Monoid M
inst✝ : AddMonoid N
P : AddSubmonoid N
⊢ FG P ↔ Submonoid.FG (↑toSubmonoid P)
[PROOFSTEP]
convert (Submonoid.fg_iff_add_fg (toSubmonoid P)).symm
[GOAL]
M : Type u_1
N : Type u_2
inst✝² : Monoid M
inst✝¹ : AddMonoid N
inst✝ : Finite M
⊢ FG M
[PROOFSTEP]
cases nonempty_fintype M
[GOAL]
case intro
M : Type u_1
N : Type u_2
inst✝² : Monoid M
inst✝¹ : AddMonoid N
inst✝ : Finite M
val✝ : Fintype M
⊢ FG M
[PROOFSTEP]
exact ⟨⟨Finset.univ, by rw [Finset.coe_univ]; exact Submonoid.closure_univ⟩⟩
[GOAL]
M : Type u_1
N : Type u_2
inst✝² : Monoid M
inst✝¹ : AddMonoid N
inst✝ : Finite M
val✝ : Fintype M
⊢ Submonoid.closure ↑Finset.univ = ⊤
[PROOFSTEP]
rw [Finset.coe_univ]
[GOAL]
M : Type u_1
N : Type u_2
inst✝² : Monoid M
inst✝¹ : AddMonoid N
inst✝ : Finite M
val✝ : Fintype M
⊢ Submonoid.closure Set.univ = ⊤
[PROOFSTEP]
exact Submonoid.closure_univ
[GOAL]
M : Type u_1
N : Type u_2
inst✝² : Monoid M
inst✝¹ : AddMonoid N
M' : Type u_3
inst✝ : Monoid M'
P : Submonoid M
h : FG P
e : M →* M'
⊢ FG (Submonoid.map e P)
[PROOFSTEP]
classical
obtain ⟨s, rfl⟩ := h
exact ⟨s.image e, by rw [Finset.coe_image, MonoidHom.map_mclosure]⟩
[GOAL]
M : Type u_1
N : Type u_2
inst✝² : Monoid M
inst✝¹ : AddMonoid N
M' : Type u_3
inst✝ : Monoid M'
P : Submonoid M
h : FG P
e : M →* M'
⊢ FG (Submonoid.map e P)
[PROOFSTEP]
obtain ⟨s, rfl⟩ := h
[GOAL]
case intro
M : Type u_1
N : Type u_2
inst✝² : Monoid M
inst✝¹ : AddMonoid N
M' : Type u_3
inst✝ : Monoid M'
e : M →* M'
s : Finset M
⊢ FG (Submonoid.map e (closure ↑s))
[PROOFSTEP]
exact ⟨s.image e, by rw [Finset.coe_image, MonoidHom.map_mclosure]⟩
[GOAL]
M : Type u_1
N : Type u_2
inst✝² : Monoid M
inst✝¹ : AddMonoid N
M' : Type u_3
inst✝ : Monoid M'
e : M →* M'
s : Finset M
⊢ closure ↑(Finset.image (↑e) s) = Submonoid.map e (closure ↑s)
[PROOFSTEP]
rw [Finset.coe_image, MonoidHom.map_mclosure]
[GOAL]
M : Type u_1
N : Type u_2
inst✝² : Monoid M
inst✝¹ : AddMonoid N
M' : Type u_3
inst✝ : Monoid M'
P : Submonoid M
e : M →* M'
he : Function.Injective ↑e
h : FG (Submonoid.map e P)
⊢ FG P
[PROOFSTEP]
obtain ⟨s, hs⟩ := h
[GOAL]
case intro
M : Type u_1
N : Type u_2
inst✝² : Monoid M
inst✝¹ : AddMonoid N
M' : Type u_3
inst✝ : Monoid M'
P : Submonoid M
e : M →* M'
he : Function.Injective ↑e
s : Finset M'
hs : closure ↑s = Submonoid.map e P
⊢ FG P
[PROOFSTEP]
use s.preimage e (he.injOn _)
[GOAL]
case h
M : Type u_1
N : Type u_2
inst✝² : Monoid M
inst✝¹ : AddMonoid N
M' : Type u_3
inst✝ : Monoid M'
P : Submonoid M
e : M →* M'
he : Function.Injective ↑e
s : Finset M'
hs : closure ↑s = Submonoid.map e P
⊢ closure ↑(Finset.preimage s ↑e (_ : Set.InjOn (↑e) (↑e ⁻¹' ↑s))) = P
[PROOFSTEP]
apply Submonoid.map_injective_of_injective he
[GOAL]
case h.a
M : Type u_1
N : Type u_2
inst✝² : Monoid M
inst✝¹ : AddMonoid N
M' : Type u_3
inst✝ : Monoid M'
P : Submonoid M
e : M →* M'
he : Function.Injective ↑e
s : Finset M'
hs : closure ↑s = Submonoid.map e P
⊢ Submonoid.map e (closure ↑(Finset.preimage s ↑e (_ : Set.InjOn (↑e) (↑e ⁻¹' ↑s)))) = Submonoid.map e P
[PROOFSTEP]
rw [← hs, MonoidHom.map_mclosure e, Finset.coe_preimage]
[GOAL]
case h.a
M : Type u_1
N : Type u_2
inst✝² : Monoid M
inst✝¹ : AddMonoid N
M' : Type u_3
inst✝ : Monoid M'
P : Submonoid M
e : M →* M'
he : Function.Injective ↑e
s : Finset M'
hs : closure ↑s = Submonoid.map e P
⊢ closure (↑e '' (↑e ⁻¹' ↑s)) = closure ↑s
[PROOFSTEP]
congr
[GOAL]
case h.a.e_s
M : Type u_1
N : Type u_2
inst✝² : Monoid M
inst✝¹ : AddMonoid N
M' : Type u_3
inst✝ : Monoid M'
P : Submonoid M
e : M →* M'
he : Function.Injective ↑e
s : Finset M'
hs : closure ↑s = Submonoid.map e P
⊢ ↑e '' (↑e ⁻¹' ↑s) = ↑s
[PROOFSTEP]
rw [Set.image_preimage_eq_iff, ← MonoidHom.coe_mrange e, ← Submonoid.closure_le, hs, MonoidHom.mrange_eq_map e]
[GOAL]
case h.a.e_s
M : Type u_1
N : Type u_2
inst✝² : Monoid M
inst✝¹ : AddMonoid N
M' : Type u_3
inst✝ : Monoid M'
P : Submonoid M
e : M →* M'
he : Function.Injective ↑e
s : Finset M'
hs : closure ↑s = Submonoid.map e P
⊢ Submonoid.map e P ≤ Submonoid.map e ⊤
[PROOFSTEP]
exact Submonoid.monotone_map le_top
[GOAL]
M : Type u_1
N✝ : Type u_2
inst✝¹ : Monoid M
inst✝ : AddMonoid N✝
N : Submonoid M
⊢ FG { x // x ∈ N } ↔ Submonoid.FG N
[PROOFSTEP]
conv_rhs => rw [← N.range_subtype, MonoidHom.mrange_eq_map]
[GOAL]
M : Type u_1
N✝ : Type u_2
inst✝¹ : Monoid M
inst✝ : AddMonoid N✝
N : Submonoid M
| Submonoid.FG N
[PROOFSTEP]
rw [← N.range_subtype, MonoidHom.mrange_eq_map]
[GOAL]
M : Type u_1
N✝ : Type u_2
inst✝¹ : Monoid M
inst✝ : AddMonoid N✝
N : Submonoid M
| Submonoid.FG N
[PROOFSTEP]
rw [← N.range_subtype, MonoidHom.mrange_eq_map]
[GOAL]
M : Type u_1
N✝ : Type u_2
inst✝¹ : Monoid M
inst✝ : AddMonoid N✝
N : Submonoid M
| Submonoid.FG N
[PROOFSTEP]
rw [← N.range_subtype, MonoidHom.mrange_eq_map]
[GOAL]
M : Type u_1
N✝ : Type u_2
inst✝¹ : Monoid M
inst✝ : AddMonoid N✝
N : Submonoid M
⊢ FG { x // x ∈ N } ↔ Submonoid.FG (Submonoid.map (Submonoid.subtype N) ⊤)
[PROOFSTEP]
exact ⟨fun h => h.out.map N.subtype, fun h => ⟨h.map_injective N.subtype Subtype.coe_injective⟩⟩
[GOAL]
M : Type u_1
N : Type u_2
inst✝³ : Monoid M
inst✝² : AddMonoid N
M' : Type u_3
inst✝¹ : Monoid M'
inst✝ : FG M
f : M →* M'
hf : Function.Surjective ↑f
⊢ FG M'
[PROOFSTEP]
classical
obtain ⟨s, hs⟩ := Monoid.fg_def.mp ‹_›
use s.image f
rwa [Finset.coe_image, ← MonoidHom.map_mclosure, hs, ← MonoidHom.mrange_eq_map, MonoidHom.mrange_top_iff_surjective]
[GOAL]
M : Type u_1
N : Type u_2
inst✝³ : Monoid M
inst✝² : AddMonoid N
M' : Type u_3
inst✝¹ : Monoid M'
inst✝ : FG M
f : M →* M'
hf : Function.Surjective ↑f
⊢ FG M'
[PROOFSTEP]
obtain ⟨s, hs⟩ := Monoid.fg_def.mp ‹_›
[GOAL]
case intro
M : Type u_1
N : Type u_2
inst✝³ : Monoid M
inst✝² : AddMonoid N
M' : Type u_3
inst✝¹ : Monoid M'
inst✝ : FG M
f : M →* M'
hf : Function.Surjective ↑f
s : Finset M
hs : Submonoid.closure ↑s = ⊤
⊢ FG M'
[PROOFSTEP]
use s.image f
[GOAL]
case h
M : Type u_1
N : Type u_2
inst✝³ : Monoid M
inst✝² : AddMonoid N
M' : Type u_3
inst✝¹ : Monoid M'
inst✝ : FG M
f : M →* M'
hf : Function.Surjective ↑f
s : Finset M
hs : Submonoid.closure ↑s = ⊤
⊢ Submonoid.closure ↑(Finset.image (↑f) s) = ⊤
[PROOFSTEP]
rwa [Finset.coe_image, ← MonoidHom.map_mclosure, hs, ← MonoidHom.mrange_eq_map, MonoidHom.mrange_top_iff_surjective]
[GOAL]
M : Type u_1
N : Type u_2
inst✝¹ : Monoid M
inst✝ : AddMonoid N
s : Finset M
⊢ FG { x // x ∈ Submonoid.closure ↑s }
[PROOFSTEP]
refine' ⟨⟨s.preimage Subtype.val (Subtype.coe_injective.injOn _), _⟩⟩
[GOAL]
M : Type u_1
N : Type u_2
inst✝¹ : Monoid M
inst✝ : AddMonoid N
s : Finset M
⊢ Submonoid.closure ↑(Finset.preimage s Subtype.val (_ : Set.InjOn (fun a => ↑a) (Subtype.val ⁻¹' ↑s))) = ⊤
[PROOFSTEP]
rw [Finset.coe_preimage, Submonoid.closure_closure_coe_preimage]
[GOAL]
M : Type u_1
N : Type u_2
inst✝³ : Monoid M
inst✝² : AddMonoid N
G : Type u_3
H : Type u_4
inst✝¹ : Group G
inst✝ : AddGroup H
P : Subgroup G
x✝ : ∃ S, closure S = P ∧ Set.Finite S
S : Set G
hS : closure S = P
hf : Set.Finite S
⊢ closure ↑(Set.Finite.toFinset hf) = P
[PROOFSTEP]
simp [hS]
[GOAL]
M : Type u_1
N : Type u_2
inst✝³ : Monoid M
inst✝² : AddMonoid N
G : Type u_3
H : Type u_4
inst✝¹ : Group G
inst✝ : AddGroup H
P : Subgroup G
⊢ FG P ↔ Submonoid.FG P.toSubmonoid
[PROOFSTEP]
constructor
[GOAL]
case mp
M : Type u_1
N : Type u_2
inst✝³ : Monoid M
inst✝² : AddMonoid N
G : Type u_3
H : Type u_4
inst✝¹ : Group G
inst✝ : AddGroup H
P : Subgroup G
⊢ FG P → Submonoid.FG P.toSubmonoid
[PROOFSTEP]
rintro ⟨S, rfl⟩
[GOAL]
case mp.intro
M : Type u_1
N : Type u_2
inst✝³ : Monoid M
inst✝² : AddMonoid N
G : Type u_3
H : Type u_4
inst✝¹ : Group G
inst✝ : AddGroup H
S : Finset G
⊢ Submonoid.FG (closure ↑S).toSubmonoid
[PROOFSTEP]
rw [Submonoid.fg_iff]
[GOAL]
case mp.intro
M : Type u_1
N : Type u_2
inst✝³ : Monoid M
inst✝² : AddMonoid N
G : Type u_3
H : Type u_4
inst✝¹ : Group G
inst✝ : AddGroup H
S : Finset G
⊢ ∃ S_1, Submonoid.closure S_1 = (closure ↑S).toSubmonoid ∧ Set.Finite S_1
[PROOFSTEP]
refine' ⟨S ∪ S⁻¹, _, S.finite_toSet.union S.finite_toSet.inv⟩
[GOAL]
case mp.intro
M : Type u_1
N : Type u_2
inst✝³ : Monoid M
inst✝² : AddMonoid N
G : Type u_3
H : Type u_4
inst✝¹ : Group G
inst✝ : AddGroup H
S : Finset G
⊢ Submonoid.closure (↑S ∪ (↑S)⁻¹) = (closure ↑S).toSubmonoid
[PROOFSTEP]
exact (Subgroup.closure_toSubmonoid _).symm
[GOAL]
case mpr
M : Type u_1
N : Type u_2
inst✝³ : Monoid M
inst✝² : AddMonoid N
G : Type u_3
H : Type u_4
inst✝¹ : Group G
inst✝ : AddGroup H
P : Subgroup G
⊢ Submonoid.FG P.toSubmonoid → FG P
[PROOFSTEP]
rintro ⟨S, hS⟩
[GOAL]
case mpr.intro
M : Type u_1
N : Type u_2
inst✝³ : Monoid M
inst✝² : AddMonoid N
G : Type u_3
H : Type u_4
inst✝¹ : Group G
inst✝ : AddGroup H
P : Subgroup G
S : Finset G
hS : Submonoid.closure ↑S = P.toSubmonoid
⊢ FG P
[PROOFSTEP]
refine' ⟨S, le_antisymm _ _⟩
[GOAL]
case mpr.intro.refine'_1
M : Type u_1
N : Type u_2
inst✝³ : Monoid M
inst✝² : AddMonoid N
G : Type u_3
H : Type u_4
inst✝¹ : Group G
inst✝ : AddGroup H
P : Subgroup G
S : Finset G
hS : Submonoid.closure ↑S = P.toSubmonoid
⊢ closure ↑S ≤ P
[PROOFSTEP]
rw [Subgroup.closure_le, ← Subgroup.coe_toSubmonoid, ← hS]
[GOAL]
case mpr.intro.refine'_1
M : Type u_1
N : Type u_2
inst✝³ : Monoid M
inst✝² : AddMonoid N
G : Type u_3
H : Type u_4
inst✝¹ : Group G
inst✝ : AddGroup H
P : Subgroup G
S : Finset G
hS : Submonoid.closure ↑S = P.toSubmonoid
⊢ ↑S ⊆ ↑(Submonoid.closure ↑S)
[PROOFSTEP]
exact Submonoid.subset_closure
[GOAL]
case mpr.intro.refine'_2
M : Type u_1
N : Type u_2
inst✝³ : Monoid M
inst✝² : AddMonoid N
G : Type u_3
H : Type u_4
inst✝¹ : Group G
inst✝ : AddGroup H
P : Subgroup G
S : Finset G
hS : Submonoid.closure ↑S = P.toSubmonoid
⊢ P ≤ closure ↑S
[PROOFSTEP]
rw [← Subgroup.toSubmonoid_le, ← hS, Submonoid.closure_le]
[GOAL]
case mpr.intro.refine'_2
M : Type u_1
N : Type u_2
inst✝³ : Monoid M
inst✝² : AddMonoid N
G : Type u_3
H : Type u_4
inst✝¹ : Group G
inst✝ : AddGroup H
P : Subgroup G
S : Finset G
hS : Submonoid.closure ↑S = P.toSubmonoid
⊢ ↑S ⊆ ↑(closure ↑S).toSubmonoid
[PROOFSTEP]
exact Subgroup.subset_closure
[GOAL]
M : Type u_1
N : Type u_2
inst✝³ : Monoid M
inst✝² : AddMonoid N
G : Type u_3
H : Type u_4
inst✝¹ : Group G
inst✝ : AddGroup H
P : Subgroup G
⊢ FG P ↔ AddSubgroup.FG (↑toAddSubgroup P)
[PROOFSTEP]
rw [Subgroup.fg_iff_submonoid_fg, AddSubgroup.fg_iff_addSubmonoid_fg]
[GOAL]
M : Type u_1
N : Type u_2
inst✝³ : Monoid M
inst✝² : AddMonoid N
G : Type u_3
H : Type u_4
inst✝¹ : Group G
inst✝ : AddGroup H
P : Subgroup G
⊢ Submonoid.FG P.toSubmonoid ↔ AddSubmonoid.FG (↑toAddSubgroup P).toAddSubmonoid
[PROOFSTEP]
exact (Subgroup.toSubmonoid P).fg_iff_add_fg
[GOAL]
M : Type u_1
N : Type u_2
inst✝³ : Monoid M
inst✝² : AddMonoid N
G : Type u_3
H : Type u_4
inst✝¹ : Group G
inst✝ : AddGroup H
P : AddSubgroup H
⊢ FG P ↔ Subgroup.FG (↑toSubgroup P)
[PROOFSTEP]
rw [AddSubgroup.fg_iff_addSubmonoid_fg, Subgroup.fg_iff_submonoid_fg]
[GOAL]
M : Type u_1
N : Type u_2
inst✝³ : Monoid M
inst✝² : AddMonoid N
G : Type u_3
H : Type u_4
inst✝¹ : Group G
inst✝ : AddGroup H
P : AddSubgroup H
⊢ AddSubmonoid.FG P.toAddSubmonoid ↔ Submonoid.FG (↑toSubgroup P).toSubmonoid
[PROOFSTEP]
exact AddSubmonoid.fg_iff_mul_fg (AddSubgroup.toAddSubmonoid P)
[GOAL]
M : Type u_1
N : Type u_2
inst✝⁴ : Monoid M
inst✝³ : AddMonoid N
G : Type u_3
H : Type u_4
inst✝² : Group G
inst✝¹ : AddGroup H
inst✝ : Finite G
⊢ FG G
[PROOFSTEP]
cases nonempty_fintype G
[GOAL]
case intro
M : Type u_1
N : Type u_2
inst✝⁴ : Monoid M
inst✝³ : AddMonoid N
G : Type u_3
H : Type u_4
inst✝² : Group G
inst✝¹ : AddGroup H
inst✝ : Finite G
val✝ : Fintype G
⊢ FG G
[PROOFSTEP]
exact ⟨⟨Finset.univ, by rw [Finset.coe_univ]; exact Subgroup.closure_univ⟩⟩
[GOAL]
M : Type u_1
N : Type u_2
inst✝⁴ : Monoid M
inst✝³ : AddMonoid N
G : Type u_3
H : Type u_4
inst✝² : Group G
inst✝¹ : AddGroup H
inst✝ : Finite G
val✝ : Fintype G
⊢ Subgroup.closure ↑Finset.univ = ⊤
[PROOFSTEP]
rw [Finset.coe_univ]
[GOAL]
M : Type u_1
N : Type u_2
inst✝⁴ : Monoid M
inst✝³ : AddMonoid N
G : Type u_3
H : Type u_4
inst✝² : Group G
inst✝¹ : AddGroup H
inst✝ : Finite G
val✝ : Fintype G
⊢ Subgroup.closure Set.univ = ⊤
[PROOFSTEP]
exact Subgroup.closure_univ
[GOAL]
M : Type u_1
N : Type u_2
inst✝³ : Monoid M
inst✝² : AddMonoid N
G : Type u_3
H : Type u_4
inst✝¹ : Group G
inst✝ : AddGroup H
s : Finset G
⊢ FG { x // x ∈ Subgroup.closure ↑s }
[PROOFSTEP]
refine' ⟨⟨s.preimage Subtype.val (Subtype.coe_injective.injOn _), _⟩⟩
[GOAL]
M : Type u_1
N : Type u_2
inst✝³ : Monoid M
inst✝² : AddMonoid N
G : Type u_3
H : Type u_4
inst✝¹ : Group G
inst✝ : AddGroup H
s : Finset G
⊢ Subgroup.closure ↑(Finset.preimage s Subtype.val (_ : Set.InjOn (fun a => ↑a) (Subtype.val ⁻¹' ↑s))) = ⊤
[PROOFSTEP]
rw [Finset.coe_preimage, ← Subgroup.coeSubtype, Subgroup.closure_preimage_eq_top]
[GOAL]
M : Type u_1
N : Type u_2
inst✝⁶ : Monoid M
inst✝⁵ : AddMonoid N
G : Type u_3
H : Type u_4
inst✝⁴ : Group G
inst✝³ : AddGroup H
G' : Type u_5
inst✝² : Group G'
inst✝¹ : FG G
inst✝ : FG G'
f : G →* G'
hf : Function.Surjective ↑f
⊢ rank G' ≤ rank G
[PROOFSTEP]
classical
obtain ⟨S, hS1, hS2⟩ := Group.rank_spec G
trans (S.image f).card
· apply Group.rank_le
rw [Finset.coe_image, ← MonoidHom.map_closure, hS2, Subgroup.map_top_of_surjective f hf]
· exact Finset.card_image_le.trans_eq hS1
[GOAL]
M : Type u_1
N : Type u_2
inst✝⁶ : Monoid M
inst✝⁵ : AddMonoid N
G : Type u_3
H : Type u_4
inst✝⁴ : Group G
inst✝³ : AddGroup H
G' : Type u_5
inst✝² : Group G'
inst✝¹ : FG G
inst✝ : FG G'
f : G →* G'
hf : Function.Surjective ↑f
⊢ rank G' ≤ rank G
[PROOFSTEP]
obtain ⟨S, hS1, hS2⟩ := Group.rank_spec G
[GOAL]
case intro.intro
M : Type u_1
N : Type u_2
inst✝⁶ : Monoid M
inst✝⁵ : AddMonoid N
G : Type u_3
H : Type u_4
inst✝⁴ : Group G
inst✝³ : AddGroup H
G' : Type u_5
inst✝² : Group G'
inst✝¹ : FG G
inst✝ : FG G'
f : G →* G'
hf : Function.Surjective ↑f
S : Finset G
hS1 : Finset.card S = rank G
hS2 : Subgroup.closure ↑S = ⊤
⊢ rank G' ≤ rank G
[PROOFSTEP]
trans (S.image f).card
[GOAL]
M : Type u_1
N : Type u_2
inst✝⁶ : Monoid M
inst✝⁵ : AddMonoid N
G : Type u_3
H : Type u_4
inst✝⁴ : Group G
inst✝³ : AddGroup H
G' : Type u_5
inst✝² : Group G'
inst✝¹ : FG G
inst✝ : FG G'
f : G →* G'
hf : Function.Surjective ↑f
S : Finset G
hS1 : Finset.card S = rank G
hS2 : Subgroup.closure ↑S = ⊤
⊢ rank G' ≤ Finset.card (Finset.image (↑f) S)
[PROOFSTEP]
apply Group.rank_le
[GOAL]
case hS
M : Type u_1
N : Type u_2
inst✝⁶ : Monoid M
inst✝⁵ : AddMonoid N
G : Type u_3
H : Type u_4
inst✝⁴ : Group G
inst✝³ : AddGroup H
G' : Type u_5
inst✝² : Group G'
inst✝¹ : FG G
inst✝ : FG G'
f : G →* G'
hf : Function.Surjective ↑f
S : Finset G
hS1 : Finset.card S = rank G
hS2 : Subgroup.closure ↑S = ⊤
⊢ Subgroup.closure ↑(Finset.image (↑f) S) = ⊤
[PROOFSTEP]
rw [Finset.coe_image, ← MonoidHom.map_closure, hS2, Subgroup.map_top_of_surjective f hf]
[GOAL]
M : Type u_1
N : Type u_2
inst✝⁶ : Monoid M
inst✝⁵ : AddMonoid N
G : Type u_3
H : Type u_4
inst✝⁴ : Group G
inst✝³ : AddGroup H
G' : Type u_5
inst✝² : Group G'
inst✝¹ : FG G
inst✝ : FG G'
f : G →* G'
hf : Function.Surjective ↑f
S : Finset G
hS1 : Finset.card S = rank G
hS2 : Subgroup.closure ↑S = ⊤
⊢ Finset.card (Finset.image (↑f) S) ≤ rank G
[PROOFSTEP]
exact Finset.card_image_le.trans_eq hS1
[GOAL]
M : Type u_1
N : Type u_2
inst✝⁵ : Monoid M
inst✝⁴ : AddMonoid N
G : Type u_3
H✝ : Type u_4
inst✝³ : Group G
inst✝² : AddGroup H✝
H K : Subgroup G
inst✝¹ : Group.FG { x // x ∈ H }
inst✝ : Group.FG { x // x ∈ K }
h : H = K
⊢ Group.rank { x // x ∈ H } = Group.rank { x // x ∈ K }
[PROOFSTEP]
subst h
[GOAL]
M : Type u_1
N : Type u_2
inst✝⁵ : Monoid M
inst✝⁴ : AddMonoid N
G : Type u_3
H✝ : Type u_4
inst✝³ : Group G
inst✝² : AddGroup H✝
H : Subgroup G
inst✝¹ inst✝ : Group.FG { x // x ∈ H }
⊢ Group.rank { x // x ∈ H } = Group.rank { x // x ∈ H }
[PROOFSTEP]
rfl
[GOAL]
M : Type u_1
N : Type u_2
inst✝³ : Monoid M
inst✝² : AddMonoid N
G : Type u_3
H : Type u_4
inst✝¹ : Group G
inst✝ : AddGroup H
s : Finset G
⊢ Group.rank { x // x ∈ closure ↑s } ≤ Finset.card s
[PROOFSTEP]
classical
let t : Finset (closure (s : Set G)) := s.preimage Subtype.val (Subtype.coe_injective.injOn _)
have ht : closure (t : Set (closure (s : Set G))) = ⊤ :=
by
rw [Finset.coe_preimage]
exact closure_preimage_eq_top (s : Set G)
apply (Group.rank_le (closure (s : Set G)) ht).trans
suffices H : Set.InjOn Subtype.val (t : Set (closure (s : Set G)))
rw [← Finset.card_image_of_injOn H, Finset.image_preimage]
· apply Finset.card_filter_le
· apply Subtype.coe_injective.injOn
[GOAL]
M : Type u_1
N : Type u_2
inst✝³ : Monoid M
inst✝² : AddMonoid N
G : Type u_3
H : Type u_4
inst✝¹ : Group G
inst✝ : AddGroup H
s : Finset G
⊢ Group.rank { x // x ∈ closure ↑s } ≤ Finset.card s
[PROOFSTEP]
let t : Finset (closure (s : Set G)) := s.preimage Subtype.val (Subtype.coe_injective.injOn _)
[GOAL]
M : Type u_1
N : Type u_2
inst✝³ : Monoid M
inst✝² : AddMonoid N
G : Type u_3
H : Type u_4
inst✝¹ : Group G
inst✝ : AddGroup H
s : Finset G
t : Finset { x // x ∈ closure ↑s } := Finset.preimage s Subtype.val (_ : Set.InjOn (fun a => ↑a) (Subtype.val ⁻¹' ↑s))
⊢ Group.rank { x // x ∈ closure ↑s } ≤ Finset.card s
[PROOFSTEP]
have ht : closure (t : Set (closure (s : Set G))) = ⊤ :=
by
rw [Finset.coe_preimage]
exact closure_preimage_eq_top (s : Set G)
[GOAL]
M : Type u_1
N : Type u_2
inst✝³ : Monoid M
inst✝² : AddMonoid N
G : Type u_3
H : Type u_4
inst✝¹ : Group G
inst✝ : AddGroup H
s : Finset G
t : Finset { x // x ∈ closure ↑s } := Finset.preimage s Subtype.val (_ : Set.InjOn (fun a => ↑a) (Subtype.val ⁻¹' ↑s))
⊢ closure ↑t = ⊤
[PROOFSTEP]
rw [Finset.coe_preimage]
[GOAL]
M : Type u_1
N : Type u_2
inst✝³ : Monoid M
inst✝² : AddMonoid N
G : Type u_3
H : Type u_4
inst✝¹ : Group G
inst✝ : AddGroup H
s : Finset G
t : Finset { x // x ∈ closure ↑s } := Finset.preimage s Subtype.val (_ : Set.InjOn (fun a => ↑a) (Subtype.val ⁻¹' ↑s))
⊢ closure (Subtype.val ⁻¹' ↑s) = ⊤
[PROOFSTEP]
exact closure_preimage_eq_top (s : Set G)
[GOAL]
M : Type u_1
N : Type u_2
inst✝³ : Monoid M
inst✝² : AddMonoid N
G : Type u_3
H : Type u_4
inst✝¹ : Group G
inst✝ : AddGroup H
s : Finset G
t : Finset { x // x ∈ closure ↑s } := Finset.preimage s Subtype.val (_ : Set.InjOn (fun a => ↑a) (Subtype.val ⁻¹' ↑s))
ht : closure ↑t = ⊤
⊢ Group.rank { x // x ∈ closure ↑s } ≤ Finset.card s
[PROOFSTEP]
apply (Group.rank_le (closure (s : Set G)) ht).trans
[GOAL]
M : Type u_1
N : Type u_2
inst✝³ : Monoid M
inst✝² : AddMonoid N
G : Type u_3
H : Type u_4
inst✝¹ : Group G
inst✝ : AddGroup H
s : Finset G
t : Finset { x // x ∈ closure ↑s } := Finset.preimage s Subtype.val (_ : Set.InjOn (fun a => ↑a) (Subtype.val ⁻¹' ↑s))
ht : closure ↑t = ⊤
⊢ Finset.card t ≤ Finset.card s
[PROOFSTEP]
suffices H : Set.InjOn Subtype.val (t : Set (closure (s : Set G)))
[GOAL]
M : Type u_1
N : Type u_2
inst✝³ : Monoid M
inst✝² : AddMonoid N
G : Type u_3
H✝ : Type u_4
inst✝¹ : Group G
inst✝ : AddGroup H✝
s : Finset G
t : Finset { x // x ∈ closure ↑s } := Finset.preimage s Subtype.val (_ : Set.InjOn (fun a => ↑a) (Subtype.val ⁻¹' ↑s))
ht : closure ↑t = ⊤
H : Set.InjOn Subtype.val ↑t
⊢ Finset.card t ≤ Finset.card s
case H
M : Type u_1
N : Type u_2
inst✝³ : Monoid M
inst✝² : AddMonoid N
G : Type u_3
H : Type u_4
inst✝¹ : Group G
inst✝ : AddGroup H
s : Finset G
t : Finset { x // x ∈ closure ↑s } := Finset.preimage s Subtype.val (_ : Set.InjOn (fun a => ↑a) (Subtype.val ⁻¹' ↑s))
ht : closure ↑t = ⊤
⊢ Set.InjOn Subtype.val ↑t
[PROOFSTEP]
rw [← Finset.card_image_of_injOn H, Finset.image_preimage]
[GOAL]
M : Type u_1
N : Type u_2
inst✝³ : Monoid M
inst✝² : AddMonoid N
G : Type u_3
H✝ : Type u_4
inst✝¹ : Group G
inst✝ : AddGroup H✝
s : Finset G
t : Finset { x // x ∈ closure ↑s } := Finset.preimage s Subtype.val (_ : Set.InjOn (fun a => ↑a) (Subtype.val ⁻¹' ↑s))
ht : closure ↑t = ⊤
H : Set.InjOn Subtype.val ↑t
⊢ Finset.card (Finset.filter (fun x => x ∈ Set.range Subtype.val) s) ≤ Finset.card s
[PROOFSTEP]
apply Finset.card_filter_le
[GOAL]
case H
M : Type u_1
N : Type u_2
inst✝³ : Monoid M
inst✝² : AddMonoid N
G : Type u_3
H : Type u_4
inst✝¹ : Group G
inst✝ : AddGroup H
s : Finset G
t : Finset { x // x ∈ closure ↑s } := Finset.preimage s Subtype.val (_ : Set.InjOn (fun a => ↑a) (Subtype.val ⁻¹' ↑s))
ht : closure ↑t = ⊤
⊢ Set.InjOn Subtype.val ↑t
[PROOFSTEP]
apply Subtype.coe_injective.injOn
[GOAL]
M : Type u_1
N : Type u_2
inst✝⁴ : Monoid M
inst✝³ : AddMonoid N
G : Type u_3
H : Type u_4
inst✝² : Group G
inst✝¹ : AddGroup H
s : Set G
inst✝ : Finite ↑s
⊢ Group.rank { x // x ∈ closure s } ≤ Nat.card ↑s
[PROOFSTEP]
haveI := Fintype.ofFinite s
[GOAL]
M : Type u_1
N : Type u_2
inst✝⁴ : Monoid M
inst✝³ : AddMonoid N
G : Type u_3
H : Type u_4
inst✝² : Group G
inst✝¹ : AddGroup H
s : Set G
inst✝ : Finite ↑s
this : Fintype ↑s
⊢ Group.rank { x // x ∈ closure s } ≤ Nat.card ↑s
[PROOFSTEP]
rw [Nat.card_eq_fintype_card, ← s.toFinset_card, ← rank_congr (congr_arg _ s.coe_toFinset)]
[GOAL]
M : Type u_1
N : Type u_2
inst✝⁴ : Monoid M
inst✝³ : AddMonoid N
G : Type u_3
H : Type u_4
inst✝² : Group G
inst✝¹ : AddGroup H
s : Set G
inst✝ : Finite ↑s
this : Fintype ↑s
⊢ Group.rank { x // x ∈ closure ↑(Set.toFinset s) } ≤ Finset.card (Set.toFinset s)
[PROOFSTEP]
exact rank_closure_finset_le_card s.toFinset
| {"mathlib_filename": "Mathlib.GroupTheory.Finiteness", "llama_tokens": 11257} |
[GOAL]
α : Type u_1
inst✝² : Zero α
p : Prop
inst✝¹ : Decidable p
a b : α
inst✝ : LT α
ha : 0 < a
hb : 0 < b
⊢ 0 < if p then a else b
[PROOFSTEP]
by_cases p
[GOAL]
α : Type u_1
inst✝² : Zero α
p : Prop
inst✝¹ : Decidable p
a b : α
inst✝ : LT α
ha : 0 < a
hb : 0 < b
⊢ 0 < if p then a else b
[PROOFSTEP]
by_cases p
[GOAL]
case pos
α : Type u_1
inst✝² : Zero α
p : Prop
inst✝¹ : Decidable p
a b : α
inst✝ : LT α
ha : 0 < a
hb : 0 < b
h : p
⊢ 0 < if p then a else b
[PROOFSTEP]
simp [*]
[GOAL]
case neg
α : Type u_1
inst✝² : Zero α
p : Prop
inst✝¹ : Decidable p
a b : α
inst✝ : LT α
ha : 0 < a
hb : 0 < b
h : ¬p
⊢ 0 < if p then a else b
[PROOFSTEP]
simp [*]
[GOAL]
α : Type u_1
inst✝² : Zero α
p : Prop
inst✝¹ : Decidable p
a b : α
inst✝ : LE α
ha : 0 ≤ a
hb : 0 ≤ b
⊢ 0 ≤ if p then a else b
[PROOFSTEP]
by_cases p
[GOAL]
α : Type u_1
inst✝² : Zero α
p : Prop
inst✝¹ : Decidable p
a b : α
inst✝ : LE α
ha : 0 ≤ a
hb : 0 ≤ b
⊢ 0 ≤ if p then a else b
[PROOFSTEP]
by_cases p
[GOAL]
case pos
α : Type u_1
inst✝² : Zero α
p : Prop
inst✝¹ : Decidable p
a b : α
inst✝ : LE α
ha : 0 ≤ a
hb : 0 ≤ b
h : p
⊢ 0 ≤ if p then a else b
[PROOFSTEP]
simp [*]
[GOAL]
case neg
α : Type u_1
inst✝² : Zero α
p : Prop
inst✝¹ : Decidable p
a b : α
inst✝ : LE α
ha : 0 ≤ a
hb : 0 ≤ b
h : ¬p
⊢ 0 ≤ if p then a else b
[PROOFSTEP]
simp [*]
[GOAL]
α : Type u_1
inst✝¹ : Zero α
p : Prop
inst✝ : Decidable p
a b : α
ha : a ≠ 0
hb : b ≠ 0
⊢ (if p then a else b) ≠ 0
[PROOFSTEP]
by_cases p
[GOAL]
α : Type u_1
inst✝¹ : Zero α
p : Prop
inst✝ : Decidable p
a b : α
ha : a ≠ 0
hb : b ≠ 0
⊢ (if p then a else b) ≠ 0
[PROOFSTEP]
by_cases p
[GOAL]
case pos
α : Type u_1
inst✝¹ : Zero α
p : Prop
inst✝ : Decidable p
a b : α
ha : a ≠ 0
hb : b ≠ 0
h : p
⊢ (if p then a else b) ≠ 0
[PROOFSTEP]
simp [*]
[GOAL]
case neg
α : Type u_1
inst✝¹ : Zero α
p : Prop
inst✝ : Decidable p
a b : α
ha : a ≠ 0
hb : b ≠ 0
h : ¬p
⊢ (if p then a else b) ≠ 0
[PROOFSTEP]
simp [*]
[GOAL]
R : Type u_1
inst✝ : LinearOrder R
a b c : R
ha : a ≠ c
hb : b ≠ c
⊢ min a b ≠ c
[PROOFSTEP]
rw [min_def]
[GOAL]
R : Type u_1
inst✝ : LinearOrder R
a b c : R
ha : a ≠ c
hb : b ≠ c
⊢ (if a ≤ b then a else b) ≠ c
[PROOFSTEP]
split_ifs
[GOAL]
case pos
R : Type u_1
inst✝ : LinearOrder R
a b c : R
ha : a ≠ c
hb : b ≠ c
h✝ : a ≤ b
⊢ a ≠ c
[PROOFSTEP]
assumption
[GOAL]
case neg
R : Type u_1
inst✝ : LinearOrder R
a b c : R
ha : a ≠ c
hb : b ≠ c
h✝ : ¬a ≤ b
⊢ b ≠ c
[PROOFSTEP]
assumption
[GOAL]
R : Type u_1
inst✝ : LinearOrder R
a b c : R
ha : a ≠ c
hb : b ≠ c
⊢ max a b ≠ c
[PROOFSTEP]
rw [max_def]
[GOAL]
R : Type u_1
inst✝ : LinearOrder R
a b c : R
ha : a ≠ c
hb : b ≠ c
⊢ (if a ≤ b then b else a) ≠ c
[PROOFSTEP]
split_ifs
[GOAL]
case pos
R : Type u_1
inst✝ : LinearOrder R
a b c : R
ha : a ≠ c
hb : b ≠ c
h✝ : a ≤ b
⊢ b ≠ c
[PROOFSTEP]
assumption
[GOAL]
case neg
R : Type u_1
inst✝ : LinearOrder R
a b c : R
ha : a ≠ c
hb : b ≠ c
h✝ : ¬a ≤ b
⊢ a ≠ c
[PROOFSTEP]
assumption
[GOAL]
a : ℤ
ha : 0 < a
⊢ 0 < a / a
[PROOFSTEP]
{rw [Int.ediv_self ha.ne']; exact zero_lt_one
}
[GOAL]
a : ℤ
ha : 0 < a
⊢ 0 < a / a
[PROOFSTEP]
rw [Int.ediv_self ha.ne']
[GOAL]
a : ℤ
ha : 0 < a
⊢ 0 < 1
[PROOFSTEP]
exact zero_lt_one
[GOAL]
u : Level
α : Q(Type u)
zα : Q(Zero «$α»)
pα : Q(PartialOrder «$α»)
e : Q(«$α»)
fn✝ : Expr
a : Q(«$α»)
b : Q(ℕ)
n : ℕ
x✝ : PUnit
m : Q(ℕ)
this✝ : «$b» =Q bit0 «$m»
_a : Q(LinearOrderedRing «$α»)
this : «$e» =Q «$a» ^ «$b»
zα_eq✝ : «$zα» =Q MonoidWithZero.toZero
pα_eq✝ : «$pα» =Q StrictOrderedRing.toPartialOrder
⊢ Strictness zα pα e
[PROOFSTEP]
exact .nonnegative q(pow_bit0_nonneg $a $m)
[GOAL]
u : Level
α : Q(Type u)
zα : Q(Zero «$α»)
pα : Q(PartialOrder «$α»)
e : Q(«$α»)
fn✝ : Expr
a : Q(«$α»)
b : Q(ℕ)
result : Strictness zα pα e
ra : Strictness zα pα a
pa : Q(0 ≤ «$a»)
_oα : Q(OrderedSemiring «$α»)
this : «$e» =Q «$a» ^ «$b»
zα_eq✝ : «$zα» =Q MonoidWithZero.toZero
pα_eq✝ : «$pα» =Q OrderedSemiring.toPartialOrder
⊢ Strictness zα pα e
[PROOFSTEP]
exact .nonnegative (q(pow_nonneg $pa $b))
[GOAL]
u : Level
α : Q(Type u)
zα : Q(Zero «$α»)
pα : Q(PartialOrder «$α»)
e : Q(«$α»)
fn✝ : Expr
a : Q(«$α»)
b : Q(ℕ)
result : Strictness zα pα e
ra : Strictness zα pα a
ofNonneg : Q(0 ≤ «$a») → Q(OrderedSemiring «$α») → MetaM (Strictness zα pα e) :=
fun pa _oα =>
let_fun zα_eq := (_ : «$zα» =Q MonoidWithZero.toZero);
let_fun pα_eq := (_ : «$pα» =Q OrderedSemiring.toPartialOrder);
pure (Strictness.nonnegative q((_ : 0 ≤ «$a» ^ «$b»)))
pa : Q(«$a» ≠ 0)
_oα : Q(OrderedSemiring «$α»)
this : «$e» =Q «$a» ^ «$b»
zα_eq✝ : «$zα» =Q MonoidWithZero.toZero
pα_eq✝ : «$pα» =Q OrderedSemiring.toPartialOrder
_a : Q(NoZeroDivisors «$α»)
⊢ Q(«$e» ≠ 0)
[PROOFSTEP]
exact q(pow_ne_zero $b $pa)
[GOAL]
u : Level
α : Q(Type u)
zα : Q(Zero «$α»)
pα : Q(PartialOrder «$α»)
e : Q(«$α»)
fn✝ : Expr
a : Q(«$α»)
b : Q(ℕ)
result : Strictness zα pα e
ra : Strictness zα pα a
ofNonneg : Q(0 ≤ «$a») → Q(OrderedSemiring «$α») → MetaM (Strictness zα pα e) :=
fun pa _oα =>
let_fun zα_eq := (_ : «$zα» =Q MonoidWithZero.toZero);
let_fun pα_eq := (_ : «$pα» =Q OrderedSemiring.toPartialOrder);
pure (Strictness.nonnegative q((_ : 0 ≤ «$a» ^ «$b»)))
ofNonzero : Q(«$a» ≠ 0) → Q(OrderedSemiring «$α») → MetaM (Strictness zα pα e) :=
fun pa _oα =>
let_fun zα_eq := (_ : «$zα» =Q MonoidWithZero.toZero);
let_fun pα_eq := (_ : «$pα» =Q OrderedSemiring.toPartialOrder);
do
let _a ← synthInstanceQ q(NoZeroDivisors «$α»)
pure (Strictness.nonzero q((_ : «$a» ^ «$b» ≠ 0)))
pa : Q(0 < «$a»)
_a : Q(StrictOrderedSemiring «$α»)
this : «$e» =Q «$a» ^ «$b»
zα_eq✝ : «$zα» =Q MonoidWithZero.toZero
pα_eq✝ : «$pα» =Q StrictOrderedSemiring.toPartialOrder
⊢ Strictness zα pα e
[PROOFSTEP]
exact .positive (q(pow_pos $pa $b))
| {"mathlib_filename": "Mathlib.Tactic.Positivity.Basic", "llama_tokens": 3137} |
[GOAL]
X : Type u
m₁ m₂ : X → X → X
e₁ e₂ : X
h₁ : IsUnital m₁ e₁
h₂ : IsUnital m₂ e₂
distrib : ∀ (a b c d : X), m₁ (m₂ a b) (m₂ c d) = m₂ (m₁ a c) (m₁ b d)
⊢ e₁ = e₂
[PROOFSTEP]
simpa only [h₁.left_id, h₁.right_id, h₂.left_id, h₂.right_id] using distrib e₂ e₁ e₁ e₂
[GOAL]
X : Type u
m₁ m₂ : X → X → X
e₁ e₂ : X
h₁ : IsUnital m₁ e₁
h₂ : IsUnital m₂ e₂
distrib : ∀ (a b c d : X), m₁ (m₂ a b) (m₂ c d) = m₂ (m₁ a c) (m₁ b d)
⊢ m₁ = m₂
[PROOFSTEP]
funext a b
[GOAL]
case h.h
X : Type u
m₁ m₂ : X → X → X
e₁ e₂ : X
h₁ : IsUnital m₁ e₁
h₂ : IsUnital m₂ e₂
distrib : ∀ (a b c d : X), m₁ (m₂ a b) (m₂ c d) = m₂ (m₁ a c) (m₁ b d)
a b : X
⊢ m₁ a b = m₂ a b
[PROOFSTEP]
calc
m₁ a b = m₁ (m₂ a e₁) (m₂ e₁ b) := by {simp only [one h₁ h₂ distrib, h₁.left_id, h₁.right_id, h₂.left_id, h₂.right_id]
}
_ = m₂ a b := by simp only [distrib, h₁.left_id, h₁.right_id, h₂.left_id, h₂.right_id]
[GOAL]
X : Type u
m₁ m₂ : X → X → X
e₁ e₂ : X
h₁ : IsUnital m₁ e₁
h₂ : IsUnital m₂ e₂
distrib : ∀ (a b c d : X), m₁ (m₂ a b) (m₂ c d) = m₂ (m₁ a c) (m₁ b d)
a b : X
⊢ m₁ a b = m₁ (m₂ a e₁) (m₂ e₁ b)
[PROOFSTEP]
{simp only [one h₁ h₂ distrib, h₁.left_id, h₁.right_id, h₂.left_id, h₂.right_id]
}
[GOAL]
X : Type u
m₁ m₂ : X → X → X
e₁ e₂ : X
h₁ : IsUnital m₁ e₁
h₂ : IsUnital m₂ e₂
distrib : ∀ (a b c d : X), m₁ (m₂ a b) (m₂ c d) = m₂ (m₁ a c) (m₁ b d)
a b : X
⊢ m₁ a b = m₁ (m₂ a e₁) (m₂ e₁ b)
[PROOFSTEP]
simp only [one h₁ h₂ distrib, h₁.left_id, h₁.right_id, h₂.left_id, h₂.right_id]
[GOAL]
X : Type u
m₁ m₂ : X → X → X
e₁ e₂ : X
h₁ : IsUnital m₁ e₁
h₂ : IsUnital m₂ e₂
distrib : ∀ (a b c d : X), m₁ (m₂ a b) (m₂ c d) = m₂ (m₁ a c) (m₁ b d)
a b : X
⊢ m₁ (m₂ a e₁) (m₂ e₁ b) = m₂ a b
[PROOFSTEP]
simp only [distrib, h₁.left_id, h₁.right_id, h₂.left_id, h₂.right_id]
[GOAL]
X : Type u
m₁ m₂ : X → X → X
e₁ e₂ : X
h₁ : IsUnital m₁ e₁
h₂ : IsUnital m₂ e₂
distrib : ∀ (a b c d : X), m₁ (m₂ a b) (m₂ c d) = m₂ (m₁ a c) (m₁ b d)
a b : X
⊢ m₂ a b = m₂ b a
[PROOFSTEP]
simpa [mul h₁ h₂ distrib, h₂.left_id, h₂.right_id] using distrib e₂ a b e₂
[GOAL]
X : Type u
m₁ m₂ : X → X → X
e₁ e₂ : X
h₁ : IsUnital m₁ e₁
h₂ : IsUnital m₂ e₂
distrib : ∀ (a b c d : X), m₁ (m₂ a b) (m₂ c d) = m₂ (m₁ a c) (m₁ b d)
a b c : X
⊢ m₂ (m₂ a b) c = m₂ a (m₂ b c)
[PROOFSTEP]
simpa [mul h₁ h₂ distrib, h₂.left_id, h₂.right_id] using distrib a b e₂ c
| {"mathlib_filename": "Mathlib.GroupTheory.EckmannHilton", "llama_tokens": 1304} |
[GOAL]
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝² : Group G
inst✝¹ : Group G'
inst✝ : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
⊢ ⁅g₁, g₂⁆ = 1 ↔ g₁ * g₂ = g₂ * g₁
[PROOFSTEP]
rw [commutatorElement_def, mul_inv_eq_one, mul_inv_eq_iff_eq_mul]
[GOAL]
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝² : Group G
inst✝¹ : Group G'
inst✝ : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
⊢ ⁅g₁, g₂⁆⁻¹ = ⁅g₂, g₁⁆
[PROOFSTEP]
simp_rw [commutatorElement_def, mul_inv_rev, inv_inv, mul_assoc]
[GOAL]
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝² : Group G
inst✝¹ : Group G'
inst✝ : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
⊢ ↑f ⁅g₁, g₂⁆ = ⁅↑f g₁, ↑f g₂⁆
[PROOFSTEP]
simp_rw [commutatorElement_def, map_mul f, map_inv f]
[GOAL]
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝² : Group G
inst✝¹ : Group G'
inst✝ : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁ K₂ : Subgroup G
⊢ ⁅H₁, H₂⁆ = ⊥ ↔ H₁ ≤ centralizer ↑H₂
[PROOFSTEP]
rw [eq_bot_iff, commutator_le]
[GOAL]
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝² : Group G
inst✝¹ : Group G'
inst✝ : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁ K₂ : Subgroup G
⊢ (∀ (g₁ : G), g₁ ∈ H₁ → ∀ (g₂ : G), g₂ ∈ H₂ → ⁅g₁, g₂⁆ ∈ ⊥) ↔ H₁ ≤ centralizer ↑H₂
[PROOFSTEP]
refine' forall_congr' fun p => forall_congr' fun _hp => forall_congr' fun q => forall_congr' fun hq => _
[GOAL]
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝² : Group G
inst✝¹ : Group G'
inst✝ : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁ K₂ : Subgroup G
p : G
_hp : p ∈ H₁
q : G
hq : q ∈ H₂
⊢ ⁅p, q⁆ ∈ ⊥ ↔ q * p = p * q
[PROOFSTEP]
rw [mem_bot, commutatorElement_eq_one_iff_mul_comm, eq_comm]
[GOAL]
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝² : Group G
inst✝¹ : Group G'
inst✝ : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁ K₂ : Subgroup G
h1 : ⁅⁅H₂, H₃⁆, H₁⁆ = ⊥
h2 : ⁅⁅H₃, H₁⁆, H₂⁆ = ⊥
⊢ ⁅⁅H₁, H₂⁆, H₃⁆ = ⊥
[PROOFSTEP]
simp_rw [commutator_eq_bot_iff_le_centralizer, commutator_le, mem_centralizer_iff_commutator_eq_one, ←
commutatorElement_def] at h1 h2 ⊢
[GOAL]
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝² : Group G
inst✝¹ : Group G'
inst✝ : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁ K₂ : Subgroup G
h1 : ∀ (g₁ : G), g₁ ∈ H₂ → ∀ (g₂ : G), g₂ ∈ H₃ → ∀ (h : G), h ∈ ↑H₁ → ⁅h, ⁅g₁, g₂⁆⁆ = 1
h2 : ∀ (g₁ : G), g₁ ∈ H₃ → ∀ (g₂ : G), g₂ ∈ H₁ → ∀ (h : G), h ∈ ↑H₂ → ⁅h, ⁅g₁, g₂⁆⁆ = 1
⊢ ∀ (g₁ : G), g₁ ∈ H₁ → ∀ (g₂ : G), g₂ ∈ H₂ → ∀ (h : G), h ∈ ↑H₃ → ⁅h, ⁅g₁, g₂⁆⁆ = 1
[PROOFSTEP]
intro x hx y hy z hz
[GOAL]
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝² : Group G
inst✝¹ : Group G'
inst✝ : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁ K₂ : Subgroup G
h1 : ∀ (g₁ : G), g₁ ∈ H₂ → ∀ (g₂ : G), g₂ ∈ H₃ → ∀ (h : G), h ∈ ↑H₁ → ⁅h, ⁅g₁, g₂⁆⁆ = 1
h2 : ∀ (g₁ : G), g₁ ∈ H₃ → ∀ (g₂ : G), g₂ ∈ H₁ → ∀ (h : G), h ∈ ↑H₂ → ⁅h, ⁅g₁, g₂⁆⁆ = 1
x : G
hx : x ∈ H₁
y : G
hy : y ∈ H₂
z : G
hz : z ∈ ↑H₃
⊢ ⁅z, ⁅x, y⁆⁆ = 1
[PROOFSTEP]
trans x * z * ⁅y, ⁅z⁻¹, x⁻¹⁆⁆⁻¹ * z⁻¹ * y * ⁅x⁻¹, ⁅y⁻¹, z⁆⁆⁻¹ * y⁻¹ * x⁻¹
[GOAL]
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝² : Group G
inst✝¹ : Group G'
inst✝ : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁ K₂ : Subgroup G
h1 : ∀ (g₁ : G), g₁ ∈ H₂ → ∀ (g₂ : G), g₂ ∈ H₃ → ∀ (h : G), h ∈ ↑H₁ → ⁅h, ⁅g₁, g₂⁆⁆ = 1
h2 : ∀ (g₁ : G), g₁ ∈ H₃ → ∀ (g₂ : G), g₂ ∈ H₁ → ∀ (h : G), h ∈ ↑H₂ → ⁅h, ⁅g₁, g₂⁆⁆ = 1
x : G
hx : x ∈ H₁
y : G
hy : y ∈ H₂
z : G
hz : z ∈ ↑H₃
⊢ ⁅z, ⁅x, y⁆⁆ = x * z * ⁅y, ⁅z⁻¹, x⁻¹⁆⁆⁻¹ * z⁻¹ * y * ⁅x⁻¹, ⁅y⁻¹, z⁆⁆⁻¹ * y⁻¹ * x⁻¹
[PROOFSTEP]
group
[GOAL]
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝² : Group G
inst✝¹ : Group G'
inst✝ : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁ K₂ : Subgroup G
h1 : ∀ (g₁ : G), g₁ ∈ H₂ → ∀ (g₂ : G), g₂ ∈ H₃ → ∀ (h : G), h ∈ ↑H₁ → ⁅h, ⁅g₁, g₂⁆⁆ = 1
h2 : ∀ (g₁ : G), g₁ ∈ H₃ → ∀ (g₂ : G), g₂ ∈ H₁ → ∀ (h : G), h ∈ ↑H₂ → ⁅h, ⁅g₁, g₂⁆⁆ = 1
x : G
hx : x ∈ H₁
y : G
hy : y ∈ H₂
z : G
hz : z ∈ ↑H₃
⊢ x * z * ⁅y, ⁅z⁻¹, x⁻¹⁆⁆⁻¹ * z⁻¹ * y * ⁅x⁻¹, ⁅y⁻¹, z⁆⁆⁻¹ * y⁻¹ * x⁻¹ = 1
[PROOFSTEP]
rw [h1 _ (H₂.inv_mem hy) _ hz _ (H₁.inv_mem hx), h2 _ (H₃.inv_mem hz) _ (H₁.inv_mem hx) _ hy]
[GOAL]
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝² : Group G
inst✝¹ : Group G'
inst✝ : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁ K₂ : Subgroup G
h1 : ∀ (g₁ : G), g₁ ∈ H₂ → ∀ (g₂ : G), g₂ ∈ H₃ → ∀ (h : G), h ∈ ↑H₁ → ⁅h, ⁅g₁, g₂⁆⁆ = 1
h2 : ∀ (g₁ : G), g₁ ∈ H₃ → ∀ (g₂ : G), g₂ ∈ H₁ → ∀ (h : G), h ∈ ↑H₂ → ⁅h, ⁅g₁, g₂⁆⁆ = 1
x : G
hx : x ∈ H₁
y : G
hy : y ∈ H₂
z : G
hz : z ∈ ↑H₃
⊢ x * z * 1⁻¹ * z⁻¹ * y * 1⁻¹ * y⁻¹ * x⁻¹ = 1
[PROOFSTEP]
group
[GOAL]
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝² : Group G
inst✝¹ : Group G'
inst✝ : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁ K₂ : Subgroup G
h₁ : Normal H₁
h₂ : Normal H₂
⊢ Normal ⁅H₁, H₂⁆
[PROOFSTEP]
let base : Set G := {x | ∃ g₁ ∈ H₁, ∃ g₂ ∈ H₂, ⁅g₁, g₂⁆ = x}
[GOAL]
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝² : Group G
inst✝¹ : Group G'
inst✝ : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁ K₂ : Subgroup G
h₁ : Normal H₁
h₂ : Normal H₂
base : Set G := {x | ∃ g₁, g₁ ∈ H₁ ∧ ∃ g₂, g₂ ∈ H₂ ∧ ⁅g₁, g₂⁆ = x}
⊢ Normal ⁅H₁, H₂⁆
[PROOFSTEP]
change (closure base).Normal
[GOAL]
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝² : Group G
inst✝¹ : Group G'
inst✝ : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁ K₂ : Subgroup G
h₁ : Normal H₁
h₂ : Normal H₂
base : Set G := {x | ∃ g₁, g₁ ∈ H₁ ∧ ∃ g₂, g₂ ∈ H₂ ∧ ⁅g₁, g₂⁆ = x}
⊢ Normal (closure base)
[PROOFSTEP]
suffices h_base : base = Group.conjugatesOfSet base
[GOAL]
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝² : Group G
inst✝¹ : Group G'
inst✝ : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁ K₂ : Subgroup G
h₁ : Normal H₁
h₂ : Normal H₂
base : Set G := {x | ∃ g₁, g₁ ∈ H₁ ∧ ∃ g₂, g₂ ∈ H₂ ∧ ⁅g₁, g₂⁆ = x}
h_base : base = Group.conjugatesOfSet base
⊢ Normal (closure base)
[PROOFSTEP]
rw [h_base]
[GOAL]
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝² : Group G
inst✝¹ : Group G'
inst✝ : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁ K₂ : Subgroup G
h₁ : Normal H₁
h₂ : Normal H₂
base : Set G := {x | ∃ g₁, g₁ ∈ H₁ ∧ ∃ g₂, g₂ ∈ H₂ ∧ ⁅g₁, g₂⁆ = x}
h_base : base = Group.conjugatesOfSet base
⊢ Normal (closure (Group.conjugatesOfSet base))
[PROOFSTEP]
exact Subgroup.normalClosure_normal
[GOAL]
case h_base
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝² : Group G
inst✝¹ : Group G'
inst✝ : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁ K₂ : Subgroup G
h₁ : Normal H₁
h₂ : Normal H₂
base : Set G := {x | ∃ g₁, g₁ ∈ H₁ ∧ ∃ g₂, g₂ ∈ H₂ ∧ ⁅g₁, g₂⁆ = x}
⊢ base = Group.conjugatesOfSet base
[PROOFSTEP]
refine' Set.Subset.antisymm Group.subset_conjugatesOfSet fun a h => _
[GOAL]
case h_base
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝² : Group G
inst✝¹ : Group G'
inst✝ : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁ K₂ : Subgroup G
h₁ : Normal H₁
h₂ : Normal H₂
base : Set G := {x | ∃ g₁, g₁ ∈ H₁ ∧ ∃ g₂, g₂ ∈ H₂ ∧ ⁅g₁, g₂⁆ = x}
a : G
h : a ∈ Group.conjugatesOfSet base
⊢ a ∈ base
[PROOFSTEP]
simp_rw [Group.mem_conjugatesOfSet_iff, isConj_iff] at h
[GOAL]
case h_base
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝² : Group G
inst✝¹ : Group G'
inst✝ : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁ K₂ : Subgroup G
h₁ : Normal H₁
h₂ : Normal H₂
base : Set G := {x | ∃ g₁, g₁ ∈ H₁ ∧ ∃ g₂, g₂ ∈ H₂ ∧ ⁅g₁, g₂⁆ = x}
a : G
h : ∃ a_1, a_1 ∈ {x | ∃ g₁, g₁ ∈ H₁ ∧ ∃ g₂, g₂ ∈ H₂ ∧ ⁅g₁, g₂⁆ = x} ∧ ∃ c, c * a_1 * c⁻¹ = a
⊢ a ∈ base
[PROOFSTEP]
rcases h with ⟨b, ⟨c, hc, e, he, rfl⟩, d, rfl⟩
[GOAL]
case h_base.intro.intro.intro.intro.intro.intro.intro
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝² : Group G
inst✝¹ : Group G'
inst✝ : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁ K₂ : Subgroup G
h₁ : Normal H₁
h₂ : Normal H₂
base : Set G := {x | ∃ g₁, g₁ ∈ H₁ ∧ ∃ g₂, g₂ ∈ H₂ ∧ ⁅g₁, g₂⁆ = x}
c : G
hc : c ∈ H₁
e : G
he : e ∈ H₂
d : G
⊢ d * ⁅c, e⁆ * d⁻¹ ∈ base
[PROOFSTEP]
exact ⟨_, h₁.conj_mem c hc d, _, h₂.conj_mem e he d, (conjugate_commutatorElement c e d).symm⟩
[GOAL]
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝² : Group G
inst✝¹ : Group G'
inst✝ : MonoidHomClass F G G'
f✝ : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁ K₂ : Subgroup G
f : G →* G'
⊢ map f ⁅H₁, H₂⁆ = ⁅map f H₁, map f H₂⁆
[PROOFSTEP]
simp_rw [le_antisymm_iff, map_le_iff_le_comap, commutator_le, mem_comap, map_commutatorElement]
[GOAL]
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝² : Group G
inst✝¹ : Group G'
inst✝ : MonoidHomClass F G G'
f✝ : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁ K₂ : Subgroup G
f : G →* G'
⊢ (∀ (g₁ : G), g₁ ∈ H₁ → ∀ (g₂ : G), g₂ ∈ H₂ → ⁅↑f g₁, ↑f g₂⁆ ∈ ⁅map f H₁, map f H₂⁆) ∧
∀ (g₁ : G'), g₁ ∈ map f H₁ → ∀ (g₂ : G'), g₂ ∈ map f H₂ → ⁅g₁, g₂⁆ ∈ map f ⁅H₁, H₂⁆
[PROOFSTEP]
constructor
[GOAL]
case left
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝² : Group G
inst✝¹ : Group G'
inst✝ : MonoidHomClass F G G'
f✝ : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁ K₂ : Subgroup G
f : G →* G'
⊢ ∀ (g₁ : G), g₁ ∈ H₁ → ∀ (g₂ : G), g₂ ∈ H₂ → ⁅↑f g₁, ↑f g₂⁆ ∈ ⁅map f H₁, map f H₂⁆
[PROOFSTEP]
intro p hp q hq
[GOAL]
case left
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝² : Group G
inst✝¹ : Group G'
inst✝ : MonoidHomClass F G G'
f✝ : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁ K₂ : Subgroup G
f : G →* G'
p : G
hp : p ∈ H₁
q : G
hq : q ∈ H₂
⊢ ⁅↑f p, ↑f q⁆ ∈ ⁅map f H₁, map f H₂⁆
[PROOFSTEP]
exact commutator_mem_commutator (mem_map_of_mem _ hp) (mem_map_of_mem _ hq)
[GOAL]
case right
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝² : Group G
inst✝¹ : Group G'
inst✝ : MonoidHomClass F G G'
f✝ : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁ K₂ : Subgroup G
f : G →* G'
⊢ ∀ (g₁ : G'), g₁ ∈ map f H₁ → ∀ (g₂ : G'), g₂ ∈ map f H₂ → ⁅g₁, g₂⁆ ∈ map f ⁅H₁, H₂⁆
[PROOFSTEP]
rintro _ ⟨p, hp, rfl⟩ _ ⟨q, hq, rfl⟩
[GOAL]
case right.intro.intro.intro.intro
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝² : Group G
inst✝¹ : Group G'
inst✝ : MonoidHomClass F G G'
f✝ : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁ K₂ : Subgroup G
f : G →* G'
p : G
hp : p ∈ ↑H₁
q : G
hq : q ∈ ↑H₂
⊢ ⁅↑f p, ↑f q⁆ ∈ map f ⁅H₁, H₂⁆
[PROOFSTEP]
rw [← map_commutatorElement]
[GOAL]
case right.intro.intro.intro.intro
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝² : Group G
inst✝¹ : Group G'
inst✝ : MonoidHomClass F G G'
f✝ : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁ K₂ : Subgroup G
f : G →* G'
p : G
hp : p ∈ ↑H₁
q : G
hq : q ∈ ↑H₂
⊢ ↑f ⁅p, q⁆ ∈ map f ⁅H₁, H₂⁆
[PROOFSTEP]
exact mem_map_of_mem _ (commutator_mem_commutator hp hq)
[GOAL]
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝² : Group G
inst✝¹ : Group G'
inst✝ : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁✝ K₂✝ : Subgroup G
K₁ K₂ : Subgroup G'
⊢ ⁅prod H₁ K₁, prod H₂ K₂⁆ = prod ⁅H₁, H₂⁆ ⁅K₁, K₂⁆
[PROOFSTEP]
apply le_antisymm
[GOAL]
case a
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝² : Group G
inst✝¹ : Group G'
inst✝ : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁✝ K₂✝ : Subgroup G
K₁ K₂ : Subgroup G'
⊢ ⁅prod H₁ K₁, prod H₂ K₂⁆ ≤ prod ⁅H₁, H₂⁆ ⁅K₁, K₂⁆
[PROOFSTEP]
rw [commutator_le]
[GOAL]
case a
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝² : Group G
inst✝¹ : Group G'
inst✝ : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁✝ K₂✝ : Subgroup G
K₁ K₂ : Subgroup G'
⊢ ∀ (g₁ : G × G'), g₁ ∈ prod H₁ K₁ → ∀ (g₂ : G × G'), g₂ ∈ prod H₂ K₂ → ⁅g₁, g₂⁆ ∈ prod ⁅H₁, H₂⁆ ⁅K₁, K₂⁆
[PROOFSTEP]
rintro ⟨p₁, p₂⟩ ⟨hp₁, hp₂⟩ ⟨q₁, q₂⟩ ⟨hq₁, hq₂⟩
[GOAL]
case a.mk.intro.mk.intro
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝² : Group G
inst✝¹ : Group G'
inst✝ : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁✝ K₂✝ : Subgroup G
K₁ K₂ : Subgroup G'
p₁ : G
p₂ : G'
hp₁ : (p₁, p₂).fst ∈ ↑H₁.toSubmonoid
hp₂ : (p₁, p₂).snd ∈ ↑K₁.toSubmonoid
q₁ : G
q₂ : G'
hq₁ : (q₁, q₂).fst ∈ ↑H₂.toSubmonoid
hq₂ : (q₁, q₂).snd ∈ ↑K₂.toSubmonoid
⊢ ⁅(p₁, p₂), (q₁, q₂)⁆ ∈ prod ⁅H₁, H₂⁆ ⁅K₁, K₂⁆
[PROOFSTEP]
exact ⟨commutator_mem_commutator hp₁ hq₁, commutator_mem_commutator hp₂ hq₂⟩
[GOAL]
case a
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝² : Group G
inst✝¹ : Group G'
inst✝ : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁✝ K₂✝ : Subgroup G
K₁ K₂ : Subgroup G'
⊢ prod ⁅H₁, H₂⁆ ⁅K₁, K₂⁆ ≤ ⁅prod H₁ K₁, prod H₂ K₂⁆
[PROOFSTEP]
rw [prod_le_iff]
[GOAL]
case a
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝² : Group G
inst✝¹ : Group G'
inst✝ : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁✝ K₂✝ : Subgroup G
K₁ K₂ : Subgroup G'
⊢ map (MonoidHom.inl G G') ⁅H₁, H₂⁆ ≤ ⁅prod H₁ K₁, prod H₂ K₂⁆ ∧
map (MonoidHom.inr G G') ⁅K₁, K₂⁆ ≤ ⁅prod H₁ K₁, prod H₂ K₂⁆
[PROOFSTEP]
constructor
[GOAL]
case a.left
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝² : Group G
inst✝¹ : Group G'
inst✝ : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁✝ K₂✝ : Subgroup G
K₁ K₂ : Subgroup G'
⊢ map (MonoidHom.inl G G') ⁅H₁, H₂⁆ ≤ ⁅prod H₁ K₁, prod H₂ K₂⁆
[PROOFSTEP]
rw [map_commutator]
[GOAL]
case a.left
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝² : Group G
inst✝¹ : Group G'
inst✝ : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁✝ K₂✝ : Subgroup G
K₁ K₂ : Subgroup G'
⊢ ⁅map (MonoidHom.inl G G') H₁, map (MonoidHom.inl G G') H₂⁆ ≤ ⁅prod H₁ K₁, prod H₂ K₂⁆
[PROOFSTEP]
apply commutator_mono
[GOAL]
case a.left.h₁
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝² : Group G
inst✝¹ : Group G'
inst✝ : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁✝ K₂✝ : Subgroup G
K₁ K₂ : Subgroup G'
⊢ map (MonoidHom.inl G G') H₁ ≤ prod H₁ K₁
[PROOFSTEP]
simp [le_prod_iff, map_map, MonoidHom.fst_comp_inl, MonoidHom.snd_comp_inl, MonoidHom.fst_comp_inr,
MonoidHom.snd_comp_inr]
[GOAL]
case a.left.h₂
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝² : Group G
inst✝¹ : Group G'
inst✝ : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁✝ K₂✝ : Subgroup G
K₁ K₂ : Subgroup G'
⊢ map (MonoidHom.inl G G') H₂ ≤ prod H₂ K₂
[PROOFSTEP]
simp [le_prod_iff, map_map, MonoidHom.fst_comp_inl, MonoidHom.snd_comp_inl, MonoidHom.fst_comp_inr,
MonoidHom.snd_comp_inr]
[GOAL]
case a.right
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝² : Group G
inst✝¹ : Group G'
inst✝ : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁✝ K₂✝ : Subgroup G
K₁ K₂ : Subgroup G'
⊢ map (MonoidHom.inr G G') ⁅K₁, K₂⁆ ≤ ⁅prod H₁ K₁, prod H₂ K₂⁆
[PROOFSTEP]
rw [map_commutator]
[GOAL]
case a.right
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝² : Group G
inst✝¹ : Group G'
inst✝ : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁✝ K₂✝ : Subgroup G
K₁ K₂ : Subgroup G'
⊢ ⁅map (MonoidHom.inr G G') K₁, map (MonoidHom.inr G G') K₂⁆ ≤ ⁅prod H₁ K₁, prod H₂ K₂⁆
[PROOFSTEP]
apply commutator_mono
[GOAL]
case a.right.h₁
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝² : Group G
inst✝¹ : Group G'
inst✝ : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁✝ K₂✝ : Subgroup G
K₁ K₂ : Subgroup G'
⊢ map (MonoidHom.inr G G') K₁ ≤ prod H₁ K₁
[PROOFSTEP]
simp [le_prod_iff, map_map, MonoidHom.fst_comp_inl, MonoidHom.snd_comp_inl, MonoidHom.fst_comp_inr,
MonoidHom.snd_comp_inr]
[GOAL]
case a.right.h₂
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝² : Group G
inst✝¹ : Group G'
inst✝ : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁✝ K₂✝ : Subgroup G
K₁ K₂ : Subgroup G'
⊢ map (MonoidHom.inr G G') K₂ ≤ prod H₂ K₂
[PROOFSTEP]
simp [le_prod_iff, map_map, MonoidHom.fst_comp_inl, MonoidHom.snd_comp_inl, MonoidHom.fst_comp_inr,
MonoidHom.snd_comp_inr]
[GOAL]
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝⁴ : Group G
inst✝³ : Group G'
inst✝² : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁ K₂ : Subgroup G
η : Type u_4
inst✝¹ : Finite η
Gs : η → Type u_5
inst✝ : (i : η) → Group (Gs i)
H K : (i : η) → Subgroup (Gs i)
⊢ ⁅pi Set.univ H, pi Set.univ K⁆ = pi Set.univ fun i => ⁅H i, K i⁆
[PROOFSTEP]
classical
apply le_antisymm (commutator_pi_pi_le H K)
· rw [pi_le_iff]
intro i hi
rw [map_commutator]
apply commutator_mono <;>
· rw [le_pi_iff]
intro j _hj
rintro _ ⟨_, ⟨x, hx, rfl⟩, rfl⟩
by_cases h : j = i
· subst h
simpa using hx
· simp [h, one_mem]
[GOAL]
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝⁴ : Group G
inst✝³ : Group G'
inst✝² : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁ K₂ : Subgroup G
η : Type u_4
inst✝¹ : Finite η
Gs : η → Type u_5
inst✝ : (i : η) → Group (Gs i)
H K : (i : η) → Subgroup (Gs i)
⊢ ⁅pi Set.univ H, pi Set.univ K⁆ = pi Set.univ fun i => ⁅H i, K i⁆
[PROOFSTEP]
apply le_antisymm (commutator_pi_pi_le H K)
[GOAL]
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝⁴ : Group G
inst✝³ : Group G'
inst✝² : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁ K₂ : Subgroup G
η : Type u_4
inst✝¹ : Finite η
Gs : η → Type u_5
inst✝ : (i : η) → Group (Gs i)
H K : (i : η) → Subgroup (Gs i)
⊢ (pi Set.univ fun i => ⁅H i, K i⁆) ≤ ⁅pi Set.univ H, pi Set.univ K⁆
[PROOFSTEP]
rw [pi_le_iff]
[GOAL]
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝⁴ : Group G
inst✝³ : Group G'
inst✝² : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁ K₂ : Subgroup G
η : Type u_4
inst✝¹ : Finite η
Gs : η → Type u_5
inst✝ : (i : η) → Group (Gs i)
H K : (i : η) → Subgroup (Gs i)
⊢ ∀ (i : η), map (MonoidHom.single (fun i => Gs i) i) ⁅H i, K i⁆ ≤ ⁅pi Set.univ H, pi Set.univ K⁆
[PROOFSTEP]
intro i hi
[GOAL]
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝⁴ : Group G
inst✝³ : Group G'
inst✝² : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁ K₂ : Subgroup G
η : Type u_4
inst✝¹ : Finite η
Gs : η → Type u_5
inst✝ : (i : η) → Group (Gs i)
H K : (i : η) → Subgroup (Gs i)
i : η
hi : (i : η) → Gs i
⊢ hi ∈ map (MonoidHom.single (fun i => Gs i) i) ⁅H i, K i⁆ → hi ∈ ⁅pi Set.univ H, pi Set.univ K⁆
[PROOFSTEP]
rw [map_commutator]
[GOAL]
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝⁴ : Group G
inst✝³ : Group G'
inst✝² : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁ K₂ : Subgroup G
η : Type u_4
inst✝¹ : Finite η
Gs : η → Type u_5
inst✝ : (i : η) → Group (Gs i)
H K : (i : η) → Subgroup (Gs i)
i : η
hi : (i : η) → Gs i
⊢ hi ∈ ⁅map (MonoidHom.single (fun i => Gs i) i) (H i), map (MonoidHom.single (fun i => Gs i) i) (K i)⁆ →
hi ∈ ⁅pi Set.univ H, pi Set.univ K⁆
[PROOFSTEP]
apply commutator_mono
[GOAL]
case h₁
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝⁴ : Group G
inst✝³ : Group G'
inst✝² : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁ K₂ : Subgroup G
η : Type u_4
inst✝¹ : Finite η
Gs : η → Type u_5
inst✝ : (i : η) → Group (Gs i)
H K : (i : η) → Subgroup (Gs i)
i : η
hi : (i : η) → Gs i
⊢ map (MonoidHom.single (fun i => Gs i) i) (H i) ≤ pi Set.univ H
[PROOFSTEP]
rw [le_pi_iff]
[GOAL]
case h₁
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝⁴ : Group G
inst✝³ : Group G'
inst✝² : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁ K₂ : Subgroup G
η : Type u_4
inst✝¹ : Finite η
Gs : η → Type u_5
inst✝ : (i : η) → Group (Gs i)
H K : (i : η) → Subgroup (Gs i)
i : η
hi : (i : η) → Gs i
⊢ ∀ (i_1 : η),
i_1 ∈ Set.univ → map (Pi.evalMonoidHom (fun i => Gs i) i_1) (map (MonoidHom.single (fun i => Gs i) i) (H i)) ≤ H i_1
[PROOFSTEP]
intro j _hj
[GOAL]
case h₁
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝⁴ : Group G
inst✝³ : Group G'
inst✝² : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁ K₂ : Subgroup G
η : Type u_4
inst✝¹ : Finite η
Gs : η → Type u_5
inst✝ : (i : η) → Group (Gs i)
H K : (i : η) → Subgroup (Gs i)
i : η
hi : (i : η) → Gs i
j : η
_hj : j ∈ Set.univ
⊢ map (Pi.evalMonoidHom (fun i => Gs i) j) (map (MonoidHom.single (fun i => Gs i) i) (H i)) ≤ H j
[PROOFSTEP]
rintro _ ⟨_, ⟨x, hx, rfl⟩, rfl⟩
[GOAL]
case h₁.intro.intro.intro.intro
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝⁴ : Group G
inst✝³ : Group G'
inst✝² : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁ K₂ : Subgroup G
η : Type u_4
inst✝¹ : Finite η
Gs : η → Type u_5
inst✝ : (i : η) → Group (Gs i)
H K : (i : η) → Subgroup (Gs i)
i : η
hi : (i : η) → Gs i
j : η
_hj : j ∈ Set.univ
x : Gs i
hx : x ∈ ↑(H i)
⊢ ↑(Pi.evalMonoidHom (fun i => Gs i) j) (↑(MonoidHom.single (fun i => Gs i) i) x) ∈ H j
[PROOFSTEP]
by_cases h : j = i
[GOAL]
case pos
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝⁴ : Group G
inst✝³ : Group G'
inst✝² : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁ K₂ : Subgroup G
η : Type u_4
inst✝¹ : Finite η
Gs : η → Type u_5
inst✝ : (i : η) → Group (Gs i)
H K : (i : η) → Subgroup (Gs i)
i : η
hi : (i : η) → Gs i
j : η
_hj : j ∈ Set.univ
x : Gs i
hx : x ∈ ↑(H i)
h : j = i
⊢ ↑(Pi.evalMonoidHom (fun i => Gs i) j) (↑(MonoidHom.single (fun i => Gs i) i) x) ∈ H j
[PROOFSTEP]
subst h
[GOAL]
case pos
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝⁴ : Group G
inst✝³ : Group G'
inst✝² : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁ K₂ : Subgroup G
η : Type u_4
inst✝¹ : Finite η
Gs : η → Type u_5
inst✝ : (i : η) → Group (Gs i)
H K : (i : η) → Subgroup (Gs i)
hi : (i : η) → Gs i
j : η
_hj : j ∈ Set.univ
x : Gs j
hx : x ∈ ↑(H j)
⊢ ↑(Pi.evalMonoidHom (fun i => Gs i) j) (↑(MonoidHom.single (fun i => Gs i) j) x) ∈ H j
[PROOFSTEP]
simpa using hx
[GOAL]
case neg
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝⁴ : Group G
inst✝³ : Group G'
inst✝² : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁ K₂ : Subgroup G
η : Type u_4
inst✝¹ : Finite η
Gs : η → Type u_5
inst✝ : (i : η) → Group (Gs i)
H K : (i : η) → Subgroup (Gs i)
i : η
hi : (i : η) → Gs i
j : η
_hj : j ∈ Set.univ
x : Gs i
hx : x ∈ ↑(H i)
h : ¬j = i
⊢ ↑(Pi.evalMonoidHom (fun i => Gs i) j) (↑(MonoidHom.single (fun i => Gs i) i) x) ∈ H j
[PROOFSTEP]
simp [h, one_mem]
[GOAL]
case h₂
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝⁴ : Group G
inst✝³ : Group G'
inst✝² : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁ K₂ : Subgroup G
η : Type u_4
inst✝¹ : Finite η
Gs : η → Type u_5
inst✝ : (i : η) → Group (Gs i)
H K : (i : η) → Subgroup (Gs i)
i : η
hi : (i : η) → Gs i
⊢ map (MonoidHom.single (fun i => Gs i) i) (K i) ≤ pi Set.univ K
[PROOFSTEP]
rw [le_pi_iff]
[GOAL]
case h₂
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝⁴ : Group G
inst✝³ : Group G'
inst✝² : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁ K₂ : Subgroup G
η : Type u_4
inst✝¹ : Finite η
Gs : η → Type u_5
inst✝ : (i : η) → Group (Gs i)
H K : (i : η) → Subgroup (Gs i)
i : η
hi : (i : η) → Gs i
⊢ ∀ (i_1 : η),
i_1 ∈ Set.univ → map (Pi.evalMonoidHom (fun i => Gs i) i_1) (map (MonoidHom.single (fun i => Gs i) i) (K i)) ≤ K i_1
[PROOFSTEP]
intro j _hj
[GOAL]
case h₂
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝⁴ : Group G
inst✝³ : Group G'
inst✝² : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁ K₂ : Subgroup G
η : Type u_4
inst✝¹ : Finite η
Gs : η → Type u_5
inst✝ : (i : η) → Group (Gs i)
H K : (i : η) → Subgroup (Gs i)
i : η
hi : (i : η) → Gs i
j : η
_hj : j ∈ Set.univ
⊢ map (Pi.evalMonoidHom (fun i => Gs i) j) (map (MonoidHom.single (fun i => Gs i) i) (K i)) ≤ K j
[PROOFSTEP]
rintro _ ⟨_, ⟨x, hx, rfl⟩, rfl⟩
[GOAL]
case h₂.intro.intro.intro.intro
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝⁴ : Group G
inst✝³ : Group G'
inst✝² : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁ K₂ : Subgroup G
η : Type u_4
inst✝¹ : Finite η
Gs : η → Type u_5
inst✝ : (i : η) → Group (Gs i)
H K : (i : η) → Subgroup (Gs i)
i : η
hi : (i : η) → Gs i
j : η
_hj : j ∈ Set.univ
x : Gs i
hx : x ∈ ↑(K i)
⊢ ↑(Pi.evalMonoidHom (fun i => Gs i) j) (↑(MonoidHom.single (fun i => Gs i) i) x) ∈ K j
[PROOFSTEP]
by_cases h : j = i
[GOAL]
case pos
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝⁴ : Group G
inst✝³ : Group G'
inst✝² : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁ K₂ : Subgroup G
η : Type u_4
inst✝¹ : Finite η
Gs : η → Type u_5
inst✝ : (i : η) → Group (Gs i)
H K : (i : η) → Subgroup (Gs i)
i : η
hi : (i : η) → Gs i
j : η
_hj : j ∈ Set.univ
x : Gs i
hx : x ∈ ↑(K i)
h : j = i
⊢ ↑(Pi.evalMonoidHom (fun i => Gs i) j) (↑(MonoidHom.single (fun i => Gs i) i) x) ∈ K j
[PROOFSTEP]
subst h
[GOAL]
case pos
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝⁴ : Group G
inst✝³ : Group G'
inst✝² : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁ K₂ : Subgroup G
η : Type u_4
inst✝¹ : Finite η
Gs : η → Type u_5
inst✝ : (i : η) → Group (Gs i)
H K : (i : η) → Subgroup (Gs i)
hi : (i : η) → Gs i
j : η
_hj : j ∈ Set.univ
x : Gs j
hx : x ∈ ↑(K j)
⊢ ↑(Pi.evalMonoidHom (fun i => Gs i) j) (↑(MonoidHom.single (fun i => Gs i) j) x) ∈ K j
[PROOFSTEP]
simpa using hx
[GOAL]
case neg
G : Type u_1
G' : Type u_2
F : Type u_3
inst✝⁴ : Group G
inst✝³ : Group G'
inst✝² : MonoidHomClass F G G'
f : F
g₁ g₂ g₃ g : G
H₁ H₂ H₃ K₁ K₂ : Subgroup G
η : Type u_4
inst✝¹ : Finite η
Gs : η → Type u_5
inst✝ : (i : η) → Group (Gs i)
H K : (i : η) → Subgroup (Gs i)
i : η
hi : (i : η) → Gs i
j : η
_hj : j ∈ Set.univ
x : Gs i
hx : x ∈ ↑(K i)
h : ¬j = i
⊢ ↑(Pi.evalMonoidHom (fun i => Gs i) j) (↑(MonoidHom.single (fun i => Gs i) i) x) ∈ K j
[PROOFSTEP]
simp [h, one_mem]
| {"mathlib_filename": "Mathlib.GroupTheory.Commutator", "llama_tokens": 14379} |
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁸ : IsROrC 𝕜
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedAddCommGroup G
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : InnerProductSpace 𝕜 F
inst✝² : InnerProductSpace 𝕜 G
inst✝¹ : CompleteSpace E
inst✝ : CompleteSpace G
A : E →L[𝕜] F
x : E
y : F
⊢ inner (↑(↑adjointAux A) y) x = inner y (↑A x)
[PROOFSTEP]
rw [adjointAux_apply, toDual_symm_apply, toSesqForm_apply_coe, coe_comp', innerSL_apply_coe, Function.comp_apply]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁸ : IsROrC 𝕜
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedAddCommGroup G
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : InnerProductSpace 𝕜 F
inst✝² : InnerProductSpace 𝕜 G
inst✝¹ : CompleteSpace E
inst✝ : CompleteSpace G
A : E →L[𝕜] F
x : E
y : F
⊢ inner x (↑(↑adjointAux A) y) = inner (↑A x) y
[PROOFSTEP]
rw [← inner_conj_symm, adjointAux_inner_left, inner_conj_symm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : CompleteSpace E
inst✝¹ : CompleteSpace G
inst✝ : CompleteSpace F
A : E →L[𝕜] F
⊢ ↑adjointAux (↑adjointAux A) = A
[PROOFSTEP]
ext v
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : CompleteSpace E
inst✝¹ : CompleteSpace G
inst✝ : CompleteSpace F
A : E →L[𝕜] F
v : E
⊢ ↑(↑adjointAux (↑adjointAux A)) v = ↑A v
[PROOFSTEP]
refine' ext_inner_left 𝕜 fun w => _
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : CompleteSpace E
inst✝¹ : CompleteSpace G
inst✝ : CompleteSpace F
A : E →L[𝕜] F
v : E
w : (fun x => F) v
⊢ inner w (↑(↑adjointAux (↑adjointAux A)) v) = inner w (↑A v)
[PROOFSTEP]
rw [adjointAux_inner_right, adjointAux_inner_left]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : CompleteSpace E
inst✝¹ : CompleteSpace G
inst✝ : CompleteSpace F
A : E →L[𝕜] F
⊢ ‖↑adjointAux A‖ = ‖A‖
[PROOFSTEP]
refine' le_antisymm _ _
[GOAL]
case refine'_1
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : CompleteSpace E
inst✝¹ : CompleteSpace G
inst✝ : CompleteSpace F
A : E →L[𝕜] F
⊢ ‖↑adjointAux A‖ ≤ ‖A‖
[PROOFSTEP]
refine' ContinuousLinearMap.op_norm_le_bound _ (norm_nonneg _) fun x => _
[GOAL]
case refine'_1
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : CompleteSpace E
inst✝¹ : CompleteSpace G
inst✝ : CompleteSpace F
A : E →L[𝕜] F
x : F
⊢ ‖↑(↑adjointAux A) x‖ ≤ ‖A‖ * ‖x‖
[PROOFSTEP]
rw [adjointAux_apply, LinearIsometryEquiv.norm_map]
[GOAL]
case refine'_1
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : CompleteSpace E
inst✝¹ : CompleteSpace G
inst✝ : CompleteSpace F
A : E →L[𝕜] F
x : F
⊢ ‖↑(↑toSesqForm A) x‖ ≤ ‖A‖ * ‖x‖
[PROOFSTEP]
exact toSesqForm_apply_norm_le
[GOAL]
case refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : CompleteSpace E
inst✝¹ : CompleteSpace G
inst✝ : CompleteSpace F
A : E →L[𝕜] F
⊢ ‖A‖ ≤ ‖↑adjointAux A‖
[PROOFSTEP]
nth_rw 1 [← adjointAux_adjointAux A]
[GOAL]
case refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : CompleteSpace E
inst✝¹ : CompleteSpace G
inst✝ : CompleteSpace F
A : E →L[𝕜] F
⊢ ‖↑adjointAux (↑adjointAux A)‖ ≤ ‖↑adjointAux A‖
[PROOFSTEP]
refine' ContinuousLinearMap.op_norm_le_bound _ (norm_nonneg _) fun x => _
[GOAL]
case refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : CompleteSpace E
inst✝¹ : CompleteSpace G
inst✝ : CompleteSpace F
A : E →L[𝕜] F
x : E
⊢ ‖↑(↑adjointAux (↑adjointAux A)) x‖ ≤ ‖↑adjointAux A‖ * ‖x‖
[PROOFSTEP]
rw [adjointAux_apply, LinearIsometryEquiv.norm_map]
[GOAL]
case refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : CompleteSpace E
inst✝¹ : CompleteSpace G
inst✝ : CompleteSpace F
A : E →L[𝕜] F
x : E
⊢ ‖↑(↑toSesqForm (↑adjointAux A)) x‖ ≤ ‖↑adjointAux A‖ * ‖x‖
[PROOFSTEP]
exact toSesqForm_apply_norm_le
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : CompleteSpace E
inst✝¹ : CompleteSpace G
inst✝ : CompleteSpace F
A : F →L[𝕜] G
B : E →L[𝕜] F
⊢ ↑adjoint (comp A B) = comp (↑adjoint B) (↑adjoint A)
[PROOFSTEP]
ext v
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : CompleteSpace E
inst✝¹ : CompleteSpace G
inst✝ : CompleteSpace F
A : F →L[𝕜] G
B : E →L[𝕜] F
v : G
⊢ ↑(↑adjoint (comp A B)) v = ↑(comp (↑adjoint B) (↑adjoint A)) v
[PROOFSTEP]
refine' ext_inner_left 𝕜 fun w => _
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : CompleteSpace E
inst✝¹ : CompleteSpace G
inst✝ : CompleteSpace F
A : F →L[𝕜] G
B : E →L[𝕜] F
v : G
w : (fun x => E) v
⊢ inner w (↑(↑adjoint (comp A B)) v) = inner w (↑(comp (↑adjoint B) (↑adjoint A)) v)
[PROOFSTEP]
simp only [adjoint_inner_right, ContinuousLinearMap.coe_comp', Function.comp_apply]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : CompleteSpace E
inst✝¹ : CompleteSpace G
inst✝ : CompleteSpace F
A : E →L[𝕜] E
x : E
⊢ ‖↑A x‖ ^ 2 = ↑re (inner (↑(↑adjoint A * A) x) x)
[PROOFSTEP]
have h : ⟪(A† * A) x, x⟫ = ⟪A x, A x⟫ := by rw [← adjoint_inner_left]; rfl
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : CompleteSpace E
inst✝¹ : CompleteSpace G
inst✝ : CompleteSpace F
A : E →L[𝕜] E
x : E
⊢ inner (↑(↑adjoint A * A) x) x = inner (↑A x) (↑A x)
[PROOFSTEP]
rw [← adjoint_inner_left]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : CompleteSpace E
inst✝¹ : CompleteSpace G
inst✝ : CompleteSpace F
A : E →L[𝕜] E
x : E
⊢ inner (↑(↑adjoint A * A) x) x = inner (↑(↑adjoint A) (↑A x)) x
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : CompleteSpace E
inst✝¹ : CompleteSpace G
inst✝ : CompleteSpace F
A : E →L[𝕜] E
x : E
h : inner (↑(↑adjoint A * A) x) x = inner (↑A x) (↑A x)
⊢ ‖↑A x‖ ^ 2 = ↑re (inner (↑(↑adjoint A * A) x) x)
[PROOFSTEP]
rw [h, ← inner_self_eq_norm_sq (𝕜 := 𝕜) _]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : CompleteSpace E
inst✝¹ : CompleteSpace G
inst✝ : CompleteSpace F
A : E →L[𝕜] E
x : E
⊢ ‖↑A x‖ = Real.sqrt (↑re (inner (↑(↑adjoint A * A) x) x))
[PROOFSTEP]
rw [← apply_norm_sq_eq_inner_adjoint_left, Real.sqrt_sq (norm_nonneg _)]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : CompleteSpace E
inst✝¹ : CompleteSpace G
inst✝ : CompleteSpace F
A : E →L[𝕜] E
x : E
⊢ ‖↑A x‖ ^ 2 = ↑re (inner x (↑(↑adjoint A * A) x))
[PROOFSTEP]
have h : ⟪x, (A† * A) x⟫ = ⟪A x, A x⟫ := by rw [← adjoint_inner_right]; rfl
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : CompleteSpace E
inst✝¹ : CompleteSpace G
inst✝ : CompleteSpace F
A : E →L[𝕜] E
x : E
⊢ inner x (↑(↑adjoint A * A) x) = inner (↑A x) (↑A x)
[PROOFSTEP]
rw [← adjoint_inner_right]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : CompleteSpace E
inst✝¹ : CompleteSpace G
inst✝ : CompleteSpace F
A : E →L[𝕜] E
x : E
⊢ inner x (↑(↑adjoint A * A) x) = inner x (↑(↑adjoint A) (↑A x))
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : CompleteSpace E
inst✝¹ : CompleteSpace G
inst✝ : CompleteSpace F
A : E →L[𝕜] E
x : E
h : inner x (↑(↑adjoint A * A) x) = inner (↑A x) (↑A x)
⊢ ‖↑A x‖ ^ 2 = ↑re (inner x (↑(↑adjoint A * A) x))
[PROOFSTEP]
rw [h, ← inner_self_eq_norm_sq (𝕜 := 𝕜) _]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : CompleteSpace E
inst✝¹ : CompleteSpace G
inst✝ : CompleteSpace F
A : E →L[𝕜] E
x : E
⊢ ‖↑A x‖ = Real.sqrt (↑re (inner x (↑(↑adjoint A * A) x)))
[PROOFSTEP]
rw [← apply_norm_sq_eq_inner_adjoint_right, Real.sqrt_sq (norm_nonneg _)]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : CompleteSpace E
inst✝¹ : CompleteSpace G
inst✝ : CompleteSpace F
A : E →L[𝕜] F
B : F →L[𝕜] E
⊢ A = ↑adjoint B ↔ ∀ (x : E) (y : (fun x => F) x), inner (↑A x) y = inner x (↑B y)
[PROOFSTEP]
refine' ⟨fun h x y => by rw [h, adjoint_inner_left], fun h => _⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : CompleteSpace E
inst✝¹ : CompleteSpace G
inst✝ : CompleteSpace F
A : E →L[𝕜] F
B : F →L[𝕜] E
h : A = ↑adjoint B
x : E
y : (fun x => F) x
⊢ inner (↑A x) y = inner x (↑B y)
[PROOFSTEP]
rw [h, adjoint_inner_left]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : CompleteSpace E
inst✝¹ : CompleteSpace G
inst✝ : CompleteSpace F
A : E →L[𝕜] F
B : F →L[𝕜] E
h : ∀ (x : E) (y : (fun x => F) x), inner (↑A x) y = inner x (↑B y)
⊢ A = ↑adjoint B
[PROOFSTEP]
ext x
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : CompleteSpace E
inst✝¹ : CompleteSpace G
inst✝ : CompleteSpace F
A : E →L[𝕜] F
B : F →L[𝕜] E
h : ∀ (x : E) (y : (fun x => F) x), inner (↑A x) y = inner x (↑B y)
x : E
⊢ ↑A x = ↑(↑adjoint B) x
[PROOFSTEP]
exact ext_inner_right 𝕜 fun y => by simp only [adjoint_inner_left, h x y]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : CompleteSpace E
inst✝¹ : CompleteSpace G
inst✝ : CompleteSpace F
A : E →L[𝕜] F
B : F →L[𝕜] E
h : ∀ (x : E) (y : (fun x => F) x), inner (↑A x) y = inner x (↑B y)
x : E
y : (fun x => F) x
⊢ inner (↑A x) y = inner (↑(↑adjoint B) x) y
[PROOFSTEP]
simp only [adjoint_inner_left, h x y]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : CompleteSpace E
inst✝¹ : CompleteSpace G
inst✝ : CompleteSpace F
⊢ ↑adjoint (id 𝕜 E) = id 𝕜 E
[PROOFSTEP]
refine' Eq.symm _
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : CompleteSpace E
inst✝¹ : CompleteSpace G
inst✝ : CompleteSpace F
⊢ id 𝕜 E = ↑adjoint (id 𝕜 E)
[PROOFSTEP]
rw [eq_adjoint_iff]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : CompleteSpace E
inst✝¹ : CompleteSpace G
inst✝ : CompleteSpace F
⊢ ∀ (x : E) (y : (fun x => E) x), inner (↑(id 𝕜 E) x) y = inner x (↑(id 𝕜 E) y)
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹⁰ : IsROrC 𝕜
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedAddCommGroup F
inst✝⁷ : NormedAddCommGroup G
inst✝⁶ : InnerProductSpace 𝕜 E
inst✝⁵ : InnerProductSpace 𝕜 F
inst✝⁴ : InnerProductSpace 𝕜 G
inst✝³ : CompleteSpace E
inst✝² : CompleteSpace G
inst✝¹ : CompleteSpace F
U : Submodule 𝕜 E
inst✝ : CompleteSpace { x // x ∈ U }
⊢ ↑adjoint (Submodule.subtypeL U) = orthogonalProjection U
[PROOFSTEP]
symm
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹⁰ : IsROrC 𝕜
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedAddCommGroup F
inst✝⁷ : NormedAddCommGroup G
inst✝⁶ : InnerProductSpace 𝕜 E
inst✝⁵ : InnerProductSpace 𝕜 F
inst✝⁴ : InnerProductSpace 𝕜 G
inst✝³ : CompleteSpace E
inst✝² : CompleteSpace G
inst✝¹ : CompleteSpace F
U : Submodule 𝕜 E
inst✝ : CompleteSpace { x // x ∈ U }
⊢ orthogonalProjection U = ↑adjoint (Submodule.subtypeL U)
[PROOFSTEP]
rw [eq_adjoint_iff]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹⁰ : IsROrC 𝕜
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedAddCommGroup F
inst✝⁷ : NormedAddCommGroup G
inst✝⁶ : InnerProductSpace 𝕜 E
inst✝⁵ : InnerProductSpace 𝕜 F
inst✝⁴ : InnerProductSpace 𝕜 G
inst✝³ : CompleteSpace E
inst✝² : CompleteSpace G
inst✝¹ : CompleteSpace F
U : Submodule 𝕜 E
inst✝ : CompleteSpace { x // x ∈ U }
⊢ ∀ (x : E) (y : (fun x => { x // x ∈ U }) x),
inner (↑(orthogonalProjection U) x) y = inner x (↑(Submodule.subtypeL U) y)
[PROOFSTEP]
intro x u
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹⁰ : IsROrC 𝕜
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedAddCommGroup F
inst✝⁷ : NormedAddCommGroup G
inst✝⁶ : InnerProductSpace 𝕜 E
inst✝⁵ : InnerProductSpace 𝕜 F
inst✝⁴ : InnerProductSpace 𝕜 G
inst✝³ : CompleteSpace E
inst✝² : CompleteSpace G
inst✝¹ : CompleteSpace F
U : Submodule 𝕜 E
inst✝ : CompleteSpace { x // x ∈ U }
x : E
u : { x // x ∈ U }
⊢ inner (↑(orthogonalProjection U) x) u = inner x (↑(Submodule.subtypeL U) u)
[PROOFSTEP]
rw [U.coe_inner, inner_orthogonalProjection_left_eq_right, orthogonalProjection_mem_subspace_eq_self]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹⁰ : IsROrC 𝕜
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedAddCommGroup F
inst✝⁷ : NormedAddCommGroup G
inst✝⁶ : InnerProductSpace 𝕜 E
inst✝⁵ : InnerProductSpace 𝕜 F
inst✝⁴ : InnerProductSpace 𝕜 G
inst✝³ : CompleteSpace E
inst✝² : CompleteSpace G
inst✝¹ : CompleteSpace F
U : Submodule 𝕜 E
inst✝ : CompleteSpace { x // x ∈ U }
x : E
u : { x // x ∈ U }
⊢ inner x ↑u = inner x (↑(Submodule.subtypeL U) u)
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹⁰ : IsROrC 𝕜
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedAddCommGroup F
inst✝⁷ : NormedAddCommGroup G
inst✝⁶ : InnerProductSpace 𝕜 E
inst✝⁵ : InnerProductSpace 𝕜 F
inst✝⁴ : InnerProductSpace 𝕜 G
inst✝³ : CompleteSpace E
inst✝² : CompleteSpace G
inst✝¹ : CompleteSpace F
U : Submodule 𝕜 E
inst✝ : CompleteSpace { x // x ∈ U }
⊢ ↑adjoint (orthogonalProjection U) = Submodule.subtypeL U
[PROOFSTEP]
rw [← U.adjoint_subtypeL, adjoint_adjoint]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : CompleteSpace E
inst✝¹ : CompleteSpace G
inst✝ : CompleteSpace F
⊢ ∀ {x : E →L[𝕜] E}, ‖star x * x‖ = ‖x‖ * ‖x‖
[PROOFSTEP]
intro A
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : CompleteSpace E
inst✝¹ : CompleteSpace G
inst✝ : CompleteSpace F
A : E →L[𝕜] E
⊢ ‖star A * A‖ = ‖A‖ * ‖A‖
[PROOFSTEP]
rw [star_eq_adjoint]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : CompleteSpace E
inst✝¹ : CompleteSpace G
inst✝ : CompleteSpace F
A : E →L[𝕜] E
⊢ ‖↑adjoint A * A‖ = ‖A‖ * ‖A‖
[PROOFSTEP]
refine' le_antisymm _ _
[GOAL]
case refine'_1
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : CompleteSpace E
inst✝¹ : CompleteSpace G
inst✝ : CompleteSpace F
A : E →L[𝕜] E
⊢ ‖↑adjoint A * A‖ ≤ ‖A‖ * ‖A‖
[PROOFSTEP]
calc
‖A† * A‖ ≤ ‖A†‖ * ‖A‖ := op_norm_comp_le _ _
_ = ‖A‖ * ‖A‖ := by rw [LinearIsometryEquiv.norm_map]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : CompleteSpace E
inst✝¹ : CompleteSpace G
inst✝ : CompleteSpace F
A : E →L[𝕜] E
⊢ ‖↑adjoint A‖ * ‖A‖ = ‖A‖ * ‖A‖
[PROOFSTEP]
rw [LinearIsometryEquiv.norm_map]
[GOAL]
case refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : CompleteSpace E
inst✝¹ : CompleteSpace G
inst✝ : CompleteSpace F
A : E →L[𝕜] E
⊢ ‖A‖ * ‖A‖ ≤ ‖↑adjoint A * A‖
[PROOFSTEP]
rw [← sq, ← Real.sqrt_le_sqrt_iff (norm_nonneg _), Real.sqrt_sq (norm_nonneg _)]
[GOAL]
case refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : CompleteSpace E
inst✝¹ : CompleteSpace G
inst✝ : CompleteSpace F
A : E →L[𝕜] E
⊢ ‖A‖ ≤ Real.sqrt ‖↑adjoint A * A‖
[PROOFSTEP]
refine' op_norm_le_bound _ (Real.sqrt_nonneg _) fun x => _
[GOAL]
case refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : CompleteSpace E
inst✝¹ : CompleteSpace G
inst✝ : CompleteSpace F
A : E →L[𝕜] E
x : E
⊢ ‖↑A x‖ ≤ Real.sqrt ‖↑adjoint A * A‖ * ‖x‖
[PROOFSTEP]
have :=
calc
re ⟪(A† * A) x, x⟫ ≤ ‖(A† * A) x‖ * ‖x‖ := re_inner_le_norm _ _
_ ≤ ‖A† * A‖ * ‖x‖ * ‖x‖ := mul_le_mul_of_nonneg_right (le_op_norm _ _) (norm_nonneg _)
[GOAL]
case refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : CompleteSpace E
inst✝¹ : CompleteSpace G
inst✝ : CompleteSpace F
A : E →L[𝕜] E
x : E
this : ↑re (inner (↑(↑adjoint A * A) x) x) ≤ ‖↑adjoint A * A‖ * ‖x‖ * ‖x‖
⊢ ‖↑A x‖ ≤ Real.sqrt ‖↑adjoint A * A‖ * ‖x‖
[PROOFSTEP]
calc
‖A x‖ = Real.sqrt (re ⟪(A† * A) x, x⟫) := by rw [apply_norm_eq_sqrt_inner_adjoint_left]
_ ≤ Real.sqrt (‖A† * A‖ * ‖x‖ * ‖x‖) := (Real.sqrt_le_sqrt this)
_ = Real.sqrt ‖A† * A‖ * ‖x‖ := by
simp_rw [mul_assoc, Real.sqrt_mul (norm_nonneg _) (‖x‖ * ‖x‖), Real.sqrt_mul_self (norm_nonneg x)]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : CompleteSpace E
inst✝¹ : CompleteSpace G
inst✝ : CompleteSpace F
A : E →L[𝕜] E
x : E
this : ↑re (inner (↑(↑adjoint A * A) x) x) ≤ ‖↑adjoint A * A‖ * ‖x‖ * ‖x‖
⊢ ‖↑A x‖ = Real.sqrt (↑re (inner (↑(↑adjoint A * A) x) x))
[PROOFSTEP]
rw [apply_norm_eq_sqrt_inner_adjoint_left]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : CompleteSpace E
inst✝¹ : CompleteSpace G
inst✝ : CompleteSpace F
A : E →L[𝕜] E
x : E
this : ↑re (inner (↑(↑adjoint A * A) x) x) ≤ ‖↑adjoint A * A‖ * ‖x‖ * ‖x‖
⊢ Real.sqrt (‖↑adjoint A * A‖ * ‖x‖ * ‖x‖) = Real.sqrt ‖↑adjoint A * A‖ * ‖x‖
[PROOFSTEP]
simp_rw [mul_assoc, Real.sqrt_mul (norm_nonneg _) (‖x‖ * ‖x‖), Real.sqrt_mul_self (norm_nonneg x)]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹⁵ : IsROrC 𝕜
inst✝¹⁴ : NormedAddCommGroup E
inst✝¹³ : NormedAddCommGroup F
inst✝¹² : NormedAddCommGroup G
inst✝¹¹ : InnerProductSpace 𝕜 E
inst✝¹⁰ : InnerProductSpace 𝕜 F
inst✝⁹ : InnerProductSpace 𝕜 G
inst✝⁸ : CompleteSpace E
inst✝⁷ : CompleteSpace G
inst✝⁶ : CompleteSpace F
E' : Type u_5
F' : Type u_6
inst✝⁵ : NormedAddCommGroup E'
inst✝⁴ : NormedAddCommGroup F'
inst✝³ : InnerProductSpace ℝ E'
inst✝² : InnerProductSpace ℝ F'
inst✝¹ : CompleteSpace E'
inst✝ : CompleteSpace F'
A : E' →L[ℝ] F'
⊢ LinearMap.IsAdjointPair sesqFormOfInner sesqFormOfInner ↑A ↑(↑adjoint A)
[PROOFSTEP]
intro x y
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹⁵ : IsROrC 𝕜
inst✝¹⁴ : NormedAddCommGroup E
inst✝¹³ : NormedAddCommGroup F
inst✝¹² : NormedAddCommGroup G
inst✝¹¹ : InnerProductSpace 𝕜 E
inst✝¹⁰ : InnerProductSpace 𝕜 F
inst✝⁹ : InnerProductSpace 𝕜 G
inst✝⁸ : CompleteSpace E
inst✝⁷ : CompleteSpace G
inst✝⁶ : CompleteSpace F
E' : Type u_5
F' : Type u_6
inst✝⁵ : NormedAddCommGroup E'
inst✝⁴ : NormedAddCommGroup F'
inst✝³ : InnerProductSpace ℝ E'
inst✝² : InnerProductSpace ℝ F'
inst✝¹ : CompleteSpace E'
inst✝ : CompleteSpace F'
A : E' →L[ℝ] F'
x : E'
y : F'
⊢ ↑(↑sesqFormOfInner (↑↑A x)) y = ↑(↑sesqFormOfInner x) (↑↑(↑adjoint A) y)
[PROOFSTEP]
simp only [sesqFormOfInner_apply_apply, adjoint_inner_left, coe_coe]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁸ : IsROrC 𝕜
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedAddCommGroup G
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : InnerProductSpace 𝕜 F
inst✝² : InnerProductSpace 𝕜 G
inst✝¹ : CompleteSpace E
inst✝ : CompleteSpace F
A : E →L[𝕜] E
hA : IsSelfAdjoint A
⊢ LinearMap.IsSymmetric ↑A
[PROOFSTEP]
intro x y
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁸ : IsROrC 𝕜
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedAddCommGroup G
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : InnerProductSpace 𝕜 F
inst✝² : InnerProductSpace 𝕜 G
inst✝¹ : CompleteSpace E
inst✝ : CompleteSpace F
A : E →L[𝕜] E
hA : IsSelfAdjoint A
x y : E
⊢ inner (↑↑A x) y = inner x (↑↑A y)
[PROOFSTEP]
rw_mod_cast [← A.adjoint_inner_right, hA.adjoint_eq]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁸ : IsROrC 𝕜
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedAddCommGroup G
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : InnerProductSpace 𝕜 F
inst✝² : InnerProductSpace 𝕜 G
inst✝¹ : CompleteSpace E
inst✝ : CompleteSpace F
T : E →L[𝕜] E
hT : IsSelfAdjoint T
S : E →L[𝕜] F
⊢ IsSelfAdjoint (comp S (comp T (↑adjoint S)))
[PROOFSTEP]
rw [isSelfAdjoint_iff'] at hT ⊢
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁸ : IsROrC 𝕜
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedAddCommGroup G
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : InnerProductSpace 𝕜 F
inst✝² : InnerProductSpace 𝕜 G
inst✝¹ : CompleteSpace E
inst✝ : CompleteSpace F
T : E →L[𝕜] E
hT : ↑adjoint T = T
S : E →L[𝕜] F
⊢ ↑adjoint (comp S (comp T (↑adjoint S))) = comp S (comp T (↑adjoint S))
[PROOFSTEP]
simp only [hT, adjoint_comp, adjoint_adjoint]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁸ : IsROrC 𝕜
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedAddCommGroup G
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : InnerProductSpace 𝕜 F
inst✝² : InnerProductSpace 𝕜 G
inst✝¹ : CompleteSpace E
inst✝ : CompleteSpace F
T : E →L[𝕜] E
hT : ↑adjoint T = T
S : E →L[𝕜] F
⊢ comp (comp S T) (↑adjoint S) = comp S (comp T (↑adjoint S))
[PROOFSTEP]
exact ContinuousLinearMap.comp_assoc _ _ _
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁸ : IsROrC 𝕜
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedAddCommGroup G
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : InnerProductSpace 𝕜 F
inst✝² : InnerProductSpace 𝕜 G
inst✝¹ : CompleteSpace E
inst✝ : CompleteSpace F
T : E →L[𝕜] E
hT : IsSelfAdjoint T
S : F →L[𝕜] E
⊢ IsSelfAdjoint (comp (↑adjoint S) (comp T S))
[PROOFSTEP]
rw [isSelfAdjoint_iff'] at hT ⊢
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁸ : IsROrC 𝕜
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedAddCommGroup G
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : InnerProductSpace 𝕜 F
inst✝² : InnerProductSpace 𝕜 G
inst✝¹ : CompleteSpace E
inst✝ : CompleteSpace F
T : E →L[𝕜] E
hT : ↑adjoint T = T
S : F →L[𝕜] E
⊢ ↑adjoint (comp (↑adjoint S) (comp T S)) = comp (↑adjoint S) (comp T S)
[PROOFSTEP]
simp only [hT, adjoint_comp, adjoint_adjoint]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁸ : IsROrC 𝕜
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedAddCommGroup G
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : InnerProductSpace 𝕜 F
inst✝² : InnerProductSpace 𝕜 G
inst✝¹ : CompleteSpace E
inst✝ : CompleteSpace F
T : E →L[𝕜] E
hT : ↑adjoint T = T
S : F →L[𝕜] E
⊢ comp (comp (↑adjoint S) T) S = comp (↑adjoint S) (comp T S)
[PROOFSTEP]
exact ContinuousLinearMap.comp_assoc _ _ _
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁸ : IsROrC 𝕜
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedAddCommGroup F
inst✝⁵ : NormedAddCommGroup G
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : InnerProductSpace 𝕜 F
inst✝² : InnerProductSpace 𝕜 G
inst✝¹ : CompleteSpace E
inst✝ : CompleteSpace F
A : E →L[𝕜] E
hA : LinearMap.IsSymmetric ↑A
⊢ IsSelfAdjoint A
[PROOFSTEP]
rwa [← ContinuousLinearMap.isSelfAdjoint_iff_isSymmetric] at hA
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : CompleteSpace E
inst✝¹ : CompleteSpace F
T : E →L[𝕜] E
hT : IsSelfAdjoint T
U : Submodule 𝕜 E
inst✝ : CompleteSpace { x // x ∈ U }
⊢ IsSelfAdjoint
(comp (Submodule.subtypeL U)
(comp (orthogonalProjection U) (comp T (comp (Submodule.subtypeL U) (orthogonalProjection U)))))
[PROOFSTEP]
rw [← ContinuousLinearMap.comp_assoc]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : CompleteSpace E
inst✝¹ : CompleteSpace F
T : E →L[𝕜] E
hT : IsSelfAdjoint T
U : Submodule 𝕜 E
inst✝ : CompleteSpace { x // x ∈ U }
⊢ IsSelfAdjoint
(comp (comp (Submodule.subtypeL U) (orthogonalProjection U))
(comp T (comp (Submodule.subtypeL U) (orthogonalProjection U))))
[PROOFSTEP]
nth_rw 1 [← (orthogonalProjection_isSelfAdjoint U).adjoint_eq]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : CompleteSpace E
inst✝¹ : CompleteSpace F
T : E →L[𝕜] E
hT : IsSelfAdjoint T
U : Submodule 𝕜 E
inst✝ : CompleteSpace { x // x ∈ U }
⊢ IsSelfAdjoint
(comp (↑adjoint (comp (Submodule.subtypeL U) (orthogonalProjection U)))
(comp T (comp (Submodule.subtypeL U) (orthogonalProjection U))))
[PROOFSTEP]
refine' hT.adjoint_conj _
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : FiniteDimensional 𝕜 E
inst✝¹ : FiniteDimensional 𝕜 F
inst✝ : FiniteDimensional 𝕜 G
A : E →ₗ[𝕜] F
x : E
y : F
⊢ inner (↑(↑adjoint A) y) x = inner y (↑A x)
[PROOFSTEP]
rw [← coe_toContinuousLinearMap A, adjoint_eq_toClm_adjoint]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : FiniteDimensional 𝕜 E
inst✝¹ : FiniteDimensional 𝕜 F
inst✝ : FiniteDimensional 𝕜 G
A : E →ₗ[𝕜] F
x : E
y : F
⊢ inner (↑↑(↑ContinuousLinearMap.adjoint (↑toContinuousLinearMap ↑(↑toContinuousLinearMap A))) y) x =
inner y (↑↑(↑toContinuousLinearMap A) x)
[PROOFSTEP]
exact ContinuousLinearMap.adjoint_inner_left _ x y
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : FiniteDimensional 𝕜 E
inst✝¹ : FiniteDimensional 𝕜 F
inst✝ : FiniteDimensional 𝕜 G
A : E →ₗ[𝕜] F
x : E
y : F
⊢ inner x (↑(↑adjoint A) y) = inner (↑A x) y
[PROOFSTEP]
rw [← coe_toContinuousLinearMap A, adjoint_eq_toClm_adjoint]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : FiniteDimensional 𝕜 E
inst✝¹ : FiniteDimensional 𝕜 F
inst✝ : FiniteDimensional 𝕜 G
A : E →ₗ[𝕜] F
x : E
y : F
⊢ inner x (↑↑(↑ContinuousLinearMap.adjoint (↑toContinuousLinearMap ↑(↑toContinuousLinearMap A))) y) =
inner (↑↑(↑toContinuousLinearMap A) x) y
[PROOFSTEP]
exact ContinuousLinearMap.adjoint_inner_right _ x y
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : FiniteDimensional 𝕜 E
inst✝¹ : FiniteDimensional 𝕜 F
inst✝ : FiniteDimensional 𝕜 G
A : E →ₗ[𝕜] F
⊢ ↑adjoint (↑adjoint A) = A
[PROOFSTEP]
ext v
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : FiniteDimensional 𝕜 E
inst✝¹ : FiniteDimensional 𝕜 F
inst✝ : FiniteDimensional 𝕜 G
A : E →ₗ[𝕜] F
v : E
⊢ ↑(↑adjoint (↑adjoint A)) v = ↑A v
[PROOFSTEP]
refine' ext_inner_left 𝕜 fun w => _
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : FiniteDimensional 𝕜 E
inst✝¹ : FiniteDimensional 𝕜 F
inst✝ : FiniteDimensional 𝕜 G
A : E →ₗ[𝕜] F
v : E
w : (fun x => F) v
⊢ inner w (↑(↑adjoint (↑adjoint A)) v) = inner w (↑A v)
[PROOFSTEP]
rw [adjoint_inner_right, adjoint_inner_left]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : FiniteDimensional 𝕜 E
inst✝¹ : FiniteDimensional 𝕜 F
inst✝ : FiniteDimensional 𝕜 G
A : F →ₗ[𝕜] G
B : E →ₗ[𝕜] F
⊢ ↑adjoint (comp A B) = comp (↑adjoint B) (↑adjoint A)
[PROOFSTEP]
ext v
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : FiniteDimensional 𝕜 E
inst✝¹ : FiniteDimensional 𝕜 F
inst✝ : FiniteDimensional 𝕜 G
A : F →ₗ[𝕜] G
B : E →ₗ[𝕜] F
v : G
⊢ ↑(↑adjoint (comp A B)) v = ↑(comp (↑adjoint B) (↑adjoint A)) v
[PROOFSTEP]
refine' ext_inner_left 𝕜 fun w => _
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : FiniteDimensional 𝕜 E
inst✝¹ : FiniteDimensional 𝕜 F
inst✝ : FiniteDimensional 𝕜 G
A : F →ₗ[𝕜] G
B : E →ₗ[𝕜] F
v : G
w : (fun x => E) v
⊢ inner w (↑(↑adjoint (comp A B)) v) = inner w (↑(comp (↑adjoint B) (↑adjoint A)) v)
[PROOFSTEP]
simp only [adjoint_inner_right, LinearMap.coe_comp, Function.comp_apply]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : FiniteDimensional 𝕜 E
inst✝¹ : FiniteDimensional 𝕜 F
inst✝ : FiniteDimensional 𝕜 G
A : E →ₗ[𝕜] F
B : F →ₗ[𝕜] E
⊢ A = ↑adjoint B ↔ ∀ (x : E) (y : (fun x => F) x), inner (↑A x) y = inner x (↑B y)
[PROOFSTEP]
refine' ⟨fun h x y => by rw [h, adjoint_inner_left], fun h => _⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : FiniteDimensional 𝕜 E
inst✝¹ : FiniteDimensional 𝕜 F
inst✝ : FiniteDimensional 𝕜 G
A : E →ₗ[𝕜] F
B : F →ₗ[𝕜] E
h : A = ↑adjoint B
x : E
y : (fun x => F) x
⊢ inner (↑A x) y = inner x (↑B y)
[PROOFSTEP]
rw [h, adjoint_inner_left]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : FiniteDimensional 𝕜 E
inst✝¹ : FiniteDimensional 𝕜 F
inst✝ : FiniteDimensional 𝕜 G
A : E →ₗ[𝕜] F
B : F →ₗ[𝕜] E
h : ∀ (x : E) (y : (fun x => F) x), inner (↑A x) y = inner x (↑B y)
⊢ A = ↑adjoint B
[PROOFSTEP]
ext x
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : FiniteDimensional 𝕜 E
inst✝¹ : FiniteDimensional 𝕜 F
inst✝ : FiniteDimensional 𝕜 G
A : E →ₗ[𝕜] F
B : F →ₗ[𝕜] E
h : ∀ (x : E) (y : (fun x => F) x), inner (↑A x) y = inner x (↑B y)
x : E
⊢ ↑A x = ↑(↑adjoint B) x
[PROOFSTEP]
exact ext_inner_right 𝕜 fun y => by simp only [adjoint_inner_left, h x y]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : FiniteDimensional 𝕜 E
inst✝¹ : FiniteDimensional 𝕜 F
inst✝ : FiniteDimensional 𝕜 G
A : E →ₗ[𝕜] F
B : F →ₗ[𝕜] E
h : ∀ (x : E) (y : (fun x => F) x), inner (↑A x) y = inner x (↑B y)
x : E
y : (fun x => F) x
⊢ inner (↑A x) y = inner (↑(↑adjoint B) x) y
[PROOFSTEP]
simp only [adjoint_inner_left, h x y]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : FiniteDimensional 𝕜 E
inst✝¹ : FiniteDimensional 𝕜 F
inst✝ : FiniteDimensional 𝕜 G
ι₁ : Type u_5
ι₂ : Type u_6
b₁ : Basis ι₁ 𝕜 E
b₂ : Basis ι₂ 𝕜 F
A : E →ₗ[𝕜] F
B : F →ₗ[𝕜] E
⊢ A = ↑adjoint B ↔ ∀ (i₁ : ι₁) (i₂ : ι₂), inner (↑A (↑b₁ i₁)) (↑b₂ i₂) = inner (↑b₁ i₁) (↑B (↑b₂ i₂))
[PROOFSTEP]
refine' ⟨fun h x y => by rw [h, adjoint_inner_left], fun h => _⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : FiniteDimensional 𝕜 E
inst✝¹ : FiniteDimensional 𝕜 F
inst✝ : FiniteDimensional 𝕜 G
ι₁ : Type u_5
ι₂ : Type u_6
b₁ : Basis ι₁ 𝕜 E
b₂ : Basis ι₂ 𝕜 F
A : E →ₗ[𝕜] F
B : F →ₗ[𝕜] E
h : A = ↑adjoint B
x : ι₁
y : ι₂
⊢ inner (↑A (↑b₁ x)) (↑b₂ y) = inner (↑b₁ x) (↑B (↑b₂ y))
[PROOFSTEP]
rw [h, adjoint_inner_left]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : FiniteDimensional 𝕜 E
inst✝¹ : FiniteDimensional 𝕜 F
inst✝ : FiniteDimensional 𝕜 G
ι₁ : Type u_5
ι₂ : Type u_6
b₁ : Basis ι₁ 𝕜 E
b₂ : Basis ι₂ 𝕜 F
A : E →ₗ[𝕜] F
B : F →ₗ[𝕜] E
h : ∀ (i₁ : ι₁) (i₂ : ι₂), inner (↑A (↑b₁ i₁)) (↑b₂ i₂) = inner (↑b₁ i₁) (↑B (↑b₂ i₂))
⊢ A = ↑adjoint B
[PROOFSTEP]
refine' Basis.ext b₁ fun i₁ => _
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : FiniteDimensional 𝕜 E
inst✝¹ : FiniteDimensional 𝕜 F
inst✝ : FiniteDimensional 𝕜 G
ι₁ : Type u_5
ι₂ : Type u_6
b₁ : Basis ι₁ 𝕜 E
b₂ : Basis ι₂ 𝕜 F
A : E →ₗ[𝕜] F
B : F →ₗ[𝕜] E
h : ∀ (i₁ : ι₁) (i₂ : ι₂), inner (↑A (↑b₁ i₁)) (↑b₂ i₂) = inner (↑b₁ i₁) (↑B (↑b₂ i₂))
i₁ : ι₁
⊢ ↑A (↑b₁ i₁) = ↑(↑adjoint B) (↑b₁ i₁)
[PROOFSTEP]
exact ext_inner_right_basis b₂ fun i₂ => by simp only [adjoint_inner_left, h i₁ i₂]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : FiniteDimensional 𝕜 E
inst✝¹ : FiniteDimensional 𝕜 F
inst✝ : FiniteDimensional 𝕜 G
ι₁ : Type u_5
ι₂ : Type u_6
b₁ : Basis ι₁ 𝕜 E
b₂ : Basis ι₂ 𝕜 F
A : E →ₗ[𝕜] F
B : F →ₗ[𝕜] E
h : ∀ (i₁ : ι₁) (i₂ : ι₂), inner (↑A (↑b₁ i₁)) (↑b₂ i₂) = inner (↑b₁ i₁) (↑B (↑b₂ i₂))
i₁ : ι₁
i₂ : ι₂
⊢ inner (↑A (↑b₁ i₁)) (↑b₂ i₂) = inner (↑(↑adjoint B) (↑b₁ i₁)) (↑b₂ i₂)
[PROOFSTEP]
simp only [adjoint_inner_left, h i₁ i₂]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : FiniteDimensional 𝕜 E
inst✝¹ : FiniteDimensional 𝕜 F
inst✝ : FiniteDimensional 𝕜 G
ι : Type u_5
b : Basis ι 𝕜 E
A : E →ₗ[𝕜] F
B : F →ₗ[𝕜] E
⊢ A = ↑adjoint B ↔ ∀ (i : ι) (y : (fun x => F) (↑b i)), inner (↑A (↑b i)) y = inner (↑b i) (↑B y)
[PROOFSTEP]
refine' ⟨fun h x y => by rw [h, adjoint_inner_left], fun h => Basis.ext b fun i => _⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : FiniteDimensional 𝕜 E
inst✝¹ : FiniteDimensional 𝕜 F
inst✝ : FiniteDimensional 𝕜 G
ι : Type u_5
b : Basis ι 𝕜 E
A : E →ₗ[𝕜] F
B : F →ₗ[𝕜] E
h : A = ↑adjoint B
x : ι
y : (fun x => F) (↑b x)
⊢ inner (↑A (↑b x)) y = inner (↑b x) (↑B y)
[PROOFSTEP]
rw [h, adjoint_inner_left]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : FiniteDimensional 𝕜 E
inst✝¹ : FiniteDimensional 𝕜 F
inst✝ : FiniteDimensional 𝕜 G
ι : Type u_5
b : Basis ι 𝕜 E
A : E →ₗ[𝕜] F
B : F →ₗ[𝕜] E
h : ∀ (i : ι) (y : (fun x => F) (↑b i)), inner (↑A (↑b i)) y = inner (↑b i) (↑B y)
i : ι
⊢ ↑A (↑b i) = ↑(↑adjoint B) (↑b i)
[PROOFSTEP]
exact ext_inner_right 𝕜 fun y => by simp only [h i, adjoint_inner_left]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : FiniteDimensional 𝕜 E
inst✝¹ : FiniteDimensional 𝕜 F
inst✝ : FiniteDimensional 𝕜 G
ι : Type u_5
b : Basis ι 𝕜 E
A : E →ₗ[𝕜] F
B : F →ₗ[𝕜] E
h : ∀ (i : ι) (y : (fun x => F) (↑b i)), inner (↑A (↑b i)) y = inner (↑b i) (↑B y)
i : ι
y : (fun x => F) (↑b i)
⊢ inner (↑A (↑b i)) y = inner (↑(↑adjoint B) (↑b i)) y
[PROOFSTEP]
simp only [h i, adjoint_inner_left]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : FiniteDimensional 𝕜 E
inst✝¹ : FiniteDimensional 𝕜 F
inst✝ : FiniteDimensional 𝕜 G
ι : Type u_5
b : Basis ι 𝕜 F
A : E →ₗ[𝕜] F
B : F →ₗ[𝕜] E
⊢ A = ↑adjoint B ↔ ∀ (i : ι) (x : E), inner (↑A x) (↑b i) = inner x (↑B (↑b i))
[PROOFSTEP]
refine' ⟨fun h x y => by rw [h, adjoint_inner_left], fun h => _⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : FiniteDimensional 𝕜 E
inst✝¹ : FiniteDimensional 𝕜 F
inst✝ : FiniteDimensional 𝕜 G
ι : Type u_5
b : Basis ι 𝕜 F
A : E →ₗ[𝕜] F
B : F →ₗ[𝕜] E
h : A = ↑adjoint B
x : ι
y : E
⊢ inner (↑A y) (↑b x) = inner y (↑B (↑b x))
[PROOFSTEP]
rw [h, adjoint_inner_left]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : FiniteDimensional 𝕜 E
inst✝¹ : FiniteDimensional 𝕜 F
inst✝ : FiniteDimensional 𝕜 G
ι : Type u_5
b : Basis ι 𝕜 F
A : E →ₗ[𝕜] F
B : F →ₗ[𝕜] E
h : ∀ (i : ι) (x : E), inner (↑A x) (↑b i) = inner x (↑B (↑b i))
⊢ A = ↑adjoint B
[PROOFSTEP]
ext x
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : FiniteDimensional 𝕜 E
inst✝¹ : FiniteDimensional 𝕜 F
inst✝ : FiniteDimensional 𝕜 G
ι : Type u_5
b : Basis ι 𝕜 F
A : E →ₗ[𝕜] F
B : F →ₗ[𝕜] E
h : ∀ (i : ι) (x : E), inner (↑A x) (↑b i) = inner x (↑B (↑b i))
x : E
⊢ ↑A x = ↑(↑adjoint B) x
[PROOFSTEP]
refine' ext_inner_right_basis b fun i => by simp only [h i, adjoint_inner_left]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : FiniteDimensional 𝕜 E
inst✝¹ : FiniteDimensional 𝕜 F
inst✝ : FiniteDimensional 𝕜 G
ι : Type u_5
b : Basis ι 𝕜 F
A : E →ₗ[𝕜] F
B : F →ₗ[𝕜] E
h : ∀ (i : ι) (x : E), inner (↑A x) (↑b i) = inner x (↑B (↑b i))
x : E
i : ι
⊢ inner (↑A x) (↑b i) = inner (↑(↑adjoint B) x) (↑b i)
[PROOFSTEP]
simp only [h i, adjoint_inner_left]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : FiniteDimensional 𝕜 E
inst✝¹ : FiniteDimensional 𝕜 F
inst✝ : FiniteDimensional 𝕜 G
A : E →ₗ[𝕜] E
⊢ IsSymmetric A ↔ IsSelfAdjoint A
[PROOFSTEP]
rw [isSelfAdjoint_iff', IsSymmetric, ← LinearMap.eq_adjoint_iff]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : FiniteDimensional 𝕜 E
inst✝¹ : FiniteDimensional 𝕜 F
inst✝ : FiniteDimensional 𝕜 G
A : E →ₗ[𝕜] E
⊢ A = ↑adjoint A ↔ ↑adjoint A = A
[PROOFSTEP]
exact eq_comm
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹⁵ : IsROrC 𝕜
inst✝¹⁴ : NormedAddCommGroup E
inst✝¹³ : NormedAddCommGroup F
inst✝¹² : NormedAddCommGroup G
inst✝¹¹ : InnerProductSpace 𝕜 E
inst✝¹⁰ : InnerProductSpace 𝕜 F
inst✝⁹ : InnerProductSpace 𝕜 G
inst✝⁸ : FiniteDimensional 𝕜 E
inst✝⁷ : FiniteDimensional 𝕜 F
inst✝⁶ : FiniteDimensional 𝕜 G
E' : Type u_5
F' : Type u_6
inst✝⁵ : NormedAddCommGroup E'
inst✝⁴ : NormedAddCommGroup F'
inst✝³ : InnerProductSpace ℝ E'
inst✝² : InnerProductSpace ℝ F'
inst✝¹ : FiniteDimensional ℝ E'
inst✝ : FiniteDimensional ℝ F'
A : E' →ₗ[ℝ] F'
⊢ IsAdjointPair sesqFormOfInner sesqFormOfInner A (↑adjoint A)
[PROOFSTEP]
intro x y
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹⁵ : IsROrC 𝕜
inst✝¹⁴ : NormedAddCommGroup E
inst✝¹³ : NormedAddCommGroup F
inst✝¹² : NormedAddCommGroup G
inst✝¹¹ : InnerProductSpace 𝕜 E
inst✝¹⁰ : InnerProductSpace 𝕜 F
inst✝⁹ : InnerProductSpace 𝕜 G
inst✝⁸ : FiniteDimensional 𝕜 E
inst✝⁷ : FiniteDimensional 𝕜 F
inst✝⁶ : FiniteDimensional 𝕜 G
E' : Type u_5
F' : Type u_6
inst✝⁵ : NormedAddCommGroup E'
inst✝⁴ : NormedAddCommGroup F'
inst✝³ : InnerProductSpace ℝ E'
inst✝² : InnerProductSpace ℝ F'
inst✝¹ : FiniteDimensional ℝ E'
inst✝ : FiniteDimensional ℝ F'
A : E' →ₗ[ℝ] F'
x : E'
y : F'
⊢ ↑(↑sesqFormOfInner (↑A x)) y = ↑(↑sesqFormOfInner x) (↑(↑adjoint A) y)
[PROOFSTEP]
simp only [sesqFormOfInner_apply_apply, adjoint_inner_left]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : FiniteDimensional 𝕜 E
inst✝¹ : FiniteDimensional 𝕜 F
inst✝ : FiniteDimensional 𝕜 G
T : E →ₗ[𝕜] E
⊢ IsSymmetric (↑adjoint T * T)
[PROOFSTEP]
intro x y
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : FiniteDimensional 𝕜 E
inst✝¹ : FiniteDimensional 𝕜 F
inst✝ : FiniteDimensional 𝕜 G
T : E →ₗ[𝕜] E
x y : E
⊢ inner (↑(↑adjoint T * T) x) y = inner x (↑(↑adjoint T * T) y)
[PROOFSTEP]
simp only [mul_apply, adjoint_inner_left, adjoint_inner_right]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : FiniteDimensional 𝕜 E
inst✝¹ : FiniteDimensional 𝕜 F
inst✝ : FiniteDimensional 𝕜 G
T : E →ₗ[𝕜] E
x : E
⊢ 0 ≤ ↑re (inner x (↑(↑adjoint T * T) x))
[PROOFSTEP]
simp only [mul_apply, adjoint_inner_right, inner_self_eq_norm_sq_to_K]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : FiniteDimensional 𝕜 E
inst✝¹ : FiniteDimensional 𝕜 F
inst✝ : FiniteDimensional 𝕜 G
T : E →ₗ[𝕜] E
x : E
⊢ 0 ≤ ↑re (↑‖↑T x‖ ^ 2)
[PROOFSTEP]
norm_cast
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : FiniteDimensional 𝕜 E
inst✝¹ : FiniteDimensional 𝕜 F
inst✝ : FiniteDimensional 𝕜 G
T : E →ₗ[𝕜] E
x : E
⊢ 0 ≤ ‖↑T x‖ ^ 2
[PROOFSTEP]
exact sq_nonneg _
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : FiniteDimensional 𝕜 E
inst✝¹ : FiniteDimensional 𝕜 F
inst✝ : FiniteDimensional 𝕜 G
T : E →ₗ[𝕜] E
x : E
⊢ ↑im (inner x (↑(↑adjoint T) (↑T x))) = 0
[PROOFSTEP]
simp only [mul_apply, adjoint_inner_right, inner_self_eq_norm_sq_to_K]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝⁹ : IsROrC 𝕜
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedAddCommGroup F
inst✝⁶ : NormedAddCommGroup G
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : InnerProductSpace 𝕜 F
inst✝³ : InnerProductSpace 𝕜 G
inst✝² : FiniteDimensional 𝕜 E
inst✝¹ : FiniteDimensional 𝕜 F
inst✝ : FiniteDimensional 𝕜 G
T : E →ₗ[𝕜] E
x : E
⊢ ↑im (↑‖↑T x‖ ^ 2) = 0
[PROOFSTEP]
norm_cast
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹⁰ : IsROrC 𝕜
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedAddCommGroup F
inst✝⁷ : NormedAddCommGroup G
inst✝⁶ : InnerProductSpace 𝕜 E
inst✝⁵ : InnerProductSpace 𝕜 F
inst✝⁴ : InnerProductSpace 𝕜 G
m : Type u_5
n : Type u_6
inst✝³ : Fintype m
inst✝² : DecidableEq m
inst✝¹ : Fintype n
inst✝ : DecidableEq n
A : Matrix m n 𝕜
⊢ ↑toEuclideanLin Aᴴ = ↑LinearMap.adjoint (↑toEuclideanLin A)
[PROOFSTEP]
rw [LinearMap.eq_adjoint_iff]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹⁰ : IsROrC 𝕜
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedAddCommGroup F
inst✝⁷ : NormedAddCommGroup G
inst✝⁶ : InnerProductSpace 𝕜 E
inst✝⁵ : InnerProductSpace 𝕜 F
inst✝⁴ : InnerProductSpace 𝕜 G
m : Type u_5
n : Type u_6
inst✝³ : Fintype m
inst✝² : DecidableEq m
inst✝¹ : Fintype n
inst✝ : DecidableEq n
A : Matrix m n 𝕜
⊢ ∀ (x : EuclideanSpace 𝕜 m) (y : (fun x => EuclideanSpace 𝕜 n) x),
inner (↑(↑toEuclideanLin Aᴴ) x) y = inner x (↑(↑toEuclideanLin A) y)
[PROOFSTEP]
intro x y
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
G : Type u_4
inst✝¹⁰ : IsROrC 𝕜
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedAddCommGroup F
inst✝⁷ : NormedAddCommGroup G
inst✝⁶ : InnerProductSpace 𝕜 E
inst✝⁵ : InnerProductSpace 𝕜 F
inst✝⁴ : InnerProductSpace 𝕜 G
m : Type u_5
n : Type u_6
inst✝³ : Fintype m
inst✝² : DecidableEq m
inst✝¹ : Fintype n
inst✝ : DecidableEq n
A : Matrix m n 𝕜
x : EuclideanSpace 𝕜 m
y : EuclideanSpace 𝕜 n
⊢ inner (↑(↑toEuclideanLin Aᴴ) x) y = inner x (↑(↑toEuclideanLin A) y)
[PROOFSTEP]
simp_rw [EuclideanSpace.inner_eq_star_dotProduct, piLp_equiv_toEuclideanLin, toLin'_apply, star_mulVec,
conjTranspose_conjTranspose, dotProduct_mulVec]
| {"mathlib_filename": "Mathlib.Analysis.InnerProductSpace.Adjoint", "llama_tokens": 26819} |
[GOAL]
G : Type u_1
inst✝ : Group G
H : Subgroup G
R S : Set G
hR : R ∈ rightTransversals ↑H
hR1 : 1 ∈ R
hS : closure S = ⊤
⊢ ↑(closure ((fun g => g * (↑(toFun hR g))⁻¹) '' (R * S))) * R = ⊤
[PROOFSTEP]
let f : G → R := fun g => toFun hR g
[GOAL]
G : Type u_1
inst✝ : Group G
H : Subgroup G
R S : Set G
hR : R ∈ rightTransversals ↑H
hR1 : 1 ∈ R
hS : closure S = ⊤
f : G → ↑R := fun g => toFun hR g
⊢ ↑(closure ((fun g => g * (↑(toFun hR g))⁻¹) '' (R * S))) * R = ⊤
[PROOFSTEP]
let U : Set G := (R * S).image fun g => g * (f g : G)⁻¹
[GOAL]
G : Type u_1
inst✝ : Group G
H : Subgroup G
R S : Set G
hR : R ∈ rightTransversals ↑H
hR1 : 1 ∈ R
hS : closure S = ⊤
f : G → ↑R := fun g => toFun hR g
U : Set G := (fun g => g * (↑(f g))⁻¹) '' (R * S)
⊢ ↑(closure ((fun g => g * (↑(toFun hR g))⁻¹) '' (R * S))) * R = ⊤
[PROOFSTEP]
change (closure U : Set G) * R = ⊤
[GOAL]
G : Type u_1
inst✝ : Group G
H : Subgroup G
R S : Set G
hR : R ∈ rightTransversals ↑H
hR1 : 1 ∈ R
hS : closure S = ⊤
f : G → ↑R := fun g => toFun hR g
U : Set G := (fun g => g * (↑(f g))⁻¹) '' (R * S)
⊢ ↑(closure U) * R = ⊤
[PROOFSTEP]
refine' top_le_iff.mp fun g _ => _
[GOAL]
G : Type u_1
inst✝ : Group G
H : Subgroup G
R S : Set G
hR : R ∈ rightTransversals ↑H
hR1 : 1 ∈ R
hS : closure S = ⊤
f : G → ↑R := fun g => toFun hR g
U : Set G := (fun g => g * (↑(f g))⁻¹) '' (R * S)
g : G
x✝ : g ∈ ⊤
⊢ g ∈ ↑(closure U) * R
[PROOFSTEP]
apply closure_induction_right (eq_top_iff.mp hS (mem_top g))
[GOAL]
case H1
G : Type u_1
inst✝ : Group G
H : Subgroup G
R S : Set G
hR : R ∈ rightTransversals ↑H
hR1 : 1 ∈ R
hS : closure S = ⊤
f : G → ↑R := fun g => toFun hR g
U : Set G := (fun g => g * (↑(f g))⁻¹) '' (R * S)
g : G
x✝ : g ∈ ⊤
⊢ 1 ∈ ↑(closure U) * R
[PROOFSTEP]
exact ⟨1, 1, (closure U).one_mem, hR1, one_mul 1⟩
[GOAL]
case Hmul
G : Type u_1
inst✝ : Group G
H : Subgroup G
R S : Set G
hR : R ∈ rightTransversals ↑H
hR1 : 1 ∈ R
hS : closure S = ⊤
f : G → ↑R := fun g => toFun hR g
U : Set G := (fun g => g * (↑(f g))⁻¹) '' (R * S)
g : G
x✝ : g ∈ ⊤
⊢ ∀ (x y : G), y ∈ S → x ∈ ↑(closure U) * R → x * y ∈ ↑(closure U) * R
[PROOFSTEP]
rintro - s hs ⟨u, r, hu, hr, rfl⟩
[GOAL]
case Hmul.intro.intro.intro.intro
G : Type u_1
inst✝ : Group G
H : Subgroup G
R S : Set G
hR : R ∈ rightTransversals ↑H
hR1 : 1 ∈ R
hS : closure S = ⊤
f : G → ↑R := fun g => toFun hR g
U : Set G := (fun g => g * (↑(f g))⁻¹) '' (R * S)
g : G
x✝ : g ∈ ⊤
s : G
hs : s ∈ S
u r : G
hu : u ∈ ↑(closure U)
hr : r ∈ R
⊢ (fun x x_1 => x * x_1) u r * s ∈ ↑(closure U) * R
[PROOFSTEP]
rw [show u * r * s = u * (r * s * (f (r * s) : G)⁻¹) * f (r * s) by group]
[GOAL]
G : Type u_1
inst✝ : Group G
H : Subgroup G
R S : Set G
hR : R ∈ rightTransversals ↑H
hR1 : 1 ∈ R
hS : closure S = ⊤
f : G → ↑R := fun g => toFun hR g
U : Set G := (fun g => g * (↑(f g))⁻¹) '' (R * S)
g : G
x✝ : g ∈ ⊤
s : G
hs : s ∈ S
u r : G
hu : u ∈ ↑(closure U)
hr : r ∈ R
⊢ u * r * s = u * (r * s * (↑(f (r * s)))⁻¹) * ↑(f (r * s))
[PROOFSTEP]
group
[GOAL]
case Hmul.intro.intro.intro.intro
G : Type u_1
inst✝ : Group G
H : Subgroup G
R S : Set G
hR : R ∈ rightTransversals ↑H
hR1 : 1 ∈ R
hS : closure S = ⊤
f : G → ↑R := fun g => toFun hR g
U : Set G := (fun g => g * (↑(f g))⁻¹) '' (R * S)
g : G
x✝ : g ∈ ⊤
s : G
hs : s ∈ S
u r : G
hu : u ∈ ↑(closure U)
hr : r ∈ R
⊢ u * (r * s * (↑(f (r * s)))⁻¹) * ↑(f (r * s)) ∈ ↑(closure U) * R
[PROOFSTEP]
refine' Set.mul_mem_mul ((closure U).mul_mem hu _) (f (r * s)).coe_prop
[GOAL]
case Hmul.intro.intro.intro.intro
G : Type u_1
inst✝ : Group G
H : Subgroup G
R S : Set G
hR : R ∈ rightTransversals ↑H
hR1 : 1 ∈ R
hS : closure S = ⊤
f : G → ↑R := fun g => toFun hR g
U : Set G := (fun g => g * (↑(f g))⁻¹) '' (R * S)
g : G
x✝ : g ∈ ⊤
s : G
hs : s ∈ S
u r : G
hu : u ∈ ↑(closure U)
hr : r ∈ R
⊢ r * s * (↑(f (r * s)))⁻¹ ∈ closure U
[PROOFSTEP]
exact subset_closure ⟨r * s, Set.mul_mem_mul hr hs, rfl⟩
[GOAL]
case Hinv
G : Type u_1
inst✝ : Group G
H : Subgroup G
R S : Set G
hR : R ∈ rightTransversals ↑H
hR1 : 1 ∈ R
hS : closure S = ⊤
f : G → ↑R := fun g => toFun hR g
U : Set G := (fun g => g * (↑(f g))⁻¹) '' (R * S)
g : G
x✝ : g ∈ ⊤
⊢ ∀ (x y : G), y ∈ S → x ∈ ↑(closure U) * R → x * y⁻¹ ∈ ↑(closure U) * R
[PROOFSTEP]
rintro - s hs ⟨u, r, hu, hr, rfl⟩
[GOAL]
case Hinv.intro.intro.intro.intro
G : Type u_1
inst✝ : Group G
H : Subgroup G
R S : Set G
hR : R ∈ rightTransversals ↑H
hR1 : 1 ∈ R
hS : closure S = ⊤
f : G → ↑R := fun g => toFun hR g
U : Set G := (fun g => g * (↑(f g))⁻¹) '' (R * S)
g : G
x✝ : g ∈ ⊤
s : G
hs : s ∈ S
u r : G
hu : u ∈ ↑(closure U)
hr : r ∈ R
⊢ (fun x x_1 => x * x_1) u r * s⁻¹ ∈ ↑(closure U) * R
[PROOFSTEP]
rw [show u * r * s⁻¹ = u * (f (r * s⁻¹) * s * r⁻¹)⁻¹ * f (r * s⁻¹) by group]
[GOAL]
G : Type u_1
inst✝ : Group G
H : Subgroup G
R S : Set G
hR : R ∈ rightTransversals ↑H
hR1 : 1 ∈ R
hS : closure S = ⊤
f : G → ↑R := fun g => toFun hR g
U : Set G := (fun g => g * (↑(f g))⁻¹) '' (R * S)
g : G
x✝ : g ∈ ⊤
s : G
hs : s ∈ S
u r : G
hu : u ∈ ↑(closure U)
hr : r ∈ R
⊢ u * r * s⁻¹ = u * (↑(f (r * s⁻¹)) * s * r⁻¹)⁻¹ * ↑(f (r * s⁻¹))
[PROOFSTEP]
group
[GOAL]
case Hinv.intro.intro.intro.intro
G : Type u_1
inst✝ : Group G
H : Subgroup G
R S : Set G
hR : R ∈ rightTransversals ↑H
hR1 : 1 ∈ R
hS : closure S = ⊤
f : G → ↑R := fun g => toFun hR g
U : Set G := (fun g => g * (↑(f g))⁻¹) '' (R * S)
g : G
x✝ : g ∈ ⊤
s : G
hs : s ∈ S
u r : G
hu : u ∈ ↑(closure U)
hr : r ∈ R
⊢ u * (↑(f (r * s⁻¹)) * s * r⁻¹)⁻¹ * ↑(f (r * s⁻¹)) ∈ ↑(closure U) * R
[PROOFSTEP]
refine' Set.mul_mem_mul ((closure U).mul_mem hu ((closure U).inv_mem _)) (f (r * s⁻¹)).2
[GOAL]
case Hinv.intro.intro.intro.intro
G : Type u_1
inst✝ : Group G
H : Subgroup G
R S : Set G
hR : R ∈ rightTransversals ↑H
hR1 : 1 ∈ R
hS : closure S = ⊤
f : G → ↑R := fun g => toFun hR g
U : Set G := (fun g => g * (↑(f g))⁻¹) '' (R * S)
g : G
x✝ : g ∈ ⊤
s : G
hs : s ∈ S
u r : G
hu : u ∈ ↑(closure U)
hr : r ∈ R
⊢ ↑(f (r * s⁻¹)) * s * r⁻¹ ∈ closure U
[PROOFSTEP]
refine' subset_closure ⟨f (r * s⁻¹) * s, Set.mul_mem_mul (f (r * s⁻¹)).2 hs, _⟩
[GOAL]
case Hinv.intro.intro.intro.intro
G : Type u_1
inst✝ : Group G
H : Subgroup G
R S : Set G
hR : R ∈ rightTransversals ↑H
hR1 : 1 ∈ R
hS : closure S = ⊤
f : G → ↑R := fun g => toFun hR g
U : Set G := (fun g => g * (↑(f g))⁻¹) '' (R * S)
g : G
x✝ : g ∈ ⊤
s : G
hs : s ∈ S
u r : G
hu : u ∈ ↑(closure U)
hr : r ∈ R
⊢ (fun g => g * (↑(f g))⁻¹) (↑(f (r * s⁻¹)) * s) = ↑(f (r * s⁻¹)) * s * r⁻¹
[PROOFSTEP]
rw [mul_right_inj, inv_inj, ← Subtype.coe_mk r hr, ← Subtype.ext_iff, Subtype.coe_mk]
[GOAL]
case Hinv.intro.intro.intro.intro
G : Type u_1
inst✝ : Group G
H : Subgroup G
R S : Set G
hR : R ∈ rightTransversals ↑H
hR1 : 1 ∈ R
hS : closure S = ⊤
f : G → ↑R := fun g => toFun hR g
U : Set G := (fun g => g * (↑(f g))⁻¹) '' (R * S)
g : G
x✝ : g ∈ ⊤
s : G
hs : s ∈ S
u r : G
hu : u ∈ ↑(closure U)
hr : r ∈ R
⊢ f (↑(toFun hR (↑{ val := r, property := hr } * s⁻¹)) * s) = { val := r, property := hr }
[PROOFSTEP]
apply
(mem_rightTransversals_iff_existsUnique_mul_inv_mem.mp hR (f (r * s⁻¹) * s)).unique
(mul_inv_toFun_mem hR (f (r * s⁻¹) * s))
[GOAL]
case Hinv.intro.intro.intro.intro
G : Type u_1
inst✝ : Group G
H : Subgroup G
R S : Set G
hR : R ∈ rightTransversals ↑H
hR1 : 1 ∈ R
hS : closure S = ⊤
f : G → ↑R := fun g => toFun hR g
U : Set G := (fun g => g * (↑(f g))⁻¹) '' (R * S)
g : G
x✝ : g ∈ ⊤
s : G
hs : s ∈ S
u r : G
hu : u ∈ ↑(closure U)
hr : r ∈ R
⊢ ↑(f (r * s⁻¹)) * s * (↑{ val := r, property := hr })⁻¹ ∈ ↑H
[PROOFSTEP]
rw [mul_assoc, ← inv_inv s, ← mul_inv_rev, inv_inv]
[GOAL]
case Hinv.intro.intro.intro.intro
G : Type u_1
inst✝ : Group G
H : Subgroup G
R S : Set G
hR : R ∈ rightTransversals ↑H
hR1 : 1 ∈ R
hS : closure S = ⊤
f : G → ↑R := fun g => toFun hR g
U : Set G := (fun g => g * (↑(f g))⁻¹) '' (R * S)
g : G
x✝ : g ∈ ⊤
s : G
hs : s ∈ S
u r : G
hu : u ∈ ↑(closure U)
hr : r ∈ R
⊢ ↑(f (r * s⁻¹)) * (↑{ val := r, property := hr } * s⁻¹)⁻¹ ∈ ↑H
[PROOFSTEP]
exact toFun_mul_inv_mem hR (r * s⁻¹)
[GOAL]
G : Type u_1
inst✝ : Group G
H : Subgroup G
R S : Set G
hR : R ∈ rightTransversals ↑H
hR1 : 1 ∈ R
hS : closure S = ⊤
⊢ closure ((fun g => g * (↑(toFun hR g))⁻¹) '' (R * S)) = H
[PROOFSTEP]
have hU : closure ((R * S).image fun g => g * (toFun hR g : G)⁻¹) ≤ H :=
by
rw [closure_le]
rintro - ⟨g, -, rfl⟩
exact mul_inv_toFun_mem hR g
[GOAL]
G : Type u_1
inst✝ : Group G
H : Subgroup G
R S : Set G
hR : R ∈ rightTransversals ↑H
hR1 : 1 ∈ R
hS : closure S = ⊤
⊢ closure ((fun g => g * (↑(toFun hR g))⁻¹) '' (R * S)) ≤ H
[PROOFSTEP]
rw [closure_le]
[GOAL]
G : Type u_1
inst✝ : Group G
H : Subgroup G
R S : Set G
hR : R ∈ rightTransversals ↑H
hR1 : 1 ∈ R
hS : closure S = ⊤
⊢ (fun g => g * (↑(toFun hR g))⁻¹) '' (R * S) ⊆ ↑H
[PROOFSTEP]
rintro - ⟨g, -, rfl⟩
[GOAL]
case intro.intro
G : Type u_1
inst✝ : Group G
H : Subgroup G
R S : Set G
hR : R ∈ rightTransversals ↑H
hR1 : 1 ∈ R
hS : closure S = ⊤
g : G
⊢ (fun g => g * (↑(toFun hR g))⁻¹) g ∈ ↑H
[PROOFSTEP]
exact mul_inv_toFun_mem hR g
[GOAL]
G : Type u_1
inst✝ : Group G
H : Subgroup G
R S : Set G
hR : R ∈ rightTransversals ↑H
hR1 : 1 ∈ R
hS : closure S = ⊤
hU : closure ((fun g => g * (↑(toFun hR g))⁻¹) '' (R * S)) ≤ H
⊢ closure ((fun g => g * (↑(toFun hR g))⁻¹) '' (R * S)) = H
[PROOFSTEP]
refine' le_antisymm hU fun h hh => _
[GOAL]
G : Type u_1
inst✝ : Group G
H : Subgroup G
R S : Set G
hR : R ∈ rightTransversals ↑H
hR1 : 1 ∈ R
hS : closure S = ⊤
hU : closure ((fun g => g * (↑(toFun hR g))⁻¹) '' (R * S)) ≤ H
h : G
hh : h ∈ H
⊢ h ∈ closure ((fun g => g * (↑(toFun hR g))⁻¹) '' (R * S))
[PROOFSTEP]
obtain ⟨g, r, hg, hr, rfl⟩ := show h ∈ _ from eq_top_iff.mp (closure_mul_image_mul_eq_top hR hR1 hS) (mem_top h)
[GOAL]
case intro.intro.intro.intro
G : Type u_1
inst✝ : Group G
H : Subgroup G
R S : Set G
hR : R ∈ rightTransversals ↑H
hR1 : 1 ∈ R
hS : closure S = ⊤
hU : closure ((fun g => g * (↑(toFun hR g))⁻¹) '' (R * S)) ≤ H
g r : G
hg : g ∈ ↑(closure ((fun g => g * (↑(toFun hR g))⁻¹) '' (R * S)))
hr : r ∈ R
hh : (fun x x_1 => x * x_1) g r ∈ H
⊢ (fun x x_1 => x * x_1) g r ∈ closure ((fun g => g * (↑(toFun hR g))⁻¹) '' (R * S))
[PROOFSTEP]
suffices (⟨r, hr⟩ : R) = (⟨1, hR1⟩ : R) by simpa only [show r = 1 from Subtype.ext_iff.mp this, mul_one]
[GOAL]
G : Type u_1
inst✝ : Group G
H : Subgroup G
R S : Set G
hR : R ∈ rightTransversals ↑H
hR1 : 1 ∈ R
hS : closure S = ⊤
hU : closure ((fun g => g * (↑(toFun hR g))⁻¹) '' (R * S)) ≤ H
g r : G
hg : g ∈ ↑(closure ((fun g => g * (↑(toFun hR g))⁻¹) '' (R * S)))
hr : r ∈ R
hh : (fun x x_1 => x * x_1) g r ∈ H
this : { val := r, property := hr } = { val := 1, property := hR1 }
⊢ (fun x x_1 => x * x_1) g r ∈ closure ((fun g => g * (↑(toFun hR g))⁻¹) '' (R * S))
[PROOFSTEP]
simpa only [show r = 1 from Subtype.ext_iff.mp this, mul_one]
[GOAL]
case intro.intro.intro.intro
G : Type u_1
inst✝ : Group G
H : Subgroup G
R S : Set G
hR : R ∈ rightTransversals ↑H
hR1 : 1 ∈ R
hS : closure S = ⊤
hU : closure ((fun g => g * (↑(toFun hR g))⁻¹) '' (R * S)) ≤ H
g r : G
hg : g ∈ ↑(closure ((fun g => g * (↑(toFun hR g))⁻¹) '' (R * S)))
hr : r ∈ R
hh : (fun x x_1 => x * x_1) g r ∈ H
⊢ { val := r, property := hr } = { val := 1, property := hR1 }
[PROOFSTEP]
apply (mem_rightTransversals_iff_existsUnique_mul_inv_mem.mp hR r).unique
[GOAL]
case intro.intro.intro.intro.py₁
G : Type u_1
inst✝ : Group G
H : Subgroup G
R S : Set G
hR : R ∈ rightTransversals ↑H
hR1 : 1 ∈ R
hS : closure S = ⊤
hU : closure ((fun g => g * (↑(toFun hR g))⁻¹) '' (R * S)) ≤ H
g r : G
hg : g ∈ ↑(closure ((fun g => g * (↑(toFun hR g))⁻¹) '' (R * S)))
hr : r ∈ R
hh : (fun x x_1 => x * x_1) g r ∈ H
⊢ r * (↑{ val := r, property := hr })⁻¹ ∈ ↑H
[PROOFSTEP]
rw [Subtype.coe_mk, mul_inv_self]
[GOAL]
case intro.intro.intro.intro.py₁
G : Type u_1
inst✝ : Group G
H : Subgroup G
R S : Set G
hR : R ∈ rightTransversals ↑H
hR1 : 1 ∈ R
hS : closure S = ⊤
hU : closure ((fun g => g * (↑(toFun hR g))⁻¹) '' (R * S)) ≤ H
g r : G
hg : g ∈ ↑(closure ((fun g => g * (↑(toFun hR g))⁻¹) '' (R * S)))
hr : r ∈ R
hh : (fun x x_1 => x * x_1) g r ∈ H
⊢ 1 ∈ ↑H
[PROOFSTEP]
exact H.one_mem
[GOAL]
case intro.intro.intro.intro.py₂
G : Type u_1
inst✝ : Group G
H : Subgroup G
R S : Set G
hR : R ∈ rightTransversals ↑H
hR1 : 1 ∈ R
hS : closure S = ⊤
hU : closure ((fun g => g * (↑(toFun hR g))⁻¹) '' (R * S)) ≤ H
g r : G
hg : g ∈ ↑(closure ((fun g => g * (↑(toFun hR g))⁻¹) '' (R * S)))
hr : r ∈ R
hh : (fun x x_1 => x * x_1) g r ∈ H
⊢ r * (↑{ val := 1, property := hR1 })⁻¹ ∈ ↑H
[PROOFSTEP]
rw [Subtype.coe_mk, inv_one, mul_one]
[GOAL]
case intro.intro.intro.intro.py₂
G : Type u_1
inst✝ : Group G
H : Subgroup G
R S : Set G
hR : R ∈ rightTransversals ↑H
hR1 : 1 ∈ R
hS : closure S = ⊤
hU : closure ((fun g => g * (↑(toFun hR g))⁻¹) '' (R * S)) ≤ H
g r : G
hg : g ∈ ↑(closure ((fun g => g * (↑(toFun hR g))⁻¹) '' (R * S)))
hr : r ∈ R
hh : (fun x x_1 => x * x_1) g r ∈ H
⊢ r ∈ ↑H
[PROOFSTEP]
exact (H.mul_mem_cancel_left (hU hg)).mp hh
[GOAL]
G : Type u_1
inst✝ : Group G
H : Subgroup G
R S : Set G
hR : R ∈ rightTransversals ↑H
hR1 : 1 ∈ R
hS : closure S = ⊤
⊢ closure ((fun g => { val := g * (↑(toFun hR g))⁻¹, property := (_ : g * (↑(toFun hR g))⁻¹ ∈ H) }) '' (R * S)) = ⊤
[PROOFSTEP]
rw [eq_top_iff, ← map_subtype_le_map_subtype, MonoidHom.map_closure, Set.image_image]
[GOAL]
G : Type u_1
inst✝ : Group G
H : Subgroup G
R S : Set G
hR : R ∈ rightTransversals ↑H
hR1 : 1 ∈ R
hS : closure S = ⊤
⊢ map (Subgroup.subtype H) ⊤ ≤
closure
((fun x => ↑(Subgroup.subtype H) { val := x * (↑(toFun hR x))⁻¹, property := (_ : x * (↑(toFun hR x))⁻¹ ∈ H) }) ''
(R * S))
[PROOFSTEP]
exact (map_subtype_le ⊤).trans (ge_of_eq (closure_mul_image_eq hR hR1 hS))
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
R✝ S✝ : Set G
inst✝ : DecidableEq G
R S : Finset G
hR : ↑R ∈ rightTransversals ↑H
hR1 : 1 ∈ R
hS : closure ↑S = ⊤
⊢ closure
↑(Finset.image (fun g => { val := g * (↑(toFun hR g))⁻¹, property := (_ : g * (↑(toFun hR g))⁻¹ ∈ H) }) (R * S)) =
⊤
[PROOFSTEP]
rw [Finset.coe_image, Finset.coe_mul]
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
R✝ S✝ : Set G
inst✝ : DecidableEq G
R S : Finset G
hR : ↑R ∈ rightTransversals ↑H
hR1 : 1 ∈ R
hS : closure ↑S = ⊤
⊢ closure ((fun g => { val := g * (↑(toFun hR g))⁻¹, property := (_ : g * (↑(toFun hR g))⁻¹ ∈ H) }) '' (↑R * ↑S)) = ⊤
[PROOFSTEP]
exact closure_mul_image_eq_top hR hR1 hS
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
R S✝ : Set G
inst✝ : FiniteIndex H
S : Finset G
hS : closure ↑S = ⊤
⊢ ∃ T, Finset.card T ≤ index H * Finset.card S ∧ closure ↑T = ⊤
[PROOFSTEP]
letI := H.fintypeQuotientOfFiniteIndex
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
R S✝ : Set G
inst✝ : FiniteIndex H
S : Finset G
hS : closure ↑S = ⊤
this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H
⊢ ∃ T, Finset.card T ≤ index H * Finset.card S ∧ closure ↑T = ⊤
[PROOFSTEP]
haveI : DecidableEq G := Classical.decEq G
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
R S✝ : Set G
inst✝ : FiniteIndex H
S : Finset G
hS : closure ↑S = ⊤
this✝ : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H
this : DecidableEq G
⊢ ∃ T, Finset.card T ≤ index H * Finset.card S ∧ closure ↑T = ⊤
[PROOFSTEP]
obtain ⟨R₀, hR : R₀ ∈ rightTransversals (H : Set G), hR1⟩ := exists_right_transversal (1 : G)
[GOAL]
case intro.intro
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
R S✝ : Set G
inst✝ : FiniteIndex H
S : Finset G
hS : closure ↑S = ⊤
this✝ : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H
this : DecidableEq G
R₀ : Set G
hR : R₀ ∈ rightTransversals ↑H
hR1 : 1 ∈ R₀
⊢ ∃ T, Finset.card T ≤ index H * Finset.card S ∧ closure ↑T = ⊤
[PROOFSTEP]
haveI : Fintype R₀ := Fintype.ofEquiv _ (toEquiv hR)
[GOAL]
case intro.intro
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
R S✝ : Set G
inst✝ : FiniteIndex H
S : Finset G
hS : closure ↑S = ⊤
this✝¹ : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H
this✝ : DecidableEq G
R₀ : Set G
hR : R₀ ∈ rightTransversals ↑H
hR1 : 1 ∈ R₀
this : Fintype ↑R₀
⊢ ∃ T, Finset.card T ≤ index H * Finset.card S ∧ closure ↑T = ⊤
[PROOFSTEP]
let R : Finset G := Set.toFinset R₀
[GOAL]
case intro.intro
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
R✝ S✝ : Set G
inst✝ : FiniteIndex H
S : Finset G
hS : closure ↑S = ⊤
this✝¹ : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H
this✝ : DecidableEq G
R₀ : Set G
hR : R₀ ∈ rightTransversals ↑H
hR1 : 1 ∈ R₀
this : Fintype ↑R₀
R : Finset G := Set.toFinset R₀
⊢ ∃ T, Finset.card T ≤ index H * Finset.card S ∧ closure ↑T = ⊤
[PROOFSTEP]
replace hR : (R : Set G) ∈ rightTransversals (H : Set G) := by rwa [Set.coe_toFinset]
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
R✝ S✝ : Set G
inst✝ : FiniteIndex H
S : Finset G
hS : closure ↑S = ⊤
this✝¹ : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H
this✝ : DecidableEq G
R₀ : Set G
hR : R₀ ∈ rightTransversals ↑H
hR1 : 1 ∈ R₀
this : Fintype ↑R₀
R : Finset G := Set.toFinset R₀
⊢ ↑R ∈ rightTransversals ↑H
[PROOFSTEP]
rwa [Set.coe_toFinset]
[GOAL]
case intro.intro
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
R✝ S✝ : Set G
inst✝ : FiniteIndex H
S : Finset G
hS : closure ↑S = ⊤
this✝¹ : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H
this✝ : DecidableEq G
R₀ : Set G
hR1 : 1 ∈ R₀
this : Fintype ↑R₀
R : Finset G := Set.toFinset R₀
hR : ↑R ∈ rightTransversals ↑H
⊢ ∃ T, Finset.card T ≤ index H * Finset.card S ∧ closure ↑T = ⊤
[PROOFSTEP]
replace hR1 : (1 : G) ∈ R := by rwa [Set.mem_toFinset]
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
R✝ S✝ : Set G
inst✝ : FiniteIndex H
S : Finset G
hS : closure ↑S = ⊤
this✝¹ : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H
this✝ : DecidableEq G
R₀ : Set G
hR1 : 1 ∈ R₀
this : Fintype ↑R₀
R : Finset G := Set.toFinset R₀
hR : ↑R ∈ rightTransversals ↑H
⊢ 1 ∈ R
[PROOFSTEP]
rwa [Set.mem_toFinset]
[GOAL]
case intro.intro
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
R✝ S✝ : Set G
inst✝ : FiniteIndex H
S : Finset G
hS : closure ↑S = ⊤
this✝¹ : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H
this✝ : DecidableEq G
R₀ : Set G
this : Fintype ↑R₀
R : Finset G := Set.toFinset R₀
hR : ↑R ∈ rightTransversals ↑H
hR1 : 1 ∈ R
⊢ ∃ T, Finset.card T ≤ index H * Finset.card S ∧ closure ↑T = ⊤
[PROOFSTEP]
refine' ⟨_, _, closure_mul_image_eq_top' hR hR1 hS⟩
[GOAL]
case intro.intro
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
R✝ S✝ : Set G
inst✝ : FiniteIndex H
S : Finset G
hS : closure ↑S = ⊤
this✝¹ : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H
this✝ : DecidableEq G
R₀ : Set G
this : Fintype ↑R₀
R : Finset G := Set.toFinset R₀
hR : ↑R ∈ rightTransversals ↑H
hR1 : 1 ∈ R
⊢ Finset.card
(Finset.image (fun g => { val := g * (↑(toFun hR g))⁻¹, property := (_ : g * (↑(toFun hR g))⁻¹ ∈ H) }) (R * S)) ≤
index H * Finset.card S
[PROOFSTEP]
calc
_ ≤ (R * S).card := Finset.card_image_le
_ ≤ (R ×ˢ S).card := Finset.card_image_le
_ = R.card * S.card := (R.card_product S)
_ = H.index * S.card := congr_arg (· * S.card) ?_
[GOAL]
case intro.intro
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
R✝ S✝ : Set G
inst✝ : FiniteIndex H
S : Finset G
hS : closure ↑S = ⊤
this✝¹ : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H
this✝ : DecidableEq G
R₀ : Set G
this : Fintype ↑R₀
R : Finset G := Set.toFinset R₀
hR : ↑R ∈ rightTransversals ↑H
hR1 : 1 ∈ R
⊢ Finset.card R = index H
[PROOFSTEP]
calc
R.card = Fintype.card R := (Fintype.card_coe R).symm
_ = _ := (Fintype.card_congr (toEquiv hR)).symm
_ = Fintype.card (G ⧸ H) := (QuotientGroup.card_quotient_rightRel H)
_ = H.index := H.index_eq_card.symm
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
R S : Set G
hG : Group.FG G
inst✝ : FiniteIndex H
⊢ Group.FG { x // x ∈ H }
[PROOFSTEP]
obtain ⟨S, hS⟩ := hG.1
[GOAL]
case intro
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
R S✝ : Set G
hG : Group.FG G
inst✝ : FiniteIndex H
S : Finset G
hS : closure ↑S = ⊤
⊢ Group.FG { x // x ∈ H }
[PROOFSTEP]
obtain ⟨T, -, hT⟩ := exists_finset_card_le_mul H hS
[GOAL]
case intro.intro.intro
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
R S✝ : Set G
hG : Group.FG G
inst✝ : FiniteIndex H
S : Finset G
hS : closure ↑S = ⊤
T : Finset { x // x ∈ H }
hT : closure ↑T = ⊤
⊢ Group.FG { x // x ∈ H }
[PROOFSTEP]
exact ⟨⟨T, hT⟩⟩
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
R S : Set G
hG : Group.FG G
inst✝ : FiniteIndex H
⊢ Group.rank { x // x ∈ H } ≤ index H * Group.rank G
[PROOFSTEP]
haveI := H.fg_of_index_ne_zero
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
R S : Set G
hG : Group.FG G
inst✝ : FiniteIndex H
this : Group.FG { x // x ∈ H }
⊢ Group.rank { x // x ∈ H } ≤ index H * Group.rank G
[PROOFSTEP]
obtain ⟨S, hS₀, hS⟩ := Group.rank_spec G
[GOAL]
case intro.intro
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
R S✝ : Set G
hG : Group.FG G
inst✝ : FiniteIndex H
this : Group.FG { x // x ∈ H }
S : Finset G
hS₀ : Finset.card S = Group.rank G
hS : closure ↑S = ⊤
⊢ Group.rank { x // x ∈ H } ≤ index H * Group.rank G
[PROOFSTEP]
obtain ⟨T, hT₀, hT⟩ := exists_finset_card_le_mul H hS
[GOAL]
case intro.intro.intro.intro
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
R S✝ : Set G
hG : Group.FG G
inst✝ : FiniteIndex H
this : Group.FG { x // x ∈ H }
S : Finset G
hS₀ : Finset.card S = Group.rank G
hS : closure ↑S = ⊤
T : Finset { x // x ∈ H }
hT₀ : Finset.card T ≤ index H * Finset.card S
hT : closure ↑T = ⊤
⊢ Group.rank { x // x ∈ H } ≤ index H * Group.rank G
[PROOFSTEP]
calc
Group.rank H ≤ T.card := Group.rank_le H hT
_ ≤ H.index * S.card := hT₀
_ = H.index * Group.rank G := congr_arg ((· * ·) H.index) hS₀
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
R S : Set G
inst✝ : Finite ↑(commutatorSet G)
⊢ Nat.card { x // x ∈ _root_.commutator G } ∣ index (center G) ^ (index (center G) * Nat.card ↑(commutatorSet G) + 1)
[PROOFSTEP]
by_cases hG : (center G).index = 0
[GOAL]
case pos
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
R S : Set G
inst✝ : Finite ↑(commutatorSet G)
hG : index (center G) = 0
⊢ Nat.card { x // x ∈ _root_.commutator G } ∣ index (center G) ^ (index (center G) * Nat.card ↑(commutatorSet G) + 1)
[PROOFSTEP]
simp_rw [hG, zero_mul, zero_add, pow_one, dvd_zero]
[GOAL]
case neg
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
R S : Set G
inst✝ : Finite ↑(commutatorSet G)
hG : ¬index (center G) = 0
⊢ Nat.card { x // x ∈ _root_.commutator G } ∣ index (center G) ^ (index (center G) * Nat.card ↑(commutatorSet G) + 1)
[PROOFSTEP]
haveI : FiniteIndex (center G) :=
⟨hG⟩
-- Rewrite as `|Z(G) ∩ G'| * [G' : Z(G) ∩ G'] ∣ [G : Z(G)] ^ ([G : Z(G)] * n) * [G : Z(G)]`
[GOAL]
case neg
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
R S : Set G
inst✝ : Finite ↑(commutatorSet G)
hG : ¬index (center G) = 0
this : FiniteIndex (center G)
⊢ Nat.card { x // x ∈ _root_.commutator G } ∣ index (center G) ^ (index (center G) * Nat.card ↑(commutatorSet G) + 1)
[PROOFSTEP]
rw [← ((center G).subgroupOf (_root_.commutator G)).card_mul_index, pow_succ']
-- We have `h1 : [G' : Z(G) ∩ G'] ∣ [G : Z(G)]`
[GOAL]
case neg
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
R S : Set G
inst✝ : Finite ↑(commutatorSet G)
hG : ¬index (center G) = 0
this : FiniteIndex (center G)
⊢ Nat.card { x // x ∈ subgroupOf (center G) (_root_.commutator G) } *
index (subgroupOf (center G) (_root_.commutator G)) ∣
index (center G) ^ (index (center G) * Nat.card ↑(commutatorSet G)) * index (center G)
[PROOFSTEP]
have h1 :=
relindex_dvd_index_of_normal (center G)
(_root_.commutator G)
-- So we can reduce to proving `|Z(G) ∩ G'| ∣ [G : Z(G)] ^ ([G : Z(G)] * n)`
[GOAL]
case neg
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
R S : Set G
inst✝ : Finite ↑(commutatorSet G)
hG : ¬index (center G) = 0
this : FiniteIndex (center G)
h1 : relindex (center G) (_root_.commutator G) ∣ index (center G)
⊢ Nat.card { x // x ∈ subgroupOf (center G) (_root_.commutator G) } *
index (subgroupOf (center G) (_root_.commutator G)) ∣
index (center G) ^ (index (center G) * Nat.card ↑(commutatorSet G)) * index (center G)
[PROOFSTEP]
refine' mul_dvd_mul _ h1
[GOAL]
case neg
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
R S : Set G
inst✝ : Finite ↑(commutatorSet G)
hG : ¬index (center G) = 0
this : FiniteIndex (center G)
h1 : relindex (center G) (_root_.commutator G) ∣ index (center G)
⊢ Nat.card { x // x ∈ subgroupOf (center G) (_root_.commutator G) } ∣
index (center G) ^ (index (center G) * Nat.card ↑(commutatorSet G))
[PROOFSTEP]
haveI : FiniteIndex ((center G).subgroupOf (_root_.commutator G)) :=
⟨ne_zero_of_dvd_ne_zero hG h1⟩
-- We have `h2 : rank (Z(G) ∩ G') ≤ [G' : Z(G) ∩ G'] * rank G'` by Schreier's lemma
[GOAL]
case neg
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
R S : Set G
inst✝ : Finite ↑(commutatorSet G)
hG : ¬index (center G) = 0
this✝ : FiniteIndex (center G)
h1 : relindex (center G) (_root_.commutator G) ∣ index (center G)
this : FiniteIndex (subgroupOf (center G) (_root_.commutator G))
⊢ Nat.card { x // x ∈ subgroupOf (center G) (_root_.commutator G) } ∣
index (center G) ^ (index (center G) * Nat.card ↑(commutatorSet G))
[PROOFSTEP]
have h2 :=
rank_le_index_mul_rank
((center G).subgroupOf (_root_.commutator G))
-- We have `h3 : [G' : Z(G) ∩ G'] * rank G' ≤ [G : Z(G)] * n` by `h1` and `rank G' ≤ n`
[GOAL]
case neg
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
R S : Set G
inst✝ : Finite ↑(commutatorSet G)
hG : ¬index (center G) = 0
this✝ : FiniteIndex (center G)
h1 : relindex (center G) (_root_.commutator G) ∣ index (center G)
this : FiniteIndex (subgroupOf (center G) (_root_.commutator G))
h2 :
Group.rank { x // x ∈ subgroupOf (center G) (_root_.commutator G) } ≤
index (subgroupOf (center G) (_root_.commutator G)) * Group.rank { x // x ∈ _root_.commutator G }
⊢ Nat.card { x // x ∈ subgroupOf (center G) (_root_.commutator G) } ∣
index (center G) ^ (index (center G) * Nat.card ↑(commutatorSet G))
[PROOFSTEP]
have h3 :=
Nat.mul_le_mul (Nat.le_of_dvd (Nat.pos_of_ne_zero hG) h1)
(rank_commutator_le_card G)
-- So we can reduce to proving `|Z(G) ∩ G'| ∣ [G : Z(G)] ^ rank (Z(G) ∩ G')`
[GOAL]
case neg
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
R S : Set G
inst✝ : Finite ↑(commutatorSet G)
hG : ¬index (center G) = 0
this✝ : FiniteIndex (center G)
h1 : relindex (center G) (_root_.commutator G) ∣ index (center G)
this : FiniteIndex (subgroupOf (center G) (_root_.commutator G))
h2 :
Group.rank { x // x ∈ subgroupOf (center G) (_root_.commutator G) } ≤
index (subgroupOf (center G) (_root_.commutator G)) * Group.rank { x // x ∈ _root_.commutator G }
h3 :
relindex (center G) (_root_.commutator G) * Group.rank { x // x ∈ _root_.commutator G } ≤
index (center G) * Nat.card ↑(commutatorSet G)
⊢ Nat.card { x // x ∈ subgroupOf (center G) (_root_.commutator G) } ∣
index (center G) ^ (index (center G) * Nat.card ↑(commutatorSet G))
[PROOFSTEP]
refine'
dvd_trans _
(pow_dvd_pow (center G).index (h2.trans h3))
-- `Z(G) ∩ G'` is abelian, so it enough to prove that `g ^ [G : Z(G)] = 1` for `g ∈ Z(G) ∩ G'`
[GOAL]
case neg
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
R S : Set G
inst✝ : Finite ↑(commutatorSet G)
hG : ¬index (center G) = 0
this✝ : FiniteIndex (center G)
h1 : relindex (center G) (_root_.commutator G) ∣ index (center G)
this : FiniteIndex (subgroupOf (center G) (_root_.commutator G))
h2 :
Group.rank { x // x ∈ subgroupOf (center G) (_root_.commutator G) } ≤
index (subgroupOf (center G) (_root_.commutator G)) * Group.rank { x // x ∈ _root_.commutator G }
h3 :
relindex (center G) (_root_.commutator G) * Group.rank { x // x ∈ _root_.commutator G } ≤
index (center G) * Nat.card ↑(commutatorSet G)
⊢ Nat.card { x // x ∈ subgroupOf (center G) (_root_.commutator G) } ∣
index (center G) ^ Group.rank { x // x ∈ subgroupOf (center G) (_root_.commutator G) }
[PROOFSTEP]
apply card_dvd_exponent_pow_rank'
[GOAL]
case neg.hG
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
R S : Set G
inst✝ : Finite ↑(commutatorSet G)
hG : ¬index (center G) = 0
this✝ : FiniteIndex (center G)
h1 : relindex (center G) (_root_.commutator G) ∣ index (center G)
this : FiniteIndex (subgroupOf (center G) (_root_.commutator G))
h2 :
Group.rank { x // x ∈ subgroupOf (center G) (_root_.commutator G) } ≤
index (subgroupOf (center G) (_root_.commutator G)) * Group.rank { x // x ∈ _root_.commutator G }
h3 :
relindex (center G) (_root_.commutator G) * Group.rank { x // x ∈ _root_.commutator G } ≤
index (center G) * Nat.card ↑(commutatorSet G)
⊢ ∀ (g : { x // x ∈ subgroupOf (center G) (_root_.commutator G) }), g ^ index (center G) = 1
[PROOFSTEP]
intro g
[GOAL]
case neg.hG
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
R S : Set G
inst✝ : Finite ↑(commutatorSet G)
hG : ¬index (center G) = 0
this✝ : FiniteIndex (center G)
h1 : relindex (center G) (_root_.commutator G) ∣ index (center G)
this : FiniteIndex (subgroupOf (center G) (_root_.commutator G))
h2 :
Group.rank { x // x ∈ subgroupOf (center G) (_root_.commutator G) } ≤
index (subgroupOf (center G) (_root_.commutator G)) * Group.rank { x // x ∈ _root_.commutator G }
h3 :
relindex (center G) (_root_.commutator G) * Group.rank { x // x ∈ _root_.commutator G } ≤
index (center G) * Nat.card ↑(commutatorSet G)
g : { x // x ∈ subgroupOf (center G) (_root_.commutator G) }
⊢ g ^ index (center G) = 1
[PROOFSTEP]
have :=
Abelianization.commutator_subset_ker (MonoidHom.transferCenterPow G)
g.1.2
-- `transfer g` is defeq to `g ^ [G : Z(G)]`, so we are done
[GOAL]
case neg.hG
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
R S : Set G
inst✝ : Finite ↑(commutatorSet G)
hG : ¬index (center G) = 0
this✝¹ : FiniteIndex (center G)
h1 : relindex (center G) (_root_.commutator G) ∣ index (center G)
this✝ : FiniteIndex (subgroupOf (center G) (_root_.commutator G))
h2 :
Group.rank { x // x ∈ subgroupOf (center G) (_root_.commutator G) } ≤
index (subgroupOf (center G) (_root_.commutator G)) * Group.rank { x // x ∈ _root_.commutator G }
h3 :
relindex (center G) (_root_.commutator G) * Group.rank { x // x ∈ _root_.commutator G } ≤
index (center G) * Nat.card ↑(commutatorSet G)
g : { x // x ∈ subgroupOf (center G) (_root_.commutator G) }
this : ↑↑g ∈ MonoidHom.ker (MonoidHom.transferCenterPow G)
⊢ g ^ index (center G) = 1
[PROOFSTEP]
simpa only [MonoidHom.mem_ker, Subtype.ext_iff] using this
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
R S : Set G
inst✝ : Finite ↑(commutatorSet G)
⊢ Nat.card { x // x ∈ _root_.commutator G } ≤ cardCommutatorBound (Nat.card ↑(commutatorSet G))
[PROOFSTEP]
have h1 := index_center_le_pow (closureCommutatorRepresentatives G)
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
R S : Set G
inst✝ : Finite ↑(commutatorSet G)
h1 :
index (center { x // x ∈ closureCommutatorRepresentatives G }) ≤
Nat.card ↑(commutatorSet { x // x ∈ closureCommutatorRepresentatives G }) ^
Group.rank { x // x ∈ closureCommutatorRepresentatives G }
⊢ Nat.card { x // x ∈ _root_.commutator G } ≤ cardCommutatorBound (Nat.card ↑(commutatorSet G))
[PROOFSTEP]
have h2 := card_commutator_dvd_index_center_pow (closureCommutatorRepresentatives G)
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
R S : Set G
inst✝ : Finite ↑(commutatorSet G)
h1 :
index (center { x // x ∈ closureCommutatorRepresentatives G }) ≤
Nat.card ↑(commutatorSet { x // x ∈ closureCommutatorRepresentatives G }) ^
Group.rank { x // x ∈ closureCommutatorRepresentatives G }
h2 :
Nat.card { x // x ∈ _root_.commutator { x // x ∈ closureCommutatorRepresentatives G } } ∣
index (center { x // x ∈ closureCommutatorRepresentatives G }) ^
(index (center { x // x ∈ closureCommutatorRepresentatives G }) *
Nat.card ↑(commutatorSet { x // x ∈ closureCommutatorRepresentatives G }) +
1)
⊢ Nat.card { x // x ∈ _root_.commutator G } ≤ cardCommutatorBound (Nat.card ↑(commutatorSet G))
[PROOFSTEP]
rw [card_commutatorSet_closureCommutatorRepresentatives] at h1 h2
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
R S : Set G
inst✝ : Finite ↑(commutatorSet G)
h1 :
index (center { x // x ∈ closureCommutatorRepresentatives G }) ≤
Nat.card ↑(commutatorSet G) ^ Group.rank { x // x ∈ closureCommutatorRepresentatives G }
h2 :
Nat.card { x // x ∈ _root_.commutator { x // x ∈ closureCommutatorRepresentatives G } } ∣
index (center { x // x ∈ closureCommutatorRepresentatives G }) ^
(index (center { x // x ∈ closureCommutatorRepresentatives G }) * Nat.card ↑(commutatorSet G) + 1)
⊢ Nat.card { x // x ∈ _root_.commutator G } ≤ cardCommutatorBound (Nat.card ↑(commutatorSet G))
[PROOFSTEP]
rw [card_commutator_closureCommutatorRepresentatives] at h2
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
R S : Set G
inst✝ : Finite ↑(commutatorSet G)
h1 :
index (center { x // x ∈ closureCommutatorRepresentatives G }) ≤
Nat.card ↑(commutatorSet G) ^ Group.rank { x // x ∈ closureCommutatorRepresentatives G }
h2 :
Nat.card { x // x ∈ _root_.commutator G } ∣
index (center { x // x ∈ closureCommutatorRepresentatives G }) ^
(index (center { x // x ∈ closureCommutatorRepresentatives G }) * Nat.card ↑(commutatorSet G) + 1)
⊢ Nat.card { x // x ∈ _root_.commutator G } ≤ cardCommutatorBound (Nat.card ↑(commutatorSet G))
[PROOFSTEP]
replace h1 := h1.trans (Nat.pow_le_pow_of_le_right Finite.card_pos (rank_closureCommutatorRepresentatives_le G))
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
R S : Set G
inst✝ : Finite ↑(commutatorSet G)
h2 :
Nat.card { x // x ∈ _root_.commutator G } ∣
index (center { x // x ∈ closureCommutatorRepresentatives G }) ^
(index (center { x // x ∈ closureCommutatorRepresentatives G }) * Nat.card ↑(commutatorSet G) + 1)
h1 :
index (center { x // x ∈ closureCommutatorRepresentatives G }) ≤
Nat.card ↑(commutatorSet G) ^ (2 * Nat.card ↑(commutatorSet G))
⊢ Nat.card { x // x ∈ _root_.commutator G } ≤ cardCommutatorBound (Nat.card ↑(commutatorSet G))
[PROOFSTEP]
replace h2 := h2.trans (pow_dvd_pow _ (add_le_add_right (mul_le_mul_right' h1 _) 1))
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
R S : Set G
inst✝ : Finite ↑(commutatorSet G)
h1 :
index (center { x // x ∈ closureCommutatorRepresentatives G }) ≤
Nat.card ↑(commutatorSet G) ^ (2 * Nat.card ↑(commutatorSet G))
h2 :
Nat.card { x // x ∈ _root_.commutator G } ∣
index (center { x // x ∈ closureCommutatorRepresentatives G }) ^
(Nat.card ↑(commutatorSet G) ^ (2 * Nat.card ↑(commutatorSet G)) * Nat.card ↑(commutatorSet G) + 1)
⊢ Nat.card { x // x ∈ _root_.commutator G } ≤ cardCommutatorBound (Nat.card ↑(commutatorSet G))
[PROOFSTEP]
rw [← pow_succ'] at h2
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
R S : Set G
inst✝ : Finite ↑(commutatorSet G)
h1 :
index (center { x // x ∈ closureCommutatorRepresentatives G }) ≤
Nat.card ↑(commutatorSet G) ^ (2 * Nat.card ↑(commutatorSet G))
h2 :
Nat.card { x // x ∈ _root_.commutator G } ∣
index (center { x // x ∈ closureCommutatorRepresentatives G }) ^
(Nat.card ↑(commutatorSet G) ^ (2 * Nat.card ↑(commutatorSet G) + 1) + 1)
⊢ Nat.card { x // x ∈ _root_.commutator G } ≤ cardCommutatorBound (Nat.card ↑(commutatorSet G))
[PROOFSTEP]
refine' (Nat.le_of_dvd _ h2).trans (Nat.pow_le_pow_of_le_left h1 _)
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
R S : Set G
inst✝ : Finite ↑(commutatorSet G)
h1 :
index (center { x // x ∈ closureCommutatorRepresentatives G }) ≤
Nat.card ↑(commutatorSet G) ^ (2 * Nat.card ↑(commutatorSet G))
h2 :
Nat.card { x // x ∈ _root_.commutator G } ∣
index (center { x // x ∈ closureCommutatorRepresentatives G }) ^
(Nat.card ↑(commutatorSet G) ^ (2 * Nat.card ↑(commutatorSet G) + 1) + 1)
⊢ 0 <
index (center { x // x ∈ closureCommutatorRepresentatives G }) ^
(Nat.card ↑(commutatorSet G) ^ (2 * Nat.card ↑(commutatorSet G) + 1) + 1)
[PROOFSTEP]
exact pow_pos (Nat.pos_of_ne_zero FiniteIndex.finiteIndex) _
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
R S : Set G
inst✝ : Finite ↑(commutatorSet G)
⊢ Finite { x // x ∈ _root_.commutator G }
[PROOFSTEP]
have h2 := card_commutator_dvd_index_center_pow (closureCommutatorRepresentatives G)
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
R S : Set G
inst✝ : Finite ↑(commutatorSet G)
h2 :
Nat.card { x // x ∈ _root_.commutator { x // x ∈ closureCommutatorRepresentatives G } } ∣
index (center { x // x ∈ closureCommutatorRepresentatives G }) ^
(index (center { x // x ∈ closureCommutatorRepresentatives G }) *
Nat.card ↑(commutatorSet { x // x ∈ closureCommutatorRepresentatives G }) +
1)
⊢ Finite { x // x ∈ _root_.commutator G }
[PROOFSTEP]
refine' Nat.finite_of_card_ne_zero fun h => _
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
R S : Set G
inst✝ : Finite ↑(commutatorSet G)
h2 :
Nat.card { x // x ∈ _root_.commutator { x // x ∈ closureCommutatorRepresentatives G } } ∣
index (center { x // x ∈ closureCommutatorRepresentatives G }) ^
(index (center { x // x ∈ closureCommutatorRepresentatives G }) *
Nat.card ↑(commutatorSet { x // x ∈ closureCommutatorRepresentatives G }) +
1)
h : Nat.card { x // x ∈ _root_.commutator G } = 0
⊢ False
[PROOFSTEP]
rw [card_commutator_closureCommutatorRepresentatives, h, zero_dvd_iff] at h2
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
R S : Set G
inst✝ : Finite ↑(commutatorSet G)
h2 :
index (center { x // x ∈ closureCommutatorRepresentatives G }) ^
(index (center { x // x ∈ closureCommutatorRepresentatives G }) *
Nat.card ↑(commutatorSet { x // x ∈ closureCommutatorRepresentatives G }) +
1) =
0
h : Nat.card { x // x ∈ _root_.commutator G } = 0
⊢ False
[PROOFSTEP]
exact FiniteIndex.finiteIndex (pow_eq_zero h2)
| {"mathlib_filename": "Mathlib.GroupTheory.Schreier", "llama_tokens": 17761} |
[GOAL]
G : Type u_1
inst✝² : Group G
H : Subgroup G
inst✝¹ : IsCommutative H
inst✝ : FiniteIndex H
α β x✝ y✝ : ↑(leftTransversals ↑H)
h : diff (MonoidHom.id { x // x ∈ H }) x✝ y✝ = 1
⊢ diff (MonoidHom.id { x // x ∈ H }) y✝ x✝ = 1
[PROOFSTEP]
rw [← diff_inv, h, inv_one]
[GOAL]
G : Type u_1
inst✝² : Group G
H : Subgroup G
inst✝¹ : IsCommutative H
inst✝ : FiniteIndex H
α β x✝ y✝ z✝ : ↑(leftTransversals ↑H)
h : diff (MonoidHom.id { x // x ∈ H }) x✝ y✝ = 1
h' : diff (MonoidHom.id { x // x ∈ H }) y✝ z✝ = 1
⊢ diff (MonoidHom.id { x // x ∈ H }) x✝ z✝ = 1
[PROOFSTEP]
rw [← diff_mul_diff, h, h', one_mul]
[GOAL]
G : Type u_1
inst✝² : Group G
H : Subgroup G
inst✝¹ : IsCommutative H
inst✝ : FiniteIndex H
α β : ↑(leftTransversals ↑H)
⊢ Inhabited (QuotientDiff H)
[PROOFSTEP]
dsimp [QuotientDiff]
-- porting note: Added `dsimp`
[GOAL]
G : Type u_1
inst✝² : Group G
H : Subgroup G
inst✝¹ : IsCommutative H
inst✝ : FiniteIndex H
α β : ↑(leftTransversals ↑H)
⊢ Inhabited
(Quotient
{ r := fun α β => diff (MonoidHom.id { x // x ∈ H }) α β = 1,
iseqv := (_ : Equivalence fun α β => diff (MonoidHom.id { x // x ∈ H }) α β = 1) })
[PROOFSTEP]
infer_instance
[GOAL]
G : Type u_1
inst✝² : Group G
H : Subgroup G
inst✝¹ : IsCommutative H
inst✝ : FiniteIndex H
α β : ↑(leftTransversals ↑H)
hH : Normal H
g : Gᵐᵒᵖ
⊢ diff (MonoidHom.id { x // x ∈ H }) (g • α) (g • β) =
{ val := (unop g)⁻¹ * ↑(diff (MonoidHom.id { x // x ∈ H }) α β) * unop g,
property := (_ : (unop g)⁻¹ * ↑(diff (MonoidHom.id { x // x ∈ H }) α β) * unop g ∈ H) }
[PROOFSTEP]
letI := H.fintypeQuotientOfFiniteIndex
[GOAL]
G : Type u_1
inst✝² : Group G
H : Subgroup G
inst✝¹ : IsCommutative H
inst✝ : FiniteIndex H
α β : ↑(leftTransversals ↑H)
hH : Normal H
g : Gᵐᵒᵖ
this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H
⊢ diff (MonoidHom.id { x // x ∈ H }) (g • α) (g • β) =
{ val := (unop g)⁻¹ * ↑(diff (MonoidHom.id { x // x ∈ H }) α β) * unop g,
property := (_ : (unop g)⁻¹ * ↑(diff (MonoidHom.id { x // x ∈ H }) α β) * unop g ∈ H) }
[PROOFSTEP]
let ϕ : H →* H :=
{ toFun := fun h =>
⟨g.unop⁻¹ * h * g.unop, hH.mem_comm ((congr_arg (· ∈ H) (mul_inv_cancel_left _ _)).mpr (SetLike.coe_mem _))⟩
map_one' := by rw [Subtype.ext_iff, coe_mk, coe_one, mul_one, inv_mul_self]
map_mul' := fun h₁ h₂ => by simp only [Subtype.ext_iff, coe_mk, coe_mul, mul_assoc, mul_inv_cancel_left] }
[GOAL]
G : Type u_1
inst✝² : Group G
H : Subgroup G
inst✝¹ : IsCommutative H
inst✝ : FiniteIndex H
α β : ↑(leftTransversals ↑H)
hH : Normal H
g : Gᵐᵒᵖ
this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H
⊢ (fun h => { val := (unop g)⁻¹ * ↑h * unop g, property := (_ : (unop g)⁻¹ * ↑h * unop g ∈ H) }) 1 = 1
[PROOFSTEP]
rw [Subtype.ext_iff, coe_mk, coe_one, mul_one, inv_mul_self]
[GOAL]
G : Type u_1
inst✝² : Group G
H : Subgroup G
inst✝¹ : IsCommutative H
inst✝ : FiniteIndex H
α β : ↑(leftTransversals ↑H)
hH : Normal H
g : Gᵐᵒᵖ
this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H
h₁ h₂ : { x // x ∈ H }
⊢ OneHom.toFun
{ toFun := fun h => { val := (unop g)⁻¹ * ↑h * unop g, property := (_ : (unop g)⁻¹ * ↑h * unop g ∈ H) },
map_one' :=
(_ : (fun h => { val := (unop g)⁻¹ * ↑h * unop g, property := (_ : (unop g)⁻¹ * ↑h * unop g ∈ H) }) 1 = 1) }
(h₁ * h₂) =
OneHom.toFun
{ toFun := fun h => { val := (unop g)⁻¹ * ↑h * unop g, property := (_ : (unop g)⁻¹ * ↑h * unop g ∈ H) },
map_one' :=
(_ : (fun h => { val := (unop g)⁻¹ * ↑h * unop g, property := (_ : (unop g)⁻¹ * ↑h * unop g ∈ H) }) 1 = 1) }
h₁ *
OneHom.toFun
{ toFun := fun h => { val := (unop g)⁻¹ * ↑h * unop g, property := (_ : (unop g)⁻¹ * ↑h * unop g ∈ H) },
map_one' :=
(_ : (fun h => { val := (unop g)⁻¹ * ↑h * unop g, property := (_ : (unop g)⁻¹ * ↑h * unop g ∈ H) }) 1 = 1) }
h₂
[PROOFSTEP]
simp only [Subtype.ext_iff, coe_mk, coe_mul, mul_assoc, mul_inv_cancel_left]
[GOAL]
G : Type u_1
inst✝² : Group G
H : Subgroup G
inst✝¹ : IsCommutative H
inst✝ : FiniteIndex H
α β : ↑(leftTransversals ↑H)
hH : Normal H
g : Gᵐᵒᵖ
this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H
ϕ : { x // x ∈ H } →* { x // x ∈ H } :=
{
toOneHom :=
{ toFun := fun h => { val := (unop g)⁻¹ * ↑h * unop g, property := (_ : (unop g)⁻¹ * ↑h * unop g ∈ H) },
map_one' :=
(_ : (fun h => { val := (unop g)⁻¹ * ↑h * unop g, property := (_ : (unop g)⁻¹ * ↑h * unop g ∈ H) }) 1 = 1) },
map_mul' :=
(_ :
∀ (h₁ h₂ : { x // x ∈ H }),
{ val := (unop g)⁻¹ * ↑(h₁ * h₂) * unop g, property := (_ : (unop g)⁻¹ * ↑(h₁ * h₂) * unop g ∈ H) } =
{ val := (unop g)⁻¹ * ↑h₁ * unop g, property := (_ : (unop g)⁻¹ * ↑h₁ * unop g ∈ H) } *
{ val := (unop g)⁻¹ * ↑h₂ * unop g, property := (_ : (unop g)⁻¹ * ↑h₂ * unop g ∈ H) }) }
⊢ diff (MonoidHom.id { x // x ∈ H }) (g • α) (g • β) =
{ val := (unop g)⁻¹ * ↑(diff (MonoidHom.id { x // x ∈ H }) α β) * unop g,
property := (_ : (unop g)⁻¹ * ↑(diff (MonoidHom.id { x // x ∈ H }) α β) * unop g ∈ H) }
[PROOFSTEP]
refine'
Eq.trans
(Finset.prod_bij' (fun q _ => g⁻¹ • q) (fun q _ => Finset.mem_univ _) (fun q _ => Subtype.ext _) (fun q _ => g • q)
(fun q _ => Finset.mem_univ _) (fun q _ => smul_inv_smul g q) fun q _ => inv_smul_smul g q)
(map_prod ϕ _ _).symm
[GOAL]
G : Type u_1
inst✝² : Group G
H : Subgroup G
inst✝¹ : IsCommutative H
inst✝ : FiniteIndex H
α β : ↑(leftTransversals ↑H)
hH : Normal H
g : Gᵐᵒᵖ
this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H
ϕ : { x // x ∈ H } →* { x // x ∈ H } :=
{
toOneHom :=
{ toFun := fun h => { val := (unop g)⁻¹ * ↑h * unop g, property := (_ : (unop g)⁻¹ * ↑h * unop g ∈ H) },
map_one' :=
(_ : (fun h => { val := (unop g)⁻¹ * ↑h * unop g, property := (_ : (unop g)⁻¹ * ↑h * unop g ∈ H) }) 1 = 1) },
map_mul' :=
(_ :
∀ (h₁ h₂ : { x // x ∈ H }),
{ val := (unop g)⁻¹ * ↑(h₁ * h₂) * unop g, property := (_ : (unop g)⁻¹ * ↑(h₁ * h₂) * unop g ∈ H) } =
{ val := (unop g)⁻¹ * ↑h₁ * unop g, property := (_ : (unop g)⁻¹ * ↑h₁ * unop g ∈ H) } *
{ val := (unop g)⁻¹ * ↑h₂ * unop g, property := (_ : (unop g)⁻¹ * ↑h₂ * unop g ∈ H) }) }
q : G ⧸ H
x✝ : q ∈ Finset.univ
⊢ ↑(↑(MonoidHom.id { x // x ∈ H })
{
val :=
(↑(↑(toEquiv (_ : ↑(g • α) ∈ leftTransversals ↑H)) q))⁻¹ *
↑(↑(toEquiv (_ : ↑(g • β) ∈ leftTransversals ↑H)) q),
property :=
(_ :
(↑(↑(toEquiv (_ : ↑(g • α) ∈ leftTransversals ↑H)) q))⁻¹ *
↑(↑(toEquiv (_ : ↑(g • β) ∈ leftTransversals ↑H)) q) ∈
H) }) =
↑(↑ϕ
(↑(MonoidHom.id { x // x ∈ H })
{
val :=
(↑(↑(toEquiv (_ : ↑α ∈ leftTransversals ↑H)) ((fun q x => g⁻¹ • q) q x✝)))⁻¹ *
↑(↑(toEquiv (_ : ↑β ∈ leftTransversals ↑H)) ((fun q x => g⁻¹ • q) q x✝)),
property :=
(_ :
(↑(↑(toEquiv (_ : ↑α ∈ leftTransversals ↑H)) ((fun q x => g⁻¹ • q) q x✝)))⁻¹ *
↑(↑(toEquiv (_ : ↑β ∈ leftTransversals ↑H)) ((fun q x => g⁻¹ • q) q x✝)) ∈
H) }))
[PROOFSTEP]
simp only [MonoidHom.id_apply, MonoidHom.coe_mk, OneHom.coe_mk, smul_apply_eq_smul_apply_inv_smul, smul_eq_mul_unop,
mul_inv_rev, mul_assoc]
[GOAL]
G : Type u_1
inst✝³ : Group G
H : Subgroup G
inst✝² : IsCommutative H
inst✝¹ : FiniteIndex H
α✝ β✝ : ↑(leftTransversals ↑H)
inst✝ : Normal H
g : G
α β : ↑(leftTransversals ↑H)
h : Setoid.r α β
⊢ ↑(diff (MonoidHom.id { x // x ∈ H }) ((fun α => op g⁻¹ • α) α) ((fun α => op g⁻¹ • α) β)) = ↑1
[PROOFSTEP]
rwa [smul_diff_smul', coe_mk, coe_one, mul_eq_one_iff_eq_inv, mul_right_eq_self, ← coe_one, ← Subtype.ext_iff]
[GOAL]
G : Type u_1
inst✝³ : Group G
H : Subgroup G
inst✝² : IsCommutative H
inst✝¹ : FiniteIndex H
α β : ↑(leftTransversals ↑H)
inst✝ : Normal H
q : QuotientDiff H
T : ↑(leftTransversals ↑H)
⊢ (fun α => op 1⁻¹ • α) T = T
[PROOFSTEP]
rw [inv_one]
[GOAL]
G : Type u_1
inst✝³ : Group G
H : Subgroup G
inst✝² : IsCommutative H
inst✝¹ : FiniteIndex H
α β : ↑(leftTransversals ↑H)
inst✝ : Normal H
q : QuotientDiff H
T : ↑(leftTransversals ↑H)
⊢ (fun α => op 1 • α) T = T
[PROOFSTEP]
apply one_smul Gᵐᵒᵖ T
[GOAL]
G : Type u_1
inst✝³ : Group G
H : Subgroup G
inst✝² : IsCommutative H
inst✝¹ : FiniteIndex H
α β : ↑(leftTransversals ↑H)
inst✝ : Normal H
g₁ g₂ : G
q : QuotientDiff H
T : ↑(leftTransversals ↑H)
⊢ (fun α => op (g₁ * g₂)⁻¹ • α) T = (fun α => op g₁⁻¹ • α) ((fun α => op g₂⁻¹ • α) T)
[PROOFSTEP]
rw [mul_inv_rev]
[GOAL]
G : Type u_1
inst✝³ : Group G
H : Subgroup G
inst✝² : IsCommutative H
inst✝¹ : FiniteIndex H
α β : ↑(leftTransversals ↑H)
inst✝ : Normal H
g₁ g₂ : G
q : QuotientDiff H
T : ↑(leftTransversals ↑H)
⊢ (fun α => op (g₂⁻¹ * g₁⁻¹) • α) T = (fun α => op g₁⁻¹ • α) ((fun α => op g₂⁻¹ • α) T)
[PROOFSTEP]
exact mul_smul (op g₁⁻¹) (op g₂⁻¹) T
[GOAL]
G : Type u_1
inst✝³ : Group G
H : Subgroup G
inst✝² : IsCommutative H
inst✝¹ : FiniteIndex H
α β : ↑(leftTransversals ↑H)
inst✝ : Normal H
h : { x // x ∈ H }
⊢ diff (MonoidHom.id { x // x ∈ H }) α (op ↑h • β) = diff (MonoidHom.id { x // x ∈ H }) α β * h ^ index H
[PROOFSTEP]
letI := H.fintypeQuotientOfFiniteIndex
[GOAL]
G : Type u_1
inst✝³ : Group G
H : Subgroup G
inst✝² : IsCommutative H
inst✝¹ : FiniteIndex H
α β : ↑(leftTransversals ↑H)
inst✝ : Normal H
h : { x // x ∈ H }
this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H
⊢ diff (MonoidHom.id { x // x ∈ H }) α (op ↑h • β) = diff (MonoidHom.id { x // x ∈ H }) α β * h ^ index H
[PROOFSTEP]
rw [diff, diff, index_eq_card, ← Finset.card_univ, ← Finset.prod_const, ← Finset.prod_mul_distrib]
[GOAL]
G : Type u_1
inst✝³ : Group G
H : Subgroup G
inst✝² : IsCommutative H
inst✝¹ : FiniteIndex H
α β : ↑(leftTransversals ↑H)
inst✝ : Normal H
h : { x // x ∈ H }
this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H
⊢ (let α_1 := toEquiv (_ : ↑α ∈ leftTransversals ↑H);
let β_1 := toEquiv (_ : ↑(op ↑h • β) ∈ leftTransversals ↑H);
∏ q : G ⧸ H,
↑(MonoidHom.id { x // x ∈ H })
{ val := (↑(↑α_1 q))⁻¹ * ↑(↑β_1 q),
property :=
(_ :
(↑(↑(toEquiv (_ : ↑α ∈ leftTransversals ↑H)) q))⁻¹ *
↑(↑(toEquiv (_ : ↑(op ↑h • β) ∈ leftTransversals ↑H)) q) ∈
H) }) =
∏ x : G ⧸ H,
↑(MonoidHom.id { x // x ∈ H })
{ val := (↑(↑(toEquiv (_ : ↑α ∈ leftTransversals ↑H)) x))⁻¹ * ↑(↑(toEquiv (_ : ↑β ∈ leftTransversals ↑H)) x),
property :=
(_ :
(↑(↑(toEquiv (_ : ↑α ∈ leftTransversals ↑H)) x))⁻¹ * ↑(↑(toEquiv (_ : ↑β ∈ leftTransversals ↑H)) x) ∈
H) } *
h
[PROOFSTEP]
refine' Finset.prod_congr rfl fun q _ => _
[GOAL]
G : Type u_1
inst✝³ : Group G
H : Subgroup G
inst✝² : IsCommutative H
inst✝¹ : FiniteIndex H
α β : ↑(leftTransversals ↑H)
inst✝ : Normal H
h : { x // x ∈ H }
this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H
q : G ⧸ H
x✝ : q ∈ Finset.univ
⊢ ↑(MonoidHom.id { x // x ∈ H })
{
val :=
(↑(↑(toEquiv (_ : ↑α ∈ leftTransversals ↑H)) q))⁻¹ * ↑(↑(toEquiv (_ : ↑(op ↑h • β) ∈ leftTransversals ↑H)) q),
property :=
(_ :
(↑(↑(toEquiv (_ : ↑α ∈ leftTransversals ↑H)) q))⁻¹ *
↑(↑(toEquiv (_ : ↑(op ↑h • β) ∈ leftTransversals ↑H)) q) ∈
H) } =
↑(MonoidHom.id { x // x ∈ H })
{ val := (↑(↑(toEquiv (_ : ↑α ∈ leftTransversals ↑H)) q))⁻¹ * ↑(↑(toEquiv (_ : ↑β ∈ leftTransversals ↑H)) q),
property :=
(_ :
(↑(↑(toEquiv (_ : ↑α ∈ leftTransversals ↑H)) q))⁻¹ * ↑(↑(toEquiv (_ : ↑β ∈ leftTransversals ↑H)) q) ∈
H) } *
h
[PROOFSTEP]
simp_rw [Subtype.ext_iff, MonoidHom.id_apply, coe_mul, mul_assoc, mul_right_inj]
[GOAL]
G : Type u_1
inst✝³ : Group G
H : Subgroup G
inst✝² : IsCommutative H
inst✝¹ : FiniteIndex H
α β : ↑(leftTransversals ↑H)
inst✝ : Normal H
h : { x // x ∈ H }
this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H
q : G ⧸ H
x✝ : q ∈ Finset.univ
⊢ ↑(↑(toEquiv (_ : ↑(op ↑h • β) ∈ leftTransversals ↑H)) q) = ↑(↑(toEquiv (_ : ↑β ∈ leftTransversals ↑H)) q) * ↑h
[PROOFSTEP]
rw [smul_apply_eq_smul_apply_inv_smul, smul_eq_mul_unop, unop_op, mul_left_inj, ← Subtype.ext_iff,
Equiv.apply_eq_iff_eq, inv_smul_eq_iff]
[GOAL]
G : Type u_1
inst✝³ : Group G
H : Subgroup G
inst✝² : IsCommutative H
inst✝¹ : FiniteIndex H
α β : ↑(leftTransversals ↑H)
inst✝ : Normal H
h : { x // x ∈ H }
this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H
q : G ⧸ H
x✝ : q ∈ Finset.univ
⊢ q = op ↑h • q
[PROOFSTEP]
exact self_eq_mul_right.mpr ((QuotientGroup.eq_one_iff _).mpr h.2)
[GOAL]
G : Type u_1
inst✝³ : Group G
H : Subgroup G
inst✝² : IsCommutative H
inst✝¹ : FiniteIndex H
α✝¹ β : ↑(leftTransversals ↑H)
inst✝ : Normal H
hH : Nat.coprime (Nat.card { x // x ∈ H }) (index H)
α✝ : QuotientDiff H
h : { x // x ∈ H }
α : ↑(leftTransversals ↑H)
hα : h • Quotient.mk'' α = Quotient.mk'' α
⊢ h ^ index H = diff (MonoidHom.id { x // x ∈ H }) (op ↑h⁻¹ • α) α
[PROOFSTEP]
rw [← diff_inv, smul_diff', diff_self, one_mul, inv_pow, inv_inv]
[GOAL]
G : Type u_1
inst✝³ : Group G
H : Subgroup G
inst✝² : IsCommutative H
inst✝¹ : FiniteIndex H
α✝¹ β✝¹ : ↑(leftTransversals ↑H)
inst✝ : Normal H
hH : Nat.coprime (Nat.card { x // x ∈ H }) (index H)
α✝ β✝ : QuotientDiff H
β α : ↑(leftTransversals ↑H)
⊢ diff (MonoidHom.id { x // x ∈ H }) β α *
(↑(powCoprime hH).symm (diff (MonoidHom.id { x // x ∈ H }) β α))⁻¹ ^ index H =
1
[PROOFSTEP]
rw [inv_pow, ← powCoprime_apply hH, Equiv.apply_symm_apply, mul_inv_self]
[GOAL]
G : Type u
inst✝² : Group G
inst✝¹ : Fintype G
N : Subgroup G
inst✝ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
h3 : ∀ (H : Subgroup G), ¬IsComplement' N H
⊢ N ≠ ⊥
[PROOFSTEP]
rintro rfl
[GOAL]
G : Type u
inst✝² : Group G
inst✝¹ : Fintype G
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
inst✝ : Normal ⊥
h1 : Nat.coprime (Fintype.card { x // x ∈ ⊥ }) (index ⊥)
h3 : ∀ (H : Subgroup G), ¬IsComplement' ⊥ H
⊢ False
[PROOFSTEP]
exact h3 ⊤ isComplement'_bot_top
[GOAL]
G : Type u
inst✝² : Group G
inst✝¹ : Fintype G
N : Subgroup G
inst✝ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
h3 : ∀ (H : Subgroup G), ¬IsComplement' N H
K : Subgroup G
hK : K ⊔ N = ⊤
⊢ K = ⊤
[PROOFSTEP]
contrapose! h3
[GOAL]
G : Type u
inst✝² : Group G
inst✝¹ : Fintype G
N : Subgroup G
inst✝ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
K : Subgroup G
hK : K ⊔ N = ⊤
h3 : K ≠ ⊤
⊢ ∃ H, IsComplement' N H
[PROOFSTEP]
have h4 : (N.comap K.subtype).index = N.index :=
by
rw [← N.relindex_top_right, ← hK]
exact (relindex_sup_right K N).symm
[GOAL]
G : Type u
inst✝² : Group G
inst✝¹ : Fintype G
N : Subgroup G
inst✝ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
K : Subgroup G
hK : K ⊔ N = ⊤
h3 : K ≠ ⊤
⊢ index (comap (Subgroup.subtype K) N) = index N
[PROOFSTEP]
rw [← N.relindex_top_right, ← hK]
[GOAL]
G : Type u
inst✝² : Group G
inst✝¹ : Fintype G
N : Subgroup G
inst✝ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
K : Subgroup G
hK : K ⊔ N = ⊤
h3 : K ≠ ⊤
⊢ index (comap (Subgroup.subtype K) N) = relindex N (K ⊔ N)
[PROOFSTEP]
exact (relindex_sup_right K N).symm
[GOAL]
G : Type u
inst✝² : Group G
inst✝¹ : Fintype G
N : Subgroup G
inst✝ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
K : Subgroup G
hK : K ⊔ N = ⊤
h3 : K ≠ ⊤
h4 : index (comap (Subgroup.subtype K) N) = index N
⊢ ∃ H, IsComplement' N H
[PROOFSTEP]
have h5 : Fintype.card K < Fintype.card G := by
rw [← K.index_mul_card]
exact lt_mul_of_one_lt_left Fintype.card_pos (one_lt_index_of_ne_top h3)
[GOAL]
G : Type u
inst✝² : Group G
inst✝¹ : Fintype G
N : Subgroup G
inst✝ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
K : Subgroup G
hK : K ⊔ N = ⊤
h3 : K ≠ ⊤
h4 : index (comap (Subgroup.subtype K) N) = index N
⊢ Fintype.card { x // x ∈ K } < Fintype.card G
[PROOFSTEP]
rw [← K.index_mul_card]
[GOAL]
G : Type u
inst✝² : Group G
inst✝¹ : Fintype G
N : Subgroup G
inst✝ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
K : Subgroup G
hK : K ⊔ N = ⊤
h3 : K ≠ ⊤
h4 : index (comap (Subgroup.subtype K) N) = index N
⊢ Fintype.card { x // x ∈ K } < index K * Fintype.card { x // x ∈ K }
[PROOFSTEP]
exact lt_mul_of_one_lt_left Fintype.card_pos (one_lt_index_of_ne_top h3)
[GOAL]
G : Type u
inst✝² : Group G
inst✝¹ : Fintype G
N : Subgroup G
inst✝ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
K : Subgroup G
hK : K ⊔ N = ⊤
h3 : K ≠ ⊤
h4 : index (comap (Subgroup.subtype K) N) = index N
h5 : Fintype.card { x // x ∈ K } < Fintype.card G
⊢ ∃ H, IsComplement' N H
[PROOFSTEP]
have h6 : Nat.coprime (Fintype.card (N.comap K.subtype)) (N.comap K.subtype).index :=
by
rw [h4]
exact h1.coprime_dvd_left (card_comap_dvd_of_injective N K.subtype Subtype.coe_injective)
[GOAL]
G : Type u
inst✝² : Group G
inst✝¹ : Fintype G
N : Subgroup G
inst✝ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
K : Subgroup G
hK : K ⊔ N = ⊤
h3 : K ≠ ⊤
h4 : index (comap (Subgroup.subtype K) N) = index N
h5 : Fintype.card { x // x ∈ K } < Fintype.card G
⊢ Nat.coprime (Fintype.card { x // x ∈ comap (Subgroup.subtype K) N }) (index (comap (Subgroup.subtype K) N))
[PROOFSTEP]
rw [h4]
[GOAL]
G : Type u
inst✝² : Group G
inst✝¹ : Fintype G
N : Subgroup G
inst✝ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
K : Subgroup G
hK : K ⊔ N = ⊤
h3 : K ≠ ⊤
h4 : index (comap (Subgroup.subtype K) N) = index N
h5 : Fintype.card { x // x ∈ K } < Fintype.card G
⊢ Nat.coprime (Fintype.card { x // x ∈ comap (Subgroup.subtype K) N }) (index N)
[PROOFSTEP]
exact h1.coprime_dvd_left (card_comap_dvd_of_injective N K.subtype Subtype.coe_injective)
[GOAL]
G : Type u
inst✝² : Group G
inst✝¹ : Fintype G
N : Subgroup G
inst✝ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
K : Subgroup G
hK : K ⊔ N = ⊤
h3 : K ≠ ⊤
h4 : index (comap (Subgroup.subtype K) N) = index N
h5 : Fintype.card { x // x ∈ K } < Fintype.card G
h6 : Nat.coprime (Fintype.card { x // x ∈ comap (Subgroup.subtype K) N }) (index (comap (Subgroup.subtype K) N))
⊢ ∃ H, IsComplement' N H
[PROOFSTEP]
obtain ⟨H, hH⟩ := h2 K h5 h6
[GOAL]
case intro
G : Type u
inst✝² : Group G
inst✝¹ : Fintype G
N : Subgroup G
inst✝ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
K : Subgroup G
hK : K ⊔ N = ⊤
h3 : K ≠ ⊤
h4 : index (comap (Subgroup.subtype K) N) = index N
h5 : Fintype.card { x // x ∈ K } < Fintype.card G
h6 : Nat.coprime (Fintype.card { x // x ∈ comap (Subgroup.subtype K) N }) (index (comap (Subgroup.subtype K) N))
H : Subgroup { x // x ∈ K }
hH : IsComplement' (comap (Subgroup.subtype K) N) H
⊢ ∃ H, IsComplement' N H
[PROOFSTEP]
replace hH : Fintype.card (H.map K.subtype) = N.index := by
rw [← relindex_bot_left_eq_card, ← relindex_comap, MonoidHom.comap_bot, Subgroup.ker_subtype, relindex_bot_left, ←
IsComplement'.index_eq_card (IsComplement'.symm hH), index_comap, subtype_range, ← relindex_sup_right, hK,
relindex_top_right]
[GOAL]
G : Type u
inst✝² : Group G
inst✝¹ : Fintype G
N : Subgroup G
inst✝ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
K : Subgroup G
hK : K ⊔ N = ⊤
h3 : K ≠ ⊤
h4 : index (comap (Subgroup.subtype K) N) = index N
h5 : Fintype.card { x // x ∈ K } < Fintype.card G
h6 : Nat.coprime (Fintype.card { x // x ∈ comap (Subgroup.subtype K) N }) (index (comap (Subgroup.subtype K) N))
H : Subgroup { x // x ∈ K }
hH : IsComplement' (comap (Subgroup.subtype K) N) H
⊢ Fintype.card { x // x ∈ map (Subgroup.subtype K) H } = index N
[PROOFSTEP]
rw [← relindex_bot_left_eq_card, ← relindex_comap, MonoidHom.comap_bot, Subgroup.ker_subtype, relindex_bot_left, ←
IsComplement'.index_eq_card (IsComplement'.symm hH), index_comap, subtype_range, ← relindex_sup_right, hK,
relindex_top_right]
[GOAL]
case intro
G : Type u
inst✝² : Group G
inst✝¹ : Fintype G
N : Subgroup G
inst✝ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
K : Subgroup G
hK : K ⊔ N = ⊤
h3 : K ≠ ⊤
h4 : index (comap (Subgroup.subtype K) N) = index N
h5 : Fintype.card { x // x ∈ K } < Fintype.card G
h6 : Nat.coprime (Fintype.card { x // x ∈ comap (Subgroup.subtype K) N }) (index (comap (Subgroup.subtype K) N))
H : Subgroup { x // x ∈ K }
hH : Fintype.card { x // x ∈ map (Subgroup.subtype K) H } = index N
⊢ ∃ H, IsComplement' N H
[PROOFSTEP]
have h7 : Fintype.card N * Fintype.card (H.map K.subtype) = Fintype.card G := by rw [hH, ← N.index_mul_card, mul_comm]
[GOAL]
G : Type u
inst✝² : Group G
inst✝¹ : Fintype G
N : Subgroup G
inst✝ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
K : Subgroup G
hK : K ⊔ N = ⊤
h3 : K ≠ ⊤
h4 : index (comap (Subgroup.subtype K) N) = index N
h5 : Fintype.card { x // x ∈ K } < Fintype.card G
h6 : Nat.coprime (Fintype.card { x // x ∈ comap (Subgroup.subtype K) N }) (index (comap (Subgroup.subtype K) N))
H : Subgroup { x // x ∈ K }
hH : Fintype.card { x // x ∈ map (Subgroup.subtype K) H } = index N
⊢ Fintype.card { x // x ∈ N } * Fintype.card { x // x ∈ map (Subgroup.subtype K) H } = Fintype.card G
[PROOFSTEP]
rw [hH, ← N.index_mul_card, mul_comm]
[GOAL]
case intro
G : Type u
inst✝² : Group G
inst✝¹ : Fintype G
N : Subgroup G
inst✝ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
K : Subgroup G
hK : K ⊔ N = ⊤
h3 : K ≠ ⊤
h4 : index (comap (Subgroup.subtype K) N) = index N
h5 : Fintype.card { x // x ∈ K } < Fintype.card G
h6 : Nat.coprime (Fintype.card { x // x ∈ comap (Subgroup.subtype K) N }) (index (comap (Subgroup.subtype K) N))
H : Subgroup { x // x ∈ K }
hH : Fintype.card { x // x ∈ map (Subgroup.subtype K) H } = index N
h7 : Fintype.card { x // x ∈ N } * Fintype.card { x // x ∈ map (Subgroup.subtype K) H } = Fintype.card G
⊢ ∃ H, IsComplement' N H
[PROOFSTEP]
have h8 : (Fintype.card N).coprime (Fintype.card (H.map K.subtype)) := by rwa [hH]
[GOAL]
G : Type u
inst✝² : Group G
inst✝¹ : Fintype G
N : Subgroup G
inst✝ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
K : Subgroup G
hK : K ⊔ N = ⊤
h3 : K ≠ ⊤
h4 : index (comap (Subgroup.subtype K) N) = index N
h5 : Fintype.card { x // x ∈ K } < Fintype.card G
h6 : Nat.coprime (Fintype.card { x // x ∈ comap (Subgroup.subtype K) N }) (index (comap (Subgroup.subtype K) N))
H : Subgroup { x // x ∈ K }
hH : Fintype.card { x // x ∈ map (Subgroup.subtype K) H } = index N
h7 : Fintype.card { x // x ∈ N } * Fintype.card { x // x ∈ map (Subgroup.subtype K) H } = Fintype.card G
⊢ Nat.coprime (Fintype.card { x // x ∈ N }) (Fintype.card { x // x ∈ map (Subgroup.subtype K) H })
[PROOFSTEP]
rwa [hH]
[GOAL]
case intro
G : Type u
inst✝² : Group G
inst✝¹ : Fintype G
N : Subgroup G
inst✝ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
K : Subgroup G
hK : K ⊔ N = ⊤
h3 : K ≠ ⊤
h4 : index (comap (Subgroup.subtype K) N) = index N
h5 : Fintype.card { x // x ∈ K } < Fintype.card G
h6 : Nat.coprime (Fintype.card { x // x ∈ comap (Subgroup.subtype K) N }) (index (comap (Subgroup.subtype K) N))
H : Subgroup { x // x ∈ K }
hH : Fintype.card { x // x ∈ map (Subgroup.subtype K) H } = index N
h7 : Fintype.card { x // x ∈ N } * Fintype.card { x // x ∈ map (Subgroup.subtype K) H } = Fintype.card G
h8 : Nat.coprime (Fintype.card { x // x ∈ N }) (Fintype.card { x // x ∈ map (Subgroup.subtype K) H })
⊢ ∃ H, IsComplement' N H
[PROOFSTEP]
exact ⟨H.map K.subtype, isComplement'_of_coprime h7 h8⟩
[GOAL]
G : Type u
inst✝³ : Group G
inst✝² : Fintype G
N : Subgroup G
inst✝¹ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
h3 : ∀ (H : Subgroup G), ¬IsComplement' N H
K : Subgroup G
inst✝ : Normal K
hK : K ≤ N
⊢ K = ⊥ ∨ K = N
[PROOFSTEP]
have : Function.Surjective (QuotientGroup.mk' K) := Quotient.surjective_Quotient_mk''
[GOAL]
G : Type u
inst✝³ : Group G
inst✝² : Fintype G
N : Subgroup G
inst✝¹ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
h3 : ∀ (H : Subgroup G), ¬IsComplement' N H
K : Subgroup G
inst✝ : Normal K
hK : K ≤ N
this : Function.Surjective ↑(QuotientGroup.mk' K)
⊢ K = ⊥ ∨ K = N
[PROOFSTEP]
have h4 := step1 h1 h2 h3
[GOAL]
G : Type u
inst✝³ : Group G
inst✝² : Fintype G
N : Subgroup G
inst✝¹ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
h3 : ∀ (H : Subgroup G), ¬IsComplement' N H
K : Subgroup G
inst✝ : Normal K
hK : K ≤ N
this : Function.Surjective ↑(QuotientGroup.mk' K)
h4 : ∀ (K : Subgroup G), K ⊔ N = ⊤ → K = ⊤
⊢ K = ⊥ ∨ K = N
[PROOFSTEP]
contrapose! h4
[GOAL]
G : Type u
inst✝³ : Group G
inst✝² : Fintype G
N : Subgroup G
inst✝¹ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
h3 : ∀ (H : Subgroup G), ¬IsComplement' N H
K : Subgroup G
inst✝ : Normal K
hK : K ≤ N
this : Function.Surjective ↑(QuotientGroup.mk' K)
h4 : K ≠ ⊥ ∧ K ≠ N
⊢ ∃ K, K ⊔ N = ⊤ ∧ K ≠ ⊤
[PROOFSTEP]
have h5 : Fintype.card (G ⧸ K) < Fintype.card G :=
by
rw [← index_eq_card, ← K.index_mul_card]
refine' lt_mul_of_one_lt_right (Nat.pos_of_ne_zero index_ne_zero_of_finite) (K.one_lt_card_iff_ne_bot.mpr h4.1)
[GOAL]
G : Type u
inst✝³ : Group G
inst✝² : Fintype G
N : Subgroup G
inst✝¹ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
h3 : ∀ (H : Subgroup G), ¬IsComplement' N H
K : Subgroup G
inst✝ : Normal K
hK : K ≤ N
this : Function.Surjective ↑(QuotientGroup.mk' K)
h4 : K ≠ ⊥ ∧ K ≠ N
⊢ Fintype.card (G ⧸ K) < Fintype.card G
[PROOFSTEP]
rw [← index_eq_card, ← K.index_mul_card]
[GOAL]
G : Type u
inst✝³ : Group G
inst✝² : Fintype G
N : Subgroup G
inst✝¹ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
h3 : ∀ (H : Subgroup G), ¬IsComplement' N H
K : Subgroup G
inst✝ : Normal K
hK : K ≤ N
this : Function.Surjective ↑(QuotientGroup.mk' K)
h4 : K ≠ ⊥ ∧ K ≠ N
⊢ index K < index K * Fintype.card { x // x ∈ K }
[PROOFSTEP]
refine' lt_mul_of_one_lt_right (Nat.pos_of_ne_zero index_ne_zero_of_finite) (K.one_lt_card_iff_ne_bot.mpr h4.1)
[GOAL]
G : Type u
inst✝³ : Group G
inst✝² : Fintype G
N : Subgroup G
inst✝¹ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
h3 : ∀ (H : Subgroup G), ¬IsComplement' N H
K : Subgroup G
inst✝ : Normal K
hK : K ≤ N
this : Function.Surjective ↑(QuotientGroup.mk' K)
h4 : K ≠ ⊥ ∧ K ≠ N
h5 : Fintype.card (G ⧸ K) < Fintype.card G
⊢ ∃ K, K ⊔ N = ⊤ ∧ K ≠ ⊤
[PROOFSTEP]
have h6 : (Fintype.card (N.map (QuotientGroup.mk' K))).coprime (N.map (QuotientGroup.mk' K)).index :=
by
have index_map := N.index_map_eq this (by rwa [QuotientGroup.ker_mk'])
have index_pos : 0 < N.index := Nat.pos_of_ne_zero index_ne_zero_of_finite
rw [index_map]
refine' h1.coprime_dvd_left _
rw [← Nat.mul_dvd_mul_iff_left index_pos, index_mul_card, ← index_map, index_mul_card]
exact K.card_quotient_dvd_card
[GOAL]
G : Type u
inst✝³ : Group G
inst✝² : Fintype G
N : Subgroup G
inst✝¹ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
h3 : ∀ (H : Subgroup G), ¬IsComplement' N H
K : Subgroup G
inst✝ : Normal K
hK : K ≤ N
this : Function.Surjective ↑(QuotientGroup.mk' K)
h4 : K ≠ ⊥ ∧ K ≠ N
h5 : Fintype.card (G ⧸ K) < Fintype.card G
⊢ Nat.coprime (Fintype.card { x // x ∈ map (QuotientGroup.mk' K) N }) (index (map (QuotientGroup.mk' K) N))
[PROOFSTEP]
have index_map := N.index_map_eq this (by rwa [QuotientGroup.ker_mk'])
[GOAL]
G : Type u
inst✝³ : Group G
inst✝² : Fintype G
N : Subgroup G
inst✝¹ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
h3 : ∀ (H : Subgroup G), ¬IsComplement' N H
K : Subgroup G
inst✝ : Normal K
hK : K ≤ N
this : Function.Surjective ↑(QuotientGroup.mk' K)
h4 : K ≠ ⊥ ∧ K ≠ N
h5 : Fintype.card (G ⧸ K) < Fintype.card G
⊢ MonoidHom.ker (QuotientGroup.mk' K) ≤ N
[PROOFSTEP]
rwa [QuotientGroup.ker_mk']
[GOAL]
G : Type u
inst✝³ : Group G
inst✝² : Fintype G
N : Subgroup G
inst✝¹ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
h3 : ∀ (H : Subgroup G), ¬IsComplement' N H
K : Subgroup G
inst✝ : Normal K
hK : K ≤ N
this : Function.Surjective ↑(QuotientGroup.mk' K)
h4 : K ≠ ⊥ ∧ K ≠ N
h5 : Fintype.card (G ⧸ K) < Fintype.card G
index_map : index (map (QuotientGroup.mk' K) N) = index N
⊢ Nat.coprime (Fintype.card { x // x ∈ map (QuotientGroup.mk' K) N }) (index (map (QuotientGroup.mk' K) N))
[PROOFSTEP]
have index_pos : 0 < N.index := Nat.pos_of_ne_zero index_ne_zero_of_finite
[GOAL]
G : Type u
inst✝³ : Group G
inst✝² : Fintype G
N : Subgroup G
inst✝¹ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
h3 : ∀ (H : Subgroup G), ¬IsComplement' N H
K : Subgroup G
inst✝ : Normal K
hK : K ≤ N
this : Function.Surjective ↑(QuotientGroup.mk' K)
h4 : K ≠ ⊥ ∧ K ≠ N
h5 : Fintype.card (G ⧸ K) < Fintype.card G
index_map : index (map (QuotientGroup.mk' K) N) = index N
index_pos : 0 < index N
⊢ Nat.coprime (Fintype.card { x // x ∈ map (QuotientGroup.mk' K) N }) (index (map (QuotientGroup.mk' K) N))
[PROOFSTEP]
rw [index_map]
[GOAL]
G : Type u
inst✝³ : Group G
inst✝² : Fintype G
N : Subgroup G
inst✝¹ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
h3 : ∀ (H : Subgroup G), ¬IsComplement' N H
K : Subgroup G
inst✝ : Normal K
hK : K ≤ N
this : Function.Surjective ↑(QuotientGroup.mk' K)
h4 : K ≠ ⊥ ∧ K ≠ N
h5 : Fintype.card (G ⧸ K) < Fintype.card G
index_map : index (map (QuotientGroup.mk' K) N) = index N
index_pos : 0 < index N
⊢ Nat.coprime (Fintype.card { x // x ∈ map (QuotientGroup.mk' K) N }) (index N)
[PROOFSTEP]
refine' h1.coprime_dvd_left _
[GOAL]
G : Type u
inst✝³ : Group G
inst✝² : Fintype G
N : Subgroup G
inst✝¹ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
h3 : ∀ (H : Subgroup G), ¬IsComplement' N H
K : Subgroup G
inst✝ : Normal K
hK : K ≤ N
this : Function.Surjective ↑(QuotientGroup.mk' K)
h4 : K ≠ ⊥ ∧ K ≠ N
h5 : Fintype.card (G ⧸ K) < Fintype.card G
index_map : index (map (QuotientGroup.mk' K) N) = index N
index_pos : 0 < index N
⊢ Fintype.card { x // x ∈ map (QuotientGroup.mk' K) N } ∣ Fintype.card { x // x ∈ N }
[PROOFSTEP]
rw [← Nat.mul_dvd_mul_iff_left index_pos, index_mul_card, ← index_map, index_mul_card]
[GOAL]
G : Type u
inst✝³ : Group G
inst✝² : Fintype G
N : Subgroup G
inst✝¹ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
h3 : ∀ (H : Subgroup G), ¬IsComplement' N H
K : Subgroup G
inst✝ : Normal K
hK : K ≤ N
this : Function.Surjective ↑(QuotientGroup.mk' K)
h4 : K ≠ ⊥ ∧ K ≠ N
h5 : Fintype.card (G ⧸ K) < Fintype.card G
index_map : index (map (QuotientGroup.mk' K) N) = index N
index_pos : 0 < index N
⊢ Fintype.card (G ⧸ K) ∣ Fintype.card G
[PROOFSTEP]
exact K.card_quotient_dvd_card
[GOAL]
G : Type u
inst✝³ : Group G
inst✝² : Fintype G
N : Subgroup G
inst✝¹ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
h3 : ∀ (H : Subgroup G), ¬IsComplement' N H
K : Subgroup G
inst✝ : Normal K
hK : K ≤ N
this : Function.Surjective ↑(QuotientGroup.mk' K)
h4 : K ≠ ⊥ ∧ K ≠ N
h5 : Fintype.card (G ⧸ K) < Fintype.card G
h6 : Nat.coprime (Fintype.card { x // x ∈ map (QuotientGroup.mk' K) N }) (index (map (QuotientGroup.mk' K) N))
⊢ ∃ K, K ⊔ N = ⊤ ∧ K ≠ ⊤
[PROOFSTEP]
obtain ⟨H, hH⟩ := h2 (G ⧸ K) h5 h6
[GOAL]
case intro
G : Type u
inst✝³ : Group G
inst✝² : Fintype G
N : Subgroup G
inst✝¹ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
h3 : ∀ (H : Subgroup G), ¬IsComplement' N H
K : Subgroup G
inst✝ : Normal K
hK : K ≤ N
this : Function.Surjective ↑(QuotientGroup.mk' K)
h4 : K ≠ ⊥ ∧ K ≠ N
h5 : Fintype.card (G ⧸ K) < Fintype.card G
h6 : Nat.coprime (Fintype.card { x // x ∈ map (QuotientGroup.mk' K) N }) (index (map (QuotientGroup.mk' K) N))
H : Subgroup (G ⧸ K)
hH : IsComplement' (map (QuotientGroup.mk' K) N) H
⊢ ∃ K, K ⊔ N = ⊤ ∧ K ≠ ⊤
[PROOFSTEP]
refine' ⟨H.comap (QuotientGroup.mk' K), _, _⟩
[GOAL]
case intro.refine'_1
G : Type u
inst✝³ : Group G
inst✝² : Fintype G
N : Subgroup G
inst✝¹ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
h3 : ∀ (H : Subgroup G), ¬IsComplement' N H
K : Subgroup G
inst✝ : Normal K
hK : K ≤ N
this : Function.Surjective ↑(QuotientGroup.mk' K)
h4 : K ≠ ⊥ ∧ K ≠ N
h5 : Fintype.card (G ⧸ K) < Fintype.card G
h6 : Nat.coprime (Fintype.card { x // x ∈ map (QuotientGroup.mk' K) N }) (index (map (QuotientGroup.mk' K) N))
H : Subgroup (G ⧸ K)
hH : IsComplement' (map (QuotientGroup.mk' K) N) H
⊢ comap (QuotientGroup.mk' K) H ⊔ N = ⊤
[PROOFSTEP]
have key : (N.map (QuotientGroup.mk' K)).comap (QuotientGroup.mk' K) = N :=
by
refine' comap_map_eq_self _
rwa [QuotientGroup.ker_mk']
[GOAL]
G : Type u
inst✝³ : Group G
inst✝² : Fintype G
N : Subgroup G
inst✝¹ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
h3 : ∀ (H : Subgroup G), ¬IsComplement' N H
K : Subgroup G
inst✝ : Normal K
hK : K ≤ N
this : Function.Surjective ↑(QuotientGroup.mk' K)
h4 : K ≠ ⊥ ∧ K ≠ N
h5 : Fintype.card (G ⧸ K) < Fintype.card G
h6 : Nat.coprime (Fintype.card { x // x ∈ map (QuotientGroup.mk' K) N }) (index (map (QuotientGroup.mk' K) N))
H : Subgroup (G ⧸ K)
hH : IsComplement' (map (QuotientGroup.mk' K) N) H
⊢ comap (QuotientGroup.mk' K) (map (QuotientGroup.mk' K) N) = N
[PROOFSTEP]
refine' comap_map_eq_self _
[GOAL]
G : Type u
inst✝³ : Group G
inst✝² : Fintype G
N : Subgroup G
inst✝¹ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
h3 : ∀ (H : Subgroup G), ¬IsComplement' N H
K : Subgroup G
inst✝ : Normal K
hK : K ≤ N
this : Function.Surjective ↑(QuotientGroup.mk' K)
h4 : K ≠ ⊥ ∧ K ≠ N
h5 : Fintype.card (G ⧸ K) < Fintype.card G
h6 : Nat.coprime (Fintype.card { x // x ∈ map (QuotientGroup.mk' K) N }) (index (map (QuotientGroup.mk' K) N))
H : Subgroup (G ⧸ K)
hH : IsComplement' (map (QuotientGroup.mk' K) N) H
⊢ MonoidHom.ker (QuotientGroup.mk' K) ≤ N
[PROOFSTEP]
rwa [QuotientGroup.ker_mk']
[GOAL]
case intro.refine'_1
G : Type u
inst✝³ : Group G
inst✝² : Fintype G
N : Subgroup G
inst✝¹ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
h3 : ∀ (H : Subgroup G), ¬IsComplement' N H
K : Subgroup G
inst✝ : Normal K
hK : K ≤ N
this : Function.Surjective ↑(QuotientGroup.mk' K)
h4 : K ≠ ⊥ ∧ K ≠ N
h5 : Fintype.card (G ⧸ K) < Fintype.card G
h6 : Nat.coprime (Fintype.card { x // x ∈ map (QuotientGroup.mk' K) N }) (index (map (QuotientGroup.mk' K) N))
H : Subgroup (G ⧸ K)
hH : IsComplement' (map (QuotientGroup.mk' K) N) H
key : comap (QuotientGroup.mk' K) (map (QuotientGroup.mk' K) N) = N
⊢ comap (QuotientGroup.mk' K) H ⊔ N = ⊤
[PROOFSTEP]
rwa [← key, comap_sup_eq, hH.symm.sup_eq_top, comap_top]
[GOAL]
case intro.refine'_2
G : Type u
inst✝³ : Group G
inst✝² : Fintype G
N : Subgroup G
inst✝¹ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
h3 : ∀ (H : Subgroup G), ¬IsComplement' N H
K : Subgroup G
inst✝ : Normal K
hK : K ≤ N
this : Function.Surjective ↑(QuotientGroup.mk' K)
h4 : K ≠ ⊥ ∧ K ≠ N
h5 : Fintype.card (G ⧸ K) < Fintype.card G
h6 : Nat.coprime (Fintype.card { x // x ∈ map (QuotientGroup.mk' K) N }) (index (map (QuotientGroup.mk' K) N))
H : Subgroup (G ⧸ K)
hH : IsComplement' (map (QuotientGroup.mk' K) N) H
⊢ comap (QuotientGroup.mk' K) H ≠ ⊤
[PROOFSTEP]
rw [← comap_top (QuotientGroup.mk' K)]
[GOAL]
case intro.refine'_2
G : Type u
inst✝³ : Group G
inst✝² : Fintype G
N : Subgroup G
inst✝¹ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
h3 : ∀ (H : Subgroup G), ¬IsComplement' N H
K : Subgroup G
inst✝ : Normal K
hK : K ≤ N
this : Function.Surjective ↑(QuotientGroup.mk' K)
h4 : K ≠ ⊥ ∧ K ≠ N
h5 : Fintype.card (G ⧸ K) < Fintype.card G
h6 : Nat.coprime (Fintype.card { x // x ∈ map (QuotientGroup.mk' K) N }) (index (map (QuotientGroup.mk' K) N))
H : Subgroup (G ⧸ K)
hH : IsComplement' (map (QuotientGroup.mk' K) N) H
⊢ comap (QuotientGroup.mk' K) H ≠ comap (QuotientGroup.mk' K) ⊤
[PROOFSTEP]
intro hH'
[GOAL]
case intro.refine'_2
G : Type u
inst✝³ : Group G
inst✝² : Fintype G
N : Subgroup G
inst✝¹ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
h3 : ∀ (H : Subgroup G), ¬IsComplement' N H
K : Subgroup G
inst✝ : Normal K
hK : K ≤ N
this : Function.Surjective ↑(QuotientGroup.mk' K)
h4 : K ≠ ⊥ ∧ K ≠ N
h5 : Fintype.card (G ⧸ K) < Fintype.card G
h6 : Nat.coprime (Fintype.card { x // x ∈ map (QuotientGroup.mk' K) N }) (index (map (QuotientGroup.mk' K) N))
H : Subgroup (G ⧸ K)
hH : IsComplement' (map (QuotientGroup.mk' K) N) H
hH' : comap (QuotientGroup.mk' K) H = comap (QuotientGroup.mk' K) ⊤
⊢ False
[PROOFSTEP]
rw [comap_injective this hH', isComplement'_top_right, map_eq_bot_iff, QuotientGroup.ker_mk'] at hH
[GOAL]
case intro.refine'_2
G : Type u
inst✝³ : Group G
inst✝² : Fintype G
N : Subgroup G
inst✝¹ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
h3 : ∀ (H : Subgroup G), ¬IsComplement' N H
K : Subgroup G
inst✝ : Normal K
hK : K ≤ N
this : Function.Surjective ↑(QuotientGroup.mk' K)
h4 : K ≠ ⊥ ∧ K ≠ N
h5 : Fintype.card (G ⧸ K) < Fintype.card G
h6 : Nat.coprime (Fintype.card { x // x ∈ map (QuotientGroup.mk' K) N }) (index (map (QuotientGroup.mk' K) N))
H : Subgroup (G ⧸ K)
hH : N ≤ K
hH' : comap (QuotientGroup.mk' K) H = comap (QuotientGroup.mk' K) ⊤
⊢ False
[PROOFSTEP]
exact h4.2 (le_antisymm hK hH)
[GOAL]
G : Type u
inst✝³ : Group G
inst✝² : Fintype G
N : Subgroup G
inst✝¹ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
h3 : ∀ (H : Subgroup G), ¬IsComplement' N H
K : Subgroup { x // x ∈ N }
inst✝ : Normal (map (Subgroup.subtype N) K)
⊢ K = ⊥ ∨ K = ⊤
[PROOFSTEP]
have key := step2 h1 h2 h3 (K.map N.subtype) (map_subtype_le K)
[GOAL]
G : Type u
inst✝³ : Group G
inst✝² : Fintype G
N : Subgroup G
inst✝¹ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
h3 : ∀ (H : Subgroup G), ¬IsComplement' N H
K : Subgroup { x // x ∈ N }
inst✝ : Normal (map (Subgroup.subtype N) K)
key : map (Subgroup.subtype N) K = ⊥ ∨ map (Subgroup.subtype N) K = N
⊢ K = ⊥ ∨ K = ⊤
[PROOFSTEP]
rw [← map_bot N.subtype] at key
[GOAL]
G : Type u
inst✝³ : Group G
inst✝² : Fintype G
N : Subgroup G
inst✝¹ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
h3 : ∀ (H : Subgroup G), ¬IsComplement' N H
K : Subgroup { x // x ∈ N }
inst✝ : Normal (map (Subgroup.subtype N) K)
key : map (Subgroup.subtype N) K = map (Subgroup.subtype N) ⊥ ∨ map (Subgroup.subtype N) K = N
⊢ K = ⊥ ∨ K = ⊤
[PROOFSTEP]
conv at key =>
rhs
rhs
rw [← N.subtype_range, N.subtype.range_eq_map]
[GOAL]
G : Type u
inst✝³ : Group G
inst✝² : Fintype G
N : Subgroup G
inst✝¹ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
h3 : ∀ (H : Subgroup G), ¬IsComplement' N H
K : Subgroup { x // x ∈ N }
inst✝ : Normal (map (Subgroup.subtype N) K)
key : map (Subgroup.subtype N) K = map (Subgroup.subtype N) ⊥ ∨ map (Subgroup.subtype N) K = N
| map (Subgroup.subtype N) K = map (Subgroup.subtype N) ⊥ ∨ map (Subgroup.subtype N) K = N
[PROOFSTEP]
rhs
rhs
rw [← N.subtype_range, N.subtype.range_eq_map]
[GOAL]
G : Type u
inst✝³ : Group G
inst✝² : Fintype G
N : Subgroup G
inst✝¹ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
h3 : ∀ (H : Subgroup G), ¬IsComplement' N H
K : Subgroup { x // x ∈ N }
inst✝ : Normal (map (Subgroup.subtype N) K)
key : map (Subgroup.subtype N) K = map (Subgroup.subtype N) ⊥ ∨ map (Subgroup.subtype N) K = N
| map (Subgroup.subtype N) K = map (Subgroup.subtype N) ⊥ ∨ map (Subgroup.subtype N) K = N
[PROOFSTEP]
rhs
rhs
rw [← N.subtype_range, N.subtype.range_eq_map]
[GOAL]
G : Type u
inst✝³ : Group G
inst✝² : Fintype G
N : Subgroup G
inst✝¹ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
h3 : ∀ (H : Subgroup G), ¬IsComplement' N H
K : Subgroup { x // x ∈ N }
inst✝ : Normal (map (Subgroup.subtype N) K)
key : map (Subgroup.subtype N) K = map (Subgroup.subtype N) ⊥ ∨ map (Subgroup.subtype N) K = N
| map (Subgroup.subtype N) K = map (Subgroup.subtype N) ⊥ ∨ map (Subgroup.subtype N) K = N
[PROOFSTEP]
rhs
[GOAL]
G : Type u
inst✝³ : Group G
inst✝² : Fintype G
N : Subgroup G
inst✝¹ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
h3 : ∀ (H : Subgroup G), ¬IsComplement' N H
K : Subgroup { x // x ∈ N }
inst✝ : Normal (map (Subgroup.subtype N) K)
key : map (Subgroup.subtype N) K = map (Subgroup.subtype N) ⊥ ∨ map (Subgroup.subtype N) K = N
| map (Subgroup.subtype N) K = N
[PROOFSTEP]
rhs
[GOAL]
G : Type u
inst✝³ : Group G
inst✝² : Fintype G
N : Subgroup G
inst✝¹ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
h3 : ∀ (H : Subgroup G), ¬IsComplement' N H
K : Subgroup { x // x ∈ N }
inst✝ : Normal (map (Subgroup.subtype N) K)
key : map (Subgroup.subtype N) K = map (Subgroup.subtype N) ⊥ ∨ map (Subgroup.subtype N) K = N
| N
[PROOFSTEP]
rw [← N.subtype_range, N.subtype.range_eq_map]
[GOAL]
G : Type u
inst✝³ : Group G
inst✝² : Fintype G
N : Subgroup G
inst✝¹ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
h3 : ∀ (H : Subgroup G), ¬IsComplement' N H
K : Subgroup { x // x ∈ N }
inst✝ : Normal (map (Subgroup.subtype N) K)
key : map (Subgroup.subtype N) K = map (Subgroup.subtype N) ⊥ ∨ map (Subgroup.subtype N) K = map (Subgroup.subtype N) ⊤
⊢ K = ⊥ ∨ K = ⊤
[PROOFSTEP]
have inj := map_injective N.subtype_injective
[GOAL]
G : Type u
inst✝³ : Group G
inst✝² : Fintype G
N : Subgroup G
inst✝¹ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
h3 : ∀ (H : Subgroup G), ¬IsComplement' N H
K : Subgroup { x // x ∈ N }
inst✝ : Normal (map (Subgroup.subtype N) K)
key : map (Subgroup.subtype N) K = map (Subgroup.subtype N) ⊥ ∨ map (Subgroup.subtype N) K = map (Subgroup.subtype N) ⊤
inj : Function.Injective (map (Subgroup.subtype N))
⊢ K = ⊥ ∨ K = ⊤
[PROOFSTEP]
rwa [inj.eq_iff, inj.eq_iff] at key
[GOAL]
G : Type u
inst✝² : Group G
inst✝¹ : Fintype G
N : Subgroup G
inst✝ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
h3 : ∀ (H : Subgroup G), ¬IsComplement' N H
⊢ IsPGroup (Nat.minFac (Fintype.card { x // x ∈ N })) { x // x ∈ N }
[PROOFSTEP]
haveI : Fact (Fintype.card N).minFac.Prime := ⟨step4 h1 h3⟩
[GOAL]
G : Type u
inst✝² : Group G
inst✝¹ : Fintype G
N : Subgroup G
inst✝ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
h3 : ∀ (H : Subgroup G), ¬IsComplement' N H
this : Fact (Nat.Prime (Nat.minFac (Fintype.card { x // x ∈ N })))
⊢ IsPGroup (Nat.minFac (Fintype.card { x // x ∈ N })) { x // x ∈ N }
[PROOFSTEP]
refine' Sylow.nonempty.elim fun P => P.2.of_surjective P.1.subtype _
[GOAL]
G : Type u
inst✝² : Group G
inst✝¹ : Fintype G
N : Subgroup G
inst✝ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
h3 : ∀ (H : Subgroup G), ¬IsComplement' N H
this : Fact (Nat.Prime (Nat.minFac (Fintype.card { x // x ∈ N })))
P : Sylow (Nat.minFac (Fintype.card { x // x ∈ N })) { x // x ∈ N }
⊢ Function.Surjective ↑(Subgroup.subtype ↑P)
[PROOFSTEP]
rw [← MonoidHom.range_top_iff_surjective, subtype_range]
[GOAL]
G : Type u
inst✝² : Group G
inst✝¹ : Fintype G
N : Subgroup G
inst✝ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
h3 : ∀ (H : Subgroup G), ¬IsComplement' N H
this : Fact (Nat.Prime (Nat.minFac (Fintype.card { x // x ∈ N })))
P : Sylow (Nat.minFac (Fintype.card { x // x ∈ N })) { x // x ∈ N }
⊢ ↑P = ⊤
[PROOFSTEP]
haveI : (P.1.map N.subtype).Normal :=
normalizer_eq_top.mp (step1 h1 h2 h3 (P.1.map N.subtype).normalizer P.normalizer_sup_eq_top)
[GOAL]
G : Type u
inst✝² : Group G
inst✝¹ : Fintype G
N : Subgroup G
inst✝ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
h3 : ∀ (H : Subgroup G), ¬IsComplement' N H
this✝ : Fact (Nat.Prime (Nat.minFac (Fintype.card { x // x ∈ N })))
P : Sylow (Nat.minFac (Fintype.card { x // x ∈ N })) { x // x ∈ N }
this : Normal (map (Subgroup.subtype N) ↑P)
⊢ ↑P = ⊤
[PROOFSTEP]
exact (step3 h1 h2 h3 P.1).resolve_left (step5 h1 h3)
[GOAL]
G : Type u
inst✝² : Group G
inst✝¹ : Fintype G
N : Subgroup G
inst✝ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
h3 : ∀ (H : Subgroup G), ¬IsComplement' N H
⊢ IsCommutative N
[PROOFSTEP]
haveI := N.bot_or_nontrivial.resolve_left (step0 h1 h3)
[GOAL]
G : Type u
inst✝² : Group G
inst✝¹ : Fintype G
N : Subgroup G
inst✝ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
h3 : ∀ (H : Subgroup G), ¬IsComplement' N H
this : Nontrivial { x // x ∈ N }
⊢ IsCommutative N
[PROOFSTEP]
haveI : Fact (Fintype.card N).minFac.Prime := ⟨step4 h1 h3⟩
[GOAL]
G : Type u
inst✝² : Group G
inst✝¹ : Fintype G
N : Subgroup G
inst✝ : Normal N
h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h2 :
∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'],
Fintype.card G' < Fintype.card G →
∀ {N' : Subgroup G'} [inst_2 : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
h3 : ∀ (H : Subgroup G), ¬IsComplement' N H
this✝ : Nontrivial { x // x ∈ N }
this : Fact (Nat.Prime (Nat.minFac (Fintype.card { x // x ∈ N })))
⊢ IsCommutative N
[PROOFSTEP]
exact
⟨⟨fun g h =>
eq_top_iff.mp ((step3 h1 h2 h3 (center N)).resolve_left (step6 h1 h2 h3).bot_lt_center.ne') (mem_top h) g⟩⟩
[GOAL]
n : ℕ
G : Type u
inst✝² : Group G
inst✝¹ : Fintype G
hG : Fintype.card G = n
N : Subgroup G
inst✝ : Normal N
hN : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
⊢ ∃ H, IsComplement' N H
[PROOFSTEP]
revert G
[GOAL]
n : ℕ
⊢ ∀ {G : Type u} [inst : Group G] [inst_1 : Fintype G],
Fintype.card G = n →
∀ {N : Subgroup G} [inst_2 : Normal N],
Nat.coprime (Fintype.card { x // x ∈ N }) (index N) → ∃ H, IsComplement' N H
[PROOFSTEP]
apply Nat.strongInductionOn n
[GOAL]
n : ℕ
⊢ ∀ (n : ℕ),
(∀ (m : ℕ),
m < n →
∀ {G : Type u} [inst : Group G] [inst_1 : Fintype G],
Fintype.card G = m →
∀ {N : Subgroup G} [inst_2 : Normal N],
Nat.coprime (Fintype.card { x // x ∈ N }) (index N) → ∃ H, IsComplement' N H) →
∀ {G : Type u} [inst : Group G] [inst_1 : Fintype G],
Fintype.card G = n →
∀ {N : Subgroup G} [inst_2 : Normal N],
Nat.coprime (Fintype.card { x // x ∈ N }) (index N) → ∃ H, IsComplement' N H
[PROOFSTEP]
rintro n ih G _ _ rfl N _ hN
[GOAL]
n : ℕ
G : Type u
inst✝² : Group G
inst✝¹ : Fintype G
ih :
∀ (m : ℕ),
m < Fintype.card G →
∀ {G : Type u} [inst : Group G] [inst_1 : Fintype G],
Fintype.card G = m →
∀ {N : Subgroup G} [inst_2 : Normal N],
Nat.coprime (Fintype.card { x // x ∈ N }) (index N) → ∃ H, IsComplement' N H
N : Subgroup G
inst✝ : Normal N
hN : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
⊢ ∃ H, IsComplement' N H
[PROOFSTEP]
refine' not_forall_not.mp fun h3 => _
[GOAL]
n : ℕ
G : Type u
inst✝² : Group G
inst✝¹ : Fintype G
ih :
∀ (m : ℕ),
m < Fintype.card G →
∀ {G : Type u} [inst : Group G] [inst_1 : Fintype G],
Fintype.card G = m →
∀ {N : Subgroup G} [inst_2 : Normal N],
Nat.coprime (Fintype.card { x // x ∈ N }) (index N) → ∃ H, IsComplement' N H
N : Subgroup G
inst✝ : Normal N
hN : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h3 : ∀ (x : Subgroup G), ¬IsComplement' N x
⊢ False
[PROOFSTEP]
haveI := SchurZassenhausInduction.step7 hN (fun G' _ _ hG' => by apply ih _ hG'; rfl) h3
[GOAL]
n : ℕ
G : Type u
inst✝² : Group G
inst✝¹ : Fintype G
ih :
∀ (m : ℕ),
m < Fintype.card G →
∀ {G : Type u} [inst : Group G] [inst_1 : Fintype G],
Fintype.card G = m →
∀ {N : Subgroup G} [inst_2 : Normal N],
Nat.coprime (Fintype.card { x // x ∈ N }) (index N) → ∃ H, IsComplement' N H
N : Subgroup G
inst✝ : Normal N
hN : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h3 : ∀ (x : Subgroup G), ¬IsComplement' N x
G' : Type u
x✝¹ : Group G'
x✝ : Fintype G'
hG' : Fintype.card G' < Fintype.card G
⊢ ∀ {N' : Subgroup G'} [inst : Normal N'],
Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H'
[PROOFSTEP]
apply ih _ hG'
[GOAL]
n : ℕ
G : Type u
inst✝² : Group G
inst✝¹ : Fintype G
ih :
∀ (m : ℕ),
m < Fintype.card G →
∀ {G : Type u} [inst : Group G] [inst_1 : Fintype G],
Fintype.card G = m →
∀ {N : Subgroup G} [inst_2 : Normal N],
Nat.coprime (Fintype.card { x // x ∈ N }) (index N) → ∃ H, IsComplement' N H
N : Subgroup G
inst✝ : Normal N
hN : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h3 : ∀ (x : Subgroup G), ¬IsComplement' N x
G' : Type u
x✝¹ : Group G'
x✝ : Fintype G'
hG' : Fintype.card G' < Fintype.card G
⊢ Fintype.card G' = Fintype.card G'
[PROOFSTEP]
rfl
[GOAL]
n : ℕ
G : Type u
inst✝² : Group G
inst✝¹ : Fintype G
ih :
∀ (m : ℕ),
m < Fintype.card G →
∀ {G : Type u} [inst : Group G] [inst_1 : Fintype G],
Fintype.card G = m →
∀ {N : Subgroup G} [inst_2 : Normal N],
Nat.coprime (Fintype.card { x // x ∈ N }) (index N) → ∃ H, IsComplement' N H
N : Subgroup G
inst✝ : Normal N
hN : Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
h3 : ∀ (x : Subgroup G), ¬IsComplement' N x
this : IsCommutative N
⊢ False
[PROOFSTEP]
rw [← Nat.card_eq_fintype_card] at hN
[GOAL]
n : ℕ
G : Type u
inst✝² : Group G
inst✝¹ : Fintype G
ih :
∀ (m : ℕ),
m < Fintype.card G →
∀ {G : Type u} [inst : Group G] [inst_1 : Fintype G],
Fintype.card G = m →
∀ {N : Subgroup G} [inst_2 : Normal N],
Nat.coprime (Fintype.card { x // x ∈ N }) (index N) → ∃ H, IsComplement' N H
N : Subgroup G
inst✝ : Normal N
hN : Nat.coprime (Nat.card { x // x ∈ N }) (index N)
h3 : ∀ (x : Subgroup G), ¬IsComplement' N x
this : IsCommutative N
⊢ False
[PROOFSTEP]
exact not_exists_of_forall_not h3 (exists_right_complement'_of_coprime_aux hN)
[GOAL]
n : ℕ
G : Type u
inst✝¹ : Group G
N : Subgroup G
inst✝ : Normal N
hN : Nat.coprime (Nat.card { x // x ∈ N }) (index N)
⊢ ∃ H, IsComplement' N H
[PROOFSTEP]
by_cases hN1 : Nat.card N = 0
[GOAL]
case pos
n : ℕ
G : Type u
inst✝¹ : Group G
N : Subgroup G
inst✝ : Normal N
hN : Nat.coprime (Nat.card { x // x ∈ N }) (index N)
hN1 : Nat.card { x // x ∈ N } = 0
⊢ ∃ H, IsComplement' N H
[PROOFSTEP]
rw [hN1, Nat.coprime_zero_left, index_eq_one] at hN
[GOAL]
case pos
n : ℕ
G : Type u
inst✝¹ : Group G
N : Subgroup G
inst✝ : Normal N
hN : N = ⊤
hN1 : Nat.card { x // x ∈ N } = 0
⊢ ∃ H, IsComplement' N H
[PROOFSTEP]
rw [hN]
[GOAL]
case pos
n : ℕ
G : Type u
inst✝¹ : Group G
N : Subgroup G
inst✝ : Normal N
hN : N = ⊤
hN1 : Nat.card { x // x ∈ N } = 0
⊢ ∃ H, IsComplement' ⊤ H
[PROOFSTEP]
exact ⟨⊥, isComplement'_top_bot⟩
[GOAL]
case neg
n : ℕ
G : Type u
inst✝¹ : Group G
N : Subgroup G
inst✝ : Normal N
hN : Nat.coprime (Nat.card { x // x ∈ N }) (index N)
hN1 : ¬Nat.card { x // x ∈ N } = 0
⊢ ∃ H, IsComplement' N H
[PROOFSTEP]
by_cases hN2 : N.index = 0
[GOAL]
case pos
n : ℕ
G : Type u
inst✝¹ : Group G
N : Subgroup G
inst✝ : Normal N
hN : Nat.coprime (Nat.card { x // x ∈ N }) (index N)
hN1 : ¬Nat.card { x // x ∈ N } = 0
hN2 : index N = 0
⊢ ∃ H, IsComplement' N H
[PROOFSTEP]
rw [hN2, Nat.coprime_zero_right] at hN
[GOAL]
case pos
n : ℕ
G : Type u
inst✝¹ : Group G
N : Subgroup G
inst✝ : Normal N
hN : Nat.card { x // x ∈ N } = 1
hN1 : ¬Nat.card { x // x ∈ N } = 0
hN2 : index N = 0
⊢ ∃ H, IsComplement' N H
[PROOFSTEP]
haveI := (Cardinal.toNat_eq_one_iff_unique.mp hN).1
[GOAL]
case pos
n : ℕ
G : Type u
inst✝¹ : Group G
N : Subgroup G
inst✝ : Normal N
hN : Nat.card { x // x ∈ N } = 1
hN1 : ¬Nat.card { x // x ∈ N } = 0
hN2 : index N = 0
this : Subsingleton { x // x ∈ N }
⊢ ∃ H, IsComplement' N H
[PROOFSTEP]
rw [N.eq_bot_of_subsingleton]
[GOAL]
case pos
n : ℕ
G : Type u
inst✝¹ : Group G
N : Subgroup G
inst✝ : Normal N
hN : Nat.card { x // x ∈ N } = 1
hN1 : ¬Nat.card { x // x ∈ N } = 0
hN2 : index N = 0
this : Subsingleton { x // x ∈ N }
⊢ ∃ H, IsComplement' ⊥ H
[PROOFSTEP]
exact ⟨⊤, isComplement'_bot_top⟩
[GOAL]
case neg
n : ℕ
G : Type u
inst✝¹ : Group G
N : Subgroup G
inst✝ : Normal N
hN : Nat.coprime (Nat.card { x // x ∈ N }) (index N)
hN1 : ¬Nat.card { x // x ∈ N } = 0
hN2 : ¬index N = 0
⊢ ∃ H, IsComplement' N H
[PROOFSTEP]
have hN3 : Nat.card G ≠ 0 := by
rw [← N.card_mul_index]
exact mul_ne_zero hN1 hN2
[GOAL]
n : ℕ
G : Type u
inst✝¹ : Group G
N : Subgroup G
inst✝ : Normal N
hN : Nat.coprime (Nat.card { x // x ∈ N }) (index N)
hN1 : ¬Nat.card { x // x ∈ N } = 0
hN2 : ¬index N = 0
⊢ Nat.card G ≠ 0
[PROOFSTEP]
rw [← N.card_mul_index]
[GOAL]
n : ℕ
G : Type u
inst✝¹ : Group G
N : Subgroup G
inst✝ : Normal N
hN : Nat.coprime (Nat.card { x // x ∈ N }) (index N)
hN1 : ¬Nat.card { x // x ∈ N } = 0
hN2 : ¬index N = 0
⊢ Nat.card { x // x ∈ N } * index N ≠ 0
[PROOFSTEP]
exact mul_ne_zero hN1 hN2
[GOAL]
case neg
n : ℕ
G : Type u
inst✝¹ : Group G
N : Subgroup G
inst✝ : Normal N
hN : Nat.coprime (Nat.card { x // x ∈ N }) (index N)
hN1 : ¬Nat.card { x // x ∈ N } = 0
hN2 : ¬index N = 0
hN3 : Nat.card G ≠ 0
⊢ ∃ H, IsComplement' N H
[PROOFSTEP]
haveI := (Cardinal.lt_aleph0_iff_fintype.mp (lt_of_not_ge (mt Cardinal.toNat_apply_of_aleph0_le hN3))).some
[GOAL]
case neg
n : ℕ
G : Type u
inst✝¹ : Group G
N : Subgroup G
inst✝ : Normal N
hN : Nat.coprime (Nat.card { x // x ∈ N }) (index N)
hN1 : ¬Nat.card { x // x ∈ N } = 0
hN2 : ¬index N = 0
hN3 : Nat.card G ≠ 0
this : Fintype G
⊢ ∃ H, IsComplement' N H
[PROOFSTEP]
apply exists_right_complement'_of_coprime_of_fintype
[GOAL]
case neg.hN
n : ℕ
G : Type u
inst✝¹ : Group G
N : Subgroup G
inst✝ : Normal N
hN : Nat.coprime (Nat.card { x // x ∈ N }) (index N)
hN1 : ¬Nat.card { x // x ∈ N } = 0
hN2 : ¬index N = 0
hN3 : Nat.card G ≠ 0
this : Fintype G
⊢ Nat.coprime (Fintype.card { x // x ∈ N }) (index N)
[PROOFSTEP]
rwa [← Nat.card_eq_fintype_card]
| {"mathlib_filename": "Mathlib.GroupTheory.SchurZassenhaus", "llama_tokens": 32379} |
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
a b : G
ha : a ∈ {x | ∀ (y : G), x * y * x⁻¹ * y⁻¹ ∈ H}
hb : b ∈ {x | ∀ (y : G), x * y * x⁻¹ * y⁻¹ ∈ H}
y : G
⊢ a * b * y * (a * b)⁻¹ * y⁻¹ ∈ H
[PROOFSTEP]
convert Subgroup.mul_mem _ (ha (b * y * b⁻¹)) (hb y) using 1
[GOAL]
case h.e'_4
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
a b : G
ha : a ∈ {x | ∀ (y : G), x * y * x⁻¹ * y⁻¹ ∈ H}
hb : b ∈ {x | ∀ (y : G), x * y * x⁻¹ * y⁻¹ ∈ H}
y : G
⊢ a * b * y * (a * b)⁻¹ * y⁻¹ = a * (b * y * b⁻¹) * a⁻¹ * (b * y * b⁻¹)⁻¹ * (b * y * b⁻¹ * y⁻¹)
[PROOFSTEP]
group
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
y : G
⊢ 1 * y * 1⁻¹ * y⁻¹ ∈ H
[PROOFSTEP]
simp [Subgroup.one_mem]
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
x : G
hx :
x ∈
{
toSubsemigroup :=
{ carrier := {x | ∀ (y : G), x * y * x⁻¹ * y⁻¹ ∈ H},
mul_mem' :=
(_ :
∀ {a b : G} {ha : a ∈ {x | ∀ (y : G), x * y * x⁻¹ * y⁻¹ ∈ H}}
{hb : b ∈ {x | ∀ (y : G), x * y * x⁻¹ * y⁻¹ ∈ H}} {y : G}, a * b * y * (a * b)⁻¹ * y⁻¹ ∈ H) },
one_mem' := (_ : ∀ (y : G), 1 * y * 1⁻¹ * y⁻¹ ∈ H) }.toSubsemigroup.carrier
y : G
⊢ x⁻¹ * y * x⁻¹⁻¹ * y⁻¹ ∈ H
[PROOFSTEP]
specialize hx y⁻¹
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
x y : G
hx : x * y⁻¹ * x⁻¹ * y⁻¹⁻¹ ∈ H
⊢ x⁻¹ * y * x⁻¹⁻¹ * y⁻¹ ∈ H
[PROOFSTEP]
rw [mul_assoc, inv_inv] at hx ⊢
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
x y : G
hx : x * y⁻¹ * (x⁻¹ * y) ∈ H
⊢ x⁻¹ * y * (x * y⁻¹) ∈ H
[PROOFSTEP]
exact Subgroup.Normal.mem_comm inferInstance hx
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
⊢ upperCentralSeriesStep H = comap (mk' H) (center (G ⧸ H))
[PROOFSTEP]
ext
[GOAL]
case h
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
x✝ : G
⊢ x✝ ∈ upperCentralSeriesStep H ↔ x✝ ∈ comap (mk' H) (center (G ⧸ H))
[PROOFSTEP]
rw [mem_comap, mem_center_iff, forall_mk]
[GOAL]
case h
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
x✝ : G
⊢ x✝ ∈ upperCentralSeriesStep H ↔ ∀ (x : G), ↑x * ↑(mk' H) x✝ = ↑(mk' H) x✝ * ↑x
[PROOFSTEP]
apply forall_congr'
[GOAL]
case h.h
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
x✝ : G
⊢ ∀ (a : G), x✝ * a * x✝⁻¹ * a⁻¹ ∈ H ↔ ↑a * ↑(mk' H) x✝ = ↑(mk' H) x✝ * ↑a
[PROOFSTEP]
intro y
[GOAL]
case h.h
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
x✝ y : G
⊢ x✝ * y * x✝⁻¹ * y⁻¹ ∈ H ↔ ↑y * ↑(mk' H) x✝ = ↑(mk' H) x✝ * ↑y
[PROOFSTEP]
rw [coe_mk', ← QuotientGroup.mk_mul, ← QuotientGroup.mk_mul, eq_comm, eq_iff_div_mem, div_eq_mul_inv, mul_inv_rev,
mul_assoc]
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
⊢ Normal (upperCentralSeriesStep H)
[PROOFSTEP]
rw [upperCentralSeriesStep_eq_comap_center]
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
⊢ Normal (comap (mk' H) (center (G ⧸ H)))
[PROOFSTEP]
infer_instance
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
⊢ upperCentralSeries G 1 = center G
[PROOFSTEP]
ext
[GOAL]
case h
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
x✝ : G
⊢ x✝ ∈ upperCentralSeries G 1 ↔ x✝ ∈ center G
[PROOFSTEP]
simp only [upperCentralSeries, upperCentralSeriesAux, upperCentralSeriesStep, center, Set.center, mem_mk, mem_bot,
Set.mem_setOf_eq]
[GOAL]
case h
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
x✝ : G
⊢ (∀ (y : G), x✝ * y * x✝⁻¹ * y⁻¹ = 1) ↔ ∀ (m : G), m * x✝ = x✝ * m
[PROOFSTEP]
exact forall_congr' fun y => by rw [mul_inv_eq_one, mul_inv_eq_iff_eq_mul, eq_comm]
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
x✝ y : G
⊢ x✝ * y * x✝⁻¹ * y⁻¹ = 1 ↔ y * x✝ = x✝ * y
[PROOFSTEP]
rw [mul_inv_eq_one, mul_inv_eq_iff_eq_mul, eq_comm]
[GOAL]
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
H : ℕ → Subgroup G
hH : IsAscendingCentralSeries H
n : ℕ
⊢ H (n + 1) ≤ upperCentralSeries G (n + 1)
[PROOFSTEP]
intro x hx
[GOAL]
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
H : ℕ → Subgroup G
hH : IsAscendingCentralSeries H
n : ℕ
x : G
hx : x ∈ H (n + 1)
⊢ x ∈ upperCentralSeries G (n + 1)
[PROOFSTEP]
rw [mem_upperCentralSeries_succ_iff]
[GOAL]
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
H : ℕ → Subgroup G
hH : IsAscendingCentralSeries H
n : ℕ
x : G
hx : x ∈ H (n + 1)
⊢ ∀ (y : G), x * y * x⁻¹ * y⁻¹ ∈ upperCentralSeries G n
[PROOFSTEP]
exact fun y => ascending_central_series_le_upper H hH n (hH.2 x n hx y)
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
⊢ Monotone (upperCentralSeries G)
[PROOFSTEP]
refine' monotone_nat_of_le_succ _
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
⊢ ∀ (n : ℕ), upperCentralSeries G n ≤ upperCentralSeries G (n + 1)
[PROOFSTEP]
intro n x hx y
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
n : ℕ
x : G
hx : x ∈ upperCentralSeries G n
y : G
⊢ x * y * x⁻¹ * y⁻¹ ∈ (upperCentralSeriesAux G (Nat.add n 0)).fst
[PROOFSTEP]
rw [mul_assoc, mul_assoc, ← mul_assoc y x⁻¹ y⁻¹]
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
n : ℕ
x : G
hx : x ∈ upperCentralSeries G n
y : G
⊢ x * (y * x⁻¹ * y⁻¹) ∈ (upperCentralSeriesAux G (Nat.add n 0)).fst
[PROOFSTEP]
exact mul_mem hx (Normal.conj_mem (upperCentralSeries_normal G n) x⁻¹ (inv_mem hx) y)
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
⊢ Group.IsNilpotent G ↔ ∃ n H, IsAscendingCentralSeries H ∧ H n = ⊤
[PROOFSTEP]
constructor
[GOAL]
case mp
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
⊢ Group.IsNilpotent G → ∃ n H, IsAscendingCentralSeries H ∧ H n = ⊤
[PROOFSTEP]
rintro ⟨n, nH⟩
[GOAL]
case mp.mk.intro
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
n : ℕ
nH : upperCentralSeries G n = ⊤
⊢ ∃ n H, IsAscendingCentralSeries H ∧ H n = ⊤
[PROOFSTEP]
refine' ⟨_, _, upperCentralSeries_isAscendingCentralSeries G, nH⟩
[GOAL]
case mpr
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
⊢ (∃ n H, IsAscendingCentralSeries H ∧ H n = ⊤) → Group.IsNilpotent G
[PROOFSTEP]
rintro ⟨n, H, hH, hn⟩
[GOAL]
case mpr.intro.intro.intro
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
n : ℕ
H : ℕ → Subgroup G
hH : IsAscendingCentralSeries H
hn : H n = ⊤
⊢ Group.IsNilpotent G
[PROOFSTEP]
use n
[GOAL]
case h
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
n : ℕ
H : ℕ → Subgroup G
hH : IsAscendingCentralSeries H
hn : H n = ⊤
⊢ upperCentralSeries G n = ⊤
[PROOFSTEP]
rw [eq_top_iff, ← hn]
[GOAL]
case h
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
n : ℕ
H : ℕ → Subgroup G
hH : IsAscendingCentralSeries H
hn : H n = ⊤
⊢ H n ≤ upperCentralSeries G n
[PROOFSTEP]
exact ascending_central_series_le_upper H hH n
[GOAL]
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
H : ℕ → Subgroup G
n : ℕ
hn : H n = ⊤
hasc : IsAscendingCentralSeries H
⊢ IsDescendingCentralSeries fun m => H (n - m)
[PROOFSTEP]
cases' hasc with h0 hH
[GOAL]
case intro
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
H : ℕ → Subgroup G
n : ℕ
hn : H n = ⊤
h0 : H 0 = ⊥
hH : ∀ (x : G) (n : ℕ), x ∈ H (n + 1) → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ H n
⊢ IsDescendingCentralSeries fun m => H (n - m)
[PROOFSTEP]
refine' ⟨hn, fun x m hx g => _⟩
[GOAL]
case intro
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
H : ℕ → Subgroup G
n : ℕ
hn : H n = ⊤
h0 : H 0 = ⊥
hH : ∀ (x : G) (n : ℕ), x ∈ H (n + 1) → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ H n
x : G
m : ℕ
hx : x ∈ (fun m => H (n - m)) m
g : G
⊢ x * g * x⁻¹ * g⁻¹ ∈ (fun m => H (n - m)) (m + 1)
[PROOFSTEP]
dsimp at hx
[GOAL]
case intro
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
H : ℕ → Subgroup G
n : ℕ
hn : H n = ⊤
h0 : H 0 = ⊥
hH : ∀ (x : G) (n : ℕ), x ∈ H (n + 1) → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ H n
x : G
m : ℕ
hx : x ∈ H (n - m)
g : G
⊢ x * g * x⁻¹ * g⁻¹ ∈ (fun m => H (n - m)) (m + 1)
[PROOFSTEP]
by_cases hm : n ≤ m
[GOAL]
case pos
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
H : ℕ → Subgroup G
n : ℕ
hn : H n = ⊤
h0 : H 0 = ⊥
hH : ∀ (x : G) (n : ℕ), x ∈ H (n + 1) → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ H n
x : G
m : ℕ
hx : x ∈ H (n - m)
g : G
hm : n ≤ m
⊢ x * g * x⁻¹ * g⁻¹ ∈ (fun m => H (n - m)) (m + 1)
[PROOFSTEP]
rw [tsub_eq_zero_of_le hm, h0, Subgroup.mem_bot] at hx
[GOAL]
case pos
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
H : ℕ → Subgroup G
n : ℕ
hn : H n = ⊤
h0 : H 0 = ⊥
hH : ∀ (x : G) (n : ℕ), x ∈ H (n + 1) → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ H n
x : G
m : ℕ
hx : x = 1
g : G
hm : n ≤ m
⊢ x * g * x⁻¹ * g⁻¹ ∈ (fun m => H (n - m)) (m + 1)
[PROOFSTEP]
subst hx
[GOAL]
case pos
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
H : ℕ → Subgroup G
n : ℕ
hn : H n = ⊤
h0 : H 0 = ⊥
hH : ∀ (x : G) (n : ℕ), x ∈ H (n + 1) → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ H n
m : ℕ
g : G
hm : n ≤ m
⊢ 1 * g * 1⁻¹ * g⁻¹ ∈ (fun m => H (n - m)) (m + 1)
[PROOFSTEP]
rw [show (1 : G) * g * (1⁻¹ : G) * g⁻¹ = 1 by group]
[GOAL]
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
H : ℕ → Subgroup G
n : ℕ
hn : H n = ⊤
h0 : H 0 = ⊥
hH : ∀ (x : G) (n : ℕ), x ∈ H (n + 1) → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ H n
m : ℕ
g : G
hm : n ≤ m
⊢ 1 * g * 1⁻¹ * g⁻¹ = 1
[PROOFSTEP]
group
[GOAL]
case pos
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
H : ℕ → Subgroup G
n : ℕ
hn : H n = ⊤
h0 : H 0 = ⊥
hH : ∀ (x : G) (n : ℕ), x ∈ H (n + 1) → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ H n
m : ℕ
g : G
hm : n ≤ m
⊢ 1 ∈ (fun m => H (n - m)) (m + 1)
[PROOFSTEP]
exact Subgroup.one_mem _
[GOAL]
case neg
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
H : ℕ → Subgroup G
n : ℕ
hn : H n = ⊤
h0 : H 0 = ⊥
hH : ∀ (x : G) (n : ℕ), x ∈ H (n + 1) → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ H n
x : G
m : ℕ
hx : x ∈ H (n - m)
g : G
hm : ¬n ≤ m
⊢ x * g * x⁻¹ * g⁻¹ ∈ (fun m => H (n - m)) (m + 1)
[PROOFSTEP]
push_neg at hm
[GOAL]
case neg
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
H : ℕ → Subgroup G
n : ℕ
hn : H n = ⊤
h0 : H 0 = ⊥
hH : ∀ (x : G) (n : ℕ), x ∈ H (n + 1) → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ H n
x : G
m : ℕ
hx : x ∈ H (n - m)
g : G
hm : m < n
⊢ x * g * x⁻¹ * g⁻¹ ∈ (fun m => H (n - m)) (m + 1)
[PROOFSTEP]
apply hH
[GOAL]
case neg.a
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
H : ℕ → Subgroup G
n : ℕ
hn : H n = ⊤
h0 : H 0 = ⊥
hH : ∀ (x : G) (n : ℕ), x ∈ H (n + 1) → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ H n
x : G
m : ℕ
hx : x ∈ H (n - m)
g : G
hm : m < n
⊢ x ∈ H (n - (m + 1) + 1)
[PROOFSTEP]
convert hx using 1
[GOAL]
case h.e'_5
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
H : ℕ → Subgroup G
n : ℕ
hn : H n = ⊤
h0 : H 0 = ⊥
hH : ∀ (x : G) (n : ℕ), x ∈ H (n + 1) → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ H n
x : G
m : ℕ
hx : x ∈ H (n - m)
g : G
hm : m < n
⊢ H (n - (m + 1) + 1) = H (n - m)
[PROOFSTEP]
rw [tsub_add_eq_add_tsub (Nat.succ_le_of_lt hm), Nat.succ_sub_succ]
[GOAL]
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
H : ℕ → Subgroup G
n : ℕ
hn : H n = ⊥
hdesc : IsDescendingCentralSeries H
⊢ IsAscendingCentralSeries fun m => H (n - m)
[PROOFSTEP]
cases' hdesc with h0 hH
[GOAL]
case intro
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
H : ℕ → Subgroup G
n : ℕ
hn : H n = ⊥
h0 : H 0 = ⊤
hH : ∀ (x : G) (n : ℕ), x ∈ H n → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ H (n + 1)
⊢ IsAscendingCentralSeries fun m => H (n - m)
[PROOFSTEP]
refine' ⟨hn, fun x m hx g => _⟩
[GOAL]
case intro
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
H : ℕ → Subgroup G
n : ℕ
hn : H n = ⊥
h0 : H 0 = ⊤
hH : ∀ (x : G) (n : ℕ), x ∈ H n → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ H (n + 1)
x : G
m : ℕ
hx : x ∈ (fun m => H (n - m)) (m + 1)
g : G
⊢ x * g * x⁻¹ * g⁻¹ ∈ (fun m => H (n - m)) m
[PROOFSTEP]
dsimp only at hx ⊢
[GOAL]
case intro
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
H : ℕ → Subgroup G
n : ℕ
hn : H n = ⊥
h0 : H 0 = ⊤
hH : ∀ (x : G) (n : ℕ), x ∈ H n → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ H (n + 1)
x : G
m : ℕ
hx : x ∈ H (n - (m + 1))
g : G
⊢ x * g * x⁻¹ * g⁻¹ ∈ H (n - m)
[PROOFSTEP]
by_cases hm : n ≤ m
[GOAL]
case pos
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
H : ℕ → Subgroup G
n : ℕ
hn : H n = ⊥
h0 : H 0 = ⊤
hH : ∀ (x : G) (n : ℕ), x ∈ H n → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ H (n + 1)
x : G
m : ℕ
hx : x ∈ H (n - (m + 1))
g : G
hm : n ≤ m
⊢ x * g * x⁻¹ * g⁻¹ ∈ H (n - m)
[PROOFSTEP]
have hnm : n - m = 0 := tsub_eq_zero_iff_le.mpr hm
[GOAL]
case pos
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
H : ℕ → Subgroup G
n : ℕ
hn : H n = ⊥
h0 : H 0 = ⊤
hH : ∀ (x : G) (n : ℕ), x ∈ H n → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ H (n + 1)
x : G
m : ℕ
hx : x ∈ H (n - (m + 1))
g : G
hm : n ≤ m
hnm : n - m = 0
⊢ x * g * x⁻¹ * g⁻¹ ∈ H (n - m)
[PROOFSTEP]
rw [hnm, h0]
[GOAL]
case pos
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
H : ℕ → Subgroup G
n : ℕ
hn : H n = ⊥
h0 : H 0 = ⊤
hH : ∀ (x : G) (n : ℕ), x ∈ H n → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ H (n + 1)
x : G
m : ℕ
hx : x ∈ H (n - (m + 1))
g : G
hm : n ≤ m
hnm : n - m = 0
⊢ x * g * x⁻¹ * g⁻¹ ∈ ⊤
[PROOFSTEP]
exact mem_top _
[GOAL]
case neg
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
H : ℕ → Subgroup G
n : ℕ
hn : H n = ⊥
h0 : H 0 = ⊤
hH : ∀ (x : G) (n : ℕ), x ∈ H n → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ H (n + 1)
x : G
m : ℕ
hx : x ∈ H (n - (m + 1))
g : G
hm : ¬n ≤ m
⊢ x * g * x⁻¹ * g⁻¹ ∈ H (n - m)
[PROOFSTEP]
push_neg at hm
[GOAL]
case neg
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
H : ℕ → Subgroup G
n : ℕ
hn : H n = ⊥
h0 : H 0 = ⊤
hH : ∀ (x : G) (n : ℕ), x ∈ H n → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ H (n + 1)
x : G
m : ℕ
hx : x ∈ H (n - (m + 1))
g : G
hm : m < n
⊢ x * g * x⁻¹ * g⁻¹ ∈ H (n - m)
[PROOFSTEP]
convert hH x _ hx g using 1
[GOAL]
case h.e'_5
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
H : ℕ → Subgroup G
n : ℕ
hn : H n = ⊥
h0 : H 0 = ⊤
hH : ∀ (x : G) (n : ℕ), x ∈ H n → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ H (n + 1)
x : G
m : ℕ
hx : x ∈ H (n - (m + 1))
g : G
hm : m < n
⊢ H (n - m) = H (n - (m + 1) + 1)
[PROOFSTEP]
rw [tsub_add_eq_add_tsub (Nat.succ_le_of_lt hm), Nat.succ_sub_succ]
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
⊢ Group.IsNilpotent G ↔ ∃ n H, IsDescendingCentralSeries H ∧ H n = ⊥
[PROOFSTEP]
rw [nilpotent_iff_finite_ascending_central_series]
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
⊢ (∃ n H, IsAscendingCentralSeries H ∧ H n = ⊤) ↔ ∃ n H, IsDescendingCentralSeries H ∧ H n = ⊥
[PROOFSTEP]
constructor
[GOAL]
case mp
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
⊢ (∃ n H, IsAscendingCentralSeries H ∧ H n = ⊤) → ∃ n H, IsDescendingCentralSeries H ∧ H n = ⊥
[PROOFSTEP]
rintro ⟨n, H, hH, hn⟩
[GOAL]
case mp.intro.intro.intro
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
n : ℕ
H : ℕ → Subgroup G
hH : IsAscendingCentralSeries H
hn : H n = ⊤
⊢ ∃ n H, IsDescendingCentralSeries H ∧ H n = ⊥
[PROOFSTEP]
refine ⟨n, fun m => H (n - m), is_decending_rev_series_of_is_ascending G hn hH, ?_⟩
[GOAL]
case mp.intro.intro.intro
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
n : ℕ
H : ℕ → Subgroup G
hH : IsAscendingCentralSeries H
hn : H n = ⊤
⊢ (fun m => H (n - m)) n = ⊥
[PROOFSTEP]
dsimp only
[GOAL]
case mp.intro.intro.intro
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
n : ℕ
H : ℕ → Subgroup G
hH : IsAscendingCentralSeries H
hn : H n = ⊤
⊢ H (n - n) = ⊥
[PROOFSTEP]
rw [tsub_self]
[GOAL]
case mp.intro.intro.intro
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
n : ℕ
H : ℕ → Subgroup G
hH : IsAscendingCentralSeries H
hn : H n = ⊤
⊢ H 0 = ⊥
[PROOFSTEP]
exact hH.1
[GOAL]
case mpr
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
⊢ (∃ n H, IsDescendingCentralSeries H ∧ H n = ⊥) → ∃ n H, IsAscendingCentralSeries H ∧ H n = ⊤
[PROOFSTEP]
rintro ⟨n, H, hH, hn⟩
[GOAL]
case mpr.intro.intro.intro
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
n : ℕ
H : ℕ → Subgroup G
hH : IsDescendingCentralSeries H
hn : H n = ⊥
⊢ ∃ n H, IsAscendingCentralSeries H ∧ H n = ⊤
[PROOFSTEP]
refine ⟨n, fun m => H (n - m), is_ascending_rev_series_of_is_descending G hn hH, ?_⟩
[GOAL]
case mpr.intro.intro.intro
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
n : ℕ
H : ℕ → Subgroup G
hH : IsDescendingCentralSeries H
hn : H n = ⊥
⊢ (fun m => H (n - m)) n = ⊤
[PROOFSTEP]
dsimp only
[GOAL]
case mpr.intro.intro.intro
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
n : ℕ
H : ℕ → Subgroup G
hH : IsDescendingCentralSeries H
hn : H n = ⊥
⊢ H (n - n) = ⊤
[PROOFSTEP]
rw [tsub_self]
[GOAL]
case mpr.intro.intro.intro
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
n : ℕ
H : ℕ → Subgroup G
hH : IsDescendingCentralSeries H
hn : H n = ⊥
⊢ H 0 = ⊤
[PROOFSTEP]
exact hH.1
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
n : ℕ
⊢ Normal (lowerCentralSeries G n)
[PROOFSTEP]
induction' n with d hd
[GOAL]
case zero
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
⊢ Normal (lowerCentralSeries G Nat.zero)
[PROOFSTEP]
exact (⊤ : Subgroup G).normal_of_characteristic
[GOAL]
case succ
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
d : ℕ
hd : Normal (lowerCentralSeries G d)
⊢ Normal (lowerCentralSeries G (Nat.succ d))
[PROOFSTEP]
exact @Subgroup.commutator_normal _ _ (lowerCentralSeries G d) ⊤ hd _
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
⊢ Antitone (lowerCentralSeries G)
[PROOFSTEP]
refine' antitone_nat_of_succ_le fun n x hx => _
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
n : ℕ
x : G
hx : x ∈ lowerCentralSeries G (n + 1)
⊢ x ∈ lowerCentralSeries G n
[PROOFSTEP]
simp only [mem_lowerCentralSeries_succ_iff, exists_prop, mem_top, exists_true_left, true_and_iff] at hx
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
n : ℕ
x : G
hx : x ∈ closure {x | ∃ p, p ∈ lowerCentralSeries G n ∧ ∃ q, p * q * p⁻¹ * q⁻¹ = x}
⊢ x ∈ lowerCentralSeries G n
[PROOFSTEP]
refine' closure_induction hx _ (Subgroup.one_mem _) (@Subgroup.mul_mem _ _ _) (@Subgroup.inv_mem _ _ _)
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
n : ℕ
x : G
hx : x ∈ closure {x | ∃ p, p ∈ lowerCentralSeries G n ∧ ∃ q, p * q * p⁻¹ * q⁻¹ = x}
⊢ ∀ (x : G), x ∈ {x | ∃ p, p ∈ lowerCentralSeries G n ∧ ∃ q, p * q * p⁻¹ * q⁻¹ = x} → x ∈ lowerCentralSeries G n
[PROOFSTEP]
rintro y ⟨z, hz, a, ha⟩
[GOAL]
case intro.intro.intro
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
n : ℕ
x : G
hx : x ∈ closure {x | ∃ p, p ∈ lowerCentralSeries G n ∧ ∃ q, p * q * p⁻¹ * q⁻¹ = x}
y z : G
hz : z ∈ lowerCentralSeries G n
a : G
ha : z * a * z⁻¹ * a⁻¹ = y
⊢ y ∈ lowerCentralSeries G n
[PROOFSTEP]
rw [← ha, mul_assoc, mul_assoc, ← mul_assoc a z⁻¹ a⁻¹]
[GOAL]
case intro.intro.intro
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
n : ℕ
x : G
hx : x ∈ closure {x | ∃ p, p ∈ lowerCentralSeries G n ∧ ∃ q, p * q * p⁻¹ * q⁻¹ = x}
y z : G
hz : z ∈ lowerCentralSeries G n
a : G
ha : z * a * z⁻¹ * a⁻¹ = y
⊢ z * (a * z⁻¹ * a⁻¹) ∈ lowerCentralSeries G n
[PROOFSTEP]
exact mul_mem hz (Normal.conj_mem (lowerCentralSeries_normal n) z⁻¹ (inv_mem hz) a)
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
⊢ IsDescendingCentralSeries (lowerCentralSeries G)
[PROOFSTEP]
constructor
[GOAL]
case left
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
⊢ lowerCentralSeries G 0 = ⊤
case right
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
⊢ ∀ (x : G) (n : ℕ), x ∈ lowerCentralSeries G n → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ lowerCentralSeries G (n + 1)
[PROOFSTEP]
rfl
[GOAL]
case right
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
⊢ ∀ (x : G) (n : ℕ), x ∈ lowerCentralSeries G n → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ lowerCentralSeries G (n + 1)
[PROOFSTEP]
intro x n hxn g
[GOAL]
case right
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
x : G
n : ℕ
hxn : x ∈ lowerCentralSeries G n
g : G
⊢ x * g * x⁻¹ * g⁻¹ ∈ lowerCentralSeries G (n + 1)
[PROOFSTEP]
exact commutator_mem_commutator hxn (mem_top g)
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
⊢ Group.IsNilpotent G ↔ ∃ n, lowerCentralSeries G n = ⊥
[PROOFSTEP]
rw [nilpotent_iff_finite_descending_central_series]
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
⊢ (∃ n H, IsDescendingCentralSeries H ∧ H n = ⊥) ↔ ∃ n, lowerCentralSeries G n = ⊥
[PROOFSTEP]
constructor
[GOAL]
case mp
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
⊢ (∃ n H, IsDescendingCentralSeries H ∧ H n = ⊥) → ∃ n, lowerCentralSeries G n = ⊥
[PROOFSTEP]
rintro ⟨n, H, ⟨h0, hs⟩, hn⟩
[GOAL]
case mp.intro.intro.intro.intro
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
n : ℕ
H : ℕ → Subgroup G
hn : H n = ⊥
h0 : H 0 = ⊤
hs : ∀ (x : G) (n : ℕ), x ∈ H n → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ H (n + 1)
⊢ ∃ n, lowerCentralSeries G n = ⊥
[PROOFSTEP]
use n
[GOAL]
case h
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
n : ℕ
H : ℕ → Subgroup G
hn : H n = ⊥
h0 : H 0 = ⊤
hs : ∀ (x : G) (n : ℕ), x ∈ H n → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ H (n + 1)
⊢ lowerCentralSeries G n = ⊥
[PROOFSTEP]
rw [eq_bot_iff, ← hn]
[GOAL]
case h
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
n : ℕ
H : ℕ → Subgroup G
hn : H n = ⊥
h0 : H 0 = ⊤
hs : ∀ (x : G) (n : ℕ), x ∈ H n → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ H (n + 1)
⊢ lowerCentralSeries G n ≤ H n
[PROOFSTEP]
exact descending_central_series_ge_lower H ⟨h0, hs⟩ n
[GOAL]
case mpr
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
⊢ (∃ n, lowerCentralSeries G n = ⊥) → ∃ n H, IsDescendingCentralSeries H ∧ H n = ⊥
[PROOFSTEP]
rintro ⟨n, hn⟩
[GOAL]
case mpr.intro
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
n : ℕ
hn : lowerCentralSeries G n = ⊥
⊢ ∃ n H, IsDescendingCentralSeries H ∧ H n = ⊥
[PROOFSTEP]
exact ⟨n, lowerCentralSeries G, lowerCentralSeries_isDescendingCentralSeries, hn⟩
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
hG : Group.IsNilpotent G
n : ℕ
⊢ upperCentralSeries G n = ⊤ ↔ nilpotencyClass G ≤ n
[PROOFSTEP]
constructor
[GOAL]
case mp
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
hG : Group.IsNilpotent G
n : ℕ
⊢ upperCentralSeries G n = ⊤ → nilpotencyClass G ≤ n
[PROOFSTEP]
intro h
[GOAL]
case mp
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
hG : Group.IsNilpotent G
n : ℕ
h : upperCentralSeries G n = ⊤
⊢ nilpotencyClass G ≤ n
[PROOFSTEP]
exact Nat.find_le h
[GOAL]
case mpr
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
hG : Group.IsNilpotent G
n : ℕ
⊢ nilpotencyClass G ≤ n → upperCentralSeries G n = ⊤
[PROOFSTEP]
intro h
[GOAL]
case mpr
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
hG : Group.IsNilpotent G
n : ℕ
h : nilpotencyClass G ≤ n
⊢ upperCentralSeries G n = ⊤
[PROOFSTEP]
apply eq_top_iff.mpr
[GOAL]
case mpr
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
hG : Group.IsNilpotent G
n : ℕ
h : nilpotencyClass G ≤ n
⊢ ⊤ ≤ upperCentralSeries G n
[PROOFSTEP]
rw [← upperCentralSeries_nilpotencyClass]
[GOAL]
case mpr
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
hG : Group.IsNilpotent G
n : ℕ
h : nilpotencyClass G ≤ n
⊢ upperCentralSeries G (nilpotencyClass G) ≤ upperCentralSeries G n
[PROOFSTEP]
exact upperCentralSeries_mono _ h
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
hG : Group.IsNilpotent G
⊢ Nat.find (_ : ∃ n H, IsAscendingCentralSeries H ∧ H n = ⊤) = nilpotencyClass G
[PROOFSTEP]
refine le_antisymm (Nat.find_mono ?_) (Nat.find_mono ?_)
[GOAL]
case refine_1
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
hG : Group.IsNilpotent G
⊢ ∀ (n : ℕ), upperCentralSeries G n = ⊤ → ∃ H, IsAscendingCentralSeries H ∧ H n = ⊤
[PROOFSTEP]
intro n hn
[GOAL]
case refine_1
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
hG : Group.IsNilpotent G
n : ℕ
hn : upperCentralSeries G n = ⊤
⊢ ∃ H, IsAscendingCentralSeries H ∧ H n = ⊤
[PROOFSTEP]
exact ⟨upperCentralSeries G, upperCentralSeries_isAscendingCentralSeries G, hn⟩
[GOAL]
case refine_2
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
hG : Group.IsNilpotent G
⊢ ∀ (n : ℕ), (∃ H, IsAscendingCentralSeries H ∧ H n = ⊤) → upperCentralSeries G n = ⊤
[PROOFSTEP]
rintro n ⟨H, ⟨hH, hn⟩⟩
[GOAL]
case refine_2.intro.intro
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
hG : Group.IsNilpotent G
n : ℕ
H : ℕ → Subgroup G
hH : IsAscendingCentralSeries H
hn : H n = ⊤
⊢ upperCentralSeries G n = ⊤
[PROOFSTEP]
rw [← top_le_iff, ← hn]
[GOAL]
case refine_2.intro.intro
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
hG : Group.IsNilpotent G
n : ℕ
H : ℕ → Subgroup G
hH : IsAscendingCentralSeries H
hn : H n = ⊤
⊢ H n ≤ upperCentralSeries G n
[PROOFSTEP]
exact ascending_central_series_le_upper H hH n
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
hG : Group.IsNilpotent G
⊢ Nat.find (_ : ∃ n H, IsDescendingCentralSeries H ∧ H n = ⊥) = nilpotencyClass G
[PROOFSTEP]
rw [← least_ascending_central_series_length_eq_nilpotencyClass]
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
hG : Group.IsNilpotent G
⊢ Nat.find (_ : ∃ n H, IsDescendingCentralSeries H ∧ H n = ⊥) =
Nat.find (_ : ∃ n H, IsAscendingCentralSeries H ∧ H n = ⊤)
[PROOFSTEP]
refine le_antisymm (Nat.find_mono ?_) (Nat.find_mono ?_)
[GOAL]
case refine_1
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
hG : Group.IsNilpotent G
⊢ ∀ (n : ℕ), (∃ H, IsAscendingCentralSeries H ∧ H n = ⊤) → ∃ H, IsDescendingCentralSeries H ∧ H n = ⊥
[PROOFSTEP]
rintro n ⟨H, ⟨hH, hn⟩⟩
[GOAL]
case refine_1.intro.intro
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
hG : Group.IsNilpotent G
n : ℕ
H : ℕ → Subgroup G
hH : IsAscendingCentralSeries H
hn : H n = ⊤
⊢ ∃ H, IsDescendingCentralSeries H ∧ H n = ⊥
[PROOFSTEP]
refine ⟨fun m => H (n - m), is_decending_rev_series_of_is_ascending G hn hH, ?_⟩
[GOAL]
case refine_1.intro.intro
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
hG : Group.IsNilpotent G
n : ℕ
H : ℕ → Subgroup G
hH : IsAscendingCentralSeries H
hn : H n = ⊤
⊢ (fun m => H (n - m)) n = ⊥
[PROOFSTEP]
dsimp only
[GOAL]
case refine_1.intro.intro
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
hG : Group.IsNilpotent G
n : ℕ
H : ℕ → Subgroup G
hH : IsAscendingCentralSeries H
hn : H n = ⊤
⊢ H (n - n) = ⊥
[PROOFSTEP]
rw [tsub_self]
[GOAL]
case refine_1.intro.intro
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
hG : Group.IsNilpotent G
n : ℕ
H : ℕ → Subgroup G
hH : IsAscendingCentralSeries H
hn : H n = ⊤
⊢ H 0 = ⊥
[PROOFSTEP]
exact hH.1
[GOAL]
case refine_2
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
hG : Group.IsNilpotent G
⊢ ∀ (n : ℕ), (∃ H, IsDescendingCentralSeries H ∧ H n = ⊥) → ∃ H, IsAscendingCentralSeries H ∧ H n = ⊤
[PROOFSTEP]
rintro n ⟨H, ⟨hH, hn⟩⟩
[GOAL]
case refine_2.intro.intro
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
hG : Group.IsNilpotent G
n : ℕ
H : ℕ → Subgroup G
hH : IsDescendingCentralSeries H
hn : H n = ⊥
⊢ ∃ H, IsAscendingCentralSeries H ∧ H n = ⊤
[PROOFSTEP]
refine ⟨fun m => H (n - m), is_ascending_rev_series_of_is_descending G hn hH, ?_⟩
[GOAL]
case refine_2.intro.intro
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
hG : Group.IsNilpotent G
n : ℕ
H : ℕ → Subgroup G
hH : IsDescendingCentralSeries H
hn : H n = ⊥
⊢ (fun m => H (n - m)) n = ⊤
[PROOFSTEP]
dsimp only
[GOAL]
case refine_2.intro.intro
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
hG : Group.IsNilpotent G
n : ℕ
H : ℕ → Subgroup G
hH : IsDescendingCentralSeries H
hn : H n = ⊥
⊢ H (n - n) = ⊤
[PROOFSTEP]
rw [tsub_self]
[GOAL]
case refine_2.intro.intro
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
hG : Group.IsNilpotent G
n : ℕ
H : ℕ → Subgroup G
hH : IsDescendingCentralSeries H
hn : H n = ⊥
⊢ H 0 = ⊤
[PROOFSTEP]
exact hH.1
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
hG : Group.IsNilpotent G
⊢ Nat.find (_ : ∃ n, lowerCentralSeries G n = ⊥) = nilpotencyClass G
[PROOFSTEP]
rw [← least_descending_central_series_length_eq_nilpotencyClass]
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
hG : Group.IsNilpotent G
⊢ Nat.find (_ : ∃ n, lowerCentralSeries G n = ⊥) = Nat.find (_ : ∃ n H, IsDescendingCentralSeries H ∧ H n = ⊥)
[PROOFSTEP]
refine' le_antisymm (Nat.find_mono _) (Nat.find_mono _)
[GOAL]
case refine'_1
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
hG : Group.IsNilpotent G
⊢ ∀ (n : ℕ), (∃ H, IsDescendingCentralSeries H ∧ H n = ⊥) → lowerCentralSeries G n = ⊥
[PROOFSTEP]
rintro n ⟨H, ⟨hH, hn⟩⟩
[GOAL]
case refine'_1.intro.intro
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
hG : Group.IsNilpotent G
n : ℕ
H : ℕ → Subgroup G
hH : IsDescendingCentralSeries H
hn : H n = ⊥
⊢ lowerCentralSeries G n = ⊥
[PROOFSTEP]
rw [← le_bot_iff, ← hn]
[GOAL]
case refine'_1.intro.intro
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
hG : Group.IsNilpotent G
n : ℕ
H : ℕ → Subgroup G
hH : IsDescendingCentralSeries H
hn : H n = ⊥
⊢ lowerCentralSeries G n ≤ H n
[PROOFSTEP]
exact descending_central_series_ge_lower H hH n
[GOAL]
case refine'_2
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
hG : Group.IsNilpotent G
⊢ ∀ (n : ℕ), lowerCentralSeries G n = ⊥ → ∃ H, IsDescendingCentralSeries H ∧ H n = ⊥
[PROOFSTEP]
rintro n h
[GOAL]
case refine'_2
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
hG : Group.IsNilpotent G
n : ℕ
h : lowerCentralSeries G n = ⊥
⊢ ∃ H, IsDescendingCentralSeries H ∧ H n = ⊥
[PROOFSTEP]
exact ⟨lowerCentralSeries G, ⟨lowerCentralSeries_isDescendingCentralSeries, h⟩⟩
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
hG : Group.IsNilpotent G
⊢ lowerCentralSeries G (nilpotencyClass G) = ⊥
[PROOFSTEP]
rw [← lowerCentralSeries_length_eq_nilpotencyClass]
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
hG : Group.IsNilpotent G
⊢ lowerCentralSeries G (Nat.find (_ : ∃ n, lowerCentralSeries G n = ⊥)) = ⊥
[PROOFSTEP]
exact Nat.find_spec (nilpotent_iff_lowerCentralSeries.mp hG)
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
hG : Group.IsNilpotent G
n : ℕ
⊢ lowerCentralSeries G n = ⊥ ↔ nilpotencyClass G ≤ n
[PROOFSTEP]
constructor
[GOAL]
case mp
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
hG : Group.IsNilpotent G
n : ℕ
⊢ lowerCentralSeries G n = ⊥ → nilpotencyClass G ≤ n
[PROOFSTEP]
intro h
[GOAL]
case mp
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
hG : Group.IsNilpotent G
n : ℕ
h : lowerCentralSeries G n = ⊥
⊢ nilpotencyClass G ≤ n
[PROOFSTEP]
rw [← lowerCentralSeries_length_eq_nilpotencyClass]
[GOAL]
case mp
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
hG : Group.IsNilpotent G
n : ℕ
h : lowerCentralSeries G n = ⊥
⊢ Nat.find (_ : ∃ n, lowerCentralSeries G n = ⊥) ≤ n
[PROOFSTEP]
exact Nat.find_le h
[GOAL]
case mpr
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
hG : Group.IsNilpotent G
n : ℕ
⊢ nilpotencyClass G ≤ n → lowerCentralSeries G n = ⊥
[PROOFSTEP]
intro h
[GOAL]
case mpr
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
hG : Group.IsNilpotent G
n : ℕ
h : nilpotencyClass G ≤ n
⊢ lowerCentralSeries G n = ⊥
[PROOFSTEP]
apply eq_bot_iff.mpr
[GOAL]
case mpr
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
hG : Group.IsNilpotent G
n : ℕ
h : nilpotencyClass G ≤ n
⊢ lowerCentralSeries G n ≤ ⊥
[PROOFSTEP]
rw [← lowerCentralSeries_nilpotencyClass]
[GOAL]
case mpr
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
hG : Group.IsNilpotent G
n : ℕ
h : nilpotencyClass G ≤ n
⊢ lowerCentralSeries G n ≤ lowerCentralSeries G (nilpotencyClass G)
[PROOFSTEP]
exact lowerCentralSeries_antitone h
[GOAL]
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
H : Subgroup G
n : ℕ
⊢ Subgroup.map (Subgroup.subtype H) (lowerCentralSeries { x // x ∈ H } n) ≤ lowerCentralSeries G n
[PROOFSTEP]
induction' n with d hd
[GOAL]
case zero
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
H : Subgroup G
⊢ Subgroup.map (Subgroup.subtype H) (lowerCentralSeries { x // x ∈ H } Nat.zero) ≤ lowerCentralSeries G Nat.zero
[PROOFSTEP]
simp
[GOAL]
case succ
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
H : Subgroup G
d : ℕ
hd : Subgroup.map (Subgroup.subtype H) (lowerCentralSeries { x // x ∈ H } d) ≤ lowerCentralSeries G d
⊢ Subgroup.map (Subgroup.subtype H) (lowerCentralSeries { x // x ∈ H } (Nat.succ d)) ≤ lowerCentralSeries G (Nat.succ d)
[PROOFSTEP]
rw [lowerCentralSeries_succ, lowerCentralSeries_succ, MonoidHom.map_closure]
[GOAL]
case succ
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
H : Subgroup G
d : ℕ
hd : Subgroup.map (Subgroup.subtype H) (lowerCentralSeries { x // x ∈ H } d) ≤ lowerCentralSeries G d
⊢ closure
(↑(Subgroup.subtype H) ''
{x | ∃ p, p ∈ lowerCentralSeries { x // x ∈ H } d ∧ ∃ q, q ∈ ⊤ ∧ p * q * p⁻¹ * q⁻¹ = x}) ≤
closure {x | ∃ p, p ∈ lowerCentralSeries G d ∧ ∃ q, q ∈ ⊤ ∧ p * q * p⁻¹ * q⁻¹ = x}
[PROOFSTEP]
apply Subgroup.closure_mono
[GOAL]
case succ.h'
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
H : Subgroup G
d : ℕ
hd : Subgroup.map (Subgroup.subtype H) (lowerCentralSeries { x // x ∈ H } d) ≤ lowerCentralSeries G d
⊢ ↑(Subgroup.subtype H) '' {x | ∃ p, p ∈ lowerCentralSeries { x // x ∈ H } d ∧ ∃ q, q ∈ ⊤ ∧ p * q * p⁻¹ * q⁻¹ = x} ⊆
{x | ∃ p, p ∈ lowerCentralSeries G d ∧ ∃ q, q ∈ ⊤ ∧ p * q * p⁻¹ * q⁻¹ = x}
[PROOFSTEP]
rintro x1 ⟨x2, ⟨x3, hx3, x4, _hx4, rfl⟩, rfl⟩
[GOAL]
case succ.h'.intro.intro.intro.intro.intro.intro
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
H : Subgroup G
d : ℕ
hd : Subgroup.map (Subgroup.subtype H) (lowerCentralSeries { x // x ∈ H } d) ≤ lowerCentralSeries G d
x3 : { x // x ∈ H }
hx3 : x3 ∈ lowerCentralSeries { x // x ∈ H } d
x4 : { x // x ∈ H }
_hx4 : x4 ∈ ⊤
⊢ ↑(Subgroup.subtype H) (x3 * x4 * x3⁻¹ * x4⁻¹) ∈
{x | ∃ p, p ∈ lowerCentralSeries G d ∧ ∃ q, q ∈ ⊤ ∧ p * q * p⁻¹ * q⁻¹ = x}
[PROOFSTEP]
exact ⟨x3, hd (mem_map.mpr ⟨x3, hx3, rfl⟩), x4, by simp⟩
[GOAL]
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
H : Subgroup G
d : ℕ
hd : Subgroup.map (Subgroup.subtype H) (lowerCentralSeries { x // x ∈ H } d) ≤ lowerCentralSeries G d
x3 : { x // x ∈ H }
hx3 : x3 ∈ lowerCentralSeries { x // x ∈ H } d
x4 : { x // x ∈ H }
_hx4 : x4 ∈ ⊤
⊢ ↑x4 ∈ ⊤ ∧ ↑x3 * ↑x4 * (↑x3)⁻¹ * (↑x4)⁻¹ = ↑(Subgroup.subtype H) (x3 * x4 * x3⁻¹ * x4⁻¹)
[PROOFSTEP]
simp
[GOAL]
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
H : Subgroup G
hG : Group.IsNilpotent G
⊢ Group.IsNilpotent { x // x ∈ H }
[PROOFSTEP]
rw [nilpotent_iff_lowerCentralSeries] at *
[GOAL]
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
H : Subgroup G
hG : ∃ n, lowerCentralSeries G n = ⊥
⊢ ∃ n, lowerCentralSeries { x // x ∈ H } n = ⊥
[PROOFSTEP]
rcases hG with ⟨n, hG⟩
[GOAL]
case intro
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
H : Subgroup G
n : ℕ
hG : lowerCentralSeries G n = ⊥
⊢ ∃ n, lowerCentralSeries { x // x ∈ H } n = ⊥
[PROOFSTEP]
use n
[GOAL]
case h
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
H : Subgroup G
n : ℕ
hG : lowerCentralSeries G n = ⊥
⊢ lowerCentralSeries { x // x ∈ H } n = ⊥
[PROOFSTEP]
have := lowerCentralSeries_map_subtype_le H n
[GOAL]
case h
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
H : Subgroup G
n : ℕ
hG : lowerCentralSeries G n = ⊥
this : map (Subgroup.subtype H) (lowerCentralSeries { x // x ∈ H } n) ≤ lowerCentralSeries G n
⊢ lowerCentralSeries { x // x ∈ H } n = ⊥
[PROOFSTEP]
simp only [hG, SetLike.le_def, mem_map, forall_apply_eq_imp_iff₂, exists_imp] at this
[GOAL]
case h
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
H : Subgroup G
n : ℕ
hG : lowerCentralSeries G n = ⊥
this :
∀ ⦃x : G⦄ (x_1 : { x // x ∈ H }), x_1 ∈ lowerCentralSeries { x // x ∈ H } n ∧ ↑(Subgroup.subtype H) x_1 = x → x ∈ ⊥
⊢ lowerCentralSeries { x // x ∈ H } n = ⊥
[PROOFSTEP]
exact eq_bot_iff.mpr fun x hx => Subtype.ext (this x ⟨hx, rfl⟩)
[GOAL]
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
H : Subgroup G
hG : Group.IsNilpotent G
⊢ nilpotencyClass { x // x ∈ H } ≤ nilpotencyClass G
[PROOFSTEP]
repeat
rw [← lowerCentralSeries_length_eq_nilpotencyClass]
--- Porting note : Lean needs to be told that predicates are decidable
[GOAL]
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
H : Subgroup G
hG : Group.IsNilpotent G
⊢ nilpotencyClass { x // x ∈ H } ≤ nilpotencyClass G
[PROOFSTEP]
rw [← lowerCentralSeries_length_eq_nilpotencyClass]
--- Porting note : Lean needs to be told that predicates are decidable
[GOAL]
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
H : Subgroup G
hG : Group.IsNilpotent G
⊢ Nat.find (_ : ∃ n, lowerCentralSeries { x // x ∈ H } n = ⊥) ≤ nilpotencyClass G
[PROOFSTEP]
rw [← lowerCentralSeries_length_eq_nilpotencyClass]
--- Porting note : Lean needs to be told that predicates are decidable
[GOAL]
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
H : Subgroup G
hG : Group.IsNilpotent G
⊢ Nat.find (_ : ∃ n, lowerCentralSeries { x // x ∈ H } n = ⊥) ≤ Nat.find (_ : ∃ n, lowerCentralSeries G n = ⊥)
[PROOFSTEP]
rw [← lowerCentralSeries_length_eq_nilpotencyClass]
--- Porting note : Lean needs to be told that predicates are decidable
[GOAL]
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
H : Subgroup G
hG : Group.IsNilpotent G
⊢ Nat.find (_ : ∃ n, lowerCentralSeries { x // x ∈ H } n = ⊥) ≤ Nat.find (_ : ∃ n, lowerCentralSeries G n = ⊥)
[PROOFSTEP]
refine @Nat.find_mono _ _ (Classical.decPred _) (Classical.decPred _) ?_ _ _
[GOAL]
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
H : Subgroup G
hG : Group.IsNilpotent G
⊢ ∀ (n : ℕ), lowerCentralSeries G n = ⊥ → lowerCentralSeries { x // x ∈ H } n = ⊥
[PROOFSTEP]
intro n hG
[GOAL]
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
H : Subgroup G
hG✝ : Group.IsNilpotent G
n : ℕ
hG : lowerCentralSeries G n = ⊥
⊢ lowerCentralSeries { x // x ∈ H } n = ⊥
[PROOFSTEP]
have := lowerCentralSeries_map_subtype_le H n
[GOAL]
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
H : Subgroup G
hG✝ : Group.IsNilpotent G
n : ℕ
hG : lowerCentralSeries G n = ⊥
this : map (Subgroup.subtype H) (lowerCentralSeries { x // x ∈ H } n) ≤ lowerCentralSeries G n
⊢ lowerCentralSeries { x // x ∈ H } n = ⊥
[PROOFSTEP]
simp only [hG, SetLike.le_def, mem_map, forall_apply_eq_imp_iff₂, exists_imp] at this
[GOAL]
G : Type u_1
inst✝¹ : Group G
H✝ : Subgroup G
inst✝ : Normal H✝
H : Subgroup G
hG✝ : Group.IsNilpotent G
n : ℕ
hG : lowerCentralSeries G n = ⊥
this :
∀ ⦃x : G⦄ (x_1 : { x // x ∈ H }), x_1 ∈ lowerCentralSeries { x // x ∈ H } n ∧ ↑(Subgroup.subtype H) x_1 = x → x ∈ ⊥
⊢ lowerCentralSeries { x // x ∈ H } n = ⊥
[PROOFSTEP]
exact eq_bot_iff.mpr fun x hx => Subtype.ext (this x ⟨hx, rfl⟩)
[GOAL]
G : Type u_1
inst✝² : Group G
H✝ : Subgroup G
inst✝¹ : Normal H✝
H : Type u_2
inst✝ : Group H
f : G →* H
h : Function.Surjective ↑f
n : ℕ
⊢ Subgroup.map f (upperCentralSeries G n) ≤ upperCentralSeries H n
[PROOFSTEP]
induction' n with d hd
[GOAL]
case zero
G : Type u_1
inst✝² : Group G
H✝ : Subgroup G
inst✝¹ : Normal H✝
H : Type u_2
inst✝ : Group H
f : G →* H
h : Function.Surjective ↑f
⊢ Subgroup.map f (upperCentralSeries G Nat.zero) ≤ upperCentralSeries H Nat.zero
[PROOFSTEP]
simp
[GOAL]
case succ
G : Type u_1
inst✝² : Group G
H✝ : Subgroup G
inst✝¹ : Normal H✝
H : Type u_2
inst✝ : Group H
f : G →* H
h : Function.Surjective ↑f
d : ℕ
hd : Subgroup.map f (upperCentralSeries G d) ≤ upperCentralSeries H d
⊢ Subgroup.map f (upperCentralSeries G (Nat.succ d)) ≤ upperCentralSeries H (Nat.succ d)
[PROOFSTEP]
rintro _ ⟨x, hx : x ∈ upperCentralSeries G d.succ, rfl⟩ y'
[GOAL]
case succ.intro.intro
G : Type u_1
inst✝² : Group G
H✝ : Subgroup G
inst✝¹ : Normal H✝
H : Type u_2
inst✝ : Group H
f : G →* H
h : Function.Surjective ↑f
d : ℕ
hd : Subgroup.map f (upperCentralSeries G d) ≤ upperCentralSeries H d
x : G
hx : x ∈ upperCentralSeries G (Nat.succ d)
y' : H
⊢ ↑f x * y' * (↑f x)⁻¹ * y'⁻¹ ∈ (upperCentralSeriesAux H d).fst
[PROOFSTEP]
rcases h y' with ⟨y, rfl⟩
[GOAL]
case succ.intro.intro.intro
G : Type u_1
inst✝² : Group G
H✝ : Subgroup G
inst✝¹ : Normal H✝
H : Type u_2
inst✝ : Group H
f : G →* H
h : Function.Surjective ↑f
d : ℕ
hd : Subgroup.map f (upperCentralSeries G d) ≤ upperCentralSeries H d
x : G
hx : x ∈ upperCentralSeries G (Nat.succ d)
y : G
⊢ ↑f x * ↑f y * (↑f x)⁻¹ * (↑f y)⁻¹ ∈ (upperCentralSeriesAux H d).fst
[PROOFSTEP]
simpa using hd (mem_map_of_mem f (hx y))
[GOAL]
G : Type u_1
inst✝² : Group G
H✝ : Subgroup G
inst✝¹ : Normal H✝
H : Type u_2
inst✝ : Group H
f : G →* H
n : ℕ
⊢ Subgroup.map f (lowerCentralSeries G n) ≤ lowerCentralSeries H n
[PROOFSTEP]
induction' n with d hd
[GOAL]
case zero
G : Type u_1
inst✝² : Group G
H✝ : Subgroup G
inst✝¹ : Normal H✝
H : Type u_2
inst✝ : Group H
f : G →* H
⊢ Subgroup.map f (lowerCentralSeries G Nat.zero) ≤ lowerCentralSeries H Nat.zero
[PROOFSTEP]
simp [Nat.zero_eq]
[GOAL]
case succ
G : Type u_1
inst✝² : Group G
H✝ : Subgroup G
inst✝¹ : Normal H✝
H : Type u_2
inst✝ : Group H
f : G →* H
d : ℕ
hd : Subgroup.map f (lowerCentralSeries G d) ≤ lowerCentralSeries H d
⊢ Subgroup.map f (lowerCentralSeries G (Nat.succ d)) ≤ lowerCentralSeries H (Nat.succ d)
[PROOFSTEP]
rintro a ⟨x, hx : x ∈ lowerCentralSeries G d.succ, rfl⟩
[GOAL]
case succ.intro.intro
G : Type u_1
inst✝² : Group G
H✝ : Subgroup G
inst✝¹ : Normal H✝
H : Type u_2
inst✝ : Group H
f : G →* H
d : ℕ
hd : Subgroup.map f (lowerCentralSeries G d) ≤ lowerCentralSeries H d
x : G
hx : x ∈ lowerCentralSeries G (Nat.succ d)
⊢ ↑f x ∈ lowerCentralSeries H (Nat.succ d)
[PROOFSTEP]
refine
closure_induction hx ?_ (by simp [f.map_one, Subgroup.one_mem _])
(fun y z hy hz => by simp [MonoidHom.map_mul, Subgroup.mul_mem _ hy hz])
(fun y hy => by rw [f.map_inv]; exact Subgroup.inv_mem _ hy)
[GOAL]
G : Type u_1
inst✝² : Group G
H✝ : Subgroup G
inst✝¹ : Normal H✝
H : Type u_2
inst✝ : Group H
f : G →* H
d : ℕ
hd : Subgroup.map f (lowerCentralSeries G d) ≤ lowerCentralSeries H d
x : G
hx : x ∈ lowerCentralSeries G (Nat.succ d)
⊢ ↑f 1 ∈ lowerCentralSeries H (Nat.succ d)
[PROOFSTEP]
simp [f.map_one, Subgroup.one_mem _]
[GOAL]
G : Type u_1
inst✝² : Group G
H✝ : Subgroup G
inst✝¹ : Normal H✝
H : Type u_2
inst✝ : Group H
f : G →* H
d : ℕ
hd : Subgroup.map f (lowerCentralSeries G d) ≤ lowerCentralSeries H d
x : G
hx : x ∈ lowerCentralSeries G (Nat.succ d)
y z : G
hy : ↑f y ∈ lowerCentralSeries H (Nat.succ d)
hz : ↑f z ∈ lowerCentralSeries H (Nat.succ d)
⊢ ↑f (y * z) ∈ lowerCentralSeries H (Nat.succ d)
[PROOFSTEP]
simp [MonoidHom.map_mul, Subgroup.mul_mem _ hy hz]
[GOAL]
G : Type u_1
inst✝² : Group G
H✝ : Subgroup G
inst✝¹ : Normal H✝
H : Type u_2
inst✝ : Group H
f : G →* H
d : ℕ
hd : Subgroup.map f (lowerCentralSeries G d) ≤ lowerCentralSeries H d
x : G
hx : x ∈ lowerCentralSeries G (Nat.succ d)
y : G
hy : ↑f y ∈ lowerCentralSeries H (Nat.succ d)
⊢ ↑f y⁻¹ ∈ lowerCentralSeries H (Nat.succ d)
[PROOFSTEP]
rw [f.map_inv]
[GOAL]
G : Type u_1
inst✝² : Group G
H✝ : Subgroup G
inst✝¹ : Normal H✝
H : Type u_2
inst✝ : Group H
f : G →* H
d : ℕ
hd : Subgroup.map f (lowerCentralSeries G d) ≤ lowerCentralSeries H d
x : G
hx : x ∈ lowerCentralSeries G (Nat.succ d)
y : G
hy : ↑f y ∈ lowerCentralSeries H (Nat.succ d)
⊢ (↑f y)⁻¹ ∈ lowerCentralSeries H (Nat.succ d)
[PROOFSTEP]
exact Subgroup.inv_mem _ hy
[GOAL]
case succ.intro.intro
G : Type u_1
inst✝² : Group G
H✝ : Subgroup G
inst✝¹ : Normal H✝
H : Type u_2
inst✝ : Group H
f : G →* H
d : ℕ
hd : Subgroup.map f (lowerCentralSeries G d) ≤ lowerCentralSeries H d
x : G
hx : x ∈ lowerCentralSeries G (Nat.succ d)
⊢ ∀ (x : G),
x ∈ {g | ∃ g₁, g₁ ∈ lowerCentralSeries G d ∧ ∃ g₂, g₂ ∈ ⊤ ∧ ⁅g₁, g₂⁆ = g} → ↑f x ∈ lowerCentralSeries H (Nat.succ d)
[PROOFSTEP]
rintro a ⟨y, hy, z, ⟨-, rfl⟩⟩
[GOAL]
case succ.intro.intro.intro.intro.intro.intro
G : Type u_1
inst✝² : Group G
H✝ : Subgroup G
inst✝¹ : Normal H✝
H : Type u_2
inst✝ : Group H
f : G →* H
d : ℕ
hd : Subgroup.map f (lowerCentralSeries G d) ≤ lowerCentralSeries H d
x : G
hx : x ∈ lowerCentralSeries G (Nat.succ d)
y : G
hy : y ∈ lowerCentralSeries G d
z : G
⊢ ↑f ⁅y, z⁆ ∈ lowerCentralSeries H (Nat.succ d)
[PROOFSTEP]
apply mem_closure.mpr
[GOAL]
case succ.intro.intro.intro.intro.intro.intro
G : Type u_1
inst✝² : Group G
H✝ : Subgroup G
inst✝¹ : Normal H✝
H : Type u_2
inst✝ : Group H
f : G →* H
d : ℕ
hd : Subgroup.map f (lowerCentralSeries G d) ≤ lowerCentralSeries H d
x : G
hx : x ∈ lowerCentralSeries G (Nat.succ d)
y : G
hy : y ∈ lowerCentralSeries G d
z : G
⊢ ∀ (K : Subgroup H), {g | ∃ g₁, g₁ ∈ lowerCentralSeries H d ∧ ∃ g₂, g₂ ∈ ⊤ ∧ ⁅g₁, g₂⁆ = g} ⊆ ↑K → ↑f ⁅y, z⁆ ∈ K
[PROOFSTEP]
exact fun K hK => hK ⟨f y, hd (mem_map_of_mem f hy), by simp [commutatorElement_def]⟩
[GOAL]
G : Type u_1
inst✝² : Group G
H✝ : Subgroup G
inst✝¹ : Normal H✝
H : Type u_2
inst✝ : Group H
f : G →* H
d : ℕ
hd : Subgroup.map f (lowerCentralSeries G d) ≤ lowerCentralSeries H d
x : G
hx : x ∈ lowerCentralSeries G (Nat.succ d)
y : G
hy : y ∈ lowerCentralSeries G d
z : G
K : Subgroup H
hK : {g | ∃ g₁, g₁ ∈ lowerCentralSeries H d ∧ ∃ g₂, g₂ ∈ ⊤ ∧ ⁅g₁, g₂⁆ = g} ⊆ ↑K
⊢ ∃ g₂, g₂ ∈ ⊤ ∧ ⁅↑f y, g₂⁆ = ↑f ⁅y, z⁆
[PROOFSTEP]
simp [commutatorElement_def]
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
n : ℕ
h : lowerCentralSeries G n ≤ center G
⊢ lowerCentralSeries G (n + 1) = ⊥
[PROOFSTEP]
rw [lowerCentralSeries_succ, closure_eq_bot_iff, Set.subset_singleton_iff]
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
n : ℕ
h : lowerCentralSeries G n ≤ center G
⊢ ∀ (y : G), y ∈ {x | ∃ p, p ∈ lowerCentralSeries G n ∧ ∃ q, q ∈ ⊤ ∧ p * q * p⁻¹ * q⁻¹ = x} → y = 1
[PROOFSTEP]
rintro x ⟨y, hy1, z, ⟨⟩, rfl⟩
[GOAL]
case intro.intro.intro.intro.intro
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
n : ℕ
h : lowerCentralSeries G n ≤ center G
y : G
hy1 : y ∈ lowerCentralSeries G n
z : G
⊢ y * z * y⁻¹ * z⁻¹ = 1
[PROOFSTEP]
rw [mul_assoc, ← mul_inv_rev, mul_inv_eq_one, eq_comm]
[GOAL]
case intro.intro.intro.intro.intro
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
n : ℕ
h : lowerCentralSeries G n ≤ center G
y : G
hy1 : y ∈ lowerCentralSeries G n
z : G
⊢ z * y = y * z
[PROOFSTEP]
exact mem_center_iff.mp (h hy1) z
[GOAL]
G : Type u_1
inst✝² : Group G
H✝ : Subgroup G
inst✝¹ : Normal H✝
H : Type u_2
inst✝ : Group H
f : G →* H
hf1 : MonoidHom.ker f ≤ center G
hH : Group.IsNilpotent H
⊢ Group.IsNilpotent G
[PROOFSTEP]
rw [nilpotent_iff_lowerCentralSeries] at *
[GOAL]
G : Type u_1
inst✝² : Group G
H✝ : Subgroup G
inst✝¹ : Normal H✝
H : Type u_2
inst✝ : Group H
f : G →* H
hf1 : MonoidHom.ker f ≤ center G
hH : ∃ n, lowerCentralSeries H n = ⊥
⊢ ∃ n, lowerCentralSeries G n = ⊥
[PROOFSTEP]
rcases hH with ⟨n, hn⟩
[GOAL]
case intro
G : Type u_1
inst✝² : Group G
H✝ : Subgroup G
inst✝¹ : Normal H✝
H : Type u_2
inst✝ : Group H
f : G →* H
hf1 : MonoidHom.ker f ≤ center G
n : ℕ
hn : lowerCentralSeries H n = ⊥
⊢ ∃ n, lowerCentralSeries G n = ⊥
[PROOFSTEP]
use n + 1
[GOAL]
case h
G : Type u_1
inst✝² : Group G
H✝ : Subgroup G
inst✝¹ : Normal H✝
H : Type u_2
inst✝ : Group H
f : G →* H
hf1 : MonoidHom.ker f ≤ center G
n : ℕ
hn : lowerCentralSeries H n = ⊥
⊢ lowerCentralSeries G (n + 1) = ⊥
[PROOFSTEP]
refine' lowerCentralSeries_succ_eq_bot (le_trans ((Subgroup.map_eq_bot_iff _).mp _) hf1)
[GOAL]
case h
G : Type u_1
inst✝² : Group G
H✝ : Subgroup G
inst✝¹ : Normal H✝
H : Type u_2
inst✝ : Group H
f : G →* H
hf1 : MonoidHom.ker f ≤ center G
n : ℕ
hn : lowerCentralSeries H n = ⊥
⊢ Subgroup.map f (lowerCentralSeries G n) = ⊥
[PROOFSTEP]
exact eq_bot_iff.mpr (hn ▸ lowerCentralSeries.map f n)
[GOAL]
G : Type u_1
inst✝² : Group G
H✝ : Subgroup G
inst✝¹ : Normal H✝
H : Type u_2
inst✝ : Group H
f : G →* H
hf1 : MonoidHom.ker f ≤ center G
hH : Group.IsNilpotent H
⊢ nilpotencyClass G ≤ nilpotencyClass H + 1
[PROOFSTEP]
haveI : IsNilpotent G := isNilpotent_of_ker_le_center f hf1 hH
[GOAL]
G : Type u_1
inst✝² : Group G
H✝ : Subgroup G
inst✝¹ : Normal H✝
H : Type u_2
inst✝ : Group H
f : G →* H
hf1 : MonoidHom.ker f ≤ center G
hH : Group.IsNilpotent H
this : Group.IsNilpotent G
⊢ nilpotencyClass G ≤ nilpotencyClass H + 1
[PROOFSTEP]
rw [← lowerCentralSeries_length_eq_nilpotencyClass]
-- Porting note: Lean needs to be told that predicates are decidable
[GOAL]
G : Type u_1
inst✝² : Group G
H✝ : Subgroup G
inst✝¹ : Normal H✝
H : Type u_2
inst✝ : Group H
f : G →* H
hf1 : MonoidHom.ker f ≤ center G
hH : Group.IsNilpotent H
this : Group.IsNilpotent G
⊢ Nat.find (_ : ∃ n, lowerCentralSeries G n = ⊥) ≤ nilpotencyClass H + 1
[PROOFSTEP]
refine @Nat.find_min' _ (Classical.decPred _) _ _ ?_
[GOAL]
G : Type u_1
inst✝² : Group G
H✝ : Subgroup G
inst✝¹ : Normal H✝
H : Type u_2
inst✝ : Group H
f : G →* H
hf1 : MonoidHom.ker f ≤ center G
hH : Group.IsNilpotent H
this : Group.IsNilpotent G
⊢ lowerCentralSeries G (nilpotencyClass H + 1) = ⊥
[PROOFSTEP]
refine lowerCentralSeries_succ_eq_bot (le_trans ((Subgroup.map_eq_bot_iff _).mp ?_) hf1)
[GOAL]
G : Type u_1
inst✝² : Group G
H✝ : Subgroup G
inst✝¹ : Normal H✝
H : Type u_2
inst✝ : Group H
f : G →* H
hf1 : MonoidHom.ker f ≤ center G
hH : Group.IsNilpotent H
this : Group.IsNilpotent G
⊢ Subgroup.map f (lowerCentralSeries G (nilpotencyClass H)) = ⊥
[PROOFSTEP]
apply eq_bot_iff.mpr
[GOAL]
G : Type u_1
inst✝² : Group G
H✝ : Subgroup G
inst✝¹ : Normal H✝
H : Type u_2
inst✝ : Group H
f : G →* H
hf1 : MonoidHom.ker f ≤ center G
hH : Group.IsNilpotent H
this : Group.IsNilpotent G
⊢ Subgroup.map f (lowerCentralSeries G (nilpotencyClass H)) ≤ ⊥
[PROOFSTEP]
apply le_trans (lowerCentralSeries.map f _)
[GOAL]
G : Type u_1
inst✝² : Group G
H✝ : Subgroup G
inst✝¹ : Normal H✝
H : Type u_2
inst✝ : Group H
f : G →* H
hf1 : MonoidHom.ker f ≤ center G
hH : Group.IsNilpotent H
this : Group.IsNilpotent G
⊢ lowerCentralSeries H (nilpotencyClass H) ≤ ⊥
[PROOFSTEP]
simp only [lowerCentralSeries_nilpotencyClass, le_bot_iff]
[GOAL]
G : Type u_1
inst✝² : Group G
H : Subgroup G
inst✝¹ : Normal H
G' : Type u_2
inst✝ : Group G'
h : Group.IsNilpotent G
f : G →* G'
hf : Function.Surjective ↑f
⊢ Group.IsNilpotent G'
[PROOFSTEP]
rcases h with ⟨n, hn⟩
[GOAL]
case mk.intro
G : Type u_1
inst✝² : Group G
H : Subgroup G
inst✝¹ : Normal H
G' : Type u_2
inst✝ : Group G'
f : G →* G'
hf : Function.Surjective ↑f
n : ℕ
hn : upperCentralSeries G n = ⊤
⊢ Group.IsNilpotent G'
[PROOFSTEP]
use n
[GOAL]
case h
G : Type u_1
inst✝² : Group G
H : Subgroup G
inst✝¹ : Normal H
G' : Type u_2
inst✝ : Group G'
f : G →* G'
hf : Function.Surjective ↑f
n : ℕ
hn : upperCentralSeries G n = ⊤
⊢ upperCentralSeries G' n = ⊤
[PROOFSTEP]
apply eq_top_iff.mpr
[GOAL]
case h
G : Type u_1
inst✝² : Group G
H : Subgroup G
inst✝¹ : Normal H
G' : Type u_2
inst✝ : Group G'
f : G →* G'
hf : Function.Surjective ↑f
n : ℕ
hn : upperCentralSeries G n = ⊤
⊢ ⊤ ≤ upperCentralSeries G' n
[PROOFSTEP]
calc
⊤ = f.range := symm (f.range_top_of_surjective hf)
_ = Subgroup.map f ⊤ := (MonoidHom.range_eq_map _)
_ = Subgroup.map f (upperCentralSeries G n) := by rw [hn]
_ ≤ upperCentralSeries G' n := upperCentralSeries.map hf n
[GOAL]
G : Type u_1
inst✝² : Group G
H : Subgroup G
inst✝¹ : Normal H
G' : Type u_2
inst✝ : Group G'
f : G →* G'
hf : Function.Surjective ↑f
n : ℕ
hn : upperCentralSeries G n = ⊤
⊢ Subgroup.map f ⊤ = Subgroup.map f (upperCentralSeries G n)
[PROOFSTEP]
rw [hn]
[GOAL]
G : Type u_1
inst✝² : Group G
H : Subgroup G
inst✝¹ : Normal H
G' : Type u_2
inst✝ : Group G'
f : G →* G'
hf : Function.Surjective ↑f
h : Group.IsNilpotent G
⊢ nilpotencyClass G' ≤ nilpotencyClass G
[PROOFSTEP]
refine @Nat.find_mono _ _ (Classical.decPred _) (Classical.decPred _) ?_ _ _
[GOAL]
G : Type u_1
inst✝² : Group G
H : Subgroup G
inst✝¹ : Normal H
G' : Type u_2
inst✝ : Group G'
f : G →* G'
hf : Function.Surjective ↑f
h : Group.IsNilpotent G
⊢ ∀ (n : ℕ), upperCentralSeries G n = ⊤ → upperCentralSeries G' n = ⊤
[PROOFSTEP]
intro n hn
[GOAL]
G : Type u_1
inst✝² : Group G
H : Subgroup G
inst✝¹ : Normal H
G' : Type u_2
inst✝ : Group G'
f : G →* G'
hf : Function.Surjective ↑f
h : Group.IsNilpotent G
n : ℕ
hn : upperCentralSeries G n = ⊤
⊢ upperCentralSeries G' n = ⊤
[PROOFSTEP]
apply eq_top_iff.mpr
[GOAL]
G : Type u_1
inst✝² : Group G
H : Subgroup G
inst✝¹ : Normal H
G' : Type u_2
inst✝ : Group G'
f : G →* G'
hf : Function.Surjective ↑f
h : Group.IsNilpotent G
n : ℕ
hn : upperCentralSeries G n = ⊤
⊢ ⊤ ≤ upperCentralSeries G' n
[PROOFSTEP]
calc
⊤ = f.range := symm (f.range_top_of_surjective hf)
_ = Subgroup.map f ⊤ := (MonoidHom.range_eq_map _)
_ = Subgroup.map f (upperCentralSeries G n) := by rw [hn]
_ ≤ upperCentralSeries G' n := upperCentralSeries.map hf n
[GOAL]
G : Type u_1
inst✝² : Group G
H : Subgroup G
inst✝¹ : Normal H
G' : Type u_2
inst✝ : Group G'
f : G →* G'
hf : Function.Surjective ↑f
h : Group.IsNilpotent G
n : ℕ
hn : upperCentralSeries G n = ⊤
⊢ Subgroup.map f ⊤ = Subgroup.map f (upperCentralSeries G n)
[PROOFSTEP]
rw [hn]
[GOAL]
G : Type u_1
inst✝³ : Group G
H : Subgroup G
inst✝² : Normal H
H₁ H₂ : Subgroup G
inst✝¹ : Normal H₁
inst✝ : Normal H₂
h : H₁ = H₂
⊢ comap (mk' H₁) (center (G ⧸ H₁)) = comap (mk' H₂) (center (G ⧸ H₂))
[PROOFSTEP]
subst h
[GOAL]
G : Type u_1
inst✝³ : Group G
H : Subgroup G
inst✝² : Normal H
H₁ : Subgroup G
inst✝¹ inst✝ : Normal H₁
⊢ comap (mk' H₁) (center (G ⧸ H₁)) = comap (mk' H₁) (center (G ⧸ H₁))
[PROOFSTEP]
rfl
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
n : ℕ
⊢ comap (mk' (center G)) (upperCentralSeries (G ⧸ center G) n) = upperCentralSeries G (Nat.succ n)
[PROOFSTEP]
induction' n with n ih
[GOAL]
case zero
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
⊢ comap (mk' (center G)) (upperCentralSeries (G ⧸ center G) Nat.zero) = upperCentralSeries G (Nat.succ Nat.zero)
[PROOFSTEP]
simp only [Nat.zero_eq, upperCentralSeries_zero, MonoidHom.comap_bot, ker_mk', (upperCentralSeries_one G).symm]
[GOAL]
case succ
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
n : ℕ
ih : comap (mk' (center G)) (upperCentralSeries (G ⧸ center G) n) = upperCentralSeries G (Nat.succ n)
⊢ comap (mk' (center G)) (upperCentralSeries (G ⧸ center G) (Nat.succ n)) = upperCentralSeries G (Nat.succ (Nat.succ n))
[PROOFSTEP]
let Hn := upperCentralSeries (G ⧸ center G) n
[GOAL]
case succ
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
n : ℕ
ih : comap (mk' (center G)) (upperCentralSeries (G ⧸ center G) n) = upperCentralSeries G (Nat.succ n)
Hn : Subgroup (G ⧸ center G) := upperCentralSeries (G ⧸ center G) n
⊢ comap (mk' (center G)) (upperCentralSeries (G ⧸ center G) (Nat.succ n)) = upperCentralSeries G (Nat.succ (Nat.succ n))
[PROOFSTEP]
calc
comap (mk' (center G)) (upperCentralSeriesStep Hn) =
comap (mk' (center G)) (comap (mk' Hn) (center ((G ⧸ center G) ⧸ Hn))) :=
by rw [upperCentralSeriesStep_eq_comap_center]
_ = comap (mk' (comap (mk' (center G)) Hn)) (center (G ⧸ comap (mk' (center G)) Hn)) :=
QuotientGroup.comap_comap_center
_ = comap (mk' (upperCentralSeries G n.succ)) (center (G ⧸ upperCentralSeries G n.succ)) := (comap_center_subst ih)
_ = upperCentralSeriesStep (upperCentralSeries G n.succ) := symm (upperCentralSeriesStep_eq_comap_center _)
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
n : ℕ
ih : comap (mk' (center G)) (upperCentralSeries (G ⧸ center G) n) = upperCentralSeries G (Nat.succ n)
Hn : Subgroup (G ⧸ center G) := upperCentralSeries (G ⧸ center G) n
⊢ comap (mk' (center G)) (upperCentralSeriesStep Hn) =
comap (mk' (center G)) (comap (mk' Hn) (center ((G ⧸ center G) ⧸ Hn)))
[PROOFSTEP]
rw [upperCentralSeriesStep_eq_comap_center]
[GOAL]
G : Type u_1
inst✝² : Group G
H : Subgroup G
inst✝¹ : Normal H
inst✝ : Group.IsNilpotent G
⊢ nilpotencyClass G = 0 ↔ Subsingleton G
[PROOFSTEP]
rw [Group.nilpotencyClass, @Nat.find_eq_zero _ (Classical.decPred _), upperCentralSeries_zero,
subsingleton_iff_bot_eq_top, Subgroup.subsingleton_iff]
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
hH : Group.IsNilpotent G
⊢ nilpotencyClass (G ⧸ center G) = nilpotencyClass G - 1
[PROOFSTEP]
generalize hn : Group.nilpotencyClass G = n
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
hH : Group.IsNilpotent G
n : ℕ
hn : nilpotencyClass G = n
⊢ nilpotencyClass (G ⧸ center G) = n - 1
[PROOFSTEP]
rcases n with (rfl | n)
[GOAL]
case zero
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
hH : Group.IsNilpotent G
hn : nilpotencyClass G = Nat.zero
⊢ nilpotencyClass (G ⧸ center G) = Nat.zero - 1
[PROOFSTEP]
simp [nilpotencyClass_zero_iff_subsingleton] at *
[GOAL]
case zero
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
hH : Group.IsNilpotent G
hn : Subsingleton G
⊢ Subsingleton (G ⧸ center G)
[PROOFSTEP]
exact Quotient.instSubsingletonQuotient (leftRel (center G))
[GOAL]
case succ
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
hH : Group.IsNilpotent G
n : ℕ
hn : nilpotencyClass G = Nat.succ n
⊢ nilpotencyClass (G ⧸ center G) = Nat.succ n - 1
[PROOFSTEP]
suffices Group.nilpotencyClass (G ⧸ center G) = n by simpa
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
hH : Group.IsNilpotent G
n : ℕ
hn : nilpotencyClass G = Nat.succ n
this : nilpotencyClass (G ⧸ center G) = n
⊢ nilpotencyClass (G ⧸ center G) = Nat.succ n - 1
[PROOFSTEP]
simpa
[GOAL]
case succ
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
hH : Group.IsNilpotent G
n : ℕ
hn : nilpotencyClass G = Nat.succ n
⊢ nilpotencyClass (G ⧸ center G) = n
[PROOFSTEP]
apply le_antisymm
[GOAL]
case succ.a
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
hH : Group.IsNilpotent G
n : ℕ
hn : nilpotencyClass G = Nat.succ n
⊢ nilpotencyClass (G ⧸ center G) ≤ n
[PROOFSTEP]
apply upperCentralSeries_eq_top_iff_nilpotencyClass_le.mp
[GOAL]
case succ.a
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
hH : Group.IsNilpotent G
n : ℕ
hn : nilpotencyClass G = Nat.succ n
⊢ upperCentralSeries (G ⧸ center G) n = ⊤
[PROOFSTEP]
apply @comap_injective G _ _ _ (mk' (center G)) (surjective_quot_mk _)
[GOAL]
case succ.a.a
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
hH : Group.IsNilpotent G
n : ℕ
hn : nilpotencyClass G = Nat.succ n
⊢ comap (mk' (center G)) (upperCentralSeries (G ⧸ center G) n) = comap (mk' (center G)) ⊤
[PROOFSTEP]
rw [comap_upperCentralSeries_quotient_center, comap_top, ← hn]
[GOAL]
case succ.a.a
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
hH : Group.IsNilpotent G
n : ℕ
hn : nilpotencyClass G = Nat.succ n
⊢ upperCentralSeries G (nilpotencyClass G) = ⊤
[PROOFSTEP]
exact upperCentralSeries_nilpotencyClass
[GOAL]
case succ.a
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
hH : Group.IsNilpotent G
n : ℕ
hn : nilpotencyClass G = Nat.succ n
⊢ n ≤ nilpotencyClass (G ⧸ center G)
[PROOFSTEP]
apply le_of_add_le_add_right
[GOAL]
case succ.a.bc
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
hH : Group.IsNilpotent G
n : ℕ
hn : nilpotencyClass G = Nat.succ n
⊢ n + ?succ.a.a ≤ nilpotencyClass (G ⧸ center G) + ?succ.a.a
case succ.a.a
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
hH : Group.IsNilpotent G
n : ℕ
hn : nilpotencyClass G = Nat.succ n
⊢ ℕ
[PROOFSTEP]
calc
n + 1 = n.succ := rfl
_ = Group.nilpotencyClass G := (symm hn)
_ ≤ Group.nilpotencyClass (G ⧸ center G) + 1 := nilpotencyClass_le_of_ker_le_center _ (le_of_eq (ker_mk' _)) _
[GOAL]
G : Type u_1
inst✝² : Group G
H : Subgroup G
inst✝¹ : Normal H
hH : Group.IsNilpotent G
inst✝ : Nontrivial G
⊢ nilpotencyClass G = nilpotencyClass (G ⧸ center G) + 1
[PROOFSTEP]
rw [nilpotencyClass_quotient_center]
[GOAL]
G : Type u_1
inst✝² : Group G
H : Subgroup G
inst✝¹ : Normal H
hH : Group.IsNilpotent G
inst✝ : Nontrivial G
⊢ nilpotencyClass G = nilpotencyClass G - 1 + 1
[PROOFSTEP]
rcases h : Group.nilpotencyClass G with ⟨⟩
[GOAL]
case zero
G : Type u_1
inst✝² : Group G
H : Subgroup G
inst✝¹ : Normal H
hH : Group.IsNilpotent G
inst✝ : Nontrivial G
h : nilpotencyClass G = Nat.zero
⊢ Nat.zero = Nat.zero - 1 + 1
[PROOFSTEP]
exfalso
[GOAL]
case zero.h
G : Type u_1
inst✝² : Group G
H : Subgroup G
inst✝¹ : Normal H
hH : Group.IsNilpotent G
inst✝ : Nontrivial G
h : nilpotencyClass G = Nat.zero
⊢ False
[PROOFSTEP]
rw [nilpotencyClass_zero_iff_subsingleton] at h
[GOAL]
case zero.h
G : Type u_1
inst✝² : Group G
H : Subgroup G
inst✝¹ : Normal H
hH : Group.IsNilpotent G
inst✝ : Nontrivial G
h : Subsingleton G
⊢ False
[PROOFSTEP]
skip
[GOAL]
case zero.h
G : Type u_1
inst✝² : Group G
H : Subgroup G
inst✝¹ : Normal H
hH : Group.IsNilpotent G
inst✝ : Nontrivial G
h : Subsingleton G
⊢ False
[PROOFSTEP]
apply false_of_nontrivial_of_subsingleton G
[GOAL]
case succ
G : Type u_1
inst✝² : Group G
H : Subgroup G
inst✝¹ : Normal H
hH : Group.IsNilpotent G
inst✝ : Nontrivial G
n✝ : ℕ
h : nilpotencyClass G = Nat.succ n✝
⊢ Nat.succ n✝ = Nat.succ n✝ - 1 + 1
[PROOFSTEP]
simp
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
h : Group.IsNilpotent (G ⧸ center G)
⊢ Group.IsNilpotent G
[PROOFSTEP]
obtain ⟨n, hn⟩ := h.nilpotent
[GOAL]
case intro
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
h : Group.IsNilpotent (G ⧸ center G)
n : ℕ
hn : upperCentralSeries (G ⧸ center G) n = ⊤
⊢ Group.IsNilpotent G
[PROOFSTEP]
use n.succ
[GOAL]
case h
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
h : Group.IsNilpotent (G ⧸ center G)
n : ℕ
hn : upperCentralSeries (G ⧸ center G) n = ⊤
⊢ upperCentralSeries G (Nat.succ n) = ⊤
[PROOFSTEP]
simp [← comap_upperCentralSeries_quotient_center, hn]
[GOAL]
G✝ : Type u_1
inst✝³ : Group G✝
H : Subgroup G✝
inst✝² : Normal H
P : (G : Type u_2) → [inst : Group G] → [inst : Group.IsNilpotent G] → Prop
G : Type u_2
inst✝¹ : Group G
inst✝ : Group.IsNilpotent G
hbase : ∀ (G : Type u_2) [inst : Group G] [inst_1 : Subsingleton G], P G
hstep : ∀ (G : Type u_2) [inst : Group G] [inst_1 : Group.IsNilpotent G], P (G ⧸ center G) → P G
⊢ P G
[PROOFSTEP]
obtain ⟨n, h⟩ : ∃ n, Group.nilpotencyClass G = n := ⟨_, rfl⟩
[GOAL]
case intro
G✝ : Type u_1
inst✝³ : Group G✝
H : Subgroup G✝
inst✝² : Normal H
P : (G : Type u_2) → [inst : Group G] → [inst : Group.IsNilpotent G] → Prop
G : Type u_2
inst✝¹ : Group G
inst✝ : Group.IsNilpotent G
hbase : ∀ (G : Type u_2) [inst : Group G] [inst_1 : Subsingleton G], P G
hstep : ∀ (G : Type u_2) [inst : Group G] [inst_1 : Group.IsNilpotent G], P (G ⧸ center G) → P G
n : ℕ
h : nilpotencyClass G = n
⊢ P G
[PROOFSTEP]
induction' n with n ih generalizing G
[GOAL]
case intro.zero
G✝¹ : Type u_1
inst✝⁵ : Group G✝¹
H : Subgroup G✝¹
inst✝⁴ : Normal H
P : (G : Type u_2) → [inst : Group G] → [inst : Group.IsNilpotent G] → Prop
G✝ : Type u_2
inst✝³ : Group G✝
inst✝² : Group.IsNilpotent G✝
hbase : ∀ (G : Type u_2) [inst : Group G] [inst_1 : Subsingleton G], P G
hstep : ∀ (G : Type u_2) [inst : Group G] [inst_1 : Group.IsNilpotent G], P (G ⧸ center G) → P G
n : ℕ
h✝ : nilpotencyClass G✝ = n
G : Type u_2
inst✝¹ : Group G
inst✝ : Group.IsNilpotent G
h : nilpotencyClass G = Nat.zero
⊢ P G
[PROOFSTEP]
haveI := nilpotencyClass_zero_iff_subsingleton.mp h
[GOAL]
case intro.zero
G✝¹ : Type u_1
inst✝⁵ : Group G✝¹
H : Subgroup G✝¹
inst✝⁴ : Normal H
P : (G : Type u_2) → [inst : Group G] → [inst : Group.IsNilpotent G] → Prop
G✝ : Type u_2
inst✝³ : Group G✝
inst✝² : Group.IsNilpotent G✝
hbase : ∀ (G : Type u_2) [inst : Group G] [inst_1 : Subsingleton G], P G
hstep : ∀ (G : Type u_2) [inst : Group G] [inst_1 : Group.IsNilpotent G], P (G ⧸ center G) → P G
n : ℕ
h✝ : nilpotencyClass G✝ = n
G : Type u_2
inst✝¹ : Group G
inst✝ : Group.IsNilpotent G
h : nilpotencyClass G = Nat.zero
this : Subsingleton G
⊢ P G
[PROOFSTEP]
exact hbase _
[GOAL]
case intro.succ
G✝¹ : Type u_1
inst✝⁵ : Group G✝¹
H : Subgroup G✝¹
inst✝⁴ : Normal H
P : (G : Type u_2) → [inst : Group G] → [inst : Group.IsNilpotent G] → Prop
G✝ : Type u_2
inst✝³ : Group G✝
inst✝² : Group.IsNilpotent G✝
hbase : ∀ (G : Type u_2) [inst : Group G] [inst_1 : Subsingleton G], P G
hstep : ∀ (G : Type u_2) [inst : Group G] [inst_1 : Group.IsNilpotent G], P (G ⧸ center G) → P G
n✝ : ℕ
h✝ : nilpotencyClass G✝ = n✝
n : ℕ
ih : ∀ (G : Type u_2) [inst : Group G] [inst_1 : Group.IsNilpotent G], nilpotencyClass G = n → P G
G : Type u_2
inst✝¹ : Group G
inst✝ : Group.IsNilpotent G
h : nilpotencyClass G = Nat.succ n
⊢ P G
[PROOFSTEP]
have hn : Group.nilpotencyClass (G ⧸ center G) = n := by simp [nilpotencyClass_quotient_center, h]
[GOAL]
G✝¹ : Type u_1
inst✝⁵ : Group G✝¹
H : Subgroup G✝¹
inst✝⁴ : Normal H
P : (G : Type u_2) → [inst : Group G] → [inst : Group.IsNilpotent G] → Prop
G✝ : Type u_2
inst✝³ : Group G✝
inst✝² : Group.IsNilpotent G✝
hbase : ∀ (G : Type u_2) [inst : Group G] [inst_1 : Subsingleton G], P G
hstep : ∀ (G : Type u_2) [inst : Group G] [inst_1 : Group.IsNilpotent G], P (G ⧸ center G) → P G
n✝ : ℕ
h✝ : nilpotencyClass G✝ = n✝
n : ℕ
ih : ∀ (G : Type u_2) [inst : Group G] [inst_1 : Group.IsNilpotent G], nilpotencyClass G = n → P G
G : Type u_2
inst✝¹ : Group G
inst✝ : Group.IsNilpotent G
h : nilpotencyClass G = Nat.succ n
⊢ nilpotencyClass (G ⧸ center G) = n
[PROOFSTEP]
simp [nilpotencyClass_quotient_center, h]
[GOAL]
case intro.succ
G✝¹ : Type u_1
inst✝⁵ : Group G✝¹
H : Subgroup G✝¹
inst✝⁴ : Normal H
P : (G : Type u_2) → [inst : Group G] → [inst : Group.IsNilpotent G] → Prop
G✝ : Type u_2
inst✝³ : Group G✝
inst✝² : Group.IsNilpotent G✝
hbase : ∀ (G : Type u_2) [inst : Group G] [inst_1 : Subsingleton G], P G
hstep : ∀ (G : Type u_2) [inst : Group G] [inst_1 : Group.IsNilpotent G], P (G ⧸ center G) → P G
n✝ : ℕ
h✝ : nilpotencyClass G✝ = n✝
n : ℕ
ih : ∀ (G : Type u_2) [inst : Group G] [inst_1 : Group.IsNilpotent G], nilpotencyClass G = n → P G
G : Type u_2
inst✝¹ : Group G
inst✝ : Group.IsNilpotent G
h : nilpotencyClass G = Nat.succ n
hn : nilpotencyClass (G ⧸ center G) = n
⊢ P G
[PROOFSTEP]
exact hstep _ (ih _ hn)
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
n : ℕ
⊢ derivedSeries G n ≤ lowerCentralSeries G n
[PROOFSTEP]
induction' n with i ih
[GOAL]
case zero
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
⊢ derivedSeries G Nat.zero ≤ lowerCentralSeries G Nat.zero
[PROOFSTEP]
simp
[GOAL]
case succ
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
i : ℕ
ih : derivedSeries G i ≤ lowerCentralSeries G i
⊢ derivedSeries G (Nat.succ i) ≤ lowerCentralSeries G (Nat.succ i)
[PROOFSTEP]
apply commutator_mono ih
[GOAL]
case succ
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
i : ℕ
ih : derivedSeries G i ≤ lowerCentralSeries G i
⊢ derivedSeries G i ≤ ⊤
[PROOFSTEP]
simp
[GOAL]
G✝ : Type u_1
inst✝² : Group G✝
H : Subgroup G✝
inst✝¹ : Normal H
G : Type u_2
inst✝ : CommGroup G
⊢ Group.IsNilpotent G
[PROOFSTEP]
use 1
[GOAL]
case h
G✝ : Type u_1
inst✝² : Group G✝
H : Subgroup G✝
inst✝¹ : Normal H
G : Type u_2
inst✝ : CommGroup G
⊢ upperCentralSeries G 1 = ⊤
[PROOFSTEP]
rw [upperCentralSeries_one]
[GOAL]
case h
G✝ : Type u_1
inst✝² : Group G✝
H : Subgroup G✝
inst✝¹ : Normal H
G : Type u_2
inst✝ : CommGroup G
⊢ center G = ⊤
[PROOFSTEP]
apply CommGroup.center_eq_top
[GOAL]
G✝ : Type u_1
inst✝² : Group G✝
H : Subgroup G✝
inst✝¹ : Normal H
G : Type u_2
inst✝ : CommGroup G
⊢ nilpotencyClass G ≤ 1
[PROOFSTEP]
apply upperCentralSeries_eq_top_iff_nilpotencyClass_le.mp
[GOAL]
G✝ : Type u_1
inst✝² : Group G✝
H : Subgroup G✝
inst✝¹ : Normal H
G : Type u_2
inst✝ : CommGroup G
⊢ upperCentralSeries G 1 = ⊤
[PROOFSTEP]
rw [upperCentralSeries_one]
[GOAL]
G✝ : Type u_1
inst✝² : Group G✝
H : Subgroup G✝
inst✝¹ : Normal H
G : Type u_2
inst✝ : CommGroup G
⊢ center G = ⊤
[PROOFSTEP]
apply CommGroup.center_eq_top
[GOAL]
G : Type u_1
inst✝² : Group G
H : Subgroup G
inst✝¹ : Normal H
inst✝ : Group.IsNilpotent G
h : nilpotencyClass G ≤ 1
⊢ center G = ⊤
[PROOFSTEP]
rw [← upperCentralSeries_one]
[GOAL]
G : Type u_1
inst✝² : Group G
H : Subgroup G
inst✝¹ : Normal H
inst✝ : Group.IsNilpotent G
h : nilpotencyClass G ≤ 1
⊢ upperCentralSeries G 1 = ⊤
[PROOFSTEP]
exact upperCentralSeries_eq_top_iff_nilpotencyClass_le.mpr h
[GOAL]
G : Type u_1
inst✝³ : Group G
H : Subgroup G
inst✝² : Normal H
G₁ : Type u_2
G₂ : Type u_3
inst✝¹ : Group G₁
inst✝ : Group G₂
n : ℕ
⊢ lowerCentralSeries (G₁ × G₂) n = prod (lowerCentralSeries G₁ n) (lowerCentralSeries G₂ n)
[PROOFSTEP]
induction' n with n ih
[GOAL]
case zero
G : Type u_1
inst✝³ : Group G
H : Subgroup G
inst✝² : Normal H
G₁ : Type u_2
G₂ : Type u_3
inst✝¹ : Group G₁
inst✝ : Group G₂
⊢ lowerCentralSeries (G₁ × G₂) Nat.zero = prod (lowerCentralSeries G₁ Nat.zero) (lowerCentralSeries G₂ Nat.zero)
[PROOFSTEP]
simp
[GOAL]
case succ
G : Type u_1
inst✝³ : Group G
H : Subgroup G
inst✝² : Normal H
G₁ : Type u_2
G₂ : Type u_3
inst✝¹ : Group G₁
inst✝ : Group G₂
n : ℕ
ih : lowerCentralSeries (G₁ × G₂) n = prod (lowerCentralSeries G₁ n) (lowerCentralSeries G₂ n)
⊢ lowerCentralSeries (G₁ × G₂) (Nat.succ n) =
prod (lowerCentralSeries G₁ (Nat.succ n)) (lowerCentralSeries G₂ (Nat.succ n))
[PROOFSTEP]
calc
lowerCentralSeries (G₁ × G₂) n.succ = ⁅lowerCentralSeries (G₁ × G₂) n, ⊤⁆ := rfl
_ = ⁅(lowerCentralSeries G₁ n).prod (lowerCentralSeries G₂ n), ⊤⁆ := by rw [ih]
_ = ⁅(lowerCentralSeries G₁ n).prod (lowerCentralSeries G₂ n), (⊤ : Subgroup G₁).prod ⊤⁆ := by simp
_ = ⁅lowerCentralSeries G₁ n, (⊤ : Subgroup G₁)⁆.prod ⁅lowerCentralSeries G₂ n, ⊤⁆ := (commutator_prod_prod _ _ _ _)
_ = (lowerCentralSeries G₁ n.succ).prod (lowerCentralSeries G₂ n.succ) := rfl
[GOAL]
G : Type u_1
inst✝³ : Group G
H : Subgroup G
inst✝² : Normal H
G₁ : Type u_2
G₂ : Type u_3
inst✝¹ : Group G₁
inst✝ : Group G₂
n : ℕ
ih : lowerCentralSeries (G₁ × G₂) n = prod (lowerCentralSeries G₁ n) (lowerCentralSeries G₂ n)
⊢ ⁅lowerCentralSeries (G₁ × G₂) n, ⊤⁆ = ⁅prod (lowerCentralSeries G₁ n) (lowerCentralSeries G₂ n), ⊤⁆
[PROOFSTEP]
rw [ih]
[GOAL]
G : Type u_1
inst✝³ : Group G
H : Subgroup G
inst✝² : Normal H
G₁ : Type u_2
G₂ : Type u_3
inst✝¹ : Group G₁
inst✝ : Group G₂
n : ℕ
ih : lowerCentralSeries (G₁ × G₂) n = prod (lowerCentralSeries G₁ n) (lowerCentralSeries G₂ n)
⊢ ⁅prod (lowerCentralSeries G₁ n) (lowerCentralSeries G₂ n), ⊤⁆ =
⁅prod (lowerCentralSeries G₁ n) (lowerCentralSeries G₂ n), prod ⊤ ⊤⁆
[PROOFSTEP]
simp
[GOAL]
G : Type u_1
inst✝⁵ : Group G
H : Subgroup G
inst✝⁴ : Normal H
G₁ : Type u_2
G₂ : Type u_3
inst✝³ : Group G₁
inst✝² : Group G₂
inst✝¹ : Group.IsNilpotent G₁
inst✝ : Group.IsNilpotent G₂
⊢ Group.IsNilpotent (G₁ × G₂)
[PROOFSTEP]
rw [nilpotent_iff_lowerCentralSeries]
[GOAL]
G : Type u_1
inst✝⁵ : Group G
H : Subgroup G
inst✝⁴ : Normal H
G₁ : Type u_2
G₂ : Type u_3
inst✝³ : Group G₁
inst✝² : Group G₂
inst✝¹ : Group.IsNilpotent G₁
inst✝ : Group.IsNilpotent G₂
⊢ ∃ n, lowerCentralSeries (G₁ × G₂) n = ⊥
[PROOFSTEP]
refine' ⟨max (Group.nilpotencyClass G₁) (Group.nilpotencyClass G₂), _⟩
[GOAL]
G : Type u_1
inst✝⁵ : Group G
H : Subgroup G
inst✝⁴ : Normal H
G₁ : Type u_2
G₂ : Type u_3
inst✝³ : Group G₁
inst✝² : Group G₂
inst✝¹ : Group.IsNilpotent G₁
inst✝ : Group.IsNilpotent G₂
⊢ lowerCentralSeries (G₁ × G₂) (max (nilpotencyClass G₁) (nilpotencyClass G₂)) = ⊥
[PROOFSTEP]
rw [lowerCentralSeries_prod, lowerCentralSeries_eq_bot_iff_nilpotencyClass_le.mpr (le_max_left _ _),
lowerCentralSeries_eq_bot_iff_nilpotencyClass_le.mpr (le_max_right _ _), bot_prod_bot]
[GOAL]
G : Type u_1
inst✝⁵ : Group G
H : Subgroup G
inst✝⁴ : Normal H
G₁ : Type u_2
G₂ : Type u_3
inst✝³ : Group G₁
inst✝² : Group G₂
inst✝¹ : Group.IsNilpotent G₁
inst✝ : Group.IsNilpotent G₂
⊢ nilpotencyClass (G₁ × G₂) = max (nilpotencyClass G₁) (nilpotencyClass G₂)
[PROOFSTEP]
refine' eq_of_forall_ge_iff fun k => _
[GOAL]
G : Type u_1
inst✝⁵ : Group G
H : Subgroup G
inst✝⁴ : Normal H
G₁ : Type u_2
G₂ : Type u_3
inst✝³ : Group G₁
inst✝² : Group G₂
inst✝¹ : Group.IsNilpotent G₁
inst✝ : Group.IsNilpotent G₂
k : ℕ
⊢ nilpotencyClass (G₁ × G₂) ≤ k ↔ max (nilpotencyClass G₁) (nilpotencyClass G₂) ≤ k
[PROOFSTEP]
simp only [max_le_iff, ← lowerCentralSeries_eq_bot_iff_nilpotencyClass_le, lowerCentralSeries_prod, prod_eq_bot_iff]
[GOAL]
G : Type u_1
inst✝² : Group G
H : Subgroup G
inst✝¹ : Normal H
η : Type u_2
Gs : η → Type u_3
inst✝ : (i : η) → Group (Gs i)
n : ℕ
⊢ lowerCentralSeries ((i : η) → Gs i) n ≤ pi Set.univ fun i => lowerCentralSeries (Gs i) n
[PROOFSTEP]
let pi := fun f : ∀ i, Subgroup (Gs i) => Subgroup.pi Set.univ f
[GOAL]
G : Type u_1
inst✝² : Group G
H : Subgroup G
inst✝¹ : Normal H
η : Type u_2
Gs : η → Type u_3
inst✝ : (i : η) → Group (Gs i)
n : ℕ
pi : ((i : η) → Subgroup (Gs i)) → Subgroup ((i : η) → Gs i) := fun f => Subgroup.pi Set.univ f
⊢ lowerCentralSeries ((i : η) → Gs i) n ≤ Subgroup.pi Set.univ fun i => lowerCentralSeries (Gs i) n
[PROOFSTEP]
induction' n with n ih
[GOAL]
case zero
G : Type u_1
inst✝² : Group G
H : Subgroup G
inst✝¹ : Normal H
η : Type u_2
Gs : η → Type u_3
inst✝ : (i : η) → Group (Gs i)
pi : ((i : η) → Subgroup (Gs i)) → Subgroup ((i : η) → Gs i) := fun f => Subgroup.pi Set.univ f
⊢ lowerCentralSeries ((i : η) → Gs i) Nat.zero ≤ Subgroup.pi Set.univ fun i => lowerCentralSeries (Gs i) Nat.zero
[PROOFSTEP]
simp [pi_top]
[GOAL]
case succ
G : Type u_1
inst✝² : Group G
H : Subgroup G
inst✝¹ : Normal H
η : Type u_2
Gs : η → Type u_3
inst✝ : (i : η) → Group (Gs i)
pi : ((i : η) → Subgroup (Gs i)) → Subgroup ((i : η) → Gs i) := fun f => Subgroup.pi Set.univ f
n : ℕ
ih : lowerCentralSeries ((i : η) → Gs i) n ≤ Subgroup.pi Set.univ fun i => lowerCentralSeries (Gs i) n
⊢ lowerCentralSeries ((i : η) → Gs i) (Nat.succ n) ≤
Subgroup.pi Set.univ fun i => lowerCentralSeries (Gs i) (Nat.succ n)
[PROOFSTEP]
calc
lowerCentralSeries (∀ i, Gs i) n.succ = ⁅lowerCentralSeries (∀ i, Gs i) n, ⊤⁆ := rfl
_ ≤ ⁅pi fun i => lowerCentralSeries (Gs i) n, ⊤⁆ := (commutator_mono ih (le_refl _))
_ = ⁅pi fun i => lowerCentralSeries (Gs i) n, pi fun i => ⊤⁆ := by simp [pi_top]
_ ≤ pi fun i => ⁅lowerCentralSeries (Gs i) n, ⊤⁆ := (commutator_pi_pi_le _ _)
_ = pi fun i => lowerCentralSeries (Gs i) n.succ := rfl
[GOAL]
G : Type u_1
inst✝² : Group G
H : Subgroup G
inst✝¹ : Normal H
η : Type u_2
Gs : η → Type u_3
inst✝ : (i : η) → Group (Gs i)
pi : ((i : η) → Subgroup (Gs i)) → Subgroup ((i : η) → Gs i) := fun f => Subgroup.pi Set.univ f
n : ℕ
ih : lowerCentralSeries ((i : η) → Gs i) n ≤ Subgroup.pi Set.univ fun i => lowerCentralSeries (Gs i) n
⊢ ⁅pi fun i => lowerCentralSeries (Gs i) n, ⊤⁆ = ⁅pi fun i => lowerCentralSeries (Gs i) n, pi fun i => ⊤⁆
[PROOFSTEP]
simp [pi_top]
[GOAL]
G : Type u_1
inst✝³ : Group G
H : Subgroup G
inst✝² : Normal H
η : Type u_2
Gs : η → Type u_3
inst✝¹ : (i : η) → Group (Gs i)
inst✝ : ∀ (i : η), Group.IsNilpotent (Gs i)
n : ℕ
h : ∀ (i : η), nilpotencyClass (Gs i) ≤ n
⊢ Group.IsNilpotent ((i : η) → Gs i)
[PROOFSTEP]
rw [nilpotent_iff_lowerCentralSeries]
[GOAL]
G : Type u_1
inst✝³ : Group G
H : Subgroup G
inst✝² : Normal H
η : Type u_2
Gs : η → Type u_3
inst✝¹ : (i : η) → Group (Gs i)
inst✝ : ∀ (i : η), Group.IsNilpotent (Gs i)
n : ℕ
h : ∀ (i : η), nilpotencyClass (Gs i) ≤ n
⊢ ∃ n, lowerCentralSeries ((i : η) → Gs i) n = ⊥
[PROOFSTEP]
refine' ⟨n, _⟩
[GOAL]
G : Type u_1
inst✝³ : Group G
H : Subgroup G
inst✝² : Normal H
η : Type u_2
Gs : η → Type u_3
inst✝¹ : (i : η) → Group (Gs i)
inst✝ : ∀ (i : η), Group.IsNilpotent (Gs i)
n : ℕ
h : ∀ (i : η), nilpotencyClass (Gs i) ≤ n
⊢ lowerCentralSeries ((i : η) → Gs i) n = ⊥
[PROOFSTEP]
rw [eq_bot_iff]
[GOAL]
G : Type u_1
inst✝³ : Group G
H : Subgroup G
inst✝² : Normal H
η : Type u_2
Gs : η → Type u_3
inst✝¹ : (i : η) → Group (Gs i)
inst✝ : ∀ (i : η), Group.IsNilpotent (Gs i)
n : ℕ
h : ∀ (i : η), nilpotencyClass (Gs i) ≤ n
⊢ lowerCentralSeries ((i : η) → Gs i) n ≤ ⊥
[PROOFSTEP]
apply le_trans (lowerCentralSeries_pi_le _)
[GOAL]
G : Type u_1
inst✝³ : Group G
H : Subgroup G
inst✝² : Normal H
η : Type u_2
Gs : η → Type u_3
inst✝¹ : (i : η) → Group (Gs i)
inst✝ : ∀ (i : η), Group.IsNilpotent (Gs i)
n : ℕ
h : ∀ (i : η), nilpotencyClass (Gs i) ≤ n
⊢ (pi Set.univ fun i => lowerCentralSeries (Gs i) n) ≤ ⊥
[PROOFSTEP]
rw [← eq_bot_iff, pi_eq_bot_iff]
[GOAL]
G : Type u_1
inst✝³ : Group G
H : Subgroup G
inst✝² : Normal H
η : Type u_2
Gs : η → Type u_3
inst✝¹ : (i : η) → Group (Gs i)
inst✝ : ∀ (i : η), Group.IsNilpotent (Gs i)
n : ℕ
h : ∀ (i : η), nilpotencyClass (Gs i) ≤ n
⊢ ∀ (i : η), lowerCentralSeries (Gs i) n = ⊥
[PROOFSTEP]
intro i
[GOAL]
G : Type u_1
inst✝³ : Group G
H : Subgroup G
inst✝² : Normal H
η : Type u_2
Gs : η → Type u_3
inst✝¹ : (i : η) → Group (Gs i)
inst✝ : ∀ (i : η), Group.IsNilpotent (Gs i)
n : ℕ
h : ∀ (i : η), nilpotencyClass (Gs i) ≤ n
i : η
⊢ lowerCentralSeries (Gs i) n = ⊥
[PROOFSTEP]
apply lowerCentralSeries_eq_bot_iff_nilpotencyClass_le.mpr (h i)
[GOAL]
G : Type u_1
inst✝³ : Group G
H : Subgroup G
inst✝² : Normal H
η : Type u_2
Gs : η → Type u_3
inst✝¹ : (i : η) → Group (Gs i)
inst✝ : Finite η
n : ℕ
⊢ lowerCentralSeries ((i : η) → Gs i) n = pi Set.univ fun i => lowerCentralSeries (Gs i) n
[PROOFSTEP]
let pi := fun f : ∀ i, Subgroup (Gs i) => Subgroup.pi Set.univ f
[GOAL]
G : Type u_1
inst✝³ : Group G
H : Subgroup G
inst✝² : Normal H
η : Type u_2
Gs : η → Type u_3
inst✝¹ : (i : η) → Group (Gs i)
inst✝ : Finite η
n : ℕ
pi : ((i : η) → Subgroup (Gs i)) → Subgroup ((i : η) → Gs i) := fun f => Subgroup.pi Set.univ f
⊢ lowerCentralSeries ((i : η) → Gs i) n = Subgroup.pi Set.univ fun i => lowerCentralSeries (Gs i) n
[PROOFSTEP]
induction' n with n ih
[GOAL]
case zero
G : Type u_1
inst✝³ : Group G
H : Subgroup G
inst✝² : Normal H
η : Type u_2
Gs : η → Type u_3
inst✝¹ : (i : η) → Group (Gs i)
inst✝ : Finite η
pi : ((i : η) → Subgroup (Gs i)) → Subgroup ((i : η) → Gs i) := fun f => Subgroup.pi Set.univ f
⊢ lowerCentralSeries ((i : η) → Gs i) Nat.zero = Subgroup.pi Set.univ fun i => lowerCentralSeries (Gs i) Nat.zero
[PROOFSTEP]
simp [pi_top]
[GOAL]
case succ
G : Type u_1
inst✝³ : Group G
H : Subgroup G
inst✝² : Normal H
η : Type u_2
Gs : η → Type u_3
inst✝¹ : (i : η) → Group (Gs i)
inst✝ : Finite η
pi : ((i : η) → Subgroup (Gs i)) → Subgroup ((i : η) → Gs i) := fun f => Subgroup.pi Set.univ f
n : ℕ
ih : lowerCentralSeries ((i : η) → Gs i) n = Subgroup.pi Set.univ fun i => lowerCentralSeries (Gs i) n
⊢ lowerCentralSeries ((i : η) → Gs i) (Nat.succ n) =
Subgroup.pi Set.univ fun i => lowerCentralSeries (Gs i) (Nat.succ n)
[PROOFSTEP]
calc
lowerCentralSeries (∀ i, Gs i) n.succ = ⁅lowerCentralSeries (∀ i, Gs i) n, ⊤⁆ := rfl
_ = ⁅pi fun i => lowerCentralSeries (Gs i) n, ⊤⁆ := by rw [ih]
_ = ⁅pi fun i => lowerCentralSeries (Gs i) n, pi fun i => ⊤⁆ := by simp [pi_top]
_ = pi fun i => ⁅lowerCentralSeries (Gs i) n, ⊤⁆ := (commutator_pi_pi_of_finite _ _)
_ = pi fun i => lowerCentralSeries (Gs i) n.succ := rfl
[GOAL]
G : Type u_1
inst✝³ : Group G
H : Subgroup G
inst✝² : Normal H
η : Type u_2
Gs : η → Type u_3
inst✝¹ : (i : η) → Group (Gs i)
inst✝ : Finite η
pi : ((i : η) → Subgroup (Gs i)) → Subgroup ((i : η) → Gs i) := fun f => Subgroup.pi Set.univ f
n : ℕ
ih : lowerCentralSeries ((i : η) → Gs i) n = Subgroup.pi Set.univ fun i => lowerCentralSeries (Gs i) n
⊢ ⁅lowerCentralSeries ((i : η) → Gs i) n, ⊤⁆ = ⁅pi fun i => lowerCentralSeries (Gs i) n, ⊤⁆
[PROOFSTEP]
rw [ih]
[GOAL]
G : Type u_1
inst✝³ : Group G
H : Subgroup G
inst✝² : Normal H
η : Type u_2
Gs : η → Type u_3
inst✝¹ : (i : η) → Group (Gs i)
inst✝ : Finite η
pi : ((i : η) → Subgroup (Gs i)) → Subgroup ((i : η) → Gs i) := fun f => Subgroup.pi Set.univ f
n : ℕ
ih : lowerCentralSeries ((i : η) → Gs i) n = Subgroup.pi Set.univ fun i => lowerCentralSeries (Gs i) n
⊢ ⁅pi fun i => lowerCentralSeries (Gs i) n, ⊤⁆ = ⁅pi fun i => lowerCentralSeries (Gs i) n, pi fun i => ⊤⁆
[PROOFSTEP]
simp [pi_top]
[GOAL]
G : Type u_1
inst✝⁴ : Group G
H : Subgroup G
inst✝³ : Normal H
η : Type u_2
Gs : η → Type u_3
inst✝² : (i : η) → Group (Gs i)
inst✝¹ : Finite η
inst✝ : ∀ (i : η), Group.IsNilpotent (Gs i)
⊢ Group.IsNilpotent ((i : η) → Gs i)
[PROOFSTEP]
cases nonempty_fintype η
[GOAL]
case intro
G : Type u_1
inst✝⁴ : Group G
H : Subgroup G
inst✝³ : Normal H
η : Type u_2
Gs : η → Type u_3
inst✝² : (i : η) → Group (Gs i)
inst✝¹ : Finite η
inst✝ : ∀ (i : η), Group.IsNilpotent (Gs i)
val✝ : Fintype η
⊢ Group.IsNilpotent ((i : η) → Gs i)
[PROOFSTEP]
rw [nilpotent_iff_lowerCentralSeries]
[GOAL]
case intro
G : Type u_1
inst✝⁴ : Group G
H : Subgroup G
inst✝³ : Normal H
η : Type u_2
Gs : η → Type u_3
inst✝² : (i : η) → Group (Gs i)
inst✝¹ : Finite η
inst✝ : ∀ (i : η), Group.IsNilpotent (Gs i)
val✝ : Fintype η
⊢ ∃ n, lowerCentralSeries ((i : η) → Gs i) n = ⊥
[PROOFSTEP]
refine' ⟨Finset.univ.sup fun i => Group.nilpotencyClass (Gs i), _⟩
[GOAL]
case intro
G : Type u_1
inst✝⁴ : Group G
H : Subgroup G
inst✝³ : Normal H
η : Type u_2
Gs : η → Type u_3
inst✝² : (i : η) → Group (Gs i)
inst✝¹ : Finite η
inst✝ : ∀ (i : η), Group.IsNilpotent (Gs i)
val✝ : Fintype η
⊢ lowerCentralSeries ((i : η) → Gs i) (Finset.sup Finset.univ fun i => nilpotencyClass (Gs i)) = ⊥
[PROOFSTEP]
rw [lowerCentralSeries_pi_of_finite, pi_eq_bot_iff]
[GOAL]
case intro
G : Type u_1
inst✝⁴ : Group G
H : Subgroup G
inst✝³ : Normal H
η : Type u_2
Gs : η → Type u_3
inst✝² : (i : η) → Group (Gs i)
inst✝¹ : Finite η
inst✝ : ∀ (i : η), Group.IsNilpotent (Gs i)
val✝ : Fintype η
⊢ ∀ (i : η), lowerCentralSeries (Gs i) (Finset.sup Finset.univ fun i => nilpotencyClass (Gs i)) = ⊥
[PROOFSTEP]
intro i
[GOAL]
case intro
G : Type u_1
inst✝⁴ : Group G
H : Subgroup G
inst✝³ : Normal H
η : Type u_2
Gs : η → Type u_3
inst✝² : (i : η) → Group (Gs i)
inst✝¹ : Finite η
inst✝ : ∀ (i : η), Group.IsNilpotent (Gs i)
val✝ : Fintype η
i : η
⊢ lowerCentralSeries (Gs i) (Finset.sup Finset.univ fun i => nilpotencyClass (Gs i)) = ⊥
[PROOFSTEP]
apply lowerCentralSeries_eq_bot_iff_nilpotencyClass_le.mpr
[GOAL]
case intro
G : Type u_1
inst✝⁴ : Group G
H : Subgroup G
inst✝³ : Normal H
η : Type u_2
Gs : η → Type u_3
inst✝² : (i : η) → Group (Gs i)
inst✝¹ : Finite η
inst✝ : ∀ (i : η), Group.IsNilpotent (Gs i)
val✝ : Fintype η
i : η
⊢ nilpotencyClass (Gs i) ≤ Finset.sup Finset.univ fun i => nilpotencyClass (Gs i)
[PROOFSTEP]
exact @Finset.le_sup _ _ _ _ Finset.univ (fun i => Group.nilpotencyClass (Gs i)) _ (Finset.mem_univ i)
[GOAL]
G : Type u_1
inst✝⁴ : Group G
H : Subgroup G
inst✝³ : Normal H
η : Type u_2
Gs : η → Type u_3
inst✝² : (i : η) → Group (Gs i)
inst✝¹ : Fintype η
inst✝ : ∀ (i : η), Group.IsNilpotent (Gs i)
⊢ nilpotencyClass ((i : η) → Gs i) = Finset.sup Finset.univ fun i => nilpotencyClass (Gs i)
[PROOFSTEP]
apply eq_of_forall_ge_iff
[GOAL]
case H
G : Type u_1
inst✝⁴ : Group G
H : Subgroup G
inst✝³ : Normal H
η : Type u_2
Gs : η → Type u_3
inst✝² : (i : η) → Group (Gs i)
inst✝¹ : Fintype η
inst✝ : ∀ (i : η), Group.IsNilpotent (Gs i)
⊢ ∀ (c : ℕ), nilpotencyClass ((i : η) → Gs i) ≤ c ↔ (Finset.sup Finset.univ fun i => nilpotencyClass (Gs i)) ≤ c
[PROOFSTEP]
intro k
[GOAL]
case H
G : Type u_1
inst✝⁴ : Group G
H : Subgroup G
inst✝³ : Normal H
η : Type u_2
Gs : η → Type u_3
inst✝² : (i : η) → Group (Gs i)
inst✝¹ : Fintype η
inst✝ : ∀ (i : η), Group.IsNilpotent (Gs i)
k : ℕ
⊢ nilpotencyClass ((i : η) → Gs i) ≤ k ↔ (Finset.sup Finset.univ fun i => nilpotencyClass (Gs i)) ≤ k
[PROOFSTEP]
simp only [Finset.sup_le_iff, ← lowerCentralSeries_eq_bot_iff_nilpotencyClass_le, lowerCentralSeries_pi_of_finite,
pi_eq_bot_iff, Finset.mem_univ, true_imp_iff]
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
h : Group.IsNilpotent G
⊢ IsSolvable G
[PROOFSTEP]
obtain ⟨n, hn⟩ := nilpotent_iff_lowerCentralSeries.1 h
[GOAL]
case intro
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
h : Group.IsNilpotent G
n : ℕ
hn : lowerCentralSeries G n = ⊥
⊢ IsSolvable G
[PROOFSTEP]
use n
[GOAL]
case h
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
h : Group.IsNilpotent G
n : ℕ
hn : lowerCentralSeries G n = ⊥
⊢ derivedSeries G n = ⊥
[PROOFSTEP]
rw [eq_bot_iff, ← hn]
[GOAL]
case h
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
h : Group.IsNilpotent G
n : ℕ
hn : lowerCentralSeries G n = ⊥
⊢ derivedSeries G n ≤ lowerCentralSeries G n
[PROOFSTEP]
exact derived_le_lower_central n
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
h : Group.IsNilpotent G
⊢ NormalizerCondition G
[PROOFSTEP]
rw [normalizerCondition_iff_only_full_group_self_normalizing]
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
h : Group.IsNilpotent G
⊢ ∀ (H : Subgroup G), normalizer H = H → H = ⊤
[PROOFSTEP]
apply @nilpotent_center_quotient_ind _ G _ _
[GOAL]
case hbase
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
h : Group.IsNilpotent G
⊢ ∀ (G : Type u_1) [inst : Group G] [inst_1 : Subsingleton G] (H : Subgroup G), normalizer H = H → H = ⊤
[PROOFSTEP]
clear! G
[GOAL]
case hstep
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
h : Group.IsNilpotent G
⊢ ∀ (G : Type u_1) [inst : Group G] [inst_1 : Group.IsNilpotent G],
(∀ (H : Subgroup (G ⧸ center G)), normalizer H = H → H = ⊤) → ∀ (H : Subgroup G), normalizer H = H → H = ⊤
[PROOFSTEP]
clear! G
[GOAL]
case hbase
⊢ ∀ (G : Type u_1) [inst : Group G] [inst_1 : Subsingleton G] (H : Subgroup G), normalizer H = H → H = ⊤
[PROOFSTEP]
intro G _ _ H _
[GOAL]
case hbase
G : Type u_1
inst✝¹ : Group G
inst✝ : Subsingleton G
H : Subgroup G
a✝ : normalizer H = H
⊢ H = ⊤
[PROOFSTEP]
exact @Subsingleton.elim _ Unique.instSubsingleton _ _
[GOAL]
case hstep
⊢ ∀ (G : Type u_1) [inst : Group G] [inst_1 : Group.IsNilpotent G],
(∀ (H : Subgroup (G ⧸ center G)), normalizer H = H → H = ⊤) → ∀ (H : Subgroup G), normalizer H = H → H = ⊤
[PROOFSTEP]
intro G _ _ ih H hH
[GOAL]
case hstep
G : Type u_1
inst✝¹ : Group G
inst✝ : Group.IsNilpotent G
ih : ∀ (H : Subgroup (G ⧸ center G)), normalizer H = H → H = ⊤
H : Subgroup G
hH : normalizer H = H
⊢ H = ⊤
[PROOFSTEP]
have hch : center G ≤ H := Subgroup.center_le_normalizer.trans (le_of_eq hH)
[GOAL]
case hstep
G : Type u_1
inst✝¹ : Group G
inst✝ : Group.IsNilpotent G
ih : ∀ (H : Subgroup (G ⧸ center G)), normalizer H = H → H = ⊤
H : Subgroup G
hH : normalizer H = H
hch : center G ≤ H
⊢ H = ⊤
[PROOFSTEP]
have hkh : (mk' (center G)).ker ≤ H := by simpa using hch
[GOAL]
G : Type u_1
inst✝¹ : Group G
inst✝ : Group.IsNilpotent G
ih : ∀ (H : Subgroup (G ⧸ center G)), normalizer H = H → H = ⊤
H : Subgroup G
hH : normalizer H = H
hch : center G ≤ H
⊢ MonoidHom.ker (mk' (center G)) ≤ H
[PROOFSTEP]
simpa using hch
[GOAL]
case hstep
G : Type u_1
inst✝¹ : Group G
inst✝ : Group.IsNilpotent G
ih : ∀ (H : Subgroup (G ⧸ center G)), normalizer H = H → H = ⊤
H : Subgroup G
hH : normalizer H = H
hch : center G ≤ H
hkh : MonoidHom.ker (mk' (center G)) ≤ H
⊢ H = ⊤
[PROOFSTEP]
have hsur : Function.Surjective (mk' (center G)) := surjective_quot_mk _
[GOAL]
case hstep
G : Type u_1
inst✝¹ : Group G
inst✝ : Group.IsNilpotent G
ih : ∀ (H : Subgroup (G ⧸ center G)), normalizer H = H → H = ⊤
H : Subgroup G
hH : normalizer H = H
hch : center G ≤ H
hkh : MonoidHom.ker (mk' (center G)) ≤ H
hsur : Function.Surjective ↑(mk' (center G))
⊢ H = ⊤
[PROOFSTEP]
let H' := H.map (mk' (center G))
[GOAL]
case hstep
G : Type u_1
inst✝¹ : Group G
inst✝ : Group.IsNilpotent G
ih : ∀ (H : Subgroup (G ⧸ center G)), normalizer H = H → H = ⊤
H : Subgroup G
hH : normalizer H = H
hch : center G ≤ H
hkh : MonoidHom.ker (mk' (center G)) ≤ H
hsur : Function.Surjective ↑(mk' (center G))
H' : Subgroup (G ⧸ center G) := Subgroup.map (mk' (center G)) H
⊢ H = ⊤
[PROOFSTEP]
have hH' : H'.normalizer = H' := by
apply comap_injective hsur
rw [comap_normalizer_eq_of_surjective _ hsur, comap_map_eq_self hkh]
exact hH
[GOAL]
G : Type u_1
inst✝¹ : Group G
inst✝ : Group.IsNilpotent G
ih : ∀ (H : Subgroup (G ⧸ center G)), normalizer H = H → H = ⊤
H : Subgroup G
hH : normalizer H = H
hch : center G ≤ H
hkh : MonoidHom.ker (mk' (center G)) ≤ H
hsur : Function.Surjective ↑(mk' (center G))
H' : Subgroup (G ⧸ center G) := Subgroup.map (mk' (center G)) H
⊢ normalizer H' = H'
[PROOFSTEP]
apply comap_injective hsur
[GOAL]
case a
G : Type u_1
inst✝¹ : Group G
inst✝ : Group.IsNilpotent G
ih : ∀ (H : Subgroup (G ⧸ center G)), normalizer H = H → H = ⊤
H : Subgroup G
hH : normalizer H = H
hch : center G ≤ H
hkh : MonoidHom.ker (mk' (center G)) ≤ H
hsur : Function.Surjective ↑(mk' (center G))
H' : Subgroup (G ⧸ center G) := Subgroup.map (mk' (center G)) H
⊢ comap (mk' (center G)) (normalizer H') = comap (mk' (center G)) H'
[PROOFSTEP]
rw [comap_normalizer_eq_of_surjective _ hsur, comap_map_eq_self hkh]
[GOAL]
case a
G : Type u_1
inst✝¹ : Group G
inst✝ : Group.IsNilpotent G
ih : ∀ (H : Subgroup (G ⧸ center G)), normalizer H = H → H = ⊤
H : Subgroup G
hH : normalizer H = H
hch : center G ≤ H
hkh : MonoidHom.ker (mk' (center G)) ≤ H
hsur : Function.Surjective ↑(mk' (center G))
H' : Subgroup (G ⧸ center G) := Subgroup.map (mk' (center G)) H
⊢ normalizer H = H
[PROOFSTEP]
exact hH
[GOAL]
case hstep
G : Type u_1
inst✝¹ : Group G
inst✝ : Group.IsNilpotent G
ih : ∀ (H : Subgroup (G ⧸ center G)), normalizer H = H → H = ⊤
H : Subgroup G
hH : normalizer H = H
hch : center G ≤ H
hkh : MonoidHom.ker (mk' (center G)) ≤ H
hsur : Function.Surjective ↑(mk' (center G))
H' : Subgroup (G ⧸ center G) := Subgroup.map (mk' (center G)) H
hH' : normalizer H' = H'
⊢ H = ⊤
[PROOFSTEP]
apply map_injective_of_ker_le (mk' (center G)) hkh le_top
[GOAL]
case hstep
G : Type u_1
inst✝¹ : Group G
inst✝ : Group.IsNilpotent G
ih : ∀ (H : Subgroup (G ⧸ center G)), normalizer H = H → H = ⊤
H : Subgroup G
hH : normalizer H = H
hch : center G ≤ H
hkh : MonoidHom.ker (mk' (center G)) ≤ H
hsur : Function.Surjective ↑(mk' (center G))
H' : Subgroup (G ⧸ center G) := Subgroup.map (mk' (center G)) H
hH' : normalizer H' = H'
⊢ Subgroup.map (mk' (center G)) H = Subgroup.map (mk' (center G)) ⊤
[PROOFSTEP]
exact (ih H' hH').trans (symm (map_top_of_surjective _ hsur))
[GOAL]
G : Type u_1
hG : Group G
inst✝ : Finite G
p : ℕ
hp : Fact (Nat.Prime p)
h : IsPGroup p G
⊢ Group.IsNilpotent G
[PROOFSTEP]
cases' nonempty_fintype G
[GOAL]
case intro
G : Type u_1
hG : Group G
inst✝ : Finite G
p : ℕ
hp : Fact (Nat.Prime p)
h : IsPGroup p G
val✝ : Fintype G
⊢ Group.IsNilpotent G
[PROOFSTEP]
classical
revert hG
apply @Fintype.induction_subsingleton_or_nontrivial _ G _
· intro _ _ _ _
infer_instance
· intro G _ _ ih _ h
have hcq : Fintype.card (G ⧸ center G) < Fintype.card G :=
by
rw [card_eq_card_quotient_mul_card_subgroup (center G)]
apply lt_mul_of_one_lt_right
exact Fintype.card_pos_iff.mpr One.nonempty
exact (Subgroup.one_lt_card_iff_ne_bot _).mpr (ne_of_gt h.bot_lt_center)
have hnq : IsNilpotent (G ⧸ center G) := ih _ hcq (h.to_quotient (center G))
exact of_quotient_center_nilpotent hnq
[GOAL]
case intro
G : Type u_1
hG : Group G
inst✝ : Finite G
p : ℕ
hp : Fact (Nat.Prime p)
h : IsPGroup p G
val✝ : Fintype G
⊢ Group.IsNilpotent G
[PROOFSTEP]
revert hG
[GOAL]
case intro
G : Type u_1
inst✝ : Finite G
p : ℕ
hp : Fact (Nat.Prime p)
val✝ : Fintype G
⊢ ∀ [hG : Group G], IsPGroup p G → Group.IsNilpotent G
[PROOFSTEP]
apply @Fintype.induction_subsingleton_or_nontrivial _ G _
[GOAL]
case intro.hbase
G : Type u_1
inst✝ : Finite G
p : ℕ
hp : Fact (Nat.Prime p)
val✝ : Fintype G
⊢ ∀ (α : Type u_1) [inst : Fintype α] [inst : Subsingleton α] [hG : Group α], IsPGroup p α → Group.IsNilpotent α
[PROOFSTEP]
intro _ _ _ _
[GOAL]
case intro.hbase
G : Type u_1
inst✝² : Finite G
p : ℕ
hp : Fact (Nat.Prime p)
val✝ : Fintype G
α✝ : Type u_1
inst✝¹ : Fintype α✝
inst✝ : Subsingleton α✝
hG✝ : Group α✝
⊢ IsPGroup p α✝ → Group.IsNilpotent α✝
[PROOFSTEP]
infer_instance
[GOAL]
case intro.hstep
G : Type u_1
inst✝ : Finite G
p : ℕ
hp : Fact (Nat.Prime p)
val✝ : Fintype G
⊢ ∀ (α : Type u_1) [inst : Fintype α] [inst_1 : Nontrivial α],
(∀ (β : Type u_1) [inst_2 : Fintype β], card β < card α → ∀ [hG : Group β], IsPGroup p β → Group.IsNilpotent β) →
∀ [hG : Group α], IsPGroup p α → Group.IsNilpotent α
[PROOFSTEP]
intro G _ _ ih _ h
[GOAL]
case intro.hstep
G✝ : Type u_1
inst✝² : Finite G✝
p : ℕ
hp : Fact (Nat.Prime p)
val✝ : Fintype G✝
G : Type u_1
inst✝¹ : Fintype G
inst✝ : Nontrivial G
ih : ∀ (β : Type u_1) [inst : Fintype β], card β < card G → ∀ [hG : Group β], IsPGroup p β → Group.IsNilpotent β
hG✝ : Group G
h : IsPGroup p G
⊢ Group.IsNilpotent G
[PROOFSTEP]
have hcq : Fintype.card (G ⧸ center G) < Fintype.card G :=
by
rw [card_eq_card_quotient_mul_card_subgroup (center G)]
apply lt_mul_of_one_lt_right
exact Fintype.card_pos_iff.mpr One.nonempty
exact (Subgroup.one_lt_card_iff_ne_bot _).mpr (ne_of_gt h.bot_lt_center)
[GOAL]
G✝ : Type u_1
inst✝² : Finite G✝
p : ℕ
hp : Fact (Nat.Prime p)
val✝ : Fintype G✝
G : Type u_1
inst✝¹ : Fintype G
inst✝ : Nontrivial G
ih : ∀ (β : Type u_1) [inst : Fintype β], card β < card G → ∀ [hG : Group β], IsPGroup p β → Group.IsNilpotent β
hG✝ : Group G
h : IsPGroup p G
⊢ card (G ⧸ center G) < card G
[PROOFSTEP]
rw [card_eq_card_quotient_mul_card_subgroup (center G)]
[GOAL]
G✝ : Type u_1
inst✝² : Finite G✝
p : ℕ
hp : Fact (Nat.Prime p)
val✝ : Fintype G✝
G : Type u_1
inst✝¹ : Fintype G
inst✝ : Nontrivial G
ih : ∀ (β : Type u_1) [inst : Fintype β], card β < card G → ∀ [hG : Group β], IsPGroup p β → Group.IsNilpotent β
hG✝ : Group G
h : IsPGroup p G
⊢ card (G ⧸ center G) < card (G ⧸ center G) * card { x // x ∈ center G }
[PROOFSTEP]
apply lt_mul_of_one_lt_right
[GOAL]
case ha
G✝ : Type u_1
inst✝² : Finite G✝
p : ℕ
hp : Fact (Nat.Prime p)
val✝ : Fintype G✝
G : Type u_1
inst✝¹ : Fintype G
inst✝ : Nontrivial G
ih : ∀ (β : Type u_1) [inst : Fintype β], card β < card G → ∀ [hG : Group β], IsPGroup p β → Group.IsNilpotent β
hG✝ : Group G
h : IsPGroup p G
⊢ 0 < card (G ⧸ center G)
case h
G✝ : Type u_1
inst✝² : Finite G✝
p : ℕ
hp : Fact (Nat.Prime p)
val✝ : Fintype G✝
G : Type u_1
inst✝¹ : Fintype G
inst✝ : Nontrivial G
ih : ∀ (β : Type u_1) [inst : Fintype β], card β < card G → ∀ [hG : Group β], IsPGroup p β → Group.IsNilpotent β
hG✝ : Group G
h : IsPGroup p G
⊢ 1 < card { x // x ∈ center G }
[PROOFSTEP]
exact Fintype.card_pos_iff.mpr One.nonempty
[GOAL]
case h
G✝ : Type u_1
inst✝² : Finite G✝
p : ℕ
hp : Fact (Nat.Prime p)
val✝ : Fintype G✝
G : Type u_1
inst✝¹ : Fintype G
inst✝ : Nontrivial G
ih : ∀ (β : Type u_1) [inst : Fintype β], card β < card G → ∀ [hG : Group β], IsPGroup p β → Group.IsNilpotent β
hG✝ : Group G
h : IsPGroup p G
⊢ 1 < card { x // x ∈ center G }
[PROOFSTEP]
exact (Subgroup.one_lt_card_iff_ne_bot _).mpr (ne_of_gt h.bot_lt_center)
[GOAL]
case intro.hstep
G✝ : Type u_1
inst✝² : Finite G✝
p : ℕ
hp : Fact (Nat.Prime p)
val✝ : Fintype G✝
G : Type u_1
inst✝¹ : Fintype G
inst✝ : Nontrivial G
ih : ∀ (β : Type u_1) [inst : Fintype β], card β < card G → ∀ [hG : Group β], IsPGroup p β → Group.IsNilpotent β
hG✝ : Group G
h : IsPGroup p G
hcq : card (G ⧸ center G) < card G
⊢ Group.IsNilpotent G
[PROOFSTEP]
have hnq : IsNilpotent (G ⧸ center G) := ih _ hcq (h.to_quotient (center G))
[GOAL]
case intro.hstep
G✝ : Type u_1
inst✝² : Finite G✝
p : ℕ
hp : Fact (Nat.Prime p)
val✝ : Fintype G✝
G : Type u_1
inst✝¹ : Fintype G
inst✝ : Nontrivial G
ih : ∀ (β : Type u_1) [inst : Fintype β], card β < card G → ∀ [hG : Group β], IsPGroup p β → Group.IsNilpotent β
hG✝ : Group G
h : IsPGroup p G
hcq : card (G ⧸ center G) < card G
hnq : Group.IsNilpotent (G ⧸ center G)
⊢ Group.IsNilpotent G
[PROOFSTEP]
exact of_quotient_center_nilpotent hnq
[GOAL]
G : Type u_1
hG : Group G
inst✝ : Fintype G
e : ((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G
⊢ Group.IsNilpotent G
[PROOFSTEP]
classical
let ps := (Fintype.card G).factorization.support
have : ∀ (p : ps) (P : Sylow p G), IsNilpotent (↑P : Subgroup G) :=
by
intro p P
haveI : Fact (Nat.Prime ↑p) := Fact.mk (Nat.prime_of_mem_factorization (Finset.coe_mem p))
exact P.isPGroup'.isNilpotent
exact nilpotent_of_mulEquiv e
[GOAL]
G : Type u_1
hG : Group G
inst✝ : Fintype G
e : ((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G
⊢ Group.IsNilpotent G
[PROOFSTEP]
let ps := (Fintype.card G).factorization.support
[GOAL]
G : Type u_1
hG : Group G
inst✝ : Fintype G
e : ((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G
ps : Finset ℕ := (Nat.factorization (card G)).support
⊢ Group.IsNilpotent G
[PROOFSTEP]
have : ∀ (p : ps) (P : Sylow p G), IsNilpotent (↑P : Subgroup G) :=
by
intro p P
haveI : Fact (Nat.Prime ↑p) := Fact.mk (Nat.prime_of_mem_factorization (Finset.coe_mem p))
exact P.isPGroup'.isNilpotent
[GOAL]
G : Type u_1
hG : Group G
inst✝ : Fintype G
e : ((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G
ps : Finset ℕ := (Nat.factorization (card G)).support
⊢ ∀ (p : { x // x ∈ ps }) (P : Sylow (↑p) G), Group.IsNilpotent { x // x ∈ ↑P }
[PROOFSTEP]
intro p P
[GOAL]
G : Type u_1
hG : Group G
inst✝ : Fintype G
e : ((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G
ps : Finset ℕ := (Nat.factorization (card G)).support
p : { x // x ∈ ps }
P : Sylow (↑p) G
⊢ Group.IsNilpotent { x // x ∈ ↑P }
[PROOFSTEP]
haveI : Fact (Nat.Prime ↑p) := Fact.mk (Nat.prime_of_mem_factorization (Finset.coe_mem p))
[GOAL]
G : Type u_1
hG : Group G
inst✝ : Fintype G
e : ((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G
ps : Finset ℕ := (Nat.factorization (card G)).support
p : { x // x ∈ ps }
P : Sylow (↑p) G
this : Fact (Nat.Prime ↑p)
⊢ Group.IsNilpotent { x // x ∈ ↑P }
[PROOFSTEP]
exact P.isPGroup'.isNilpotent
[GOAL]
G : Type u_1
hG : Group G
inst✝ : Fintype G
e : ((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G
ps : Finset ℕ := (Nat.factorization (card G)).support
this : ∀ (p : { x // x ∈ ps }) (P : Sylow (↑p) G), Group.IsNilpotent { x // x ∈ ↑P }
⊢ Group.IsNilpotent G
[PROOFSTEP]
exact nilpotent_of_mulEquiv e
[GOAL]
G : Type u_1
hG : Group G
inst✝ : Fintype G
⊢ List.TFAE
[Group.IsNilpotent G, NormalizerCondition G, ∀ (H : Subgroup G), IsCoatom H → Normal H,
∀ (p : ℕ), Fact (Nat.Prime p) → ∀ (P : Sylow p G), Normal ↑P,
Nonempty (((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G)]
[PROOFSTEP]
tfae_have 1 → 2
[GOAL]
case tfae_1_to_2
G : Type u_1
hG : Group G
inst✝ : Fintype G
⊢ Group.IsNilpotent G → NormalizerCondition G
[PROOFSTEP]
exact @normalizerCondition_of_isNilpotent _ _
[GOAL]
G : Type u_1
hG : Group G
inst✝ : Fintype G
tfae_1_to_2 : Group.IsNilpotent G → NormalizerCondition G
⊢ List.TFAE
[Group.IsNilpotent G, NormalizerCondition G, ∀ (H : Subgroup G), IsCoatom H → Normal H,
∀ (p : ℕ), Fact (Nat.Prime p) → ∀ (P : Sylow p G), Normal ↑P,
Nonempty (((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G)]
[PROOFSTEP]
tfae_have 2 → 3
[GOAL]
case tfae_2_to_3
G : Type u_1
hG : Group G
inst✝ : Fintype G
tfae_1_to_2 : Group.IsNilpotent G → NormalizerCondition G
⊢ NormalizerCondition G → ∀ (H : Subgroup G), IsCoatom H → Normal H
[PROOFSTEP]
exact fun h H => NormalizerCondition.normal_of_coatom H h
[GOAL]
G : Type u_1
hG : Group G
inst✝ : Fintype G
tfae_1_to_2 : Group.IsNilpotent G → NormalizerCondition G
tfae_2_to_3 : NormalizerCondition G → ∀ (H : Subgroup G), IsCoatom H → Normal H
⊢ List.TFAE
[Group.IsNilpotent G, NormalizerCondition G, ∀ (H : Subgroup G), IsCoatom H → Normal H,
∀ (p : ℕ), Fact (Nat.Prime p) → ∀ (P : Sylow p G), Normal ↑P,
Nonempty (((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G)]
[PROOFSTEP]
tfae_have 3 → 4
[GOAL]
case tfae_3_to_4
G : Type u_1
hG : Group G
inst✝ : Fintype G
tfae_1_to_2 : Group.IsNilpotent G → NormalizerCondition G
tfae_2_to_3 : NormalizerCondition G → ∀ (H : Subgroup G), IsCoatom H → Normal H
⊢ (∀ (H : Subgroup G), IsCoatom H → Normal H) → ∀ (p : ℕ), Fact (Nat.Prime p) → ∀ (P : Sylow p G), Normal ↑P
[PROOFSTEP]
intro h p _ P
[GOAL]
case tfae_3_to_4
G : Type u_1
hG : Group G
inst✝ : Fintype G
tfae_1_to_2 : Group.IsNilpotent G → NormalizerCondition G
tfae_2_to_3 : NormalizerCondition G → ∀ (H : Subgroup G), IsCoatom H → Normal H
h : ∀ (H : Subgroup G), IsCoatom H → Normal H
p : ℕ
_hp✝ : Fact (Nat.Prime p)
P : Sylow p G
⊢ Normal ↑P
[PROOFSTEP]
exact Sylow.normal_of_all_max_subgroups_normal h _
[GOAL]
G : Type u_1
hG : Group G
inst✝ : Fintype G
tfae_1_to_2 : Group.IsNilpotent G → NormalizerCondition G
tfae_2_to_3 : NormalizerCondition G → ∀ (H : Subgroup G), IsCoatom H → Normal H
tfae_3_to_4 : (∀ (H : Subgroup G), IsCoatom H → Normal H) → ∀ (p : ℕ), Fact (Nat.Prime p) → ∀ (P : Sylow p G), Normal ↑P
⊢ List.TFAE
[Group.IsNilpotent G, NormalizerCondition G, ∀ (H : Subgroup G), IsCoatom H → Normal H,
∀ (p : ℕ), Fact (Nat.Prime p) → ∀ (P : Sylow p G), Normal ↑P,
Nonempty (((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G)]
[PROOFSTEP]
tfae_have 4 → 5
[GOAL]
case tfae_4_to_5
G : Type u_1
hG : Group G
inst✝ : Fintype G
tfae_1_to_2 : Group.IsNilpotent G → NormalizerCondition G
tfae_2_to_3 : NormalizerCondition G → ∀ (H : Subgroup G), IsCoatom H → Normal H
tfae_3_to_4 : (∀ (H : Subgroup G), IsCoatom H → Normal H) → ∀ (p : ℕ), Fact (Nat.Prime p) → ∀ (P : Sylow p G), Normal ↑P
⊢ (∀ (p : ℕ), Fact (Nat.Prime p) → ∀ (P : Sylow p G), Normal ↑P) →
Nonempty (((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G)
[PROOFSTEP]
exact fun h => Nonempty.intro (Sylow.directProductOfNormal fun {p hp hP} => h p hp hP)
[GOAL]
G : Type u_1
hG : Group G
inst✝ : Fintype G
tfae_1_to_2 : Group.IsNilpotent G → NormalizerCondition G
tfae_2_to_3 : NormalizerCondition G → ∀ (H : Subgroup G), IsCoatom H → Normal H
tfae_3_to_4 : (∀ (H : Subgroup G), IsCoatom H → Normal H) → ∀ (p : ℕ), Fact (Nat.Prime p) → ∀ (P : Sylow p G), Normal ↑P
tfae_4_to_5 :
(∀ (p : ℕ), Fact (Nat.Prime p) → ∀ (P : Sylow p G), Normal ↑P) →
Nonempty (((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G)
⊢ List.TFAE
[Group.IsNilpotent G, NormalizerCondition G, ∀ (H : Subgroup G), IsCoatom H → Normal H,
∀ (p : ℕ), Fact (Nat.Prime p) → ∀ (P : Sylow p G), Normal ↑P,
Nonempty (((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G)]
[PROOFSTEP]
tfae_have 5 → 1
[GOAL]
case tfae_5_to_1
G : Type u_1
hG : Group G
inst✝ : Fintype G
tfae_1_to_2 : Group.IsNilpotent G → NormalizerCondition G
tfae_2_to_3 : NormalizerCondition G → ∀ (H : Subgroup G), IsCoatom H → Normal H
tfae_3_to_4 : (∀ (H : Subgroup G), IsCoatom H → Normal H) → ∀ (p : ℕ), Fact (Nat.Prime p) → ∀ (P : Sylow p G), Normal ↑P
tfae_4_to_5 :
(∀ (p : ℕ), Fact (Nat.Prime p) → ∀ (P : Sylow p G), Normal ↑P) →
Nonempty (((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G)
⊢ Nonempty (((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G) →
Group.IsNilpotent G
[PROOFSTEP]
rintro ⟨e⟩
[GOAL]
case tfae_5_to_1.intro
G : Type u_1
hG : Group G
inst✝ : Fintype G
tfae_1_to_2 : Group.IsNilpotent G → NormalizerCondition G
tfae_2_to_3 : NormalizerCondition G → ∀ (H : Subgroup G), IsCoatom H → Normal H
tfae_3_to_4 : (∀ (H : Subgroup G), IsCoatom H → Normal H) → ∀ (p : ℕ), Fact (Nat.Prime p) → ∀ (P : Sylow p G), Normal ↑P
tfae_4_to_5 :
(∀ (p : ℕ), Fact (Nat.Prime p) → ∀ (P : Sylow p G), Normal ↑P) →
Nonempty (((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G)
e : ((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G
⊢ Group.IsNilpotent G
[PROOFSTEP]
exact isNilpotent_of_product_of_sylow_group e
[GOAL]
G : Type u_1
hG : Group G
inst✝ : Fintype G
tfae_1_to_2 : Group.IsNilpotent G → NormalizerCondition G
tfae_2_to_3 : NormalizerCondition G → ∀ (H : Subgroup G), IsCoatom H → Normal H
tfae_3_to_4 : (∀ (H : Subgroup G), IsCoatom H → Normal H) → ∀ (p : ℕ), Fact (Nat.Prime p) → ∀ (P : Sylow p G), Normal ↑P
tfae_4_to_5 :
(∀ (p : ℕ), Fact (Nat.Prime p) → ∀ (P : Sylow p G), Normal ↑P) →
Nonempty (((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G)
tfae_5_to_1 :
Nonempty (((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G) →
Group.IsNilpotent G
⊢ List.TFAE
[Group.IsNilpotent G, NormalizerCondition G, ∀ (H : Subgroup G), IsCoatom H → Normal H,
∀ (p : ℕ), Fact (Nat.Prime p) → ∀ (P : Sylow p G), Normal ↑P,
Nonempty (((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G)]
[PROOFSTEP]
tfae_finish
| {"mathlib_filename": "Mathlib.GroupTheory.Nilpotent", "llama_tokens": 51561} |
[GOAL]
M : Type u_1
inst✝ : MulOneClass M
a b : M
h : 1 * a = b
⊢ a = b
[PROOFSTEP]
rwa [one_mul] at h
| {"mathlib_filename": "Mathlib.Tactic.Linarith.Preprocessing", "llama_tokens": 59} |
[GOAL]
G : Type u
inst✝ : Group G
⊢ commutator G = Subgroup.closure (commutatorSet G)
[PROOFSTEP]
simp [commutator, Subgroup.commutator_def, commutatorSet]
[GOAL]
G : Type u
inst✝ : Group G
⊢ commutator G = Subgroup.normalClosure (commutatorSet G)
[PROOFSTEP]
simp [commutator, Subgroup.commutator_def', commutatorSet]
[GOAL]
G : Type u
inst✝¹ : Group G
inst✝ : Finite ↑(commutatorSet G)
⊢ Group.FG { x // x ∈ commutator G }
[PROOFSTEP]
rw [commutator_eq_closure]
[GOAL]
G : Type u
inst✝¹ : Group G
inst✝ : Finite ↑(commutatorSet G)
⊢ Group.FG { x // x ∈ Subgroup.closure (commutatorSet G) }
[PROOFSTEP]
apply Group.closure_finite_fg
[GOAL]
G : Type u
inst✝¹ : Group G
inst✝ : Finite ↑(commutatorSet G)
⊢ Group.rank { x // x ∈ commutator G } ≤ Nat.card ↑(commutatorSet G)
[PROOFSTEP]
rw [Subgroup.rank_congr (commutator_eq_closure G)]
[GOAL]
G : Type u
inst✝¹ : Group G
inst✝ : Finite ↑(commutatorSet G)
⊢ Group.rank { x // x ∈ Subgroup.closure (commutatorSet G) } ≤ Nat.card ↑(commutatorSet G)
[PROOFSTEP]
apply Subgroup.rank_closure_finite_le_nat_card
[GOAL]
G : Type u
inst✝ : Group G
⊢ ⁅centralizer ↑(commutator G), centralizer ↑(commutator G)⁆ ≤ Subgroup.center G
[PROOFSTEP]
rw [← Subgroup.centralizer_univ, ← Subgroup.coe_top, ← Subgroup.commutator_eq_bot_iff_le_centralizer]
[GOAL]
G : Type u
inst✝ : Group G
⊢ ⁅⁅centralizer ↑(commutator G), centralizer ↑(commutator G)⁆, ⊤⁆ = ⊥
[PROOFSTEP]
suffices ⁅⁅⊤, centralizer (commutator G : Set G)⁆, centralizer (commutator G : Set G)⁆ = ⊥
by
refine' Subgroup.commutator_commutator_eq_bot_of_rotate _ this
rwa [Subgroup.commutator_comm (centralizer (commutator G : Set G))]
[GOAL]
G : Type u
inst✝ : Group G
this : ⁅⁅⊤, centralizer ↑(commutator G)⁆, centralizer ↑(commutator G)⁆ = ⊥
⊢ ⁅⁅centralizer ↑(commutator G), centralizer ↑(commutator G)⁆, ⊤⁆ = ⊥
[PROOFSTEP]
refine' Subgroup.commutator_commutator_eq_bot_of_rotate _ this
[GOAL]
G : Type u
inst✝ : Group G
this : ⁅⁅⊤, centralizer ↑(commutator G)⁆, centralizer ↑(commutator G)⁆ = ⊥
⊢ ⁅⁅centralizer ↑(commutator G), ⊤⁆, centralizer ↑(commutator G)⁆ = ⊥
[PROOFSTEP]
rwa [Subgroup.commutator_comm (centralizer (commutator G : Set G))]
[GOAL]
G : Type u
inst✝ : Group G
⊢ ⁅⁅⊤, centralizer ↑(commutator G)⁆, centralizer ↑(commutator G)⁆ = ⊥
[PROOFSTEP]
rw [Subgroup.commutator_comm, Subgroup.commutator_eq_bot_iff_le_centralizer]
[GOAL]
G : Type u
inst✝ : Group G
⊢ centralizer ↑(commutator G) ≤ centralizer ↑⁅⊤, centralizer ↑(commutator G)⁆
[PROOFSTEP]
exact Set.centralizer_subset (Subgroup.commutator_mono le_top le_top)
[GOAL]
G : Type u
inst✝ : Group G
src✝ : Group (G ⧸ commutator G) := QuotientGroup.Quotient.group (commutator G)
x y : Abelianization G
a b : G
⊢ ⁅b⁻¹, a⁻¹⁆ = ((fun x x_1 => x * x_1) a b)⁻¹ * (fun x x_1 => x * x_1) b a
[PROOFSTEP]
group
[GOAL]
G : Type u
inst✝¹ : Group G
A : Type v
inst✝ : CommGroup A
f : G →* A
⊢ commutator G ≤ MonoidHom.ker f
[PROOFSTEP]
rw [commutator_eq_closure, Subgroup.closure_le]
[GOAL]
G : Type u
inst✝¹ : Group G
A : Type v
inst✝ : CommGroup A
f : G →* A
⊢ commutatorSet G ⊆ ↑(MonoidHom.ker f)
[PROOFSTEP]
rintro x ⟨p, q, rfl⟩
[GOAL]
case intro.intro
G : Type u
inst✝¹ : Group G
A : Type v
inst✝ : CommGroup A
f : G →* A
p q : G
⊢ ⁅p, q⁆ ∈ ↑(MonoidHom.ker f)
[PROOFSTEP]
simp [MonoidHom.mem_ker, mul_right_comm (f p) (f q), commutatorElement_def]
[GOAL]
G : Type u
inst✝² inst✝¹ : Group G
H : Type v
inst✝ : Group H
e : G ≃* H
⊢ Function.LeftInverse ↑(Abelianization.map (toMonoidHom (symm e))) ↑(Abelianization.map (toMonoidHom e))
[PROOFSTEP]
rintro ⟨a⟩
[GOAL]
case mk
G : Type u
inst✝² inst✝¹ : Group G
H : Type v
inst✝ : Group H
e : G ≃* H
x✝ : Abelianization G
a : G
⊢ ↑(Abelianization.map (toMonoidHom (symm e))) (↑(Abelianization.map (toMonoidHom e)) (Quot.mk Setoid.r a)) =
Quot.mk Setoid.r a
[PROOFSTEP]
simp
[GOAL]
G : Type u
inst✝² inst✝¹ : Group G
H : Type v
inst✝ : Group H
e : G ≃* H
⊢ Function.RightInverse ↑(Abelianization.map (toMonoidHom (symm e))) ↑(Abelianization.map (toMonoidHom e))
[PROOFSTEP]
rintro ⟨a⟩
[GOAL]
case mk
G : Type u
inst✝² inst✝¹ : Group G
H : Type v
inst✝ : Group H
e : G ≃* H
x✝ : Abelianization H
a : H
⊢ ↑(Abelianization.map (toMonoidHom e)) (↑(Abelianization.map (toMonoidHom (symm e))) (Quot.mk Setoid.r a)) =
Quot.mk Setoid.r a
[PROOFSTEP]
simp
[GOAL]
G : Type u
inst✝¹ : Group G
H : Type u_1
inst✝ : CommGroup H
src✝ : H →* Abelianization H := of
⊢ Function.RightInverse ↑(↑lift (MonoidHom.id H)) ↑of
[PROOFSTEP]
rintro ⟨a⟩
[GOAL]
case mk
G : Type u
inst✝¹ : Group G
H : Type u_1
inst✝ : CommGroup H
src✝ : H →* Abelianization H := of
x✝ : Abelianization H
a : H
⊢ ↑of (↑(↑lift (MonoidHom.id H)) (Quot.mk Setoid.r a)) = Quot.mk Setoid.r a
[PROOFSTEP]
rfl
[GOAL]
G : Type u
inst✝¹ : Group G
inst✝ : Finite ↑(commutatorSet G)
⊢ Group.rank { x // x ∈ closureCommutatorRepresentatives G } ≤ 2 * Nat.card ↑(commutatorSet G)
[PROOFSTEP]
rw [two_mul]
[GOAL]
G : Type u
inst✝¹ : Group G
inst✝ : Finite ↑(commutatorSet G)
⊢ Group.rank { x // x ∈ closureCommutatorRepresentatives G } ≤ Nat.card ↑(commutatorSet G) + Nat.card ↑(commutatorSet G)
[PROOFSTEP]
exact
(Subgroup.rank_closure_finite_le_nat_card _).trans
((Set.card_union_le _ _).trans
(add_le_add ((Finite.card_image_le _).trans (Finite.card_range_le _))
((Finite.card_image_le _).trans (Finite.card_range_le _))))
[GOAL]
G : Type u
inst✝ : Group G
⊢ ↑(Subgroup.subtype (closureCommutatorRepresentatives G)) ''
commutatorSet { x // x ∈ closureCommutatorRepresentatives G } =
commutatorSet G
[PROOFSTEP]
apply Set.Subset.antisymm
[GOAL]
case h₁
G : Type u
inst✝ : Group G
⊢ ↑(Subgroup.subtype (closureCommutatorRepresentatives G)) ''
commutatorSet { x // x ∈ closureCommutatorRepresentatives G } ⊆
commutatorSet G
[PROOFSTEP]
rintro - ⟨-, ⟨g₁, g₂, rfl⟩, rfl⟩
[GOAL]
case h₁.intro.intro.intro.intro
G : Type u
inst✝ : Group G
g₁ g₂ : { x // x ∈ closureCommutatorRepresentatives G }
⊢ ↑(Subgroup.subtype (closureCommutatorRepresentatives G)) ⁅g₁, g₂⁆ ∈ commutatorSet G
[PROOFSTEP]
exact ⟨g₁, g₂, rfl⟩
[GOAL]
case h₂
G : Type u
inst✝ : Group G
⊢ commutatorSet G ⊆
↑(Subgroup.subtype (closureCommutatorRepresentatives G)) ''
commutatorSet { x // x ∈ closureCommutatorRepresentatives G }
[PROOFSTEP]
exact fun g hg =>
⟨_,
⟨⟨_, subset_closure (Or.inl ⟨_, ⟨⟨g, hg⟩, rfl⟩, rfl⟩)⟩, ⟨_, subset_closure (Or.inr ⟨_, ⟨⟨g, hg⟩, rfl⟩, rfl⟩)⟩, rfl⟩,
hg.choose_spec.choose_spec⟩
[GOAL]
G : Type u
inst✝ : Group G
⊢ Nat.card ↑(commutatorSet { x // x ∈ closureCommutatorRepresentatives G }) = Nat.card ↑(commutatorSet G)
[PROOFSTEP]
rw [← image_commutatorSet_closureCommutatorRepresentatives G]
[GOAL]
G : Type u
inst✝ : Group G
⊢ Nat.card ↑(commutatorSet { x // x ∈ closureCommutatorRepresentatives G }) =
Nat.card
↑(↑(Subgroup.subtype (closureCommutatorRepresentatives G)) ''
commutatorSet { x // x ∈ closureCommutatorRepresentatives G })
[PROOFSTEP]
exact Nat.card_congr (Equiv.Set.image _ _ (subtype_injective _))
[GOAL]
G : Type u
inst✝ : Group G
⊢ Nat.card { x // x ∈ _root_.commutator { x // x ∈ closureCommutatorRepresentatives G } } =
Nat.card { x // x ∈ _root_.commutator G }
[PROOFSTEP]
rw [commutator_eq_closure G, ← image_commutatorSet_closureCommutatorRepresentatives, ← MonoidHom.map_closure, ←
commutator_eq_closure]
[GOAL]
G : Type u
inst✝ : Group G
⊢ Nat.card { x // x ∈ _root_.commutator { x // x ∈ closureCommutatorRepresentatives G } } =
Nat.card
{ x //
x ∈
map (Subgroup.subtype (closureCommutatorRepresentatives G))
(_root_.commutator { x // x ∈ closureCommutatorRepresentatives G }) }
[PROOFSTEP]
exact Nat.card_congr (Equiv.Set.image _ _ (subtype_injective _))
[GOAL]
G : Type u
inst✝¹ : Group G
inst✝ : Finite ↑(commutatorSet G)
⊢ Finite ↑(commutatorSet { x // x ∈ closureCommutatorRepresentatives G })
[PROOFSTEP]
apply Nat.finite_of_card_ne_zero
[GOAL]
case h
G : Type u
inst✝¹ : Group G
inst✝ : Finite ↑(commutatorSet G)
⊢ Nat.card ↑(commutatorSet { x // x ∈ closureCommutatorRepresentatives G }) ≠ 0
[PROOFSTEP]
rw [card_commutatorSet_closureCommutatorRepresentatives]
[GOAL]
case h
G : Type u
inst✝¹ : Group G
inst✝ : Finite ↑(commutatorSet G)
⊢ Nat.card ↑(commutatorSet G) ≠ 0
[PROOFSTEP]
exact Finite.card_pos.ne'
| {"mathlib_filename": "Mathlib.GroupTheory.Abelianization", "llama_tokens": 3715} |
[GOAL]
G : Type u
inst✝³ : Group G
inst✝² : Fintype (ConjClasses G)
inst✝¹ : Fintype G
inst✝ : (x : ConjClasses G) → Fintype ↑(carrier x)
⊢ ∑ x : ConjClasses G, Finset.card (Set.toFinset (carrier x)) = Fintype.card G
[PROOFSTEP]
suffices : (Σ x : ConjClasses G, x.carrier) ≃ G
[GOAL]
G : Type u
inst✝³ : Group G
inst✝² : Fintype (ConjClasses G)
inst✝¹ : Fintype G
inst✝ : (x : ConjClasses G) → Fintype ↑(carrier x)
this : (x : ConjClasses G) × ↑(carrier x) ≃ G
⊢ ∑ x : ConjClasses G, Finset.card (Set.toFinset (carrier x)) = Fintype.card G
[PROOFSTEP]
simpa using (Fintype.card_congr this)
[GOAL]
case this
G : Type u
inst✝³ : Group G
inst✝² : Fintype (ConjClasses G)
inst✝¹ : Fintype G
inst✝ : (x : ConjClasses G) → Fintype ↑(carrier x)
⊢ (x : ConjClasses G) × ↑(carrier x) ≃ G
[PROOFSTEP]
simpa [carrier_eq_preimage_mk] using Equiv.sigmaFiberEquiv ConjClasses.mk
[GOAL]
G : Type u
inst✝¹ : Group G
inst✝ : Finite G
⊢ ∑ᶠ (x : ConjClasses G), Set.ncard (carrier x) = Nat.card G
[PROOFSTEP]
classical
cases nonempty_fintype G
rw [Nat.card_eq_fintype_card, ← sum_conjClasses_card_eq_card, finsum_eq_sum_of_fintype]
simp [Set.ncard_eq_toFinset_card']
[GOAL]
G : Type u
inst✝¹ : Group G
inst✝ : Finite G
⊢ ∑ᶠ (x : ConjClasses G), Set.ncard (carrier x) = Nat.card G
[PROOFSTEP]
cases nonempty_fintype G
[GOAL]
case intro
G : Type u
inst✝¹ : Group G
inst✝ : Finite G
val✝ : Fintype G
⊢ ∑ᶠ (x : ConjClasses G), Set.ncard (carrier x) = Nat.card G
[PROOFSTEP]
rw [Nat.card_eq_fintype_card, ← sum_conjClasses_card_eq_card, finsum_eq_sum_of_fintype]
[GOAL]
case intro
G : Type u
inst✝¹ : Group G
inst✝ : Finite G
val✝ : Fintype G
⊢ ∑ i : ConjClasses G, Set.ncard (carrier i) = ∑ x : ConjClasses G, Finset.card (Set.toFinset (carrier x))
[PROOFSTEP]
simp [Set.ncard_eq_toFinset_card']
[GOAL]
G : Type u
inst✝¹ : Group G
inst✝ : Finite G
⊢ Nat.card { x // x ∈ Subgroup.center G } + ∑ᶠ (x : ConjClasses G) (_ : x ∈ noncenter G), Nat.card ↑(carrier x) =
Nat.card G
[PROOFSTEP]
classical
cases nonempty_fintype G
rw [@Nat.card_eq_fintype_card G, ← sum_conjClasses_card_eq_card, ←
Finset.sum_sdiff (ConjClasses.noncenter G).toFinset.subset_univ]
simp only [Nat.card_eq_fintype_card, Set.toFinset_card]
congr 1
swap
· convert finsum_cond_eq_sum_of_cond_iff _ _
simp [Set.mem_toFinset]
calc
Fintype.card (Subgroup.center G) = Fintype.card ((noncenter G)ᶜ : Set _) := Fintype.card_congr ((mk_bijOn G).equiv _)
_ = Finset.card (Finset.univ \ (noncenter G).toFinset) := by
rw [← Set.toFinset_card, Set.toFinset_compl, Finset.compl_eq_univ_sdiff]
_ = _ := ?_
rw [Finset.card_eq_sum_ones]
refine Finset.sum_congr rfl ?_
rintro ⟨g⟩ hg
simp only [noncenter, Set.not_subsingleton_iff, Set.toFinset_setOf, Finset.mem_univ, true_and, forall_true_left,
Finset.mem_sdiff, Finset.mem_filter, Set.not_nontrivial_iff] at hg
rw [eq_comm, ← Set.toFinset_card, Finset.card_eq_one]
exact ⟨g, Finset.coe_injective <| by simpa using hg.eq_singleton_of_mem mem_carrier_mk⟩
[GOAL]
G : Type u
inst✝¹ : Group G
inst✝ : Finite G
⊢ Nat.card { x // x ∈ Subgroup.center G } + ∑ᶠ (x : ConjClasses G) (_ : x ∈ noncenter G), Nat.card ↑(carrier x) =
Nat.card G
[PROOFSTEP]
cases nonempty_fintype G
[GOAL]
case intro
G : Type u
inst✝¹ : Group G
inst✝ : Finite G
val✝ : Fintype G
⊢ Nat.card { x // x ∈ Subgroup.center G } + ∑ᶠ (x : ConjClasses G) (_ : x ∈ noncenter G), Nat.card ↑(carrier x) =
Nat.card G
[PROOFSTEP]
rw [@Nat.card_eq_fintype_card G, ← sum_conjClasses_card_eq_card, ←
Finset.sum_sdiff (ConjClasses.noncenter G).toFinset.subset_univ]
[GOAL]
case intro
G : Type u
inst✝¹ : Group G
inst✝ : Finite G
val✝ : Fintype G
⊢ Nat.card { x // x ∈ Subgroup.center G } + ∑ᶠ (x : ConjClasses G) (_ : x ∈ noncenter G), Nat.card ↑(carrier x) =
∑ x in Finset.univ \ Set.toFinset (noncenter G), Finset.card (Set.toFinset (carrier x)) +
∑ x in Set.toFinset (noncenter G), Finset.card (Set.toFinset (carrier x))
[PROOFSTEP]
simp only [Nat.card_eq_fintype_card, Set.toFinset_card]
[GOAL]
case intro
G : Type u
inst✝¹ : Group G
inst✝ : Finite G
val✝ : Fintype G
⊢ Fintype.card { x // x ∈ Subgroup.center G } +
∑ᶠ (x : ConjClasses G) (_ : x ∈ noncenter G), Fintype.card ↑(carrier x) =
∑ x in Finset.univ \ Set.toFinset (noncenter G), Fintype.card ↑(carrier x) +
∑ x in Set.toFinset (noncenter G), Fintype.card ↑(carrier x)
[PROOFSTEP]
congr 1
[GOAL]
case intro.e_a
G : Type u
inst✝¹ : Group G
inst✝ : Finite G
val✝ : Fintype G
⊢ Fintype.card { x // x ∈ Subgroup.center G } =
∑ x in Finset.univ \ Set.toFinset (noncenter G), Fintype.card ↑(carrier x)
case intro.e_a
G : Type u
inst✝¹ : Group G
inst✝ : Finite G
val✝ : Fintype G
⊢ ∑ᶠ (x : ConjClasses G) (_ : x ∈ noncenter G), Fintype.card ↑(carrier x) =
∑ x in Set.toFinset (noncenter G), Fintype.card ↑(carrier x)
[PROOFSTEP]
swap
[GOAL]
case intro.e_a
G : Type u
inst✝¹ : Group G
inst✝ : Finite G
val✝ : Fintype G
⊢ ∑ᶠ (x : ConjClasses G) (_ : x ∈ noncenter G), Fintype.card ↑(carrier x) =
∑ x in Set.toFinset (noncenter G), Fintype.card ↑(carrier x)
[PROOFSTEP]
convert finsum_cond_eq_sum_of_cond_iff _ _
[GOAL]
case intro.e_a.convert_7
G : Type u
inst✝¹ : Group G
inst✝ : Finite G
val✝ : Fintype G
⊢ ∀ {x : ConjClasses G}, Fintype.card ↑(carrier x) ≠ 0 → (x ∈ noncenter G ↔ x ∈ Set.toFinset (noncenter G))
[PROOFSTEP]
simp [Set.mem_toFinset]
[GOAL]
case intro.e_a
G : Type u
inst✝¹ : Group G
inst✝ : Finite G
val✝ : Fintype G
⊢ Fintype.card { x // x ∈ Subgroup.center G } =
∑ x in Finset.univ \ Set.toFinset (noncenter G), Fintype.card ↑(carrier x)
[PROOFSTEP]
calc
Fintype.card (Subgroup.center G) = Fintype.card ((noncenter G)ᶜ : Set _) := Fintype.card_congr ((mk_bijOn G).equiv _)
_ = Finset.card (Finset.univ \ (noncenter G).toFinset) := by
rw [← Set.toFinset_card, Set.toFinset_compl, Finset.compl_eq_univ_sdiff]
_ = _ := ?_
[GOAL]
G : Type u
inst✝¹ : Group G
inst✝ : Finite G
val✝ : Fintype G
⊢ Fintype.card ↑(noncenter G)ᶜ = Finset.card (Finset.univ \ Set.toFinset (noncenter G))
[PROOFSTEP]
rw [← Set.toFinset_card, Set.toFinset_compl, Finset.compl_eq_univ_sdiff]
[GOAL]
case intro.e_a
G : Type u
inst✝¹ : Group G
inst✝ : Finite G
val✝ : Fintype G
⊢ Finset.card (Finset.univ \ Set.toFinset (noncenter G)) =
∑ x in Finset.univ \ Set.toFinset (noncenter G), Fintype.card ↑(carrier x)
[PROOFSTEP]
rw [Finset.card_eq_sum_ones]
[GOAL]
case intro.e_a
G : Type u
inst✝¹ : Group G
inst✝ : Finite G
val✝ : Fintype G
⊢ ∑ x in Finset.univ \ Set.toFinset (noncenter G), 1 =
∑ x in Finset.univ \ Set.toFinset (noncenter G), Fintype.card ↑(carrier x)
[PROOFSTEP]
refine Finset.sum_congr rfl ?_
[GOAL]
case intro.e_a
G : Type u
inst✝¹ : Group G
inst✝ : Finite G
val✝ : Fintype G
⊢ ∀ (x : ConjClasses G), x ∈ Finset.univ \ Set.toFinset (noncenter G) → 1 = Fintype.card ↑(carrier x)
[PROOFSTEP]
rintro ⟨g⟩ hg
[GOAL]
case intro.e_a.mk
G : Type u
inst✝¹ : Group G
inst✝ : Finite G
val✝ : Fintype G
x✝ : ConjClasses G
g : G
hg : Quot.mk Setoid.r g ∈ Finset.univ \ Set.toFinset (noncenter G)
⊢ 1 = Fintype.card ↑(carrier (Quot.mk Setoid.r g))
[PROOFSTEP]
simp only [noncenter, Set.not_subsingleton_iff, Set.toFinset_setOf, Finset.mem_univ, true_and, forall_true_left,
Finset.mem_sdiff, Finset.mem_filter, Set.not_nontrivial_iff] at hg
[GOAL]
case intro.e_a.mk
G : Type u
inst✝¹ : Group G
inst✝ : Finite G
val✝ : Fintype G
x✝ : ConjClasses G
g : G
hg : Set.Subsingleton (carrier (Quot.mk Setoid.r g))
⊢ 1 = Fintype.card ↑(carrier (Quot.mk Setoid.r g))
[PROOFSTEP]
rw [eq_comm, ← Set.toFinset_card, Finset.card_eq_one]
[GOAL]
case intro.e_a.mk
G : Type u
inst✝¹ : Group G
inst✝ : Finite G
val✝ : Fintype G
x✝ : ConjClasses G
g : G
hg : Set.Subsingleton (carrier (Quot.mk Setoid.r g))
⊢ ∃ a, Set.toFinset (carrier (Quot.mk Setoid.r g)) = {a}
[PROOFSTEP]
exact ⟨g, Finset.coe_injective <| by simpa using hg.eq_singleton_of_mem mem_carrier_mk⟩
[GOAL]
G : Type u
inst✝¹ : Group G
inst✝ : Finite G
val✝ : Fintype G
x✝ : ConjClasses G
g : G
hg : Set.Subsingleton (carrier (Quot.mk Setoid.r g))
⊢ ↑(Set.toFinset (carrier (Quot.mk Setoid.r g))) = ↑{g}
[PROOFSTEP]
simpa using hg.eq_singleton_of_mem mem_carrier_mk
[GOAL]
G✝ : Type u
inst✝⁵ : Group G✝
G : Type u_1
inst✝⁴ : Group G
inst✝³ : (x : ConjClasses G) → Fintype ↑(carrier x)
inst✝² : Fintype G
inst✝¹ : Fintype { x // x ∈ Subgroup.center G }
inst✝ : Fintype ↑(noncenter G)
⊢ Fintype.card { x // x ∈ Subgroup.center G } +
∑ x in Set.toFinset (noncenter G), Finset.card (Set.toFinset (carrier x)) =
Fintype.card G
[PROOFSTEP]
convert Group.nat_card_center_add_sum_card_noncenter_eq_card G using 2
[GOAL]
case h.e'_2.h.e'_5
G✝ : Type u
inst✝⁵ : Group G✝
G : Type u_1
inst✝⁴ : Group G
inst✝³ : (x : ConjClasses G) → Fintype ↑(carrier x)
inst✝² : Fintype G
inst✝¹ : Fintype { x // x ∈ Subgroup.center G }
inst✝ : Fintype ↑(noncenter G)
⊢ Fintype.card { x // x ∈ Subgroup.center G } = Nat.card { x // x ∈ Subgroup.center G }
[PROOFSTEP]
simp
[GOAL]
case h.e'_2.h.e'_6
G✝ : Type u
inst✝⁵ : Group G✝
G : Type u_1
inst✝⁴ : Group G
inst✝³ : (x : ConjClasses G) → Fintype ↑(carrier x)
inst✝² : Fintype G
inst✝¹ : Fintype { x // x ∈ Subgroup.center G }
inst✝ : Fintype ↑(noncenter G)
⊢ ∑ x in Set.toFinset (noncenter G), Finset.card (Set.toFinset (carrier x)) =
∑ᶠ (x : ConjClasses G) (_ : x ∈ noncenter G), Nat.card ↑(carrier x)
[PROOFSTEP]
rw [← finsum_set_coe_eq_finsum_mem (noncenter G), finsum_eq_sum_of_fintype, ← Finset.sum_set_coe]
[GOAL]
case h.e'_2.h.e'_6
G✝ : Type u
inst✝⁵ : Group G✝
G : Type u_1
inst✝⁴ : Group G
inst✝³ : (x : ConjClasses G) → Fintype ↑(carrier x)
inst✝² : Fintype G
inst✝¹ : Fintype { x // x ∈ Subgroup.center G }
inst✝ : Fintype ↑(noncenter G)
⊢ ∑ i : ↑(noncenter G), Finset.card (Set.toFinset (carrier ↑i)) = ∑ i : ↑(noncenter G), Nat.card ↑(carrier ↑i)
[PROOFSTEP]
simp
[GOAL]
case h.e'_3
G✝ : Type u
inst✝⁵ : Group G✝
G : Type u_1
inst✝⁴ : Group G
inst✝³ : (x : ConjClasses G) → Fintype ↑(carrier x)
inst✝² : Fintype G
inst✝¹ : Fintype { x // x ∈ Subgroup.center G }
inst✝ : Fintype ↑(noncenter G)
⊢ Fintype.card G = Nat.card G
[PROOFSTEP]
simp
| {"mathlib_filename": "Mathlib.GroupTheory.ClassEquation", "llama_tokens": 4770} |
[GOAL]
G : Type u_1
inst✝² : Group G
inst✝¹ : IsFreeGroup G
H : Type u_2
inst✝ : Group H
f : FreeGroup (Generators G) →* H
⊢ (fun f => MonoidHom.comp f (MulEquiv.toMonoidHom (MulEquiv G)))
((fun f => MonoidHom.comp f (MulEquiv.toMonoidHom (MulEquiv.symm (MulEquiv G)))) f) =
f
[PROOFSTEP]
ext
[GOAL]
case h
G : Type u_1
inst✝² : Group G
inst✝¹ : IsFreeGroup G
H : Type u_2
inst✝ : Group H
f : FreeGroup (Generators G) →* H
a✝ : Generators G
⊢ ↑((fun f => MonoidHom.comp f (MulEquiv.toMonoidHom (MulEquiv G)))
((fun f => MonoidHom.comp f (MulEquiv.toMonoidHom (MulEquiv.symm (MulEquiv G)))) f))
(FreeGroup.of a✝) =
↑f (FreeGroup.of a✝)
[PROOFSTEP]
simp
[GOAL]
G : Type u_1
inst✝² : Group G
inst✝¹ : IsFreeGroup G
H : Type u_2
inst✝ : Group H
f : G →* H
⊢ (fun f => MonoidHom.comp f (MulEquiv.toMonoidHom (MulEquiv.symm (MulEquiv G))))
((fun f => MonoidHom.comp f (MulEquiv.toMonoidHom (MulEquiv G))) f) =
f
[PROOFSTEP]
ext
[GOAL]
case h
G : Type u_1
inst✝² : Group G
inst✝¹ : IsFreeGroup G
H : Type u_2
inst✝ : Group H
f : G →* H
x✝ : G
⊢ ↑((fun f => MonoidHom.comp f (MulEquiv.toMonoidHom (MulEquiv.symm (MulEquiv G))))
((fun f => MonoidHom.comp f (MulEquiv.toMonoidHom (MulEquiv G))) f))
x✝ =
↑f x✝
[PROOFSTEP]
simp
[GOAL]
G : Type u_1
inst✝² : Group G
inst✝¹ : IsFreeGroup G
H : Type u_2
inst✝ : Group H
f : Generators G → H
⊢ ∃! F, ∀ (a : Generators G), ↑F (of a) = f a
[PROOFSTEP]
simpa only [Function.funext_iff] using lift.symm.bijective.existsUnique f
[GOAL]
G✝ : Type u_1
inst✝³ : Group G✝
inst✝² : IsFreeGroup G✝
H : Type u_2
inst✝¹ : Group H
G : Type u
inst✝ : Group G
X : Type u
of : X → G
lift : {H : Type u} → [inst : Group H] → (X → H) ≃ (G →* H)
lift_of : ∀ {H : Type u} [inst : Group H] (f : X → H) (a : X), ↑(↑lift f) (of a) = f a
⊢ MonoidHom.comp (↑lift FreeGroup.of) (↑FreeGroup.lift of) = MonoidHom.id (FreeGroup X)
[PROOFSTEP]
apply FreeGroup.ext_hom
[GOAL]
case h
G✝ : Type u_1
inst✝³ : Group G✝
inst✝² : IsFreeGroup G✝
H : Type u_2
inst✝¹ : Group H
G : Type u
inst✝ : Group G
X : Type u
of : X → G
lift : {H : Type u} → [inst : Group H] → (X → H) ≃ (G →* H)
lift_of : ∀ {H : Type u} [inst : Group H] (f : X → H) (a : X), ↑(↑lift f) (of a) = f a
⊢ ∀ (a : X),
↑(MonoidHom.comp (↑lift FreeGroup.of) (↑FreeGroup.lift of)) (FreeGroup.of a) =
↑(MonoidHom.id (FreeGroup X)) (FreeGroup.of a)
[PROOFSTEP]
intro x
[GOAL]
case h
G✝ : Type u_1
inst✝³ : Group G✝
inst✝² : IsFreeGroup G✝
H : Type u_2
inst✝¹ : Group H
G : Type u
inst✝ : Group G
X : Type u
of : X → G
lift : {H : Type u} → [inst : Group H] → (X → H) ≃ (G →* H)
lift_of : ∀ {H : Type u} [inst : Group H] (f : X → H) (a : X), ↑(↑lift f) (of a) = f a
x : X
⊢ ↑(MonoidHom.comp (↑lift FreeGroup.of) (↑FreeGroup.lift of)) (FreeGroup.of x) =
↑(MonoidHom.id (FreeGroup X)) (FreeGroup.of x)
[PROOFSTEP]
simp only [MonoidHom.coe_comp, Function.comp_apply, MonoidHom.id_apply, FreeGroup.lift.of, lift_of]
[GOAL]
G✝ : Type u_1
inst✝³ : Group G✝
inst✝² : IsFreeGroup G✝
H : Type u_2
inst✝¹ : Group H
G : Type u
inst✝ : Group G
X : Type u
of : X → G
lift : {H : Type u} → [inst : Group H] → (X → H) ≃ (G →* H)
lift_of : ∀ {H : Type u} [inst : Group H] (f : X → H) (a : X), ↑(↑lift f) (of a) = f a
⊢ MonoidHom.comp (↑FreeGroup.lift of) (↑lift FreeGroup.of) = MonoidHom.id G
[PROOFSTEP]
let lift_symm_of : ∀ {H : Type u} [Group H], ∀ (f : G →* H) (a), lift.symm f a = f (of a) := by intro H _ f a;
simp [← lift_of (lift.symm f)]
[GOAL]
G✝ : Type u_1
inst✝³ : Group G✝
inst✝² : IsFreeGroup G✝
H : Type u_2
inst✝¹ : Group H
G : Type u
inst✝ : Group G
X : Type u
of : X → G
lift : {H : Type u} → [inst : Group H] → (X → H) ≃ (G →* H)
lift_of : ∀ {H : Type u} [inst : Group H] (f : X → H) (a : X), ↑(↑lift f) (of a) = f a
⊢ ∀ {H : Type u} [inst : Group H] (f : G →* H) (a : X), ↑lift.symm f a = ↑f (of a)
[PROOFSTEP]
intro H _ f a
[GOAL]
G✝ : Type u_1
inst✝⁴ : Group G✝
inst✝³ : IsFreeGroup G✝
H✝ : Type u_2
inst✝² : Group H✝
G : Type u
inst✝¹ : Group G
X : Type u
of : X → G
lift : {H : Type u} → [inst : Group H] → (X → H) ≃ (G →* H)
lift_of : ∀ {H : Type u} [inst : Group H] (f : X → H) (a : X), ↑(↑lift f) (of a) = f a
H : Type u
inst✝ : Group H
f : G →* H
a : X
⊢ ↑lift.symm f a = ↑f (of a)
[PROOFSTEP]
simp [← lift_of (lift.symm f)]
[GOAL]
G✝ : Type u_1
inst✝³ : Group G✝
inst✝² : IsFreeGroup G✝
H : Type u_2
inst✝¹ : Group H
G : Type u
inst✝ : Group G
X : Type u
of : X → G
lift : {H : Type u} → [inst : Group H] → (X → H) ≃ (G →* H)
lift_of : ∀ {H : Type u} [inst : Group H] (f : X → H) (a : X), ↑(↑lift f) (of a) = f a
lift_symm_of : ∀ {H : Type u} [inst : Group H] (f : G →* H) (a : X), ↑lift.symm f a = ↑f (of a) :=
fun {H} [Group H] f a =>
of_eq_true
(Eq.trans
(congrFun
(congrArg Eq
(Eq.trans ((fun a => Eq.symm (lift_of (↑lift.symm f) a)) a)
(congrFun (congrArg FunLike.coe (Equiv.apply_symm_apply lift f)) (of a))))
(↑f (of a)))
(eq_self (↑f (of a))))
⊢ MonoidHom.comp (↑FreeGroup.lift of) (↑lift FreeGroup.of) = MonoidHom.id G
[PROOFSTEP]
apply lift.symm.injective
[GOAL]
case a
G✝ : Type u_1
inst✝³ : Group G✝
inst✝² : IsFreeGroup G✝
H : Type u_2
inst✝¹ : Group H
G : Type u
inst✝ : Group G
X : Type u
of : X → G
lift : {H : Type u} → [inst : Group H] → (X → H) ≃ (G →* H)
lift_of : ∀ {H : Type u} [inst : Group H] (f : X → H) (a : X), ↑(↑lift f) (of a) = f a
lift_symm_of : ∀ {H : Type u} [inst : Group H] (f : G →* H) (a : X), ↑lift.symm f a = ↑f (of a) :=
fun {H} [Group H] f a =>
of_eq_true
(Eq.trans
(congrFun
(congrArg Eq
(Eq.trans ((fun a => Eq.symm (lift_of (↑lift.symm f) a)) a)
(congrFun (congrArg FunLike.coe (Equiv.apply_symm_apply lift f)) (of a))))
(↑f (of a)))
(eq_self (↑f (of a))))
⊢ ↑lift.symm (MonoidHom.comp (↑FreeGroup.lift of) (↑lift FreeGroup.of)) = ↑lift.symm (MonoidHom.id G)
[PROOFSTEP]
ext x
[GOAL]
case a.h
G✝ : Type u_1
inst✝³ : Group G✝
inst✝² : IsFreeGroup G✝
H : Type u_2
inst✝¹ : Group H
G : Type u
inst✝ : Group G
X : Type u
of : X → G
lift : {H : Type u} → [inst : Group H] → (X → H) ≃ (G →* H)
lift_of : ∀ {H : Type u} [inst : Group H] (f : X → H) (a : X), ↑(↑lift f) (of a) = f a
lift_symm_of : ∀ {H : Type u} [inst : Group H] (f : G →* H) (a : X), ↑lift.symm f a = ↑f (of a) :=
fun {H} [Group H] f a =>
of_eq_true
(Eq.trans
(congrFun
(congrArg Eq
(Eq.trans ((fun a => Eq.symm (lift_of (↑lift.symm f) a)) a)
(congrFun (congrArg FunLike.coe (Equiv.apply_symm_apply lift f)) (of a))))
(↑f (of a)))
(eq_self (↑f (of a))))
x : X
⊢ ↑lift.symm (MonoidHom.comp (↑FreeGroup.lift of) (↑lift FreeGroup.of)) x = ↑lift.symm (MonoidHom.id G) x
[PROOFSTEP]
simp only [MonoidHom.coe_comp, Function.comp_apply, MonoidHom.id_apply, FreeGroup.lift.of, lift_of, lift_symm_of]
| {"mathlib_filename": "Mathlib.GroupTheory.IsFreeGroup", "llama_tokens": 3413} |
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c x y : Con M
h : (fun c x y => r x y) x = (fun c x y => r x y) y
⊢ x = y
[PROOFSTEP]
rcases x with ⟨⟨x, _⟩, _⟩
[GOAL]
case mk.mk
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c y : Con M
x : M → M → Prop
iseqv✝ : Equivalence x
mul'✝ : ∀ {w x_1 y z : M}, r w x_1 → r y z → r (w * y) (x_1 * z)
h : (fun c x y => r x y) { toSetoid := { r := x, iseqv := iseqv✝ }, mul' := mul'✝ } = (fun c x y => r x y) y
⊢ { toSetoid := { r := x, iseqv := iseqv✝ }, mul' := mul'✝ } = y
[PROOFSTEP]
rcases y with ⟨⟨y, _⟩, _⟩
[GOAL]
case mk.mk.mk.mk
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c : Con M
x : M → M → Prop
iseqv✝¹ : Equivalence x
mul'✝¹ : ∀ {w x_1 y z : M}, r w x_1 → r y z → r (w * y) (x_1 * z)
y : M → M → Prop
iseqv✝ : Equivalence y
mul'✝ : ∀ {w x y_1 z : M}, r w x → r y_1 z → r (w * y_1) (x * z)
h :
(fun c x y => r x y) { toSetoid := { r := x, iseqv := iseqv✝¹ }, mul' := mul'✝¹ } =
(fun c x y => r x y) { toSetoid := { r := y, iseqv := iseqv✝ }, mul' := mul'✝ }
⊢ { toSetoid := { r := x, iseqv := iseqv✝¹ }, mul' := mul'✝¹ } =
{ toSetoid := { r := y, iseqv := iseqv✝ }, mul' := mul'✝ }
[PROOFSTEP]
have : x = y := h
[GOAL]
case mk.mk.mk.mk
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c : Con M
x : M → M → Prop
iseqv✝¹ : Equivalence x
mul'✝¹ : ∀ {w x_1 y z : M}, r w x_1 → r y z → r (w * y) (x_1 * z)
y : M → M → Prop
iseqv✝ : Equivalence y
mul'✝ : ∀ {w x y_1 z : M}, r w x → r y_1 z → r (w * y_1) (x * z)
h :
(fun c x y => r x y) { toSetoid := { r := x, iseqv := iseqv✝¹ }, mul' := mul'✝¹ } =
(fun c x y => r x y) { toSetoid := { r := y, iseqv := iseqv✝ }, mul' := mul'✝ }
this : x = y
⊢ { toSetoid := { r := x, iseqv := iseqv✝¹ }, mul' := mul'✝¹ } =
{ toSetoid := { r := y, iseqv := iseqv✝ }, mul' := mul'✝ }
[PROOFSTEP]
subst x
[GOAL]
case mk.mk.mk.mk
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c : Con M
y : M → M → Prop
iseqv✝¹ : Equivalence y
mul'✝¹ : ∀ {w x y_1 z : M}, r w x → r y_1 z → r (w * y_1) (x * z)
iseqv✝ : Equivalence y
mul'✝ : ∀ {w x y_1 z : M}, r w x → r y_1 z → r (w * y_1) (x * z)
h :
(fun c x y => r x y) { toSetoid := { r := y, iseqv := iseqv✝ }, mul' := mul'✝ } =
(fun c x y => r x y) { toSetoid := { r := y, iseqv := iseqv✝¹ }, mul' := mul'✝¹ }
⊢ { toSetoid := { r := y, iseqv := iseqv✝ }, mul' := mul'✝ } =
{ toSetoid := { r := y, iseqv := iseqv✝¹ }, mul' := mul'✝¹ }
[PROOFSTEP]
rfl
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c✝ c d : Con M
H : r = r
⊢ c = d
[PROOFSTEP]
rcases c with ⟨⟨⟩⟩
[GOAL]
case mk.mk
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c d : Con M
r✝ : M → M → Prop
iseqv✝ : Equivalence r✝
mul'✝ : ∀ {w x y z : M}, r w x → r y z → r (w * y) (x * z)
H : r = r
⊢ { toSetoid := { r := r✝, iseqv := iseqv✝ }, mul' := mul'✝ } = d
[PROOFSTEP]
rcases d with ⟨⟨⟩⟩
[GOAL]
case mk.mk.mk.mk
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c : Con M
r✝¹ : M → M → Prop
iseqv✝¹ : Equivalence r✝¹
mul'✝¹ : ∀ {w x y z : M}, r w x → r y z → r (w * y) (x * z)
r✝ : M → M → Prop
iseqv✝ : Equivalence r✝
mul'✝ : ∀ {w x y z : M}, r w x → r y z → r (w * y) (x * z)
H : r = r
⊢ { toSetoid := { r := r✝¹, iseqv := iseqv✝¹ }, mul' := mul'✝¹ } =
{ toSetoid := { r := r✝, iseqv := iseqv✝ }, mul' := mul'✝ }
[PROOFSTEP]
cases H
[GOAL]
case mk.mk.mk.mk.refl
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c : Con M
r✝ : M → M → Prop
iseqv✝¹ : Equivalence r✝
mul'✝¹ : ∀ {w x y z : M}, r w x → r y z → r (w * y) (x * z)
iseqv✝ : Equivalence r✝
mul'✝ : ∀ {w x y z : M}, r w x → r y z → r (w * y) (x * z)
⊢ { toSetoid := { r := r✝, iseqv := iseqv✝¹ }, mul' := mul'✝¹ } =
{ toSetoid := { r := r✝, iseqv := iseqv✝ }, mul' := mul'✝ }
[PROOFSTEP]
congr
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c✝ c d : Con M
H : ∀ (x y : M), ↑c x y ↔ ↑d x y
⊢ r = r
[PROOFSTEP]
ext
[GOAL]
case h.h.a
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c✝ c d : Con M
H : ∀ (x y : M), ↑c x y ↔ ↑d x y
x✝¹ x✝ : M
⊢ r x✝¹ x✝ ↔ r x✝¹ x✝
[PROOFSTEP]
apply H
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c : Con M
f : M → P
h : ∀ (x y : M), f (x * y) = f x * f y
w✝ x✝ y✝ z✝ : M
h1 : r w✝ x✝
h2 : r y✝ z✝
⊢ r (w✝ * y✝) (x✝ * z✝)
[PROOFSTEP]
dsimp [Setoid.ker, onFun] at *
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c : Con M
f : M → P
h : ∀ (x y : M), f (x * y) = f x * f y
w✝ x✝ y✝ z✝ : M
h1 : f w✝ = f x✝
h2 : f y✝ = f z✝
⊢ f (w✝ * y✝) = f (x✝ * z✝)
[PROOFSTEP]
rw [h, h1, h2, h]
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c✝ c d : Con M
h : c = d
⊢ ∀ (a₁ a₂ : M), r a₁ a₂ ↔ r (↑(Equiv.refl M) a₁) (↑(Equiv.refl M) a₂)
[PROOFSTEP]
apply ext_iff.2 h
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c✝ c d : Con M
h : c = d
src✝ : Quotient c.toSetoid ≃ Quotient d.toSetoid := Quotient.congr (Equiv.refl M) (_ : ∀ (x y : M), ↑c x y ↔ ↑d x y)
x y : Con.Quotient c
⊢ Equiv.toFun
{ toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }
(x * y) =
Equiv.toFun
{ toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }
x *
Equiv.toFun
{ toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }
y
[PROOFSTEP]
rcases x with ⟨⟩
[GOAL]
case mk
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c✝ c d : Con M
h : c = d
src✝ : Quotient c.toSetoid ≃ Quotient d.toSetoid := Quotient.congr (Equiv.refl M) (_ : ∀ (x y : M), ↑c x y ↔ ↑d x y)
x y : Con.Quotient c
a✝ : M
⊢ Equiv.toFun
{ toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }
(Quot.mk r a✝ * y) =
Equiv.toFun
{ toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }
(Quot.mk r a✝) *
Equiv.toFun
{ toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }
y
[PROOFSTEP]
rcases y with ⟨⟩
[GOAL]
case mk.mk
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c✝ c d : Con M
h : c = d
src✝ : Quotient c.toSetoid ≃ Quotient d.toSetoid := Quotient.congr (Equiv.refl M) (_ : ∀ (x y : M), ↑c x y ↔ ↑d x y)
x y : Con.Quotient c
a✝¹ a✝ : M
⊢ Equiv.toFun
{ toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }
(Quot.mk r a✝¹ * Quot.mk r a✝) =
Equiv.toFun
{ toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }
(Quot.mk r a✝¹) *
Equiv.toFun
{ toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }
(Quot.mk r a✝)
[PROOFSTEP]
rfl
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c✝ : Con M
S : Set (Con M)
x y : M
h : Rel (sInf S).toSetoid x y
r : Setoid M
x✝ : r ∈ toSetoid '' S
c : Con M
hS : c ∈ S
hr : c.toSetoid = r
⊢ Rel r x y
[PROOFSTEP]
rw [← hr]
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c✝ : Con M
S : Set (Con M)
x y : M
h : Rel (sInf S).toSetoid x y
r : Setoid M
x✝ : r ∈ toSetoid '' S
c : Con M
hS : c ∈ S
hr : c.toSetoid = r
⊢ Rel c.toSetoid x y
[PROOFSTEP]
exact h c hS
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c : Con M
S : Set (Con M)
⊢ ↑(sInf S) = sInf (FunLike.coe '' S)
[PROOFSTEP]
ext
[GOAL]
case h.h.a
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c : Con M
S : Set (Con M)
x✝¹ x✝ : M
⊢ ↑(sInf S) x✝¹ x✝ ↔ sInf (FunLike.coe '' S) x✝¹ x✝
[PROOFSTEP]
simp only [sInf_image, iInf_apply, iInf_Prop_eq]
[GOAL]
case h.h.a
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c : Con M
S : Set (Con M)
x✝¹ x✝ : M
⊢ ↑(sInf S) x✝¹ x✝ ↔ ∀ (i : Con M), i ∈ S → ↑i x✝¹ x✝
[PROOFSTEP]
rfl
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c : Con M
src✝¹ : CompleteLattice (Con M) :=
completeLatticeOfInf (Con M) (_ : ∀ (s : Set (Con M)), sInf s ∈ lowerBounds s ∧ sInf s ∈ upperBounds (lowerBounds s))
src✝ : Setoid M := ⊤
⊢ ∀ {w x y z : M}, r w x → r y z → r (w * y) (x * z)
[PROOFSTEP]
tauto
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c : Con M
r : M → M → Prop
s : Con M
hs : s ∈ {s | ∀ (x y : M), r x y → ↑s x y}
x y : M
hxy : Setoid.r x y
⊢ Setoid.r x y
[PROOFSTEP]
apply ConGen.Rel.recOn (motive := fun x y _ => s.r x y) hxy
[GOAL]
case of
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c : Con M
r : M → M → Prop
s : Con M
hs : s ∈ {s | ∀ (x y : M), r x y → ↑s x y}
x y : M
hxy : Setoid.r x y
⊢ ∀ (x y : M), r x y → Setoid.r x y
[PROOFSTEP]
exact fun x y h => hs x y h
[GOAL]
case refl
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c : Con M
r : M → M → Prop
s : Con M
hs : s ∈ {s | ∀ (x y : M), r x y → ↑s x y}
x y : M
hxy : Setoid.r x y
⊢ ∀ (x : M), Setoid.r x x
[PROOFSTEP]
exact s.refl'
[GOAL]
case symm
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c : Con M
r : M → M → Prop
s : Con M
hs : s ∈ {s | ∀ (x y : M), r x y → ↑s x y}
x y : M
hxy : Setoid.r x y
⊢ ∀ {x y : M}, ConGen.Rel r x y → Setoid.r x y → Setoid.r y x
[PROOFSTEP]
exact fun _ => s.symm'
[GOAL]
case trans
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c : Con M
r : M → M → Prop
s : Con M
hs : s ∈ {s | ∀ (x y : M), r x y → ↑s x y}
x y : M
hxy : Setoid.r x y
⊢ ∀ {x y z : M}, ConGen.Rel r x y → ConGen.Rel r y z → Setoid.r x y → Setoid.r y z → Setoid.r x z
[PROOFSTEP]
exact fun _ _ => s.trans'
[GOAL]
case mul
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c : Con M
r : M → M → Prop
s : Con M
hs : s ∈ {s | ∀ (x y : M), r x y → ↑s x y}
x y : M
hxy : Setoid.r x y
⊢ ∀ {w x y z : M}, ConGen.Rel r w x → ConGen.Rel r y z → Setoid.r w x → Setoid.r y z → Setoid.r (w * y) (x * z)
[PROOFSTEP]
exact fun _ _ => s.mul
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c✝ : Con M
r : M → M → Prop
c : Con M
h : ∀ (x y : M), r x y → Setoid.r x y
⊢ conGen r ≤ c
[PROOFSTEP]
rw [conGen_eq]
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c✝ : Con M
r : M → M → Prop
c : Con M
h : ∀ (x y : M), r x y → Setoid.r x y
⊢ sInf {s | ∀ (x y : M), r x y → ↑s x y} ≤ c
[PROOFSTEP]
exact sInf_le h
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c✝ c : Con M
⊢ conGen ↑c ≤ c
[PROOFSTEP]
rw [conGen_eq]
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c✝ c : Con M
⊢ sInf {s | ∀ (x y : M), ↑c x y → ↑s x y} ≤ c
[PROOFSTEP]
exact sInf_le fun _ _ => id
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c✝ c d : Con M
⊢ c ⊔ d = conGen fun x y => ↑c x y ∨ ↑d x y
[PROOFSTEP]
rw [conGen_eq]
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c✝ c d : Con M
⊢ c ⊔ d = sInf {s | ∀ (x y : M), ↑c x y ∨ ↑d x y → ↑s x y}
[PROOFSTEP]
apply congr_arg sInf
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c✝ c d : Con M
⊢ {x | c ≤ x ∧ d ≤ x} = {s | ∀ (x y : M), ↑c x y ∨ ↑d x y → ↑s x y}
[PROOFSTEP]
simp only [le_def, or_imp, ← forall_and]
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c✝ c d : Con M
⊢ c ⊔ d = conGen (r ⊔ r)
[PROOFSTEP]
rw [sup_eq_conGen]
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c✝ c d : Con M
⊢ (conGen fun x y => ↑c x y ∨ ↑d x y) = conGen (r ⊔ r)
[PROOFSTEP]
rfl
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c : Con M
S : Set (Con M)
⊢ sSup S = conGen fun x y => ∃ c, c ∈ S ∧ ↑c x y
[PROOFSTEP]
rw [conGen_eq]
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c : Con M
S : Set (Con M)
⊢ sSup S = sInf {s | ∀ (x y : M), (∃ c, c ∈ S ∧ ↑c x y) → ↑s x y}
[PROOFSTEP]
apply congr_arg sInf
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c : Con M
S : Set (Con M)
⊢ upperBounds S = {s | ∀ (x y : M), (∃ c, c ∈ S ∧ ↑c x y) → ↑s x y}
[PROOFSTEP]
ext
[GOAL]
case h
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c : Con M
S : Set (Con M)
x✝ : Con M
⊢ x✝ ∈ upperBounds S ↔ x✝ ∈ {s | ∀ (x y : M), (∃ c, c ∈ S ∧ ↑c x y) → ↑s x y}
[PROOFSTEP]
exact ⟨fun h _ _ ⟨r, hr⟩ => h hr.1 hr.2, fun h r hS _ _ hr => h _ _ ⟨r, hS, hr⟩⟩
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c : Con M
S : Set (Con M)
⊢ sSup S = conGen (sSup (FunLike.coe '' S))
[PROOFSTEP]
rw [sSup_eq_conGen, sSup_image]
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c : Con M
S : Set (Con M)
⊢ (conGen fun x y => ∃ c, c ∈ S ∧ ↑c x y) = conGen (⨆ (a : Con M) (_ : a ∈ S), ↑a)
[PROOFSTEP]
congr with (x y)
[GOAL]
case e_r.h.h.a
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c : Con M
S : Set (Con M)
x y : M
⊢ (∃ c, c ∈ S ∧ ↑c x y) ↔ iSup (fun a => ⨆ (_ : a ∈ S), ↑a) x y
[PROOFSTEP]
simp only [sSup_image, iSup_apply, iSup_Prop_eq, exists_prop, rel_eq_coe]
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c : Con M
f : M → N
H : ∀ (x y : M), f (x * y) = f x * f y
h : mulKer f H ≤ c
hf : Surjective f
src✝ : Setoid N := Setoid.mapOfSurjective c.toSetoid f h hf
w✝ x✝ y✝ z✝ : N
h₁ : r w✝ x✝
h₂ : r y✝ z✝
⊢ r (w✝ * y✝) (x✝ * z✝)
[PROOFSTEP]
rcases h₁ with ⟨a, b, rfl, rfl, h1⟩
[GOAL]
case intro.intro.intro.intro
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c : Con M
f : M → N
H : ∀ (x y : M), f (x * y) = f x * f y
h : mulKer f H ≤ c
hf : Surjective f
src✝ : Setoid N := Setoid.mapOfSurjective c.toSetoid f h hf
y✝ z✝ : N
h₂ : r y✝ z✝
a b : M
h1 : Rel c.toSetoid a b
⊢ r (f a * y✝) (f b * z✝)
[PROOFSTEP]
rcases h₂ with ⟨p, q, rfl, rfl, h2⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c : Con M
f : M → N
H : ∀ (x y : M), f (x * y) = f x * f y
h : mulKer f H ≤ c
hf : Surjective f
src✝ : Setoid N := Setoid.mapOfSurjective c.toSetoid f h hf
a b : M
h1 : Rel c.toSetoid a b
p q : M
h2 : Rel c.toSetoid p q
⊢ r (f a * f p) (f b * f q)
[PROOFSTEP]
exact ⟨a * p, b * q, by rw [H], by rw [H], c.mul h1 h2⟩
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c : Con M
f : M → N
H : ∀ (x y : M), f (x * y) = f x * f y
h : mulKer f H ≤ c
hf : Surjective f
src✝ : Setoid N := Setoid.mapOfSurjective c.toSetoid f h hf
a b : M
h1 : Rel c.toSetoid a b
p q : M
h2 : Rel c.toSetoid p q
⊢ f (a * p) = f a * f p
[PROOFSTEP]
rw [H]
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c : Con M
f : M → N
H : ∀ (x y : M), f (x * y) = f x * f y
h : mulKer f H ≤ c
hf : Surjective f
src✝ : Setoid N := Setoid.mapOfSurjective c.toSetoid f h hf
a b : M
h1 : Rel c.toSetoid a b
p q : M
h2 : Rel c.toSetoid p q
⊢ f (b * q) = f b * f q
[PROOFSTEP]
rw [H]
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c✝ c : Con M
f : M → N
H : ∀ (x y : M), f (x * y) = f x * f y
h : mulKer f H ≤ c
hf : Surjective f
⊢ mapGen c f = mapOfSurjective c f H h hf
[PROOFSTEP]
rw [← conGen_of_con (c.mapOfSurjective f H h hf)]
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c✝ c : Con M
f : M → N
H : ∀ (x y : M), f (x * y) = f x * f y
h : mulKer f H ≤ c
hf : Surjective f
⊢ mapGen c f = conGen ↑(mapOfSurjective c f H h hf)
[PROOFSTEP]
rfl
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c✝ : Con M
f : M → N
H : ∀ (x y : M), f (x * y) = f x * f y
c : Con N
src✝ : Setoid M := Setoid.comap f c.toSetoid
w x y z : M
h1 : r w x
h2 : r y z
⊢ ↑c (f (w * y)) (f (x * z))
[PROOFSTEP]
rw [H, H]
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c✝ : Con M
f : M → N
H : ∀ (x y : M), f (x * y) = f x * f y
c : Con N
src✝ : Setoid M := Setoid.comap f c.toSetoid
w x y z : M
h1 : r w x
h2 : r y z
⊢ ↑c (f w * f y) (f x * f z)
[PROOFSTEP]
exact c.mul h1 h2
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c : Con M
d : { d // c ≤ d }
⊢ mulKer toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑x * ↑y) ≤ ↑d
[PROOFSTEP]
rw [mul_ker_mk_eq]
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c : Con M
d : { d // c ≤ d }
⊢ c ≤ ↑d
[PROOFSTEP]
exact d.2
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c : Con M
d : Con (Con.Quotient c)
x y : M
h : ↑c x y
⊢ ↑d ↑x ↑y
[PROOFSTEP]
rw [c.eq.2 h]
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c : Con M
d : Con (Con.Quotient c)
x y : M
h : ↑c x y
⊢ ↑d ↑y ↑y
[PROOFSTEP]
exact d.refl _
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c : Con M
d : { d // c ≤ d }
⊢ (fun d =>
{ val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d,
property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) })
((fun d =>
mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1))
(_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d)
(_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q))
d) =
d
[PROOFSTEP]
exact
Subtype.ext_iff_val.2 <|
ext fun x y =>
⟨fun h =>
let ⟨a, b, hx, hy, H⟩ := h
d.1.trans (d.1.symm <| d.2 <| c.eq.1 hx) <| d.1.trans H <| d.2 <| c.eq.1 hy,
fun h => ⟨_, _, rfl, rfl, h⟩⟩
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c : Con M
d : Con (Con.Quotient c)
⊢ (fun d =>
mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1))
(_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d)
(_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q))
((fun d =>
{ val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d,
property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) })
d) =
d
[PROOFSTEP]
exact
ext fun x y =>
⟨fun h =>
let ⟨_, _, hx, hy, H⟩ := h
hx ▸ hy ▸ H,
Con.induction_on₂ x y fun w z h => ⟨w, z, rfl, rfl, h⟩⟩
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c : Con M
s t : { d // c ≤ d }
⊢ ↑{
toFun := fun d =>
mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1))
(_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d)
(_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q),
invFun := fun d =>
{ val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d,
property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) },
left_inv :=
(_ :
∀ (d : { d // c ≤ d }),
(fun d =>
{ val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d,
property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) })
((fun d =>
mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1))
(_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d)
(_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q))
d) =
d),
right_inv :=
(_ :
∀ (d : Con (Con.Quotient c)),
(fun d =>
mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1))
(_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d)
(_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q))
((fun d =>
{ val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d,
property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) })
d) =
d) }
s ≤
↑{
toFun := fun d =>
mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1))
(_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d)
(_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q),
invFun := fun d =>
{ val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d,
property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) },
left_inv :=
(_ :
∀ (d : { d // c ≤ d }),
(fun d =>
{ val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d,
property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) })
((fun d =>
mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1))
(_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d)
(_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q))
d) =
d),
right_inv :=
(_ :
∀ (d : Con (Con.Quotient c)),
(fun d =>
mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1))
(_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d)
(_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q))
((fun d =>
{ val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d,
property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) })
d) =
d) }
t ↔
s ≤ t
[PROOFSTEP]
constructor
[GOAL]
case mp
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c : Con M
s t : { d // c ≤ d }
⊢ ↑{
toFun := fun d =>
mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1))
(_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d)
(_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q),
invFun := fun d =>
{ val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d,
property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) },
left_inv :=
(_ :
∀ (d : { d // c ≤ d }),
(fun d =>
{ val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d,
property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) })
((fun d =>
mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1))
(_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d)
(_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q))
d) =
d),
right_inv :=
(_ :
∀ (d : Con (Con.Quotient c)),
(fun d =>
mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1))
(_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d)
(_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q))
((fun d =>
{ val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d,
property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) })
d) =
d) }
s ≤
↑{
toFun := fun d =>
mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1))
(_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d)
(_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q),
invFun := fun d =>
{ val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d,
property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) },
left_inv :=
(_ :
∀ (d : { d // c ≤ d }),
(fun d =>
{ val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d,
property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) })
((fun d =>
mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1))
(_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d)
(_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q))
d) =
d),
right_inv :=
(_ :
∀ (d : Con (Con.Quotient c)),
(fun d =>
mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1))
(_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d)
(_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q))
((fun d =>
{ val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d,
property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) })
d) =
d) }
t →
s ≤ t
[PROOFSTEP]
intros h x y hs
[GOAL]
case mp
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c : Con M
s t : { d // c ≤ d }
h :
↑{
toFun := fun d =>
mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1))
(_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d)
(_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q),
invFun := fun d =>
{ val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d,
property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) },
left_inv :=
(_ :
∀ (d : { d // c ≤ d }),
(fun d =>
{ val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d,
property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) })
((fun d =>
mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1))
(_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d)
(_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q))
d) =
d),
right_inv :=
(_ :
∀ (d : Con (Con.Quotient c)),
(fun d =>
mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1))
(_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d)
(_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q))
((fun d =>
{ val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d,
property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) })
d) =
d) }
s ≤
↑{
toFun := fun d =>
mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1))
(_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d)
(_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q),
invFun := fun d =>
{ val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d,
property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) },
left_inv :=
(_ :
∀ (d : { d // c ≤ d }),
(fun d =>
{ val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d,
property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) })
((fun d =>
mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1))
(_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d)
(_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q))
d) =
d),
right_inv :=
(_ :
∀ (d : Con (Con.Quotient c)),
(fun d =>
mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1))
(_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d)
(_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q))
((fun d =>
{ val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d,
property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) })
d) =
d) }
t
x y : M
hs : ↑↑s x y
⊢ ↑↑t x y
[PROOFSTEP]
rcases h ⟨x, y, rfl, rfl, hs⟩ with ⟨a, b, hx, hy, ht⟩
[GOAL]
case mp.intro.intro.intro.intro
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c : Con M
s t : { d // c ≤ d }
h :
↑{
toFun := fun d =>
mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1))
(_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d)
(_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q),
invFun := fun d =>
{ val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d,
property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) },
left_inv :=
(_ :
∀ (d : { d // c ≤ d }),
(fun d =>
{ val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d,
property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) })
((fun d =>
mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1))
(_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d)
(_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q))
d) =
d),
right_inv :=
(_ :
∀ (d : Con (Con.Quotient c)),
(fun d =>
mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1))
(_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d)
(_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q))
((fun d =>
{ val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d,
property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) })
d) =
d) }
s ≤
↑{
toFun := fun d =>
mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1))
(_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d)
(_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q),
invFun := fun d =>
{ val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d,
property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) },
left_inv :=
(_ :
∀ (d : { d // c ≤ d }),
(fun d =>
{ val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d,
property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) })
((fun d =>
mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1))
(_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d)
(_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q))
d) =
d),
right_inv :=
(_ :
∀ (d : Con (Con.Quotient c)),
(fun d =>
mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1))
(_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d)
(_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q))
((fun d =>
{ val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d,
property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) })
d) =
d) }
t
x y : M
hs : ↑↑s x y
a b : M
hx : ↑a = ↑x
hy : ↑b = ↑y
ht : Rel (↑t).toSetoid a b
⊢ ↑↑t x y
[PROOFSTEP]
exact t.1.trans (t.1.symm <| t.2 <| eq_rel.1 hx) (t.1.trans ht (t.2 <| eq_rel.1 hy))
[GOAL]
case mpr
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c : Con M
s t : { d // c ≤ d }
⊢ s ≤ t →
↑{
toFun := fun d =>
mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1))
(_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d)
(_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q),
invFun := fun d =>
{ val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d,
property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) },
left_inv :=
(_ :
∀ (d : { d // c ≤ d }),
(fun d =>
{ val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d,
property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) })
((fun d =>
mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1))
(_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d)
(_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q))
d) =
d),
right_inv :=
(_ :
∀ (d : Con (Con.Quotient c)),
(fun d =>
mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1))
(_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d)
(_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q))
((fun d =>
{ val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d,
property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) })
d) =
d) }
s ≤
↑{
toFun := fun d =>
mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1))
(_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d)
(_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q),
invFun := fun d =>
{ val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d,
property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) },
left_inv :=
(_ :
∀ (d : { d // c ≤ d }),
(fun d =>
{ val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d,
property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) })
((fun d =>
mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1))
(_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d)
(_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q))
d) =
d),
right_inv :=
(_ :
∀ (d : Con (Con.Quotient c)),
(fun d =>
mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1))
(_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d)
(_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q))
((fun d =>
{ val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d,
property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) })
d) =
d) }
t
[PROOFSTEP]
intros h _ _ hs
[GOAL]
case mpr
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c : Con M
s t : { d // c ≤ d }
h : s ≤ t
x✝ y✝ : Con.Quotient c
hs :
↑(↑{
toFun := fun d =>
mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1))
(_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d)
(_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q),
invFun := fun d =>
{ val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d,
property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) },
left_inv :=
(_ :
∀ (d : { d // c ≤ d }),
(fun d =>
{ val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d,
property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) })
((fun d =>
mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1))
(_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d)
(_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q))
d) =
d),
right_inv :=
(_ :
∀ (d : Con (Con.Quotient c)),
(fun d =>
mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1))
(_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d)
(_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q))
((fun d =>
{ val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d,
property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) })
d) =
d) }
s)
x✝ y✝
⊢ ↑(↑{
toFun := fun d =>
mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1))
(_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d)
(_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q),
invFun := fun d =>
{ val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d,
property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) },
left_inv :=
(_ :
∀ (d : { d // c ≤ d }),
(fun d =>
{ val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d,
property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) })
((fun d =>
mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1))
(_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d)
(_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q))
d) =
d),
right_inv :=
(_ :
∀ (d : Con (Con.Quotient c)),
(fun d =>
mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1))
(_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d)
(_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q))
((fun d =>
{ val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d,
property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) })
d) =
d) }
t)
x✝ y✝
[PROOFSTEP]
rcases hs with ⟨a, b, hx, hy, Hs⟩
[GOAL]
case mpr.intro.intro.intro.intro
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
c : Con M
s t : { d // c ≤ d }
h : s ≤ t
x✝ y✝ : Con.Quotient c
a b : M
hx : ↑a = x✝
hy : ↑b = y✝
Hs : Rel (↑s).toSetoid a b
⊢ ↑(↑{
toFun := fun d =>
mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1))
(_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d)
(_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q),
invFun := fun d =>
{ val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d,
property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) },
left_inv :=
(_ :
∀ (d : { d // c ≤ d }),
(fun d =>
{ val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d,
property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) })
((fun d =>
mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1))
(_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d)
(_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q))
d) =
d),
right_inv :=
(_ :
∀ (d : Con (Con.Quotient c)),
(fun d =>
mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1))
(_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d)
(_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q))
((fun d =>
{ val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d,
property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) })
d) =
d) }
t)
x✝ y✝
[PROOFSTEP]
exact ⟨a, b, hx, hy, h Hs⟩
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : MulOneClass M
inst✝¹ : MulOneClass N
inst✝ : MulOneClass P
c : Con M
x✝ y✝ : M
f : N →* M
x y : N
⊢ ↑c (↑f x) (↑f y) ↔ ↑(mk' c) (↑f x) = ↑(mk' c) (↑f y)
[PROOFSTEP]
rw [← c.eq]
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : MulOneClass M
inst✝¹ : MulOneClass N
inst✝ : MulOneClass P
c : Con M
x✝ y✝ : M
f : N →* M
x y : N
⊢ ↑(↑f x) = ↑(↑f y) ↔ ↑(mk' c) (↑f x) = ↑(mk' c) (↑f y)
[PROOFSTEP]
rfl
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : MulOneClass M
inst✝¹ : MulOneClass N
inst✝ : MulOneClass P
c : Con M
x y : M
f : M →* P
H : c ≤ ker f
⊢ (fun x => Con.liftOn x ↑f (_ : ∀ (x x_1 : M), ↑c x x_1 → ↑(ker f) x x_1)) 1 = 1
[PROOFSTEP]
rw [← f.map_one]
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : MulOneClass M
inst✝¹ : MulOneClass N
inst✝ : MulOneClass P
c : Con M
x y : M
f : M →* P
H : c ≤ ker f
⊢ (fun x => Con.liftOn x ↑f (_ : ∀ (x x_1 : M), ↑c x x_1 → ↑(ker f) x x_1)) 1 = ↑f 1
[PROOFSTEP]
rfl
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : MulOneClass M
inst✝¹ : MulOneClass N
inst✝ : MulOneClass P
c : Con M
x✝ y✝ : M
f : M →* P
H : c ≤ ker f
x y : Con.Quotient c
m n : M
⊢ OneHom.toFun
{ toFun := fun x => Con.liftOn x ↑f (_ : ∀ (x x_1 : M), ↑c x x_1 → ↑(ker f) x x_1),
map_one' := (_ : (fun x => Con.liftOn x ↑f (_ : ∀ (x x_1 : M), ↑c x x_1 → ↑(ker f) x x_1)) 1 = 1) }
(↑m * ↑n) =
OneHom.toFun
{ toFun := fun x => Con.liftOn x ↑f (_ : ∀ (x x_1 : M), ↑c x x_1 → ↑(ker f) x x_1),
map_one' := (_ : (fun x => Con.liftOn x ↑f (_ : ∀ (x x_1 : M), ↑c x x_1 → ↑(ker f) x x_1)) 1 = 1) }
↑m *
OneHom.toFun
{ toFun := fun x => Con.liftOn x ↑f (_ : ∀ (x x_1 : M), ↑c x x_1 → ↑(ker f) x x_1),
map_one' := (_ : (fun x => Con.liftOn x ↑f (_ : ∀ (x x_1 : M), ↑c x x_1 → ↑(ker f) x x_1)) 1 = 1) }
↑n
[PROOFSTEP]
dsimp only [← coe_mul, Con.liftOn_coe]
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : MulOneClass M
inst✝¹ : MulOneClass N
inst✝ : MulOneClass P
c : Con M
x✝ y✝ : M
f : M →* P
H : c ≤ ker f
x y : Con.Quotient c
m n : M
⊢ ↑f (m * n) = ↑f m * ↑f n
[PROOFSTEP]
rw [map_mul]
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : MulOneClass M
inst✝¹ : MulOneClass N
inst✝ : MulOneClass P
c : Con M
x y : M
f : M →* P
H : c ≤ ker f
⊢ MonoidHom.comp (lift c f H) (mk' c) = f
[PROOFSTEP]
ext
[GOAL]
case h
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : MulOneClass M
inst✝¹ : MulOneClass N
inst✝ : MulOneClass P
c : Con M
x y : M
f : M →* P
H : c ≤ ker f
x✝ : M
⊢ ↑(MonoidHom.comp (lift c f H) (mk' c)) x✝ = ↑f x✝
[PROOFSTEP]
rfl
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : MulOneClass M
inst✝¹ : MulOneClass N
inst✝ : MulOneClass P
c : Con M
x✝ y✝ : M
f✝ : M →* P
f : Con.Quotient c →* P
x y : M
h : ↑c x y
⊢ ↑f ↑x = ↑f ↑y
[PROOFSTEP]
rw [c.eq.2 h]
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : MulOneClass M
inst✝¹ : MulOneClass N
inst✝ : MulOneClass P
c : Con M
x y : M
f✝ : M →* P
f : Con.Quotient c →* P
⊢ lift c (MonoidHom.comp f (mk' c)) (_ : ∀ (x y : M), ↑c x y → ↑f ↑x = ↑f ↑y) = f
[PROOFSTEP]
ext x
[GOAL]
case h
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : MulOneClass M
inst✝¹ : MulOneClass N
inst✝ : MulOneClass P
c : Con M
x✝ y : M
f✝ : M →* P
f : Con.Quotient c →* P
x : Con.Quotient c
⊢ ↑(lift c (MonoidHom.comp f (mk' c)) (_ : ∀ (x y : M), ↑c x y → ↑f ↑x = ↑f ↑y)) x = ↑f x
[PROOFSTEP]
rcases x with ⟨⟩
[GOAL]
case h.mk
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : MulOneClass M
inst✝¹ : MulOneClass N
inst✝ : MulOneClass P
c : Con M
x✝ y : M
f✝ : M →* P
f : Con.Quotient c →* P
x : Con.Quotient c
a✝ : M
⊢ ↑(lift c (MonoidHom.comp f (mk' c)) (_ : ∀ (x y : M), ↑c x y → ↑f ↑x = ↑f ↑y)) (Quot.mk r a✝) = ↑f (Quot.mk r a✝)
[PROOFSTEP]
rfl
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : MulOneClass M
inst✝¹ : MulOneClass N
inst✝ : MulOneClass P
c : Con M
x y : M
f✝ : M →* P
f g : Con.Quotient c →* P
h : ∀ (a : M), ↑f ↑a = ↑g ↑a
⊢ f = g
[PROOFSTEP]
rw [← lift_apply_mk' f, ← lift_apply_mk' g]
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : MulOneClass M
inst✝¹ : MulOneClass N
inst✝ : MulOneClass P
c : Con M
x y : M
f✝ : M →* P
f g : Con.Quotient c →* P
h : ∀ (a : M), ↑f ↑a = ↑g ↑a
⊢ lift c (MonoidHom.comp f (mk' c)) (_ : ∀ (x y : M), ↑c x y → ↑f ↑x = ↑f ↑y) =
lift c (MonoidHom.comp g (mk' c)) (_ : ∀ (x y : M), ↑c x y → ↑g ↑x = ↑g ↑y)
[PROOFSTEP]
congr 1
[GOAL]
case e_f
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : MulOneClass M
inst✝¹ : MulOneClass N
inst✝ : MulOneClass P
c : Con M
x y : M
f✝ : M →* P
f g : Con.Quotient c →* P
h : ∀ (a : M), ↑f ↑a = ↑g ↑a
⊢ MonoidHom.comp f (mk' c) = MonoidHom.comp g (mk' c)
[PROOFSTEP]
exact FunLike.ext_iff.2 h
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : MulOneClass M
inst✝¹ : MulOneClass N
inst✝ : MulOneClass P
c : Con M
x✝ y : M
f : M →* P
H : c ≤ ker f
g : Con.Quotient c →* P
Hg : MonoidHom.comp g (mk' c) = f
x : M
⊢ ↑g ↑x = ↑(lift c f H) ↑x
[PROOFSTEP]
subst f
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : MulOneClass M
inst✝¹ : MulOneClass N
inst✝ : MulOneClass P
c : Con M
x✝ y : M
g : Con.Quotient c →* P
x : M
H : c ≤ ker (MonoidHom.comp g (mk' c))
⊢ ↑g ↑x = ↑(lift c (MonoidHom.comp g (mk' c)) H) ↑x
[PROOFSTEP]
rfl
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : MulOneClass M
inst✝¹ : MulOneClass N
inst✝ : MulOneClass P
c : Con M
x✝ y : M
f : M →* P
H : c ≤ ker f
x : P
⊢ x ∈ MonoidHom.mrange (lift c f H) → x ∈ MonoidHom.mrange f
[PROOFSTEP]
rintro ⟨⟨y⟩, hy⟩
[GOAL]
case intro.mk
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : MulOneClass M
inst✝¹ : MulOneClass N
inst✝ : MulOneClass P
c : Con M
x✝ y✝ : M
f : M →* P
H : c ≤ ker f
x : P
w✝ : Con.Quotient c
y : M
hy : ↑(lift c f H) (Quot.mk r y) = x
⊢ x ∈ MonoidHom.mrange f
[PROOFSTEP]
exact ⟨y, hy⟩
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : MulOneClass M
inst✝¹ : MulOneClass N
inst✝ : MulOneClass P
c : Con M
x✝ y✝ : M
f✝ f : M →* P
x y : Con.Quotient (ker f)
h : (fun x => ↑(MonoidHom.mrangeRestrict (kerLift f)) x) x = (fun x => ↑(MonoidHom.mrangeRestrict (kerLift f)) x) y
⊢ ↑(kerLift f) x = ↑(kerLift f) y
[PROOFSTEP]
rcases x with ⟨⟩
[GOAL]
case mk
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : MulOneClass M
inst✝¹ : MulOneClass N
inst✝ : MulOneClass P
c : Con M
x✝ y✝ : M
f✝ f : M →* P
x y : Con.Quotient (ker f)
a✝ : M
h :
(fun x => ↑(MonoidHom.mrangeRestrict (kerLift f)) x) (Quot.mk r a✝) =
(fun x => ↑(MonoidHom.mrangeRestrict (kerLift f)) x) y
⊢ ↑(kerLift f) (Quot.mk r a✝) = ↑(kerLift f) y
[PROOFSTEP]
rcases y with ⟨⟩
[GOAL]
case mk.mk
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : MulOneClass M
inst✝¹ : MulOneClass N
inst✝ : MulOneClass P
c : Con M
x✝ y✝ : M
f✝ f : M →* P
x y : Con.Quotient (ker f)
a✝¹ a✝ : M
h :
(fun x => ↑(MonoidHom.mrangeRestrict (kerLift f)) x) (Quot.mk r a✝¹) =
(fun x => ↑(MonoidHom.mrangeRestrict (kerLift f)) x) (Quot.mk r a✝)
⊢ ↑(kerLift f) (Quot.mk r a✝¹) = ↑(kerLift f) (Quot.mk r a✝)
[PROOFSTEP]
injections
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : MulOneClass M
inst✝¹ : MulOneClass N
inst✝ : MulOneClass P
c : Con M
x y : M
f✝ f : M →* P
x✝ : { x // x ∈ MonoidHom.mrange (kerLift f) }
w : P
z : Con.Quotient (ker f)
hz : ↑(kerLift f) z = w
⊢ (fun x => ↑(MonoidHom.mrangeRestrict (kerLift f)) x) z = { val := w, property := (_ : ∃ y, ↑(kerLift f) y = w) }
[PROOFSTEP]
rcases hz with ⟨⟩
[GOAL]
case refl
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : MulOneClass M
inst✝¹ : MulOneClass N
inst✝ : MulOneClass P
c : Con M
x y : M
f✝ f : M →* P
x✝ : { x // x ∈ MonoidHom.mrange (kerLift f) }
z : Con.Quotient (ker f)
⊢ (fun x => ↑(MonoidHom.mrangeRestrict (kerLift f)) x) z =
{ val := ↑(kerLift f) z, property := (_ : ∃ y, ↑(kerLift f) y = ↑(kerLift f) z) }
[PROOFSTEP]
rfl
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : MulOneClass M
inst✝¹ : MulOneClass N
inst✝ : MulOneClass P
c : Con M
x✝ y : M
f✝ f : M →* P
g : P → M
hf : Function.RightInverse g ↑f
src✝ : Con.Quotient (ker f) →* P := kerLift f
x : Con.Quotient (ker f)
⊢ ↑(kerLift f) ((toQuotient ∘ g) (↑(kerLift f) x)) = ↑(kerLift f) x
[PROOFSTEP]
rw [Function.comp_apply, kerLift_mk, hf]
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : MulOneClass M
inst✝¹ : MulOneClass N
inst✝ : MulOneClass P
c : Con M
x✝ y : M
f✝ f : M →* P
g : P → M
hf : Function.RightInverse g ↑f
src✝ : Con.Quotient (ker f) →* P := kerLift f
x : P
⊢ ↑(kerLift f) ((toQuotient ∘ g) x) = x
[PROOFSTEP]
conv_rhs => rw [← hf x]; rfl
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : MulOneClass M
inst✝¹ : MulOneClass N
inst✝ : MulOneClass P
c : Con M
x✝ y : M
f✝ f : M →* P
g : P → M
hf : Function.RightInverse g ↑f
src✝ : Con.Quotient (ker f) →* P := kerLift f
x : P
| x
[PROOFSTEP]
rw [← hf x]; rfl
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : MulOneClass M
inst✝¹ : MulOneClass N
inst✝ : MulOneClass P
c : Con M
x✝ y : M
f✝ f : M →* P
g : P → M
hf : Function.RightInverse g ↑f
src✝ : Con.Quotient (ker f) →* P := kerLift f
x : P
| x
[PROOFSTEP]
rw [← hf x]; rfl
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : MulOneClass M
inst✝¹ : MulOneClass N
inst✝ : MulOneClass P
c : Con M
x✝ y : M
f✝ f : M →* P
g : P → M
hf : Function.RightInverse g ↑f
src✝ : Con.Quotient (ker f) →* P := kerLift f
x : P
| x
[PROOFSTEP]
rw [← hf x]
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : MulOneClass M
inst✝¹ : MulOneClass N
inst✝ : MulOneClass P
c : Con M
x✝ y : M
f✝ f : M →* P
g : P → M
hf : Function.RightInverse g ↑f
src✝ : Con.Quotient (ker f) →* P := kerLift f
x : P
| ↑f (g x)
[PROOFSTEP]
rfl
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : MulOneClass M
inst✝¹ : MulOneClass N
inst✝ : MulOneClass P
c✝ : Con M
x✝ y✝ : M
f : M →* P
c d : Con M
h : c ≤ d
src✝ : Quotient (Setoid.ker (Quot.mapRight h)) ≃ Quotient d.toSetoid :=
Setoid.quotientQuotientEquivQuotient c.toSetoid d.toSetoid h
x y : Con.Quotient (ker (map c d h))
w z : Con.Quotient c
a b : M
⊢ Equiv.toFun
{ toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }
(↑↑a * ↑↑b) =
↑(mk' d) a * ↑(mk' d) b
[PROOFSTEP]
rw [← d.mk'.map_mul]
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : MulOneClass M
inst✝¹ : MulOneClass N
inst✝ : MulOneClass P
c✝ : Con M
x✝ y✝ : M
f : M →* P
c d : Con M
h : c ≤ d
src✝ : Quotient (Setoid.ker (Quot.mapRight h)) ≃ Quotient d.toSetoid :=
Setoid.quotientQuotientEquivQuotient c.toSetoid d.toSetoid h
x y : Con.Quotient (ker (map c d h))
w z : Con.Quotient c
a b : M
⊢ Equiv.toFun
{ toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }
(↑↑a * ↑↑b) =
↑(mk' d) (a * b)
[PROOFSTEP]
rfl
[GOAL]
M✝ : Type u_1
N : Type u_2
P : Type u_3
M : Type u_4
inst✝ : Monoid M
c : Con M
w x : M
x✝ : ↑c w x
⊢ ↑c (w ^ 0) (x ^ 0)
[PROOFSTEP]
simpa using c.refl _
[GOAL]
M✝ : Type u_1
N : Type u_2
P : Type u_3
M : Type u_4
inst✝ : Monoid M
c : Con M
n : ℕ
w x : M
h : ↑c w x
⊢ ↑c (w ^ Nat.succ n) (x ^ Nat.succ n)
[PROOFSTEP]
simpa [pow_succ] using c.mul h (Con.pow c n h)
[GOAL]
M✝ : Type u_1
N : Type u_2
P : Type u_3
α : Type u_4
M : Type u_5
inst✝² : MulOneClass M
inst✝¹ : SMul α M
inst✝ : IsScalarTower α M M
c : Con M
a : α
w x : M
h : ↑c w x
⊢ ↑c (a • w) (a • x)
[PROOFSTEP]
simpa only [smul_one_mul] using c.mul (c.refl' (a • (1 : M) : M)) h
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Group M
inst✝¹ : Group N
inst✝ : Group P
c : Con M
x y : M
h : ↑c x y
⊢ ↑c x⁻¹ y⁻¹
[PROOFSTEP]
simpa using c.symm (c.mul (c.mul (c.refl x⁻¹) h) (c.refl y⁻¹))
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Group M
inst✝¹ : Group N
inst✝ : Group P
c : Con M
w x y z : M
h1 : ↑c w x
h2 : ↑c y z
⊢ ↑c (w / y) (x / z)
[PROOFSTEP]
simpa only [div_eq_mul_inv] using c.mul h1 (c.inv h2)
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Group M
inst✝¹ : Group N
inst✝ : Group P
c : Con M
n : ℕ
w x : M
h : ↑c w x
⊢ ↑c (w ^ Int.ofNat n) (x ^ Int.ofNat n)
[PROOFSTEP]
simpa only [zpow_ofNat, Int.ofNat_eq_coe] using c.pow n h
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
inst✝² : Group M
inst✝¹ : Group N
inst✝ : Group P
c : Con M
n : ℕ
w x : M
h : ↑c w x
⊢ ↑c (w ^ Int.negSucc n) (x ^ Int.negSucc n)
[PROOFSTEP]
simpa only [zpow_negSucc] using c.inv (c.pow _ h)
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
α : Type u_4
inst✝ : Monoid M
c : Con M
u : (Con.Quotient c)ˣ
f : (x y : M) → ↑c (x * y) 1 → ↑c (y * x) 1 → α
Hf :
∀ (x y : M) (hxy : ↑c (x * y) 1) (hyx : ↑c (y * x) 1) (x' y' : M) (hxy' : ↑c (x' * y') 1) (hyx' : ↑c (y' * x') 1),
↑c x x' → ↑c y y' → f x y hxy hyx = f x' y' hxy' hyx'
⊢ α
[PROOFSTEP]
refine'
@Con.hrecOn₂ M M _ _ c c (fun x y => x * y = 1 → y * x = 1 → α) (u : c.Quotient) (↑u⁻¹ : c.Quotient)
(fun (x y : M) (hxy : (x * y : c.Quotient) = 1) (hyx : (y * x : c.Quotient) = 1) => f x y (c.eq.1 hxy) (c.eq.1 hyx))
(fun x y x' y' hx hy => _) u.3 u.4
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
α : Type u_4
inst✝ : Monoid M
c : Con M
u : (Con.Quotient c)ˣ
f : (x y : M) → ↑c (x * y) 1 → ↑c (y * x) 1 → α
Hf :
∀ (x y : M) (hxy : ↑c (x * y) 1) (hyx : ↑c (y * x) 1) (x' y' : M) (hxy' : ↑c (x' * y') 1) (hyx' : ↑c (y' * x') 1),
↑c x x' → ↑c y y' → f x y hxy hyx = f x' y' hxy' hyx'
x y x' y' : M
hx : ↑c x x'
hy : ↑c y y'
⊢ HEq ((fun x y hxy hyx => f x y (_ : ↑c (x * y) 1) (_ : ↑c (y * x) 1)) x y)
((fun x y hxy hyx => f x y (_ : ↑c (x * y) 1) (_ : ↑c (y * x) 1)) x' y')
[PROOFSTEP]
refine' Function.hfunext _ _
[GOAL]
case refine'_1
M : Type u_1
N : Type u_2
P : Type u_3
α : Type u_4
inst✝ : Monoid M
c : Con M
u : (Con.Quotient c)ˣ
f : (x y : M) → ↑c (x * y) 1 → ↑c (y * x) 1 → α
Hf :
∀ (x y : M) (hxy : ↑c (x * y) 1) (hyx : ↑c (y * x) 1) (x' y' : M) (hxy' : ↑c (x' * y') 1) (hyx' : ↑c (y' * x') 1),
↑c x x' → ↑c y y' → f x y hxy hyx = f x' y' hxy' hyx'
x y x' y' : M
hx : ↑c x x'
hy : ↑c y y'
⊢ (↑x * ↑y = 1) = (↑x' * ↑y' = 1)
case refine'_2
M : Type u_1
N : Type u_2
P : Type u_3
α : Type u_4
inst✝ : Monoid M
c : Con M
u : (Con.Quotient c)ˣ
f : (x y : M) → ↑c (x * y) 1 → ↑c (y * x) 1 → α
Hf :
∀ (x y : M) (hxy : ↑c (x * y) 1) (hyx : ↑c (y * x) 1) (x' y' : M) (hxy' : ↑c (x' * y') 1) (hyx' : ↑c (y' * x') 1),
↑c x x' → ↑c y y' → f x y hxy hyx = f x' y' hxy' hyx'
x y x' y' : M
hx : ↑c x x'
hy : ↑c y y'
⊢ ∀ (a : ↑x * ↑y = 1) (a' : ↑x' * ↑y' = 1),
HEq a a' →
HEq ((fun x y hxy hyx => f x y (_ : ↑c (x * y) 1) (_ : ↑c (y * x) 1)) x y a)
((fun x y hxy hyx => f x y (_ : ↑c (x * y) 1) (_ : ↑c (y * x) 1)) x' y' a')
[PROOFSTEP]
rw [c.eq.2 hx, c.eq.2 hy]
[GOAL]
case refine'_2
M : Type u_1
N : Type u_2
P : Type u_3
α : Type u_4
inst✝ : Monoid M
c : Con M
u : (Con.Quotient c)ˣ
f : (x y : M) → ↑c (x * y) 1 → ↑c (y * x) 1 → α
Hf :
∀ (x y : M) (hxy : ↑c (x * y) 1) (hyx : ↑c (y * x) 1) (x' y' : M) (hxy' : ↑c (x' * y') 1) (hyx' : ↑c (y' * x') 1),
↑c x x' → ↑c y y' → f x y hxy hyx = f x' y' hxy' hyx'
x y x' y' : M
hx : ↑c x x'
hy : ↑c y y'
⊢ ∀ (a : ↑x * ↑y = 1) (a' : ↑x' * ↑y' = 1),
HEq a a' →
HEq ((fun x y hxy hyx => f x y (_ : ↑c (x * y) 1) (_ : ↑c (y * x) 1)) x y a)
((fun x y hxy hyx => f x y (_ : ↑c (x * y) 1) (_ : ↑c (y * x) 1)) x' y' a')
[PROOFSTEP]
rintro Hxy Hxy' -
[GOAL]
case refine'_2
M : Type u_1
N : Type u_2
P : Type u_3
α : Type u_4
inst✝ : Monoid M
c : Con M
u : (Con.Quotient c)ˣ
f : (x y : M) → ↑c (x * y) 1 → ↑c (y * x) 1 → α
Hf :
∀ (x y : M) (hxy : ↑c (x * y) 1) (hyx : ↑c (y * x) 1) (x' y' : M) (hxy' : ↑c (x' * y') 1) (hyx' : ↑c (y' * x') 1),
↑c x x' → ↑c y y' → f x y hxy hyx = f x' y' hxy' hyx'
x y x' y' : M
hx : ↑c x x'
hy : ↑c y y'
Hxy : ↑x * ↑y = 1
Hxy' : ↑x' * ↑y' = 1
⊢ HEq ((fun x y hxy hyx => f x y (_ : ↑c (x * y) 1) (_ : ↑c (y * x) 1)) x y Hxy)
((fun x y hxy hyx => f x y (_ : ↑c (x * y) 1) (_ : ↑c (y * x) 1)) x' y' Hxy')
[PROOFSTEP]
refine' Function.hfunext _ _
[GOAL]
case refine'_2.refine'_1
M : Type u_1
N : Type u_2
P : Type u_3
α : Type u_4
inst✝ : Monoid M
c : Con M
u : (Con.Quotient c)ˣ
f : (x y : M) → ↑c (x * y) 1 → ↑c (y * x) 1 → α
Hf :
∀ (x y : M) (hxy : ↑c (x * y) 1) (hyx : ↑c (y * x) 1) (x' y' : M) (hxy' : ↑c (x' * y') 1) (hyx' : ↑c (y' * x') 1),
↑c x x' → ↑c y y' → f x y hxy hyx = f x' y' hxy' hyx'
x y x' y' : M
hx : ↑c x x'
hy : ↑c y y'
Hxy : ↑x * ↑y = 1
Hxy' : ↑x' * ↑y' = 1
⊢ (↑y * ↑x = 1) = (↑y' * ↑x' = 1)
[PROOFSTEP]
rw [c.eq.2 hx, c.eq.2 hy]
[GOAL]
case refine'_2.refine'_2
M : Type u_1
N : Type u_2
P : Type u_3
α : Type u_4
inst✝ : Monoid M
c : Con M
u : (Con.Quotient c)ˣ
f : (x y : M) → ↑c (x * y) 1 → ↑c (y * x) 1 → α
Hf :
∀ (x y : M) (hxy : ↑c (x * y) 1) (hyx : ↑c (y * x) 1) (x' y' : M) (hxy' : ↑c (x' * y') 1) (hyx' : ↑c (y' * x') 1),
↑c x x' → ↑c y y' → f x y hxy hyx = f x' y' hxy' hyx'
x y x' y' : M
hx : ↑c x x'
hy : ↑c y y'
Hxy : ↑x * ↑y = 1
Hxy' : ↑x' * ↑y' = 1
⊢ ∀ (a : ↑y * ↑x = 1) (a' : ↑y' * ↑x' = 1),
HEq a a' →
HEq ((fun x y hxy hyx => f x y (_ : ↑c (x * y) 1) (_ : ↑c (y * x) 1)) x y Hxy a)
((fun x y hxy hyx => f x y (_ : ↑c (x * y) 1) (_ : ↑c (y * x) 1)) x' y' Hxy' a')
[PROOFSTEP]
rintro Hyx Hyx' -
[GOAL]
case refine'_2.refine'_2
M : Type u_1
N : Type u_2
P : Type u_3
α : Type u_4
inst✝ : Monoid M
c : Con M
u : (Con.Quotient c)ˣ
f : (x y : M) → ↑c (x * y) 1 → ↑c (y * x) 1 → α
Hf :
∀ (x y : M) (hxy : ↑c (x * y) 1) (hyx : ↑c (y * x) 1) (x' y' : M) (hxy' : ↑c (x' * y') 1) (hyx' : ↑c (y' * x') 1),
↑c x x' → ↑c y y' → f x y hxy hyx = f x' y' hxy' hyx'
x y x' y' : M
hx : ↑c x x'
hy : ↑c y y'
Hxy : ↑x * ↑y = 1
Hxy' : ↑x' * ↑y' = 1
Hyx : ↑y * ↑x = 1
Hyx' : ↑y' * ↑x' = 1
⊢ HEq ((fun x y hxy hyx => f x y (_ : ↑c (x * y) 1) (_ : ↑c (y * x) 1)) x y Hxy Hyx)
((fun x y hxy hyx => f x y (_ : ↑c (x * y) 1) (_ : ↑c (y * x) 1)) x' y' Hxy' Hyx')
[PROOFSTEP]
exact heq_of_eq (Hf _ _ _ _ _ _ _ _ hx hy)
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
α : Type u_4
inst✝ : Monoid M
c : Con M
p : (Con.Quotient c)ˣ → Prop
u : (Con.Quotient c)ˣ
H :
∀ (x y : M) (hxy : ↑c (x * y) 1) (hyx : ↑c (y * x) 1),
p
{ val := ↑x, inv := ↑y, val_inv := (_ : ↑((fun x x_1 => x * x_1) x y) = ↑1),
inv_val := (_ : ↑((fun x x_1 => x * x_1) y x) = ↑1) }
⊢ p u
[PROOFSTEP]
rcases u with ⟨⟨x⟩, ⟨y⟩, h₁, h₂⟩
[GOAL]
case mk.mk.mk
M : Type u_1
N : Type u_2
P : Type u_3
α : Type u_4
inst✝ : Monoid M
c : Con M
p : (Con.Quotient c)ˣ → Prop
H :
∀ (x y : M) (hxy : ↑c (x * y) 1) (hyx : ↑c (y * x) 1),
p
{ val := ↑x, inv := ↑y, val_inv := (_ : ↑((fun x x_1 => x * x_1) x y) = ↑1),
inv_val := (_ : ↑((fun x x_1 => x * x_1) y x) = ↑1) }
val✝ inv✝ : Con.Quotient c
x y : M
h₁ : Quot.mk r x * Quot.mk r y = 1
h₂ : Quot.mk r y * Quot.mk r x = 1
⊢ p { val := Quot.mk r x, inv := Quot.mk r y, val_inv := h₁, inv_val := h₂ }
[PROOFSTEP]
exact H x y (c.eq.1 h₁) (c.eq.1 h₂)
| {"mathlib_filename": "Mathlib.GroupTheory.Congruence", "llama_tokens": 32233} |
[GOAL]
G : Type u
inst✝ : Monoid G
⊢ ExponentExists G ↔ exponent G ≠ 0
[PROOFSTEP]
rw [exponent]
[GOAL]
G : Type u
inst✝ : Monoid G
⊢ ExponentExists G ↔ (if h : ExponentExists G then Nat.find h else 0) ≠ 0
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
G : Type u
inst✝ : Monoid G
h : ExponentExists G
⊢ ExponentExists G ↔ Nat.find h ≠ 0
[PROOFSTEP]
simp [h, @not_lt_zero' ℕ]
--if this isn't done this way, `to_additive` freaks
[GOAL]
case neg
G : Type u
inst✝ : Monoid G
h : ¬ExponentExists G
⊢ ExponentExists G ↔ 0 ≠ 0
[PROOFSTEP]
tauto
[GOAL]
G : Type u
inst✝ : Monoid G
⊢ exponent G = 0 ↔ ¬ExponentExists G
[PROOFSTEP]
simp only [exponentExists_iff_ne_zero, Classical.not_not]
[GOAL]
G : Type u
inst✝ : Monoid G
g : G
⊢ g ^ exponent G = 1
[PROOFSTEP]
by_cases ExponentExists G
[GOAL]
G : Type u
inst✝ : Monoid G
g : G
⊢ g ^ exponent G = 1
[PROOFSTEP]
by_cases ExponentExists G
[GOAL]
case pos
G : Type u
inst✝ : Monoid G
g : G
h : ExponentExists G
⊢ g ^ exponent G = 1
[PROOFSTEP]
simp_rw [exponent, dif_pos h]
[GOAL]
case pos
G : Type u
inst✝ : Monoid G
g : G
h : ExponentExists G
⊢ g ^ Nat.find h = 1
[PROOFSTEP]
exact (Nat.find_spec h).2 g
[GOAL]
case neg
G : Type u
inst✝ : Monoid G
g : G
h : ¬ExponentExists G
⊢ g ^ exponent G = 1
[PROOFSTEP]
simp_rw [exponent, dif_neg h, pow_zero]
[GOAL]
G : Type u
inst✝ : Monoid G
n : ℕ
g : G
⊢ g ^ n = g ^ (n % exponent G + exponent G * (n / exponent G))
[PROOFSTEP]
rw [Nat.mod_add_div]
[GOAL]
G : Type u
inst✝ : Monoid G
n : ℕ
g : G
⊢ g ^ (n % exponent G + exponent G * (n / exponent G)) = g ^ (n % exponent G)
[PROOFSTEP]
simp [pow_add, pow_mul, pow_exponent_eq_one]
[GOAL]
G : Type u
inst✝ : Monoid G
n : ℕ
hpos : 0 < n
hG : ∀ (g : G), g ^ n = 1
⊢ 0 < exponent G
[PROOFSTEP]
have h : ∃ n, 0 < n ∧ ∀ g : G, g ^ n = 1 := ⟨n, hpos, hG⟩
[GOAL]
G : Type u
inst✝ : Monoid G
n : ℕ
hpos : 0 < n
hG : ∀ (g : G), g ^ n = 1
h : ∃ n, 0 < n ∧ ∀ (g : G), g ^ n = 1
⊢ 0 < exponent G
[PROOFSTEP]
rw [exponent, dif_pos]
[GOAL]
G : Type u
inst✝ : Monoid G
n : ℕ
hpos : 0 < n
hG : ∀ (g : G), g ^ n = 1
h : ∃ n, 0 < n ∧ ∀ (g : G), g ^ n = 1
⊢ 0 < Nat.find ?hc
case hc
G : Type u
inst✝ : Monoid G
n : ℕ
hpos : 0 < n
hG : ∀ (g : G), g ^ n = 1
h : ∃ n, 0 < n ∧ ∀ (g : G), g ^ n = 1
⊢ ExponentExists G
[PROOFSTEP]
exact (Nat.find_spec h).1
[GOAL]
G : Type u
inst✝ : Monoid G
n : ℕ
hpos : 0 < n
hG : ∀ (g : G), g ^ n = 1
⊢ exponent G ≤ n
[PROOFSTEP]
rw [exponent, dif_pos]
[GOAL]
G : Type u
inst✝ : Monoid G
n : ℕ
hpos : 0 < n
hG : ∀ (g : G), g ^ n = 1
⊢ Nat.find ?hc ≤ n
[PROOFSTEP]
apply Nat.find_min'
[GOAL]
case h
G : Type u
inst✝ : Monoid G
n : ℕ
hpos : 0 < n
hG : ∀ (g : G), g ^ n = 1
⊢ 0 < n ∧ ∀ (g : G), g ^ n = 1
[PROOFSTEP]
exact ⟨hpos, hG⟩
[GOAL]
case hc
G : Type u
inst✝ : Monoid G
n : ℕ
hpos : 0 < n
hG : ∀ (g : G), g ^ n = 1
⊢ ExponentExists G
[PROOFSTEP]
exact ⟨n, hpos, hG⟩
[GOAL]
G : Type u
inst✝ : Monoid G
m : ℕ
hpos : 0 < m
hm : m < exponent G
⊢ ∃ g, g ^ m ≠ 1
[PROOFSTEP]
by_contra' h
[GOAL]
G : Type u
inst✝ : Monoid G
m : ℕ
hpos : 0 < m
hm : m < exponent G
h : ∀ (g : G), g ^ m = 1
⊢ False
[PROOFSTEP]
have hcon : exponent G ≤ m := exponent_min' m hpos h
[GOAL]
G : Type u
inst✝ : Monoid G
m : ℕ
hpos : 0 < m
hm : m < exponent G
h : ∀ (g : G), g ^ m = 1
hcon : exponent G ≤ m
⊢ False
[PROOFSTEP]
linarith
[GOAL]
G : Type u
inst✝¹ : Monoid G
inst✝ : Subsingleton G
⊢ exponent G = 1
[PROOFSTEP]
apply le_antisymm
[GOAL]
case a
G : Type u
inst✝¹ : Monoid G
inst✝ : Subsingleton G
⊢ exponent G ≤ 1
[PROOFSTEP]
apply exponent_min' _ Nat.one_pos
[GOAL]
case a
G : Type u
inst✝¹ : Monoid G
inst✝ : Subsingleton G
⊢ ∀ (g : G), g ^ 1 = 1
[PROOFSTEP]
simp
[GOAL]
case a
G : Type u
inst✝¹ : Monoid G
inst✝ : Subsingleton G
⊢ 1 ≤ exponent G
[PROOFSTEP]
apply Nat.succ_le_of_lt
[GOAL]
case a.h
G : Type u
inst✝¹ : Monoid G
inst✝ : Subsingleton G
⊢ 0 < exponent G
[PROOFSTEP]
apply exponent_pos_of_exists 1 Nat.one_pos
[GOAL]
case a.h
G : Type u
inst✝¹ : Monoid G
inst✝ : Subsingleton G
⊢ ∀ (g : G), g ^ 1 = 1
[PROOFSTEP]
simp
[GOAL]
G✝ : Type u
inst✝¹ : Monoid G✝
G : Type u_1
inst✝ : Monoid G
n : ℕ
hG : ∀ (g : G), g ^ n = 1
⊢ exponent G ∣ n
[PROOFSTEP]
rcases n.eq_zero_or_pos with (rfl | hpos)
[GOAL]
case inl
G✝ : Type u
inst✝¹ : Monoid G✝
G : Type u_1
inst✝ : Monoid G
hG : ∀ (g : G), g ^ 0 = 1
⊢ exponent G ∣ 0
[PROOFSTEP]
exact dvd_zero _
[GOAL]
case inr
G✝ : Type u
inst✝¹ : Monoid G✝
G : Type u_1
inst✝ : Monoid G
n : ℕ
hG : ∀ (g : G), g ^ n = 1
hpos : n > 0
⊢ exponent G ∣ n
[PROOFSTEP]
apply Nat.dvd_of_mod_eq_zero
[GOAL]
case inr.H
G✝ : Type u
inst✝¹ : Monoid G✝
G : Type u_1
inst✝ : Monoid G
n : ℕ
hG : ∀ (g : G), g ^ n = 1
hpos : n > 0
⊢ n % exponent G = 0
[PROOFSTEP]
by_contra h
[GOAL]
case inr.H
G✝ : Type u
inst✝¹ : Monoid G✝
G : Type u_1
inst✝ : Monoid G
n : ℕ
hG : ∀ (g : G), g ^ n = 1
hpos : n > 0
h : ¬n % exponent G = 0
⊢ False
[PROOFSTEP]
have h₁ := Nat.pos_of_ne_zero h
[GOAL]
case inr.H
G✝ : Type u
inst✝¹ : Monoid G✝
G : Type u_1
inst✝ : Monoid G
n : ℕ
hG : ∀ (g : G), g ^ n = 1
hpos : n > 0
h : ¬n % exponent G = 0
h₁ : 0 < n % exponent G
⊢ False
[PROOFSTEP]
have h₂ : n % exponent G < exponent G := Nat.mod_lt _ (exponent_pos_of_exists n hpos hG)
[GOAL]
case inr.H
G✝ : Type u
inst✝¹ : Monoid G✝
G : Type u_1
inst✝ : Monoid G
n : ℕ
hG : ∀ (g : G), g ^ n = 1
hpos : n > 0
h : ¬n % exponent G = 0
h₁ : 0 < n % exponent G
h₂ : n % exponent G < exponent G
⊢ False
[PROOFSTEP]
have h₃ : exponent G ≤ n % exponent G := by
apply exponent_min' _ h₁
simp_rw [← pow_eq_mod_exponent]
exact hG
[GOAL]
G✝ : Type u
inst✝¹ : Monoid G✝
G : Type u_1
inst✝ : Monoid G
n : ℕ
hG : ∀ (g : G), g ^ n = 1
hpos : n > 0
h : ¬n % exponent G = 0
h₁ : 0 < n % exponent G
h₂ : n % exponent G < exponent G
⊢ exponent G ≤ n % exponent G
[PROOFSTEP]
apply exponent_min' _ h₁
[GOAL]
G✝ : Type u
inst✝¹ : Monoid G✝
G : Type u_1
inst✝ : Monoid G
n : ℕ
hG : ∀ (g : G), g ^ n = 1
hpos : n > 0
h : ¬n % exponent G = 0
h₁ : 0 < n % exponent G
h₂ : n % exponent G < exponent G
⊢ ∀ (g : G), g ^ (n % exponent G) = 1
[PROOFSTEP]
simp_rw [← pow_eq_mod_exponent]
[GOAL]
G✝ : Type u
inst✝¹ : Monoid G✝
G : Type u_1
inst✝ : Monoid G
n : ℕ
hG : ∀ (g : G), g ^ n = 1
hpos : n > 0
h : ¬n % exponent G = 0
h₁ : 0 < n % exponent G
h₂ : n % exponent G < exponent G
⊢ ∀ (g : G), g ^ n = 1
[PROOFSTEP]
exact hG
[GOAL]
case inr.H
G✝ : Type u
inst✝¹ : Monoid G✝
G : Type u_1
inst✝ : Monoid G
n : ℕ
hG : ∀ (g : G), g ^ n = 1
hpos : n > 0
h : ¬n % exponent G = 0
h₁ : 0 < n % exponent G
h₂ : n % exponent G < exponent G
h₃ : exponent G ≤ n % exponent G
⊢ False
[PROOFSTEP]
linarith
[GOAL]
G : Type u
inst✝¹ : Monoid G
inst✝ : Fintype G
⊢ Finset.lcm Finset.univ orderOf ∣ exponent G
[PROOFSTEP]
apply Finset.lcm_dvd
[GOAL]
case a
G : Type u
inst✝¹ : Monoid G
inst✝ : Fintype G
⊢ ∀ (b : G), b ∈ Finset.univ → orderOf b ∣ exponent G
[PROOFSTEP]
intro g _
[GOAL]
case a
G : Type u
inst✝¹ : Monoid G
inst✝ : Fintype G
g : G
a✝ : g ∈ Finset.univ
⊢ orderOf g ∣ exponent G
[PROOFSTEP]
exact order_dvd_exponent g
[GOAL]
G : Type u
inst✝ : Monoid G
p : ℕ
hp : Nat.Prime p
⊢ ∃ g, orderOf g = p ^ ↑(Nat.factorization (exponent G)) p
[PROOFSTEP]
haveI := Fact.mk hp
[GOAL]
G : Type u
inst✝ : Monoid G
p : ℕ
hp : Nat.Prime p
this : Fact (Nat.Prime p)
⊢ ∃ g, orderOf g = p ^ ↑(Nat.factorization (exponent G)) p
[PROOFSTEP]
rcases eq_or_ne ((exponent G).factorization p) 0 with (h | h)
[GOAL]
case inl
G : Type u
inst✝ : Monoid G
p : ℕ
hp : Nat.Prime p
this : Fact (Nat.Prime p)
h : ↑(Nat.factorization (exponent G)) p = 0
⊢ ∃ g, orderOf g = p ^ ↑(Nat.factorization (exponent G)) p
[PROOFSTEP]
refine' ⟨1, by rw [h, pow_zero, orderOf_one]⟩
[GOAL]
G : Type u
inst✝ : Monoid G
p : ℕ
hp : Nat.Prime p
this : Fact (Nat.Prime p)
h : ↑(Nat.factorization (exponent G)) p = 0
⊢ orderOf 1 = p ^ ↑(Nat.factorization (exponent G)) p
[PROOFSTEP]
rw [h, pow_zero, orderOf_one]
[GOAL]
case inr
G : Type u
inst✝ : Monoid G
p : ℕ
hp : Nat.Prime p
this : Fact (Nat.Prime p)
h : ↑(Nat.factorization (exponent G)) p ≠ 0
⊢ ∃ g, orderOf g = p ^ ↑(Nat.factorization (exponent G)) p
[PROOFSTEP]
have he : 0 < exponent G :=
Ne.bot_lt fun ht => by
rw [ht] at h
apply h
rw [bot_eq_zero, Nat.factorization_zero, Finsupp.zero_apply]
[GOAL]
G : Type u
inst✝ : Monoid G
p : ℕ
hp : Nat.Prime p
this : Fact (Nat.Prime p)
h : ↑(Nat.factorization (exponent G)) p ≠ 0
ht : exponent G = ⊥
⊢ False
[PROOFSTEP]
rw [ht] at h
[GOAL]
G : Type u
inst✝ : Monoid G
p : ℕ
hp : Nat.Prime p
this : Fact (Nat.Prime p)
h : ↑(Nat.factorization ⊥) p ≠ 0
ht : exponent G = ⊥
⊢ False
[PROOFSTEP]
apply h
[GOAL]
G : Type u
inst✝ : Monoid G
p : ℕ
hp : Nat.Prime p
this : Fact (Nat.Prime p)
h : ↑(Nat.factorization ⊥) p ≠ 0
ht : exponent G = ⊥
⊢ ↑(Nat.factorization ⊥) p = 0
[PROOFSTEP]
rw [bot_eq_zero, Nat.factorization_zero, Finsupp.zero_apply]
[GOAL]
case inr
G : Type u
inst✝ : Monoid G
p : ℕ
hp : Nat.Prime p
this : Fact (Nat.Prime p)
h : ↑(Nat.factorization (exponent G)) p ≠ 0
he : 0 < exponent G
⊢ ∃ g, orderOf g = p ^ ↑(Nat.factorization (exponent G)) p
[PROOFSTEP]
rw [← Finsupp.mem_support_iff] at h
[GOAL]
case inr
G : Type u
inst✝ : Monoid G
p : ℕ
hp : Nat.Prime p
this : Fact (Nat.Prime p)
h : p ∈ (Nat.factorization (exponent G)).support
he : 0 < exponent G
⊢ ∃ g, orderOf g = p ^ ↑(Nat.factorization (exponent G)) p
[PROOFSTEP]
obtain ⟨g, hg⟩ : ∃ g : G, g ^ (exponent G / p) ≠ 1 :=
by
suffices key : ¬exponent G ∣ exponent G / p
· simpa using mt (exponent_dvd_of_forall_pow_eq_one G (exponent G / p)) key
exact fun hd =>
hp.one_lt.not_le
((mul_le_iff_le_one_left he).mp <| Nat.le_of_dvd he <| Nat.mul_dvd_of_dvd_div (Nat.dvd_of_mem_factorization h) hd)
[GOAL]
G : Type u
inst✝ : Monoid G
p : ℕ
hp : Nat.Prime p
this : Fact (Nat.Prime p)
h : p ∈ (Nat.factorization (exponent G)).support
he : 0 < exponent G
⊢ ∃ g, g ^ (exponent G / p) ≠ 1
[PROOFSTEP]
suffices key : ¬exponent G ∣ exponent G / p
[GOAL]
G : Type u
inst✝ : Monoid G
p : ℕ
hp : Nat.Prime p
this : Fact (Nat.Prime p)
h : p ∈ (Nat.factorization (exponent G)).support
he : 0 < exponent G
key : ¬exponent G ∣ exponent G / p
⊢ ∃ g, g ^ (exponent G / p) ≠ 1
[PROOFSTEP]
simpa using mt (exponent_dvd_of_forall_pow_eq_one G (exponent G / p)) key
[GOAL]
case key
G : Type u
inst✝ : Monoid G
p : ℕ
hp : Nat.Prime p
this : Fact (Nat.Prime p)
h : p ∈ (Nat.factorization (exponent G)).support
he : 0 < exponent G
⊢ ¬exponent G ∣ exponent G / p
[PROOFSTEP]
exact fun hd =>
hp.one_lt.not_le
((mul_le_iff_le_one_left he).mp <| Nat.le_of_dvd he <| Nat.mul_dvd_of_dvd_div (Nat.dvd_of_mem_factorization h) hd)
[GOAL]
case inr.intro
G : Type u
inst✝ : Monoid G
p : ℕ
hp : Nat.Prime p
this : Fact (Nat.Prime p)
h : p ∈ (Nat.factorization (exponent G)).support
he : 0 < exponent G
g : G
hg : g ^ (exponent G / p) ≠ 1
⊢ ∃ g, orderOf g = p ^ ↑(Nat.factorization (exponent G)) p
[PROOFSTEP]
obtain ⟨k, hk : exponent G = p ^ _ * k⟩ := Nat.ord_proj_dvd _ _
[GOAL]
case inr.intro.intro
G : Type u
inst✝ : Monoid G
p : ℕ
hp : Nat.Prime p
this : Fact (Nat.Prime p)
h : p ∈ (Nat.factorization (exponent G)).support
he : 0 < exponent G
g : G
hg : g ^ (exponent G / p) ≠ 1
k : ℕ
hk : exponent G = p ^ ↑(Nat.factorization (exponent G)) p * k
⊢ ∃ g, orderOf g = p ^ ↑(Nat.factorization (exponent G)) p
[PROOFSTEP]
obtain ⟨t, ht⟩ := Nat.exists_eq_succ_of_ne_zero (Finsupp.mem_support_iff.mp h)
[GOAL]
case inr.intro.intro.intro
G : Type u
inst✝ : Monoid G
p : ℕ
hp : Nat.Prime p
this : Fact (Nat.Prime p)
h : p ∈ (Nat.factorization (exponent G)).support
he : 0 < exponent G
g : G
hg : g ^ (exponent G / p) ≠ 1
k : ℕ
hk : exponent G = p ^ ↑(Nat.factorization (exponent G)) p * k
t : ℕ
ht : ↑(Nat.factorization (exponent G)) p = Nat.succ t
⊢ ∃ g, orderOf g = p ^ ↑(Nat.factorization (exponent G)) p
[PROOFSTEP]
refine' ⟨g ^ k, _⟩
[GOAL]
case inr.intro.intro.intro
G : Type u
inst✝ : Monoid G
p : ℕ
hp : Nat.Prime p
this : Fact (Nat.Prime p)
h : p ∈ (Nat.factorization (exponent G)).support
he : 0 < exponent G
g : G
hg : g ^ (exponent G / p) ≠ 1
k : ℕ
hk : exponent G = p ^ ↑(Nat.factorization (exponent G)) p * k
t : ℕ
ht : ↑(Nat.factorization (exponent G)) p = Nat.succ t
⊢ orderOf (g ^ k) = p ^ ↑(Nat.factorization (exponent G)) p
[PROOFSTEP]
rw [ht]
[GOAL]
case inr.intro.intro.intro
G : Type u
inst✝ : Monoid G
p : ℕ
hp : Nat.Prime p
this : Fact (Nat.Prime p)
h : p ∈ (Nat.factorization (exponent G)).support
he : 0 < exponent G
g : G
hg : g ^ (exponent G / p) ≠ 1
k : ℕ
hk : exponent G = p ^ ↑(Nat.factorization (exponent G)) p * k
t : ℕ
ht : ↑(Nat.factorization (exponent G)) p = Nat.succ t
⊢ orderOf (g ^ k) = p ^ Nat.succ t
[PROOFSTEP]
apply orderOf_eq_prime_pow
[GOAL]
case inr.intro.intro.intro.hnot
G : Type u
inst✝ : Monoid G
p : ℕ
hp : Nat.Prime p
this : Fact (Nat.Prime p)
h : p ∈ (Nat.factorization (exponent G)).support
he : 0 < exponent G
g : G
hg : g ^ (exponent G / p) ≠ 1
k : ℕ
hk : exponent G = p ^ ↑(Nat.factorization (exponent G)) p * k
t : ℕ
ht : ↑(Nat.factorization (exponent G)) p = Nat.succ t
⊢ ¬(g ^ k) ^ p ^ t = 1
[PROOFSTEP]
rwa [hk, mul_comm, ht, pow_succ', ← mul_assoc, Nat.mul_div_cancel _ hp.pos, pow_mul] at hg
[GOAL]
case inr.intro.intro.intro.hfin
G : Type u
inst✝ : Monoid G
p : ℕ
hp : Nat.Prime p
this : Fact (Nat.Prime p)
h : p ∈ (Nat.factorization (exponent G)).support
he : 0 < exponent G
g : G
hg : g ^ (exponent G / p) ≠ 1
k : ℕ
hk : exponent G = p ^ ↑(Nat.factorization (exponent G)) p * k
t : ℕ
ht : ↑(Nat.factorization (exponent G)) p = Nat.succ t
⊢ (g ^ k) ^ p ^ (t + 1) = 1
[PROOFSTEP]
rw [← Nat.succ_eq_add_one, ← ht, ← pow_mul, mul_comm, ← hk]
[GOAL]
case inr.intro.intro.intro.hfin
G : Type u
inst✝ : Monoid G
p : ℕ
hp : Nat.Prime p
this : Fact (Nat.Prime p)
h : p ∈ (Nat.factorization (exponent G)).support
he : 0 < exponent G
g : G
hg : g ^ (exponent G / p) ≠ 1
k : ℕ
hk : exponent G = p ^ ↑(Nat.factorization (exponent G)) p * k
t : ℕ
ht : ↑(Nat.factorization (exponent G)) p = Nat.succ t
⊢ g ^ exponent G = 1
[PROOFSTEP]
exact pow_exponent_eq_one g
[GOAL]
G : Type u
inst✝ : Monoid G
h : ∀ (g : G), 0 < orderOf g
⊢ exponent G ≠ 0 ↔ Set.Finite (Set.range orderOf)
[PROOFSTEP]
refine' ⟨fun he => _, fun he => _⟩
[GOAL]
case refine'_1
G : Type u
inst✝ : Monoid G
h : ∀ (g : G), 0 < orderOf g
he : exponent G ≠ 0
⊢ Set.Finite (Set.range orderOf)
[PROOFSTEP]
by_contra h
[GOAL]
case refine'_1
G : Type u
inst✝ : Monoid G
h✝ : ∀ (g : G), 0 < orderOf g
he : exponent G ≠ 0
h : ¬Set.Finite (Set.range orderOf)
⊢ False
[PROOFSTEP]
obtain ⟨m, ⟨t, rfl⟩, het⟩ := Set.Infinite.exists_gt h (exponent G)
[GOAL]
case refine'_1.intro.intro.intro
G : Type u
inst✝ : Monoid G
h✝ : ∀ (g : G), 0 < orderOf g
he : exponent G ≠ 0
h : ¬Set.Finite (Set.range orderOf)
t : G
het : exponent G < orderOf t
⊢ False
[PROOFSTEP]
exact pow_ne_one_of_lt_orderOf' he het (pow_exponent_eq_one t)
[GOAL]
case refine'_2
G : Type u
inst✝ : Monoid G
h : ∀ (g : G), 0 < orderOf g
he : Set.Finite (Set.range orderOf)
⊢ exponent G ≠ 0
[PROOFSTEP]
lift Set.range (orderOf (G := G)) to Finset ℕ using he with t ht
[GOAL]
case refine'_2.intro
G : Type u
inst✝ : Monoid G
h : ∀ (g : G), 0 < orderOf g
t : Finset ℕ
ht : ↑t = Set.range orderOf
exponent_ne_zero_iff_range_orderOf_finite✝ exponent_ne_zero_iff_range_orderOf_finite :
(∀ (g : G), 0 < orderOf g) → (exponent G ≠ 0 ↔ Set.Finite ↑t)
⊢ exponent G ≠ 0
[PROOFSTEP]
have htpos : 0 < t.prod id := by
refine' Finset.prod_pos fun a ha => _
rw [← Finset.mem_coe, ht] at ha
obtain ⟨k, rfl⟩ := ha
exact h k
[GOAL]
G : Type u
inst✝ : Monoid G
h : ∀ (g : G), 0 < orderOf g
t : Finset ℕ
ht : ↑t = Set.range orderOf
exponent_ne_zero_iff_range_orderOf_finite✝ exponent_ne_zero_iff_range_orderOf_finite :
(∀ (g : G), 0 < orderOf g) → (exponent G ≠ 0 ↔ Set.Finite ↑t)
⊢ 0 < Finset.prod t id
[PROOFSTEP]
refine' Finset.prod_pos fun a ha => _
[GOAL]
G : Type u
inst✝ : Monoid G
h : ∀ (g : G), 0 < orderOf g
t : Finset ℕ
ht : ↑t = Set.range orderOf
exponent_ne_zero_iff_range_orderOf_finite✝ exponent_ne_zero_iff_range_orderOf_finite :
(∀ (g : G), 0 < orderOf g) → (exponent G ≠ 0 ↔ Set.Finite ↑t)
a : ℕ
ha : a ∈ t
⊢ 0 < id a
[PROOFSTEP]
rw [← Finset.mem_coe, ht] at ha
[GOAL]
G : Type u
inst✝ : Monoid G
h : ∀ (g : G), 0 < orderOf g
t : Finset ℕ
ht : ↑t = Set.range orderOf
exponent_ne_zero_iff_range_orderOf_finite✝ exponent_ne_zero_iff_range_orderOf_finite :
(∀ (g : G), 0 < orderOf g) → (exponent G ≠ 0 ↔ Set.Finite ↑t)
a : ℕ
ha : a ∈ Set.range orderOf
⊢ 0 < id a
[PROOFSTEP]
obtain ⟨k, rfl⟩ := ha
[GOAL]
case intro
G : Type u
inst✝ : Monoid G
h : ∀ (g : G), 0 < orderOf g
t : Finset ℕ
ht : ↑t = Set.range orderOf
exponent_ne_zero_iff_range_orderOf_finite✝ exponent_ne_zero_iff_range_orderOf_finite :
(∀ (g : G), 0 < orderOf g) → (exponent G ≠ 0 ↔ Set.Finite ↑t)
k : G
⊢ 0 < id (orderOf k)
[PROOFSTEP]
exact h k
[GOAL]
case refine'_2.intro
G : Type u
inst✝ : Monoid G
h : ∀ (g : G), 0 < orderOf g
t : Finset ℕ
ht : ↑t = Set.range orderOf
exponent_ne_zero_iff_range_orderOf_finite✝ exponent_ne_zero_iff_range_orderOf_finite :
(∀ (g : G), 0 < orderOf g) → (exponent G ≠ 0 ↔ Set.Finite ↑t)
htpos : 0 < Finset.prod t id
⊢ exponent G ≠ 0
[PROOFSTEP]
suffices exponent G ∣ t.prod id by
intro h
rw [h, zero_dvd_iff] at this
exact htpos.ne' this
[GOAL]
G : Type u
inst✝ : Monoid G
h : ∀ (g : G), 0 < orderOf g
t : Finset ℕ
ht : ↑t = Set.range orderOf
exponent_ne_zero_iff_range_orderOf_finite✝ exponent_ne_zero_iff_range_orderOf_finite :
(∀ (g : G), 0 < orderOf g) → (exponent G ≠ 0 ↔ Set.Finite ↑t)
htpos : 0 < Finset.prod t id
this : exponent G ∣ Finset.prod t id
⊢ exponent G ≠ 0
[PROOFSTEP]
intro h
[GOAL]
G : Type u
inst✝ : Monoid G
h✝ : ∀ (g : G), 0 < orderOf g
t : Finset ℕ
ht : ↑t = Set.range orderOf
exponent_ne_zero_iff_range_orderOf_finite✝ exponent_ne_zero_iff_range_orderOf_finite :
(∀ (g : G), 0 < orderOf g) → (exponent G ≠ 0 ↔ Set.Finite ↑t)
htpos : 0 < Finset.prod t id
this : exponent G ∣ Finset.prod t id
h : exponent G = 0
⊢ False
[PROOFSTEP]
rw [h, zero_dvd_iff] at this
[GOAL]
G : Type u
inst✝ : Monoid G
h✝ : ∀ (g : G), 0 < orderOf g
t : Finset ℕ
ht : ↑t = Set.range orderOf
exponent_ne_zero_iff_range_orderOf_finite✝ exponent_ne_zero_iff_range_orderOf_finite :
(∀ (g : G), 0 < orderOf g) → (exponent G ≠ 0 ↔ Set.Finite ↑t)
htpos : 0 < Finset.prod t id
this : Finset.prod t id = 0
h : exponent G = 0
⊢ False
[PROOFSTEP]
exact htpos.ne' this
[GOAL]
case refine'_2.intro
G : Type u
inst✝ : Monoid G
h : ∀ (g : G), 0 < orderOf g
t : Finset ℕ
ht : ↑t = Set.range orderOf
exponent_ne_zero_iff_range_orderOf_finite✝ exponent_ne_zero_iff_range_orderOf_finite :
(∀ (g : G), 0 < orderOf g) → (exponent G ≠ 0 ↔ Set.Finite ↑t)
htpos : 0 < Finset.prod t id
⊢ exponent G ∣ Finset.prod t id
[PROOFSTEP]
refine' exponent_dvd_of_forall_pow_eq_one _ _ fun g => _
[GOAL]
case refine'_2.intro
G : Type u
inst✝ : Monoid G
h : ∀ (g : G), 0 < orderOf g
t : Finset ℕ
ht : ↑t = Set.range orderOf
exponent_ne_zero_iff_range_orderOf_finite✝ exponent_ne_zero_iff_range_orderOf_finite :
(∀ (g : G), 0 < orderOf g) → (exponent G ≠ 0 ↔ Set.Finite ↑t)
htpos : 0 < Finset.prod t id
g : G
⊢ g ^ Finset.prod t id = 1
[PROOFSTEP]
rw [pow_eq_mod_orderOf, Nat.mod_eq_zero_of_dvd, pow_zero g]
[GOAL]
case refine'_2.intro
G : Type u
inst✝ : Monoid G
h : ∀ (g : G), 0 < orderOf g
t : Finset ℕ
ht : ↑t = Set.range orderOf
exponent_ne_zero_iff_range_orderOf_finite✝ exponent_ne_zero_iff_range_orderOf_finite :
(∀ (g : G), 0 < orderOf g) → (exponent G ≠ 0 ↔ Set.Finite ↑t)
htpos : 0 < Finset.prod t id
g : G
⊢ orderOf g ∣ Finset.prod t id
[PROOFSTEP]
apply Finset.dvd_prod_of_mem
[GOAL]
case refine'_2.intro.ha
G : Type u
inst✝ : Monoid G
h : ∀ (g : G), 0 < orderOf g
t : Finset ℕ
ht : ↑t = Set.range orderOf
exponent_ne_zero_iff_range_orderOf_finite✝ exponent_ne_zero_iff_range_orderOf_finite :
(∀ (g : G), 0 < orderOf g) → (exponent G ≠ 0 ↔ Set.Finite ↑t)
htpos : 0 < Finset.prod t id
g : G
⊢ Function.minimalPeriod (fun x => g * x) 1 ∈ t
[PROOFSTEP]
rw [← Finset.mem_coe, ht]
[GOAL]
case refine'_2.intro.ha
G : Type u
inst✝ : Monoid G
h : ∀ (g : G), 0 < orderOf g
t : Finset ℕ
ht : ↑t = Set.range orderOf
exponent_ne_zero_iff_range_orderOf_finite✝ exponent_ne_zero_iff_range_orderOf_finite :
(∀ (g : G), 0 < orderOf g) → (exponent G ≠ 0 ↔ Set.Finite ↑t)
htpos : 0 < Finset.prod t id
g : G
⊢ Function.minimalPeriod (fun x => g * x) 1 ∈ Set.range orderOf
[PROOFSTEP]
exact Set.mem_range_self g
[GOAL]
G : Type u
inst✝ : Monoid G
h : ∀ (g : G), 0 < orderOf g
⊢ exponent G = 0 ↔ Set.Infinite (Set.range orderOf)
[PROOFSTEP]
have := exponent_ne_zero_iff_range_orderOf_finite h
[GOAL]
G : Type u
inst✝ : Monoid G
h : ∀ (g : G), 0 < orderOf g
this : exponent G ≠ 0 ↔ Set.Finite (Set.range orderOf)
⊢ exponent G = 0 ↔ Set.Infinite (Set.range orderOf)
[PROOFSTEP]
rwa [Ne.def, not_iff_comm, Iff.comm] at this
[GOAL]
G : Type u
inst✝¹ : Monoid G
inst✝ : Fintype G
⊢ Finset.lcm Finset.univ orderOf = exponent G
[PROOFSTEP]
apply Nat.dvd_antisymm (lcm_orderOf_dvd_exponent G)
[GOAL]
G : Type u
inst✝¹ : Monoid G
inst✝ : Fintype G
⊢ exponent G ∣ Finset.lcm Finset.univ orderOf
[PROOFSTEP]
refine' exponent_dvd_of_forall_pow_eq_one G _ fun g => _
[GOAL]
G : Type u
inst✝¹ : Monoid G
inst✝ : Fintype G
g : G
⊢ g ^ Finset.lcm Finset.univ orderOf = 1
[PROOFSTEP]
obtain ⟨m, hm⟩ : orderOf g ∣ Finset.univ.lcm orderOf := Finset.dvd_lcm (Finset.mem_univ g)
[GOAL]
case intro
G : Type u
inst✝¹ : Monoid G
inst✝ : Fintype G
g : G
m : ℕ
hm : Finset.lcm Finset.univ orderOf = orderOf g * m
⊢ g ^ Finset.lcm Finset.univ orderOf = 1
[PROOFSTEP]
rw [hm, pow_mul, pow_orderOf_eq_one, one_pow]
[GOAL]
G : Type u
inst✝¹ : LeftCancelMonoid G
inst✝ : Finite G
⊢ exponent G ≠ 0
[PROOFSTEP]
cases nonempty_fintype G
[GOAL]
case intro
G : Type u
inst✝¹ : LeftCancelMonoid G
inst✝ : Finite G
val✝ : Fintype G
⊢ exponent G ≠ 0
[PROOFSTEP]
simpa [← lcm_order_eq_exponent, Finset.lcm_eq_zero_iff] using fun x => (orderOf_pos x).ne'
[GOAL]
G : Type u
inst✝ : CommMonoid G
h : ∀ (g : G), 0 < orderOf g
⊢ exponent G = ⨆ (g : G), orderOf g
[PROOFSTEP]
rw [iSup]
[GOAL]
G : Type u
inst✝ : CommMonoid G
h : ∀ (g : G), 0 < orderOf g
⊢ exponent G = sSup (Set.range fun g => orderOf g)
[PROOFSTEP]
rcases eq_or_ne (exponent G) 0 with (he | he)
[GOAL]
case inl
G : Type u
inst✝ : CommMonoid G
h : ∀ (g : G), 0 < orderOf g
he : exponent G = 0
⊢ exponent G = sSup (Set.range fun g => orderOf g)
[PROOFSTEP]
rw [he, Set.Infinite.Nat.sSup_eq_zero <| (exponent_eq_zero_iff_range_orderOf_infinite h).1 he]
[GOAL]
case inr
G : Type u
inst✝ : CommMonoid G
h : ∀ (g : G), 0 < orderOf g
he : exponent G ≠ 0
⊢ exponent G = sSup (Set.range fun g => orderOf g)
[PROOFSTEP]
have hne : (Set.range (orderOf : G → ℕ)).Nonempty := ⟨1, 1, orderOf_one⟩
[GOAL]
case inr
G : Type u
inst✝ : CommMonoid G
h : ∀ (g : G), 0 < orderOf g
he : exponent G ≠ 0
hne : Set.Nonempty (Set.range orderOf)
⊢ exponent G = sSup (Set.range fun g => orderOf g)
[PROOFSTEP]
have hfin : (Set.range (orderOf : G → ℕ)).Finite := by rwa [← exponent_ne_zero_iff_range_orderOf_finite h]
[GOAL]
G : Type u
inst✝ : CommMonoid G
h : ∀ (g : G), 0 < orderOf g
he : exponent G ≠ 0
hne : Set.Nonempty (Set.range orderOf)
⊢ Set.Finite (Set.range orderOf)
[PROOFSTEP]
rwa [← exponent_ne_zero_iff_range_orderOf_finite h]
[GOAL]
case inr
G : Type u
inst✝ : CommMonoid G
h : ∀ (g : G), 0 < orderOf g
he : exponent G ≠ 0
hne : Set.Nonempty (Set.range orderOf)
hfin : Set.Finite (Set.range orderOf)
⊢ exponent G = sSup (Set.range fun g => orderOf g)
[PROOFSTEP]
obtain ⟨t, ht⟩ := hne.cSup_mem hfin
[GOAL]
case inr.intro
G : Type u
inst✝ : CommMonoid G
h : ∀ (g : G), 0 < orderOf g
he : exponent G ≠ 0
hne : Set.Nonempty (Set.range orderOf)
hfin : Set.Finite (Set.range orderOf)
t : G
ht : orderOf t = sSup (Set.range orderOf)
⊢ exponent G = sSup (Set.range fun g => orderOf g)
[PROOFSTEP]
apply Nat.dvd_antisymm _
[GOAL]
case inr.intro
G : Type u
inst✝ : CommMonoid G
h : ∀ (g : G), 0 < orderOf g
he : exponent G ≠ 0
hne : Set.Nonempty (Set.range orderOf)
hfin : Set.Finite (Set.range orderOf)
t : G
ht : orderOf t = sSup (Set.range orderOf)
⊢ sSup (Set.range fun g => orderOf g) ∣ exponent G
[PROOFSTEP]
rw [← ht]
[GOAL]
case inr.intro
G : Type u
inst✝ : CommMonoid G
h : ∀ (g : G), 0 < orderOf g
he : exponent G ≠ 0
hne : Set.Nonempty (Set.range orderOf)
hfin : Set.Finite (Set.range orderOf)
t : G
ht : orderOf t = sSup (Set.range orderOf)
⊢ orderOf t ∣ exponent G
[PROOFSTEP]
apply order_dvd_exponent
[GOAL]
G : Type u
inst✝ : CommMonoid G
h : ∀ (g : G), 0 < orderOf g
he : exponent G ≠ 0
hne : Set.Nonempty (Set.range orderOf)
hfin : Set.Finite (Set.range orderOf)
t : G
ht : orderOf t = sSup (Set.range orderOf)
⊢ exponent G ∣ sSup (Set.range fun g => orderOf g)
[PROOFSTEP]
refine' Nat.dvd_of_factors_subperm he _
[GOAL]
G : Type u
inst✝ : CommMonoid G
h : ∀ (g : G), 0 < orderOf g
he : exponent G ≠ 0
hne : Set.Nonempty (Set.range orderOf)
hfin : Set.Finite (Set.range orderOf)
t : G
ht : orderOf t = sSup (Set.range orderOf)
⊢ Nat.factors (exponent G) <+~ Nat.factors (sSup (Set.range fun g => orderOf g))
[PROOFSTEP]
rw [List.subperm_ext_iff]
[GOAL]
G : Type u
inst✝ : CommMonoid G
h : ∀ (g : G), 0 < orderOf g
he : exponent G ≠ 0
hne : Set.Nonempty (Set.range orderOf)
hfin : Set.Finite (Set.range orderOf)
t : G
ht : orderOf t = sSup (Set.range orderOf)
⊢ ∀ (x : ℕ),
x ∈ Nat.factors (exponent G) →
List.count x (Nat.factors (exponent G)) ≤ List.count x (Nat.factors (sSup (Set.range fun g => orderOf g)))
[PROOFSTEP]
by_contra' h
[GOAL]
G : Type u
inst✝ : CommMonoid G
h✝ : ∀ (g : G), 0 < orderOf g
he : exponent G ≠ 0
hne : Set.Nonempty (Set.range orderOf)
hfin : Set.Finite (Set.range orderOf)
t : G
ht : orderOf t = sSup (Set.range orderOf)
h :
∃ x,
x ∈ Nat.factors (exponent G) ∧
List.count x (Nat.factors (sSup (Set.range fun g => orderOf g))) < List.count x (Nat.factors (exponent G))
⊢ False
[PROOFSTEP]
obtain ⟨p, hp, hpe⟩ := h
[GOAL]
case intro.intro
G : Type u
inst✝ : CommMonoid G
h : ∀ (g : G), 0 < orderOf g
he : exponent G ≠ 0
hne : Set.Nonempty (Set.range orderOf)
hfin : Set.Finite (Set.range orderOf)
t : G
ht : orderOf t = sSup (Set.range orderOf)
p : ℕ
hp : p ∈ Nat.factors (exponent G)
hpe : List.count p (Nat.factors (sSup (Set.range fun g => orderOf g))) < List.count p (Nat.factors (exponent G))
⊢ False
[PROOFSTEP]
replace hp := Nat.prime_of_mem_factors hp
[GOAL]
case intro.intro
G : Type u
inst✝ : CommMonoid G
h : ∀ (g : G), 0 < orderOf g
he : exponent G ≠ 0
hne : Set.Nonempty (Set.range orderOf)
hfin : Set.Finite (Set.range orderOf)
t : G
ht : orderOf t = sSup (Set.range orderOf)
p : ℕ
hpe : List.count p (Nat.factors (sSup (Set.range fun g => orderOf g))) < List.count p (Nat.factors (exponent G))
hp : Nat.Prime p
⊢ False
[PROOFSTEP]
simp only [Nat.factors_count_eq] at hpe
[GOAL]
case intro.intro
G : Type u
inst✝ : CommMonoid G
h : ∀ (g : G), 0 < orderOf g
he : exponent G ≠ 0
hne : Set.Nonempty (Set.range orderOf)
hfin : Set.Finite (Set.range orderOf)
t : G
ht : orderOf t = sSup (Set.range orderOf)
p : ℕ
hp : Nat.Prime p
hpe : ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p < ↑(Nat.factorization (exponent G)) p
⊢ False
[PROOFSTEP]
set k := (orderOf t).factorization p with hk
[GOAL]
case intro.intro
G : Type u
inst✝ : CommMonoid G
h : ∀ (g : G), 0 < orderOf g
he : exponent G ≠ 0
hne : Set.Nonempty (Set.range orderOf)
hfin : Set.Finite (Set.range orderOf)
t : G
ht : orderOf t = sSup (Set.range orderOf)
p : ℕ
hp : Nat.Prime p
hpe : ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p < ↑(Nat.factorization (exponent G)) p
k : ℕ := ↑(Nat.factorization (orderOf t)) p
hk : k = ↑(Nat.factorization (orderOf t)) p
⊢ False
[PROOFSTEP]
obtain ⟨g, hg⟩ := hp.exists_orderOf_eq_pow_factorization_exponent G
[GOAL]
case intro.intro.intro
G : Type u
inst✝ : CommMonoid G
h : ∀ (g : G), 0 < orderOf g
he : exponent G ≠ 0
hne : Set.Nonempty (Set.range orderOf)
hfin : Set.Finite (Set.range orderOf)
t : G
ht : orderOf t = sSup (Set.range orderOf)
p : ℕ
hp : Nat.Prime p
hpe : ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p < ↑(Nat.factorization (exponent G)) p
k : ℕ := ↑(Nat.factorization (orderOf t)) p
hk : k = ↑(Nat.factorization (orderOf t)) p
g : G
hg : orderOf g = p ^ ↑(Nat.factorization (exponent G)) p
⊢ False
[PROOFSTEP]
suffices orderOf t < orderOf (t ^ p ^ k * g) by
rw [ht] at this
exact this.not_le (le_csSup hfin.bddAbove <| Set.mem_range_self _)
[GOAL]
G : Type u
inst✝ : CommMonoid G
h : ∀ (g : G), 0 < orderOf g
he : exponent G ≠ 0
hne : Set.Nonempty (Set.range orderOf)
hfin : Set.Finite (Set.range orderOf)
t : G
ht : orderOf t = sSup (Set.range orderOf)
p : ℕ
hp : Nat.Prime p
hpe : ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p < ↑(Nat.factorization (exponent G)) p
k : ℕ := ↑(Nat.factorization (orderOf t)) p
hk : k = ↑(Nat.factorization (orderOf t)) p
g : G
hg : orderOf g = p ^ ↑(Nat.factorization (exponent G)) p
this : orderOf t < orderOf (t ^ p ^ k * g)
⊢ False
[PROOFSTEP]
rw [ht] at this
[GOAL]
G : Type u
inst✝ : CommMonoid G
h : ∀ (g : G), 0 < orderOf g
he : exponent G ≠ 0
hne : Set.Nonempty (Set.range orderOf)
hfin : Set.Finite (Set.range orderOf)
t : G
ht : orderOf t = sSup (Set.range orderOf)
p : ℕ
hp : Nat.Prime p
hpe : ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p < ↑(Nat.factorization (exponent G)) p
k : ℕ := ↑(Nat.factorization (orderOf t)) p
hk : k = ↑(Nat.factorization (orderOf t)) p
g : G
hg : orderOf g = p ^ ↑(Nat.factorization (exponent G)) p
this : sSup (Set.range orderOf) < orderOf (t ^ p ^ k * g)
⊢ False
[PROOFSTEP]
exact this.not_le (le_csSup hfin.bddAbove <| Set.mem_range_self _)
[GOAL]
case intro.intro.intro
G : Type u
inst✝ : CommMonoid G
h : ∀ (g : G), 0 < orderOf g
he : exponent G ≠ 0
hne : Set.Nonempty (Set.range orderOf)
hfin : Set.Finite (Set.range orderOf)
t : G
ht : orderOf t = sSup (Set.range orderOf)
p : ℕ
hp : Nat.Prime p
hpe : ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p < ↑(Nat.factorization (exponent G)) p
k : ℕ := ↑(Nat.factorization (orderOf t)) p
hk : k = ↑(Nat.factorization (orderOf t)) p
g : G
hg : orderOf g = p ^ ↑(Nat.factorization (exponent G)) p
⊢ orderOf t < orderOf (t ^ p ^ k * g)
[PROOFSTEP]
have hpk : p ^ k ∣ orderOf t := Nat.ord_proj_dvd _ _
[GOAL]
case intro.intro.intro
G : Type u
inst✝ : CommMonoid G
h : ∀ (g : G), 0 < orderOf g
he : exponent G ≠ 0
hne : Set.Nonempty (Set.range orderOf)
hfin : Set.Finite (Set.range orderOf)
t : G
ht : orderOf t = sSup (Set.range orderOf)
p : ℕ
hp : Nat.Prime p
hpe : ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p < ↑(Nat.factorization (exponent G)) p
k : ℕ := ↑(Nat.factorization (orderOf t)) p
hk : k = ↑(Nat.factorization (orderOf t)) p
g : G
hg : orderOf g = p ^ ↑(Nat.factorization (exponent G)) p
hpk : p ^ k ∣ orderOf t
⊢ orderOf t < orderOf (t ^ p ^ k * g)
[PROOFSTEP]
have hpk' : orderOf (t ^ p ^ k) = orderOf t / p ^ k := by
rw [orderOf_pow' t (pow_ne_zero k hp.ne_zero), Nat.gcd_eq_right hpk]
[GOAL]
G : Type u
inst✝ : CommMonoid G
h : ∀ (g : G), 0 < orderOf g
he : exponent G ≠ 0
hne : Set.Nonempty (Set.range orderOf)
hfin : Set.Finite (Set.range orderOf)
t : G
ht : orderOf t = sSup (Set.range orderOf)
p : ℕ
hp : Nat.Prime p
hpe : ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p < ↑(Nat.factorization (exponent G)) p
k : ℕ := ↑(Nat.factorization (orderOf t)) p
hk : k = ↑(Nat.factorization (orderOf t)) p
g : G
hg : orderOf g = p ^ ↑(Nat.factorization (exponent G)) p
hpk : p ^ k ∣ orderOf t
⊢ orderOf (t ^ p ^ k) = orderOf t / p ^ k
[PROOFSTEP]
rw [orderOf_pow' t (pow_ne_zero k hp.ne_zero), Nat.gcd_eq_right hpk]
[GOAL]
case intro.intro.intro
G : Type u
inst✝ : CommMonoid G
h : ∀ (g : G), 0 < orderOf g
he : exponent G ≠ 0
hne : Set.Nonempty (Set.range orderOf)
hfin : Set.Finite (Set.range orderOf)
t : G
ht : orderOf t = sSup (Set.range orderOf)
p : ℕ
hp : Nat.Prime p
hpe : ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p < ↑(Nat.factorization (exponent G)) p
k : ℕ := ↑(Nat.factorization (orderOf t)) p
hk : k = ↑(Nat.factorization (orderOf t)) p
g : G
hg : orderOf g = p ^ ↑(Nat.factorization (exponent G)) p
hpk : p ^ k ∣ orderOf t
hpk' : orderOf (t ^ p ^ k) = orderOf t / p ^ k
⊢ orderOf t < orderOf (t ^ p ^ k * g)
[PROOFSTEP]
obtain ⟨a, ha⟩ := Nat.exists_eq_add_of_lt hpe
[GOAL]
case intro.intro.intro.intro
G : Type u
inst✝ : CommMonoid G
h : ∀ (g : G), 0 < orderOf g
he : exponent G ≠ 0
hne : Set.Nonempty (Set.range orderOf)
hfin : Set.Finite (Set.range orderOf)
t : G
ht : orderOf t = sSup (Set.range orderOf)
p : ℕ
hp : Nat.Prime p
hpe : ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p < ↑(Nat.factorization (exponent G)) p
k : ℕ := ↑(Nat.factorization (orderOf t)) p
hk : k = ↑(Nat.factorization (orderOf t)) p
g : G
hg : orderOf g = p ^ ↑(Nat.factorization (exponent G)) p
hpk : p ^ k ∣ orderOf t
hpk' : orderOf (t ^ p ^ k) = orderOf t / p ^ k
a : ℕ
ha : ↑(Nat.factorization (exponent G)) p = ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p + a + 1
⊢ orderOf t < orderOf (t ^ p ^ k * g)
[PROOFSTEP]
have hcoprime : (orderOf (t ^ p ^ k)).coprime (orderOf g) :=
by
rw [hg, Nat.coprime_pow_right_iff (pos_of_gt hpe), Nat.coprime_comm]
apply Or.resolve_right (Nat.coprime_or_dvd_of_prime hp _)
nth_rw 1 [← pow_one p]
have : 1 = (Nat.factorization (orderOf (t ^ p ^ k))) p + 1 :=
by
rw [hpk', Nat.factorization_div hpk]
simp [hp]
rw [this]
-- Porting note: convert made to_additive complain
apply Nat.pow_succ_factorization_not_dvd (h <| t ^ p ^ k).ne' hp
[GOAL]
G : Type u
inst✝ : CommMonoid G
h : ∀ (g : G), 0 < orderOf g
he : exponent G ≠ 0
hne : Set.Nonempty (Set.range orderOf)
hfin : Set.Finite (Set.range orderOf)
t : G
ht : orderOf t = sSup (Set.range orderOf)
p : ℕ
hp : Nat.Prime p
hpe : ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p < ↑(Nat.factorization (exponent G)) p
k : ℕ := ↑(Nat.factorization (orderOf t)) p
hk : k = ↑(Nat.factorization (orderOf t)) p
g : G
hg : orderOf g = p ^ ↑(Nat.factorization (exponent G)) p
hpk : p ^ k ∣ orderOf t
hpk' : orderOf (t ^ p ^ k) = orderOf t / p ^ k
a : ℕ
ha : ↑(Nat.factorization (exponent G)) p = ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p + a + 1
⊢ Nat.coprime (orderOf (t ^ p ^ k)) (orderOf g)
[PROOFSTEP]
rw [hg, Nat.coprime_pow_right_iff (pos_of_gt hpe), Nat.coprime_comm]
[GOAL]
G : Type u
inst✝ : CommMonoid G
h : ∀ (g : G), 0 < orderOf g
he : exponent G ≠ 0
hne : Set.Nonempty (Set.range orderOf)
hfin : Set.Finite (Set.range orderOf)
t : G
ht : orderOf t = sSup (Set.range orderOf)
p : ℕ
hp : Nat.Prime p
hpe : ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p < ↑(Nat.factorization (exponent G)) p
k : ℕ := ↑(Nat.factorization (orderOf t)) p
hk : k = ↑(Nat.factorization (orderOf t)) p
g : G
hg : orderOf g = p ^ ↑(Nat.factorization (exponent G)) p
hpk : p ^ k ∣ orderOf t
hpk' : orderOf (t ^ p ^ k) = orderOf t / p ^ k
a : ℕ
ha : ↑(Nat.factorization (exponent G)) p = ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p + a + 1
⊢ Nat.coprime p (orderOf (t ^ p ^ k))
[PROOFSTEP]
apply Or.resolve_right (Nat.coprime_or_dvd_of_prime hp _)
[GOAL]
G : Type u
inst✝ : CommMonoid G
h : ∀ (g : G), 0 < orderOf g
he : exponent G ≠ 0
hne : Set.Nonempty (Set.range orderOf)
hfin : Set.Finite (Set.range orderOf)
t : G
ht : orderOf t = sSup (Set.range orderOf)
p : ℕ
hp : Nat.Prime p
hpe : ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p < ↑(Nat.factorization (exponent G)) p
k : ℕ := ↑(Nat.factorization (orderOf t)) p
hk : k = ↑(Nat.factorization (orderOf t)) p
g : G
hg : orderOf g = p ^ ↑(Nat.factorization (exponent G)) p
hpk : p ^ k ∣ orderOf t
hpk' : orderOf (t ^ p ^ k) = orderOf t / p ^ k
a : ℕ
ha : ↑(Nat.factorization (exponent G)) p = ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p + a + 1
⊢ ¬p ∣ orderOf (t ^ p ^ k)
[PROOFSTEP]
nth_rw 1 [← pow_one p]
[GOAL]
G : Type u
inst✝ : CommMonoid G
h : ∀ (g : G), 0 < orderOf g
he : exponent G ≠ 0
hne : Set.Nonempty (Set.range orderOf)
hfin : Set.Finite (Set.range orderOf)
t : G
ht : orderOf t = sSup (Set.range orderOf)
p : ℕ
hp : Nat.Prime p
hpe : ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p < ↑(Nat.factorization (exponent G)) p
k : ℕ := ↑(Nat.factorization (orderOf t)) p
hk : k = ↑(Nat.factorization (orderOf t)) p
g : G
hg : orderOf g = p ^ ↑(Nat.factorization (exponent G)) p
hpk : p ^ k ∣ orderOf t
hpk' : orderOf (t ^ p ^ k) = orderOf t / p ^ k
a : ℕ
ha : ↑(Nat.factorization (exponent G)) p = ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p + a + 1
⊢ ¬p ^ 1 ∣ orderOf (t ^ p ^ k)
[PROOFSTEP]
have : 1 = (Nat.factorization (orderOf (t ^ p ^ k))) p + 1 :=
by
rw [hpk', Nat.factorization_div hpk]
simp [hp]
[GOAL]
G : Type u
inst✝ : CommMonoid G
h : ∀ (g : G), 0 < orderOf g
he : exponent G ≠ 0
hne : Set.Nonempty (Set.range orderOf)
hfin : Set.Finite (Set.range orderOf)
t : G
ht : orderOf t = sSup (Set.range orderOf)
p : ℕ
hp : Nat.Prime p
hpe : ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p < ↑(Nat.factorization (exponent G)) p
k : ℕ := ↑(Nat.factorization (orderOf t)) p
hk : k = ↑(Nat.factorization (orderOf t)) p
g : G
hg : orderOf g = p ^ ↑(Nat.factorization (exponent G)) p
hpk : p ^ k ∣ orderOf t
hpk' : orderOf (t ^ p ^ k) = orderOf t / p ^ k
a : ℕ
ha : ↑(Nat.factorization (exponent G)) p = ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p + a + 1
⊢ 1 = ↑(Nat.factorization (orderOf (t ^ p ^ k))) p + 1
[PROOFSTEP]
rw [hpk', Nat.factorization_div hpk]
[GOAL]
G : Type u
inst✝ : CommMonoid G
h : ∀ (g : G), 0 < orderOf g
he : exponent G ≠ 0
hne : Set.Nonempty (Set.range orderOf)
hfin : Set.Finite (Set.range orderOf)
t : G
ht : orderOf t = sSup (Set.range orderOf)
p : ℕ
hp : Nat.Prime p
hpe : ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p < ↑(Nat.factorization (exponent G)) p
k : ℕ := ↑(Nat.factorization (orderOf t)) p
hk : k = ↑(Nat.factorization (orderOf t)) p
g : G
hg : orderOf g = p ^ ↑(Nat.factorization (exponent G)) p
hpk : p ^ k ∣ orderOf t
hpk' : orderOf (t ^ p ^ k) = orderOf t / p ^ k
a : ℕ
ha : ↑(Nat.factorization (exponent G)) p = ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p + a + 1
⊢ 1 = ↑(Nat.factorization (orderOf t) - Nat.factorization (p ^ k)) p + 1
[PROOFSTEP]
simp [hp]
[GOAL]
G : Type u
inst✝ : CommMonoid G
h : ∀ (g : G), 0 < orderOf g
he : exponent G ≠ 0
hne : Set.Nonempty (Set.range orderOf)
hfin : Set.Finite (Set.range orderOf)
t : G
ht : orderOf t = sSup (Set.range orderOf)
p : ℕ
hp : Nat.Prime p
hpe : ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p < ↑(Nat.factorization (exponent G)) p
k : ℕ := ↑(Nat.factorization (orderOf t)) p
hk : k = ↑(Nat.factorization (orderOf t)) p
g : G
hg : orderOf g = p ^ ↑(Nat.factorization (exponent G)) p
hpk : p ^ k ∣ orderOf t
hpk' : orderOf (t ^ p ^ k) = orderOf t / p ^ k
a : ℕ
ha : ↑(Nat.factorization (exponent G)) p = ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p + a + 1
this : 1 = ↑(Nat.factorization (orderOf (t ^ p ^ k))) p + 1
⊢ ¬p ^ 1 ∣ orderOf (t ^ p ^ k)
[PROOFSTEP]
rw [this]
-- Porting note: convert made to_additive complain
[GOAL]
G : Type u
inst✝ : CommMonoid G
h : ∀ (g : G), 0 < orderOf g
he : exponent G ≠ 0
hne : Set.Nonempty (Set.range orderOf)
hfin : Set.Finite (Set.range orderOf)
t : G
ht : orderOf t = sSup (Set.range orderOf)
p : ℕ
hp : Nat.Prime p
hpe : ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p < ↑(Nat.factorization (exponent G)) p
k : ℕ := ↑(Nat.factorization (orderOf t)) p
hk : k = ↑(Nat.factorization (orderOf t)) p
g : G
hg : orderOf g = p ^ ↑(Nat.factorization (exponent G)) p
hpk : p ^ k ∣ orderOf t
hpk' : orderOf (t ^ p ^ k) = orderOf t / p ^ k
a : ℕ
ha : ↑(Nat.factorization (exponent G)) p = ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p + a + 1
this : 1 = ↑(Nat.factorization (orderOf (t ^ p ^ k))) p + 1
⊢ ¬p ^ (↑(Nat.factorization (orderOf (t ^ p ^ k))) p + 1) ∣ orderOf (t ^ p ^ k)
[PROOFSTEP]
apply Nat.pow_succ_factorization_not_dvd (h <| t ^ p ^ k).ne' hp
[GOAL]
case intro.intro.intro.intro
G : Type u
inst✝ : CommMonoid G
h : ∀ (g : G), 0 < orderOf g
he : exponent G ≠ 0
hne : Set.Nonempty (Set.range orderOf)
hfin : Set.Finite (Set.range orderOf)
t : G
ht : orderOf t = sSup (Set.range orderOf)
p : ℕ
hp : Nat.Prime p
hpe : ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p < ↑(Nat.factorization (exponent G)) p
k : ℕ := ↑(Nat.factorization (orderOf t)) p
hk : k = ↑(Nat.factorization (orderOf t)) p
g : G
hg : orderOf g = p ^ ↑(Nat.factorization (exponent G)) p
hpk : p ^ k ∣ orderOf t
hpk' : orderOf (t ^ p ^ k) = orderOf t / p ^ k
a : ℕ
ha : ↑(Nat.factorization (exponent G)) p = ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p + a + 1
hcoprime : Nat.coprime (orderOf (t ^ p ^ k)) (orderOf g)
⊢ orderOf t < orderOf (t ^ p ^ k * g)
[PROOFSTEP]
rw [(Commute.all _ g).orderOf_mul_eq_mul_orderOf_of_coprime hcoprime, hpk', hg, ha, ← ht, ← hk, pow_add, pow_add,
pow_one, ← mul_assoc, ← mul_assoc, Nat.div_mul_cancel, mul_assoc, lt_mul_iff_one_lt_right <| h t, ← pow_succ']
[GOAL]
case intro.intro.intro.intro
G : Type u
inst✝ : CommMonoid G
h : ∀ (g : G), 0 < orderOf g
he : exponent G ≠ 0
hne : Set.Nonempty (Set.range orderOf)
hfin : Set.Finite (Set.range orderOf)
t : G
ht : orderOf t = sSup (Set.range orderOf)
p : ℕ
hp : Nat.Prime p
hpe : ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p < ↑(Nat.factorization (exponent G)) p
k : ℕ := ↑(Nat.factorization (orderOf t)) p
hk : k = ↑(Nat.factorization (orderOf t)) p
g : G
hg : orderOf g = p ^ ↑(Nat.factorization (exponent G)) p
hpk : p ^ k ∣ orderOf t
hpk' : orderOf (t ^ p ^ k) = orderOf t / p ^ k
a : ℕ
ha : ↑(Nat.factorization (exponent G)) p = ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p + a + 1
hcoprime : Nat.coprime (orderOf (t ^ p ^ k)) (orderOf g)
⊢ 1 < p ^ (a + 1)
case intro.intro.intro.intro
G : Type u
inst✝ : CommMonoid G
h : ∀ (g : G), 0 < orderOf g
he : exponent G ≠ 0
hne : Set.Nonempty (Set.range orderOf)
hfin : Set.Finite (Set.range orderOf)
t : G
ht : orderOf t = sSup (Set.range orderOf)
p : ℕ
hp : Nat.Prime p
hpe : ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p < ↑(Nat.factorization (exponent G)) p
k : ℕ := ↑(Nat.factorization (orderOf t)) p
hk : k = ↑(Nat.factorization (orderOf t)) p
g : G
hg : orderOf g = p ^ ↑(Nat.factorization (exponent G)) p
hpk : p ^ k ∣ orderOf t
hpk' : orderOf (t ^ p ^ k) = orderOf t / p ^ k
a : ℕ
ha : ↑(Nat.factorization (exponent G)) p = ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p + a + 1
hcoprime : Nat.coprime (orderOf (t ^ p ^ k)) (orderOf g)
⊢ p ^ k ∣ orderOf t
[PROOFSTEP]
exact one_lt_pow hp.one_lt a.succ_ne_zero
[GOAL]
case intro.intro.intro.intro
G : Type u
inst✝ : CommMonoid G
h : ∀ (g : G), 0 < orderOf g
he : exponent G ≠ 0
hne : Set.Nonempty (Set.range orderOf)
hfin : Set.Finite (Set.range orderOf)
t : G
ht : orderOf t = sSup (Set.range orderOf)
p : ℕ
hp : Nat.Prime p
hpe : ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p < ↑(Nat.factorization (exponent G)) p
k : ℕ := ↑(Nat.factorization (orderOf t)) p
hk : k = ↑(Nat.factorization (orderOf t)) p
g : G
hg : orderOf g = p ^ ↑(Nat.factorization (exponent G)) p
hpk : p ^ k ∣ orderOf t
hpk' : orderOf (t ^ p ^ k) = orderOf t / p ^ k
a : ℕ
ha : ↑(Nat.factorization (exponent G)) p = ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p + a + 1
hcoprime : Nat.coprime (orderOf (t ^ p ^ k)) (orderOf g)
⊢ p ^ k ∣ orderOf t
[PROOFSTEP]
exact hpk
[GOAL]
G : Type u
inst✝ : CommMonoid G
⊢ exponent G = if ∃ g, orderOf g = 0 then 0 else ⨆ (g : G), orderOf g
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
G : Type u
inst✝ : CommMonoid G
h : ∃ g, orderOf g = 0
⊢ exponent G = 0
[PROOFSTEP]
obtain ⟨g, hg⟩ := h
[GOAL]
case pos.intro
G : Type u
inst✝ : CommMonoid G
g : G
hg : orderOf g = 0
⊢ exponent G = 0
[PROOFSTEP]
exact exponent_eq_zero_of_order_zero hg
[GOAL]
case neg
G : Type u
inst✝ : CommMonoid G
h : ¬∃ g, orderOf g = 0
⊢ exponent G = ⨆ (g : G), orderOf g
[PROOFSTEP]
have := not_exists.mp h
[GOAL]
case neg
G : Type u
inst✝ : CommMonoid G
h : ¬∃ g, orderOf g = 0
this : ∀ (x : G), ¬orderOf x = 0
⊢ exponent G = ⨆ (g : G), orderOf g
[PROOFSTEP]
exact exponent_eq_iSup_orderOf fun g => Ne.bot_lt <| this g
[GOAL]
G : Type u
inst✝¹ : CancelCommMonoid G
inst✝ : Fintype G
⊢ 1 ∈ Finset.image orderOf Finset.univ
[PROOFSTEP]
simp
[GOAL]
G : Type u
inst✝¹ : CancelCommMonoid G
inst✝ : Fintype G
⊢ exponent G = Finset.max' (Finset.image orderOf Finset.univ) (_ : ∃ x, x ∈ Finset.image orderOf Finset.univ)
[PROOFSTEP]
rw [← Finset.Nonempty.cSup_eq_max', Finset.coe_image, Finset.coe_univ, Set.image_univ, ← iSup]
[GOAL]
G : Type u
inst✝¹ : CancelCommMonoid G
inst✝ : Fintype G
⊢ exponent G = iSup orderOf
[PROOFSTEP]
exact exponent_eq_iSup_orderOf orderOf_pos
[GOAL]
G : Type u
inst✝¹ : CommGroup G
inst✝ : Group.FG G
⊢ Nat.card G ∣ Monoid.exponent G ^ Group.rank G
[PROOFSTEP]
obtain ⟨S, hS1, hS2⟩ := Group.rank_spec G
[GOAL]
case intro.intro
G : Type u
inst✝¹ : CommGroup G
inst✝ : Group.FG G
S : Finset G
hS1 : Finset.card S = Group.rank G
hS2 : closure ↑S = ⊤
⊢ Nat.card G ∣ Monoid.exponent G ^ Group.rank G
[PROOFSTEP]
rw [← hS1, ← Fintype.card_coe, ← Finset.card_univ, ← Finset.prod_const]
[GOAL]
case intro.intro
G : Type u
inst✝¹ : CommGroup G
inst✝ : Group.FG G
S : Finset G
hS1 : Finset.card S = Group.rank G
hS2 : closure ↑S = ⊤
⊢ Nat.card G ∣ ∏ _x : { x // x ∈ S }, Monoid.exponent G
[PROOFSTEP]
let f : (∀ g : S, zpowers (g : G)) →* G := noncommPiCoprod fun s t _ x y _ _ => mul_comm x _
[GOAL]
case intro.intro
G : Type u
inst✝¹ : CommGroup G
inst✝ : Group.FG G
S : Finset G
hS1 : Finset.card S = Group.rank G
hS2 : closure ↑S = ⊤
f : ((g : { x // x ∈ S }) → { x // x ∈ zpowers ↑g }) →* G :=
noncommPiCoprod (_ : ∀ (s t : { x // x ∈ S }), s ≠ t → ∀ (x y : G), x ∈ zpowers ↑s → y ∈ zpowers ↑t → x * y = y * x)
⊢ Nat.card G ∣ ∏ _x : { x // x ∈ S }, Monoid.exponent G
[PROOFSTEP]
have hf : Function.Surjective f :=
by
rw [← MonoidHom.range_top_iff_surjective, eq_top_iff, ← hS2, closure_le]
exact fun g hg => ⟨Pi.mulSingle ⟨g, hg⟩ ⟨g, mem_zpowers g⟩, noncommPiCoprod_mulSingle _ _⟩
[GOAL]
G : Type u
inst✝¹ : CommGroup G
inst✝ : Group.FG G
S : Finset G
hS1 : Finset.card S = Group.rank G
hS2 : closure ↑S = ⊤
f : ((g : { x // x ∈ S }) → { x // x ∈ zpowers ↑g }) →* G :=
noncommPiCoprod (_ : ∀ (s t : { x // x ∈ S }), s ≠ t → ∀ (x y : G), x ∈ zpowers ↑s → y ∈ zpowers ↑t → x * y = y * x)
⊢ Function.Surjective ↑f
[PROOFSTEP]
rw [← MonoidHom.range_top_iff_surjective, eq_top_iff, ← hS2, closure_le]
[GOAL]
G : Type u
inst✝¹ : CommGroup G
inst✝ : Group.FG G
S : Finset G
hS1 : Finset.card S = Group.rank G
hS2 : closure ↑S = ⊤
f : ((g : { x // x ∈ S }) → { x // x ∈ zpowers ↑g }) →* G :=
noncommPiCoprod (_ : ∀ (s t : { x // x ∈ S }), s ≠ t → ∀ (x y : G), x ∈ zpowers ↑s → y ∈ zpowers ↑t → x * y = y * x)
⊢ ↑S ⊆ ↑(MonoidHom.range f)
[PROOFSTEP]
exact fun g hg => ⟨Pi.mulSingle ⟨g, hg⟩ ⟨g, mem_zpowers g⟩, noncommPiCoprod_mulSingle _ _⟩
[GOAL]
case intro.intro
G : Type u
inst✝¹ : CommGroup G
inst✝ : Group.FG G
S : Finset G
hS1 : Finset.card S = Group.rank G
hS2 : closure ↑S = ⊤
f : ((g : { x // x ∈ S }) → { x // x ∈ zpowers ↑g }) →* G :=
noncommPiCoprod (_ : ∀ (s t : { x // x ∈ S }), s ≠ t → ∀ (x y : G), x ∈ zpowers ↑s → y ∈ zpowers ↑t → x * y = y * x)
hf : Function.Surjective ↑f
⊢ Nat.card G ∣ ∏ _x : { x // x ∈ S }, Monoid.exponent G
[PROOFSTEP]
replace hf := nat_card_dvd_of_surjective f hf
[GOAL]
case intro.intro
G : Type u
inst✝¹ : CommGroup G
inst✝ : Group.FG G
S : Finset G
hS1 : Finset.card S = Group.rank G
hS2 : closure ↑S = ⊤
f : ((g : { x // x ∈ S }) → { x // x ∈ zpowers ↑g }) →* G :=
noncommPiCoprod (_ : ∀ (s t : { x // x ∈ S }), s ≠ t → ∀ (x y : G), x ∈ zpowers ↑s → y ∈ zpowers ↑t → x * y = y * x)
hf : Nat.card G ∣ Nat.card ((g : { x // x ∈ S }) → { x // x ∈ zpowers ↑g })
⊢ Nat.card G ∣ ∏ _x : { x // x ∈ S }, Monoid.exponent G
[PROOFSTEP]
rw [Nat.card_pi] at hf
[GOAL]
case intro.intro
G : Type u
inst✝¹ : CommGroup G
inst✝ : Group.FG G
S : Finset G
hS1 : Finset.card S = Group.rank G
hS2 : closure ↑S = ⊤
f : ((g : { x // x ∈ S }) → { x // x ∈ zpowers ↑g }) →* G :=
noncommPiCoprod (_ : ∀ (s t : { x // x ∈ S }), s ≠ t → ∀ (x y : G), x ∈ zpowers ↑s → y ∈ zpowers ↑t → x * y = y * x)
hf✝ : Nat.card G ∣ Nat.card ((g : { x // x ∈ S }) → { x // x ∈ zpowers ↑g })
hf : Nat.card G ∣ ∏ a : { x // x ∈ S }, Nat.card { x // x ∈ zpowers ↑a }
⊢ Nat.card G ∣ ∏ _x : { x // x ∈ S }, Monoid.exponent G
[PROOFSTEP]
refine' hf.trans (Finset.prod_dvd_prod_of_dvd _ _ fun g _ => _)
[GOAL]
case intro.intro
G : Type u
inst✝¹ : CommGroup G
inst✝ : Group.FG G
S : Finset G
hS1 : Finset.card S = Group.rank G
hS2 : closure ↑S = ⊤
f : ((g : { x // x ∈ S }) → { x // x ∈ zpowers ↑g }) →* G :=
noncommPiCoprod (_ : ∀ (s t : { x // x ∈ S }), s ≠ t → ∀ (x y : G), x ∈ zpowers ↑s → y ∈ zpowers ↑t → x * y = y * x)
hf✝ : Nat.card G ∣ Nat.card ((g : { x // x ∈ S }) → { x // x ∈ zpowers ↑g })
hf : Nat.card G ∣ ∏ a : { x // x ∈ S }, Nat.card { x // x ∈ zpowers ↑a }
g : { x // x ∈ S }
x✝ : g ∈ Finset.univ
⊢ Nat.card { x // x ∈ zpowers ↑g } ∣ Monoid.exponent G
[PROOFSTEP]
rw [← order_eq_card_zpowers']
[GOAL]
case intro.intro
G : Type u
inst✝¹ : CommGroup G
inst✝ : Group.FG G
S : Finset G
hS1 : Finset.card S = Group.rank G
hS2 : closure ↑S = ⊤
f : ((g : { x // x ∈ S }) → { x // x ∈ zpowers ↑g }) →* G :=
noncommPiCoprod (_ : ∀ (s t : { x // x ∈ S }), s ≠ t → ∀ (x y : G), x ∈ zpowers ↑s → y ∈ zpowers ↑t → x * y = y * x)
hf✝ : Nat.card G ∣ Nat.card ((g : { x // x ∈ S }) → { x // x ∈ zpowers ↑g })
hf : Nat.card G ∣ ∏ a : { x // x ∈ S }, Nat.card { x // x ∈ zpowers ↑a }
g : { x // x ∈ S }
x✝ : g ∈ Finset.univ
⊢ orderOf ↑g ∣ Monoid.exponent G
[PROOFSTEP]
exact Monoid.order_dvd_exponent (g : G)
| {"mathlib_filename": "Mathlib.GroupTheory.Exponent", "llama_tokens": 23559} |
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a b : G
hb : b ∈ doset a ↑H ↑K
⊢ doset b ↑H ↑K = doset a ↑H ↑K
[PROOFSTEP]
obtain ⟨_, k, ⟨h, a, hh, rfl : _ = _, rfl⟩, hk, rfl⟩ := hb
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
k h a : G
hh : h ∈ ↑H
hk : k ∈ ↑K
⊢ doset ((fun x x_1 => x * x_1) ((fun x x_1 => x * x_1) h a) k) ↑H ↑K = doset a ↑H ↑K
[PROOFSTEP]
rw [doset, doset, ← Set.singleton_mul_singleton, ← Set.singleton_mul_singleton, mul_assoc, mul_assoc,
Subgroup.singleton_mul_subgroup hk, ← mul_assoc, ← mul_assoc, Subgroup.subgroup_mul_singleton hh]
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a b : G
h : ¬Disjoint (doset a ↑H ↑K) (doset b ↑H ↑K)
⊢ b ∈ doset a ↑H ↑K
[PROOFSTEP]
rw [Set.not_disjoint_iff] at h
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a b : G
h : ∃ x, x ∈ doset a ↑H ↑K ∧ x ∈ doset b ↑H ↑K
⊢ b ∈ doset a ↑H ↑K
[PROOFSTEP]
simp only [mem_doset] at *
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a b : G
h : ∃ x, (∃ x_1, x_1 ∈ ↑H ∧ ∃ y, y ∈ ↑K ∧ x = x_1 * a * y) ∧ ∃ x_1, x_1 ∈ ↑H ∧ ∃ y, y ∈ ↑K ∧ x = x_1 * b * y
⊢ ∃ x, x ∈ ↑H ∧ ∃ y, y ∈ ↑K ∧ b = x * a * y
[PROOFSTEP]
obtain ⟨x, ⟨l, hl, r, hr, hrx⟩, y, hy, ⟨r', hr', rfl⟩⟩ := h
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a b l : G
hl : l ∈ ↑H
r : G
hr : r ∈ ↑K
y : G
hy : y ∈ ↑H
r' : G
hr' : r' ∈ ↑K
hrx : y * b * r' = l * a * r
⊢ ∃ x, x ∈ ↑H ∧ ∃ y, y ∈ ↑K ∧ b = x * a * y
[PROOFSTEP]
refine' ⟨y⁻¹ * l, H.mul_mem (H.inv_mem hy) hl, r * r'⁻¹, K.mul_mem hr (K.inv_mem hr'), _⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a b l : G
hl : l ∈ ↑H
r : G
hr : r ∈ ↑K
y : G
hy : y ∈ ↑H
r' : G
hr' : r' ∈ ↑K
hrx : y * b * r' = l * a * r
⊢ b = y⁻¹ * l * a * (r * r'⁻¹)
[PROOFSTEP]
rwa [mul_assoc, mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc, eq_mul_inv_iff_mul_eq]
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a b : G
h : ¬Disjoint (doset a ↑H ↑K) (doset b ↑H ↑K)
⊢ doset a ↑H ↑K = doset b ↑H ↑K
[PROOFSTEP]
rw [disjoint_comm] at h
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a b : G
h : ¬Disjoint (doset b ↑H ↑K) (doset a ↑H ↑K)
⊢ doset a ↑H ↑K = doset b ↑H ↑K
[PROOFSTEP]
have ha : a ∈ doset b H K := mem_doset_of_not_disjoint h
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a b : G
h : ¬Disjoint (doset b ↑H ↑K) (doset a ↑H ↑K)
ha : a ∈ doset b ↑H ↑K
⊢ doset a ↑H ↑K = doset b ↑H ↑K
[PROOFSTEP]
apply doset_eq_of_mem ha
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
⊢ Setoid.Rel (setoid ↑⊥ ↑H) = Setoid.Rel (QuotientGroup.leftRel H)
[PROOFSTEP]
ext a b
[GOAL]
case h.h.a
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
a b : G
⊢ Setoid.Rel (setoid ↑⊥ ↑H) a b ↔ Setoid.Rel (QuotientGroup.leftRel H) a b
[PROOFSTEP]
rw [rel_iff, Setoid.Rel, QuotientGroup.leftRel_apply]
[GOAL]
case h.h.a
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
a b : G
⊢ (∃ a_1, a_1 ∈ ⊥ ∧ ∃ b_1, b_1 ∈ H ∧ b = a_1 * a * b_1) ↔ a⁻¹ * b ∈ H
[PROOFSTEP]
constructor
[GOAL]
case h.h.a.mp
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
a b : G
⊢ (∃ a_1, a_1 ∈ ⊥ ∧ ∃ b_1, b_1 ∈ H ∧ b = a_1 * a * b_1) → a⁻¹ * b ∈ H
[PROOFSTEP]
rintro ⟨a, rfl : a = 1, b, hb, rfl⟩
[GOAL]
case h.h.a.mp.intro.intro.intro.intro
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
a b : G
hb : b ∈ H
⊢ a⁻¹ * (1 * a * b) ∈ H
[PROOFSTEP]
change a⁻¹ * (1 * a * b) ∈ H
[GOAL]
case h.h.a.mp.intro.intro.intro.intro
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
a b : G
hb : b ∈ H
⊢ a⁻¹ * (1 * a * b) ∈ H
[PROOFSTEP]
rwa [one_mul, inv_mul_cancel_left]
[GOAL]
case h.h.a.mpr
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
a b : G
⊢ a⁻¹ * b ∈ H → ∃ a_2, a_2 ∈ ⊥ ∧ ∃ b_1, b_1 ∈ H ∧ b = a_2 * a * b_1
[PROOFSTEP]
rintro (h : a⁻¹ * b ∈ H)
[GOAL]
case h.h.a.mpr
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
a b : G
h : a⁻¹ * b ∈ H
⊢ ∃ a_1, a_1 ∈ ⊥ ∧ ∃ b_1, b_1 ∈ H ∧ b = a_1 * a * b_1
[PROOFSTEP]
exact ⟨1, rfl, a⁻¹ * b, h, by rw [one_mul, mul_inv_cancel_left]⟩
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
a b : G
h : a⁻¹ * b ∈ H
⊢ b = 1 * a * (a⁻¹ * b)
[PROOFSTEP]
rw [one_mul, mul_inv_cancel_left]
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
⊢ Setoid.Rel (setoid ↑H ↑⊥) = Setoid.Rel (QuotientGroup.rightRel H)
[PROOFSTEP]
ext a b
[GOAL]
case h.h.a
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
a b : G
⊢ Setoid.Rel (setoid ↑H ↑⊥) a b ↔ Setoid.Rel (QuotientGroup.rightRel H) a b
[PROOFSTEP]
rw [rel_iff, Setoid.Rel, QuotientGroup.rightRel_apply]
[GOAL]
case h.h.a
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
a b : G
⊢ (∃ a_1, a_1 ∈ H ∧ ∃ b_1, b_1 ∈ ⊥ ∧ b = a_1 * a * b_1) ↔ b * a⁻¹ ∈ H
[PROOFSTEP]
constructor
[GOAL]
case h.h.a.mp
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
a b : G
⊢ (∃ a_1, a_1 ∈ H ∧ ∃ b_1, b_1 ∈ ⊥ ∧ b = a_1 * a * b_1) → b * a⁻¹ ∈ H
[PROOFSTEP]
rintro ⟨b, hb, a, rfl : a = 1, rfl⟩
[GOAL]
case h.h.a.mp.intro.intro.intro.intro
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
a b : G
hb : b ∈ H
⊢ b * a * 1 * a⁻¹ ∈ H
[PROOFSTEP]
change b * a * 1 * a⁻¹ ∈ H
[GOAL]
case h.h.a.mp.intro.intro.intro.intro
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
a b : G
hb : b ∈ H
⊢ b * a * 1 * a⁻¹ ∈ H
[PROOFSTEP]
rwa [mul_one, mul_inv_cancel_right]
[GOAL]
case h.h.a.mpr
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
a b : G
⊢ b * a⁻¹ ∈ H → ∃ a_2, a_2 ∈ H ∧ ∃ b_1, b_1 ∈ ⊥ ∧ b = a_2 * a * b_1
[PROOFSTEP]
rintro (h : b * a⁻¹ ∈ H)
[GOAL]
case h.h.a.mpr
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
a b : G
h : b * a⁻¹ ∈ H
⊢ ∃ a_1, a_1 ∈ H ∧ ∃ b_1, b_1 ∈ ⊥ ∧ b = a_1 * a * b_1
[PROOFSTEP]
exact ⟨b * a⁻¹, h, 1, rfl, by rw [mul_one, inv_mul_cancel_right]⟩
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
a b : G
h : b * a⁻¹ ∈ H
⊢ b = b * a⁻¹ * a * 1
[PROOFSTEP]
rw [mul_one, inv_mul_cancel_right]
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a b : G
⊢ mk H K a = mk H K b ↔ ∃ h, h ∈ H ∧ ∃ k, k ∈ K ∧ b = h * a * k
[PROOFSTEP]
rw [Quotient.eq'']
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a b : G
⊢ Setoid.r a b ↔ ∃ h, h ∈ H ∧ ∃ k, k ∈ K ∧ b = h * a * k
[PROOFSTEP]
apply rel_iff
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g✝ : G
H K : Subgroup G
g : G
⊢ ∃ h k, h ∈ H ∧ k ∈ K ∧ Quotient.out' (mk H K g) = h * g * k
[PROOFSTEP]
have := eq H K (mk H K g : Quotient ↑H ↑K).out' g
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g✝ : G
H K : Subgroup G
g : G
this : mk H K (Quotient.out' (mk H K g)) = mk H K g ↔ ∃ h, h ∈ H ∧ ∃ k, k ∈ K ∧ g = h * Quotient.out' (mk H K g) * k
⊢ ∃ h k, h ∈ H ∧ k ∈ K ∧ Quotient.out' (mk H K g) = h * g * k
[PROOFSTEP]
rw [out_eq'] at this
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g✝ : G
H K : Subgroup G
g : G
this : mk H K g = mk H K g ↔ ∃ h, h ∈ H ∧ ∃ k, k ∈ K ∧ g = h * Quotient.out' (mk H K g) * k
⊢ ∃ h k, h ∈ H ∧ k ∈ K ∧ Quotient.out' (mk H K g) = h * g * k
[PROOFSTEP]
obtain ⟨h, h_h, k, hk, T⟩ := this.1 rfl
[GOAL]
case intro.intro.intro.intro
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g✝ : G
H K : Subgroup G
g : G
this : mk H K g = mk H K g ↔ ∃ h, h ∈ H ∧ ∃ k, k ∈ K ∧ g = h * Quotient.out' (mk H K g) * k
h : G
h_h : h ∈ H
k : G
hk : k ∈ K
T : g = h * Quotient.out' (mk H K g) * k
⊢ ∃ h k, h ∈ H ∧ k ∈ K ∧ Quotient.out' (mk H K g) = h * g * k
[PROOFSTEP]
refine' ⟨h⁻¹, k⁻¹, H.inv_mem h_h, K.inv_mem hk, eq_mul_inv_of_mul_eq (eq_inv_mul_of_mul_eq _)⟩
[GOAL]
case intro.intro.intro.intro
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g✝ : G
H K : Subgroup G
g : G
this : mk H K g = mk H K g ↔ ∃ h, h ∈ H ∧ ∃ k, k ∈ K ∧ g = h * Quotient.out' (mk H K g) * k
h : G
h_h : h ∈ H
k : G
hk : k ∈ K
T : g = h * Quotient.out' (mk H K g) * k
⊢ h * (Quotient.out' (mk H K g) * k) = g
[PROOFSTEP]
rw [← mul_assoc, ← T]
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a b : G
h : doset a ↑H ↑K = doset b ↑H ↑K
⊢ mk H K a = mk H K b
[PROOFSTEP]
rw [eq]
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a b : G
h : doset a ↑H ↑K = doset b ↑H ↑K
⊢ ∃ h, h ∈ H ∧ ∃ k, k ∈ K ∧ b = h * a * k
[PROOFSTEP]
exact mem_doset.mp (h.symm ▸ mem_doset_self H K b)
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a b : Quotient ↑H.toSubmonoid ↑K
⊢ a ≠ b → Disjoint (doset (Quotient.out' a) ↑H ↑K) (doset (Quotient.out' b) ↑H ↑K)
[PROOFSTEP]
contrapose!
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a b : Quotient ↑H.toSubmonoid ↑K
⊢ ¬Disjoint (doset (Quotient.out' a) ↑H ↑K) (doset (Quotient.out' b) ↑H ↑K) → a = b
[PROOFSTEP]
intro h
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a b : Quotient ↑H.toSubmonoid ↑K
h : ¬Disjoint (doset (Quotient.out' a) ↑H ↑K) (doset (Quotient.out' b) ↑H ↑K)
⊢ a = b
[PROOFSTEP]
simpa [out_eq'] using mk_eq_of_doset_eq (eq_of_not_disjoint h)
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
⊢ ⋃ (q : Quotient ↑H ↑K), quotToDoset H K q = Set.univ
[PROOFSTEP]
ext x
[GOAL]
case h
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
x : G
⊢ x ∈ ⋃ (q : Quotient ↑H ↑K), quotToDoset H K q ↔ x ∈ Set.univ
[PROOFSTEP]
simp only [Set.mem_iUnion, quotToDoset, mem_doset, SetLike.mem_coe, exists_prop, Set.mem_univ, iff_true_iff]
[GOAL]
case h
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
x : G
⊢ ∃ i x_1, x_1 ∈ H ∧ ∃ y, y ∈ K ∧ x = x_1 * Quotient.out' i * y
[PROOFSTEP]
use mk H K x
[GOAL]
case h
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
x : G
⊢ ∃ x_1, x_1 ∈ H ∧ ∃ y, y ∈ K ∧ x = x_1 * Quotient.out' (mk H K x) * y
[PROOFSTEP]
obtain ⟨h, k, h3, h4, h5⟩ := mk_out'_eq_mul H K x
[GOAL]
case h.intro.intro.intro.intro
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
x h k : G
h3 : h ∈ H
h4 : k ∈ K
h5 : Quotient.out' (mk H K x) = h * x * k
⊢ ∃ x_1, x_1 ∈ H ∧ ∃ y, y ∈ K ∧ x = x_1 * Quotient.out' (mk H K x) * y
[PROOFSTEP]
refine' ⟨h⁻¹, H.inv_mem h3, k⁻¹, K.inv_mem h4, _⟩
[GOAL]
case h.intro.intro.intro.intro
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
x h k : G
h3 : h ∈ H
h4 : k ∈ K
h5 : Quotient.out' (mk H K x) = h * x * k
⊢ x = h⁻¹ * Quotient.out' (mk H K x) * k⁻¹
[PROOFSTEP]
simp only [h5, Subgroup.coe_mk, ← mul_assoc, one_mul, mul_left_inv, mul_inv_cancel_right]
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a : G
⊢ ⋃ (k : { x // x ∈ K }), rightCoset (↑H) (a * ↑k) = doset a ↑H ↑K
[PROOFSTEP]
ext x
[GOAL]
case h
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a x : G
⊢ x ∈ ⋃ (k : { x // x ∈ K }), rightCoset (↑H) (a * ↑k) ↔ x ∈ doset a ↑H ↑K
[PROOFSTEP]
simp only [mem_rightCoset_iff, exists_prop, mul_inv_rev, Set.mem_iUnion, mem_doset, Subgroup.mem_carrier,
SetLike.mem_coe]
[GOAL]
case h
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a x : G
⊢ (∃ i, x * ((↑i)⁻¹ * a⁻¹) ∈ H) ↔ ∃ x_1, x_1 ∈ H ∧ ∃ y, y ∈ K ∧ x = x_1 * a * y
[PROOFSTEP]
constructor
[GOAL]
case h.mp
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a x : G
⊢ (∃ i, x * ((↑i)⁻¹ * a⁻¹) ∈ H) → ∃ x_1, x_1 ∈ H ∧ ∃ y, y ∈ K ∧ x = x_1 * a * y
[PROOFSTEP]
rintro ⟨y, h_h⟩
[GOAL]
case h.mp.intro
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a x : G
y : { x // x ∈ K }
h_h : x * ((↑y)⁻¹ * a⁻¹) ∈ H
⊢ ∃ x_1, x_1 ∈ H ∧ ∃ y, y ∈ K ∧ x = x_1 * a * y
[PROOFSTEP]
refine' ⟨x * (y⁻¹ * a⁻¹), h_h, y, y.2, _⟩
[GOAL]
case h.mp.intro
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a x : G
y : { x // x ∈ K }
h_h : x * ((↑y)⁻¹ * a⁻¹) ∈ H
⊢ x = x * (↑y⁻¹ * a⁻¹) * a * ↑y
[PROOFSTEP]
simp only [← mul_assoc, Subgroup.coe_mk, inv_mul_cancel_right, SubgroupClass.coe_inv]
[GOAL]
case h.mpr
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a x : G
⊢ (∃ x_1, x_1 ∈ H ∧ ∃ y, y ∈ K ∧ x = x_1 * a * y) → ∃ i, x * ((↑i)⁻¹ * a⁻¹) ∈ H
[PROOFSTEP]
rintro ⟨x, hx, y, hy, hxy⟩
[GOAL]
case h.mpr.intro.intro.intro.intro
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a x✝ x : G
hx : x ∈ H
y : G
hy : y ∈ K
hxy : x✝ = x * a * y
⊢ ∃ i, x✝ * ((↑i)⁻¹ * a⁻¹) ∈ H
[PROOFSTEP]
refine' ⟨⟨y, hy⟩, _⟩
[GOAL]
case h.mpr.intro.intro.intro.intro
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a x✝ x : G
hx : x ∈ H
y : G
hy : y ∈ K
hxy : x✝ = x * a * y
⊢ x✝ * ((↑{ val := y, property := hy })⁻¹ * a⁻¹) ∈ H
[PROOFSTEP]
simp only [hxy, ← mul_assoc, hx, mul_inv_cancel_right, Subgroup.coe_mk]
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a : G
⊢ ⋃ (h : { x // x ∈ H }), leftCoset (↑h * a) ↑K = doset a ↑H ↑K
[PROOFSTEP]
ext x
[GOAL]
case h
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a x : G
⊢ x ∈ ⋃ (h : { x // x ∈ H }), leftCoset (↑h * a) ↑K ↔ x ∈ doset a ↑H ↑K
[PROOFSTEP]
simp only [mem_leftCoset_iff, mul_inv_rev, Set.mem_iUnion, mem_doset]
[GOAL]
case h
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a x : G
⊢ (∃ i, a⁻¹ * (↑i)⁻¹ * x ∈ ↑K) ↔ ∃ x_1, x_1 ∈ ↑H ∧ ∃ y, y ∈ ↑K ∧ x = x_1 * a * y
[PROOFSTEP]
constructor
[GOAL]
case h.mp
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a x : G
⊢ (∃ i, a⁻¹ * (↑i)⁻¹ * x ∈ ↑K) → ∃ x_1, x_1 ∈ ↑H ∧ ∃ y, y ∈ ↑K ∧ x = x_1 * a * y
[PROOFSTEP]
rintro ⟨y, h_h⟩
[GOAL]
case h.mp.intro
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a x : G
y : { x // x ∈ H }
h_h : a⁻¹ * (↑y)⁻¹ * x ∈ ↑K
⊢ ∃ x_1, x_1 ∈ ↑H ∧ ∃ y, y ∈ ↑K ∧ x = x_1 * a * y
[PROOFSTEP]
refine' ⟨y, y.2, a⁻¹ * y⁻¹ * x, h_h, _⟩
[GOAL]
case h.mp.intro
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a x : G
y : { x // x ∈ H }
h_h : a⁻¹ * (↑y)⁻¹ * x ∈ ↑K
⊢ x = ↑y * a * (a⁻¹ * ↑y⁻¹ * x)
[PROOFSTEP]
simp only [← mul_assoc, one_mul, mul_right_inv, mul_inv_cancel_right, SubgroupClass.coe_inv]
[GOAL]
case h.mpr
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a x : G
⊢ (∃ x_1, x_1 ∈ ↑H ∧ ∃ y, y ∈ ↑K ∧ x = x_1 * a * y) → ∃ i, a⁻¹ * (↑i)⁻¹ * x ∈ ↑K
[PROOFSTEP]
rintro ⟨x, hx, y, hy, hxy⟩
[GOAL]
case h.mpr.intro.intro.intro.intro
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a x✝ x : G
hx : x ∈ ↑H
y : G
hy : y ∈ ↑K
hxy : x✝ = x * a * y
⊢ ∃ i, a⁻¹ * (↑i)⁻¹ * x✝ ∈ ↑K
[PROOFSTEP]
refine' ⟨⟨x, hx⟩, _⟩
[GOAL]
case h.mpr.intro.intro.intro.intro
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a x✝ x : G
hx : x ∈ ↑H
y : G
hy : y ∈ ↑K
hxy : x✝ = x * a * y
⊢ a⁻¹ * (↑{ val := x, property := hx })⁻¹ * x✝ ∈ ↑K
[PROOFSTEP]
simp only [hxy, ← mul_assoc, hy, one_mul, mul_left_inv, Subgroup.coe_mk, inv_mul_cancel_right]
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
⊢ Quotient ↑⊥.toSubmonoid ↑H = (G ⧸ H)
[PROOFSTEP]
unfold Quotient
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
⊢ _root_.Quotient (setoid ↑⊥.toSubmonoid ↑H) = (G ⧸ H)
[PROOFSTEP]
congr
[GOAL]
case e_s
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
⊢ setoid ↑⊥.toSubmonoid ↑H = QuotientGroup.leftRel H
[PROOFSTEP]
ext
[GOAL]
case e_s.H
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
a✝ b✝ : G
⊢ Setoid.Rel (setoid ↑⊥.toSubmonoid ↑H) a✝ b✝ ↔ Setoid.Rel (QuotientGroup.leftRel H) a✝ b✝
[PROOFSTEP]
simp_rw [← bot_rel_eq_leftRel H]
[GOAL]
case e_s.H
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
a✝ b✝ : G
⊢ Setoid.Rel (setoid ↑⊥.toSubmonoid ↑H) a✝ b✝ ↔ Setoid.Rel (setoid ↑⊥ ↑H) a✝ b✝
[PROOFSTEP]
rfl
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
⊢ Quotient ↑H.toSubmonoid ↑⊥ = _root_.Quotient (QuotientGroup.rightRel H)
[PROOFSTEP]
unfold Quotient
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
⊢ _root_.Quotient (setoid ↑H.toSubmonoid ↑⊥) = _root_.Quotient (QuotientGroup.rightRel H)
[PROOFSTEP]
congr
[GOAL]
case e_s
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
⊢ setoid ↑H.toSubmonoid ↑⊥ = QuotientGroup.rightRel H
[PROOFSTEP]
ext
[GOAL]
case e_s.H
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
a✝ b✝ : G
⊢ Setoid.Rel (setoid ↑H.toSubmonoid ↑⊥) a✝ b✝ ↔ Setoid.Rel (QuotientGroup.rightRel H) a✝ b✝
[PROOFSTEP]
simp_rw [← rel_bot_eq_right_group_rel H]
[GOAL]
case e_s.H
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
a✝ b✝ : G
⊢ Setoid.Rel (setoid ↑H.toSubmonoid ↑⊥) a✝ b✝ ↔ Setoid.Rel (setoid ↑H ↑⊥) a✝ b✝
[PROOFSTEP]
rfl
| {"mathlib_filename": "Mathlib.GroupTheory.DoubleCoset", "llama_tokens": 10599} |
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ L1 L2 : List (α × Bool)
x : α
b : Bool
⊢ List.length (L1 ++ L2) + 2 = List.length (L1 ++ (x, b) :: (x, !b) :: L2)
[PROOFSTEP]
rw [List.length_append, List.length_append]
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ L1 L2 : List (α × Bool)
x : α
b : Bool
⊢ List.length L1 + List.length L2 + 2 = List.length L1 + List.length ((x, b) :: (x, !b) :: L2)
[PROOFSTEP]
rfl
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
x : α
b : Bool
⊢ Step (L₁ ++ (x, !b) :: (x, b) :: L₂) (L₁ ++ L₂)
[PROOFSTEP]
cases b
[GOAL]
case false
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
x : α
⊢ Step (L₁ ++ (x, !false) :: (x, false) :: L₂) (L₁ ++ L₂)
[PROOFSTEP]
exact Step.not
[GOAL]
case true
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
x : α
⊢ Step (L₁ ++ (x, !true) :: (x, true) :: L₂) (L₁ ++ L₂)
[PROOFSTEP]
exact Step.not
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ x✝¹ L₁✝ L₂✝ : List (α × Bool)
x✝ : α
b✝ : Bool
⊢ Step (x✝¹ ++ (L₁✝ ++ (x✝, b✝) :: (x✝, !b✝) :: L₂✝)) (x✝¹ ++ (L₁✝ ++ L₂✝))
[PROOFSTEP]
rw [← List.append_assoc, ← List.append_assoc]
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ x✝¹ L₁✝ L₂✝ : List (α × Bool)
x✝ : α
b✝ : Bool
⊢ Step (x✝¹ ++ L₁✝ ++ (x✝, b✝) :: (x✝, !b✝) :: L₂✝) (x✝¹ ++ L₁✝ ++ L₂✝)
[PROOFSTEP]
constructor
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ x✝¹ L₁✝ L₂✝ : List (α × Bool)
x✝ : α
b✝ : Bool
⊢ Step (L₁✝ ++ (x✝, b✝) :: (x✝, !b✝) :: L₂✝ ++ x✝¹) (L₁✝ ++ L₂✝ ++ x✝¹)
[PROOFSTEP]
simp
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
⊢ ¬Step [] L
[PROOFSTEP]
generalize h' : [] = L'
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ L' : List (α × Bool)
h' : [] = L'
⊢ ¬Step L' L
[PROOFSTEP]
intro h
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ L' : List (α × Bool)
h' : [] = L'
h : Step L' L
⊢ False
[PROOFSTEP]
cases' h with L₁ L₂
[GOAL]
case not
α : Type u
L₁✝ L₂✝ L₃ L₄ L₁ L₂ : List (α × Bool)
x✝ : α
b✝ : Bool
h' : [] = L₁ ++ (x✝, b✝) :: (x✝, !b✝) :: L₂
⊢ False
[PROOFSTEP]
simp [List.nil_eq_append] at h'
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
a : α
b : Bool
⊢ Step ((a, b) :: L₁) L₂ ↔ (∃ L, Step L₁ L ∧ L₂ = (a, b) :: L) ∨ L₁ = (a, !b) :: L₂
[PROOFSTEP]
constructor
[GOAL]
case mp
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
a : α
b : Bool
⊢ Step ((a, b) :: L₁) L₂ → (∃ L, Step L₁ L ∧ L₂ = (a, b) :: L) ∨ L₁ = (a, !b) :: L₂
[PROOFSTEP]
generalize hL : ((a, b) :: L₁ : List _) = L
[GOAL]
case mp
α : Type u
L✝ L₁ L₂ L₃ L₄ : List (α × Bool)
a : α
b : Bool
L : List (α × Bool)
hL : (a, b) :: L₁ = L
⊢ Step L L₂ → (∃ L, Step L₁ L ∧ L₂ = (a, b) :: L) ∨ L₁ = (a, !b) :: L₂
[PROOFSTEP]
rintro @⟨_ | ⟨p, s'⟩, e, a', b'⟩
[GOAL]
case mp.not.nil
α : Type u
L L₁ L₃ L₄ : List (α × Bool)
a : α
b : Bool
e : List (α × Bool)
a' : α
b' : Bool
hL : (a, b) :: L₁ = [] ++ (a', b') :: (a', !b') :: e
⊢ (∃ L, Step L₁ L ∧ [] ++ e = (a, b) :: L) ∨ L₁ = (a, !b) :: ([] ++ e)
[PROOFSTEP]
simp at hL
[GOAL]
case mp.not.nil
α : Type u
L L₁ L₃ L₄ : List (α × Bool)
a : α
b : Bool
e : List (α × Bool)
a' : α
b' : Bool
hL : (a = a' ∧ b = b') ∧ L₁ = (a', !b') :: e
⊢ (∃ L, Step L₁ L ∧ [] ++ e = (a, b) :: L) ∨ L₁ = (a, !b) :: ([] ++ e)
[PROOFSTEP]
simp [*]
[GOAL]
case mp.not.cons
α : Type u
L L₁ L₃ L₄ : List (α × Bool)
a : α
b : Bool
e : List (α × Bool)
a' : α
b' : Bool
p : α × Bool
s' : List (α × Bool)
hL : (a, b) :: L₁ = p :: s' ++ (a', b') :: (a', !b') :: e
⊢ (∃ L, Step L₁ L ∧ p :: s' ++ e = (a, b) :: L) ∨ L₁ = (a, !b) :: (p :: s' ++ e)
[PROOFSTEP]
simp at hL
[GOAL]
case mp.not.cons
α : Type u
L L₁ L₃ L₄ : List (α × Bool)
a : α
b : Bool
e : List (α × Bool)
a' : α
b' : Bool
p : α × Bool
s' : List (α × Bool)
hL : (a, b) = p ∧ L₁ = s' ++ (a', b') :: (a', !b') :: e
⊢ (∃ L, Step L₁ L ∧ p :: s' ++ e = (a, b) :: L) ∨ L₁ = (a, !b) :: (p :: s' ++ e)
[PROOFSTEP]
rcases hL with ⟨rfl, rfl⟩
[GOAL]
case mp.not.cons.intro
α : Type u
L L₃ L₄ : List (α × Bool)
a : α
b : Bool
e : List (α × Bool)
a' : α
b' : Bool
s' : List (α × Bool)
⊢ (∃ L, Step (s' ++ (a', b') :: (a', !b') :: e) L ∧ (a, b) :: s' ++ e = (a, b) :: L) ∨
s' ++ (a', b') :: (a', !b') :: e = (a, !b) :: ((a, b) :: s' ++ e)
[PROOFSTEP]
refine' Or.inl ⟨s' ++ e, Step.not, _⟩
[GOAL]
case mp.not.cons.intro
α : Type u
L L₃ L₄ : List (α × Bool)
a : α
b : Bool
e : List (α × Bool)
a' : α
b' : Bool
s' : List (α × Bool)
⊢ (a, b) :: s' ++ e = (a, b) :: (s' ++ e)
[PROOFSTEP]
simp
[GOAL]
case mpr
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
a : α
b : Bool
⊢ (∃ L, Step L₁ L ∧ L₂ = (a, b) :: L) ∨ L₁ = (a, !b) :: L₂ → Step ((a, b) :: L₁) L₂
[PROOFSTEP]
rintro (⟨L, h, rfl⟩ | rfl)
[GOAL]
case mpr.inl.intro.intro
α : Type u
L✝ L₁ L₃ L₄ : List (α × Bool)
a : α
b : Bool
L : List (α × Bool)
h : Step L₁ L
⊢ Step ((a, b) :: L₁) ((a, b) :: L)
[PROOFSTEP]
exact Step.cons h
[GOAL]
case mpr.inr
α : Type u
L L₂ L₃ L₄ : List (α × Bool)
a : α
b : Bool
⊢ Step ((a, b) :: (a, !b) :: L₂) L₂
[PROOFSTEP]
exact Step.cons_not
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
a : α
b : Bool
⊢ ¬Step [(a, b)] L
[PROOFSTEP]
simp [Step.cons_left_iff, not_step_nil]
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
⊢ ∀ {p : α × Bool}, Step (p :: L₁) (p :: L₂) ↔ Step L₁ L₂
[PROOFSTEP]
simp (config := { contextual := true }) [Step.cons_left_iff, iff_def, or_imp]
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
⊢ Step ([] ++ L₁) ([] ++ L₂) ↔ Step L₁ L₂
[PROOFSTEP]
simp
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
p : α × Bool
l : List (α × Bool)
⊢ Step (p :: l ++ L₁) (p :: l ++ L₂) ↔ Step L₁ L₂
[PROOFSTEP]
simp [Step.append_left_iff l, Step.cons_cons_iff]
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ x✝⁵ x✝⁴ : List (α × Bool)
x✝³ : α
x✝² : Bool
x✝¹ : α
x✝ : Bool
H : [] ++ (x✝³, x✝²) :: (x✝³, !x✝²) :: x✝⁵ = [] ++ (x✝¹, x✝) :: (x✝¹, !x✝) :: x✝⁴
⊢ [] ++ x✝⁵ = [] ++ x✝⁴ ∨ ∃ L₅, Step ([] ++ x✝⁵) L₅ ∧ Step ([] ++ x✝⁴) L₅
[PROOFSTEP]
injections
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ x✝⁵ x✝⁴ : List (α × Bool)
x✝³ : α
x✝² : Bool
x✝¹ : α
x✝ : Bool
fst_eq✝¹ : x✝³ = x✝¹
snd_eq✝¹ : x✝² = x✝
tail_eq✝ : x✝⁵ = x✝⁴
fst_eq✝ : x✝³ = x✝¹
snd_eq✝ : (!x✝²) = !x✝
⊢ [] ++ x✝⁵ = [] ++ x✝⁴ ∨ ∃ L₅, Step ([] ++ x✝⁵) L₅ ∧ Step ([] ++ x✝⁴) L₅
[PROOFSTEP]
subst_vars
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ x✝² : List (α × Bool)
x✝¹ : α
x✝ : Bool
fst_eq✝ : x✝¹ = x✝¹
snd_eq✝ : (!x✝) = !x✝
⊢ [] ++ x✝² = [] ++ x✝² ∨ ∃ L₅, Step ([] ++ x✝²) L₅ ∧ Step ([] ++ x✝²) L₅
[PROOFSTEP]
simp
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ x✝⁵ : List (α × Bool)
x3 : α
b3 : Bool
x✝⁴ : List (α × Bool)
x✝³ : α
x✝² : Bool
x✝¹ : α
x✝ : Bool
H : [] ++ (x✝³, x✝²) :: (x✝³, !x✝²) :: x✝⁵ = [(x3, b3)] ++ (x✝¹, x✝) :: (x✝¹, !x✝) :: x✝⁴
⊢ [] ++ x✝⁵ = [(x3, b3)] ++ x✝⁴ ∨ ∃ L₅, Step ([] ++ x✝⁵) L₅ ∧ Step ([(x3, b3)] ++ x✝⁴) L₅
[PROOFSTEP]
injections
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ x✝⁵ : List (α × Bool)
x3 : α
b3 : Bool
x✝⁴ : List (α × Bool)
x✝³ : α
x✝² : Bool
x✝¹ : α
x✝ : Bool
fst_eq✝¹ : x✝³ = x3
snd_eq✝¹ : x✝² = b3
tail_eq✝ : x✝⁵ = (x✝¹, !x✝) :: x✝⁴
fst_eq✝ : x✝³ = x✝¹
snd_eq✝ : (!x✝²) = x✝
⊢ [] ++ x✝⁵ = [(x3, b3)] ++ x✝⁴ ∨ ∃ L₅, Step ([] ++ x✝⁵) L₅ ∧ Step ([(x3, b3)] ++ x✝⁴) L₅
[PROOFSTEP]
subst_vars
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ x✝² : List (α × Bool)
x✝¹ : Bool
x✝ : α
⊢ [] ++ (x✝, !!x✝¹) :: x✝² = [(x✝, x✝¹)] ++ x✝² ∨
∃ L₅, Step ([] ++ (x✝, !!x✝¹) :: x✝²) L₅ ∧ Step ([(x✝, x✝¹)] ++ x✝²) L₅
[PROOFSTEP]
simp
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
x3 : α
b3 : Bool
x✝⁵ x✝⁴ : List (α × Bool)
x✝³ : α
x✝² : Bool
x✝¹ : α
x✝ : Bool
H : [(x3, b3)] ++ (x✝³, x✝²) :: (x✝³, !x✝²) :: x✝⁵ = [] ++ (x✝¹, x✝) :: (x✝¹, !x✝) :: x✝⁴
⊢ [(x3, b3)] ++ x✝⁵ = [] ++ x✝⁴ ∨ ∃ L₅, Step ([(x3, b3)] ++ x✝⁵) L₅ ∧ Step ([] ++ x✝⁴) L₅
[PROOFSTEP]
injections
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
x3 : α
b3 : Bool
x✝⁵ x✝⁴ : List (α × Bool)
x✝³ : α
x✝² : Bool
x✝¹ : α
x✝ : Bool
fst_eq✝¹ : x3 = x✝¹
snd_eq✝¹ : b3 = x✝
tail_eq✝ : (x✝³, !x✝²) :: x✝⁵ = x✝⁴
fst_eq✝ : x✝³ = x✝¹
snd_eq✝ : x✝² = !x✝
⊢ [(x3, b3)] ++ x✝⁵ = [] ++ x✝⁴ ∨ ∃ L₅, Step ([(x3, b3)] ++ x✝⁵) L₅ ∧ Step ([] ++ x✝⁴) L₅
[PROOFSTEP]
subst_vars
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ x✝² : List (α × Bool)
x✝¹ : α
x✝ : Bool
⊢ [(x✝¹, x✝)] ++ x✝² = [] ++ (x✝¹, !!x✝) :: x✝² ∨
∃ L₅, Step ([(x✝¹, x✝)] ++ x✝²) L₅ ∧ Step ([] ++ (x✝¹, !!x✝) :: x✝²) L₅
[PROOFSTEP]
simp
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ x✝⁵ : List (α × Bool)
x3 : α
b3 : Bool
x4 : α
b4 : Bool
tl x✝⁴ : List (α × Bool)
x✝³ : α
x✝² : Bool
x✝¹ : α
x✝ : Bool
H : [] ++ (x✝³, x✝²) :: (x✝³, !x✝²) :: x✝⁵ = (x3, b3) :: (x4, b4) :: tl ++ (x✝¹, x✝) :: (x✝¹, !x✝) :: x✝⁴
⊢ [] ++ x✝⁵ = (x3, b3) :: (x4, b4) :: tl ++ x✝⁴ ∨
∃ L₅, Step ([] ++ x✝⁵) L₅ ∧ Step ((x3, b3) :: (x4, b4) :: tl ++ x✝⁴) L₅
[PROOFSTEP]
injections
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ x✝⁵ : List (α × Bool)
x3 : α
b3 : Bool
x4 : α
b4 : Bool
tl x✝⁴ : List (α × Bool)
x✝³ : α
x✝² : Bool
x✝¹ : α
x✝ : Bool
fst_eq✝¹ : x✝³ = x3
snd_eq✝¹ : x✝² = b3
tail_eq✝ : x✝⁵ = List.append tl ((x✝¹, x✝) :: (x✝¹, !x✝) :: x✝⁴)
fst_eq✝ : x✝³ = x4
snd_eq✝ : (!x✝²) = b4
⊢ [] ++ x✝⁵ = (x3, b3) :: (x4, b4) :: tl ++ x✝⁴ ∨
∃ L₅, Step ([] ++ x✝⁵) L₅ ∧ Step ((x3, b3) :: (x4, b4) :: tl ++ x✝⁴) L₅
[PROOFSTEP]
subst_vars
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ tl x✝⁴ : List (α × Bool)
x✝³ : α
x✝² : Bool
x✝¹ : α
x✝ : Bool
⊢ [] ++ List.append tl ((x✝¹, x✝) :: (x✝¹, !x✝) :: x✝⁴) = (x✝³, x✝²) :: (x✝³, !x✝²) :: tl ++ x✝⁴ ∨
∃ L₅,
Step ([] ++ List.append tl ((x✝¹, x✝) :: (x✝¹, !x✝) :: x✝⁴)) L₅ ∧ Step ((x✝³, x✝²) :: (x✝³, !x✝²) :: tl ++ x✝⁴) L₅
[PROOFSTEP]
simp
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ tl x✝⁴ : List (α × Bool)
x✝³ : α
x✝² : Bool
x✝¹ : α
x✝ : Bool
⊢ tl ++ (x✝¹, x✝) :: (x✝¹, !x✝) :: x✝⁴ = (x✝³, x✝²) :: (x✝³, !x✝²) :: (tl ++ x✝⁴) ∨
∃ L₅, Step (tl ++ (x✝¹, x✝) :: (x✝¹, !x✝) :: x✝⁴) L₅ ∧ Step ((x✝³, x✝²) :: (x✝³, !x✝²) :: (tl ++ x✝⁴)) L₅
[PROOFSTEP]
right
[GOAL]
case h
α : Type u
L L₁ L₂ L₃ L₄ tl x✝⁴ : List (α × Bool)
x✝³ : α
x✝² : Bool
x✝¹ : α
x✝ : Bool
⊢ ∃ L₅, Step (tl ++ (x✝¹, x✝) :: (x✝¹, !x✝) :: x✝⁴) L₅ ∧ Step ((x✝³, x✝²) :: (x✝³, !x✝²) :: (tl ++ x✝⁴)) L₅
[PROOFSTEP]
exact ⟨_, Red.Step.not, Red.Step.cons_not⟩
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
x3 : α
b3 : Bool
x4 : α
b4 : Bool
tl x✝⁵ x✝⁴ : List (α × Bool)
x✝³ : α
x✝² : Bool
x✝¹ : α
x✝ : Bool
H : (x3, b3) :: (x4, b4) :: tl ++ (x✝³, x✝²) :: (x✝³, !x✝²) :: x✝⁵ = [] ++ (x✝¹, x✝) :: (x✝¹, !x✝) :: x✝⁴
⊢ (x3, b3) :: (x4, b4) :: tl ++ x✝⁵ = [] ++ x✝⁴ ∨
∃ L₅, Step ((x3, b3) :: (x4, b4) :: tl ++ x✝⁵) L₅ ∧ Step ([] ++ x✝⁴) L₅
[PROOFSTEP]
injections
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
x3 : α
b3 : Bool
x4 : α
b4 : Bool
tl x✝⁵ x✝⁴ : List (α × Bool)
x✝³ : α
x✝² : Bool
x✝¹ : α
x✝ : Bool
fst_eq✝¹ : x3 = x✝¹
snd_eq✝¹ : b3 = x✝
tail_eq✝ : List.append tl ((x✝³, x✝²) :: (x✝³, !x✝²) :: x✝⁵) = x✝⁴
fst_eq✝ : x4 = x✝¹
snd_eq✝ : b4 = !x✝
⊢ (x3, b3) :: (x4, b4) :: tl ++ x✝⁵ = [] ++ x✝⁴ ∨
∃ L₅, Step ((x3, b3) :: (x4, b4) :: tl ++ x✝⁵) L₅ ∧ Step ([] ++ x✝⁴) L₅
[PROOFSTEP]
subst_vars
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ tl x✝⁴ : List (α × Bool)
x✝³ : α
x✝² : Bool
x✝¹ : α
x✝ : Bool
⊢ (x✝¹, x✝) :: (x✝¹, !x✝) :: tl ++ x✝⁴ = [] ++ List.append tl ((x✝³, x✝²) :: (x✝³, !x✝²) :: x✝⁴) ∨
∃ L₅,
Step ((x✝¹, x✝) :: (x✝¹, !x✝) :: tl ++ x✝⁴) L₅ ∧ Step ([] ++ List.append tl ((x✝³, x✝²) :: (x✝³, !x✝²) :: x✝⁴)) L₅
[PROOFSTEP]
simp
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ tl x✝⁴ : List (α × Bool)
x✝³ : α
x✝² : Bool
x✝¹ : α
x✝ : Bool
⊢ (x✝¹, x✝) :: (x✝¹, !x✝) :: (tl ++ x✝⁴) = tl ++ (x✝³, x✝²) :: (x✝³, !x✝²) :: x✝⁴ ∨
∃ L₅, Step ((x✝¹, x✝) :: (x✝¹, !x✝) :: (tl ++ x✝⁴)) L₅ ∧ Step (tl ++ (x✝³, x✝²) :: (x✝³, !x✝²) :: x✝⁴) L₅
[PROOFSTEP]
right
[GOAL]
case h
α : Type u
L L₁ L₂ L₃ L₄ tl x✝⁴ : List (α × Bool)
x✝³ : α
x✝² : Bool
x✝¹ : α
x✝ : Bool
⊢ ∃ L₅, Step ((x✝¹, x✝) :: (x✝¹, !x✝) :: (tl ++ x✝⁴)) L₅ ∧ Step (tl ++ (x✝³, x✝²) :: (x✝³, !x✝²) :: x✝⁴) L₅
[PROOFSTEP]
exact ⟨_, Red.Step.cons_not, Red.Step.not⟩
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
x3 : α
b3 : Bool
tl x✝⁵ : List (α × Bool)
x4 : α
b4 : Bool
tl2 x✝⁴ : List (α × Bool)
x✝³ : α
x✝² : Bool
x✝¹ : α
x✝ : Bool
H : (x3, b3) :: tl ++ (x✝³, x✝²) :: (x✝³, !x✝²) :: x✝⁵ = (x4, b4) :: tl2 ++ (x✝¹, x✝) :: (x✝¹, !x✝) :: x✝⁴
H1 : (x3, b3) = (x4, b4)
H2 : List.append tl ((x✝³, x✝²) :: (x✝³, !x✝²) :: x✝⁵) = List.append tl2 ((x✝¹, x✝) :: (x✝¹, !x✝) :: x✝⁴)
H3 : tl ++ x✝⁵ = tl2 ++ x✝⁴
⊢ (x3, b3) :: tl ++ x✝⁵ = (x4, b4) :: tl2 ++ x✝⁴
[PROOFSTEP]
simp [H1, H3]
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
x3 : α
b3 : Bool
tl x✝⁵ : List (α × Bool)
x4 : α
b4 : Bool
tl2 x✝⁴ : List (α × Bool)
x✝³ : α
x✝² : Bool
x✝¹ : α
x✝ : Bool
H : (x3, b3) :: tl ++ (x✝³, x✝²) :: (x✝³, !x✝²) :: x✝⁵ = (x4, b4) :: tl2 ++ (x✝¹, x✝) :: (x✝¹, !x✝) :: x✝⁴
H1 : (x3, b3) = (x4, b4)
H2 : List.append tl ((x✝³, x✝²) :: (x✝³, !x✝²) :: x✝⁵) = List.append tl2 ((x✝¹, x✝) :: (x✝¹, !x✝) :: x✝⁴)
L₅ : List (α × Bool)
H3 : Step (tl ++ x✝⁵) L₅
H4 : Step (tl2 ++ x✝⁴) L₅
⊢ Step ((x4, b4) :: tl2 ++ x✝⁴) ((x3, b3) :: L₅)
[PROOFSTEP]
simpa [H1] using Step.cons H4
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ a b✝ c b : List (α × Bool)
hab hac : Step a b
⊢ ReflGen Step b b
[PROOFSTEP]
rfl
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ a b✝ c b : List (α × Bool)
hab hac : Step a b
⊢ ReflTransGen Step b b
[PROOFSTEP]
rfl
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
p : α × Bool
⊢ Red (p :: L₁) (p :: L₂) → Red L₁ L₂
[PROOFSTEP]
generalize eq₁ : (p :: L₁ : List _) = LL₁
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
p : α × Bool
LL₁ : List (α × Bool)
eq₁ : p :: L₁ = LL₁
⊢ Red LL₁ (p :: L₂) → Red L₁ L₂
[PROOFSTEP]
generalize eq₂ : (p :: L₂ : List _) = LL₂
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
p : α × Bool
LL₁ : List (α × Bool)
eq₁ : p :: L₁ = LL₁
LL₂ : List (α × Bool)
eq₂ : p :: L₂ = LL₂
⊢ Red LL₁ LL₂ → Red L₁ L₂
[PROOFSTEP]
intro h
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
p : α × Bool
LL₁ : List (α × Bool)
eq₁ : p :: L₁ = LL₁
LL₂ : List (α × Bool)
eq₂ : p :: L₂ = LL₂
h : Red LL₁ LL₂
⊢ Red L₁ L₂
[PROOFSTEP]
induction' h using Relation.ReflTransGen.head_induction_on with L₁ L₂ h₁₂ h ih generalizing L₁ L₂
[GOAL]
case refl
α : Type u
L L₁✝ L₂✝ L₃ L₄ : List (α × Bool)
p : α × Bool
LL₁ : List (α × Bool)
eq₁✝ : p :: L₁✝ = LL₁
LL₂ : List (α × Bool)
eq₂✝ : p :: L₂✝ = LL₂
L₁ L₂ : List (α × Bool)
eq₁ : p :: L₁ = LL₂
eq₂ : p :: L₂ = LL₂
⊢ Red L₁ L₂
[PROOFSTEP]
subst_vars
[GOAL]
case refl
α : Type u
L L₁✝ L₂✝ L₃ L₄ : List (α × Bool)
p : α × Bool
L₁ L₂ : List (α × Bool)
eq₁ : p :: L₁ = p :: L₂✝
eq₂ : p :: L₂ = p :: L₂✝
⊢ Red L₁ L₂
[PROOFSTEP]
cases eq₂
[GOAL]
case refl.refl
α : Type u
L L₁✝ L₂ L₃ L₄ : List (α × Bool)
p : α × Bool
L₁ : List (α × Bool)
eq₁ : p :: L₁ = p :: L₂
⊢ Red L₁ L₂
[PROOFSTEP]
cases eq₁
[GOAL]
case refl.refl.refl
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
p : α × Bool
⊢ Red L₂ L₂
[PROOFSTEP]
constructor
[GOAL]
case head
α : Type u
L L₁✝¹ L₂✝¹ L₃ L₄ : List (α × Bool)
p : α × Bool
LL₁ : List (α × Bool)
eq₁✝ : p :: L₁✝¹ = LL₁
LL₂ : List (α × Bool)
eq₂✝ : p :: L₂✝¹ = LL₂
L₁✝ L₂✝ : List (α × Bool)
h₁₂ : Step L₁✝ L₂✝
h : ReflTransGen Step L₂✝ LL₂
ih : ∀ {L₁ L₂ : List (α × Bool)}, p :: L₁ = L₂✝ → p :: L₂ = LL₂ → Red L₁ L₂
L₁ L₂ : List (α × Bool)
eq₁ : p :: L₁ = L₁✝
eq₂ : p :: L₂ = LL₂
⊢ Red L₁ L₂
[PROOFSTEP]
subst_vars
[GOAL]
case head
α : Type u
L L₁✝ L₂✝¹ L₃ L₄ : List (α × Bool)
p : α × Bool
L₂✝ L₁ L₂ : List (α × Bool)
h : ReflTransGen Step L₂✝ (p :: L₂✝¹)
ih : ∀ {L₁ L₂ : List (α × Bool)}, p :: L₁ = L₂✝ → p :: L₂ = p :: L₂✝¹ → Red L₁ L₂
eq₂ : p :: L₂ = p :: L₂✝¹
h₁₂ : Step (p :: L₁) L₂✝
⊢ Red L₁ L₂
[PROOFSTEP]
cases eq₂
[GOAL]
case head.refl
α : Type u
L L₁✝ L₂✝ L₃ L₄ : List (α × Bool)
p : α × Bool
L₂ L₁ : List (α × Bool)
h : ReflTransGen Step L₂ (p :: L₂✝)
ih : ∀ {L₁ L₂_1 : List (α × Bool)}, p :: L₁ = L₂ → p :: L₂_1 = p :: L₂✝ → Red L₁ L₂_1
h₁₂ : Step (p :: L₁) L₂
⊢ Red L₁ L₂✝
[PROOFSTEP]
cases' p with a b
[GOAL]
case head.refl.mk
α : Type u
L L₁✝ L₂✝ L₃ L₄ L₂ L₁ : List (α × Bool)
a : α
b : Bool
h : ReflTransGen Step L₂ ((a, b) :: L₂✝)
ih : ∀ {L₁ L₂_1 : List (α × Bool)}, (a, b) :: L₁ = L₂ → (a, b) :: L₂_1 = (a, b) :: L₂✝ → Red L₁ L₂_1
h₁₂ : Step ((a, b) :: L₁) L₂
⊢ Red L₁ L₂✝
[PROOFSTEP]
rw [Step.cons_left_iff] at h₁₂
[GOAL]
case head.refl.mk
α : Type u
L L₁✝ L₂✝ L₃ L₄ L₂ L₁ : List (α × Bool)
a : α
b : Bool
h : ReflTransGen Step L₂ ((a, b) :: L₂✝)
ih : ∀ {L₁ L₂_1 : List (α × Bool)}, (a, b) :: L₁ = L₂ → (a, b) :: L₂_1 = (a, b) :: L₂✝ → Red L₁ L₂_1
h₁₂ : (∃ L, Step L₁ L ∧ L₂ = (a, b) :: L) ∨ L₁ = (a, !b) :: L₂
⊢ Red L₁ L₂✝
[PROOFSTEP]
rcases h₁₂ with (⟨L, h₁₂, rfl⟩ | rfl)
[GOAL]
case head.refl.mk.inl.intro.intro
α : Type u
L✝ L₁✝ L₂ L₃ L₄ L₁ : List (α × Bool)
a : α
b : Bool
L : List (α × Bool)
h₁₂ : Step L₁ L
h : ReflTransGen Step ((a, b) :: L) ((a, b) :: L₂)
ih : ∀ {L₁ L₂_1 : List (α × Bool)}, (a, b) :: L₁ = (a, b) :: L → (a, b) :: L₂_1 = (a, b) :: L₂ → Red L₁ L₂_1
⊢ Red L₁ L₂
[PROOFSTEP]
exact (ih rfl rfl).head h₁₂
[GOAL]
case head.refl.mk.inr
α : Type u
L L₁ L₂✝ L₃ L₄ L₂ : List (α × Bool)
a : α
b : Bool
h : ReflTransGen Step L₂ ((a, b) :: L₂✝)
ih : ∀ {L₁ L₂_1 : List (α × Bool)}, (a, b) :: L₁ = L₂ → (a, b) :: L₂_1 = (a, b) :: L₂✝ → Red L₁ L₂_1
⊢ Red ((a, !b) :: L₂) L₂✝
[PROOFSTEP]
exact (cons_cons h).tail Step.cons_not_rev
[GOAL]
α : Type u
L✝ L₁ L₂ L₃ L₄ : List (α × Bool)
p : α × Bool
L : List (α × Bool)
⊢ Red (p :: L ++ L₁) (p :: L ++ L₂) ↔ Red L₁ L₂
[PROOFSTEP]
simp [append_append_left_iff L, cons_cons_iff]
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
⊢ Red L (L₁ ++ L₂) → ∃ L₃ L₄, L = L₃ ++ L₄ ∧ Red L₃ L₁ ∧ Red L₄ L₂
[PROOFSTEP]
generalize eq : L₁ ++ L₂ = L₁₂
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ L₁₂ : List (α × Bool)
eq : L₁ ++ L₂ = L₁₂
⊢ Red L L₁₂ → ∃ L₃ L₄, L = L₃ ++ L₄ ∧ Red L₃ L₁ ∧ Red L₄ L₂
[PROOFSTEP]
intro h
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ L₁₂ : List (α × Bool)
eq : L₁ ++ L₂ = L₁₂
h : Red L L₁₂
⊢ ∃ L₃ L₄, L = L₃ ++ L₄ ∧ Red L₃ L₁ ∧ Red L₄ L₂
[PROOFSTEP]
induction' h with L' L₁₂ hLL' h ih generalizing L₁ L₂
[GOAL]
case refl
α : Type u
L L₁✝ L₂✝ L₃ L₄ L₁₂ : List (α × Bool)
eq✝ : L₁✝ ++ L₂✝ = L₁₂
L₁ L₂ : List (α × Bool)
eq : L₁ ++ L₂ = L
⊢ ∃ L₃ L₄, L = L₃ ++ L₄ ∧ Red L₃ L₁ ∧ Red L₄ L₂
[PROOFSTEP]
exact ⟨_, _, eq.symm, by rfl, by rfl⟩
[GOAL]
α : Type u
L L₁✝ L₂✝ L₃ L₄ L₁₂ : List (α × Bool)
eq✝ : L₁✝ ++ L₂✝ = L₁₂
L₁ L₂ : List (α × Bool)
eq : L₁ ++ L₂ = L
⊢ Red L₁ L₁
[PROOFSTEP]
rfl
[GOAL]
α : Type u
L L₁✝ L₂✝ L₃ L₄ L₁₂ : List (α × Bool)
eq✝ : L₁✝ ++ L₂✝ = L₁₂
L₁ L₂ : List (α × Bool)
eq : L₁ ++ L₂ = L
⊢ Red L₂ L₂
[PROOFSTEP]
rfl
[GOAL]
case tail
α : Type u
L L₁✝ L₂✝ L₃ L₄ L₁₂✝ : List (α × Bool)
eq✝ : L₁✝ ++ L₂✝ = L₁₂✝
L' L₁₂ : List (α × Bool)
hLL' : ReflTransGen Step L L'
h : Step L' L₁₂
ih : ∀ {L₁ L₂ : List (α × Bool)}, L₁ ++ L₂ = L' → ∃ L₃ L₄, L = L₃ ++ L₄ ∧ Red L₃ L₁ ∧ Red L₄ L₂
L₁ L₂ : List (α × Bool)
eq : L₁ ++ L₂ = L₁₂
⊢ ∃ L₃ L₄, L = L₃ ++ L₄ ∧ Red L₃ L₁ ∧ Red L₄ L₂
[PROOFSTEP]
cases' h with s e a b
[GOAL]
case tail.not
α : Type u
L L₁✝ L₂✝ L₃ L₄ L₁₂ : List (α × Bool)
eq✝ : L₁✝ ++ L₂✝ = L₁₂
L₁ L₂ s e : List (α × Bool)
a : α
b : Bool
hLL' : ReflTransGen Step L (s ++ (a, b) :: (a, !b) :: e)
ih : ∀ {L₁ L₂ : List (α × Bool)}, L₁ ++ L₂ = s ++ (a, b) :: (a, !b) :: e → ∃ L₃ L₄, L = L₃ ++ L₄ ∧ Red L₃ L₁ ∧ Red L₄ L₂
eq : L₁ ++ L₂ = s ++ e
⊢ ∃ L₃ L₄, L = L₃ ++ L₄ ∧ Red L₃ L₁ ∧ Red L₄ L₂
[PROOFSTEP]
rcases List.append_eq_append_iff.1 eq with (⟨s', rfl, rfl⟩ | ⟨e', rfl, rfl⟩)
[GOAL]
case tail.not.inl.intro.intro
α : Type u
L L₁✝ L₂ L₃ L₄ L₁₂ : List (α × Bool)
eq✝ : L₁✝ ++ L₂ = L₁₂
L₁ e : List (α × Bool)
a : α
b : Bool
s' : List (α × Bool)
hLL' : ReflTransGen Step L (L₁ ++ s' ++ (a, b) :: (a, !b) :: e)
ih :
∀ {L₁_1 L₂ : List (α × Bool)},
L₁_1 ++ L₂ = L₁ ++ s' ++ (a, b) :: (a, !b) :: e → ∃ L₃ L₄, L = L₃ ++ L₄ ∧ Red L₃ L₁_1 ∧ Red L₄ L₂
eq : L₁ ++ (s' ++ e) = L₁ ++ s' ++ e
⊢ ∃ L₃ L₄, L = L₃ ++ L₄ ∧ Red L₃ L₁ ∧ Red L₄ (s' ++ e)
[PROOFSTEP]
have : L₁ ++ (s' ++ (a, b) :: (a, not b) :: e) = L₁ ++ s' ++ (a, b) :: (a, not b) :: e := by simp
[GOAL]
α : Type u
L L₁✝ L₂ L₃ L₄ L₁₂ : List (α × Bool)
eq✝ : L₁✝ ++ L₂ = L₁₂
L₁ e : List (α × Bool)
a : α
b : Bool
s' : List (α × Bool)
hLL' : ReflTransGen Step L (L₁ ++ s' ++ (a, b) :: (a, !b) :: e)
ih :
∀ {L₁_1 L₂ : List (α × Bool)},
L₁_1 ++ L₂ = L₁ ++ s' ++ (a, b) :: (a, !b) :: e → ∃ L₃ L₄, L = L₃ ++ L₄ ∧ Red L₃ L₁_1 ∧ Red L₄ L₂
eq : L₁ ++ (s' ++ e) = L₁ ++ s' ++ e
⊢ L₁ ++ (s' ++ (a, b) :: (a, !b) :: e) = L₁ ++ s' ++ (a, b) :: (a, !b) :: e
[PROOFSTEP]
simp
[GOAL]
case tail.not.inl.intro.intro
α : Type u
L L₁✝ L₂ L₃ L₄ L₁₂ : List (α × Bool)
eq✝ : L₁✝ ++ L₂ = L₁₂
L₁ e : List (α × Bool)
a : α
b : Bool
s' : List (α × Bool)
hLL' : ReflTransGen Step L (L₁ ++ s' ++ (a, b) :: (a, !b) :: e)
ih :
∀ {L₁_1 L₂ : List (α × Bool)},
L₁_1 ++ L₂ = L₁ ++ s' ++ (a, b) :: (a, !b) :: e → ∃ L₃ L₄, L = L₃ ++ L₄ ∧ Red L₃ L₁_1 ∧ Red L₄ L₂
eq : L₁ ++ (s' ++ e) = L₁ ++ s' ++ e
this : L₁ ++ (s' ++ (a, b) :: (a, !b) :: e) = L₁ ++ s' ++ (a, b) :: (a, !b) :: e
⊢ ∃ L₃ L₄, L = L₃ ++ L₄ ∧ Red L₃ L₁ ∧ Red L₄ (s' ++ e)
[PROOFSTEP]
rcases ih this with ⟨w₁, w₂, rfl, h₁, h₂⟩
[GOAL]
case tail.not.inl.intro.intro.intro.intro.intro.intro
α : Type u
L₁✝ L₂ L₃ L₄ L₁₂ : List (α × Bool)
eq✝ : L₁✝ ++ L₂ = L₁₂
L₁ e : List (α × Bool)
a : α
b : Bool
s' : List (α × Bool)
eq : L₁ ++ (s' ++ e) = L₁ ++ s' ++ e
this : L₁ ++ (s' ++ (a, b) :: (a, !b) :: e) = L₁ ++ s' ++ (a, b) :: (a, !b) :: e
w₁ w₂ : List (α × Bool)
hLL' : ReflTransGen Step (w₁ ++ w₂) (L₁ ++ s' ++ (a, b) :: (a, !b) :: e)
ih :
∀ {L₁_1 L₂ : List (α × Bool)},
L₁_1 ++ L₂ = L₁ ++ s' ++ (a, b) :: (a, !b) :: e → ∃ L₃ L₄, w₁ ++ w₂ = L₃ ++ L₄ ∧ Red L₃ L₁_1 ∧ Red L₄ L₂
h₁ : Red w₁ L₁
h₂ : Red w₂ (s' ++ (a, b) :: (a, !b) :: e)
⊢ ∃ L₃ L₄, w₁ ++ w₂ = L₃ ++ L₄ ∧ Red L₃ L₁ ∧ Red L₄ (s' ++ e)
[PROOFSTEP]
exact ⟨w₁, w₂, rfl, h₁, h₂.tail Step.not⟩
[GOAL]
case tail.not.inr.intro.intro
α : Type u
L L₁ L₂✝ L₃ L₄ L₁₂ : List (α × Bool)
eq✝ : L₁ ++ L₂✝ = L₁₂
L₂ s : List (α × Bool)
a : α
b : Bool
e' : List (α × Bool)
hLL' : ReflTransGen Step L (s ++ (a, b) :: (a, !b) :: (e' ++ L₂))
ih :
∀ {L₁ L₂_1 : List (α × Bool)},
L₁ ++ L₂_1 = s ++ (a, b) :: (a, !b) :: (e' ++ L₂) → ∃ L₃ L₄, L = L₃ ++ L₄ ∧ Red L₃ L₁ ∧ Red L₄ L₂_1
eq : s ++ e' ++ L₂ = s ++ (e' ++ L₂)
⊢ ∃ L₃ L₄, L = L₃ ++ L₄ ∧ Red L₃ (s ++ e') ∧ Red L₄ L₂
[PROOFSTEP]
have : s ++ (a, b) :: (a, not b) :: e' ++ L₂ = s ++ (a, b) :: (a, not b) :: (e' ++ L₂) := by simp
[GOAL]
α : Type u
L L₁ L₂✝ L₃ L₄ L₁₂ : List (α × Bool)
eq✝ : L₁ ++ L₂✝ = L₁₂
L₂ s : List (α × Bool)
a : α
b : Bool
e' : List (α × Bool)
hLL' : ReflTransGen Step L (s ++ (a, b) :: (a, !b) :: (e' ++ L₂))
ih :
∀ {L₁ L₂_1 : List (α × Bool)},
L₁ ++ L₂_1 = s ++ (a, b) :: (a, !b) :: (e' ++ L₂) → ∃ L₃ L₄, L = L₃ ++ L₄ ∧ Red L₃ L₁ ∧ Red L₄ L₂_1
eq : s ++ e' ++ L₂ = s ++ (e' ++ L₂)
⊢ s ++ (a, b) :: (a, !b) :: e' ++ L₂ = s ++ (a, b) :: (a, !b) :: (e' ++ L₂)
[PROOFSTEP]
simp
[GOAL]
case tail.not.inr.intro.intro
α : Type u
L L₁ L₂✝ L₃ L₄ L₁₂ : List (α × Bool)
eq✝ : L₁ ++ L₂✝ = L₁₂
L₂ s : List (α × Bool)
a : α
b : Bool
e' : List (α × Bool)
hLL' : ReflTransGen Step L (s ++ (a, b) :: (a, !b) :: (e' ++ L₂))
ih :
∀ {L₁ L₂_1 : List (α × Bool)},
L₁ ++ L₂_1 = s ++ (a, b) :: (a, !b) :: (e' ++ L₂) → ∃ L₃ L₄, L = L₃ ++ L₄ ∧ Red L₃ L₁ ∧ Red L₄ L₂_1
eq : s ++ e' ++ L₂ = s ++ (e' ++ L₂)
this : s ++ (a, b) :: (a, !b) :: e' ++ L₂ = s ++ (a, b) :: (a, !b) :: (e' ++ L₂)
⊢ ∃ L₃ L₄, L = L₃ ++ L₄ ∧ Red L₃ (s ++ e') ∧ Red L₄ L₂
[PROOFSTEP]
rcases ih this with ⟨w₁, w₂, rfl, h₁, h₂⟩
[GOAL]
case tail.not.inr.intro.intro.intro.intro.intro.intro
α : Type u
L₁ L₂✝ L₃ L₄ L₁₂ : List (α × Bool)
eq✝ : L₁ ++ L₂✝ = L₁₂
L₂ s : List (α × Bool)
a : α
b : Bool
e' : List (α × Bool)
eq : s ++ e' ++ L₂ = s ++ (e' ++ L₂)
this : s ++ (a, b) :: (a, !b) :: e' ++ L₂ = s ++ (a, b) :: (a, !b) :: (e' ++ L₂)
w₁ w₂ : List (α × Bool)
hLL' : ReflTransGen Step (w₁ ++ w₂) (s ++ (a, b) :: (a, !b) :: (e' ++ L₂))
ih :
∀ {L₁ L₂_1 : List (α × Bool)},
L₁ ++ L₂_1 = s ++ (a, b) :: (a, !b) :: (e' ++ L₂) → ∃ L₃ L₄, w₁ ++ w₂ = L₃ ++ L₄ ∧ Red L₃ L₁ ∧ Red L₄ L₂_1
h₁ : Red w₁ (s ++ (a, b) :: (a, !b) :: e')
h₂ : Red w₂ L₂
⊢ ∃ L₃ L₄, w₁ ++ w₂ = L₃ ++ L₄ ∧ Red L₃ (s ++ e') ∧ Red L₄ L₂
[PROOFSTEP]
exact ⟨w₁, w₂, rfl, h₁.tail Step.not, h₂⟩
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
x : α
b : Bool
h : Red ((x, b) :: L) []
⊢ Red L [(x, !b)]
[PROOFSTEP]
have h₁ : Red ((x, not b) :: (x, b) :: L) [(x, not b)] := cons_cons h
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
x : α
b : Bool
h : Red ((x, b) :: L) []
h₁ : Red ((x, !b) :: (x, b) :: L) [(x, !b)]
⊢ Red L [(x, !b)]
[PROOFSTEP]
have h₂ : Red ((x, not b) :: (x, b) :: L) L := ReflTransGen.single Step.cons_not_rev
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
x : α
b : Bool
h : Red ((x, b) :: L) []
h₁ : Red ((x, !b) :: (x, b) :: L) [(x, !b)]
h₂ : Red ((x, !b) :: (x, b) :: L) L
⊢ Red L [(x, !b)]
[PROOFSTEP]
let ⟨L', h₁, h₂⟩ := church_rosser h₁ h₂
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
x : α
b : Bool
h : Red ((x, b) :: L) []
h₁✝ : Red ((x, !b) :: (x, b) :: L) [(x, !b)]
h₂✝ : Red ((x, !b) :: (x, b) :: L) L
L' : List (α × Bool)
h₁ : Red [(x, !b)] L'
h₂ : Red L L'
⊢ Red L [(x, !b)]
[PROOFSTEP]
rw [singleton_iff] at h₁
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
x : α
b : Bool
h : Red ((x, b) :: L) []
h₁✝ : Red ((x, !b) :: (x, b) :: L) [(x, !b)]
h₂✝ : Red ((x, !b) :: (x, b) :: L) L
L' : List (α × Bool)
h₁ : L' = [(x, !b)]
h₂ : Red L L'
⊢ Red L [(x, !b)]
[PROOFSTEP]
subst L'
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
x : α
b : Bool
h : Red ((x, b) :: L) []
h₁ : Red ((x, !b) :: (x, b) :: L) [(x, !b)]
h₂✝ : Red ((x, !b) :: (x, b) :: L) L
h₂ : Red L [(x, !b)]
⊢ Red L [(x, !b)]
[PROOFSTEP]
assumption
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
x1 : α
b1 : Bool
x2 : α
b2 : Bool
h : (x1, b1) ≠ (x2, b2)
⊢ Red [(x1, !b1), (x2, b2)] L ↔ L = [(x1, !b1), (x2, b2)]
[PROOFSTEP]
apply reflTransGen_iff_eq
[GOAL]
case h
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
x1 : α
b1 : Bool
x2 : α
b2 : Bool
h : (x1, b1) ≠ (x2, b2)
⊢ ∀ (b : List (α × Bool)), ¬Step [(x1, !b1), (x2, b2)] b
[PROOFSTEP]
generalize eq : [(x1, not b1), (x2, b2)] = L'
[GOAL]
case h
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
x1 : α
b1 : Bool
x2 : α
b2 : Bool
h : (x1, b1) ≠ (x2, b2)
L' : List (α × Bool)
eq : [(x1, !b1), (x2, b2)] = L'
⊢ ∀ (b : List (α × Bool)), ¬Step L' b
[PROOFSTEP]
intro L h'
[GOAL]
case h
α : Type u
L✝ L₁ L₂ L₃ L₄ : List (α × Bool)
x1 : α
b1 : Bool
x2 : α
b2 : Bool
h : (x1, b1) ≠ (x2, b2)
L' : List (α × Bool)
eq : [(x1, !b1), (x2, b2)] = L'
L : List (α × Bool)
h' : Step L' L
⊢ False
[PROOFSTEP]
cases h'
[GOAL]
case h.not
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
x1 : α
b1 : Bool
x2 : α
b2 : Bool
h : (x1, b1) ≠ (x2, b2)
L₁✝ L₂✝ : List (α × Bool)
x✝ : α
b✝ : Bool
eq : [(x1, !b1), (x2, b2)] = L₁✝ ++ (x✝, b✝) :: (x✝, !b✝) :: L₂✝
⊢ False
[PROOFSTEP]
simp [List.cons_eq_append_iff, List.nil_eq_append] at eq
[GOAL]
case h.not
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
x1 : α
b1 : Bool
x2 : α
b2 : Bool
h : (x1, b1) ≠ (x2, b2)
L₁✝ L₂✝ : List (α × Bool)
x✝ : α
b✝ : Bool
eq : L₁✝ = [] ∧ (x✝ = x1 ∧ b✝ = !b1) ∧ (x✝ = x2 ∧ (!b✝) = b2) ∧ L₂✝ = []
⊢ False
[PROOFSTEP]
rcases eq with ⟨rfl, ⟨rfl, rfl⟩, ⟨rfl, rfl⟩, rfl⟩
[GOAL]
case h.not.intro.intro.intro.intro.intro
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
b1 : Bool
x✝ : α
h : (x✝, b1) ≠ (x✝, !!b1)
⊢ False
[PROOFSTEP]
subst_vars
[GOAL]
case h.not.intro.intro.intro.intro.intro
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
b1 : Bool
x✝ : α
h : (x✝, b1) ≠ (x✝, !!b1)
⊢ False
[PROOFSTEP]
simp at h
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
x1 : α
b1 : Bool
x2 : α
b2 : Bool
H1 : (x1, b1) ≠ (x2, b2)
H2 : Red ((x1, b1) :: L₁) ((x2, b2) :: L₂)
⊢ Red L₁ ((x1, !b1) :: (x2, b2) :: L₂)
[PROOFSTEP]
have : Red ((x1, b1) :: L₁) ([(x2, b2)] ++ L₂) := H2
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
x1 : α
b1 : Bool
x2 : α
b2 : Bool
H1 : (x1, b1) ≠ (x2, b2)
H2 : Red ((x1, b1) :: L₁) ((x2, b2) :: L₂)
this : Red ((x1, b1) :: L₁) ([(x2, b2)] ++ L₂)
⊢ Red L₁ ((x1, !b1) :: (x2, b2) :: L₂)
[PROOFSTEP]
rcases to_append_iff.1 this with ⟨_ | ⟨p, L₃⟩, L₄, eq, h₁, h₂⟩
[GOAL]
case intro.nil.intro.intro.intro
α : Type u
L L₁ L₂ L₃ L₄✝ : List (α × Bool)
x1 : α
b1 : Bool
x2 : α
b2 : Bool
H1 : (x1, b1) ≠ (x2, b2)
H2 : Red ((x1, b1) :: L₁) ((x2, b2) :: L₂)
this : Red ((x1, b1) :: L₁) ([(x2, b2)] ++ L₂)
L₄ : List (α × Bool)
eq : (x1, b1) :: L₁ = [] ++ L₄
h₁ : Red [] [(x2, b2)]
h₂ : Red L₄ L₂
⊢ Red L₁ ((x1, !b1) :: (x2, b2) :: L₂)
[PROOFSTEP]
simp [nil_iff] at h₁
[GOAL]
case intro.cons.intro.intro.intro
α : Type u
L L₁ L₂ L₃✝ L₄✝ : List (α × Bool)
x1 : α
b1 : Bool
x2 : α
b2 : Bool
H1 : (x1, b1) ≠ (x2, b2)
H2 : Red ((x1, b1) :: L₁) ((x2, b2) :: L₂)
this : Red ((x1, b1) :: L₁) ([(x2, b2)] ++ L₂)
p : α × Bool
L₃ L₄ : List (α × Bool)
eq : (x1, b1) :: L₁ = p :: L₃ ++ L₄
h₁ : Red (p :: L₃) [(x2, b2)]
h₂ : Red L₄ L₂
⊢ Red L₁ ((x1, !b1) :: (x2, b2) :: L₂)
[PROOFSTEP]
cases eq
[GOAL]
case intro.cons.intro.intro.intro.refl
α : Type u
L L₂ L₃✝ L₄✝ : List (α × Bool)
x1 : α
b1 : Bool
x2 : α
b2 : Bool
H1 : (x1, b1) ≠ (x2, b2)
L₃ L₄ : List (α × Bool)
h₂ : Red L₄ L₂
h₁ : Red ((x1, b1) :: L₃) [(x2, b2)]
H2 : Red ((x1, b1) :: List.append L₃ L₄) ((x2, b2) :: L₂)
this : Red ((x1, b1) :: List.append L₃ L₄) ([(x2, b2)] ++ L₂)
⊢ Red (List.append L₃ L₄) ((x1, !b1) :: (x2, b2) :: L₂)
[PROOFSTEP]
show Red (L₃ ++ L₄) ([(x1, not b1), (x2, b2)] ++ L₂)
[GOAL]
case intro.cons.intro.intro.intro.refl
α : Type u
L L₂ L₃✝ L₄✝ : List (α × Bool)
x1 : α
b1 : Bool
x2 : α
b2 : Bool
H1 : (x1, b1) ≠ (x2, b2)
L₃ L₄ : List (α × Bool)
h₂ : Red L₄ L₂
h₁ : Red ((x1, b1) :: L₃) [(x2, b2)]
H2 : Red ((x1, b1) :: List.append L₃ L₄) ((x2, b2) :: L₂)
this : Red ((x1, b1) :: List.append L₃ L₄) ([(x2, b2)] ++ L₂)
⊢ Red (L₃ ++ L₄) ([(x1, !b1), (x2, b2)] ++ L₂)
[PROOFSTEP]
apply append_append _ h₂
[GOAL]
α : Type u
L L₂ L₃✝ L₄✝ : List (α × Bool)
x1 : α
b1 : Bool
x2 : α
b2 : Bool
H1 : (x1, b1) ≠ (x2, b2)
L₃ L₄ : List (α × Bool)
h₂ : Red L₄ L₂
h₁ : Red ((x1, b1) :: L₃) [(x2, b2)]
H2 : Red ((x1, b1) :: List.append L₃ L₄) ((x2, b2) :: L₂)
this : Red ((x1, b1) :: List.append L₃ L₄) ([(x2, b2)] ++ L₂)
⊢ Red L₃ [(x1, !b1), (x2, b2)]
[PROOFSTEP]
have h₁ : Red ((x1, not b1) :: (x1, b1) :: L₃) [(x1, not b1), (x2, b2)] := cons_cons h₁
[GOAL]
α : Type u
L L₂ L₃✝ L₄✝ : List (α × Bool)
x1 : α
b1 : Bool
x2 : α
b2 : Bool
H1 : (x1, b1) ≠ (x2, b2)
L₃ L₄ : List (α × Bool)
h₂ : Red L₄ L₂
h₁✝ : Red ((x1, b1) :: L₃) [(x2, b2)]
H2 : Red ((x1, b1) :: List.append L₃ L₄) ((x2, b2) :: L₂)
this : Red ((x1, b1) :: List.append L₃ L₄) ([(x2, b2)] ++ L₂)
h₁ : Red ((x1, !b1) :: (x1, b1) :: L₃) [(x1, !b1), (x2, b2)]
⊢ Red L₃ [(x1, !b1), (x2, b2)]
[PROOFSTEP]
have h₂ : Red ((x1, not b1) :: (x1, b1) :: L₃) L₃ := Step.cons_not_rev.to_red
[GOAL]
α : Type u
L L₂ L₃✝ L₄✝ : List (α × Bool)
x1 : α
b1 : Bool
x2 : α
b2 : Bool
H1 : (x1, b1) ≠ (x2, b2)
L₃ L₄ : List (α × Bool)
h₂✝ : Red L₄ L₂
h₁✝ : Red ((x1, b1) :: L₃) [(x2, b2)]
H2 : Red ((x1, b1) :: List.append L₃ L₄) ((x2, b2) :: L₂)
this : Red ((x1, b1) :: List.append L₃ L₄) ([(x2, b2)] ++ L₂)
h₁ : Red ((x1, !b1) :: (x1, b1) :: L₃) [(x1, !b1), (x2, b2)]
h₂ : Red ((x1, !b1) :: (x1, b1) :: L₃) L₃
⊢ Red L₃ [(x1, !b1), (x2, b2)]
[PROOFSTEP]
rcases church_rosser h₁ h₂ with ⟨L', h₁, h₂⟩
[GOAL]
case intro.intro
α : Type u
L L₂ L₃✝ L₄✝ : List (α × Bool)
x1 : α
b1 : Bool
x2 : α
b2 : Bool
H1 : (x1, b1) ≠ (x2, b2)
L₃ L₄ : List (α × Bool)
h₂✝¹ : Red L₄ L₂
h₁✝¹ : Red ((x1, b1) :: L₃) [(x2, b2)]
H2 : Red ((x1, b1) :: List.append L₃ L₄) ((x2, b2) :: L₂)
this : Red ((x1, b1) :: List.append L₃ L₄) ([(x2, b2)] ++ L₂)
h₁✝ : Red ((x1, !b1) :: (x1, b1) :: L₃) [(x1, !b1), (x2, b2)]
h₂✝ : Red ((x1, !b1) :: (x1, b1) :: L₃) L₃
L' : List (α × Bool)
h₁ : Red [(x1, !b1), (x2, b2)] L'
h₂ : Red L₃ L'
⊢ Red L₃ [(x1, !b1), (x2, b2)]
[PROOFSTEP]
rw [red_iff_irreducible H1] at h₁
[GOAL]
case intro.intro
α : Type u
L L₂ L₃✝ L₄✝ : List (α × Bool)
x1 : α
b1 : Bool
x2 : α
b2 : Bool
H1 : (x1, b1) ≠ (x2, b2)
L₃ L₄ : List (α × Bool)
h₂✝¹ : Red L₄ L₂
h₁✝¹ : Red ((x1, b1) :: L₃) [(x2, b2)]
H2 : Red ((x1, b1) :: List.append L₃ L₄) ((x2, b2) :: L₂)
this : Red ((x1, b1) :: List.append L₃ L₄) ([(x2, b2)] ++ L₂)
h₁✝ : Red ((x1, !b1) :: (x1, b1) :: L₃) [(x1, !b1), (x2, b2)]
h₂✝ : Red ((x1, !b1) :: (x1, b1) :: L₃) L₃
L' : List (α × Bool)
h₁ : L' = [(x1, !b1), (x2, b2)]
h₂ : Red L₃ L'
⊢ Red L₃ [(x1, !b1), (x2, b2)]
[PROOFSTEP]
rwa [h₁] at h₂
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
H : Step L₁ L₂
⊢ L₂ <+ L₁
[PROOFSTEP]
cases H
[GOAL]
case not
α : Type u
L L₃ L₄ L₁✝ L₂✝ : List (α × Bool)
x✝ : α
b✝ : Bool
⊢ L₁✝ ++ L₂✝ <+ L₁✝ ++ (x✝, b✝) :: (x✝, !b✝) :: L₂✝
[PROOFSTEP]
simp
[GOAL]
case not
α : Type u
L L₃ L₄ L₁✝ L₂✝ : List (α × Bool)
x✝ : α
b✝ : Bool
⊢ L₂✝ <+ (x✝, b✝) :: (x✝, !b✝) :: L₂✝
[PROOFSTEP]
constructor
[GOAL]
case not.a
α : Type u
L L₃ L₄ L₁✝ L₂✝ : List (α × Bool)
x✝ : α
b✝ : Bool
⊢ L₂✝ <+ (x✝, !b✝) :: L₂✝
[PROOFSTEP]
constructor
[GOAL]
case not.a.a
α : Type u
L L₃ L₄ L₁✝ L₂✝ : List (α × Bool)
x✝ : α
b✝ : Bool
⊢ L₂✝ <+ L₂✝
[PROOFSTEP]
rfl
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ L1 L2 : List (α × Bool)
x : α
b : Bool
⊢ sizeOf (L1 ++ L2) < sizeOf (L1 ++ (x, b) :: (x, !b) :: L2)
[PROOFSTEP]
induction' L1 with hd tl ih
[GOAL]
case nil
α : Type u
L L₁ L₂ L₃ L₄ L2 : List (α × Bool)
x : α
b : Bool
⊢ sizeOf ([] ++ L2) < sizeOf ([] ++ (x, b) :: (x, !b) :: L2)
case cons
α : Type u
L L₁ L₂ L₃ L₄ L2 : List (α × Bool)
x : α
b : Bool
hd : α × Bool
tl : List (α × Bool)
ih : sizeOf (tl ++ L2) < sizeOf (tl ++ (x, b) :: (x, !b) :: L2)
⊢ sizeOf (hd :: tl ++ L2) < sizeOf (hd :: tl ++ (x, b) :: (x, !b) :: L2)
[PROOFSTEP]
case nil =>
-- dsimp [sizeOf]
dsimp
simp only [Bool.sizeOf_eq_one]
have H : 1 + (1 + 1) + (1 + (1 + 1) + sizeOf L2) = sizeOf L2 + (1 + ((1 + 1) + (1 + 1) + 1)) := by ac_rfl
rw [H]
apply Nat.lt_add_of_pos_right
apply Nat.lt_add_right
apply Nat.zero_lt_one
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ L2 : List (α × Bool)
x : α
b : Bool
⊢ sizeOf ([] ++ L2) < sizeOf ([] ++ (x, b) :: (x, !b) :: L2)
[PROOFSTEP]
case nil =>
-- dsimp [sizeOf]
dsimp
simp only [Bool.sizeOf_eq_one]
have H : 1 + (1 + 1) + (1 + (1 + 1) + sizeOf L2) = sizeOf L2 + (1 + ((1 + 1) + (1 + 1) + 1)) := by ac_rfl
rw [H]
apply Nat.lt_add_of_pos_right
apply Nat.lt_add_right
apply Nat.zero_lt_one
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ L2 : List (α × Bool)
x : α
b : Bool
⊢ sizeOf ([] ++ L2) < sizeOf ([] ++ (x, b) :: (x, !b) :: L2)
[PROOFSTEP]
dsimp
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ L2 : List (α × Bool)
x : α
b : Bool
⊢ sizeOf L2 < 1 + (1 + sizeOf b) + (1 + (1 + sizeOf !b) + sizeOf L2)
[PROOFSTEP]
simp only [Bool.sizeOf_eq_one]
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ L2 : List (α × Bool)
x : α
b : Bool
⊢ sizeOf L2 < 1 + (1 + 1) + (1 + (1 + 1) + sizeOf L2)
[PROOFSTEP]
have H : 1 + (1 + 1) + (1 + (1 + 1) + sizeOf L2) = sizeOf L2 + (1 + ((1 + 1) + (1 + 1) + 1)) := by ac_rfl
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ L2 : List (α × Bool)
x : α
b : Bool
⊢ 1 + (1 + 1) + (1 + (1 + 1) + sizeOf L2) = sizeOf L2 + (1 + (1 + 1 + (1 + 1) + 1))
[PROOFSTEP]
ac_rfl
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ L2 : List (α × Bool)
x : α
b : Bool
H : 1 + (1 + 1) + (1 + (1 + 1) + sizeOf L2) = sizeOf L2 + (1 + (1 + 1 + (1 + 1) + 1))
⊢ sizeOf L2 < 1 + (1 + 1) + (1 + (1 + 1) + sizeOf L2)
[PROOFSTEP]
rw [H]
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ L2 : List (α × Bool)
x : α
b : Bool
H : 1 + (1 + 1) + (1 + (1 + 1) + sizeOf L2) = sizeOf L2 + (1 + (1 + 1 + (1 + 1) + 1))
⊢ sizeOf L2 < sizeOf L2 + (1 + (1 + 1 + (1 + 1) + 1))
[PROOFSTEP]
apply Nat.lt_add_of_pos_right
[GOAL]
case h
α : Type u
L L₁ L₂ L₃ L₄ L2 : List (α × Bool)
x : α
b : Bool
H : 1 + (1 + 1) + (1 + (1 + 1) + sizeOf L2) = sizeOf L2 + (1 + (1 + 1 + (1 + 1) + 1))
⊢ 0 < 1 + (1 + 1 + (1 + 1) + 1)
[PROOFSTEP]
apply Nat.lt_add_right
[GOAL]
case h.h
α : Type u
L L₁ L₂ L₃ L₄ L2 : List (α × Bool)
x : α
b : Bool
H : 1 + (1 + 1) + (1 + (1 + 1) + sizeOf L2) = sizeOf L2 + (1 + (1 + 1 + (1 + 1) + 1))
⊢ 0 < 1
[PROOFSTEP]
apply Nat.zero_lt_one
[GOAL]
case cons
α : Type u
L L₁ L₂ L₃ L₄ L2 : List (α × Bool)
x : α
b : Bool
hd : α × Bool
tl : List (α × Bool)
ih : sizeOf (tl ++ L2) < sizeOf (tl ++ (x, b) :: (x, !b) :: L2)
⊢ sizeOf (hd :: tl ++ L2) < sizeOf (hd :: tl ++ (x, b) :: (x, !b) :: L2)
[PROOFSTEP]
case cons =>
dsimp
exact Nat.add_lt_add_left ih _
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ L2 : List (α × Bool)
x : α
b : Bool
hd : α × Bool
tl : List (α × Bool)
ih : sizeOf (tl ++ L2) < sizeOf (tl ++ (x, b) :: (x, !b) :: L2)
⊢ sizeOf (hd :: tl ++ L2) < sizeOf (hd :: tl ++ (x, b) :: (x, !b) :: L2)
[PROOFSTEP]
case cons =>
dsimp
exact Nat.add_lt_add_left ih _
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ L2 : List (α × Bool)
x : α
b : Bool
hd : α × Bool
tl : List (α × Bool)
ih : sizeOf (tl ++ L2) < sizeOf (tl ++ (x, b) :: (x, !b) :: L2)
⊢ sizeOf (hd :: tl ++ L2) < sizeOf (hd :: tl ++ (x, b) :: (x, !b) :: L2)
[PROOFSTEP]
dsimp
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ L2 : List (α × Bool)
x : α
b : Bool
hd : α × Bool
tl : List (α × Bool)
ih : sizeOf (tl ++ L2) < sizeOf (tl ++ (x, b) :: (x, !b) :: L2)
⊢ 1 + sizeOf hd + sizeOf (tl ++ L2) < 1 + sizeOf hd + sizeOf (tl ++ (x, b) :: (x, !b) :: L2)
[PROOFSTEP]
exact Nat.add_lt_add_left ih _
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
h : Red L₁ L₂
⊢ ∃ n, List.length L₁ = List.length L₂ + 2 * n
[PROOFSTEP]
induction' h with L₂ L₃ _h₁₂ h₂₃ ih
[GOAL]
case refl
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
⊢ ∃ n, List.length L₁ = List.length L₁ + 2 * n
[PROOFSTEP]
exact ⟨0, rfl⟩
[GOAL]
case tail
α : Type u
L L₁ L₂✝ L₃✝ L₄ L₂ L₃ : List (α × Bool)
_h₁₂ : ReflTransGen Step L₁ L₂
h₂₃ : Step L₂ L₃
ih : ∃ n, List.length L₁ = List.length L₂ + 2 * n
⊢ ∃ n, List.length L₁ = List.length L₃ + 2 * n
[PROOFSTEP]
rcases ih with ⟨n, eq⟩
[GOAL]
case tail.intro
α : Type u
L L₁ L₂✝ L₃✝ L₄ L₂ L₃ : List (α × Bool)
_h₁₂ : ReflTransGen Step L₁ L₂
h₂₃ : Step L₂ L₃
n : ℕ
eq : List.length L₁ = List.length L₂ + 2 * n
⊢ ∃ n, List.length L₁ = List.length L₃ + 2 * n
[PROOFSTEP]
exists 1 + n
[GOAL]
case tail.intro
α : Type u
L L₁ L₂✝ L₃✝ L₄ L₂ L₃ : List (α × Bool)
_h₁₂ : ReflTransGen Step L₁ L₂
h₂₃ : Step L₂ L₃
n : ℕ
eq : List.length L₁ = List.length L₂ + 2 * n
⊢ List.length L₁ = List.length L₃ + 2 * (1 + n)
[PROOFSTEP]
simp [mul_add, eq, (Step.length h₂₃).symm, add_assoc]
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ a b✝ c b : List (α × Bool)
hab hac : Red.Step a b
⊢ ReflGen Red.Step b b
[PROOFSTEP]
rfl
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ a b✝ c b : List (α × Bool)
hab hac : Red.Step a b
⊢ ReflTransGen Red.Step b b
[PROOFSTEP]
rfl
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
⊢ List.length (invRev L₁) = List.length L₁
[PROOFSTEP]
simp [invRev]
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
⊢ invRev (invRev L₁) = L₁
[PROOFSTEP]
simp [invRev, List.map_reverse, (· ∘ ·)]
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
⊢ (Red.Step ⇒ Red.Step) invRev invRev
[PROOFSTEP]
intro a b h
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ a b : List (α × Bool)
h : Red.Step a b
⊢ Red.Step (invRev a) (invRev b)
[PROOFSTEP]
cases h
[GOAL]
case not
α : Type u
L L₁ L₂ L₃ L₄ L₁✝ L₂✝ : List (α × Bool)
x✝ : α
b✝ : Bool
⊢ Red.Step (invRev (L₁✝ ++ (x✝, b✝) :: (x✝, !b✝) :: L₂✝)) (invRev (L₁✝ ++ L₂✝))
[PROOFSTEP]
simp [invRev]
[GOAL]
α : Type u
L L₁✝ L₂✝ L₃ L₄ L₁ L₂ : List (α × Bool)
h : Step L₁ L₂
⊢ Step (FreeGroup.invRev L₁) (FreeGroup.invRev L₂)
[PROOFSTEP]
cases' h with a b x y
[GOAL]
case not
α : Type u
L L₁ L₂ L₃ L₄ a b : List (α × Bool)
x : α
y : Bool
⊢ Step (FreeGroup.invRev (a ++ (x, y) :: (x, !y) :: b)) (FreeGroup.invRev (a ++ b))
[PROOFSTEP]
simp [FreeGroup.invRev]
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
h : Step (FreeGroup.invRev L₁) (FreeGroup.invRev L₂)
⊢ Step L₁ L₂
[PROOFSTEP]
simpa only [invRev_invRev] using h.invRev
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
h : Red (invRev L₁) (invRev L₂)
⊢ Red L₁ L₂
[PROOFSTEP]
simpa only [invRev_invRev] using h.invRev
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
⊢ ∀ (a b c : FreeGroup α), a * b * c = a * (b * c)
[PROOFSTEP]
rintro ⟨L₁⟩ ⟨L₂⟩ ⟨L₃⟩
[GOAL]
case mk.mk.mk
α : Type u
L L₁✝ L₂✝ L₃✝ L₄ : List (α × Bool)
a✝ : FreeGroup α
L₁ : List (α × Bool)
b✝ : FreeGroup α
L₂ : List (α × Bool)
c✝ : FreeGroup α
L₃ : List (α × Bool)
⊢ Quot.mk Red.Step L₁ * Quot.mk Red.Step L₂ * Quot.mk Red.Step L₃ =
Quot.mk Red.Step L₁ * (Quot.mk Red.Step L₂ * Quot.mk Red.Step L₃)
[PROOFSTEP]
simp
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
⊢ ∀ (a : FreeGroup α), 1 * a = a
[PROOFSTEP]
rintro ⟨L⟩
[GOAL]
case mk
α : Type u
L✝ L₁ L₂ L₃ L₄ : List (α × Bool)
a✝ : FreeGroup α
L : List (α × Bool)
⊢ 1 * Quot.mk Red.Step L = Quot.mk Red.Step L
[PROOFSTEP]
rfl
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
⊢ ∀ (a : FreeGroup α), a * 1 = a
[PROOFSTEP]
rintro ⟨L⟩
[GOAL]
case mk
α : Type u
L✝ L₁ L₂ L₃ L₄ : List (α × Bool)
a✝ : FreeGroup α
L : List (α × Bool)
⊢ Quot.mk Red.Step L * 1 = Quot.mk Red.Step L
[PROOFSTEP]
simp [one_eq_mk]
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
⊢ ∀ (a : FreeGroup α), a⁻¹ * a = 1
[PROOFSTEP]
rintro ⟨L⟩
[GOAL]
case mk
α : Type u
L✝ L₁ L₂ L₃ L₄ : List (α × Bool)
a✝ : FreeGroup α
L : List (α × Bool)
⊢ (Quot.mk Red.Step L)⁻¹ * Quot.mk Red.Step L = 1
[PROOFSTEP]
exact List.recOn L rfl fun ⟨x, b⟩ tl ih => Eq.trans (Quot.sound <| by simp [invRev, one_eq_mk]) ih
[GOAL]
α : Type u
L✝ L₁ L₂ L₃ L₄ : List (α × Bool)
a✝ : FreeGroup α
L : List (α × Bool)
x✝ : α × Bool
tl : List (α × Bool)
ih : (Quot.mk Red.Step tl)⁻¹ * Quot.mk Red.Step tl = 1
x : α
b : Bool
⊢ Red.Step (invRev ((x, b) :: tl) ++ (x, b) :: tl) (invRev tl ++ tl)
[PROOFSTEP]
simp [invRev, one_eq_mk]
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
x✝¹ x✝ : α
H : of x✝¹ = of x✝
⊢ x✝¹ = x✝
[PROOFSTEP]
let ⟨L₁, hx, hy⟩ := Red.exact.1 H
[GOAL]
α : Type u
L L₁✝ L₂ L₃ L₄ : List (α × Bool)
x✝¹ x✝ : α
H : of x✝¹ = of x✝
L₁ : List (α × Bool)
hx : Red [(x✝¹, true)] L₁
hy : Red [(x✝, true)] L₁
⊢ x✝¹ = x✝
[PROOFSTEP]
simp [Red.singleton_iff] at hx hy
[GOAL]
α : Type u
L L₁✝ L₂ L₃ L₄ : List (α × Bool)
x✝¹ x✝ : α
H : of x✝¹ = of x✝
L₁ : List (α × Bool)
hx : L₁ = [(x✝¹, true)]
hy : L₁ = [(x✝, true)]
⊢ x✝¹ = x✝
[PROOFSTEP]
aesop
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
β : Type v
inst✝ : Group β
f✝ : α → β
x y : FreeGroup α
f : α → β
H : Step L₁ L₂
⊢ Lift.aux f L₁ = Lift.aux f L₂
[PROOFSTEP]
cases' H with _ _ _ b
[GOAL]
case not
α : Type u
L L₃ L₄ : List (α × Bool)
β : Type v
inst✝ : Group β
f✝ : α → β
x y : FreeGroup α
f : α → β
L₁✝ L₂✝ : List (α × Bool)
x✝ : α
b : Bool
⊢ Lift.aux f (L₁✝ ++ (x✝, b) :: (x✝, !b) :: L₂✝) = Lift.aux f (L₁✝ ++ L₂✝)
[PROOFSTEP]
cases b
[GOAL]
case not.false
α : Type u
L L₃ L₄ : List (α × Bool)
β : Type v
inst✝ : Group β
f✝ : α → β
x y : FreeGroup α
f : α → β
L₁✝ L₂✝ : List (α × Bool)
x✝ : α
⊢ Lift.aux f (L₁✝ ++ (x✝, false) :: (x✝, !false) :: L₂✝) = Lift.aux f (L₁✝ ++ L₂✝)
[PROOFSTEP]
simp [Lift.aux]
[GOAL]
case not.true
α : Type u
L L₃ L₄ : List (α × Bool)
β : Type v
inst✝ : Group β
f✝ : α → β
x y : FreeGroup α
f : α → β
L₁✝ L₂✝ : List (α × Bool)
x✝ : α
⊢ Lift.aux f (L₁✝ ++ (x✝, true) :: (x✝, !true) :: L₂✝) = Lift.aux f (L₁✝ ++ L₂✝)
[PROOFSTEP]
simp [Lift.aux]
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
β : Type v
inst✝ : Group β
f✝ : α → β
x y : FreeGroup α
f : α → β
⊢ ∀ (a b : FreeGroup α),
Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) (a * b) =
Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) a *
Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) b
[PROOFSTEP]
rintro ⟨L₁⟩ ⟨L₂⟩
[GOAL]
case mk.mk
α : Type u
L L₁✝ L₂✝ L₃ L₄ : List (α × Bool)
β : Type v
inst✝ : Group β
f✝ : α → β
x y : FreeGroup α
f : α → β
a✝ : FreeGroup α
L₁ : List (α × Bool)
b✝ : FreeGroup α
L₂ : List (α × Bool)
⊢ Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂)
(Quot.mk Red.Step L₁ * Quot.mk Red.Step L₂) =
Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂)
(Quot.mk Red.Step L₁) *
Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂)
(Quot.mk Red.Step L₂)
[PROOFSTEP]
simp [Lift.aux]
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
β : Type v
inst✝ : Group β
f : α → β
x y : FreeGroup α
g : FreeGroup α →* β
⊢ ∀ (x : FreeGroup α),
↑((fun f =>
MonoidHom.mk'
(Quot.lift (Lift.aux f)
(_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂))
(_ :
∀ (a b : FreeGroup α),
Quot.lift (Lift.aux f)
(_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) (a * b) =
Quot.lift (Lift.aux f)
(_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) a *
Quot.lift (Lift.aux f)
(_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) b))
((fun g => ↑g ∘ of) g))
x =
↑g x
[PROOFSTEP]
rintro ⟨L⟩
[GOAL]
case mk
α : Type u
L✝ L₁ L₂ L₃ L₄ : List (α × Bool)
β : Type v
inst✝ : Group β
f : α → β
x y : FreeGroup α
g : FreeGroup α →* β
x✝ : FreeGroup α
L : List (α × Bool)
⊢ ↑((fun f =>
MonoidHom.mk'
(Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂))
(_ :
∀ (a b : FreeGroup α),
Quot.lift (Lift.aux f)
(_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) (a * b) =
Quot.lift (Lift.aux f)
(_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) a *
Quot.lift (Lift.aux f)
(_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) b))
((fun g => ↑g ∘ of) g))
(Quot.mk Red.Step L) =
↑g (Quot.mk Red.Step L)
[PROOFSTEP]
exact
List.recOn L (g.map_one.symm)
(by
rintro ⟨x, _ | _⟩ t (ih : _ = g (mk t))
· show _ = g ((of x)⁻¹ * mk t)
simpa [Lift.aux] using ih
· show _ = g (of x * mk t)
simpa [Lift.aux] using ih)
[GOAL]
α : Type u
L✝ L₁ L₂ L₃ L₄ : List (α × Bool)
β : Type v
inst✝ : Group β
f : α → β
x y : FreeGroup α
g : FreeGroup α →* β
x✝ : FreeGroup α
L : List (α × Bool)
⊢ ∀ (head : α × Bool) (tail : List (α × Bool)),
↑((fun f =>
MonoidHom.mk'
(Quot.lift (Lift.aux f)
(_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂))
(_ :
∀ (a b : FreeGroup α),
Quot.lift (Lift.aux f)
(_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) (a * b) =
Quot.lift (Lift.aux f)
(_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) a *
Quot.lift (Lift.aux f)
(_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) b))
((fun g => ↑g ∘ of) g))
(Quot.mk Red.Step tail) =
↑g (Quot.mk Red.Step tail) →
↑((fun f =>
MonoidHom.mk'
(Quot.lift (Lift.aux f)
(_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂))
(_ :
∀ (a b : FreeGroup α),
Quot.lift (Lift.aux f)
(_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) (a * b) =
Quot.lift (Lift.aux f)
(_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) a *
Quot.lift (Lift.aux f)
(_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) b))
((fun g => ↑g ∘ of) g))
(Quot.mk Red.Step (head :: tail)) =
↑g (Quot.mk Red.Step (head :: tail))
[PROOFSTEP]
rintro ⟨x, _ | _⟩ t (ih : _ = g (mk t))
[GOAL]
case mk.false
α : Type u
L✝ L₁ L₂ L₃ L₄ : List (α × Bool)
β : Type v
inst✝ : Group β
f : α → β
x✝¹ y : FreeGroup α
g : FreeGroup α →* β
x✝ : FreeGroup α
L : List (α × Bool)
x : α
t : List (α × Bool)
ih :
↑((fun f =>
MonoidHom.mk'
(Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂))
(_ :
∀ (a b : FreeGroup α),
Quot.lift (Lift.aux f)
(_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) (a * b) =
Quot.lift (Lift.aux f)
(_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) a *
Quot.lift (Lift.aux f)
(_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) b))
((fun g => ↑g ∘ of) g))
(Quot.mk Red.Step t) =
↑g (mk t)
⊢ ↑((fun f =>
MonoidHom.mk'
(Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂))
(_ :
∀ (a b : FreeGroup α),
Quot.lift (Lift.aux f)
(_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) (a * b) =
Quot.lift (Lift.aux f)
(_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) a *
Quot.lift (Lift.aux f)
(_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) b))
((fun g => ↑g ∘ of) g))
(Quot.mk Red.Step ((x, false) :: t)) =
↑g (Quot.mk Red.Step ((x, false) :: t))
[PROOFSTEP]
show _ = g ((of x)⁻¹ * mk t)
[GOAL]
case mk.false
α : Type u
L✝ L₁ L₂ L₃ L₄ : List (α × Bool)
β : Type v
inst✝ : Group β
f : α → β
x✝¹ y : FreeGroup α
g : FreeGroup α →* β
x✝ : FreeGroup α
L : List (α × Bool)
x : α
t : List (α × Bool)
ih :
↑((fun f =>
MonoidHom.mk'
(Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂))
(_ :
∀ (a b : FreeGroup α),
Quot.lift (Lift.aux f)
(_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) (a * b) =
Quot.lift (Lift.aux f)
(_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) a *
Quot.lift (Lift.aux f)
(_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) b))
((fun g => ↑g ∘ of) g))
(Quot.mk Red.Step t) =
↑g (mk t)
⊢ ↑((fun f =>
MonoidHom.mk'
(Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂))
(_ :
∀ (a b : FreeGroup α),
Quot.lift (Lift.aux f)
(_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) (a * b) =
Quot.lift (Lift.aux f)
(_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) a *
Quot.lift (Lift.aux f)
(_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) b))
((fun g => ↑g ∘ of) g))
(Quot.mk Red.Step ((x, false) :: t)) =
↑g ((of x)⁻¹ * mk t)
[PROOFSTEP]
simpa [Lift.aux] using ih
[GOAL]
case mk.true
α : Type u
L✝ L₁ L₂ L₃ L₄ : List (α × Bool)
β : Type v
inst✝ : Group β
f : α → β
x✝¹ y : FreeGroup α
g : FreeGroup α →* β
x✝ : FreeGroup α
L : List (α × Bool)
x : α
t : List (α × Bool)
ih :
↑((fun f =>
MonoidHom.mk'
(Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂))
(_ :
∀ (a b : FreeGroup α),
Quot.lift (Lift.aux f)
(_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) (a * b) =
Quot.lift (Lift.aux f)
(_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) a *
Quot.lift (Lift.aux f)
(_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) b))
((fun g => ↑g ∘ of) g))
(Quot.mk Red.Step t) =
↑g (mk t)
⊢ ↑((fun f =>
MonoidHom.mk'
(Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂))
(_ :
∀ (a b : FreeGroup α),
Quot.lift (Lift.aux f)
(_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) (a * b) =
Quot.lift (Lift.aux f)
(_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) a *
Quot.lift (Lift.aux f)
(_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) b))
((fun g => ↑g ∘ of) g))
(Quot.mk Red.Step ((x, true) :: t)) =
↑g (Quot.mk Red.Step ((x, true) :: t))
[PROOFSTEP]
show _ = g (of x * mk t)
[GOAL]
case mk.true
α : Type u
L✝ L₁ L₂ L₃ L₄ : List (α × Bool)
β : Type v
inst✝ : Group β
f : α → β
x✝¹ y : FreeGroup α
g : FreeGroup α →* β
x✝ : FreeGroup α
L : List (α × Bool)
x : α
t : List (α × Bool)
ih :
↑((fun f =>
MonoidHom.mk'
(Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂))
(_ :
∀ (a b : FreeGroup α),
Quot.lift (Lift.aux f)
(_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) (a * b) =
Quot.lift (Lift.aux f)
(_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) a *
Quot.lift (Lift.aux f)
(_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) b))
((fun g => ↑g ∘ of) g))
(Quot.mk Red.Step t) =
↑g (mk t)
⊢ ↑((fun f =>
MonoidHom.mk'
(Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂))
(_ :
∀ (a b : FreeGroup α),
Quot.lift (Lift.aux f)
(_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) (a * b) =
Quot.lift (Lift.aux f)
(_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) a *
Quot.lift (Lift.aux f)
(_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) b))
((fun g => ↑g ∘ of) g))
(Quot.mk Red.Step ((x, true) :: t)) =
↑g (of x * mk t)
[PROOFSTEP]
simpa [Lift.aux] using ih
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
β : Type v
inst✝ : Group β
f : α → β
x y : FreeGroup α
s : Subgroup β
H : Set.range f ⊆ ↑s
⊢ MonoidHom.range (↑lift f) ≤ s
[PROOFSTEP]
rintro _ ⟨⟨L⟩, rfl⟩
[GOAL]
case intro.mk
α : Type u
L✝ L₁ L₂ L₃ L₄ : List (α × Bool)
β : Type v
inst✝ : Group β
f : α → β
x y : FreeGroup α
s : Subgroup β
H : Set.range f ⊆ ↑s
w✝ : FreeGroup α
L : List (α × Bool)
⊢ ↑(↑lift f) (Quot.mk Red.Step L) ∈ s
[PROOFSTEP]
exact
List.recOn L s.one_mem fun ⟨x, b⟩ tl ih =>
Bool.recOn b (by simp at ih ⊢; exact s.mul_mem (s.inv_mem <| H ⟨x, rfl⟩) ih)
(by simp at ih ⊢; exact s.mul_mem (H ⟨x, rfl⟩) ih)
[GOAL]
α : Type u
L✝ L₁ L₂ L₃ L₄ : List (α × Bool)
β : Type v
inst✝ : Group β
f : α → β
x✝¹ y : FreeGroup α
s : Subgroup β
H : Set.range f ⊆ ↑s
w✝ : FreeGroup α
L : List (α × Bool)
x✝ : α × Bool
tl : List (α × Bool)
ih : ↑(↑lift f) (Quot.mk Red.Step tl) ∈ s
x : α
b : Bool
⊢ ↑(↑lift f) (Quot.mk Red.Step ((x, false) :: tl)) ∈ s
[PROOFSTEP]
simp at ih ⊢
[GOAL]
α : Type u
L✝ L₁ L₂ L₃ L₄ : List (α × Bool)
β : Type v
inst✝ : Group β
f : α → β
x✝¹ y : FreeGroup α
s : Subgroup β
H : Set.range f ⊆ ↑s
w✝ : FreeGroup α
L : List (α × Bool)
x✝ : α × Bool
tl : List (α × Bool)
ih : List.prod (List.map (fun x => bif x.snd then f x.fst else (f x.fst)⁻¹) tl) ∈ s
x : α
b : Bool
⊢ (f x)⁻¹ * List.prod (List.map (fun x => bif x.snd then f x.fst else (f x.fst)⁻¹) tl) ∈ s
[PROOFSTEP]
exact s.mul_mem (s.inv_mem <| H ⟨x, rfl⟩) ih
[GOAL]
α : Type u
L✝ L₁ L₂ L₃ L₄ : List (α × Bool)
β : Type v
inst✝ : Group β
f : α → β
x✝¹ y : FreeGroup α
s : Subgroup β
H : Set.range f ⊆ ↑s
w✝ : FreeGroup α
L : List (α × Bool)
x✝ : α × Bool
tl : List (α × Bool)
ih : ↑(↑lift f) (Quot.mk Red.Step tl) ∈ s
x : α
b : Bool
⊢ ↑(↑lift f) (Quot.mk Red.Step ((x, true) :: tl)) ∈ s
[PROOFSTEP]
simp at ih ⊢
[GOAL]
α : Type u
L✝ L₁ L₂ L₃ L₄ : List (α × Bool)
β : Type v
inst✝ : Group β
f : α → β
x✝¹ y : FreeGroup α
s : Subgroup β
H : Set.range f ⊆ ↑s
w✝ : FreeGroup α
L : List (α × Bool)
x✝ : α × Bool
tl : List (α × Bool)
ih : List.prod (List.map (fun x => bif x.snd then f x.fst else (f x.fst)⁻¹) tl) ∈ s
x : α
b : Bool
⊢ f x * List.prod (List.map (fun x => bif x.snd then f x.fst else (f x.fst)⁻¹) tl) ∈ s
[PROOFSTEP]
exact s.mul_mem (H ⟨x, rfl⟩) ih
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
β : Type v
inst✝ : Group β
f : α → β
x y : FreeGroup α
⊢ MonoidHom.range (↑lift f) = Subgroup.closure (Set.range f)
[PROOFSTEP]
apply le_antisymm (lift.range_le Subgroup.subset_closure)
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
β : Type v
inst✝ : Group β
f : α → β
x y : FreeGroup α
⊢ Subgroup.closure (Set.range f) ≤ MonoidHom.range (↑lift f)
[PROOFSTEP]
rw [Subgroup.closure_le]
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
β : Type v
inst✝ : Group β
f : α → β
x y : FreeGroup α
⊢ Set.range f ⊆ ↑(MonoidHom.range (↑lift f))
[PROOFSTEP]
rintro _ ⟨a, rfl⟩
[GOAL]
case intro
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
β : Type v
inst✝ : Group β
f : α → β
x y : FreeGroup α
a : α
⊢ f a ∈ ↑(MonoidHom.range (↑lift f))
[PROOFSTEP]
exact ⟨FreeGroup.of a, by simp only [lift.of]⟩
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
β : Type v
inst✝ : Group β
f : α → β
x y : FreeGroup α
a : α
⊢ ↑(↑lift f) (FreeGroup.of a) = f a
[PROOFSTEP]
simp only [lift.of]
[GOAL]
α : Type u
L L₁✝ L₂✝ L₃ L₄ : List (α × Bool)
β : Type v
f : α → β
x y : FreeGroup α
L₁ L₂ : List (α × Bool)
H : Red.Step L₁ L₂
⊢ Red.Step (List.map (fun x => (f x.fst, x.snd)) L₁) (List.map (fun x => (f x.fst, x.snd)) L₂)
[PROOFSTEP]
cases H
[GOAL]
case not
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
β : Type v
f : α → β
x y : FreeGroup α
L₁✝ L₂✝ : List (α × Bool)
x✝ : α
b✝ : Bool
⊢ Red.Step (List.map (fun x => (f x.fst, x.snd)) (L₁✝ ++ (x✝, b✝) :: (x✝, !b✝) :: L₂✝))
(List.map (fun x => (f x.fst, x.snd)) (L₁✝ ++ L₂✝))
[PROOFSTEP]
simp
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
β : Type v
f : α → β
x y : FreeGroup α
⊢ ∀ (a b : FreeGroup α),
Quot.map (List.map fun x => (f x.fst, x.snd))
(_ :
∀ (L₁ L₂ : List (α × Bool)),
Red.Step L₁ L₂ →
Red.Step (List.map (fun x => (f x.fst, x.snd)) L₁) (List.map (fun x => (f x.fst, x.snd)) L₂))
(a * b) =
Quot.map (List.map fun x => (f x.fst, x.snd))
(_ :
∀ (L₁ L₂ : List (α × Bool)),
Red.Step L₁ L₂ →
Red.Step (List.map (fun x => (f x.fst, x.snd)) L₁) (List.map (fun x => (f x.fst, x.snd)) L₂))
a *
Quot.map (List.map fun x => (f x.fst, x.snd))
(_ :
∀ (L₁ L₂ : List (α × Bool)),
Red.Step L₁ L₂ →
Red.Step (List.map (fun x => (f x.fst, x.snd)) L₁) (List.map (fun x => (f x.fst, x.snd)) L₂))
b
[PROOFSTEP]
rintro ⟨L₁⟩ ⟨L₂⟩
[GOAL]
case mk.mk
α : Type u
L L₁✝ L₂✝ L₃ L₄ : List (α × Bool)
β : Type v
f : α → β
x y a✝ : FreeGroup α
L₁ : List (α × Bool)
b✝ : FreeGroup α
L₂ : List (α × Bool)
⊢ Quot.map (List.map fun x => (f x.fst, x.snd))
(_ :
∀ (L₁ L₂ : List (α × Bool)),
Red.Step L₁ L₂ → Red.Step (List.map (fun x => (f x.fst, x.snd)) L₁) (List.map (fun x => (f x.fst, x.snd)) L₂))
(Quot.mk Red.Step L₁ * Quot.mk Red.Step L₂) =
Quot.map (List.map fun x => (f x.fst, x.snd))
(_ :
∀ (L₁ L₂ : List (α × Bool)),
Red.Step L₁ L₂ →
Red.Step (List.map (fun x => (f x.fst, x.snd)) L₁) (List.map (fun x => (f x.fst, x.snd)) L₂))
(Quot.mk Red.Step L₁) *
Quot.map (List.map fun x => (f x.fst, x.snd))
(_ :
∀ (L₁ L₂ : List (α × Bool)),
Red.Step L₁ L₂ →
Red.Step (List.map (fun x => (f x.fst, x.snd)) L₁) (List.map (fun x => (f x.fst, x.snd)) L₂))
(Quot.mk Red.Step L₂)
[PROOFSTEP]
simp
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
β : Type v
f : α → β
x✝ y x : FreeGroup α
⊢ ↑(map _root_.id) x = x
[PROOFSTEP]
rcases x with ⟨L⟩
[GOAL]
case mk
α : Type u
L✝ L₁ L₂ L₃ L₄ : List (α × Bool)
β : Type v
f : α → β
x✝ y x : FreeGroup α
L : List (α × Bool)
⊢ ↑(map _root_.id) (Quot.mk Red.Step L) = Quot.mk Red.Step L
[PROOFSTEP]
simp [List.map_id']
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
β : Type v
f✝ : α → β
x✝ y : FreeGroup α
γ : Type w
f : α → β
g : β → γ
x : FreeGroup α
⊢ ↑(map g) (↑(map f) x) = ↑(map (g ∘ f)) x
[PROOFSTEP]
rcases x with ⟨L⟩
[GOAL]
case mk
α : Type u
L✝ L₁ L₂ L₃ L₄ : List (α × Bool)
β : Type v
f✝ : α → β
x✝ y : FreeGroup α
γ : Type w
f : α → β
g : β → γ
x : FreeGroup α
L : List (α × Bool)
⊢ ↑(map g) (↑(map f) (Quot.mk Red.Step L)) = ↑(map (g ∘ f)) (Quot.mk Red.Step L)
[PROOFSTEP]
simp [(· ∘ ·)]
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
β : Type v
f : α → β
x y : FreeGroup α
g : FreeGroup α →* FreeGroup β
hg : ∀ (x : α), ↑g (FreeGroup.of x) = FreeGroup.of (f x)
⊢ ∀ {x : FreeGroup α}, ↑g x = ↑(map f) x
[PROOFSTEP]
rintro ⟨L⟩
[GOAL]
case mk
α : Type u
L✝ L₁ L₂ L₃ L₄ : List (α × Bool)
β : Type v
f : α → β
x y : FreeGroup α
g : FreeGroup α →* FreeGroup β
hg : ∀ (x : α), ↑g (FreeGroup.of x) = FreeGroup.of (f x)
x✝ : FreeGroup α
L : List (α × Bool)
⊢ ↑g (Quot.mk Red.Step L) = ↑(map f) (Quot.mk Red.Step L)
[PROOFSTEP]
exact
List.recOn L g.map_one fun ⟨x, b⟩ t (ih : g (FreeGroup.mk t) = map f (FreeGroup.mk t)) =>
Bool.recOn b
(show g ((FreeGroup.of x)⁻¹ * FreeGroup.mk t) = FreeGroup.map f ((FreeGroup.of x)⁻¹ * FreeGroup.mk t) by
simp [g.map_mul, g.map_inv, hg, ih])
(show g (FreeGroup.of x * FreeGroup.mk t) = FreeGroup.map f (FreeGroup.of x * FreeGroup.mk t) by
simp [g.map_mul, hg, ih])
[GOAL]
α : Type u
L✝ L₁ L₂ L₃ L₄ : List (α × Bool)
β : Type v
f : α → β
x✝² y : FreeGroup α
g : FreeGroup α →* FreeGroup β
hg : ∀ (x : α), ↑g (FreeGroup.of x) = FreeGroup.of (f x)
x✝¹ : FreeGroup α
L : List (α × Bool)
x✝ : α × Bool
t : List (α × Bool)
ih : ↑g (FreeGroup.mk t) = ↑(map f) (FreeGroup.mk t)
x : α
b : Bool
⊢ ↑g ((FreeGroup.of x)⁻¹ * FreeGroup.mk t) = ↑(map f) ((FreeGroup.of x)⁻¹ * FreeGroup.mk t)
[PROOFSTEP]
simp [g.map_mul, g.map_inv, hg, ih]
[GOAL]
α : Type u
L✝ L₁ L₂ L₃ L₄ : List (α × Bool)
β : Type v
f : α → β
x✝² y : FreeGroup α
g : FreeGroup α →* FreeGroup β
hg : ∀ (x : α), ↑g (FreeGroup.of x) = FreeGroup.of (f x)
x✝¹ : FreeGroup α
L : List (α × Bool)
x✝ : α × Bool
t : List (α × Bool)
ih : ↑g (FreeGroup.mk t) = ↑(map f) (FreeGroup.mk t)
x : α
b : Bool
⊢ ↑g (FreeGroup.of x * FreeGroup.mk t) = ↑(map f) (FreeGroup.of x * FreeGroup.mk t)
[PROOFSTEP]
simp [g.map_mul, hg, ih]
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
β : Type v
f : α → β
x✝ y : FreeGroup α
x : α
⊢ ↑(↑lift (of ∘ f)) (of x) = of (f x)
[PROOFSTEP]
simp
[GOAL]
α✝ : Type u
L L₁ L₂ L₃ L₄ : List (α✝ × Bool)
β✝ : Type v
f : α✝ → β✝
x✝ y : FreeGroup α✝
α : Type ?u.99493
β : Type ?u.99494
e : α ≃ β
x : FreeGroup α
⊢ ↑(map ↑e.symm) (↑(map ↑e) x) = x
[PROOFSTEP]
simp [Function.comp, map.comp]
[GOAL]
α✝ : Type u
L L₁ L₂ L₃ L₄ : List (α✝ × Bool)
β✝ : Type v
f : α✝ → β✝
x✝ y : FreeGroup α✝
α : Type ?u.99493
β : Type ?u.99494
e : α ≃ β
x : FreeGroup β
⊢ ↑(map ↑e) (↑(map ↑e.symm) x) = x
[PROOFSTEP]
simp [Function.comp, map.comp]
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
β : Type v
inst✝ : Group β
f : α → β
x : FreeGroup α
⊢ ↑(↑lift f) x = ↑prod (↑(map f) x)
[PROOFSTEP]
rw [← lift.unique (prod.comp (map f))]
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
β : Type v
inst✝ : Group β
f : α → β
x : FreeGroup α
⊢ ↑(MonoidHom.comp prod (map f)) x = ↑prod (↑(map f) x)
[PROOFSTEP]
rfl
[GOAL]
case hg
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
β : Type v
inst✝ : Group β
f : α → β
x : FreeGroup α
⊢ ∀ (x : α), ↑(MonoidHom.comp prod (map f)) (of x) = f x
[PROOFSTEP]
simp
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
⊢ Function.LeftInverse (fun x => 1) fun x => ()
[PROOFSTEP]
rintro ⟨_ | ⟨⟨⟨⟩, _⟩, _⟩⟩
[GOAL]
case mk.nil
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
x✝ : FreeGroup Empty
⊢ (fun x => 1) ((fun x => ()) (Quot.mk Red.Step [])) = Quot.mk Red.Step []
[PROOFSTEP]
rfl
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
x : FreeGroup Unit
⊢ FreeGroup ℤ
[PROOFSTEP]
revert x
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
⊢ FreeGroup Unit → FreeGroup ℤ
[PROOFSTEP]
change (FreeGroup Unit →* FreeGroup ℤ)
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
⊢ FreeGroup Unit →* FreeGroup ℤ
[PROOFSTEP]
apply map fun _ => (1 : ℤ)
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
⊢ Function.LeftInverse (fun x => of () ^ x) fun x =>
sum
((let_fun this := map fun x => 1;
↑this)
x)
[PROOFSTEP]
rintro ⟨L⟩
[GOAL]
case mk
α : Type u
L✝ L₁ L₂ L₃ L₄ : List (α × Bool)
x✝ : FreeGroup Unit
L : List (Unit × Bool)
⊢ (fun x => of () ^ x)
((fun x =>
sum
((let_fun this := map fun x => 1;
↑this)
x))
(Quot.mk Red.Step L)) =
Quot.mk Red.Step L
[PROOFSTEP]
simp only [quot_mk_eq_mk, map.mk, sum_mk, List.map_map]
[GOAL]
case mk
α : Type u
L✝ L₁ L₂ L₃ L₄ : List (α × Bool)
x✝ : FreeGroup Unit
L : List (Unit × Bool)
⊢ of () ^ List.sum (List.map ((fun x => bif x.snd then x.fst else -x.fst) ∘ fun x => (1, x.snd)) L) = mk L
[PROOFSTEP]
exact List.recOn L (by rfl) (fun ⟨⟨⟩, b⟩ tl ih => by cases b <;> simp [zpow_add] at ih ⊢ <;> rw [ih] <;> rfl)
[GOAL]
α : Type u
L✝ L₁ L₂ L₃ L₄ : List (α × Bool)
x✝ : FreeGroup Unit
L : List (Unit × Bool)
⊢ of () ^ List.sum (List.map ((fun x => bif x.snd then x.fst else -x.fst) ∘ fun x => (1, x.snd)) []) = mk []
[PROOFSTEP]
rfl
[GOAL]
α : Type u
L✝ L₁ L₂ L₃ L₄ : List (α × Bool)
x✝¹ : FreeGroup Unit
L : List (Unit × Bool)
x✝ : Unit × Bool
tl : List (Unit × Bool)
ih : of () ^ List.sum (List.map ((fun x => bif x.snd then x.fst else -x.fst) ∘ fun x => (1, x.snd)) tl) = mk tl
b : Bool
⊢ of () ^
List.sum (List.map ((fun x => bif x.snd then x.fst else -x.fst) ∘ fun x => (1, x.snd)) ((PUnit.unit, b) :: tl)) =
mk ((PUnit.unit, b) :: tl)
[PROOFSTEP]
cases b
[GOAL]
case false
α : Type u
L✝ L₁ L₂ L₃ L₄ : List (α × Bool)
x✝¹ : FreeGroup Unit
L : List (Unit × Bool)
x✝ : Unit × Bool
tl : List (Unit × Bool)
ih : of () ^ List.sum (List.map ((fun x => bif x.snd then x.fst else -x.fst) ∘ fun x => (1, x.snd)) tl) = mk tl
⊢ of () ^
List.sum
(List.map ((fun x => bif x.snd then x.fst else -x.fst) ∘ fun x => (1, x.snd)) ((PUnit.unit, false) :: tl)) =
mk ((PUnit.unit, false) :: tl)
[PROOFSTEP]
simp [zpow_add] at ih ⊢
[GOAL]
case true
α : Type u
L✝ L₁ L₂ L₃ L₄ : List (α × Bool)
x✝¹ : FreeGroup Unit
L : List (Unit × Bool)
x✝ : Unit × Bool
tl : List (Unit × Bool)
ih : of () ^ List.sum (List.map ((fun x => bif x.snd then x.fst else -x.fst) ∘ fun x => (1, x.snd)) tl) = mk tl
⊢ of () ^
List.sum
(List.map ((fun x => bif x.snd then x.fst else -x.fst) ∘ fun x => (1, x.snd)) ((PUnit.unit, true) :: tl)) =
mk ((PUnit.unit, true) :: tl)
[PROOFSTEP]
simp [zpow_add] at ih ⊢
[GOAL]
case false
α : Type u
L✝ L₁ L₂ L₃ L₄ : List (α × Bool)
x✝¹ : FreeGroup Unit
L : List (Unit × Bool)
x✝ : Unit × Bool
tl : List (Unit × Bool)
ih : of () ^ List.sum (List.map ((fun x => bif x.snd then x.fst else -x.fst) ∘ fun x => (1, x.snd)) tl) = mk tl
⊢ (of ())⁻¹ * of () ^ List.sum (List.map ((fun x => bif x.snd then x.fst else -x.fst) ∘ fun x => (1, x.snd)) tl) =
mk ((PUnit.unit, false) :: tl)
[PROOFSTEP]
rw [ih]
[GOAL]
case true
α : Type u
L✝ L₁ L₂ L₃ L₄ : List (α × Bool)
x✝¹ : FreeGroup Unit
L : List (Unit × Bool)
x✝ : Unit × Bool
tl : List (Unit × Bool)
ih : of () ^ List.sum (List.map ((fun x => bif x.snd then x.fst else -x.fst) ∘ fun x => (1, x.snd)) tl) = mk tl
⊢ of () * of () ^ List.sum (List.map ((fun x => bif x.snd then x.fst else -x.fst) ∘ fun x => (1, x.snd)) tl) =
mk ((PUnit.unit, true) :: tl)
[PROOFSTEP]
rw [ih]
[GOAL]
case false
α : Type u
L✝ L₁ L₂ L₃ L₄ : List (α × Bool)
x✝¹ : FreeGroup Unit
L : List (Unit × Bool)
x✝ : Unit × Bool
tl : List (Unit × Bool)
ih : of () ^ List.sum (List.map ((fun x => bif x.snd then x.fst else -x.fst) ∘ fun x => (1, x.snd)) tl) = mk tl
⊢ (of ())⁻¹ * mk tl = mk ((PUnit.unit, false) :: tl)
[PROOFSTEP]
rfl
[GOAL]
case true
α : Type u
L✝ L₁ L₂ L₃ L₄ : List (α × Bool)
x✝¹ : FreeGroup Unit
L : List (Unit × Bool)
x✝ : Unit × Bool
tl : List (Unit × Bool)
ih : of () ^ List.sum (List.map ((fun x => bif x.snd then x.fst else -x.fst) ∘ fun x => (1, x.snd)) tl) = mk tl
⊢ of () * mk tl = mk ((PUnit.unit, true) :: tl)
[PROOFSTEP]
rfl
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
x : ℤ
⊢ (fun x =>
sum
((let_fun this := map fun x => 1;
↑this)
x))
((fun x => of () ^ x) 0) =
0
[PROOFSTEP]
simp
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
x : ℤ
i : ℕ
ih :
(fun x =>
sum
((let_fun this := map fun x => 1;
↑this)
x))
((fun x => of () ^ x) ↑i) =
↑i
⊢ (fun x =>
sum
((let_fun this := map fun x => 1;
↑this)
x))
((fun x => of () ^ x) (↑i + 1)) =
↑i + 1
[PROOFSTEP]
simp only [zpow_coe_nat, map_pow, map.of] at ih
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
x : ℤ
i : ℕ
ih : sum (of 1 ^ i) = ↑i
⊢ (fun x =>
sum
((let_fun this := map fun x => 1;
↑this)
x))
((fun x => of () ^ x) (↑i + 1)) =
↑i + 1
[PROOFSTEP]
simp [zpow_add, ih]
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
x : ℤ
i : ℕ
ih :
(fun x =>
sum
((let_fun this := map fun x => 1;
↑this)
x))
((fun x => of () ^ x) (-↑i)) =
-↑i
⊢ (fun x =>
sum
((let_fun this := map fun x => 1;
↑this)
x))
((fun x => of () ^ x) (-↑i - 1)) =
-↑i - 1
[PROOFSTEP]
simp only [zpow_neg, zpow_coe_nat, map_inv, map_pow, map.of, sum.map_inv, neg_inj] at ih
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
x : ℤ
i : ℕ
ih : sum (of 1 ^ i) = ↑i
⊢ (fun x =>
sum
((let_fun this := map fun x => 1;
↑this)
x))
((fun x => of () ^ x) (-↑i - 1)) =
-↑i - 1
[PROOFSTEP]
simp [zpow_add, ih, sub_eq_add_neg]
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
β α✝ : Type u
x✝ : FreeGroup α✝
x : α✝
ih : id <$> pure x = pure x
⊢ id <$> (pure x)⁻¹ = (pure x)⁻¹
[PROOFSTEP]
rw [map_inv, ih]
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
β α✝ : Type u
x✝ x y : FreeGroup α✝
ihx : id <$> x = x
ihy : id <$> y = y
⊢ id <$> (x * y) = x * y
[PROOFSTEP]
rw [map_mul, ihx, ihy]
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
β α✝ β✝ γ✝ : Type u
x : FreeGroup α✝
⊢ ∀ (f : α✝ → FreeGroup β✝) (g : β✝ → FreeGroup γ✝), 1 >>= f >>= g = 1 >>= fun x => f x >>= g
[PROOFSTEP]
intros
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
β α✝ β✝ γ✝ : Type u
x : FreeGroup α✝
f✝ : α✝ → FreeGroup β✝
g✝ : β✝ → FreeGroup γ✝
⊢ 1 >>= f✝ >>= g✝ = 1 >>= fun x => f✝ x >>= g✝
[PROOFSTEP]
iterate 3 rw [one_bind]
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
β α✝ β✝ γ✝ : Type u
x : FreeGroup α✝
f✝ : α✝ → FreeGroup β✝
g✝ : β✝ → FreeGroup γ✝
⊢ 1 >>= f✝ >>= g✝ = 1 >>= fun x => f✝ x >>= g✝
[PROOFSTEP]
rw [one_bind]
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
β α✝ β✝ γ✝ : Type u
x : FreeGroup α✝
f✝ : α✝ → FreeGroup β✝
g✝ : β✝ → FreeGroup γ✝
⊢ 1 >>= g✝ = 1 >>= fun x => f✝ x >>= g✝
[PROOFSTEP]
rw [one_bind]
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
β α✝ β✝ γ✝ : Type u
x : FreeGroup α✝
f✝ : α✝ → FreeGroup β✝
g✝ : β✝ → FreeGroup γ✝
⊢ 1 = 1 >>= fun x => f✝ x >>= g✝
[PROOFSTEP]
rw [one_bind]
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
β α✝ β✝ γ✝ : Type u
x✝ : FreeGroup α✝
x : α✝
⊢ ∀ (f : α✝ → FreeGroup β✝) (g : β✝ → FreeGroup γ✝), pure x >>= f >>= g = pure x >>= fun x => f x >>= g
[PROOFSTEP]
intros
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
β α✝ β✝ γ✝ : Type u
x✝ : FreeGroup α✝
x : α✝
f✝ : α✝ → FreeGroup β✝
g✝ : β✝ → FreeGroup γ✝
⊢ pure x >>= f✝ >>= g✝ = pure x >>= fun x => f✝ x >>= g✝
[PROOFSTEP]
iterate 2 rw [pure_bind]
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
β α✝ β✝ γ✝ : Type u
x✝ : FreeGroup α✝
x : α✝
f✝ : α✝ → FreeGroup β✝
g✝ : β✝ → FreeGroup γ✝
⊢ pure x >>= f✝ >>= g✝ = pure x >>= fun x => f✝ x >>= g✝
[PROOFSTEP]
rw [pure_bind]
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
β α✝ β✝ γ✝ : Type u
x✝ : FreeGroup α✝
x : α✝
f✝ : α✝ → FreeGroup β✝
g✝ : β✝ → FreeGroup γ✝
⊢ f✝ x >>= g✝ = pure x >>= fun x => f✝ x >>= g✝
[PROOFSTEP]
rw [pure_bind]
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
β α✝ β✝ γ✝ : Type u
x✝ : FreeGroup α✝
x : α✝
ih : ∀ (f : α✝ → FreeGroup β✝) (g : β✝ → FreeGroup γ✝), pure x >>= f >>= g = pure x >>= fun x => f x >>= g
⊢ ∀ (f : α✝ → FreeGroup β✝) (g : β✝ → FreeGroup γ✝), (pure x)⁻¹ >>= f >>= g = (pure x)⁻¹ >>= fun x => f x >>= g
[PROOFSTEP]
intros
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
β α✝ β✝ γ✝ : Type u
x✝ : FreeGroup α✝
x : α✝
ih : ∀ (f : α✝ → FreeGroup β✝) (g : β✝ → FreeGroup γ✝), pure x >>= f >>= g = pure x >>= fun x => f x >>= g
f✝ : α✝ → FreeGroup β✝
g✝ : β✝ → FreeGroup γ✝
⊢ (pure x)⁻¹ >>= f✝ >>= g✝ = (pure x)⁻¹ >>= fun x => f✝ x >>= g✝
[PROOFSTEP]
iterate 3 rw [inv_bind]
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
β α✝ β✝ γ✝ : Type u
x✝ : FreeGroup α✝
x : α✝
ih : ∀ (f : α✝ → FreeGroup β✝) (g : β✝ → FreeGroup γ✝), pure x >>= f >>= g = pure x >>= fun x => f x >>= g
f✝ : α✝ → FreeGroup β✝
g✝ : β✝ → FreeGroup γ✝
⊢ (pure x)⁻¹ >>= f✝ >>= g✝ = (pure x)⁻¹ >>= fun x => f✝ x >>= g✝
[PROOFSTEP]
rw [inv_bind]
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
β α✝ β✝ γ✝ : Type u
x✝ : FreeGroup α✝
x : α✝
ih : ∀ (f : α✝ → FreeGroup β✝) (g : β✝ → FreeGroup γ✝), pure x >>= f >>= g = pure x >>= fun x => f x >>= g
f✝ : α✝ → FreeGroup β✝
g✝ : β✝ → FreeGroup γ✝
⊢ (pure x >>= f✝)⁻¹ >>= g✝ = (pure x)⁻¹ >>= fun x => f✝ x >>= g✝
[PROOFSTEP]
rw [inv_bind]
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
β α✝ β✝ γ✝ : Type u
x✝ : FreeGroup α✝
x : α✝
ih : ∀ (f : α✝ → FreeGroup β✝) (g : β✝ → FreeGroup γ✝), pure x >>= f >>= g = pure x >>= fun x => f x >>= g
f✝ : α✝ → FreeGroup β✝
g✝ : β✝ → FreeGroup γ✝
⊢ (pure x >>= f✝ >>= g✝)⁻¹ = (pure x)⁻¹ >>= fun x => f✝ x >>= g✝
[PROOFSTEP]
rw [inv_bind]
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
β α✝ β✝ γ✝ : Type u
x✝ : FreeGroup α✝
x : α✝
ih : ∀ (f : α✝ → FreeGroup β✝) (g : β✝ → FreeGroup γ✝), pure x >>= f >>= g = pure x >>= fun x => f x >>= g
f✝ : α✝ → FreeGroup β✝
g✝ : β✝ → FreeGroup γ✝
⊢ (pure x >>= f✝ >>= g✝)⁻¹ = (pure x >>= fun x => f✝ x >>= g✝)⁻¹
[PROOFSTEP]
rw [ih]
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
β α✝ β✝ γ✝ : Type u
x✝ x y : FreeGroup α✝
ihx : ∀ (f : α✝ → FreeGroup β✝) (g : β✝ → FreeGroup γ✝), x >>= f >>= g = x >>= fun x => f x >>= g
ihy : ∀ (f : α✝ → FreeGroup β✝) (g : β✝ → FreeGroup γ✝), y >>= f >>= g = y >>= fun x => f x >>= g
⊢ ∀ (f : α✝ → FreeGroup β✝) (g : β✝ → FreeGroup γ✝), x * y >>= f >>= g = x * y >>= fun x => f x >>= g
[PROOFSTEP]
intros
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
β α✝ β✝ γ✝ : Type u
x✝ x y : FreeGroup α✝
ihx : ∀ (f : α✝ → FreeGroup β✝) (g : β✝ → FreeGroup γ✝), x >>= f >>= g = x >>= fun x => f x >>= g
ihy : ∀ (f : α✝ → FreeGroup β✝) (g : β✝ → FreeGroup γ✝), y >>= f >>= g = y >>= fun x => f x >>= g
f✝ : α✝ → FreeGroup β✝
g✝ : β✝ → FreeGroup γ✝
⊢ x * y >>= f✝ >>= g✝ = x * y >>= fun x => f✝ x >>= g✝
[PROOFSTEP]
iterate 3 rw [mul_bind]
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
β α✝ β✝ γ✝ : Type u
x✝ x y : FreeGroup α✝
ihx : ∀ (f : α✝ → FreeGroup β✝) (g : β✝ → FreeGroup γ✝), x >>= f >>= g = x >>= fun x => f x >>= g
ihy : ∀ (f : α✝ → FreeGroup β✝) (g : β✝ → FreeGroup γ✝), y >>= f >>= g = y >>= fun x => f x >>= g
f✝ : α✝ → FreeGroup β✝
g✝ : β✝ → FreeGroup γ✝
⊢ x * y >>= f✝ >>= g✝ = x * y >>= fun x => f✝ x >>= g✝
[PROOFSTEP]
rw [mul_bind]
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
β α✝ β✝ γ✝ : Type u
x✝ x y : FreeGroup α✝
ihx : ∀ (f : α✝ → FreeGroup β✝) (g : β✝ → FreeGroup γ✝), x >>= f >>= g = x >>= fun x => f x >>= g
ihy : ∀ (f : α✝ → FreeGroup β✝) (g : β✝ → FreeGroup γ✝), y >>= f >>= g = y >>= fun x => f x >>= g
f✝ : α✝ → FreeGroup β✝
g✝ : β✝ → FreeGroup γ✝
⊢ (x >>= f✝) * (y >>= f✝) >>= g✝ = x * y >>= fun x => f✝ x >>= g✝
[PROOFSTEP]
rw [mul_bind]
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
β α✝ β✝ γ✝ : Type u
x✝ x y : FreeGroup α✝
ihx : ∀ (f : α✝ → FreeGroup β✝) (g : β✝ → FreeGroup γ✝), x >>= f >>= g = x >>= fun x => f x >>= g
ihy : ∀ (f : α✝ → FreeGroup β✝) (g : β✝ → FreeGroup γ✝), y >>= f >>= g = y >>= fun x => f x >>= g
f✝ : α✝ → FreeGroup β✝
g✝ : β✝ → FreeGroup γ✝
⊢ (x >>= f✝ >>= g✝) * (y >>= f✝ >>= g✝) = x * y >>= fun x => f✝ x >>= g✝
[PROOFSTEP]
rw [mul_bind]
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
β α✝ β✝ γ✝ : Type u
x✝ x y : FreeGroup α✝
ihx : ∀ (f : α✝ → FreeGroup β✝) (g : β✝ → FreeGroup γ✝), x >>= f >>= g = x >>= fun x => f x >>= g
ihy : ∀ (f : α✝ → FreeGroup β✝) (g : β✝ → FreeGroup γ✝), y >>= f >>= g = y >>= fun x => f x >>= g
f✝ : α✝ → FreeGroup β✝
g✝ : β✝ → FreeGroup γ✝
⊢ (x >>= f✝ >>= g✝) * (y >>= f✝ >>= g✝) = (x >>= fun x => f✝ x >>= g✝) * (y >>= fun x => f✝ x >>= g✝)
[PROOFSTEP]
rw [ihx, ihy]
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
β α✝ β✝ : Type u
f : α✝ → β✝
x : FreeGroup α✝
⊢ (do
let y ← 1
pure (f y)) =
f <$> 1
[PROOFSTEP]
rw [one_bind, map_one]
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
β α✝ β✝ : Type u
f : α✝ → β✝
x✝ : FreeGroup α✝
x : α✝
⊢ (do
let y ← pure x
pure (f y)) =
f <$> pure x
[PROOFSTEP]
rw [pure_bind, map_pure]
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
β α✝ β✝ : Type u
f : α✝ → β✝
x✝ : FreeGroup α✝
x : α✝
ih :
(do
let y ← pure x
pure (f y)) =
f <$> pure x
⊢ (do
let y ← (pure x)⁻¹
pure (f y)) =
f <$> (pure x)⁻¹
[PROOFSTEP]
rw [inv_bind, map_inv, ih]
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
β α✝ β✝ : Type u
f : α✝ → β✝
x✝ x y : FreeGroup α✝
ihx :
(do
let y ← x
pure (f y)) =
f <$> x
ihy :
(do
let y ← y
pure (f y)) =
f <$> y
⊢ (do
let y ← x * y
pure (f y)) =
f <$> (x * y)
[PROOFSTEP]
rw [mul_bind, map_mul, ihx, ihy]
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
⊢ Red L (reduce L)
[PROOFSTEP]
induction' L with hd1 tl1 ih
[GOAL]
case nil
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
⊢ Red [] (reduce [])
case cons
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
hd1 : α × Bool
tl1 : List (α × Bool)
ih : Red tl1 (reduce tl1)
⊢ Red (hd1 :: tl1) (reduce (hd1 :: tl1))
[PROOFSTEP]
case nil => constructor
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
⊢ Red [] (reduce [])
[PROOFSTEP]
case nil => constructor
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
⊢ Red [] (reduce [])
[PROOFSTEP]
constructor
[GOAL]
case cons
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
hd1 : α × Bool
tl1 : List (α × Bool)
ih : Red tl1 (reduce tl1)
⊢ Red (hd1 :: tl1) (reduce (hd1 :: tl1))
[PROOFSTEP]
case cons =>
dsimp
revert ih
generalize htl : reduce tl1 = TL
intro ih
cases' TL with hd2 tl2
case nil => exact Red.cons_cons ih
case cons =>
dsimp only
split_ifs with h
· trans
· cases hd1
cases hd2
cases h
dsimp at *
subst_vars
apply Red.trans (Red.cons_cons ih)
exact Red.Step.cons_not_rev.to_red
· exact Red.cons_cons ih
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
hd1 : α × Bool
tl1 : List (α × Bool)
ih : Red tl1 (reduce tl1)
⊢ Red (hd1 :: tl1) (reduce (hd1 :: tl1))
[PROOFSTEP]
case cons =>
dsimp
revert ih
generalize htl : reduce tl1 = TL
intro ih
cases' TL with hd2 tl2
case nil => exact Red.cons_cons ih
case cons =>
dsimp only
split_ifs with h
· trans
· cases hd1
cases hd2
cases h
dsimp at *
subst_vars
apply Red.trans (Red.cons_cons ih)
exact Red.Step.cons_not_rev.to_red
· exact Red.cons_cons ih
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
hd1 : α × Bool
tl1 : List (α × Bool)
ih : Red tl1 (reduce tl1)
⊢ Red (hd1 :: tl1) (reduce (hd1 :: tl1))
[PROOFSTEP]
dsimp
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
hd1 : α × Bool
tl1 : List (α × Bool)
ih : Red tl1 (reduce tl1)
⊢ Red (hd1 :: tl1)
(List.rec [hd1]
(fun head tail tail_ih => if hd1.fst = head.fst ∧ hd1.snd = !head.snd then tail else hd1 :: head :: tail)
(reduce tl1))
[PROOFSTEP]
revert ih
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
hd1 : α × Bool
tl1 : List (α × Bool)
⊢ Red tl1 (reduce tl1) →
Red (hd1 :: tl1)
(List.rec [hd1]
(fun head tail tail_ih => if hd1.fst = head.fst ∧ hd1.snd = !head.snd then tail else hd1 :: head :: tail)
(reduce tl1))
[PROOFSTEP]
generalize htl : reduce tl1 = TL
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
hd1 : α × Bool
tl1 TL : List (α × Bool)
htl : reduce tl1 = TL
⊢ Red tl1 TL →
Red (hd1 :: tl1)
(List.rec [hd1]
(fun head tail tail_ih => if hd1.fst = head.fst ∧ hd1.snd = !head.snd then tail else hd1 :: head :: tail) TL)
[PROOFSTEP]
intro ih
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
hd1 : α × Bool
tl1 TL : List (α × Bool)
htl : reduce tl1 = TL
ih : Red tl1 TL
⊢ Red (hd1 :: tl1)
(List.rec [hd1]
(fun head tail tail_ih => if hd1.fst = head.fst ∧ hd1.snd = !head.snd then tail else hd1 :: head :: tail) TL)
[PROOFSTEP]
cases' TL with hd2 tl2
[GOAL]
case nil
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
hd1 : α × Bool
tl1 : List (α × Bool)
htl : reduce tl1 = []
ih : Red tl1 []
⊢ Red (hd1 :: tl1)
(List.rec [hd1]
(fun head tail tail_ih => if hd1.fst = head.fst ∧ hd1.snd = !head.snd then tail else hd1 :: head :: tail) [])
case cons
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
hd1 : α × Bool
tl1 : List (α × Bool)
hd2 : α × Bool
tl2 : List (α × Bool)
htl : reduce tl1 = hd2 :: tl2
ih : Red tl1 (hd2 :: tl2)
⊢ Red (hd1 :: tl1)
(List.rec [hd1]
(fun head tail tail_ih => if hd1.fst = head.fst ∧ hd1.snd = !head.snd then tail else hd1 :: head :: tail)
(hd2 :: tl2))
[PROOFSTEP]
case nil => exact Red.cons_cons ih
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
hd1 : α × Bool
tl1 : List (α × Bool)
htl : reduce tl1 = []
ih : Red tl1 []
⊢ Red (hd1 :: tl1)
(List.rec [hd1]
(fun head tail tail_ih => if hd1.fst = head.fst ∧ hd1.snd = !head.snd then tail else hd1 :: head :: tail) [])
[PROOFSTEP]
case nil => exact Red.cons_cons ih
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
hd1 : α × Bool
tl1 : List (α × Bool)
htl : reduce tl1 = []
ih : Red tl1 []
⊢ Red (hd1 :: tl1)
(List.rec [hd1]
(fun head tail tail_ih => if hd1.fst = head.fst ∧ hd1.snd = !head.snd then tail else hd1 :: head :: tail) [])
[PROOFSTEP]
exact Red.cons_cons ih
[GOAL]
case cons
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
hd1 : α × Bool
tl1 : List (α × Bool)
hd2 : α × Bool
tl2 : List (α × Bool)
htl : reduce tl1 = hd2 :: tl2
ih : Red tl1 (hd2 :: tl2)
⊢ Red (hd1 :: tl1)
(List.rec [hd1]
(fun head tail tail_ih => if hd1.fst = head.fst ∧ hd1.snd = !head.snd then tail else hd1 :: head :: tail)
(hd2 :: tl2))
[PROOFSTEP]
case cons =>
dsimp only
split_ifs with h
· trans
· cases hd1
cases hd2
cases h
dsimp at *
subst_vars
apply Red.trans (Red.cons_cons ih)
exact Red.Step.cons_not_rev.to_red
· exact Red.cons_cons ih
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
hd1 : α × Bool
tl1 : List (α × Bool)
hd2 : α × Bool
tl2 : List (α × Bool)
htl : reduce tl1 = hd2 :: tl2
ih : Red tl1 (hd2 :: tl2)
⊢ Red (hd1 :: tl1)
(List.rec [hd1]
(fun head tail tail_ih => if hd1.fst = head.fst ∧ hd1.snd = !head.snd then tail else hd1 :: head :: tail)
(hd2 :: tl2))
[PROOFSTEP]
case cons =>
dsimp only
split_ifs with h
· trans
· cases hd1
cases hd2
cases h
dsimp at *
subst_vars
apply Red.trans (Red.cons_cons ih)
exact Red.Step.cons_not_rev.to_red
· exact Red.cons_cons ih
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
hd1 : α × Bool
tl1 : List (α × Bool)
hd2 : α × Bool
tl2 : List (α × Bool)
htl : reduce tl1 = hd2 :: tl2
ih : Red tl1 (hd2 :: tl2)
⊢ Red (hd1 :: tl1)
(List.rec [hd1]
(fun head tail tail_ih => if hd1.fst = head.fst ∧ hd1.snd = !head.snd then tail else hd1 :: head :: tail)
(hd2 :: tl2))
[PROOFSTEP]
dsimp only
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
hd1 : α × Bool
tl1 : List (α × Bool)
hd2 : α × Bool
tl2 : List (α × Bool)
htl : reduce tl1 = hd2 :: tl2
ih : Red tl1 (hd2 :: tl2)
⊢ Red (hd1 :: tl1) (if hd1.fst = hd2.fst ∧ hd1.snd = !hd2.snd then tl2 else hd1 :: hd2 :: tl2)
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
hd1 : α × Bool
tl1 : List (α × Bool)
hd2 : α × Bool
tl2 : List (α × Bool)
htl : reduce tl1 = hd2 :: tl2
ih : Red tl1 (hd2 :: tl2)
h : hd1.fst = hd2.fst ∧ hd1.snd = !hd2.snd
⊢ Red (hd1 :: tl1) tl2
[PROOFSTEP]
trans
[GOAL]
case pos
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
hd1 : α × Bool
tl1 : List (α × Bool)
hd2 : α × Bool
tl2 : List (α × Bool)
htl : reduce tl1 = hd2 :: tl2
ih : Red tl1 (hd2 :: tl2)
h : hd1.fst = hd2.fst ∧ hd1.snd = !hd2.snd
⊢ Red (hd1 :: tl1) tl2
[PROOFSTEP]
cases hd1
[GOAL]
case pos.mk
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
tl1 : List (α × Bool)
hd2 : α × Bool
tl2 : List (α × Bool)
htl : reduce tl1 = hd2 :: tl2
ih : Red tl1 (hd2 :: tl2)
fst✝ : α
snd✝ : Bool
h : (fst✝, snd✝).fst = hd2.fst ∧ (fst✝, snd✝).snd = !hd2.snd
⊢ Red ((fst✝, snd✝) :: tl1) tl2
[PROOFSTEP]
cases hd2
[GOAL]
case pos.mk.mk
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
tl1 tl2 : List (α × Bool)
fst✝¹ : α
snd✝¹ : Bool
fst✝ : α
snd✝ : Bool
htl : reduce tl1 = (fst✝, snd✝) :: tl2
ih : Red tl1 ((fst✝, snd✝) :: tl2)
h : (fst✝¹, snd✝¹).fst = (fst✝, snd✝).fst ∧ (fst✝¹, snd✝¹).snd = !(fst✝, snd✝).snd
⊢ Red ((fst✝¹, snd✝¹) :: tl1) tl2
[PROOFSTEP]
cases h
[GOAL]
case pos.mk.mk.intro
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
tl1 tl2 : List (α × Bool)
fst✝¹ : α
snd✝¹ : Bool
fst✝ : α
snd✝ : Bool
htl : reduce tl1 = (fst✝, snd✝) :: tl2
ih : Red tl1 ((fst✝, snd✝) :: tl2)
left✝ : (fst✝¹, snd✝¹).fst = (fst✝, snd✝).fst
right✝ : (fst✝¹, snd✝¹).snd = !(fst✝, snd✝).snd
⊢ Red ((fst✝¹, snd✝¹) :: tl1) tl2
[PROOFSTEP]
dsimp at *
[GOAL]
case pos.mk.mk.intro
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
tl1 tl2 : List (α × Bool)
fst✝¹ : α
snd✝¹ : Bool
fst✝ : α
snd✝ : Bool
htl : reduce tl1 = (fst✝, snd✝) :: tl2
ih : Red tl1 ((fst✝, snd✝) :: tl2)
left✝ : fst✝¹ = fst✝
right✝ : snd✝¹ = !snd✝
⊢ Red ((fst✝¹, snd✝¹) :: tl1) tl2
[PROOFSTEP]
subst_vars
[GOAL]
case pos.mk.mk.intro
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
tl1 tl2 : List (α × Bool)
fst✝ : α
snd✝ : Bool
htl : reduce tl1 = (fst✝, snd✝) :: tl2
ih : Red tl1 ((fst✝, snd✝) :: tl2)
⊢ Red ((fst✝, !snd✝) :: tl1) tl2
[PROOFSTEP]
apply Red.trans (Red.cons_cons ih)
[GOAL]
case pos.mk.mk.intro
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
tl1 tl2 : List (α × Bool)
fst✝ : α
snd✝ : Bool
htl : reduce tl1 = (fst✝, snd✝) :: tl2
ih : Red tl1 ((fst✝, snd✝) :: tl2)
⊢ Red ((fst✝, !snd✝) :: (fst✝, snd✝) :: tl2) tl2
[PROOFSTEP]
exact Red.Step.cons_not_rev.to_red
[GOAL]
case neg
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
hd1 : α × Bool
tl1 : List (α × Bool)
hd2 : α × Bool
tl2 : List (α × Bool)
htl : reduce tl1 = hd2 :: tl2
ih : Red tl1 (hd2 :: tl2)
h : ¬(hd1.fst = hd2.fst ∧ hd1.snd = !hd2.snd)
⊢ Red (hd1 :: tl1) (hd1 :: hd2 :: tl2)
[PROOFSTEP]
exact Red.cons_cons ih
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
p : Prop
L2 L3 : List (α × Bool)
x✝¹ : α
x✝ : Bool
h : reduce [] = L2 ++ (x✝¹, x✝) :: (x✝¹, !x✝) :: L3
⊢ p
[PROOFSTEP]
cases L2
[GOAL]
case nil
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
p : Prop
L3 : List (α × Bool)
x✝¹ : α
x✝ : Bool
h : reduce [] = [] ++ (x✝¹, x✝) :: (x✝¹, !x✝) :: L3
⊢ p
[PROOFSTEP]
injections
[GOAL]
case cons
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
p : Prop
L3 : List (α × Bool)
x✝¹ : α
x✝ : Bool
head✝ : α × Bool
tail✝ : List (α × Bool)
h : reduce [] = head✝ :: tail✝ ++ (x✝¹, x✝) :: (x✝¹, !x✝) :: L3
⊢ p
[PROOFSTEP]
injections
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
p : Prop
x : α
b : Bool
L1 L2 L3 : List (α × Bool)
x' : α
b' : Bool
⊢ reduce ((x, b) :: L1) = L2 ++ (x', b') :: (x', !b') :: L3 → p
[PROOFSTEP]
dsimp
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
p : Prop
x : α
b : Bool
L1 L2 L3 : List (α × Bool)
x' : α
b' : Bool
⊢ List.rec [(x, b)] (fun head tail tail_ih => if x = head.fst ∧ b = !head.snd then tail else (x, b) :: head :: tail)
(reduce L1) =
L2 ++ (x', b') :: (x', !b') :: L3 →
p
[PROOFSTEP]
cases r : reduce L1 with
| nil =>
dsimp
intro h
exfalso
have := congr_arg List.length h
simp [List.length] at this
rw [add_comm, add_assoc, add_assoc, add_comm, <- add_assoc] at this
simp [Nat.one_eq_succ_zero, Nat.succ_add] at this
cases this
| cons hd tail =>
cases' hd with y c
dsimp only
split_ifs with h <;> intro H
· rw [H] at r
exact @reduce.not _ L1 ((y, c) :: L2) L3 x' b' r
· rcases L2 with (_ | ⟨a, L2⟩)
· injections
subst_vars
simp at h
· refine' @reduce.not _ L1 L2 L3 x' b' _
injection H with _ H
rw [r, H]
rfl
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
p : Prop
x : α
b : Bool
L1 L2 L3 : List (α × Bool)
x' : α
b' : Bool
x✝ : List (α × Bool)
r : reduce L1 = x✝
⊢ List.rec [(x, b)] (fun head tail tail_ih => if x = head.fst ∧ b = !head.snd then tail else (x, b) :: head :: tail)
x✝ =
L2 ++ (x', b') :: (x', !b') :: L3 →
p
[PROOFSTEP]
cases r : reduce L1 with
| nil =>
dsimp
intro h
exfalso
have := congr_arg List.length h
simp [List.length] at this
rw [add_comm, add_assoc, add_assoc, add_comm, <- add_assoc] at this
simp [Nat.one_eq_succ_zero, Nat.succ_add] at this
cases this
| cons hd tail =>
cases' hd with y c
dsimp only
split_ifs with h <;> intro H
· rw [H] at r
exact @reduce.not _ L1 ((y, c) :: L2) L3 x' b' r
· rcases L2 with (_ | ⟨a, L2⟩)
· injections
subst_vars
simp at h
· refine' @reduce.not _ L1 L2 L3 x' b' _
injection H with _ H
rw [r, H]
rfl
[GOAL]
case nil
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
p : Prop
x : α
b : Bool
L1 L2 L3 : List (α × Bool)
x' : α
b' : Bool
r : reduce L1 = []
⊢ List.rec [(x, b)] (fun head tail tail_ih => if x = head.fst ∧ b = !head.snd then tail else (x, b) :: head :: tail)
[] =
L2 ++ (x', b') :: (x', !b') :: L3 →
p
[PROOFSTEP]
| nil =>
dsimp
intro h
exfalso
have := congr_arg List.length h
simp [List.length] at this
rw [add_comm, add_assoc, add_assoc, add_comm, <- add_assoc] at this
simp [Nat.one_eq_succ_zero, Nat.succ_add] at this
cases this
[GOAL]
case nil
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
p : Prop
x : α
b : Bool
L1 L2 L3 : List (α × Bool)
x' : α
b' : Bool
r : reduce L1 = []
⊢ List.rec [(x, b)] (fun head tail tail_ih => if x = head.fst ∧ b = !head.snd then tail else (x, b) :: head :: tail)
[] =
L2 ++ (x', b') :: (x', !b') :: L3 →
p
[PROOFSTEP]
dsimp
[GOAL]
case nil
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
p : Prop
x : α
b : Bool
L1 L2 L3 : List (α × Bool)
x' : α
b' : Bool
r : reduce L1 = []
⊢ [(x, b)] = L2 ++ (x', b') :: (x', !b') :: L3 → p
[PROOFSTEP]
intro h
[GOAL]
case nil
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
p : Prop
x : α
b : Bool
L1 L2 L3 : List (α × Bool)
x' : α
b' : Bool
r : reduce L1 = []
h : [(x, b)] = L2 ++ (x', b') :: (x', !b') :: L3
⊢ p
[PROOFSTEP]
exfalso
[GOAL]
case nil.h
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
p : Prop
x : α
b : Bool
L1 L2 L3 : List (α × Bool)
x' : α
b' : Bool
r : reduce L1 = []
h : [(x, b)] = L2 ++ (x', b') :: (x', !b') :: L3
⊢ False
[PROOFSTEP]
have := congr_arg List.length h
[GOAL]
case nil.h
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
p : Prop
x : α
b : Bool
L1 L2 L3 : List (α × Bool)
x' : α
b' : Bool
r : reduce L1 = []
h : [(x, b)] = L2 ++ (x', b') :: (x', !b') :: L3
this : List.length [(x, b)] = List.length (L2 ++ (x', b') :: (x', !b') :: L3)
⊢ False
[PROOFSTEP]
simp [List.length] at this
[GOAL]
case nil.h
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
p : Prop
x : α
b : Bool
L1 L2 L3 : List (α × Bool)
x' : α
b' : Bool
r : reduce L1 = []
h : [(x, b)] = L2 ++ (x', b') :: (x', !b') :: L3
this : 1 = List.length L2 + (List.length L3 + 1 + 1)
⊢ False
[PROOFSTEP]
rw [add_comm, add_assoc, add_assoc, add_comm, <- add_assoc] at this
[GOAL]
case nil.h
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
p : Prop
x : α
b : Bool
L1 L2 L3 : List (α × Bool)
x' : α
b' : Bool
r : reduce L1 = []
h : [(x, b)] = L2 ++ (x', b') :: (x', !b') :: L3
this : 1 = 1 + 1 + List.length L2 + List.length L3
⊢ False
[PROOFSTEP]
simp [Nat.one_eq_succ_zero, Nat.succ_add] at this
[GOAL]
case nil.h
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
p : Prop
x : α
b : Bool
L1 L2 L3 : List (α × Bool)
x' : α
b' : Bool
r : reduce L1 = []
h : [(x, b)] = L2 ++ (x', b') :: (x', !b') :: L3
this : 0 = List.length L2 + List.length L3 + Nat.succ 0
⊢ False
[PROOFSTEP]
cases this
[GOAL]
case cons
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
p : Prop
x : α
b : Bool
L1 L2 L3 : List (α × Bool)
x' : α
b' : Bool
hd : α × Bool
tail : List (α × Bool)
r : reduce L1 = hd :: tail
⊢ List.rec [(x, b)] (fun head tail tail_ih => if x = head.fst ∧ b = !head.snd then tail else (x, b) :: head :: tail)
(hd :: tail) =
L2 ++ (x', b') :: (x', !b') :: L3 →
p
[PROOFSTEP]
| cons hd tail =>
cases' hd with y c
dsimp only
split_ifs with h <;> intro H
· rw [H] at r
exact @reduce.not _ L1 ((y, c) :: L2) L3 x' b' r
· rcases L2 with (_ | ⟨a, L2⟩)
· injections
subst_vars
simp at h
· refine' @reduce.not _ L1 L2 L3 x' b' _
injection H with _ H
rw [r, H]
rfl
[GOAL]
case cons
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
p : Prop
x : α
b : Bool
L1 L2 L3 : List (α × Bool)
x' : α
b' : Bool
hd : α × Bool
tail : List (α × Bool)
r : reduce L1 = hd :: tail
⊢ List.rec [(x, b)] (fun head tail tail_ih => if x = head.fst ∧ b = !head.snd then tail else (x, b) :: head :: tail)
(hd :: tail) =
L2 ++ (x', b') :: (x', !b') :: L3 →
p
[PROOFSTEP]
cases' hd with y c
[GOAL]
case cons.mk
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
p : Prop
x : α
b : Bool
L1 L2 L3 : List (α × Bool)
x' : α
b' : Bool
tail : List (α × Bool)
y : α
c : Bool
r : reduce L1 = (y, c) :: tail
⊢ List.rec [(x, b)] (fun head tail tail_ih => if x = head.fst ∧ b = !head.snd then tail else (x, b) :: head :: tail)
((y, c) :: tail) =
L2 ++ (x', b') :: (x', !b') :: L3 →
p
[PROOFSTEP]
dsimp only
[GOAL]
case cons.mk
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
p : Prop
x : α
b : Bool
L1 L2 L3 : List (α × Bool)
x' : α
b' : Bool
tail : List (α × Bool)
y : α
c : Bool
r : reduce L1 = (y, c) :: tail
⊢ (if x = y ∧ b = !c then tail else (x, b) :: (y, c) :: tail) = L2 ++ (x', b') :: (x', !b') :: L3 → p
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
p : Prop
x : α
b : Bool
L1 L2 L3 : List (α × Bool)
x' : α
b' : Bool
tail : List (α × Bool)
y : α
c : Bool
r : reduce L1 = (y, c) :: tail
h : x = y ∧ b = !c
⊢ tail = L2 ++ (x', b') :: (x', !b') :: L3 → p
[PROOFSTEP]
intro H
[GOAL]
case neg
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
p : Prop
x : α
b : Bool
L1 L2 L3 : List (α × Bool)
x' : α
b' : Bool
tail : List (α × Bool)
y : α
c : Bool
r : reduce L1 = (y, c) :: tail
h : ¬(x = y ∧ b = !c)
⊢ (x, b) :: (y, c) :: tail = L2 ++ (x', b') :: (x', !b') :: L3 → p
[PROOFSTEP]
intro H
[GOAL]
case pos
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
p : Prop
x : α
b : Bool
L1 L2 L3 : List (α × Bool)
x' : α
b' : Bool
tail : List (α × Bool)
y : α
c : Bool
r : reduce L1 = (y, c) :: tail
h : x = y ∧ b = !c
H : tail = L2 ++ (x', b') :: (x', !b') :: L3
⊢ p
[PROOFSTEP]
rw [H] at r
[GOAL]
case pos
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
p : Prop
x : α
b : Bool
L1 L2 L3 : List (α × Bool)
x' : α
b' : Bool
tail : List (α × Bool)
y : α
c : Bool
r : reduce L1 = (y, c) :: (L2 ++ (x', b') :: (x', !b') :: L3)
h : x = y ∧ b = !c
H : tail = L2 ++ (x', b') :: (x', !b') :: L3
⊢ p
[PROOFSTEP]
exact @reduce.not _ L1 ((y, c) :: L2) L3 x' b' r
[GOAL]
case neg
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
p : Prop
x : α
b : Bool
L1 L2 L3 : List (α × Bool)
x' : α
b' : Bool
tail : List (α × Bool)
y : α
c : Bool
r : reduce L1 = (y, c) :: tail
h : ¬(x = y ∧ b = !c)
H : (x, b) :: (y, c) :: tail = L2 ++ (x', b') :: (x', !b') :: L3
⊢ p
[PROOFSTEP]
rcases L2 with (_ | ⟨a, L2⟩)
[GOAL]
case neg.nil
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
p : Prop
x : α
b : Bool
L1 L3 : List (α × Bool)
x' : α
b' : Bool
tail : List (α × Bool)
y : α
c : Bool
r : reduce L1 = (y, c) :: tail
h : ¬(x = y ∧ b = !c)
H : (x, b) :: (y, c) :: tail = [] ++ (x', b') :: (x', !b') :: L3
⊢ p
[PROOFSTEP]
injections
[GOAL]
case neg.nil
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
p : Prop
x : α
b : Bool
L1 L3 : List (α × Bool)
x' : α
b' : Bool
tail : List (α × Bool)
y : α
c : Bool
r : reduce L1 = (y, c) :: tail
h : ¬(x = y ∧ b = !c)
fst_eq✝¹ : x = x'
snd_eq✝¹ : b = b'
tail_eq✝ : tail = L3
fst_eq✝ : y = x'
snd_eq✝ : c = !b'
⊢ p
[PROOFSTEP]
subst_vars
[GOAL]
case neg.nil
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
p : Prop
L1 : List (α × Bool)
b' : Bool
tail : List (α × Bool)
y : α
r : reduce L1 = (y, !b') :: tail
h : ¬(y = y ∧ b' = !!b')
⊢ p
[PROOFSTEP]
simp at h
[GOAL]
case neg.cons
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
p : Prop
x : α
b : Bool
L1 L3 : List (α × Bool)
x' : α
b' : Bool
tail : List (α × Bool)
y : α
c : Bool
r : reduce L1 = (y, c) :: tail
h : ¬(x = y ∧ b = !c)
a : α × Bool
L2 : List (α × Bool)
H : (x, b) :: (y, c) :: tail = a :: L2 ++ (x', b') :: (x', !b') :: L3
⊢ p
[PROOFSTEP]
refine' @reduce.not _ L1 L2 L3 x' b' _
[GOAL]
case neg.cons
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
p : Prop
x : α
b : Bool
L1 L3 : List (α × Bool)
x' : α
b' : Bool
tail : List (α × Bool)
y : α
c : Bool
r : reduce L1 = (y, c) :: tail
h : ¬(x = y ∧ b = !c)
a : α × Bool
L2 : List (α × Bool)
H : (x, b) :: (y, c) :: tail = a :: L2 ++ (x', b') :: (x', !b') :: L3
⊢ reduce L1 = L2 ++ (x', b') :: (x', !b') :: L3
[PROOFSTEP]
injection H with _ H
[GOAL]
case neg.cons
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
p : Prop
x : α
b : Bool
L1 L3 : List (α × Bool)
x' : α
b' : Bool
tail : List (α × Bool)
y : α
c : Bool
r : reduce L1 = (y, c) :: tail
h : ¬(x = y ∧ b = !c)
a : α × Bool
L2 : List (α × Bool)
head_eq✝ : (x, b) = a
H : (y, c) :: tail = List.append L2 ((x', b') :: (x', !b') :: L3)
⊢ reduce L1 = L2 ++ (x', b') :: (x', !b') :: L3
[PROOFSTEP]
rw [r, H]
[GOAL]
case neg.cons
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
p : Prop
x : α
b : Bool
L1 L3 : List (α × Bool)
x' : α
b' : Bool
tail : List (α × Bool)
y : α
c : Bool
r : reduce L1 = (y, c) :: tail
h : ¬(x = y ∧ b = !c)
a : α × Bool
L2 : List (α × Bool)
head_eq✝ : (x, b) = a
H : (y, c) :: tail = List.append L2 ((x', b') :: (x', !b') :: L3)
⊢ List.append L2 ((x', b') :: (x', !b') :: L3) = L2 ++ (x', b') :: (x', !b') :: L3
[PROOFSTEP]
rfl
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
H : Red (reduce L₁) L₂
⊢ reduce L₁ = L₂
[PROOFSTEP]
induction' H with L1 L' L2 H1 H2 ih
[GOAL]
case refl
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
⊢ reduce L₁ = reduce L₁
[PROOFSTEP]
rfl
[GOAL]
case tail
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
L1 L' : List (α × Bool)
L2 : ReflTransGen Red.Step (reduce L₁) L1
H1 : Red.Step L1 L'
H2 : reduce L₁ = L1
⊢ reduce L₁ = L'
[PROOFSTEP]
cases' H1 with L4 L5 x b
[GOAL]
case tail.not
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
L4 L5 : List (α × Bool)
x : α
b : Bool
L2 : ReflTransGen Red.Step (reduce L₁) (L4 ++ (x, b) :: (x, !b) :: L5)
H2 : reduce L₁ = L4 ++ (x, b) :: (x, !b) :: L5
⊢ reduce L₁ = L4 ++ L5
[PROOFSTEP]
exact reduce.not H2
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
⊢ ∀ {x : FreeGroup α}, mk (toWord x) = x
[PROOFSTEP]
rintro ⟨L⟩
[GOAL]
case mk
α : Type u
L✝ L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
x✝ : FreeGroup α
L : List (α × Bool)
⊢ mk (toWord (Quot.mk Red.Step L)) = Quot.mk Red.Step L
[PROOFSTEP]
exact reduce.self
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
⊢ Function.Injective toWord
[PROOFSTEP]
rintro ⟨L₁⟩ ⟨L₂⟩
[GOAL]
case mk.mk
α : Type u
L L₁✝ L₂✝ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
a₁✝ : FreeGroup α
L₁ : List (α × Bool)
a₂✝ : FreeGroup α
L₂ : List (α × Bool)
⊢ toWord (Quot.mk Red.Step L₁) = toWord (Quot.mk Red.Step L₂) → Quot.mk Red.Step L₁ = Quot.mk Red.Step L₂
[PROOFSTEP]
exact reduce.exact
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
⊢ ∀ (x : FreeGroup α), reduce (toWord x) = toWord x
[PROOFSTEP]
rintro ⟨L⟩
[GOAL]
case mk
α : Type u
L✝ L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
x✝ : FreeGroup α
L : List (α × Bool)
⊢ reduce (toWord (Quot.mk Red.Step L)) = toWord (Quot.mk Red.Step L)
[PROOFSTEP]
exact reduce.idem
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
w : List (α × Bool)
⊢ reduce (invRev w) = invRev (reduce w)
[PROOFSTEP]
apply reduce.min
[GOAL]
case H
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
w : List (α × Bool)
⊢ Red (reduce (invRev w)) (invRev (reduce w))
[PROOFSTEP]
rw [← red_invRev_iff, invRev_invRev]
[GOAL]
case H
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
w : List (α × Bool)
⊢ Red (invRev (reduce (invRev w))) (reduce w)
[PROOFSTEP]
apply Red.reduce_left
[GOAL]
case H.h
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
w : List (α × Bool)
⊢ Red w (invRev (reduce (invRev w)))
[PROOFSTEP]
have : Red (invRev (invRev w)) (invRev (reduce (invRev w))) := reduce.red.invRev
[GOAL]
case H.h
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
w : List (α × Bool)
this : Red (invRev (invRev w)) (invRev (reduce (invRev w)))
⊢ Red w (invRev (reduce (invRev w)))
[PROOFSTEP]
rwa [invRev_invRev] at this
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
x : FreeGroup α
⊢ toWord x⁻¹ = invRev (toWord x)
[PROOFSTEP]
rcases x with ⟨L⟩
[GOAL]
case mk
α : Type u
L✝ L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
x : FreeGroup α
L : List (α × Bool)
⊢ toWord (Quot.mk Red.Step L)⁻¹ = invRev (toWord (Quot.mk Red.Step L))
[PROOFSTEP]
rw [quot_mk_eq_mk, inv_mk, toWord_mk, toWord_mk, reduce_invRev]
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
x : FreeGroup α
⊢ norm x⁻¹ = norm x
[PROOFSTEP]
simp only [norm, toWord_inv, invRev_length]
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
x : FreeGroup α
⊢ norm x = 0 ↔ x = 1
[PROOFSTEP]
simp only [norm, List.length_eq_zero, toWord_eq_nil_iff]
[GOAL]
α : Type u
L L₁ L₂ L₃ L₄ : List (α × Bool)
inst✝ : DecidableEq α
x y : FreeGroup α
⊢ norm (x * y) = norm (mk (toWord x ++ toWord y))
[PROOFSTEP]
rw [← mul_mk, mk_toWord, mk_toWord]
| {"mathlib_filename": "Mathlib.GroupTheory.FreeGroup", "llama_tokens": 56005} |
[GOAL]
X : Type u_1
x : X
⊢ AddMonoidHom.comp toFreeAbelianGroup (singleAddHom x) =
↑(AddMonoidHom.flip (smulAddHom ℤ (FreeAbelianGroup X))) (of x)
[PROOFSTEP]
ext
[GOAL]
case h1
X : Type u_1
x : X
⊢ ↑(AddMonoidHom.comp toFreeAbelianGroup (singleAddHom x)) 1 =
↑(↑(AddMonoidHom.flip (smulAddHom ℤ (FreeAbelianGroup X))) (of x)) 1
[PROOFSTEP]
simp only [AddMonoidHom.coe_comp, Finsupp.singleAddHom_apply, Function.comp_apply, one_smul, toFreeAbelianGroup,
Finsupp.liftAddHom_apply_single]
[GOAL]
X : Type u_1
⊢ AddMonoidHom.comp toFinsupp toFreeAbelianGroup = AddMonoidHom.id (X →₀ ℤ)
[PROOFSTEP]
ext x y
[GOAL]
case H.h1.h
X : Type u_1
x y : X
⊢ ↑(↑(AddMonoidHom.comp (AddMonoidHom.comp toFinsupp toFreeAbelianGroup) (singleAddHom x)) 1) y =
↑(↑(AddMonoidHom.comp (AddMonoidHom.id (X →₀ ℤ)) (singleAddHom x)) 1) y
[PROOFSTEP]
simp only [AddMonoidHom.id_comp]
[GOAL]
case H.h1.h
X : Type u_1
x y : X
⊢ ↑(↑(AddMonoidHom.comp (AddMonoidHom.comp toFinsupp toFreeAbelianGroup) (singleAddHom x)) 1) y =
↑(↑(singleAddHom x) 1) y
[PROOFSTEP]
rw [AddMonoidHom.comp_assoc, Finsupp.toFreeAbelianGroup_comp_singleAddHom]
[GOAL]
case H.h1.h
X : Type u_1
x y : X
⊢ ↑(↑(AddMonoidHom.comp toFinsupp (↑(AddMonoidHom.flip (smulAddHom ℤ (FreeAbelianGroup X))) (of x))) 1) y =
↑(↑(singleAddHom x) 1) y
[PROOFSTEP]
simp only [toFinsupp, AddMonoidHom.coe_comp, Finsupp.singleAddHom_apply, Function.comp_apply, one_smul, lift.of,
AddMonoidHom.flip_apply, smulAddHom_apply, AddMonoidHom.id_apply]
[GOAL]
X : Type u_1
⊢ AddMonoidHom.comp toFreeAbelianGroup toFinsupp = AddMonoidHom.id (FreeAbelianGroup X)
[PROOFSTEP]
ext
[GOAL]
case H
X : Type u_1
x✝ : X
⊢ ↑(AddMonoidHom.comp toFreeAbelianGroup toFinsupp) (of x✝) = ↑(AddMonoidHom.id (FreeAbelianGroup X)) (of x✝)
[PROOFSTEP]
rw [toFreeAbelianGroup, toFinsupp, AddMonoidHom.comp_apply, lift.of, liftAddHom_apply_single, AddMonoidHom.flip_apply,
smulAddHom_apply, one_smul, AddMonoidHom.id_apply]
[GOAL]
X✝ : Type u_1
X : Type u_2
x : FreeAbelianGroup X
⊢ ↑toFreeAbelianGroup (↑toFinsupp x) = x
[PROOFSTEP]
rw [← AddMonoidHom.comp_apply, Finsupp.toFreeAbelianGroup_comp_toFinsupp, AddMonoidHom.id_apply]
[GOAL]
X : Type u_1
x : X
⊢ ↑toFinsupp (of x) = single x 1
[PROOFSTEP]
simp only [toFinsupp, lift.of]
[GOAL]
X : Type u_1
f : X →₀ ℤ
⊢ ↑toFinsupp (↑toFreeAbelianGroup f) = f
[PROOFSTEP]
rw [← AddMonoidHom.comp_apply, toFinsupp_comp_toFreeAbelianGroup, AddMonoidHom.id_apply]
[GOAL]
X : Type u_1
x : X
a : FreeAbelianGroup X
⊢ x ∈ support a ↔ ↑(coeff x) a ≠ 0
[PROOFSTEP]
rw [support, Finsupp.mem_support_iff]
[GOAL]
X : Type u_1
x : X
a : FreeAbelianGroup X
⊢ ↑(↑toFinsupp a) x ≠ 0 ↔ ↑(coeff x) a ≠ 0
[PROOFSTEP]
exact Iff.rfl
[GOAL]
X : Type u_1
x : X
a : FreeAbelianGroup X
⊢ ¬x ∈ support a ↔ ↑(coeff x) a = 0
[PROOFSTEP]
rw [support, Finsupp.not_mem_support_iff]
[GOAL]
X : Type u_1
x : X
a : FreeAbelianGroup X
⊢ ↑(↑toFinsupp a) x = 0 ↔ ↑(coeff x) a = 0
[PROOFSTEP]
exact Iff.rfl
[GOAL]
X : Type u_1
⊢ support 0 = ∅
[PROOFSTEP]
simp only [support, Finsupp.support_zero, AddMonoidHom.map_zero]
[GOAL]
X : Type u_1
x : X
⊢ support (of x) = {x}
[PROOFSTEP]
rw [support, toFinsupp_of, Finsupp.support_single_ne_zero _ one_ne_zero]
[GOAL]
X : Type u_1
a : FreeAbelianGroup X
⊢ support (-a) = support a
[PROOFSTEP]
simp only [support, AddMonoidHom.map_neg, Finsupp.support_neg]
[GOAL]
X : Type u_1
k : ℤ
h : k ≠ 0
a : FreeAbelianGroup X
⊢ support (k • a) = support a
[PROOFSTEP]
ext x
[GOAL]
case a
X : Type u_1
k : ℤ
h : k ≠ 0
a : FreeAbelianGroup X
x : X
⊢ x ∈ support (k • a) ↔ x ∈ support a
[PROOFSTEP]
simp only [mem_support_iff, AddMonoidHom.map_zsmul]
[GOAL]
case a
X : Type u_1
k : ℤ
h : k ≠ 0
a : FreeAbelianGroup X
x : X
⊢ k • ↑(coeff x) a ≠ 0 ↔ ↑(coeff x) a ≠ 0
[PROOFSTEP]
simp only [h, zsmul_int_int, false_or_iff, Ne.def, mul_eq_zero]
[GOAL]
X : Type u_1
k : ℕ
h : k ≠ 0
a : FreeAbelianGroup X
⊢ support (k • a) = support a
[PROOFSTEP]
apply support_zsmul k _ a
[GOAL]
X : Type u_1
k : ℕ
h : k ≠ 0
a : FreeAbelianGroup X
⊢ ↑k ≠ 0
[PROOFSTEP]
exact_mod_cast h
[GOAL]
X : Type u_1
a b : FreeAbelianGroup X
⊢ support (a + b) ⊆ support a ∪ support b
[PROOFSTEP]
simp only [support, AddMonoidHom.map_add]
[GOAL]
X : Type u_1
a b : FreeAbelianGroup X
⊢ (↑toFinsupp a + ↑toFinsupp b).support ⊆ (↑toFinsupp a).support ∪ (↑toFinsupp b).support
[PROOFSTEP]
apply Finsupp.support_add
| {"mathlib_filename": "Mathlib.GroupTheory.FreeAbelianGroupFinsupp", "llama_tokens": 2091} |
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
α : Type u_4
β : Type u_5
γ : Type u_6
inst✝³ : SMul M α
inst✝² : SMul M β
inst✝¹ : SMul N α
inst✝ : SMul N β
a : M
b : α
c : β
x : α ⊕ β
⊢ swap (a • x) = a • swap x
[PROOFSTEP]
cases x
[GOAL]
case inl
M : Type u_1
N : Type u_2
P : Type u_3
α : Type u_4
β : Type u_5
γ : Type u_6
inst✝³ : SMul M α
inst✝² : SMul M β
inst✝¹ : SMul N α
inst✝ : SMul N β
a : M
b : α
c : β
val✝ : α
⊢ swap (a • inl val✝) = a • swap (inl val✝)
[PROOFSTEP]
rfl
[GOAL]
case inr
M : Type u_1
N : Type u_2
P : Type u_3
α : Type u_4
β : Type u_5
γ : Type u_6
inst✝³ : SMul M α
inst✝² : SMul M β
inst✝¹ : SMul N α
inst✝ : SMul N β
a : M
b : α
c val✝ : β
⊢ swap (a • inr val✝) = a • swap (inr val✝)
[PROOFSTEP]
rfl
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
α : Type u_4
β : Type u_5
γ : Type u_6
inst✝⁶ : SMul M α
inst✝⁵ : SMul M β
inst✝⁴ : SMul N α
inst✝³ : SMul N β
a✝ : M
b✝ : α
c : β
x✝ : α ⊕ β
inst✝² : SMul M N
inst✝¹ : IsScalarTower M N α
inst✝ : IsScalarTower M N β
a : M
b : N
x : α ⊕ β
⊢ (a • b) • x = a • b • x
[PROOFSTEP]
cases x
[GOAL]
case inl
M : Type u_1
N : Type u_2
P : Type u_3
α : Type u_4
β : Type u_5
γ : Type u_6
inst✝⁶ : SMul M α
inst✝⁵ : SMul M β
inst✝⁴ : SMul N α
inst✝³ : SMul N β
a✝ : M
b✝ : α
c : β
x : α ⊕ β
inst✝² : SMul M N
inst✝¹ : IsScalarTower M N α
inst✝ : IsScalarTower M N β
a : M
b : N
val✝ : α
⊢ (a • b) • inl val✝ = a • b • inl val✝
case inr
M : Type u_1
N : Type u_2
P : Type u_3
α : Type u_4
β : Type u_5
γ : Type u_6
inst✝⁶ : SMul M α
inst✝⁵ : SMul M β
inst✝⁴ : SMul N α
inst✝³ : SMul N β
a✝ : M
b✝ : α
c : β
x : α ⊕ β
inst✝² : SMul M N
inst✝¹ : IsScalarTower M N α
inst✝ : IsScalarTower M N β
a : M
b : N
val✝ : β
⊢ (a • b) • inr val✝ = a • b • inr val✝
[PROOFSTEP]
exacts [congr_arg inl (smul_assoc _ _ _), congr_arg inr (smul_assoc _ _ _)]
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
α : Type u_4
β : Type u_5
γ : Type u_6
inst✝⁵ : SMul M α
inst✝⁴ : SMul M β
inst✝³ : SMul N α
inst✝² : SMul N β
a✝ : M
b✝ : α
c : β
x✝ : α ⊕ β
inst✝¹ : SMulCommClass M N α
inst✝ : SMulCommClass M N β
a : M
b : N
x : α ⊕ β
⊢ a • b • x = b • a • x
[PROOFSTEP]
cases x
[GOAL]
case inl
M : Type u_1
N : Type u_2
P : Type u_3
α : Type u_4
β : Type u_5
γ : Type u_6
inst✝⁵ : SMul M α
inst✝⁴ : SMul M β
inst✝³ : SMul N α
inst✝² : SMul N β
a✝ : M
b✝ : α
c : β
x : α ⊕ β
inst✝¹ : SMulCommClass M N α
inst✝ : SMulCommClass M N β
a : M
b : N
val✝ : α
⊢ a • b • inl val✝ = b • a • inl val✝
case inr
M : Type u_1
N : Type u_2
P : Type u_3
α : Type u_4
β : Type u_5
γ : Type u_6
inst✝⁵ : SMul M α
inst✝⁴ : SMul M β
inst✝³ : SMul N α
inst✝² : SMul N β
a✝ : M
b✝ : α
c : β
x : α ⊕ β
inst✝¹ : SMulCommClass M N α
inst✝ : SMulCommClass M N β
a : M
b : N
val✝ : β
⊢ a • b • inr val✝ = b • a • inr val✝
[PROOFSTEP]
exacts [congr_arg inl (smul_comm _ _ _), congr_arg inr (smul_comm _ _ _)]
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
α : Type u_4
β : Type u_5
γ : Type u_6
inst✝⁷ : SMul M α
inst✝⁶ : SMul M β
inst✝⁵ : SMul N α
inst✝⁴ : SMul N β
a✝ : M
b : α
c : β
x✝ : α ⊕ β
inst✝³ : SMul Mᵐᵒᵖ α
inst✝² : SMul Mᵐᵒᵖ β
inst✝¹ : IsCentralScalar M α
inst✝ : IsCentralScalar M β
a : M
x : α ⊕ β
⊢ MulOpposite.op a • x = a • x
[PROOFSTEP]
cases x
[GOAL]
case inl
M : Type u_1
N : Type u_2
P : Type u_3
α : Type u_4
β : Type u_5
γ : Type u_6
inst✝⁷ : SMul M α
inst✝⁶ : SMul M β
inst✝⁵ : SMul N α
inst✝⁴ : SMul N β
a✝ : M
b : α
c : β
x : α ⊕ β
inst✝³ : SMul Mᵐᵒᵖ α
inst✝² : SMul Mᵐᵒᵖ β
inst✝¹ : IsCentralScalar M α
inst✝ : IsCentralScalar M β
a : M
val✝ : α
⊢ MulOpposite.op a • inl val✝ = a • inl val✝
case inr
M : Type u_1
N : Type u_2
P : Type u_3
α : Type u_4
β : Type u_5
γ : Type u_6
inst✝⁷ : SMul M α
inst✝⁶ : SMul M β
inst✝⁵ : SMul N α
inst✝⁴ : SMul N β
a✝ : M
b : α
c : β
x : α ⊕ β
inst✝³ : SMul Mᵐᵒᵖ α
inst✝² : SMul Mᵐᵒᵖ β
inst✝¹ : IsCentralScalar M α
inst✝ : IsCentralScalar M β
a : M
val✝ : β
⊢ MulOpposite.op a • inr val✝ = a • inr val✝
[PROOFSTEP]
exacts [congr_arg inl (op_smul_eq_smul _ _), congr_arg inr (op_smul_eq_smul _ _)]
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
α : Type u_4
β : Type u_5
γ : Type u_6
inst✝⁴ : SMul M α
inst✝³ : SMul M β
inst✝² : SMul N α
inst✝¹ : SMul N β
a✝ : M
b : α
c : β
x : α ⊕ β
inst✝ : FaithfulSMul M α
m₁✝ m₂✝ : M
h : ∀ (a : α ⊕ β), m₁✝ • a = m₂✝ • a
a : α
⊢ m₁✝ • a = m₂✝ • a
[PROOFSTEP]
injection h (inl a)
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
α : Type u_4
β : Type u_5
γ : Type u_6
inst✝⁴ : SMul M α
inst✝³ : SMul M β
inst✝² : SMul N α
inst✝¹ : SMul N β
a : M
b✝ : α
c : β
x : α ⊕ β
inst✝ : FaithfulSMul M β
m₁✝ m₂✝ : M
h : ∀ (a : α ⊕ β), m₁✝ • a = m₂✝ • a
b : β
⊢ m₁✝ • b = m₂✝ • b
[PROOFSTEP]
injection h (inr b)
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
α : Type u_4
β : Type u_5
γ : Type u_6
m : Monoid M
inst✝¹ : MulAction M α
inst✝ : MulAction M β
x : α ⊕ β
⊢ 1 • x = x
[PROOFSTEP]
cases x
[GOAL]
case inl
M : Type u_1
N : Type u_2
P : Type u_3
α : Type u_4
β : Type u_5
γ : Type u_6
m : Monoid M
inst✝¹ : MulAction M α
inst✝ : MulAction M β
val✝ : α
⊢ 1 • inl val✝ = inl val✝
case inr
M : Type u_1
N : Type u_2
P : Type u_3
α : Type u_4
β : Type u_5
γ : Type u_6
m : Monoid M
inst✝¹ : MulAction M α
inst✝ : MulAction M β
val✝ : β
⊢ 1 • inr val✝ = inr val✝
[PROOFSTEP]
exacts [congr_arg inl (one_smul _ _), congr_arg inr (one_smul _ _)]
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
α : Type u_4
β : Type u_5
γ : Type u_6
m : Monoid M
inst✝¹ : MulAction M α
inst✝ : MulAction M β
a b : M
x : α ⊕ β
⊢ (a * b) • x = a • b • x
[PROOFSTEP]
cases x
[GOAL]
case inl
M : Type u_1
N : Type u_2
P : Type u_3
α : Type u_4
β : Type u_5
γ : Type u_6
m : Monoid M
inst✝¹ : MulAction M α
inst✝ : MulAction M β
a b : M
val✝ : α
⊢ (a * b) • inl val✝ = a • b • inl val✝
case inr
M : Type u_1
N : Type u_2
P : Type u_3
α : Type u_4
β : Type u_5
γ : Type u_6
m : Monoid M
inst✝¹ : MulAction M α
inst✝ : MulAction M β
a b : M
val✝ : β
⊢ (a * b) • inr val✝ = a • b • inr val✝
[PROOFSTEP]
exacts [congr_arg inl (mul_smul _ _ _), congr_arg inr (mul_smul _ _ _)]
| {"mathlib_filename": "Mathlib.GroupTheory.GroupAction.Sum", "llama_tokens": 3571} |
[GOAL]
G : Type u_1
inst✝ : Group G
H : Subgroup G
⊢ Commensurable H H
[PROOFSTEP]
simp [Commensurable]
[GOAL]
G : Type u_1
inst✝ : Group G
H K : Subgroup G
g : ConjAct G
a b : { x // x ∈ K }
⊢ Setoid.r a b ↔ Setoid.r (↑(Subgroup.equivSMul g K).toEquiv a) (↑(Subgroup.equivSMul g K).toEquiv b)
[PROOFSTEP]
dsimp
[GOAL]
G : Type u_1
inst✝ : Group G
H K : Subgroup G
g : ConjAct G
a b : { x // x ∈ K }
⊢ Setoid.r a b ↔ Setoid.r (↑(Subgroup.equivSMul g K) a) (↑(Subgroup.equivSMul g K) b)
[PROOFSTEP]
rw [← Quotient.eq'', ← Quotient.eq'', QuotientGroup.eq', QuotientGroup.eq', Subgroup.mem_subgroupOf,
Subgroup.mem_subgroupOf, ← MulEquiv.map_inv, ← MulEquiv.map_mul, Subgroup.equivSMul_apply_coe]
[GOAL]
G : Type u_1
inst✝ : Group G
H K : Subgroup G
g : ConjAct G
a b : { x // x ∈ K }
⊢ ↑(a⁻¹ * b) ∈ H ↔ g • ↑(a⁻¹ * b) ∈ g • H
[PROOFSTEP]
exact Subgroup.smul_mem_pointwise_smul_iff.symm
[GOAL]
G : Type u_1
inst✝ : Group G
H : Subgroup G
g : ConjAct G
⊢ Commensurable (g • H) H ↔ Commensurable H (g⁻¹ • H)
[PROOFSTEP]
rw [commensurable_conj, inv_smul_smul]
[GOAL]
G : Type u_1
inst✝ : Group G
H : Subgroup G
a✝ b✝ : ConjAct G
ha : a✝ ∈ {g | Commensurable (g • H) H}
hb : b✝ ∈ {g | Commensurable (g • H) H}
⊢ a✝ * b✝ ∈ {g | Commensurable (g • H) H}
[PROOFSTEP]
rw [Set.mem_setOf_eq, mul_smul]
[GOAL]
G : Type u_1
inst✝ : Group G
H : Subgroup G
a✝ b✝ : ConjAct G
ha : a✝ ∈ {g | Commensurable (g • H) H}
hb : b✝ ∈ {g | Commensurable (g • H) H}
⊢ Commensurable (a✝ • b✝ • H) H
[PROOFSTEP]
exact trans ((commensurable_conj _).mp hb) ha
[GOAL]
G : Type u_1
inst✝ : Group G
H : Subgroup G
⊢ 1 ∈
{ carrier := {g | Commensurable (g • H) H},
mul_mem' :=
(_ :
∀ {a b : ConjAct G},
a ∈ {g | Commensurable (g • H) H} →
b ∈ {g | Commensurable (g • H) H} → a * b ∈ {g | Commensurable (g • H) H}) }.carrier
[PROOFSTEP]
rw [Set.mem_setOf_eq, one_smul]
[GOAL]
G : Type u_1
inst✝ : Group G
H : Subgroup G
x✝¹ : ConjAct G
x✝ :
x✝¹ ∈
{
toSubsemigroup :=
{ carrier := {g | Commensurable (g • H) H},
mul_mem' :=
(_ :
∀ {a b : ConjAct G},
a ∈ {g | Commensurable (g • H) H} →
b ∈ {g | Commensurable (g • H) H} → a * b ∈ {g | Commensurable (g • H) H}) },
one_mem' :=
(_ :
1 ∈
{ carrier := {g | Commensurable (g • H) H},
mul_mem' :=
(_ :
∀ {a b : ConjAct G},
a ∈ {g | Commensurable (g • H) H} →
b ∈ {g | Commensurable (g • H) H} →
a * b ∈ {g | Commensurable (g • H) H}) }.carrier) }.toSubsemigroup.carrier
⊢ x✝¹⁻¹ ∈
{
toSubsemigroup :=
{ carrier := {g | Commensurable (g • H) H},
mul_mem' :=
(_ :
∀ {a b : ConjAct G},
a ∈ {g | Commensurable (g • H) H} →
b ∈ {g | Commensurable (g • H) H} → a * b ∈ {g | Commensurable (g • H) H}) },
one_mem' :=
(_ :
1 ∈
{ carrier := {g | Commensurable (g • H) H},
mul_mem' :=
(_ :
∀ {a b : ConjAct G},
a ∈ {g | Commensurable (g • H) H} →
b ∈ {g | Commensurable (g • H) H} →
a * b ∈ {g | Commensurable (g • H) H}) }.carrier) }.toSubsemigroup.carrier
[PROOFSTEP]
rwa [Set.mem_setOf_eq, comm, ← commensurable_inv]
| {"mathlib_filename": "Mathlib.GroupTheory.Commensurable", "llama_tokens": 1535} |
[GOAL]
G : Type u_1
inst✝ : Group G
ι : Type u_2
s : Finset ι
f : ι → G
comm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)
K : ι → Subgroup G
hind : CompleteLattice.Independent K
hmem : ∀ (x : ι), x ∈ s → f x ∈ K x
heq1 : Finset.noncommProd s f comm = 1
⊢ ∀ (i : ι), i ∈ s → f i = 1
[PROOFSTEP]
classical
revert heq1
induction' s using Finset.induction_on with i s hnmem ih
· simp
· have hcomm := comm.mono (Finset.coe_subset.2 <| Finset.subset_insert _ _)
simp only [Finset.forall_mem_insert] at hmem
have hmem_bsupr : s.noncommProd f hcomm ∈ ⨆ i ∈ (s : Set ι), K i :=
by
refine' Subgroup.noncommProd_mem _ _ _
intro x hx
have : K x ≤ ⨆ i ∈ (s : Set ι), K i := le_iSup₂ (f := fun i _ => K i) x hx
exact this (hmem.2 x hx)
intro heq1
rw [Finset.noncommProd_insert_of_not_mem _ _ _ _ hnmem] at heq1
have hnmem' : i ∉ (s : Set ι) := by simpa
obtain ⟨heq1i : f i = 1, heq1S : s.noncommProd f _ = 1⟩ :=
Subgroup.disjoint_iff_mul_eq_one.mp (hind.disjoint_biSup hnmem') hmem.1 hmem_bsupr heq1
intro i h
simp only [Finset.mem_insert] at h
rcases h with (rfl | h)
· exact heq1i
· refine' ih hcomm hmem.2 heq1S _ h
[GOAL]
G : Type u_1
inst✝ : Group G
ι : Type u_2
s : Finset ι
f : ι → G
comm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)
K : ι → Subgroup G
hind : CompleteLattice.Independent K
hmem : ∀ (x : ι), x ∈ s → f x ∈ K x
heq1 : Finset.noncommProd s f comm = 1
⊢ ∀ (i : ι), i ∈ s → f i = 1
[PROOFSTEP]
revert heq1
[GOAL]
G : Type u_1
inst✝ : Group G
ι : Type u_2
s : Finset ι
f : ι → G
comm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)
K : ι → Subgroup G
hind : CompleteLattice.Independent K
hmem : ∀ (x : ι), x ∈ s → f x ∈ K x
⊢ Finset.noncommProd s f comm = 1 → ∀ (i : ι), i ∈ s → f i = 1
[PROOFSTEP]
induction' s using Finset.induction_on with i s hnmem ih
[GOAL]
case empty
G : Type u_1
inst✝ : Group G
ι : Type u_2
s : Finset ι
f : ι → G
comm✝ : Set.Pairwise ↑s fun a b => Commute (f a) (f b)
K : ι → Subgroup G
hind : CompleteLattice.Independent K
hmem✝ : ∀ (x : ι), x ∈ s → f x ∈ K x
comm : Set.Pairwise ↑∅ fun a b => Commute (f a) (f b)
hmem : ∀ (x : ι), x ∈ ∅ → f x ∈ K x
⊢ Finset.noncommProd ∅ f comm = 1 → ∀ (i : ι), i ∈ ∅ → f i = 1
[PROOFSTEP]
simp
[GOAL]
case insert
G : Type u_1
inst✝ : Group G
ι : Type u_2
s✝ : Finset ι
f : ι → G
comm✝ : Set.Pairwise ↑s✝ fun a b => Commute (f a) (f b)
K : ι → Subgroup G
hind : CompleteLattice.Independent K
hmem✝ : ∀ (x : ι), x ∈ s✝ → f x ∈ K x
i : ι
s : Finset ι
hnmem : ¬i ∈ s
ih :
∀ (comm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)),
(∀ (x : ι), x ∈ s → f x ∈ K x) → Finset.noncommProd s f comm = 1 → ∀ (i : ι), i ∈ s → f i = 1
comm : Set.Pairwise ↑(insert i s) fun a b => Commute (f a) (f b)
hmem : ∀ (x : ι), x ∈ insert i s → f x ∈ K x
⊢ Finset.noncommProd (insert i s) f comm = 1 → ∀ (i_1 : ι), i_1 ∈ insert i s → f i_1 = 1
[PROOFSTEP]
have hcomm := comm.mono (Finset.coe_subset.2 <| Finset.subset_insert _ _)
[GOAL]
case insert
G : Type u_1
inst✝ : Group G
ι : Type u_2
s✝ : Finset ι
f : ι → G
comm✝ : Set.Pairwise ↑s✝ fun a b => Commute (f a) (f b)
K : ι → Subgroup G
hind : CompleteLattice.Independent K
hmem✝ : ∀ (x : ι), x ∈ s✝ → f x ∈ K x
i : ι
s : Finset ι
hnmem : ¬i ∈ s
ih :
∀ (comm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)),
(∀ (x : ι), x ∈ s → f x ∈ K x) → Finset.noncommProd s f comm = 1 → ∀ (i : ι), i ∈ s → f i = 1
comm : Set.Pairwise ↑(insert i s) fun a b => Commute (f a) (f b)
hmem : ∀ (x : ι), x ∈ insert i s → f x ∈ K x
hcomm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)
⊢ Finset.noncommProd (insert i s) f comm = 1 → ∀ (i_1 : ι), i_1 ∈ insert i s → f i_1 = 1
[PROOFSTEP]
simp only [Finset.forall_mem_insert] at hmem
[GOAL]
case insert
G : Type u_1
inst✝ : Group G
ι : Type u_2
s✝ : Finset ι
f : ι → G
comm✝ : Set.Pairwise ↑s✝ fun a b => Commute (f a) (f b)
K : ι → Subgroup G
hind : CompleteLattice.Independent K
hmem✝ : ∀ (x : ι), x ∈ s✝ → f x ∈ K x
i : ι
s : Finset ι
hnmem : ¬i ∈ s
ih :
∀ (comm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)),
(∀ (x : ι), x ∈ s → f x ∈ K x) → Finset.noncommProd s f comm = 1 → ∀ (i : ι), i ∈ s → f i = 1
comm : Set.Pairwise ↑(insert i s) fun a b => Commute (f a) (f b)
hcomm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)
hmem : f i ∈ K i ∧ ∀ (x : ι), x ∈ s → f x ∈ K x
⊢ Finset.noncommProd (insert i s) f comm = 1 → ∀ (i_1 : ι), i_1 ∈ insert i s → f i_1 = 1
[PROOFSTEP]
have hmem_bsupr : s.noncommProd f hcomm ∈ ⨆ i ∈ (s : Set ι), K i :=
by
refine' Subgroup.noncommProd_mem _ _ _
intro x hx
have : K x ≤ ⨆ i ∈ (s : Set ι), K i := le_iSup₂ (f := fun i _ => K i) x hx
exact this (hmem.2 x hx)
[GOAL]
G : Type u_1
inst✝ : Group G
ι : Type u_2
s✝ : Finset ι
f : ι → G
comm✝ : Set.Pairwise ↑s✝ fun a b => Commute (f a) (f b)
K : ι → Subgroup G
hind : CompleteLattice.Independent K
hmem✝ : ∀ (x : ι), x ∈ s✝ → f x ∈ K x
i : ι
s : Finset ι
hnmem : ¬i ∈ s
ih :
∀ (comm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)),
(∀ (x : ι), x ∈ s → f x ∈ K x) → Finset.noncommProd s f comm = 1 → ∀ (i : ι), i ∈ s → f i = 1
comm : Set.Pairwise ↑(insert i s) fun a b => Commute (f a) (f b)
hcomm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)
hmem : f i ∈ K i ∧ ∀ (x : ι), x ∈ s → f x ∈ K x
⊢ Finset.noncommProd s f hcomm ∈ ⨆ (i : ι) (_ : i ∈ ↑s), K i
[PROOFSTEP]
refine' Subgroup.noncommProd_mem _ _ _
[GOAL]
G : Type u_1
inst✝ : Group G
ι : Type u_2
s✝ : Finset ι
f : ι → G
comm✝ : Set.Pairwise ↑s✝ fun a b => Commute (f a) (f b)
K : ι → Subgroup G
hind : CompleteLattice.Independent K
hmem✝ : ∀ (x : ι), x ∈ s✝ → f x ∈ K x
i : ι
s : Finset ι
hnmem : ¬i ∈ s
ih :
∀ (comm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)),
(∀ (x : ι), x ∈ s → f x ∈ K x) → Finset.noncommProd s f comm = 1 → ∀ (i : ι), i ∈ s → f i = 1
comm : Set.Pairwise ↑(insert i s) fun a b => Commute (f a) (f b)
hcomm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)
hmem : f i ∈ K i ∧ ∀ (x : ι), x ∈ s → f x ∈ K x
⊢ ∀ (c : ι), c ∈ s → f c ∈ ⨆ (i : ι) (_ : i ∈ ↑s), K i
[PROOFSTEP]
intro x hx
[GOAL]
G : Type u_1
inst✝ : Group G
ι : Type u_2
s✝ : Finset ι
f : ι → G
comm✝ : Set.Pairwise ↑s✝ fun a b => Commute (f a) (f b)
K : ι → Subgroup G
hind : CompleteLattice.Independent K
hmem✝ : ∀ (x : ι), x ∈ s✝ → f x ∈ K x
i : ι
s : Finset ι
hnmem : ¬i ∈ s
ih :
∀ (comm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)),
(∀ (x : ι), x ∈ s → f x ∈ K x) → Finset.noncommProd s f comm = 1 → ∀ (i : ι), i ∈ s → f i = 1
comm : Set.Pairwise ↑(insert i s) fun a b => Commute (f a) (f b)
hcomm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)
hmem : f i ∈ K i ∧ ∀ (x : ι), x ∈ s → f x ∈ K x
x : ι
hx : x ∈ s
⊢ f x ∈ ⨆ (i : ι) (_ : i ∈ ↑s), K i
[PROOFSTEP]
have : K x ≤ ⨆ i ∈ (s : Set ι), K i := le_iSup₂ (f := fun i _ => K i) x hx
[GOAL]
G : Type u_1
inst✝ : Group G
ι : Type u_2
s✝ : Finset ι
f : ι → G
comm✝ : Set.Pairwise ↑s✝ fun a b => Commute (f a) (f b)
K : ι → Subgroup G
hind : CompleteLattice.Independent K
hmem✝ : ∀ (x : ι), x ∈ s✝ → f x ∈ K x
i : ι
s : Finset ι
hnmem : ¬i ∈ s
ih :
∀ (comm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)),
(∀ (x : ι), x ∈ s → f x ∈ K x) → Finset.noncommProd s f comm = 1 → ∀ (i : ι), i ∈ s → f i = 1
comm : Set.Pairwise ↑(insert i s) fun a b => Commute (f a) (f b)
hcomm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)
hmem : f i ∈ K i ∧ ∀ (x : ι), x ∈ s → f x ∈ K x
x : ι
hx : x ∈ s
this : K x ≤ ⨆ (i : ι) (_ : i ∈ ↑s), K i
⊢ f x ∈ ⨆ (i : ι) (_ : i ∈ ↑s), K i
[PROOFSTEP]
exact this (hmem.2 x hx)
[GOAL]
case insert
G : Type u_1
inst✝ : Group G
ι : Type u_2
s✝ : Finset ι
f : ι → G
comm✝ : Set.Pairwise ↑s✝ fun a b => Commute (f a) (f b)
K : ι → Subgroup G
hind : CompleteLattice.Independent K
hmem✝ : ∀ (x : ι), x ∈ s✝ → f x ∈ K x
i : ι
s : Finset ι
hnmem : ¬i ∈ s
ih :
∀ (comm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)),
(∀ (x : ι), x ∈ s → f x ∈ K x) → Finset.noncommProd s f comm = 1 → ∀ (i : ι), i ∈ s → f i = 1
comm : Set.Pairwise ↑(insert i s) fun a b => Commute (f a) (f b)
hcomm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)
hmem : f i ∈ K i ∧ ∀ (x : ι), x ∈ s → f x ∈ K x
hmem_bsupr : Finset.noncommProd s f hcomm ∈ ⨆ (i : ι) (_ : i ∈ ↑s), K i
⊢ Finset.noncommProd (insert i s) f comm = 1 → ∀ (i_1 : ι), i_1 ∈ insert i s → f i_1 = 1
[PROOFSTEP]
intro heq1
[GOAL]
case insert
G : Type u_1
inst✝ : Group G
ι : Type u_2
s✝ : Finset ι
f : ι → G
comm✝ : Set.Pairwise ↑s✝ fun a b => Commute (f a) (f b)
K : ι → Subgroup G
hind : CompleteLattice.Independent K
hmem✝ : ∀ (x : ι), x ∈ s✝ → f x ∈ K x
i : ι
s : Finset ι
hnmem : ¬i ∈ s
ih :
∀ (comm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)),
(∀ (x : ι), x ∈ s → f x ∈ K x) → Finset.noncommProd s f comm = 1 → ∀ (i : ι), i ∈ s → f i = 1
comm : Set.Pairwise ↑(insert i s) fun a b => Commute (f a) (f b)
hcomm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)
hmem : f i ∈ K i ∧ ∀ (x : ι), x ∈ s → f x ∈ K x
hmem_bsupr : Finset.noncommProd s f hcomm ∈ ⨆ (i : ι) (_ : i ∈ ↑s), K i
heq1 : Finset.noncommProd (insert i s) f comm = 1
⊢ ∀ (i_1 : ι), i_1 ∈ insert i s → f i_1 = 1
[PROOFSTEP]
rw [Finset.noncommProd_insert_of_not_mem _ _ _ _ hnmem] at heq1
[GOAL]
case insert
G : Type u_1
inst✝ : Group G
ι : Type u_2
s✝ : Finset ι
f : ι → G
comm✝ : Set.Pairwise ↑s✝ fun a b => Commute (f a) (f b)
K : ι → Subgroup G
hind : CompleteLattice.Independent K
hmem✝ : ∀ (x : ι), x ∈ s✝ → f x ∈ K x
i : ι
s : Finset ι
hnmem : ¬i ∈ s
ih :
∀ (comm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)),
(∀ (x : ι), x ∈ s → f x ∈ K x) → Finset.noncommProd s f comm = 1 → ∀ (i : ι), i ∈ s → f i = 1
comm : Set.Pairwise ↑(insert i s) fun a b => Commute (f a) (f b)
hcomm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)
hmem : f i ∈ K i ∧ ∀ (x : ι), x ∈ s → f x ∈ K x
hmem_bsupr : Finset.noncommProd s f hcomm ∈ ⨆ (i : ι) (_ : i ∈ ↑s), K i
heq1 : f i * Finset.noncommProd s f (_ : Set.Pairwise ↑s fun a b => Commute (f a) (f b)) = 1
⊢ ∀ (i_1 : ι), i_1 ∈ insert i s → f i_1 = 1
[PROOFSTEP]
have hnmem' : i ∉ (s : Set ι) := by simpa
[GOAL]
G : Type u_1
inst✝ : Group G
ι : Type u_2
s✝ : Finset ι
f : ι → G
comm✝ : Set.Pairwise ↑s✝ fun a b => Commute (f a) (f b)
K : ι → Subgroup G
hind : CompleteLattice.Independent K
hmem✝ : ∀ (x : ι), x ∈ s✝ → f x ∈ K x
i : ι
s : Finset ι
hnmem : ¬i ∈ s
ih :
∀ (comm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)),
(∀ (x : ι), x ∈ s → f x ∈ K x) → Finset.noncommProd s f comm = 1 → ∀ (i : ι), i ∈ s → f i = 1
comm : Set.Pairwise ↑(insert i s) fun a b => Commute (f a) (f b)
hcomm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)
hmem : f i ∈ K i ∧ ∀ (x : ι), x ∈ s → f x ∈ K x
hmem_bsupr : Finset.noncommProd s f hcomm ∈ ⨆ (i : ι) (_ : i ∈ ↑s), K i
heq1 : f i * Finset.noncommProd s f (_ : Set.Pairwise ↑s fun a b => Commute (f a) (f b)) = 1
⊢ ¬i ∈ ↑s
[PROOFSTEP]
simpa
[GOAL]
case insert
G : Type u_1
inst✝ : Group G
ι : Type u_2
s✝ : Finset ι
f : ι → G
comm✝ : Set.Pairwise ↑s✝ fun a b => Commute (f a) (f b)
K : ι → Subgroup G
hind : CompleteLattice.Independent K
hmem✝ : ∀ (x : ι), x ∈ s✝ → f x ∈ K x
i : ι
s : Finset ι
hnmem : ¬i ∈ s
ih :
∀ (comm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)),
(∀ (x : ι), x ∈ s → f x ∈ K x) → Finset.noncommProd s f comm = 1 → ∀ (i : ι), i ∈ s → f i = 1
comm : Set.Pairwise ↑(insert i s) fun a b => Commute (f a) (f b)
hcomm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)
hmem : f i ∈ K i ∧ ∀ (x : ι), x ∈ s → f x ∈ K x
hmem_bsupr : Finset.noncommProd s f hcomm ∈ ⨆ (i : ι) (_ : i ∈ ↑s), K i
heq1 : f i * Finset.noncommProd s f (_ : Set.Pairwise ↑s fun a b => Commute (f a) (f b)) = 1
hnmem' : ¬i ∈ ↑s
⊢ ∀ (i_1 : ι), i_1 ∈ insert i s → f i_1 = 1
[PROOFSTEP]
obtain ⟨heq1i : f i = 1, heq1S : s.noncommProd f _ = 1⟩ :=
Subgroup.disjoint_iff_mul_eq_one.mp (hind.disjoint_biSup hnmem') hmem.1 hmem_bsupr heq1
[GOAL]
case insert.intro
G : Type u_1
inst✝ : Group G
ι : Type u_2
s✝ : Finset ι
f : ι → G
comm✝ : Set.Pairwise ↑s✝ fun a b => Commute (f a) (f b)
K : ι → Subgroup G
hind : CompleteLattice.Independent K
hmem✝ : ∀ (x : ι), x ∈ s✝ → f x ∈ K x
i : ι
s : Finset ι
hnmem : ¬i ∈ s
ih :
∀ (comm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)),
(∀ (x : ι), x ∈ s → f x ∈ K x) → Finset.noncommProd s f comm = 1 → ∀ (i : ι), i ∈ s → f i = 1
comm : Set.Pairwise ↑(insert i s) fun a b => Commute (f a) (f b)
hcomm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)
hmem : f i ∈ K i ∧ ∀ (x : ι), x ∈ s → f x ∈ K x
hmem_bsupr : Finset.noncommProd s f hcomm ∈ ⨆ (i : ι) (_ : i ∈ ↑s), K i
heq1 : f i * Finset.noncommProd s f (_ : Set.Pairwise ↑s fun a b => Commute (f a) (f b)) = 1
hnmem' : ¬i ∈ ↑s
heq1i : f i = 1
heq1S : Finset.noncommProd s f hcomm = 1
⊢ ∀ (i_1 : ι), i_1 ∈ insert i s → f i_1 = 1
[PROOFSTEP]
intro i h
[GOAL]
case insert.intro
G : Type u_1
inst✝ : Group G
ι : Type u_2
s✝ : Finset ι
f : ι → G
comm✝ : Set.Pairwise ↑s✝ fun a b => Commute (f a) (f b)
K : ι → Subgroup G
hind : CompleteLattice.Independent K
hmem✝ : ∀ (x : ι), x ∈ s✝ → f x ∈ K x
i✝ : ι
s : Finset ι
hnmem : ¬i✝ ∈ s
ih :
∀ (comm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)),
(∀ (x : ι), x ∈ s → f x ∈ K x) → Finset.noncommProd s f comm = 1 → ∀ (i : ι), i ∈ s → f i = 1
comm : Set.Pairwise ↑(insert i✝ s) fun a b => Commute (f a) (f b)
hcomm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)
hmem : f i✝ ∈ K i✝ ∧ ∀ (x : ι), x ∈ s → f x ∈ K x
hmem_bsupr : Finset.noncommProd s f hcomm ∈ ⨆ (i : ι) (_ : i ∈ ↑s), K i
heq1 : f i✝ * Finset.noncommProd s f (_ : Set.Pairwise ↑s fun a b => Commute (f a) (f b)) = 1
hnmem' : ¬i✝ ∈ ↑s
heq1i : f i✝ = 1
heq1S : Finset.noncommProd s f hcomm = 1
i : ι
h : i ∈ insert i✝ s
⊢ f i = 1
[PROOFSTEP]
simp only [Finset.mem_insert] at h
[GOAL]
case insert.intro
G : Type u_1
inst✝ : Group G
ι : Type u_2
s✝ : Finset ι
f : ι → G
comm✝ : Set.Pairwise ↑s✝ fun a b => Commute (f a) (f b)
K : ι → Subgroup G
hind : CompleteLattice.Independent K
hmem✝ : ∀ (x : ι), x ∈ s✝ → f x ∈ K x
i✝ : ι
s : Finset ι
hnmem : ¬i✝ ∈ s
ih :
∀ (comm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)),
(∀ (x : ι), x ∈ s → f x ∈ K x) → Finset.noncommProd s f comm = 1 → ∀ (i : ι), i ∈ s → f i = 1
comm : Set.Pairwise ↑(insert i✝ s) fun a b => Commute (f a) (f b)
hcomm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)
hmem : f i✝ ∈ K i✝ ∧ ∀ (x : ι), x ∈ s → f x ∈ K x
hmem_bsupr : Finset.noncommProd s f hcomm ∈ ⨆ (i : ι) (_ : i ∈ ↑s), K i
heq1 : f i✝ * Finset.noncommProd s f (_ : Set.Pairwise ↑s fun a b => Commute (f a) (f b)) = 1
hnmem' : ¬i✝ ∈ ↑s
heq1i : f i✝ = 1
heq1S : Finset.noncommProd s f hcomm = 1
i : ι
h : i = i✝ ∨ i ∈ s
⊢ f i = 1
[PROOFSTEP]
rcases h with (rfl | h)
[GOAL]
case insert.intro.inl
G : Type u_1
inst✝ : Group G
ι : Type u_2
s✝ : Finset ι
f : ι → G
comm✝ : Set.Pairwise ↑s✝ fun a b => Commute (f a) (f b)
K : ι → Subgroup G
hind : CompleteLattice.Independent K
hmem✝ : ∀ (x : ι), x ∈ s✝ → f x ∈ K x
s : Finset ι
ih :
∀ (comm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)),
(∀ (x : ι), x ∈ s → f x ∈ K x) → Finset.noncommProd s f comm = 1 → ∀ (i : ι), i ∈ s → f i = 1
hcomm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)
hmem_bsupr : Finset.noncommProd s f hcomm ∈ ⨆ (i : ι) (_ : i ∈ ↑s), K i
heq1S : Finset.noncommProd s f hcomm = 1
i : ι
hnmem : ¬i ∈ s
comm : Set.Pairwise ↑(insert i s) fun a b => Commute (f a) (f b)
hmem : f i ∈ K i ∧ ∀ (x : ι), x ∈ s → f x ∈ K x
heq1 : f i * Finset.noncommProd s f (_ : Set.Pairwise ↑s fun a b => Commute (f a) (f b)) = 1
hnmem' : ¬i ∈ ↑s
heq1i : f i = 1
⊢ f i = 1
[PROOFSTEP]
exact heq1i
[GOAL]
case insert.intro.inr
G : Type u_1
inst✝ : Group G
ι : Type u_2
s✝ : Finset ι
f : ι → G
comm✝ : Set.Pairwise ↑s✝ fun a b => Commute (f a) (f b)
K : ι → Subgroup G
hind : CompleteLattice.Independent K
hmem✝ : ∀ (x : ι), x ∈ s✝ → f x ∈ K x
i✝ : ι
s : Finset ι
hnmem : ¬i✝ ∈ s
ih :
∀ (comm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)),
(∀ (x : ι), x ∈ s → f x ∈ K x) → Finset.noncommProd s f comm = 1 → ∀ (i : ι), i ∈ s → f i = 1
comm : Set.Pairwise ↑(insert i✝ s) fun a b => Commute (f a) (f b)
hcomm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)
hmem : f i✝ ∈ K i✝ ∧ ∀ (x : ι), x ∈ s → f x ∈ K x
hmem_bsupr : Finset.noncommProd s f hcomm ∈ ⨆ (i : ι) (_ : i ∈ ↑s), K i
heq1 : f i✝ * Finset.noncommProd s f (_ : Set.Pairwise ↑s fun a b => Commute (f a) (f b)) = 1
hnmem' : ¬i✝ ∈ ↑s
heq1i : f i✝ = 1
heq1S : Finset.noncommProd s f hcomm = 1
i : ι
h : i ∈ s
⊢ f i = 1
[PROOFSTEP]
refine' ih hcomm hmem.2 heq1S _ h
[GOAL]
M : Type u_1
inst✝² : Monoid M
ι : Type u_2
hdec : DecidableEq ι
inst✝¹ : Fintype ι
N : ι → Type u_3
inst✝ : (i : ι) → Monoid (N i)
ϕ : (i : ι) → N i →* M
hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f g : (i : ι) → N i
⊢ (fun f =>
Finset.noncommProd Finset.univ (fun i => ↑(ϕ i) (f i))
(_ :
∀ (i : ι), i ∈ ↑Finset.univ → ∀ (j : ι), j ∈ ↑Finset.univ → i ≠ j → Commute (↑(ϕ i) (f i)) (↑(ϕ j) (f j))))
1 =
1
[PROOFSTEP]
apply (Finset.noncommProd_eq_pow_card _ _ _ _ _).trans (one_pow _)
[GOAL]
M : Type u_1
inst✝² : Monoid M
ι : Type u_2
hdec : DecidableEq ι
inst✝¹ : Fintype ι
N : ι → Type u_3
inst✝ : (i : ι) → Monoid (N i)
ϕ : (i : ι) → N i →* M
hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f g : (i : ι) → N i
⊢ ∀ (x : ι), x ∈ Finset.univ → ↑(ϕ x) (OfNat.ofNat 1 x) = 1
[PROOFSTEP]
simp
[GOAL]
M : Type u_1
inst✝² : Monoid M
ι : Type u_2
hdec : DecidableEq ι
inst✝¹ : Fintype ι
N : ι → Type u_3
inst✝ : (i : ι) → Monoid (N i)
ϕ : (i : ι) → N i →* M
hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f✝ g✝ f g : (i : ι) → N i
⊢ OneHom.toFun
{
toFun := fun f =>
Finset.noncommProd Finset.univ (fun i => ↑(ϕ i) (f i))
(_ :
∀ (i : ι),
i ∈ ↑Finset.univ → ∀ (j : ι), j ∈ ↑Finset.univ → i ≠ j → Commute (↑(ϕ i) (f i)) (↑(ϕ j) (f j))),
map_one' :=
(_ :
Finset.noncommProd Finset.univ (fun i => ↑(ϕ i) (OfNat.ofNat 1 i))
(_ :
∀ (i : ι),
i ∈ ↑Finset.univ →
∀ (j : ι),
j ∈ ↑Finset.univ → i ≠ j → Commute (↑(ϕ i) (OfNat.ofNat 1 i)) (↑(ϕ j) (OfNat.ofNat 1 j))) =
1) }
(f * g) =
OneHom.toFun
{
toFun := fun f =>
Finset.noncommProd Finset.univ (fun i => ↑(ϕ i) (f i))
(_ :
∀ (i : ι),
i ∈ ↑Finset.univ → ∀ (j : ι), j ∈ ↑Finset.univ → i ≠ j → Commute (↑(ϕ i) (f i)) (↑(ϕ j) (f j))),
map_one' :=
(_ :
Finset.noncommProd Finset.univ (fun i => ↑(ϕ i) (OfNat.ofNat 1 i))
(_ :
∀ (i : ι),
i ∈ ↑Finset.univ →
∀ (j : ι),
j ∈ ↑Finset.univ → i ≠ j → Commute (↑(ϕ i) (OfNat.ofNat 1 i)) (↑(ϕ j) (OfNat.ofNat 1 j))) =
1) }
f *
OneHom.toFun
{
toFun := fun f =>
Finset.noncommProd Finset.univ (fun i => ↑(ϕ i) (f i))
(_ :
∀ (i : ι),
i ∈ ↑Finset.univ → ∀ (j : ι), j ∈ ↑Finset.univ → i ≠ j → Commute (↑(ϕ i) (f i)) (↑(ϕ j) (f j))),
map_one' :=
(_ :
Finset.noncommProd Finset.univ (fun i => ↑(ϕ i) (OfNat.ofNat 1 i))
(_ :
∀ (i : ι),
i ∈ ↑Finset.univ →
∀ (j : ι),
j ∈ ↑Finset.univ → i ≠ j → Commute (↑(ϕ i) (OfNat.ofNat 1 i)) (↑(ϕ j) (OfNat.ofNat 1 j))) =
1) }
g
[PROOFSTEP]
classical
simp only
convert @Finset.noncommProd_mul_distrib _ _ _ _ (fun i => ϕ i (f i)) (fun i => ϕ i (g i)) _ _ _
· exact map_mul _ _ _
· rintro i - j - h
exact hcomm h _ _
[GOAL]
M : Type u_1
inst✝² : Monoid M
ι : Type u_2
hdec : DecidableEq ι
inst✝¹ : Fintype ι
N : ι → Type u_3
inst✝ : (i : ι) → Monoid (N i)
ϕ : (i : ι) → N i →* M
hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f✝ g✝ f g : (i : ι) → N i
⊢ OneHom.toFun
{
toFun := fun f =>
Finset.noncommProd Finset.univ (fun i => ↑(ϕ i) (f i))
(_ :
∀ (i : ι),
i ∈ ↑Finset.univ → ∀ (j : ι), j ∈ ↑Finset.univ → i ≠ j → Commute (↑(ϕ i) (f i)) (↑(ϕ j) (f j))),
map_one' :=
(_ :
Finset.noncommProd Finset.univ (fun i => ↑(ϕ i) (OfNat.ofNat 1 i))
(_ :
∀ (i : ι),
i ∈ ↑Finset.univ →
∀ (j : ι),
j ∈ ↑Finset.univ → i ≠ j → Commute (↑(ϕ i) (OfNat.ofNat 1 i)) (↑(ϕ j) (OfNat.ofNat 1 j))) =
1) }
(f * g) =
OneHom.toFun
{
toFun := fun f =>
Finset.noncommProd Finset.univ (fun i => ↑(ϕ i) (f i))
(_ :
∀ (i : ι),
i ∈ ↑Finset.univ → ∀ (j : ι), j ∈ ↑Finset.univ → i ≠ j → Commute (↑(ϕ i) (f i)) (↑(ϕ j) (f j))),
map_one' :=
(_ :
Finset.noncommProd Finset.univ (fun i => ↑(ϕ i) (OfNat.ofNat 1 i))
(_ :
∀ (i : ι),
i ∈ ↑Finset.univ →
∀ (j : ι),
j ∈ ↑Finset.univ → i ≠ j → Commute (↑(ϕ i) (OfNat.ofNat 1 i)) (↑(ϕ j) (OfNat.ofNat 1 j))) =
1) }
f *
OneHom.toFun
{
toFun := fun f =>
Finset.noncommProd Finset.univ (fun i => ↑(ϕ i) (f i))
(_ :
∀ (i : ι),
i ∈ ↑Finset.univ → ∀ (j : ι), j ∈ ↑Finset.univ → i ≠ j → Commute (↑(ϕ i) (f i)) (↑(ϕ j) (f j))),
map_one' :=
(_ :
Finset.noncommProd Finset.univ (fun i => ↑(ϕ i) (OfNat.ofNat 1 i))
(_ :
∀ (i : ι),
i ∈ ↑Finset.univ →
∀ (j : ι),
j ∈ ↑Finset.univ → i ≠ j → Commute (↑(ϕ i) (OfNat.ofNat 1 i)) (↑(ϕ j) (OfNat.ofNat 1 j))) =
1) }
g
[PROOFSTEP]
simp only
[GOAL]
M : Type u_1
inst✝² : Monoid M
ι : Type u_2
hdec : DecidableEq ι
inst✝¹ : Fintype ι
N : ι → Type u_3
inst✝ : (i : ι) → Monoid (N i)
ϕ : (i : ι) → N i →* M
hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f✝ g✝ f g : (i : ι) → N i
⊢ Finset.noncommProd Finset.univ (fun x => ↑(ϕ x) ((f * g) x))
(_ :
∀ (x : ι),
x ∈ ↑Finset.univ →
∀ (y : ι), y ∈ ↑Finset.univ → x ≠ y → (fun a b => Commute (↑(ϕ a) ((f * g) a)) (↑(ϕ b) ((f * g) b))) x y) =
Finset.noncommProd Finset.univ (fun x => ↑(ϕ x) (f x))
(_ :
∀ (x : ι),
x ∈ ↑Finset.univ →
∀ (y : ι), y ∈ ↑Finset.univ → x ≠ y → (fun a b => Commute (↑(ϕ a) (f a)) (↑(ϕ b) (f b))) x y) *
Finset.noncommProd Finset.univ (fun x => ↑(ϕ x) (g x))
(_ :
∀ (x : ι),
x ∈ ↑Finset.univ →
∀ (y : ι), y ∈ ↑Finset.univ → x ≠ y → (fun a b => Commute (↑(ϕ a) (g a)) (↑(ϕ b) (g b))) x y)
[PROOFSTEP]
convert @Finset.noncommProd_mul_distrib _ _ _ _ (fun i => ϕ i (f i)) (fun i => ϕ i (g i)) _ _ _
[GOAL]
case h.e'_2.h₂
M : Type u_1
inst✝² : Monoid M
ι : Type u_2
hdec : DecidableEq ι
inst✝¹ : Fintype ι
N : ι → Type u_3
inst✝ : (i : ι) → Monoid (N i)
ϕ : (i : ι) → N i →* M
hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f✝ g✝ f g : (i : ι) → N i
x✝ : ι
a✝ : x✝ ∈ Finset.univ
⊢ ↑(ϕ x✝) ((f * g) x✝) = ((fun i => ↑(ϕ i) (f i)) * fun i => ↑(ϕ i) (g i)) x✝
[PROOFSTEP]
exact map_mul _ _ _
[GOAL]
case convert_4
M : Type u_1
inst✝² : Monoid M
ι : Type u_2
hdec : DecidableEq ι
inst✝¹ : Fintype ι
N : ι → Type u_3
inst✝ : (i : ι) → Monoid (N i)
ϕ : (i : ι) → N i →* M
hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f✝ g✝ f g : (i : ι) → N i
⊢ Set.Pairwise ↑Finset.univ fun x y => Commute ((fun i => ↑(ϕ i) (g i)) x) ((fun i => ↑(ϕ i) (f i)) y)
[PROOFSTEP]
rintro i - j - h
[GOAL]
case convert_4
M : Type u_1
inst✝² : Monoid M
ι : Type u_2
hdec : DecidableEq ι
inst✝¹ : Fintype ι
N : ι → Type u_3
inst✝ : (i : ι) → Monoid (N i)
ϕ : (i : ι) → N i →* M
hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f✝ g✝ f g : (i : ι) → N i
i j : ι
h : i ≠ j
⊢ Commute ((fun i => ↑(ϕ i) (g i)) i) ((fun i => ↑(ϕ i) (f i)) j)
[PROOFSTEP]
exact hcomm h _ _
[GOAL]
M : Type u_1
inst✝² : Monoid M
ι : Type u_2
hdec : DecidableEq ι
inst✝¹ : Fintype ι
N : ι → Type u_3
inst✝ : (i : ι) → Monoid (N i)
ϕ : (i : ι) → N i →* M
hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f g : (i : ι) → N i
i : ι
y : N i
⊢ ↑(noncommPiCoprod ϕ hcomm) (Pi.mulSingle i y) = ↑(ϕ i) y
[PROOFSTEP]
change Finset.univ.noncommProd (fun j => ϕ j (Pi.mulSingle i y j)) (fun _ _ _ _ h => hcomm h _ _) = ϕ i y
[GOAL]
M : Type u_1
inst✝² : Monoid M
ι : Type u_2
hdec : DecidableEq ι
inst✝¹ : Fintype ι
N : ι → Type u_3
inst✝ : (i : ι) → Monoid (N i)
ϕ : (i : ι) → N i →* M
hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f g : (i : ι) → N i
i : ι
y : N i
⊢ Finset.noncommProd Finset.univ (fun j => ↑(ϕ j) (Pi.mulSingle i y j))
(_ :
∀ (x : ι),
x ∈ ↑Finset.univ →
∀ (x_2 : ι),
x_2 ∈ ↑Finset.univ → x ≠ x_2 → Commute (↑(ϕ x) (Pi.mulSingle i y x)) (↑(ϕ x_2) (Pi.mulSingle i y x_2))) =
↑(ϕ i) y
[PROOFSTEP]
simp (config := { singlePass := true }) only [← Finset.insert_erase (Finset.mem_univ i)]
[GOAL]
M : Type u_1
inst✝² : Monoid M
ι : Type u_2
hdec : DecidableEq ι
inst✝¹ : Fintype ι
N : ι → Type u_3
inst✝ : (i : ι) → Monoid (N i)
ϕ : (i : ι) → N i →* M
hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f g : (i : ι) → N i
i : ι
y : N i
⊢ Finset.noncommProd (insert i (Finset.erase Finset.univ i)) (fun x => ↑(ϕ x) (Pi.mulSingle i y x))
(_ :
∀ (x : ι),
x ∈ ↑(insert i (Finset.erase Finset.univ i)) →
∀ (y_1 : ι),
y_1 ∈ ↑(insert i (Finset.erase Finset.univ i)) →
x ≠ y_1 → (fun a b => Commute (↑(ϕ a) (Pi.mulSingle i y a)) (↑(ϕ b) (Pi.mulSingle i y b))) x y_1) =
↑(ϕ i) y
[PROOFSTEP]
rw [Finset.noncommProd_insert_of_not_mem _ _ _ _ (Finset.not_mem_erase i _)]
[GOAL]
M : Type u_1
inst✝² : Monoid M
ι : Type u_2
hdec : DecidableEq ι
inst✝¹ : Fintype ι
N : ι → Type u_3
inst✝ : (i : ι) → Monoid (N i)
ϕ : (i : ι) → N i →* M
hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f g : (i : ι) → N i
i : ι
y : N i
⊢ ↑(ϕ i) (Pi.mulSingle i y i) *
Finset.noncommProd (Finset.erase Finset.univ i) (fun x => ↑(ϕ x) (Pi.mulSingle i y x))
(_ :
Set.Pairwise ↑(Finset.erase Finset.univ i) fun a b =>
Commute (↑(ϕ a) (Pi.mulSingle i y a)) (↑(ϕ b) (Pi.mulSingle i y b))) =
↑(ϕ i) y
[PROOFSTEP]
rw [Pi.mulSingle_eq_same]
[GOAL]
M : Type u_1
inst✝² : Monoid M
ι : Type u_2
hdec : DecidableEq ι
inst✝¹ : Fintype ι
N : ι → Type u_3
inst✝ : (i : ι) → Monoid (N i)
ϕ : (i : ι) → N i →* M
hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f g : (i : ι) → N i
i : ι
y : N i
⊢ ↑(ϕ i) y *
Finset.noncommProd (Finset.erase Finset.univ i) (fun x => ↑(ϕ x) (Pi.mulSingle i y x))
(_ :
Set.Pairwise ↑(Finset.erase Finset.univ i) fun a b =>
Commute (↑(ϕ a) (Pi.mulSingle i y a)) (↑(ϕ b) (Pi.mulSingle i y b))) =
↑(ϕ i) y
[PROOFSTEP]
rw [Finset.noncommProd_eq_pow_card]
[GOAL]
M : Type u_1
inst✝² : Monoid M
ι : Type u_2
hdec : DecidableEq ι
inst✝¹ : Fintype ι
N : ι → Type u_3
inst✝ : (i : ι) → Monoid (N i)
ϕ : (i : ι) → N i →* M
hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f g : (i : ι) → N i
i : ι
y : N i
⊢ ↑(ϕ i) y * ?m ^ Finset.card (Finset.erase Finset.univ i) = ↑(ϕ i) y
[PROOFSTEP]
rw [one_pow]
[GOAL]
M : Type u_1
inst✝² : Monoid M
ι : Type u_2
hdec : DecidableEq ι
inst✝¹ : Fintype ι
N : ι → Type u_3
inst✝ : (i : ι) → Monoid (N i)
ϕ : (i : ι) → N i →* M
hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f g : (i : ι) → N i
i : ι
y : N i
⊢ ↑(ϕ i) y * 1 = ↑(ϕ i) y
[PROOFSTEP]
exact mul_one _
[GOAL]
case h
M : Type u_1
inst✝² : Monoid M
ι : Type u_2
hdec : DecidableEq ι
inst✝¹ : Fintype ι
N : ι → Type u_3
inst✝ : (i : ι) → Monoid (N i)
ϕ : (i : ι) → N i →* M
hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f g : (i : ι) → N i
i : ι
y : N i
⊢ ∀ (x : ι), x ∈ Finset.erase Finset.univ i → ↑(ϕ x) (Pi.mulSingle i y x) = 1
[PROOFSTEP]
intro j hj
[GOAL]
case h
M : Type u_1
inst✝² : Monoid M
ι : Type u_2
hdec : DecidableEq ι
inst✝¹ : Fintype ι
N : ι → Type u_3
inst✝ : (i : ι) → Monoid (N i)
ϕ : (i : ι) → N i →* M
hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f g : (i : ι) → N i
i : ι
y : N i
j : ι
hj : j ∈ Finset.erase Finset.univ i
⊢ ↑(ϕ j) (Pi.mulSingle i y j) = 1
[PROOFSTEP]
simp only [Finset.mem_erase] at hj
[GOAL]
case h
M : Type u_1
inst✝² : Monoid M
ι : Type u_2
hdec : DecidableEq ι
inst✝¹ : Fintype ι
N : ι → Type u_3
inst✝ : (i : ι) → Monoid (N i)
ϕ : (i : ι) → N i →* M
hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f g : (i : ι) → N i
i : ι
y : N i
j : ι
hj : j ≠ i ∧ j ∈ Finset.univ
⊢ ↑(ϕ j) (Pi.mulSingle i y j) = 1
[PROOFSTEP]
simp [hj]
[GOAL]
M : Type u_1
inst✝² : Monoid M
ι : Type u_2
hdec : DecidableEq ι
inst✝¹ : Fintype ι
N : ι → Type u_3
inst✝ : (i : ι) → Monoid (N i)
ϕ✝ : (i : ι) → N i →* M
hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ✝ i) x) (↑(ϕ✝ j) y)
f g : (i : ι) → N i
ϕ : { ϕ // Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y) }
⊢ (fun f =>
{ val := fun i => comp f (single N i),
property :=
(_ : ∀ (i j : ι), i ≠ j → ∀ (x : N i) (y : N j), Commute (↑f (Pi.mulSingle i x)) (↑f (Pi.mulSingle j y))) })
((fun ϕ => noncommPiCoprod ↑ϕ (_ : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(↑ϕ i) x) (↑(↑ϕ j) y)))
ϕ) =
ϕ
[PROOFSTEP]
ext
[GOAL]
case a.h.h
M : Type u_1
inst✝² : Monoid M
ι : Type u_2
hdec : DecidableEq ι
inst✝¹ : Fintype ι
N : ι → Type u_3
inst✝ : (i : ι) → Monoid (N i)
ϕ✝ : (i : ι) → N i →* M
hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ✝ i) x) (↑(ϕ✝ j) y)
f g : (i : ι) → N i
ϕ : { ϕ // Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y) }
x✝¹ : ι
x✝ : N x✝¹
⊢ ↑(↑((fun f =>
{ val := fun i => comp f (single N i),
property :=
(_ :
∀ (i j : ι),
i ≠ j → ∀ (x : N i) (y : N j), Commute (↑f (Pi.mulSingle i x)) (↑f (Pi.mulSingle j y))) })
((fun ϕ =>
noncommPiCoprod ↑ϕ (_ : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(↑ϕ i) x) (↑(↑ϕ j) y)))
ϕ))
x✝¹)
x✝ =
↑(↑ϕ x✝¹) x✝
[PROOFSTEP]
simp
[GOAL]
M : Type u_1
inst✝² : Monoid M
ι : Type u_2
hdec : DecidableEq ι
inst✝¹ : Fintype ι
N : ι → Type u_3
inst✝ : (i : ι) → Monoid (N i)
ϕ : (i : ι) → N i →* M
hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f✝ g : (i : ι) → N i
f : ((i : ι) → N i) →* M
i : ι
x : N i
⊢ ↑((fun ϕ => noncommPiCoprod ↑ϕ (_ : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(↑ϕ i) x) (↑(↑ϕ j) y)))
((fun f =>
{ val := fun i => comp f (single N i),
property :=
(_ :
∀ (i j : ι),
i ≠ j → ∀ (x : N i) (y : N j), Commute (↑f (Pi.mulSingle i x)) (↑f (Pi.mulSingle j y))) })
f))
(Pi.mulSingle i x) =
↑f (Pi.mulSingle i x)
[PROOFSTEP]
simp
[GOAL]
M : Type u_1
inst✝² : Monoid M
ι : Type u_2
hdec : DecidableEq ι
inst✝¹ : Fintype ι
N : ι → Type u_3
inst✝ : (i : ι) → Monoid (N i)
ϕ : (i : ι) → N i →* M
hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f g : (i : ι) → N i
⊢ mrange (noncommPiCoprod ϕ hcomm) = ⨆ (i : ι), mrange (ϕ i)
[PROOFSTEP]
classical
apply le_antisymm
· rintro x ⟨f, rfl⟩
refine Submonoid.noncommProd_mem _ _ _ (fun _ _ _ _ h => hcomm h _ _) (fun i _ => ?_)
apply Submonoid.mem_sSup_of_mem
· use i
simp
· refine' iSup_le _
rintro i x ⟨y, rfl⟩
refine' ⟨Pi.mulSingle i y, noncommPiCoprod_mulSingle _ _ _⟩
[GOAL]
M : Type u_1
inst✝² : Monoid M
ι : Type u_2
hdec : DecidableEq ι
inst✝¹ : Fintype ι
N : ι → Type u_3
inst✝ : (i : ι) → Monoid (N i)
ϕ : (i : ι) → N i →* M
hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f g : (i : ι) → N i
⊢ mrange (noncommPiCoprod ϕ hcomm) = ⨆ (i : ι), mrange (ϕ i)
[PROOFSTEP]
apply le_antisymm
[GOAL]
case a
M : Type u_1
inst✝² : Monoid M
ι : Type u_2
hdec : DecidableEq ι
inst✝¹ : Fintype ι
N : ι → Type u_3
inst✝ : (i : ι) → Monoid (N i)
ϕ : (i : ι) → N i →* M
hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f g : (i : ι) → N i
⊢ mrange (noncommPiCoprod ϕ hcomm) ≤ ⨆ (i : ι), mrange (ϕ i)
[PROOFSTEP]
rintro x ⟨f, rfl⟩
[GOAL]
case a.intro
M : Type u_1
inst✝² : Monoid M
ι : Type u_2
hdec : DecidableEq ι
inst✝¹ : Fintype ι
N : ι → Type u_3
inst✝ : (i : ι) → Monoid (N i)
ϕ : (i : ι) → N i →* M
hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f✝ g f : (i : ι) → N i
⊢ ↑(noncommPiCoprod ϕ hcomm) f ∈ ⨆ (i : ι), mrange (ϕ i)
[PROOFSTEP]
refine Submonoid.noncommProd_mem _ _ _ (fun _ _ _ _ h => hcomm h _ _) (fun i _ => ?_)
[GOAL]
case a.intro
M : Type u_1
inst✝² : Monoid M
ι : Type u_2
hdec : DecidableEq ι
inst✝¹ : Fintype ι
N : ι → Type u_3
inst✝ : (i : ι) → Monoid (N i)
ϕ : (i : ι) → N i →* M
hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f✝ g f : (i : ι) → N i
i : ι
x✝ : i ∈ Finset.univ
⊢ ↑(ϕ i) (f i) ∈ ⨆ (i : ι), mrange (ϕ i)
[PROOFSTEP]
apply Submonoid.mem_sSup_of_mem
[GOAL]
case a.intro.hs
M : Type u_1
inst✝² : Monoid M
ι : Type u_2
hdec : DecidableEq ι
inst✝¹ : Fintype ι
N : ι → Type u_3
inst✝ : (i : ι) → Monoid (N i)
ϕ : (i : ι) → N i →* M
hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f✝ g f : (i : ι) → N i
i : ι
x✝ : i ∈ Finset.univ
⊢ ?a.intro.s✝ ∈ Set.range fun i => mrange (ϕ i)
[PROOFSTEP]
use i
[GOAL]
case a.intro.a
M : Type u_1
inst✝² : Monoid M
ι : Type u_2
hdec : DecidableEq ι
inst✝¹ : Fintype ι
N : ι → Type u_3
inst✝ : (i : ι) → Monoid (N i)
ϕ : (i : ι) → N i →* M
hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f✝ g f : (i : ι) → N i
i : ι
x✝ : i ∈ Finset.univ
⊢ ↑(ϕ i) (f i) ∈ (fun i => mrange (ϕ i)) i
[PROOFSTEP]
simp
[GOAL]
case a
M : Type u_1
inst✝² : Monoid M
ι : Type u_2
hdec : DecidableEq ι
inst✝¹ : Fintype ι
N : ι → Type u_3
inst✝ : (i : ι) → Monoid (N i)
ϕ : (i : ι) → N i →* M
hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f g : (i : ι) → N i
⊢ ⨆ (i : ι), mrange (ϕ i) ≤ mrange (noncommPiCoprod ϕ hcomm)
[PROOFSTEP]
refine' iSup_le _
[GOAL]
case a
M : Type u_1
inst✝² : Monoid M
ι : Type u_2
hdec : DecidableEq ι
inst✝¹ : Fintype ι
N : ι → Type u_3
inst✝ : (i : ι) → Monoid (N i)
ϕ : (i : ι) → N i →* M
hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f g : (i : ι) → N i
⊢ ∀ (i : ι), mrange (ϕ i) ≤ mrange (noncommPiCoprod ϕ hcomm)
[PROOFSTEP]
rintro i x ⟨y, rfl⟩
[GOAL]
case a.intro
M : Type u_1
inst✝² : Monoid M
ι : Type u_2
hdec : DecidableEq ι
inst✝¹ : Fintype ι
N : ι → Type u_3
inst✝ : (i : ι) → Monoid (N i)
ϕ : (i : ι) → N i →* M
hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f g : (i : ι) → N i
i : ι
y : N i
⊢ ↑(ϕ i) y ∈ mrange (noncommPiCoprod ϕ hcomm)
[PROOFSTEP]
refine' ⟨Pi.mulSingle i y, noncommPiCoprod_mulSingle _ _ _⟩
[GOAL]
G : Type u_1
inst✝¹ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Type u_3
inst✝ : (i : ι) → Group (H i)
ϕ : (i : ι) → H i →* G
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f g : (i : ι) → H i
⊢ range (noncommPiCoprod ϕ hcomm) = ⨆ (i : ι), range (ϕ i)
[PROOFSTEP]
classical
apply le_antisymm
· rintro x ⟨f, rfl⟩
refine Subgroup.noncommProd_mem _ (fun _ _ _ _ h => hcomm _ _ h _ _) ?_
intro i _hi
apply Subgroup.mem_sSup_of_mem
· use i
simp
· refine' iSup_le _
rintro i x ⟨y, rfl⟩
refine' ⟨Pi.mulSingle i y, noncommPiCoprod_mulSingle _ _ _⟩
[GOAL]
G : Type u_1
inst✝¹ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Type u_3
inst✝ : (i : ι) → Group (H i)
ϕ : (i : ι) → H i →* G
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f g : (i : ι) → H i
⊢ range (noncommPiCoprod ϕ hcomm) = ⨆ (i : ι), range (ϕ i)
[PROOFSTEP]
apply le_antisymm
[GOAL]
case a
G : Type u_1
inst✝¹ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Type u_3
inst✝ : (i : ι) → Group (H i)
ϕ : (i : ι) → H i →* G
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f g : (i : ι) → H i
⊢ range (noncommPiCoprod ϕ hcomm) ≤ ⨆ (i : ι), range (ϕ i)
[PROOFSTEP]
rintro x ⟨f, rfl⟩
[GOAL]
case a.intro
G : Type u_1
inst✝¹ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Type u_3
inst✝ : (i : ι) → Group (H i)
ϕ : (i : ι) → H i →* G
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f✝ g f : (i : ι) → H i
⊢ ↑(noncommPiCoprod ϕ hcomm) f ∈ ⨆ (i : ι), range (ϕ i)
[PROOFSTEP]
refine Subgroup.noncommProd_mem _ (fun _ _ _ _ h => hcomm _ _ h _ _) ?_
[GOAL]
case a.intro
G : Type u_1
inst✝¹ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Type u_3
inst✝ : (i : ι) → Group (H i)
ϕ : (i : ι) → H i →* G
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f✝ g f : (i : ι) → H i
⊢ ∀ (c : ι), c ∈ Finset.univ → ↑(ϕ c) (f c) ∈ ⨆ (i : ι), range (ϕ i)
[PROOFSTEP]
intro i _hi
[GOAL]
case a.intro
G : Type u_1
inst✝¹ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Type u_3
inst✝ : (i : ι) → Group (H i)
ϕ : (i : ι) → H i →* G
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f✝ g f : (i : ι) → H i
i : ι
_hi : i ∈ Finset.univ
⊢ ↑(ϕ i) (f i) ∈ ⨆ (i : ι), range (ϕ i)
[PROOFSTEP]
apply Subgroup.mem_sSup_of_mem
[GOAL]
case a.intro.hs
G : Type u_1
inst✝¹ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Type u_3
inst✝ : (i : ι) → Group (H i)
ϕ : (i : ι) → H i →* G
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f✝ g f : (i : ι) → H i
i : ι
_hi : i ∈ Finset.univ
⊢ ?a.intro.s✝ ∈ Set.range fun i => range (ϕ i)
[PROOFSTEP]
use i
[GOAL]
case a.intro.a
G : Type u_1
inst✝¹ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Type u_3
inst✝ : (i : ι) → Group (H i)
ϕ : (i : ι) → H i →* G
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f✝ g f : (i : ι) → H i
i : ι
_hi : i ∈ Finset.univ
⊢ ↑(ϕ i) (f i) ∈ (fun i => range (ϕ i)) i
[PROOFSTEP]
simp
[GOAL]
case a
G : Type u_1
inst✝¹ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Type u_3
inst✝ : (i : ι) → Group (H i)
ϕ : (i : ι) → H i →* G
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f g : (i : ι) → H i
⊢ ⨆ (i : ι), range (ϕ i) ≤ range (noncommPiCoprod ϕ hcomm)
[PROOFSTEP]
refine' iSup_le _
[GOAL]
case a
G : Type u_1
inst✝¹ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Type u_3
inst✝ : (i : ι) → Group (H i)
ϕ : (i : ι) → H i →* G
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f g : (i : ι) → H i
⊢ ∀ (i : ι), range (ϕ i) ≤ range (noncommPiCoprod ϕ hcomm)
[PROOFSTEP]
rintro i x ⟨y, rfl⟩
[GOAL]
case a.intro
G : Type u_1
inst✝¹ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Type u_3
inst✝ : (i : ι) → Group (H i)
ϕ : (i : ι) → H i →* G
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f g : (i : ι) → H i
i : ι
y : H i
⊢ ↑(ϕ i) y ∈ range (noncommPiCoprod ϕ hcomm)
[PROOFSTEP]
refine' ⟨Pi.mulSingle i y, noncommPiCoprod_mulSingle _ _ _⟩
[GOAL]
G : Type u_1
inst✝¹ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Type u_3
inst✝ : (i : ι) → Group (H i)
ϕ : (i : ι) → H i →* G
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f g : (i : ι) → H i
hind : CompleteLattice.Independent fun i => range (ϕ i)
hinj : ∀ (i : ι), Function.Injective ↑(ϕ i)
⊢ Function.Injective ↑(noncommPiCoprod ϕ hcomm)
[PROOFSTEP]
classical
apply (MonoidHom.ker_eq_bot_iff _).mp
apply eq_bot_iff.mpr
intro f heq1
have : ∀ i, i ∈ Finset.univ → ϕ i (f i) = 1 :=
Subgroup.eq_one_of_noncommProd_eq_one_of_independent _ _ (fun _ _ _ _ h => hcomm _ _ h _ _) _ hind (by simp) heq1
ext i
apply hinj
simp [this i (Finset.mem_univ i)]
[GOAL]
G : Type u_1
inst✝¹ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Type u_3
inst✝ : (i : ι) → Group (H i)
ϕ : (i : ι) → H i →* G
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f g : (i : ι) → H i
hind : CompleteLattice.Independent fun i => range (ϕ i)
hinj : ∀ (i : ι), Function.Injective ↑(ϕ i)
⊢ Function.Injective ↑(noncommPiCoprod ϕ hcomm)
[PROOFSTEP]
apply (MonoidHom.ker_eq_bot_iff _).mp
[GOAL]
G : Type u_1
inst✝¹ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Type u_3
inst✝ : (i : ι) → Group (H i)
ϕ : (i : ι) → H i →* G
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f g : (i : ι) → H i
hind : CompleteLattice.Independent fun i => range (ϕ i)
hinj : ∀ (i : ι), Function.Injective ↑(ϕ i)
⊢ ker (noncommPiCoprod ϕ hcomm) = ⊥
[PROOFSTEP]
apply eq_bot_iff.mpr
[GOAL]
G : Type u_1
inst✝¹ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Type u_3
inst✝ : (i : ι) → Group (H i)
ϕ : (i : ι) → H i →* G
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f g : (i : ι) → H i
hind : CompleteLattice.Independent fun i => range (ϕ i)
hinj : ∀ (i : ι), Function.Injective ↑(ϕ i)
⊢ ker (noncommPiCoprod ϕ hcomm) ≤ ⊥
[PROOFSTEP]
intro f heq1
[GOAL]
G : Type u_1
inst✝¹ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Type u_3
inst✝ : (i : ι) → Group (H i)
ϕ : (i : ι) → H i →* G
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f✝ g : (i : ι) → H i
hind : CompleteLattice.Independent fun i => range (ϕ i)
hinj : ∀ (i : ι), Function.Injective ↑(ϕ i)
f : (i : ι) → H i
heq1 : f ∈ ker (noncommPiCoprod ϕ hcomm)
⊢ f ∈ ⊥
[PROOFSTEP]
have : ∀ i, i ∈ Finset.univ → ϕ i (f i) = 1 :=
Subgroup.eq_one_of_noncommProd_eq_one_of_independent _ _ (fun _ _ _ _ h => hcomm _ _ h _ _) _ hind (by simp) heq1
[GOAL]
G : Type u_1
inst✝¹ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Type u_3
inst✝ : (i : ι) → Group (H i)
ϕ : (i : ι) → H i →* G
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f✝ g : (i : ι) → H i
hind : CompleteLattice.Independent fun i => range (ϕ i)
hinj : ∀ (i : ι), Function.Injective ↑(ϕ i)
f : (i : ι) → H i
heq1 : f ∈ ker (noncommPiCoprod ϕ hcomm)
⊢ ∀ (x : ι), x ∈ Finset.univ → ↑(ϕ x) (f x) ∈ range (ϕ x)
[PROOFSTEP]
simp
[GOAL]
G : Type u_1
inst✝¹ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Type u_3
inst✝ : (i : ι) → Group (H i)
ϕ : (i : ι) → H i →* G
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f✝ g : (i : ι) → H i
hind : CompleteLattice.Independent fun i => range (ϕ i)
hinj : ∀ (i : ι), Function.Injective ↑(ϕ i)
f : (i : ι) → H i
heq1 : f ∈ ker (noncommPiCoprod ϕ hcomm)
this : ∀ (i : ι), i ∈ Finset.univ → ↑(ϕ i) (f i) = 1
⊢ f ∈ ⊥
[PROOFSTEP]
ext i
[GOAL]
case h
G : Type u_1
inst✝¹ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Type u_3
inst✝ : (i : ι) → Group (H i)
ϕ : (i : ι) → H i →* G
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f✝ g : (i : ι) → H i
hind : CompleteLattice.Independent fun i => range (ϕ i)
hinj : ∀ (i : ι), Function.Injective ↑(ϕ i)
f : (i : ι) → H i
heq1 : f ∈ ker (noncommPiCoprod ϕ hcomm)
this : ∀ (i : ι), i ∈ Finset.univ → ↑(ϕ i) (f i) = 1
i : ι
⊢ f i = OfNat.ofNat 1 i
[PROOFSTEP]
apply hinj
[GOAL]
case h.a
G : Type u_1
inst✝¹ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Type u_3
inst✝ : (i : ι) → Group (H i)
ϕ : (i : ι) → H i →* G
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f✝ g : (i : ι) → H i
hind : CompleteLattice.Independent fun i => range (ϕ i)
hinj : ∀ (i : ι), Function.Injective ↑(ϕ i)
f : (i : ι) → H i
heq1 : f ∈ ker (noncommPiCoprod ϕ hcomm)
this : ∀ (i : ι), i ∈ Finset.univ → ↑(ϕ i) (f i) = 1
i : ι
⊢ ↑(ϕ i) (f i) = ↑(ϕ i) (OfNat.ofNat 1 i)
[PROOFSTEP]
simp [this i (Finset.mem_univ i)]
[GOAL]
G : Type u_1
inst✝³ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Type u_3
inst✝² : (i : ι) → Group (H i)
ϕ : (i : ι) → H i →* G
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f g : (i : ι) → H i
inst✝¹ : Finite ι
inst✝ : (i : ι) → Fintype (H i)
hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j))
⊢ CompleteLattice.Independent fun i => range (ϕ i)
[PROOFSTEP]
cases nonempty_fintype ι
[GOAL]
case intro
G : Type u_1
inst✝³ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Type u_3
inst✝² : (i : ι) → Group (H i)
ϕ : (i : ι) → H i →* G
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f g : (i : ι) → H i
inst✝¹ : Finite ι
inst✝ : (i : ι) → Fintype (H i)
hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j))
val✝ : Fintype ι
⊢ CompleteLattice.Independent fun i => range (ϕ i)
[PROOFSTEP]
classical
rintro i
rw [disjoint_iff_inf_le]
rintro f ⟨hxi, hxp⟩
dsimp at hxi hxp
rw [iSup_subtype', ← noncommPiCoprod_range] at hxp
rotate_left
· intro _ _ hj
apply hcomm
exact hj ∘ Subtype.ext
cases' hxp with g hgf
cases' hxi with g' hg'f
have hxi : orderOf f ∣ Fintype.card (H i) := by
rw [← hg'f]
exact (orderOf_map_dvd _ _).trans orderOf_dvd_card_univ
have hxp : orderOf f ∣ ∏ j : { j // j ≠ i }, Fintype.card (H j) :=
by
rw [← hgf, ← Fintype.card_pi]
exact (orderOf_map_dvd _ _).trans orderOf_dvd_card_univ
change f = 1
rw [← pow_one f, ← orderOf_dvd_iff_pow_eq_one]
-- porting note: ouch, had to replace an ugly `convert`
obtain ⟨c, hc⟩ := Nat.dvd_gcd hxp hxi
use c
rw [← hc]
symm
rw [← Nat.coprime_iff_gcd_eq_one]
apply Nat.coprime_prod_left
intro j _
apply hcoprime
exact j.2
[GOAL]
case intro
G : Type u_1
inst✝³ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Type u_3
inst✝² : (i : ι) → Group (H i)
ϕ : (i : ι) → H i →* G
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f g : (i : ι) → H i
inst✝¹ : Finite ι
inst✝ : (i : ι) → Fintype (H i)
hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j))
val✝ : Fintype ι
⊢ CompleteLattice.Independent fun i => range (ϕ i)
[PROOFSTEP]
rintro i
[GOAL]
case intro
G : Type u_1
inst✝³ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Type u_3
inst✝² : (i : ι) → Group (H i)
ϕ : (i : ι) → H i →* G
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f g : (i : ι) → H i
inst✝¹ : Finite ι
inst✝ : (i : ι) → Fintype (H i)
hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j))
val✝ : Fintype ι
i : ι
⊢ Disjoint ((fun i => range (ϕ i)) i) (⨆ (j : ι) (_ : j ≠ i), (fun i => range (ϕ i)) j)
[PROOFSTEP]
rw [disjoint_iff_inf_le]
[GOAL]
case intro
G : Type u_1
inst✝³ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Type u_3
inst✝² : (i : ι) → Group (H i)
ϕ : (i : ι) → H i →* G
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f g : (i : ι) → H i
inst✝¹ : Finite ι
inst✝ : (i : ι) → Fintype (H i)
hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j))
val✝ : Fintype ι
i : ι
⊢ (fun i => range (ϕ i)) i ⊓ ⨆ (j : ι) (_ : j ≠ i), (fun i => range (ϕ i)) j ≤ ⊥
[PROOFSTEP]
rintro f ⟨hxi, hxp⟩
[GOAL]
case intro.intro
G : Type u_1
inst✝³ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Type u_3
inst✝² : (i : ι) → Group (H i)
ϕ : (i : ι) → H i →* G
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f✝ g : (i : ι) → H i
inst✝¹ : Finite ι
inst✝ : (i : ι) → Fintype (H i)
hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j))
val✝ : Fintype ι
i : ι
f : G
hxi : f ∈ ↑((fun i => range (ϕ i)) i).toSubmonoid
hxp : f ∈ ↑(⨆ (j : ι) (_ : j ≠ i), (fun i => range (ϕ i)) j).toSubmonoid
⊢ f ∈ ⊥
[PROOFSTEP]
dsimp at hxi hxp
[GOAL]
case intro.intro
G : Type u_1
inst✝³ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Type u_3
inst✝² : (i : ι) → Group (H i)
ϕ : (i : ι) → H i →* G
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f✝ g : (i : ι) → H i
inst✝¹ : Finite ι
inst✝ : (i : ι) → Fintype (H i)
hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j))
val✝ : Fintype ι
i : ι
f : G
hxi : f ∈ Set.range ↑(ϕ i)
hxp : f ∈ ↑(⨆ (j : ι) (_ : ¬j = i), range (ϕ j))
⊢ f ∈ ⊥
[PROOFSTEP]
rw [iSup_subtype', ← noncommPiCoprod_range] at hxp
[GOAL]
case intro.intro
G : Type u_1
inst✝³ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Type u_3
inst✝² : (i : ι) → Group (H i)
ϕ : (i : ι) → H i →* G
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f✝ g : (i : ι) → H i
inst✝¹ : Finite ι
inst✝ : (i : ι) → Fintype (H i)
hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j))
val✝ : Fintype ι
i : ι
f : G
hxi : f ∈ Set.range ↑(ϕ i)
hxp✝ : f ∈ ↑(⨆ (x : { j // ¬j = i }), range (ϕ ↑x))
hxp : f ∈ ↑(range (noncommPiCoprod (fun x => ϕ ↑x) ?intro.intro.hcomm))
⊢ f ∈ ⊥
case intro.intro.hcomm
G : Type u_1
inst✝³ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Type u_3
inst✝² : (i : ι) → Group (H i)
ϕ : (i : ι) → H i →* G
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f✝ g : (i : ι) → H i
inst✝¹ : Finite ι
inst✝ : (i : ι) → Fintype (H i)
hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j))
val✝ : Fintype ι
i : ι
f : G
hxi : f ∈ Set.range ↑(ϕ i)
hxp : f ∈ ↑(⨆ (x : { j // ¬j = i }), range (ϕ ↑x))
⊢ ∀ (i_1 j : { j // ¬j = i }), i_1 ≠ j → ∀ (x : H ↑i_1) (y : H ↑j), Commute (↑(ϕ ↑i_1) x) (↑(ϕ ↑j) y)
[PROOFSTEP]
rotate_left
[GOAL]
case intro.intro.hcomm
G : Type u_1
inst✝³ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Type u_3
inst✝² : (i : ι) → Group (H i)
ϕ : (i : ι) → H i →* G
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f✝ g : (i : ι) → H i
inst✝¹ : Finite ι
inst✝ : (i : ι) → Fintype (H i)
hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j))
val✝ : Fintype ι
i : ι
f : G
hxi : f ∈ Set.range ↑(ϕ i)
hxp : f ∈ ↑(⨆ (x : { j // ¬j = i }), range (ϕ ↑x))
⊢ ∀ (i_1 j : { j // ¬j = i }), i_1 ≠ j → ∀ (x : H ↑i_1) (y : H ↑j), Commute (↑(ϕ ↑i_1) x) (↑(ϕ ↑j) y)
[PROOFSTEP]
intro _ _ hj
[GOAL]
case intro.intro.hcomm
G : Type u_1
inst✝³ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Type u_3
inst✝² : (i : ι) → Group (H i)
ϕ : (i : ι) → H i →* G
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f✝ g : (i : ι) → H i
inst✝¹ : Finite ι
inst✝ : (i : ι) → Fintype (H i)
hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j))
val✝ : Fintype ι
i : ι
f : G
hxi : f ∈ Set.range ↑(ϕ i)
hxp : f ∈ ↑(⨆ (x : { j // ¬j = i }), range (ϕ ↑x))
i✝ j✝ : { j // ¬j = i }
hj : i✝ ≠ j✝
⊢ ∀ (x : H ↑i✝) (y : H ↑j✝), Commute (↑(ϕ ↑i✝) x) (↑(ϕ ↑j✝) y)
[PROOFSTEP]
apply hcomm
[GOAL]
case intro.intro.hcomm.a
G : Type u_1
inst✝³ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Type u_3
inst✝² : (i : ι) → Group (H i)
ϕ : (i : ι) → H i →* G
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f✝ g : (i : ι) → H i
inst✝¹ : Finite ι
inst✝ : (i : ι) → Fintype (H i)
hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j))
val✝ : Fintype ι
i : ι
f : G
hxi : f ∈ Set.range ↑(ϕ i)
hxp : f ∈ ↑(⨆ (x : { j // ¬j = i }), range (ϕ ↑x))
i✝ j✝ : { j // ¬j = i }
hj : i✝ ≠ j✝
⊢ ↑i✝ ≠ ↑j✝
[PROOFSTEP]
exact hj ∘ Subtype.ext
[GOAL]
case intro.intro
G : Type u_1
inst✝³ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Type u_3
inst✝² : (i : ι) → Group (H i)
ϕ : (i : ι) → H i →* G
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f✝ g : (i : ι) → H i
inst✝¹ : Finite ι
inst✝ : (i : ι) → Fintype (H i)
hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j))
val✝ : Fintype ι
i : ι
f : G
hxi : f ∈ Set.range ↑(ϕ i)
hxp✝ : f ∈ ↑(⨆ (x : { j // ¬j = i }), range (ϕ ↑x))
hxp :
f ∈
↑(range
(noncommPiCoprod (fun x => ϕ ↑x)
(_ : ∀ (i_1 j : { j // ¬j = i }), i_1 ≠ j → ∀ (x : H ↑i_1) (y : H ↑j), Commute (↑(ϕ ↑i_1) x) (↑(ϕ ↑j) y))))
⊢ f ∈ ⊥
[PROOFSTEP]
cases' hxp with g hgf
[GOAL]
case intro.intro.intro
G : Type u_1
inst✝³ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Type u_3
inst✝² : (i : ι) → Group (H i)
ϕ : (i : ι) → H i →* G
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f✝ g✝ : (i : ι) → H i
inst✝¹ : Finite ι
inst✝ : (i : ι) → Fintype (H i)
hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j))
val✝ : Fintype ι
i : ι
f : G
hxi : f ∈ Set.range ↑(ϕ i)
hxp : f ∈ ↑(⨆ (x : { j // ¬j = i }), range (ϕ ↑x))
g : (i_1 : { j // ¬j = i }) → H ↑i_1
hgf :
↑(noncommPiCoprod (fun x => ϕ ↑x)
(_ : ∀ (i_1 j : { j // ¬j = i }), i_1 ≠ j → ∀ (x : H ↑i_1) (y : H ↑j), Commute (↑(ϕ ↑i_1) x) (↑(ϕ ↑j) y)))
g =
f
⊢ f ∈ ⊥
[PROOFSTEP]
cases' hxi with g' hg'f
[GOAL]
case intro.intro.intro.intro
G : Type u_1
inst✝³ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Type u_3
inst✝² : (i : ι) → Group (H i)
ϕ : (i : ι) → H i →* G
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f✝ g✝ : (i : ι) → H i
inst✝¹ : Finite ι
inst✝ : (i : ι) → Fintype (H i)
hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j))
val✝ : Fintype ι
i : ι
f : G
hxp : f ∈ ↑(⨆ (x : { j // ¬j = i }), range (ϕ ↑x))
g : (i_1 : { j // ¬j = i }) → H ↑i_1
hgf :
↑(noncommPiCoprod (fun x => ϕ ↑x)
(_ : ∀ (i_1 j : { j // ¬j = i }), i_1 ≠ j → ∀ (x : H ↑i_1) (y : H ↑j), Commute (↑(ϕ ↑i_1) x) (↑(ϕ ↑j) y)))
g =
f
g' : H i
hg'f : ↑(ϕ i) g' = f
⊢ f ∈ ⊥
[PROOFSTEP]
have hxi : orderOf f ∣ Fintype.card (H i) := by
rw [← hg'f]
exact (orderOf_map_dvd _ _).trans orderOf_dvd_card_univ
[GOAL]
G : Type u_1
inst✝³ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Type u_3
inst✝² : (i : ι) → Group (H i)
ϕ : (i : ι) → H i →* G
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f✝ g✝ : (i : ι) → H i
inst✝¹ : Finite ι
inst✝ : (i : ι) → Fintype (H i)
hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j))
val✝ : Fintype ι
i : ι
f : G
hxp : f ∈ ↑(⨆ (x : { j // ¬j = i }), range (ϕ ↑x))
g : (i_1 : { j // ¬j = i }) → H ↑i_1
hgf :
↑(noncommPiCoprod (fun x => ϕ ↑x)
(_ : ∀ (i_1 j : { j // ¬j = i }), i_1 ≠ j → ∀ (x : H ↑i_1) (y : H ↑j), Commute (↑(ϕ ↑i_1) x) (↑(ϕ ↑j) y)))
g =
f
g' : H i
hg'f : ↑(ϕ i) g' = f
⊢ orderOf f ∣ Fintype.card (H i)
[PROOFSTEP]
rw [← hg'f]
[GOAL]
G : Type u_1
inst✝³ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Type u_3
inst✝² : (i : ι) → Group (H i)
ϕ : (i : ι) → H i →* G
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f✝ g✝ : (i : ι) → H i
inst✝¹ : Finite ι
inst✝ : (i : ι) → Fintype (H i)
hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j))
val✝ : Fintype ι
i : ι
f : G
hxp : f ∈ ↑(⨆ (x : { j // ¬j = i }), range (ϕ ↑x))
g : (i_1 : { j // ¬j = i }) → H ↑i_1
hgf :
↑(noncommPiCoprod (fun x => ϕ ↑x)
(_ : ∀ (i_1 j : { j // ¬j = i }), i_1 ≠ j → ∀ (x : H ↑i_1) (y : H ↑j), Commute (↑(ϕ ↑i_1) x) (↑(ϕ ↑j) y)))
g =
f
g' : H i
hg'f : ↑(ϕ i) g' = f
⊢ orderOf (↑(ϕ i) g') ∣ Fintype.card (H i)
[PROOFSTEP]
exact (orderOf_map_dvd _ _).trans orderOf_dvd_card_univ
[GOAL]
case intro.intro.intro.intro
G : Type u_1
inst✝³ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Type u_3
inst✝² : (i : ι) → Group (H i)
ϕ : (i : ι) → H i →* G
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f✝ g✝ : (i : ι) → H i
inst✝¹ : Finite ι
inst✝ : (i : ι) → Fintype (H i)
hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j))
val✝ : Fintype ι
i : ι
f : G
hxp : f ∈ ↑(⨆ (x : { j // ¬j = i }), range (ϕ ↑x))
g : (i_1 : { j // ¬j = i }) → H ↑i_1
hgf :
↑(noncommPiCoprod (fun x => ϕ ↑x)
(_ : ∀ (i_1 j : { j // ¬j = i }), i_1 ≠ j → ∀ (x : H ↑i_1) (y : H ↑j), Commute (↑(ϕ ↑i_1) x) (↑(ϕ ↑j) y)))
g =
f
g' : H i
hg'f : ↑(ϕ i) g' = f
hxi : orderOf f ∣ Fintype.card (H i)
⊢ f ∈ ⊥
[PROOFSTEP]
have hxp : orderOf f ∣ ∏ j : { j // j ≠ i }, Fintype.card (H j) :=
by
rw [← hgf, ← Fintype.card_pi]
exact (orderOf_map_dvd _ _).trans orderOf_dvd_card_univ
[GOAL]
G : Type u_1
inst✝³ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Type u_3
inst✝² : (i : ι) → Group (H i)
ϕ : (i : ι) → H i →* G
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f✝ g✝ : (i : ι) → H i
inst✝¹ : Finite ι
inst✝ : (i : ι) → Fintype (H i)
hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j))
val✝ : Fintype ι
i : ι
f : G
hxp : f ∈ ↑(⨆ (x : { j // ¬j = i }), range (ϕ ↑x))
g : (i_1 : { j // ¬j = i }) → H ↑i_1
hgf :
↑(noncommPiCoprod (fun x => ϕ ↑x)
(_ : ∀ (i_1 j : { j // ¬j = i }), i_1 ≠ j → ∀ (x : H ↑i_1) (y : H ↑j), Commute (↑(ϕ ↑i_1) x) (↑(ϕ ↑j) y)))
g =
f
g' : H i
hg'f : ↑(ϕ i) g' = f
hxi : orderOf f ∣ Fintype.card (H i)
⊢ orderOf f ∣ ∏ j : { j // j ≠ i }, Fintype.card (H ↑j)
[PROOFSTEP]
rw [← hgf, ← Fintype.card_pi]
[GOAL]
G : Type u_1
inst✝³ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Type u_3
inst✝² : (i : ι) → Group (H i)
ϕ : (i : ι) → H i →* G
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f✝ g✝ : (i : ι) → H i
inst✝¹ : Finite ι
inst✝ : (i : ι) → Fintype (H i)
hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j))
val✝ : Fintype ι
i : ι
f : G
hxp : f ∈ ↑(⨆ (x : { j // ¬j = i }), range (ϕ ↑x))
g : (i_1 : { j // ¬j = i }) → H ↑i_1
hgf :
↑(noncommPiCoprod (fun x => ϕ ↑x)
(_ : ∀ (i_1 j : { j // ¬j = i }), i_1 ≠ j → ∀ (x : H ↑i_1) (y : H ↑j), Commute (↑(ϕ ↑i_1) x) (↑(ϕ ↑j) y)))
g =
f
g' : H i
hg'f : ↑(ϕ i) g' = f
hxi : orderOf f ∣ Fintype.card (H i)
⊢ orderOf
(↑(noncommPiCoprod (fun x => ϕ ↑x)
(_ : ∀ (i_1 j : { j // ¬j = i }), i_1 ≠ j → ∀ (x : H ↑i_1) (y : H ↑j), Commute (↑(ϕ ↑i_1) x) (↑(ϕ ↑j) y)))
g) ∣
Fintype.card ((a : { j // j ≠ i }) → H ↑a)
[PROOFSTEP]
exact (orderOf_map_dvd _ _).trans orderOf_dvd_card_univ
[GOAL]
case intro.intro.intro.intro
G : Type u_1
inst✝³ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Type u_3
inst✝² : (i : ι) → Group (H i)
ϕ : (i : ι) → H i →* G
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f✝ g✝ : (i : ι) → H i
inst✝¹ : Finite ι
inst✝ : (i : ι) → Fintype (H i)
hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j))
val✝ : Fintype ι
i : ι
f : G
hxp✝ : f ∈ ↑(⨆ (x : { j // ¬j = i }), range (ϕ ↑x))
g : (i_1 : { j // ¬j = i }) → H ↑i_1
hgf :
↑(noncommPiCoprod (fun x => ϕ ↑x)
(_ : ∀ (i_1 j : { j // ¬j = i }), i_1 ≠ j → ∀ (x : H ↑i_1) (y : H ↑j), Commute (↑(ϕ ↑i_1) x) (↑(ϕ ↑j) y)))
g =
f
g' : H i
hg'f : ↑(ϕ i) g' = f
hxi : orderOf f ∣ Fintype.card (H i)
hxp : orderOf f ∣ ∏ j : { j // j ≠ i }, Fintype.card (H ↑j)
⊢ f ∈ ⊥
[PROOFSTEP]
change f = 1
[GOAL]
case intro.intro.intro.intro
G : Type u_1
inst✝³ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Type u_3
inst✝² : (i : ι) → Group (H i)
ϕ : (i : ι) → H i →* G
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f✝ g✝ : (i : ι) → H i
inst✝¹ : Finite ι
inst✝ : (i : ι) → Fintype (H i)
hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j))
val✝ : Fintype ι
i : ι
f : G
hxp✝ : f ∈ ↑(⨆ (x : { j // ¬j = i }), range (ϕ ↑x))
g : (i_1 : { j // ¬j = i }) → H ↑i_1
hgf :
↑(noncommPiCoprod (fun x => ϕ ↑x)
(_ : ∀ (i_1 j : { j // ¬j = i }), i_1 ≠ j → ∀ (x : H ↑i_1) (y : H ↑j), Commute (↑(ϕ ↑i_1) x) (↑(ϕ ↑j) y)))
g =
f
g' : H i
hg'f : ↑(ϕ i) g' = f
hxi : orderOf f ∣ Fintype.card (H i)
hxp : orderOf f ∣ ∏ j : { j // j ≠ i }, Fintype.card (H ↑j)
⊢ f = 1
[PROOFSTEP]
rw [← pow_one f, ← orderOf_dvd_iff_pow_eq_one]
-- porting note: ouch, had to replace an ugly `convert`
[GOAL]
case intro.intro.intro.intro
G : Type u_1
inst✝³ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Type u_3
inst✝² : (i : ι) → Group (H i)
ϕ : (i : ι) → H i →* G
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f✝ g✝ : (i : ι) → H i
inst✝¹ : Finite ι
inst✝ : (i : ι) → Fintype (H i)
hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j))
val✝ : Fintype ι
i : ι
f : G
hxp✝ : f ∈ ↑(⨆ (x : { j // ¬j = i }), range (ϕ ↑x))
g : (i_1 : { j // ¬j = i }) → H ↑i_1
hgf :
↑(noncommPiCoprod (fun x => ϕ ↑x)
(_ : ∀ (i_1 j : { j // ¬j = i }), i_1 ≠ j → ∀ (x : H ↑i_1) (y : H ↑j), Commute (↑(ϕ ↑i_1) x) (↑(ϕ ↑j) y)))
g =
f
g' : H i
hg'f : ↑(ϕ i) g' = f
hxi : orderOf f ∣ Fintype.card (H i)
hxp : orderOf f ∣ ∏ j : { j // j ≠ i }, Fintype.card (H ↑j)
⊢ orderOf f ∣ 1
[PROOFSTEP]
obtain ⟨c, hc⟩ := Nat.dvd_gcd hxp hxi
[GOAL]
case intro.intro.intro.intro.intro
G : Type u_1
inst✝³ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Type u_3
inst✝² : (i : ι) → Group (H i)
ϕ : (i : ι) → H i →* G
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f✝ g✝ : (i : ι) → H i
inst✝¹ : Finite ι
inst✝ : (i : ι) → Fintype (H i)
hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j))
val✝ : Fintype ι
i : ι
f : G
hxp✝ : f ∈ ↑(⨆ (x : { j // ¬j = i }), range (ϕ ↑x))
g : (i_1 : { j // ¬j = i }) → H ↑i_1
hgf :
↑(noncommPiCoprod (fun x => ϕ ↑x)
(_ : ∀ (i_1 j : { j // ¬j = i }), i_1 ≠ j → ∀ (x : H ↑i_1) (y : H ↑j), Commute (↑(ϕ ↑i_1) x) (↑(ϕ ↑j) y)))
g =
f
g' : H i
hg'f : ↑(ϕ i) g' = f
hxi : orderOf f ∣ Fintype.card (H i)
hxp : orderOf f ∣ ∏ j : { j // j ≠ i }, Fintype.card (H ↑j)
c : ℕ
hc : Nat.gcd (∏ j : { j // j ≠ i }, Fintype.card (H ↑j)) (Fintype.card (H i)) = orderOf f * c
⊢ orderOf f ∣ 1
[PROOFSTEP]
use c
[GOAL]
case h
G : Type u_1
inst✝³ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Type u_3
inst✝² : (i : ι) → Group (H i)
ϕ : (i : ι) → H i →* G
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f✝ g✝ : (i : ι) → H i
inst✝¹ : Finite ι
inst✝ : (i : ι) → Fintype (H i)
hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j))
val✝ : Fintype ι
i : ι
f : G
hxp✝ : f ∈ ↑(⨆ (x : { j // ¬j = i }), range (ϕ ↑x))
g : (i_1 : { j // ¬j = i }) → H ↑i_1
hgf :
↑(noncommPiCoprod (fun x => ϕ ↑x)
(_ : ∀ (i_1 j : { j // ¬j = i }), i_1 ≠ j → ∀ (x : H ↑i_1) (y : H ↑j), Commute (↑(ϕ ↑i_1) x) (↑(ϕ ↑j) y)))
g =
f
g' : H i
hg'f : ↑(ϕ i) g' = f
hxi : orderOf f ∣ Fintype.card (H i)
hxp : orderOf f ∣ ∏ j : { j // j ≠ i }, Fintype.card (H ↑j)
c : ℕ
hc : Nat.gcd (∏ j : { j // j ≠ i }, Fintype.card (H ↑j)) (Fintype.card (H i)) = orderOf f * c
⊢ 1 = orderOf f * c
[PROOFSTEP]
rw [← hc]
[GOAL]
case h
G : Type u_1
inst✝³ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Type u_3
inst✝² : (i : ι) → Group (H i)
ϕ : (i : ι) → H i →* G
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f✝ g✝ : (i : ι) → H i
inst✝¹ : Finite ι
inst✝ : (i : ι) → Fintype (H i)
hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j))
val✝ : Fintype ι
i : ι
f : G
hxp✝ : f ∈ ↑(⨆ (x : { j // ¬j = i }), range (ϕ ↑x))
g : (i_1 : { j // ¬j = i }) → H ↑i_1
hgf :
↑(noncommPiCoprod (fun x => ϕ ↑x)
(_ : ∀ (i_1 j : { j // ¬j = i }), i_1 ≠ j → ∀ (x : H ↑i_1) (y : H ↑j), Commute (↑(ϕ ↑i_1) x) (↑(ϕ ↑j) y)))
g =
f
g' : H i
hg'f : ↑(ϕ i) g' = f
hxi : orderOf f ∣ Fintype.card (H i)
hxp : orderOf f ∣ ∏ j : { j // j ≠ i }, Fintype.card (H ↑j)
c : ℕ
hc : Nat.gcd (∏ j : { j // j ≠ i }, Fintype.card (H ↑j)) (Fintype.card (H i)) = orderOf f * c
⊢ 1 = Nat.gcd (∏ j : { j // j ≠ i }, Fintype.card (H ↑j)) (Fintype.card (H i))
[PROOFSTEP]
symm
[GOAL]
case h
G : Type u_1
inst✝³ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Type u_3
inst✝² : (i : ι) → Group (H i)
ϕ : (i : ι) → H i →* G
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f✝ g✝ : (i : ι) → H i
inst✝¹ : Finite ι
inst✝ : (i : ι) → Fintype (H i)
hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j))
val✝ : Fintype ι
i : ι
f : G
hxp✝ : f ∈ ↑(⨆ (x : { j // ¬j = i }), range (ϕ ↑x))
g : (i_1 : { j // ¬j = i }) → H ↑i_1
hgf :
↑(noncommPiCoprod (fun x => ϕ ↑x)
(_ : ∀ (i_1 j : { j // ¬j = i }), i_1 ≠ j → ∀ (x : H ↑i_1) (y : H ↑j), Commute (↑(ϕ ↑i_1) x) (↑(ϕ ↑j) y)))
g =
f
g' : H i
hg'f : ↑(ϕ i) g' = f
hxi : orderOf f ∣ Fintype.card (H i)
hxp : orderOf f ∣ ∏ j : { j // j ≠ i }, Fintype.card (H ↑j)
c : ℕ
hc : Nat.gcd (∏ j : { j // j ≠ i }, Fintype.card (H ↑j)) (Fintype.card (H i)) = orderOf f * c
⊢ Nat.gcd (∏ j : { j // j ≠ i }, Fintype.card (H ↑j)) (Fintype.card (H i)) = 1
[PROOFSTEP]
rw [← Nat.coprime_iff_gcd_eq_one]
[GOAL]
case h
G : Type u_1
inst✝³ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Type u_3
inst✝² : (i : ι) → Group (H i)
ϕ : (i : ι) → H i →* G
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f✝ g✝ : (i : ι) → H i
inst✝¹ : Finite ι
inst✝ : (i : ι) → Fintype (H i)
hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j))
val✝ : Fintype ι
i : ι
f : G
hxp✝ : f ∈ ↑(⨆ (x : { j // ¬j = i }), range (ϕ ↑x))
g : (i_1 : { j // ¬j = i }) → H ↑i_1
hgf :
↑(noncommPiCoprod (fun x => ϕ ↑x)
(_ : ∀ (i_1 j : { j // ¬j = i }), i_1 ≠ j → ∀ (x : H ↑i_1) (y : H ↑j), Commute (↑(ϕ ↑i_1) x) (↑(ϕ ↑j) y)))
g =
f
g' : H i
hg'f : ↑(ϕ i) g' = f
hxi : orderOf f ∣ Fintype.card (H i)
hxp : orderOf f ∣ ∏ j : { j // j ≠ i }, Fintype.card (H ↑j)
c : ℕ
hc : Nat.gcd (∏ j : { j // j ≠ i }, Fintype.card (H ↑j)) (Fintype.card (H i)) = orderOf f * c
⊢ Nat.coprime (∏ j : { j // j ≠ i }, Fintype.card (H ↑j)) (Fintype.card (H i))
[PROOFSTEP]
apply Nat.coprime_prod_left
[GOAL]
case h.a
G : Type u_1
inst✝³ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Type u_3
inst✝² : (i : ι) → Group (H i)
ϕ : (i : ι) → H i →* G
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f✝ g✝ : (i : ι) → H i
inst✝¹ : Finite ι
inst✝ : (i : ι) → Fintype (H i)
hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j))
val✝ : Fintype ι
i : ι
f : G
hxp✝ : f ∈ ↑(⨆ (x : { j // ¬j = i }), range (ϕ ↑x))
g : (i_1 : { j // ¬j = i }) → H ↑i_1
hgf :
↑(noncommPiCoprod (fun x => ϕ ↑x)
(_ : ∀ (i_1 j : { j // ¬j = i }), i_1 ≠ j → ∀ (x : H ↑i_1) (y : H ↑j), Commute (↑(ϕ ↑i_1) x) (↑(ϕ ↑j) y)))
g =
f
g' : H i
hg'f : ↑(ϕ i) g' = f
hxi : orderOf f ∣ Fintype.card (H i)
hxp : orderOf f ∣ ∏ j : { j // j ≠ i }, Fintype.card (H ↑j)
c : ℕ
hc : Nat.gcd (∏ j : { j // j ≠ i }, Fintype.card (H ↑j)) (Fintype.card (H i)) = orderOf f * c
⊢ ∀ (i_1 : { j // j ≠ i }), i_1 ∈ Finset.univ → Nat.coprime (Fintype.card (H ↑i_1)) (Fintype.card (H i))
[PROOFSTEP]
intro j _
[GOAL]
case h.a
G : Type u_1
inst✝³ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Type u_3
inst✝² : (i : ι) → Group (H i)
ϕ : (i : ι) → H i →* G
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f✝ g✝ : (i : ι) → H i
inst✝¹ : Finite ι
inst✝ : (i : ι) → Fintype (H i)
hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j))
val✝ : Fintype ι
i : ι
f : G
hxp✝ : f ∈ ↑(⨆ (x : { j // ¬j = i }), range (ϕ ↑x))
g : (i_1 : { j // ¬j = i }) → H ↑i_1
hgf :
↑(noncommPiCoprod (fun x => ϕ ↑x)
(_ : ∀ (i_1 j : { j // ¬j = i }), i_1 ≠ j → ∀ (x : H ↑i_1) (y : H ↑j), Commute (↑(ϕ ↑i_1) x) (↑(ϕ ↑j) y)))
g =
f
g' : H i
hg'f : ↑(ϕ i) g' = f
hxi : orderOf f ∣ Fintype.card (H i)
hxp : orderOf f ∣ ∏ j : { j // j ≠ i }, Fintype.card (H ↑j)
c : ℕ
hc : Nat.gcd (∏ j : { j // j ≠ i }, Fintype.card (H ↑j)) (Fintype.card (H i)) = orderOf f * c
j : { j // j ≠ i }
a✝ : j ∈ Finset.univ
⊢ Nat.coprime (Fintype.card (H ↑j)) (Fintype.card (H i))
[PROOFSTEP]
apply hcoprime
[GOAL]
case h.a.a
G : Type u_1
inst✝³ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Type u_3
inst✝² : (i : ι) → Group (H i)
ϕ : (i : ι) → H i →* G
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y)
f✝ g✝ : (i : ι) → H i
inst✝¹ : Finite ι
inst✝ : (i : ι) → Fintype (H i)
hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j))
val✝ : Fintype ι
i : ι
f : G
hxp✝ : f ∈ ↑(⨆ (x : { j // ¬j = i }), range (ϕ ↑x))
g : (i_1 : { j // ¬j = i }) → H ↑i_1
hgf :
↑(noncommPiCoprod (fun x => ϕ ↑x)
(_ : ∀ (i_1 j : { j // ¬j = i }), i_1 ≠ j → ∀ (x : H ↑i_1) (y : H ↑j), Commute (↑(ϕ ↑i_1) x) (↑(ϕ ↑j) y)))
g =
f
g' : H i
hg'f : ↑(ϕ i) g' = f
hxi : orderOf f ∣ Fintype.card (H i)
hxp : orderOf f ∣ ∏ j : { j // j ≠ i }, Fintype.card (H ↑j)
c : ℕ
hc : Nat.gcd (∏ j : { j // j ≠ i }, Fintype.card (H ↑j)) (Fintype.card (H i)) = orderOf f * c
j : { j // j ≠ i }
a✝ : j ∈ Finset.univ
⊢ ↑j ≠ i
[PROOFSTEP]
exact j.2
[GOAL]
G : Type u_1
inst✝ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Subgroup G
f g : (i : ι) → { x // x ∈ H i }
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x y : G), x ∈ H i → y ∈ H j → Commute x y
i j : ι
hne : i ≠ j
⊢ ∀ (x : { x // x ∈ H i }) (y : { x // x ∈ H j }), Commute (↑(Subgroup.subtype (H i)) x) (↑(Subgroup.subtype (H j)) y)
[PROOFSTEP]
rintro ⟨x, hx⟩ ⟨y, hy⟩
[GOAL]
case mk.mk
G : Type u_1
inst✝ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Subgroup G
f g : (i : ι) → { x // x ∈ H i }
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x y : G), x ∈ H i → y ∈ H j → Commute x y
i j : ι
hne : i ≠ j
x : G
hx : x ∈ H i
y : G
hy : y ∈ H j
⊢ Commute (↑(Subgroup.subtype (H i)) { val := x, property := hx })
(↑(Subgroup.subtype (H j)) { val := y, property := hy })
[PROOFSTEP]
exact hcomm i j hne x y hx hy
[GOAL]
G : Type u_1
inst✝ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Subgroup G
f g : (i : ι) → { x // x ∈ H i }
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x y : G), x ∈ H i → y ∈ H j → Commute x y
i : ι
y : { x // x ∈ H i }
⊢ ↑(noncommPiCoprod hcomm) (Pi.mulSingle i y) = ↑y
[PROOFSTEP]
apply MonoidHom.noncommPiCoprod_mulSingle
[GOAL]
G : Type u_1
inst✝ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Subgroup G
f g : (i : ι) → { x // x ∈ H i }
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x y : G), x ∈ H i → y ∈ H j → Commute x y
⊢ MonoidHom.range (noncommPiCoprod hcomm) = ⨆ (i : ι), H i
[PROOFSTEP]
simp [noncommPiCoprod, MonoidHom.noncommPiCoprod_range]
[GOAL]
G : Type u_1
inst✝ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Subgroup G
f g : (i : ι) → { x // x ∈ H i }
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x y : G), x ∈ H i → y ∈ H j → Commute x y
hind : CompleteLattice.Independent H
⊢ Function.Injective ↑(noncommPiCoprod hcomm)
[PROOFSTEP]
apply MonoidHom.injective_noncommPiCoprod_of_independent
[GOAL]
case hind
G : Type u_1
inst✝ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Subgroup G
f g : (i : ι) → { x // x ∈ H i }
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x y : G), x ∈ H i → y ∈ H j → Commute x y
hind : CompleteLattice.Independent H
⊢ CompleteLattice.Independent fun i => MonoidHom.range (Subgroup.subtype ((fun i => H i) i))
[PROOFSTEP]
simpa using hind
[GOAL]
case hinj
G : Type u_1
inst✝ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Subgroup G
f g : (i : ι) → { x // x ∈ H i }
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x y : G), x ∈ H i → y ∈ H j → Commute x y
hind : CompleteLattice.Independent H
⊢ ∀ (i : ι), Function.Injective ↑(Subgroup.subtype ((fun i => H i) i))
[PROOFSTEP]
intro i
[GOAL]
case hinj
G : Type u_1
inst✝ : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Subgroup G
f g : (i : ι) → { x // x ∈ H i }
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x y : G), x ∈ H i → y ∈ H j → Commute x y
hind : CompleteLattice.Independent H
i : ι
⊢ Function.Injective ↑(Subgroup.subtype ((fun i => H i) i))
[PROOFSTEP]
exact Subtype.coe_injective
[GOAL]
G : Type u_1
inst✝² : Group G
ι : Type u_2
hdec : DecidableEq ι
hfin : Fintype ι
H : ι → Subgroup G
f g : (i : ι) → { x // x ∈ H i }
hcomm : ∀ (i j : ι), i ≠ j → ∀ (x y : G), x ∈ H i → y ∈ H j → Commute x y
inst✝¹ : Finite ι
inst✝ : (i : ι) → Fintype { x // x ∈ H i }
hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card { x // x ∈ H i }) (Fintype.card { x // x ∈ H j })
⊢ CompleteLattice.Independent H
[PROOFSTEP]
simpa using
MonoidHom.independent_range_of_coprime_order (fun i => (H i).subtype) (commute_subtype_of_commute hcomm) hcoprime
| {"mathlib_filename": "Mathlib.GroupTheory.NoncommPiCoprod", "llama_tokens": 40346} |
[GOAL]
ι : Type u_1
M : Type u_2
N : Type u_3
α : ι → Type u_4
inst✝³ : (i : ι) → SMul M (α i)
inst✝² : (i : ι) → SMul N (α i)
a✝ : M
i : ι
b✝ : α i
x✝ : (i : ι) × α i
inst✝¹ : SMul M N
inst✝ : ∀ (i : ι), IsScalarTower M N (α i)
a : M
b : N
x : (i : ι) × α i
⊢ (a • b) • x = a • b • x
[PROOFSTEP]
cases x
[GOAL]
case mk
ι : Type u_1
M : Type u_2
N : Type u_3
α : ι → Type u_4
inst✝³ : (i : ι) → SMul M (α i)
inst✝² : (i : ι) → SMul N (α i)
a✝ : M
i : ι
b✝ : α i
x : (i : ι) × α i
inst✝¹ : SMul M N
inst✝ : ∀ (i : ι), IsScalarTower M N (α i)
a : M
b : N
fst✝ : ι
snd✝ : α fst✝
⊢ (a • b) • { fst := fst✝, snd := snd✝ } = a • b • { fst := fst✝, snd := snd✝ }
[PROOFSTEP]
rw [smul_mk, smul_mk, smul_mk, smul_assoc]
[GOAL]
ι : Type u_1
M : Type u_2
N : Type u_3
α : ι → Type u_4
inst✝² : (i : ι) → SMul M (α i)
inst✝¹ : (i : ι) → SMul N (α i)
a✝ : M
i : ι
b✝ : α i
x✝ : (i : ι) × α i
inst✝ : ∀ (i : ι), SMulCommClass M N (α i)
a : M
b : N
x : (i : ι) × α i
⊢ a • b • x = b • a • x
[PROOFSTEP]
cases x
[GOAL]
case mk
ι : Type u_1
M : Type u_2
N : Type u_3
α : ι → Type u_4
inst✝² : (i : ι) → SMul M (α i)
inst✝¹ : (i : ι) → SMul N (α i)
a✝ : M
i : ι
b✝ : α i
x : (i : ι) × α i
inst✝ : ∀ (i : ι), SMulCommClass M N (α i)
a : M
b : N
fst✝ : ι
snd✝ : α fst✝
⊢ a • b • { fst := fst✝, snd := snd✝ } = b • a • { fst := fst✝, snd := snd✝ }
[PROOFSTEP]
rw [smul_mk, smul_mk, smul_mk, smul_mk, smul_comm]
[GOAL]
ι : Type u_1
M : Type u_2
N : Type u_3
α : ι → Type u_4
inst✝³ : (i : ι) → SMul M (α i)
inst✝² : (i : ι) → SMul N (α i)
a✝ : M
i : ι
b : α i
x✝ : (i : ι) × α i
inst✝¹ : (i : ι) → SMul Mᵐᵒᵖ (α i)
inst✝ : ∀ (i : ι), IsCentralScalar M (α i)
a : M
x : (i : ι) × α i
⊢ MulOpposite.op a • x = a • x
[PROOFSTEP]
cases x
[GOAL]
case mk
ι : Type u_1
M : Type u_2
N : Type u_3
α : ι → Type u_4
inst✝³ : (i : ι) → SMul M (α i)
inst✝² : (i : ι) → SMul N (α i)
a✝ : M
i : ι
b : α i
x : (i : ι) × α i
inst✝¹ : (i : ι) → SMul Mᵐᵒᵖ (α i)
inst✝ : ∀ (i : ι), IsCentralScalar M (α i)
a : M
fst✝ : ι
snd✝ : α fst✝
⊢ MulOpposite.op a • { fst := fst✝, snd := snd✝ } = a • { fst := fst✝, snd := snd✝ }
[PROOFSTEP]
rw [smul_mk, smul_mk, op_smul_eq_smul]
[GOAL]
ι : Type u_1
M : Type u_2
N : Type u_3
α : ι → Type u_4
m : Monoid M
inst✝ : (i : ι) → MulAction M (α i)
x : (i : ι) × α i
⊢ 1 • x = x
[PROOFSTEP]
cases x
[GOAL]
case mk
ι : Type u_1
M : Type u_2
N : Type u_3
α : ι → Type u_4
m : Monoid M
inst✝ : (i : ι) → MulAction M (α i)
fst✝ : ι
snd✝ : α fst✝
⊢ 1 • { fst := fst✝, snd := snd✝ } = { fst := fst✝, snd := snd✝ }
[PROOFSTEP]
rw [smul_mk, one_smul]
[GOAL]
ι : Type u_1
M : Type u_2
N : Type u_3
α : ι → Type u_4
m : Monoid M
inst✝ : (i : ι) → MulAction M (α i)
a b : M
x : (i : ι) × α i
⊢ (a * b) • x = a • b • x
[PROOFSTEP]
cases x
[GOAL]
case mk
ι : Type u_1
M : Type u_2
N : Type u_3
α : ι → Type u_4
m : Monoid M
inst✝ : (i : ι) → MulAction M (α i)
a b : M
fst✝ : ι
snd✝ : α fst✝
⊢ (a * b) • { fst := fst✝, snd := snd✝ } = a • b • { fst := fst✝, snd := snd✝ }
[PROOFSTEP]
rw [smul_mk, smul_mk, smul_mk, mul_smul]
| {"mathlib_filename": "Mathlib.GroupTheory.GroupAction.Sigma", "llama_tokens": 1883} |
[GOAL]
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
h : IsComplement' H K
⊢ IsComplement' K H
[PROOFSTEP]
let ϕ : H × K ≃ K × H :=
Equiv.mk (fun x => ⟨x.2⁻¹, x.1⁻¹⟩) (fun x => ⟨x.2⁻¹, x.1⁻¹⟩) (fun x => Prod.ext (inv_inv _) (inv_inv _)) fun x =>
Prod.ext (inv_inv _) (inv_inv _)
[GOAL]
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
h : IsComplement' H K
ϕ : { x // x ∈ H } × { x // x ∈ K } ≃ { x // x ∈ K } × { x // x ∈ H } :=
{ toFun := fun x => (x.snd⁻¹, x.fst⁻¹), invFun := fun x => (x.snd⁻¹, x.fst⁻¹),
left_inv :=
(_ :
∀ (x : { x // x ∈ H } × { x // x ∈ K }), (fun x => (x.snd⁻¹, x.fst⁻¹)) ((fun x => (x.snd⁻¹, x.fst⁻¹)) x) = x),
right_inv :=
(_ :
∀ (x : { x // x ∈ K } × { x // x ∈ H }), (fun x => (x.snd⁻¹, x.fst⁻¹)) ((fun x => (x.snd⁻¹, x.fst⁻¹)) x) = x) }
⊢ IsComplement' K H
[PROOFSTEP]
let ψ : G ≃ G := Equiv.mk (fun g : G => g⁻¹) (fun g : G => g⁻¹) inv_inv inv_inv
[GOAL]
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
h : IsComplement' H K
ϕ : { x // x ∈ H } × { x // x ∈ K } ≃ { x // x ∈ K } × { x // x ∈ H } :=
{ toFun := fun x => (x.snd⁻¹, x.fst⁻¹), invFun := fun x => (x.snd⁻¹, x.fst⁻¹),
left_inv :=
(_ :
∀ (x : { x // x ∈ H } × { x // x ∈ K }), (fun x => (x.snd⁻¹, x.fst⁻¹)) ((fun x => (x.snd⁻¹, x.fst⁻¹)) x) = x),
right_inv :=
(_ :
∀ (x : { x // x ∈ K } × { x // x ∈ H }), (fun x => (x.snd⁻¹, x.fst⁻¹)) ((fun x => (x.snd⁻¹, x.fst⁻¹)) x) = x) }
ψ : G ≃ G :=
{ toFun := fun g => g⁻¹, invFun := fun g => g⁻¹, left_inv := (_ : ∀ (a : G), a⁻¹⁻¹ = a),
right_inv := (_ : ∀ (a : G), a⁻¹⁻¹ = a) }
⊢ IsComplement' K H
[PROOFSTEP]
suffices hf : (ψ ∘ fun x : H × K => x.1.1 * x.2.1) = (fun x : K × H => x.1.1 * x.2.1) ∘ ϕ
by
rw [isComplement'_def, IsComplement, ← Equiv.bijective_comp ϕ]
apply (congr_arg Function.Bijective hf).mp
rwa [ψ.comp_bijective]
[GOAL]
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
h : IsComplement' H K
ϕ : { x // x ∈ H } × { x // x ∈ K } ≃ { x // x ∈ K } × { x // x ∈ H } :=
{ toFun := fun x => (x.snd⁻¹, x.fst⁻¹), invFun := fun x => (x.snd⁻¹, x.fst⁻¹),
left_inv :=
(_ :
∀ (x : { x // x ∈ H } × { x // x ∈ K }), (fun x => (x.snd⁻¹, x.fst⁻¹)) ((fun x => (x.snd⁻¹, x.fst⁻¹)) x) = x),
right_inv :=
(_ :
∀ (x : { x // x ∈ K } × { x // x ∈ H }), (fun x => (x.snd⁻¹, x.fst⁻¹)) ((fun x => (x.snd⁻¹, x.fst⁻¹)) x) = x) }
ψ : G ≃ G :=
{ toFun := fun g => g⁻¹, invFun := fun g => g⁻¹, left_inv := (_ : ∀ (a : G), a⁻¹⁻¹ = a),
right_inv := (_ : ∀ (a : G), a⁻¹⁻¹ = a) }
hf : (↑ψ ∘ fun x => ↑x.fst * ↑x.snd) = (fun x => ↑x.fst * ↑x.snd) ∘ ↑ϕ
⊢ IsComplement' K H
[PROOFSTEP]
rw [isComplement'_def, IsComplement, ← Equiv.bijective_comp ϕ]
[GOAL]
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
h : IsComplement' H K
ϕ : { x // x ∈ H } × { x // x ∈ K } ≃ { x // x ∈ K } × { x // x ∈ H } :=
{ toFun := fun x => (x.snd⁻¹, x.fst⁻¹), invFun := fun x => (x.snd⁻¹, x.fst⁻¹),
left_inv :=
(_ :
∀ (x : { x // x ∈ H } × { x // x ∈ K }), (fun x => (x.snd⁻¹, x.fst⁻¹)) ((fun x => (x.snd⁻¹, x.fst⁻¹)) x) = x),
right_inv :=
(_ :
∀ (x : { x // x ∈ K } × { x // x ∈ H }), (fun x => (x.snd⁻¹, x.fst⁻¹)) ((fun x => (x.snd⁻¹, x.fst⁻¹)) x) = x) }
ψ : G ≃ G :=
{ toFun := fun g => g⁻¹, invFun := fun g => g⁻¹, left_inv := (_ : ∀ (a : G), a⁻¹⁻¹ = a),
right_inv := (_ : ∀ (a : G), a⁻¹⁻¹ = a) }
hf : (↑ψ ∘ fun x => ↑x.fst * ↑x.snd) = (fun x => ↑x.fst * ↑x.snd) ∘ ↑ϕ
⊢ Function.Bijective ((fun x => ↑x.fst * ↑x.snd) ∘ ↑ϕ)
[PROOFSTEP]
apply (congr_arg Function.Bijective hf).mp
[GOAL]
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
h : IsComplement' H K
ϕ : { x // x ∈ H } × { x // x ∈ K } ≃ { x // x ∈ K } × { x // x ∈ H } :=
{ toFun := fun x => (x.snd⁻¹, x.fst⁻¹), invFun := fun x => (x.snd⁻¹, x.fst⁻¹),
left_inv :=
(_ :
∀ (x : { x // x ∈ H } × { x // x ∈ K }), (fun x => (x.snd⁻¹, x.fst⁻¹)) ((fun x => (x.snd⁻¹, x.fst⁻¹)) x) = x),
right_inv :=
(_ :
∀ (x : { x // x ∈ K } × { x // x ∈ H }), (fun x => (x.snd⁻¹, x.fst⁻¹)) ((fun x => (x.snd⁻¹, x.fst⁻¹)) x) = x) }
ψ : G ≃ G :=
{ toFun := fun g => g⁻¹, invFun := fun g => g⁻¹, left_inv := (_ : ∀ (a : G), a⁻¹⁻¹ = a),
right_inv := (_ : ∀ (a : G), a⁻¹⁻¹ = a) }
hf : (↑ψ ∘ fun x => ↑x.fst * ↑x.snd) = (fun x => ↑x.fst * ↑x.snd) ∘ ↑ϕ
⊢ Function.Bijective (↑ψ ∘ fun x => ↑x.fst * ↑x.snd)
[PROOFSTEP]
rwa [ψ.comp_bijective]
[GOAL]
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
h : IsComplement' H K
ϕ : { x // x ∈ H } × { x // x ∈ K } ≃ { x // x ∈ K } × { x // x ∈ H } :=
{ toFun := fun x => (x.snd⁻¹, x.fst⁻¹), invFun := fun x => (x.snd⁻¹, x.fst⁻¹),
left_inv :=
(_ :
∀ (x : { x // x ∈ H } × { x // x ∈ K }), (fun x => (x.snd⁻¹, x.fst⁻¹)) ((fun x => (x.snd⁻¹, x.fst⁻¹)) x) = x),
right_inv :=
(_ :
∀ (x : { x // x ∈ K } × { x // x ∈ H }), (fun x => (x.snd⁻¹, x.fst⁻¹)) ((fun x => (x.snd⁻¹, x.fst⁻¹)) x) = x) }
ψ : G ≃ G :=
{ toFun := fun g => g⁻¹, invFun := fun g => g⁻¹, left_inv := (_ : ∀ (a : G), a⁻¹⁻¹ = a),
right_inv := (_ : ∀ (a : G), a⁻¹⁻¹ = a) }
⊢ (↑ψ ∘ fun x => ↑x.fst * ↑x.snd) = (fun x => ↑x.fst * ↑x.snd) ∘ ↑ϕ
[PROOFSTEP]
exact funext fun x => mul_inv_rev _ _
[GOAL]
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
g : G
⊢ IsComplement {g} S ↔ S = ⊤
[PROOFSTEP]
refine' ⟨fun h => top_le_iff.mp fun x _ => _, fun h => (congr_arg _ h).mpr isComplement_singleton_top⟩
[GOAL]
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
g : G
h : IsComplement {g} S
x : G
x✝ : x ∈ ⊤
⊢ x ∈ S
[PROOFSTEP]
obtain ⟨⟨⟨z, rfl : z = g⟩, y, _⟩, hy⟩ := h.2 (g * x)
[GOAL]
case intro.mk.mk.mk
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
x : G
x✝ : x ∈ ⊤
z : G
h : IsComplement {z} S
y : G
property✝ : y ∈ S
hy : (fun x => ↑x.fst * ↑x.snd) ({ val := z, property := (_ : z = z) }, { val := y, property := property✝ }) = z * x
⊢ x ∈ S
[PROOFSTEP]
rwa [← mul_left_cancel hy]
[GOAL]
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
g : G
⊢ IsComplement S {g} ↔ S = ⊤
[PROOFSTEP]
refine' ⟨fun h => top_le_iff.mp fun x _ => _, fun h => h ▸ isComplement_top_singleton⟩
[GOAL]
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
g : G
h : IsComplement S {g}
x : G
x✝ : x ∈ ⊤
⊢ x ∈ S
[PROOFSTEP]
obtain ⟨y, hy⟩ := h.2 (x * g)
[GOAL]
case intro
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
g : G
h : IsComplement S {g}
x : G
x✝ : x ∈ ⊤
y : ↑S × ↑{g}
hy : (fun x => ↑x.fst * ↑x.snd) y = x * g
⊢ x ∈ S
[PROOFSTEP]
conv_rhs at hy => rw [← show y.2.1 = g from y.2.2]
[GOAL]
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
g : G
h : IsComplement S {g}
x : G
x✝ : x ∈ ⊤
y : ↑S × ↑{g}
hy : (fun x => ↑x.fst * ↑x.snd) y = x * g
| x * g
[PROOFSTEP]
rw [← show y.2.1 = g from y.2.2]
[GOAL]
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
g : G
h : IsComplement S {g}
x : G
x✝ : x ∈ ⊤
y : ↑S × ↑{g}
hy : (fun x => ↑x.fst * ↑x.snd) y = x * g
| x * g
[PROOFSTEP]
rw [← show y.2.1 = g from y.2.2]
[GOAL]
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
g : G
h : IsComplement S {g}
x : G
x✝ : x ∈ ⊤
y : ↑S × ↑{g}
hy : (fun x => ↑x.fst * ↑x.snd) y = x * g
| x * g
[PROOFSTEP]
rw [← show y.2.1 = g from y.2.2]
[GOAL]
case intro
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
g : G
h : IsComplement S {g}
x : G
x✝ : x ∈ ⊤
y : ↑S × ↑{g}
hy : (fun x => ↑x.fst * ↑x.snd) y = x * ↑y.snd
⊢ x ∈ S
[PROOFSTEP]
rw [← mul_right_cancel hy]
[GOAL]
case intro
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
g : G
h : IsComplement S {g}
x : G
x✝ : x ∈ ⊤
y : ↑S × ↑{g}
hy : (fun x => ↑x.fst * ↑x.snd) y = x * ↑y.snd
⊢ ↑y.fst ∈ S
[PROOFSTEP]
exact y.1.2
[GOAL]
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
⊢ IsComplement ⊤ S ↔ ∃ g, S = {g}
[PROOFSTEP]
refine' ⟨fun h => Set.exists_eq_singleton_iff_nonempty_subsingleton.mpr ⟨_, fun a ha b hb => _⟩, _⟩
[GOAL]
case refine'_1
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
h : IsComplement ⊤ S
⊢ Set.Nonempty S
[PROOFSTEP]
obtain ⟨a, _⟩ := h.2 1
[GOAL]
case refine'_1.intro
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
h : IsComplement ⊤ S
a : ↑⊤ × ↑S
h✝ : (fun x => ↑x.fst * ↑x.snd) a = 1
⊢ Set.Nonempty S
[PROOFSTEP]
exact ⟨a.2.1, a.2.2⟩
[GOAL]
case refine'_2
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
h : IsComplement ⊤ S
a : G
ha : a ∈ S
b : G
hb : b ∈ S
⊢ a = b
[PROOFSTEP]
have : (⟨⟨_, mem_top a⁻¹⟩, ⟨a, ha⟩⟩ : (⊤ : Set G) × S) = ⟨⟨_, mem_top b⁻¹⟩, ⟨b, hb⟩⟩ :=
h.1 ((inv_mul_self a).trans (inv_mul_self b).symm)
[GOAL]
case refine'_2
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
h : IsComplement ⊤ S
a : G
ha : a ∈ S
b : G
hb : b ∈ S
this :
({ val := a⁻¹, property := (_ : a⁻¹ ∈ ⊤) }, { val := a, property := ha }) =
({ val := b⁻¹, property := (_ : b⁻¹ ∈ ⊤) }, { val := b, property := hb })
⊢ a = b
[PROOFSTEP]
exact Subtype.ext_iff.mp (Prod.ext_iff.mp this).2
[GOAL]
case refine'_3
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
⊢ (∃ g, S = {g}) → IsComplement ⊤ S
[PROOFSTEP]
rintro ⟨g, rfl⟩
[GOAL]
case refine'_3.intro
G : Type u_1
inst✝ : Group G
H K : Subgroup G
T : Set G
g : G
⊢ IsComplement ⊤ {g}
[PROOFSTEP]
exact isComplement_top_singleton
[GOAL]
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
⊢ IsComplement S ⊤ ↔ ∃ g, S = {g}
[PROOFSTEP]
refine' ⟨fun h => Set.exists_eq_singleton_iff_nonempty_subsingleton.mpr ⟨_, fun a ha b hb => _⟩, _⟩
[GOAL]
case refine'_1
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
h : IsComplement S ⊤
⊢ Set.Nonempty S
[PROOFSTEP]
obtain ⟨a, _⟩ := h.2 1
[GOAL]
case refine'_1.intro
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
h : IsComplement S ⊤
a : ↑S × ↑⊤
h✝ : (fun x => ↑x.fst * ↑x.snd) a = 1
⊢ Set.Nonempty S
[PROOFSTEP]
exact ⟨a.1.1, a.1.2⟩
[GOAL]
case refine'_2
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
h : IsComplement S ⊤
a : G
ha : a ∈ S
b : G
hb : b ∈ S
⊢ a = b
[PROOFSTEP]
have : (⟨⟨a, ha⟩, ⟨_, mem_top a⁻¹⟩⟩ : S × (⊤ : Set G)) = ⟨⟨b, hb⟩, ⟨_, mem_top b⁻¹⟩⟩ :=
h.1 ((mul_inv_self a).trans (mul_inv_self b).symm)
[GOAL]
case refine'_2
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
h : IsComplement S ⊤
a : G
ha : a ∈ S
b : G
hb : b ∈ S
this :
({ val := a, property := ha }, { val := a⁻¹, property := (_ : a⁻¹ ∈ ⊤) }) =
({ val := b, property := hb }, { val := b⁻¹, property := (_ : b⁻¹ ∈ ⊤) })
⊢ a = b
[PROOFSTEP]
exact Subtype.ext_iff.mp (Prod.ext_iff.mp this).1
[GOAL]
case refine'_3
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
⊢ (∃ g, S = {g}) → IsComplement S ⊤
[PROOFSTEP]
rintro ⟨g, rfl⟩
[GOAL]
case refine'_3.intro
G : Type u_1
inst✝ : Group G
H K : Subgroup G
T : Set G
g : G
⊢ IsComplement {g} ⊤
[PROOFSTEP]
exact isComplement_singleton_top
[GOAL]
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
⊢ S ∈ leftTransversals T ↔ ∀ (g : G), ∃! s, (↑s)⁻¹ * g ∈ T
[PROOFSTEP]
rw [leftTransversals, Set.mem_setOf_eq, isComplement_iff_existsUnique]
[GOAL]
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
⊢ (∀ (g : G), ∃! x, ↑x.fst * ↑x.snd = g) ↔ ∀ (g : G), ∃! s, (↑s)⁻¹ * g ∈ T
[PROOFSTEP]
refine' ⟨fun h g => _, fun h g => _⟩
[GOAL]
case refine'_1
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
h : ∀ (g : G), ∃! x, ↑x.fst * ↑x.snd = g
g : G
⊢ ∃! s, (↑s)⁻¹ * g ∈ T
[PROOFSTEP]
obtain ⟨x, h1, h2⟩ := h g
[GOAL]
case refine'_1.intro.intro
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
h : ∀ (g : G), ∃! x, ↑x.fst * ↑x.snd = g
g : G
x : ↑S × ↑T
h1 : ↑x.fst * ↑x.snd = g
h2 : ∀ (y : ↑S × ↑T), (fun x => ↑x.fst * ↑x.snd = g) y → y = x
⊢ ∃! s, (↑s)⁻¹ * g ∈ T
[PROOFSTEP]
exact
⟨x.1, (congr_arg (· ∈ T) (eq_inv_mul_of_mul_eq h1)).mp x.2.2, fun y hy =>
(Prod.ext_iff.mp (h2 ⟨y, (↑y)⁻¹ * g, hy⟩ (mul_inv_cancel_left (↑y) g))).1⟩
[GOAL]
case refine'_2
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
h : ∀ (g : G), ∃! s, (↑s)⁻¹ * g ∈ T
g : G
⊢ ∃! x, ↑x.fst * ↑x.snd = g
[PROOFSTEP]
obtain ⟨x, h1, h2⟩ := h g
[GOAL]
case refine'_2.intro.intro
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
h : ∀ (g : G), ∃! s, (↑s)⁻¹ * g ∈ T
g : G
x : ↑S
h1 : (↑x)⁻¹ * g ∈ T
h2 : ∀ (y : ↑S), (fun s => (↑s)⁻¹ * g ∈ T) y → y = x
⊢ ∃! x, ↑x.fst * ↑x.snd = g
[PROOFSTEP]
refine' ⟨⟨x, (↑x)⁻¹ * g, h1⟩, mul_inv_cancel_left (↑x) g, fun y hy => _⟩
[GOAL]
case refine'_2.intro.intro
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
h : ∀ (g : G), ∃! s, (↑s)⁻¹ * g ∈ T
g : G
x : ↑S
h1 : (↑x)⁻¹ * g ∈ T
h2 : ∀ (y : ↑S), (fun s => (↑s)⁻¹ * g ∈ T) y → y = x
y : ↑S × ↑T
hy : (fun x => ↑x.fst * ↑x.snd = g) y
⊢ y = (x, { val := (↑x)⁻¹ * g, property := h1 })
[PROOFSTEP]
have hf := h2 y.1 ((congr_arg (· ∈ T) (eq_inv_mul_of_mul_eq hy)).mp y.2.2)
[GOAL]
case refine'_2.intro.intro
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
h : ∀ (g : G), ∃! s, (↑s)⁻¹ * g ∈ T
g : G
x : ↑S
h1 : (↑x)⁻¹ * g ∈ T
h2 : ∀ (y : ↑S), (fun s => (↑s)⁻¹ * g ∈ T) y → y = x
y : ↑S × ↑T
hy : (fun x => ↑x.fst * ↑x.snd = g) y
hf : y.fst = x
⊢ y = (x, { val := (↑x)⁻¹ * g, property := h1 })
[PROOFSTEP]
exact Prod.ext hf (Subtype.ext (eq_inv_mul_of_mul_eq (hf ▸ hy)))
[GOAL]
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
⊢ S ∈ rightTransversals T ↔ ∀ (g : G), ∃! s, g * (↑s)⁻¹ ∈ T
[PROOFSTEP]
rw [rightTransversals, Set.mem_setOf_eq, isComplement_iff_existsUnique]
[GOAL]
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
⊢ (∀ (g : G), ∃! x, ↑x.fst * ↑x.snd = g) ↔ ∀ (g : G), ∃! s, g * (↑s)⁻¹ ∈ T
[PROOFSTEP]
refine' ⟨fun h g => _, fun h g => _⟩
[GOAL]
case refine'_1
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
h : ∀ (g : G), ∃! x, ↑x.fst * ↑x.snd = g
g : G
⊢ ∃! s, g * (↑s)⁻¹ ∈ T
[PROOFSTEP]
obtain ⟨x, h1, h2⟩ := h g
[GOAL]
case refine'_1.intro.intro
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
h : ∀ (g : G), ∃! x, ↑x.fst * ↑x.snd = g
g : G
x : ↑T × ↑S
h1 : ↑x.fst * ↑x.snd = g
h2 : ∀ (y : ↑T × ↑S), (fun x => ↑x.fst * ↑x.snd = g) y → y = x
⊢ ∃! s, g * (↑s)⁻¹ ∈ T
[PROOFSTEP]
exact
⟨x.2, (congr_arg (· ∈ T) (eq_mul_inv_of_mul_eq h1)).mp x.1.2, fun y hy =>
(Prod.ext_iff.mp (h2 ⟨⟨g * (↑y)⁻¹, hy⟩, y⟩ (inv_mul_cancel_right g y))).2⟩
[GOAL]
case refine'_2
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
h : ∀ (g : G), ∃! s, g * (↑s)⁻¹ ∈ T
g : G
⊢ ∃! x, ↑x.fst * ↑x.snd = g
[PROOFSTEP]
obtain ⟨x, h1, h2⟩ := h g
[GOAL]
case refine'_2.intro.intro
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
h : ∀ (g : G), ∃! s, g * (↑s)⁻¹ ∈ T
g : G
x : ↑S
h1 : g * (↑x)⁻¹ ∈ T
h2 : ∀ (y : ↑S), (fun s => g * (↑s)⁻¹ ∈ T) y → y = x
⊢ ∃! x, ↑x.fst * ↑x.snd = g
[PROOFSTEP]
refine' ⟨⟨⟨g * (↑x)⁻¹, h1⟩, x⟩, inv_mul_cancel_right g x, fun y hy => _⟩
[GOAL]
case refine'_2.intro.intro
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
h : ∀ (g : G), ∃! s, g * (↑s)⁻¹ ∈ T
g : G
x : ↑S
h1 : g * (↑x)⁻¹ ∈ T
h2 : ∀ (y : ↑S), (fun s => g * (↑s)⁻¹ ∈ T) y → y = x
y : ↑T × ↑S
hy : (fun x => ↑x.fst * ↑x.snd = g) y
⊢ y = ({ val := g * (↑x)⁻¹, property := h1 }, x)
[PROOFSTEP]
have hf := h2 y.2 ((congr_arg (· ∈ T) (eq_mul_inv_of_mul_eq hy)).mp y.1.2)
[GOAL]
case refine'_2.intro.intro
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
h : ∀ (g : G), ∃! s, g * (↑s)⁻¹ ∈ T
g : G
x : ↑S
h1 : g * (↑x)⁻¹ ∈ T
h2 : ∀ (y : ↑S), (fun s => g * (↑s)⁻¹ ∈ T) y → y = x
y : ↑T × ↑S
hy : (fun x => ↑x.fst * ↑x.snd = g) y
hf : y.snd = x
⊢ y = ({ val := g * (↑x)⁻¹, property := h1 }, x)
[PROOFSTEP]
exact Prod.ext (Subtype.ext (eq_mul_inv_of_mul_eq (hf ▸ hy))) hf
[GOAL]
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
⊢ S ∈ leftTransversals ↑H ↔ ∀ (q : Quotient (QuotientGroup.leftRel H)), ∃! s, Quotient.mk'' ↑s = q
[PROOFSTEP]
simp_rw [mem_leftTransversals_iff_existsUnique_inv_mul_mem, SetLike.mem_coe, ← QuotientGroup.eq']
[GOAL]
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
⊢ (∀ (g : G), ∃! s, ↑↑s = ↑g) ↔ ∀ (q : Quotient (QuotientGroup.leftRel H)), ∃! s, Quotient.mk'' ↑s = q
[PROOFSTEP]
exact ⟨fun h q => Quotient.inductionOn' q h, fun h g => h (Quotient.mk'' g)⟩
[GOAL]
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
⊢ S ∈ rightTransversals ↑H ↔ ∀ (q : Quotient (QuotientGroup.rightRel H)), ∃! s, Quotient.mk'' ↑s = q
[PROOFSTEP]
simp_rw [mem_rightTransversals_iff_existsUnique_mul_inv_mem, SetLike.mem_coe, ← QuotientGroup.rightRel_apply, ←
Quotient.eq'']
[GOAL]
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
⊢ (∀ (g : G), ∃! s, Quotient.mk'' ↑s = Quotient.mk'' g) ↔
∀ (q : Quotient (QuotientGroup.rightRel H)), ∃! s, Quotient.mk'' ↑s = q
[PROOFSTEP]
exact ⟨fun h q => Quotient.inductionOn' q h, fun h g => h (Quotient.mk'' g)⟩
[GOAL]
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
f : G ⧸ H → G
hf : ∀ (q : G ⧸ H), ↑(f q) = q
⊢ Function.Injective (Set.restrict (Set.range f) Quotient.mk'')
[PROOFSTEP]
rintro ⟨-, q₁, rfl⟩ ⟨-, q₂, rfl⟩ h
[GOAL]
case mk.intro.mk.intro
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
f : G ⧸ H → G
hf : ∀ (q : G ⧸ H), ↑(f q) = q
q₁ q₂ : G ⧸ H
h :
Set.restrict (Set.range f) Quotient.mk'' { val := f q₁, property := (_ : ∃ y, f y = f q₁) } =
Set.restrict (Set.range f) Quotient.mk'' { val := f q₂, property := (_ : ∃ y, f y = f q₂) }
⊢ { val := f q₁, property := (_ : ∃ y, f y = f q₁) } = { val := f q₂, property := (_ : ∃ y, f y = f q₂) }
[PROOFSTEP]
exact Subtype.ext $ congr_arg f $ ((hf q₁).symm.trans h).trans (hf q₂)
[GOAL]
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
f : Quotient (QuotientGroup.rightRel H) → G
hf : ∀ (q : Quotient (QuotientGroup.rightRel H)), Quotient.mk'' (f q) = q
⊢ Function.Injective (Set.restrict (Set.range f) Quotient.mk'')
[PROOFSTEP]
rintro ⟨-, q₁, rfl⟩ ⟨-, q₂, rfl⟩ h
[GOAL]
case mk.intro.mk.intro
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
f : Quotient (QuotientGroup.rightRel H) → G
hf : ∀ (q : Quotient (QuotientGroup.rightRel H)), Quotient.mk'' (f q) = q
q₁ q₂ : Quotient (QuotientGroup.rightRel H)
h :
Set.restrict (Set.range f) Quotient.mk'' { val := f q₁, property := (_ : ∃ y, f y = f q₁) } =
Set.restrict (Set.range f) Quotient.mk'' { val := f q₂, property := (_ : ∃ y, f y = f q₂) }
⊢ { val := f q₁, property := (_ : ∃ y, f y = f q₁) } = { val := f q₂, property := (_ : ∃ y, f y = f q₂) }
[PROOFSTEP]
exact Subtype.ext $ congr_arg f $ ((hf q₁).symm.trans h).trans (hf q₂)
[GOAL]
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
g : G
⊢ ∃ S, S ∈ leftTransversals ↑H ∧ g ∈ S
[PROOFSTEP]
classical
refine'
⟨Set.range (Function.update Quotient.out' _ g), range_mem_leftTransversals fun q => _, Quotient.mk'' g,
Function.update_same (Quotient.mk'' g) g Quotient.out'⟩
by_cases hq : q = Quotient.mk'' g
· exact hq.symm ▸ congr_arg _ (Function.update_same (Quotient.mk'' g) g Quotient.out')
· refine' (Function.update_noteq _ g Quotient.out') ▸ q.out_eq'
exact hq
[GOAL]
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
g : G
⊢ ∃ S, S ∈ leftTransversals ↑H ∧ g ∈ S
[PROOFSTEP]
refine'
⟨Set.range (Function.update Quotient.out' _ g), range_mem_leftTransversals fun q => _, Quotient.mk'' g,
Function.update_same (Quotient.mk'' g) g Quotient.out'⟩
[GOAL]
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
g : G
q : G ⧸ H
⊢ ↑(Function.update Quotient.out' (Quotient.mk'' g) g q) = q
[PROOFSTEP]
by_cases hq : q = Quotient.mk'' g
[GOAL]
case pos
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
g : G
q : G ⧸ H
hq : q = Quotient.mk'' g
⊢ ↑(Function.update Quotient.out' (Quotient.mk'' g) g q) = q
[PROOFSTEP]
exact hq.symm ▸ congr_arg _ (Function.update_same (Quotient.mk'' g) g Quotient.out')
[GOAL]
case neg
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
g : G
q : G ⧸ H
hq : ¬q = Quotient.mk'' g
⊢ ↑(Function.update Quotient.out' (Quotient.mk'' g) g q) = q
[PROOFSTEP]
refine' (Function.update_noteq _ g Quotient.out') ▸ q.out_eq'
[GOAL]
case neg
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
g : G
q : G ⧸ H
hq : ¬q = Quotient.mk'' g
⊢ q ≠ Quotient.mk'' g
[PROOFSTEP]
exact hq
[GOAL]
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
g : G
⊢ ∃ S, S ∈ rightTransversals ↑H ∧ g ∈ S
[PROOFSTEP]
classical
refine'
⟨Set.range (Function.update Quotient.out' _ g), range_mem_rightTransversals fun q => _, Quotient.mk'' g,
Function.update_same (Quotient.mk'' g) g Quotient.out'⟩
by_cases hq : q = Quotient.mk'' g
· exact hq.symm ▸ congr_arg _ (Function.update_same (Quotient.mk'' g) g Quotient.out')
· exact Eq.trans (congr_arg _ (Function.update_noteq hq g Quotient.out')) q.out_eq'
[GOAL]
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
g : G
⊢ ∃ S, S ∈ rightTransversals ↑H ∧ g ∈ S
[PROOFSTEP]
refine'
⟨Set.range (Function.update Quotient.out' _ g), range_mem_rightTransversals fun q => _, Quotient.mk'' g,
Function.update_same (Quotient.mk'' g) g Quotient.out'⟩
[GOAL]
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
g : G
q : Quotient (QuotientGroup.rightRel H)
⊢ Quotient.mk'' (Function.update Quotient.out' (Quotient.mk'' g) g q) = q
[PROOFSTEP]
by_cases hq : q = Quotient.mk'' g
[GOAL]
case pos
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
g : G
q : Quotient (QuotientGroup.rightRel H)
hq : q = Quotient.mk'' g
⊢ Quotient.mk'' (Function.update Quotient.out' (Quotient.mk'' g) g q) = q
[PROOFSTEP]
exact hq.symm ▸ congr_arg _ (Function.update_same (Quotient.mk'' g) g Quotient.out')
[GOAL]
case neg
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
g : G
q : Quotient (QuotientGroup.rightRel H)
hq : ¬q = Quotient.mk'' g
⊢ Quotient.mk'' (Function.update Quotient.out' (Quotient.mk'' g) g q) = q
[PROOFSTEP]
exact Eq.trans (congr_arg _ (Function.update_noteq hq g Quotient.out')) q.out_eq'
[GOAL]
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
f : G ⧸ H → G
hf : ∀ (q : G ⧸ H), ↑(f q) = q
q : G ⧸ H
⊢ ↑(↑(toEquiv (_ : (Set.range fun q => f q) ∈ leftTransversals ↑H)) q) = f q
[PROOFSTEP]
refine' (Subtype.ext_iff.mp _).trans (Subtype.coe_mk (f q) ⟨q, rfl⟩)
[GOAL]
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
f : G ⧸ H → G
hf : ∀ (q : G ⧸ H), ↑(f q) = q
q : G ⧸ H
⊢ ↑(toEquiv (_ : (Set.range fun q => f q) ∈ leftTransversals ↑H)) q =
{ val := f q, property := (_ : ∃ y, (fun q => f q) y = f q) }
[PROOFSTEP]
exact (toEquiv (range_mem_leftTransversals hf)).apply_eq_iff_eq_symm_apply.mpr (hf q).symm
[GOAL]
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
hS : S ∈ leftTransversals ↑H
g : G
⊢ ((↑(toFun hS g))⁻¹ * g)⁻¹ = g⁻¹ * ↑(toFun hS g)
[PROOFSTEP]
rw [mul_inv_rev, inv_inv]
[GOAL]
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
f : Quotient (QuotientGroup.rightRel H) → G
hf : ∀ (q : Quotient (QuotientGroup.rightRel H)), Quotient.mk'' (f q) = q
q : Quotient (QuotientGroup.rightRel H)
⊢ ↑(↑(toEquiv (_ : (Set.range fun q => f q) ∈ rightTransversals ↑H)) q) = f q
[PROOFSTEP]
refine' (Subtype.ext_iff.mp _).trans (Subtype.coe_mk (f q) ⟨q, rfl⟩)
[GOAL]
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
f : Quotient (QuotientGroup.rightRel H) → G
hf : ∀ (q : Quotient (QuotientGroup.rightRel H)), Quotient.mk'' (f q) = q
q : Quotient (QuotientGroup.rightRel H)
⊢ ↑(toEquiv (_ : (Set.range fun q => f q) ∈ rightTransversals ↑H)) q =
{ val := f q, property := (_ : ∃ y, (fun q => f q) y = f q) }
[PROOFSTEP]
exact (toEquiv (range_mem_rightTransversals hf)).apply_eq_iff_eq_symm_apply.mpr (hf q).symm
[GOAL]
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
hS : S ∈ rightTransversals ↑H
g : G
⊢ (g * (↑(toFun hS g))⁻¹)⁻¹ = ↑(toFun hS g) * g⁻¹
[PROOFSTEP]
rw [mul_inv_rev, inv_inv]
[GOAL]
G : Type u_1
inst✝³ : Group G
H K : Subgroup G
S T✝ : Set G
F : Type u_2
inst✝² : Group F
inst✝¹ : MulAction F G
inst✝ : QuotientAction F H
f : F
T : ↑(leftTransversals ↑H)
⊢ f • ↑T ∈ leftTransversals ↑H
[PROOFSTEP]
refine' mem_leftTransversals_iff_existsUnique_inv_mul_mem.mpr fun g => _
[GOAL]
G : Type u_1
inst✝³ : Group G
H K : Subgroup G
S T✝ : Set G
F : Type u_2
inst✝² : Group F
inst✝¹ : MulAction F G
inst✝ : QuotientAction F H
f : F
T : ↑(leftTransversals ↑H)
g : G
⊢ ∃! s, (↑s)⁻¹ * g ∈ ↑H
[PROOFSTEP]
obtain ⟨t, ht1, ht2⟩ := mem_leftTransversals_iff_existsUnique_inv_mul_mem.mp T.2 (f⁻¹ • g)
[GOAL]
case intro.intro
G : Type u_1
inst✝³ : Group G
H K : Subgroup G
S T✝ : Set G
F : Type u_2
inst✝² : Group F
inst✝¹ : MulAction F G
inst✝ : QuotientAction F H
f : F
T : ↑(leftTransversals ↑H)
g : G
t : ↑↑T
ht1 : (↑t)⁻¹ * f⁻¹ • g ∈ ↑H
ht2 : ∀ (y : ↑↑T), (fun s => (↑s)⁻¹ * f⁻¹ • g ∈ ↑H) y → y = t
⊢ ∃! s, (↑s)⁻¹ * g ∈ ↑H
[PROOFSTEP]
refine' ⟨⟨f • (t : G), Set.smul_mem_smul_set t.2⟩, _, _⟩
[GOAL]
case intro.intro.refine'_1
G : Type u_1
inst✝³ : Group G
H K : Subgroup G
S T✝ : Set G
F : Type u_2
inst✝² : Group F
inst✝¹ : MulAction F G
inst✝ : QuotientAction F H
f : F
T : ↑(leftTransversals ↑H)
g : G
t : ↑↑T
ht1 : (↑t)⁻¹ * f⁻¹ • g ∈ ↑H
ht2 : ∀ (y : ↑↑T), (fun s => (↑s)⁻¹ * f⁻¹ • g ∈ ↑H) y → y = t
⊢ (fun s => (↑s)⁻¹ * g ∈ ↑H) { val := f • ↑t, property := (_ : f • ↑t ∈ f • ↑T) }
[PROOFSTEP]
exact smul_inv_smul f g ▸ QuotientAction.inv_mul_mem f ht1
[GOAL]
case intro.intro.refine'_2
G : Type u_1
inst✝³ : Group G
H K : Subgroup G
S T✝ : Set G
F : Type u_2
inst✝² : Group F
inst✝¹ : MulAction F G
inst✝ : QuotientAction F H
f : F
T : ↑(leftTransversals ↑H)
g : G
t : ↑↑T
ht1 : (↑t)⁻¹ * f⁻¹ • g ∈ ↑H
ht2 : ∀ (y : ↑↑T), (fun s => (↑s)⁻¹ * f⁻¹ • g ∈ ↑H) y → y = t
⊢ ∀ (y : ↑(f • ↑T)), (fun s => (↑s)⁻¹ * g ∈ ↑H) y → y = { val := f • ↑t, property := (_ : f • ↑t ∈ f • ↑T) }
[PROOFSTEP]
rintro ⟨-, t', ht', rfl⟩ h
[GOAL]
case intro.intro.refine'_2.mk.intro.intro
G : Type u_1
inst✝³ : Group G
H K : Subgroup G
S T✝ : Set G
F : Type u_2
inst✝² : Group F
inst✝¹ : MulAction F G
inst✝ : QuotientAction F H
f : F
T : ↑(leftTransversals ↑H)
g : G
t : ↑↑T
ht1 : (↑t)⁻¹ * f⁻¹ • g ∈ ↑H
ht2 : ∀ (y : ↑↑T), (fun s => (↑s)⁻¹ * f⁻¹ • g ∈ ↑H) y → y = t
t' : G
ht' : t' ∈ ↑T
h :
(↑{ val := (fun x => f • x) t', property := (_ : ∃ a, a ∈ ↑T ∧ (fun x => f • x) a = (fun x => f • x) t') })⁻¹ * g ∈ ↑H
⊢ { val := (fun x => f • x) t', property := (_ : ∃ a, a ∈ ↑T ∧ (fun x => f • x) a = (fun x => f • x) t') } =
{ val := f • ↑t, property := (_ : f • ↑t ∈ f • ↑T) }
[PROOFSTEP]
replace h := QuotientAction.inv_mul_mem f⁻¹ h
[GOAL]
case intro.intro.refine'_2.mk.intro.intro
G : Type u_1
inst✝³ : Group G
H K : Subgroup G
S T✝ : Set G
F : Type u_2
inst✝² : Group F
inst✝¹ : MulAction F G
inst✝ : QuotientAction F H
f : F
T : ↑(leftTransversals ↑H)
g : G
t : ↑↑T
ht1 : (↑t)⁻¹ * f⁻¹ • g ∈ ↑H
ht2 : ∀ (y : ↑↑T), (fun s => (↑s)⁻¹ * f⁻¹ • g ∈ ↑H) y → y = t
t' : G
ht' : t' ∈ ↑T
h :
(f⁻¹ • ↑{ val := (fun x => f • x) t', property := (_ : ∃ a, a ∈ ↑T ∧ (fun x => f • x) a = (fun x => f • x) t') })⁻¹ *
f⁻¹ • g ∈
H
⊢ { val := (fun x => f • x) t', property := (_ : ∃ a, a ∈ ↑T ∧ (fun x => f • x) a = (fun x => f • x) t') } =
{ val := f • ↑t, property := (_ : f • ↑t ∈ f • ↑T) }
[PROOFSTEP]
simp only [Subtype.ext_iff, Subtype.coe_mk, smul_left_cancel_iff, inv_smul_smul] at h ⊢
[GOAL]
case intro.intro.refine'_2.mk.intro.intro
G : Type u_1
inst✝³ : Group G
H K : Subgroup G
S T✝ : Set G
F : Type u_2
inst✝² : Group F
inst✝¹ : MulAction F G
inst✝ : QuotientAction F H
f : F
T : ↑(leftTransversals ↑H)
g : G
t : ↑↑T
ht1 : (↑t)⁻¹ * f⁻¹ • g ∈ ↑H
ht2 : ∀ (y : ↑↑T), (fun s => (↑s)⁻¹ * f⁻¹ • g ∈ ↑H) y → y = t
t' : G
ht' : t' ∈ ↑T
h : t'⁻¹ * f⁻¹ • g ∈ H
⊢ t' = ↑t
[PROOFSTEP]
exact Subtype.ext_iff.mp (ht2 ⟨t', ht'⟩ h)
[GOAL]
G : Type u_1
inst✝³ : Group G
H K : Subgroup G
S T✝ : Set G
F : Type u_2
inst✝² : Group F
inst✝¹ : MulAction F G
inst✝ : QuotientAction F H
f : F
T : ↑(leftTransversals ↑H)
q : G ⧸ H
⊢ ↑(↑(toEquiv (_ : ↑(f • T) ∈ leftTransversals ↑H)) q) = f • ↑(↑(toEquiv (_ : ↑T ∈ leftTransversals ↑H)) (f⁻¹ • q))
[PROOFSTEP]
rw [smul_toEquiv, smul_inv_smul]
[GOAL]
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
h : IsComplement' H K
⊢ IsCompl H K
[PROOFSTEP]
refine'
⟨disjoint_iff_inf_le.mpr fun g ⟨p, q⟩ =>
let x : H × K := ⟨⟨g, p⟩, 1⟩
let y : H × K := ⟨1, g, q⟩
Subtype.ext_iff.mp (Prod.ext_iff.mp (show x = y from h.1 ((mul_one g).trans (one_mul g).symm))).1,
codisjoint_iff_le_sup.mpr fun g _ => _⟩
[GOAL]
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
h : IsComplement' H K
g : G
x✝ : g ∈ ⊤
⊢ g ∈ H ⊔ K
[PROOFSTEP]
obtain ⟨⟨h, k⟩, rfl⟩ := h.2 g
[GOAL]
case intro.mk
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
h✝ : IsComplement' H K
h : ↑↑H
k : ↑↑K
x✝ : (fun x => ↑x.fst * ↑x.snd) (h, k) ∈ ⊤
⊢ (fun x => ↑x.fst * ↑x.snd) (h, k) ∈ H ⊔ K
[PROOFSTEP]
exact Subgroup.mul_mem_sup h.2 k.2
[GOAL]
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
h1 : Disjoint H K
h2 : ↑H * ↑K = Set.univ
⊢ IsComplement' H K
[PROOFSTEP]
refine' ⟨mul_injective_of_disjoint h1, fun g => _⟩
[GOAL]
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
h1 : Disjoint H K
h2 : ↑H * ↑K = Set.univ
g : G
⊢ ∃ a, (fun x => ↑x.fst * ↑x.snd) a = g
[PROOFSTEP]
obtain ⟨h, k, hh, hk, hg⟩ := Set.eq_univ_iff_forall.mp h2 g
[GOAL]
case intro.intro.intro.intro
G : Type u_1
inst✝ : Group G
H K : Subgroup G
S T : Set G
h1 : Disjoint H K
h2 : ↑H * ↑K = Set.univ
g h k : G
hh : h ∈ ↑H
hk : k ∈ ↑K
hg : (fun x x_1 => x * x_1) h k = g
⊢ ∃ a, (fun x => ↑x.fst * ↑x.snd) a = g
[PROOFSTEP]
exact ⟨(⟨h, hh⟩, ⟨k, hk⟩), hg⟩
[GOAL]
G : Type u_1
inst✝¹ : Group G
H K : Subgroup G
S T : Set G
α : Type u_2
inst✝ : MulAction G α
a : α
h1 : ∀ (h : { x // x ∈ H }), h • a = a → h = 1
h2 : ∀ (g : G), ∃ h, h • g • a = a
⊢ IsComplement' H (MulAction.stabilizer G a)
[PROOFSTEP]
refine' isComplement_iff_existsUnique.mpr fun g => _
[GOAL]
G : Type u_1
inst✝¹ : Group G
H K : Subgroup G
S T : Set G
α : Type u_2
inst✝ : MulAction G α
a : α
h1 : ∀ (h : { x // x ∈ H }), h • a = a → h = 1
h2 : ∀ (g : G), ∃ h, h • g • a = a
g : G
⊢ ∃! x, ↑x.fst * ↑x.snd = g
[PROOFSTEP]
obtain ⟨h, hh⟩ := h2 g
[GOAL]
case intro
G : Type u_1
inst✝¹ : Group G
H K : Subgroup G
S T : Set G
α : Type u_2
inst✝ : MulAction G α
a : α
h1 : ∀ (h : { x // x ∈ H }), h • a = a → h = 1
h2 : ∀ (g : G), ∃ h, h • g • a = a
g : G
h : { x // x ∈ H }
hh : h • g • a = a
⊢ ∃! x, ↑x.fst * ↑x.snd = g
[PROOFSTEP]
have hh' : (↑h * g) • a = a := by rwa [mul_smul]
[GOAL]
G : Type u_1
inst✝¹ : Group G
H K : Subgroup G
S T : Set G
α : Type u_2
inst✝ : MulAction G α
a : α
h1 : ∀ (h : { x // x ∈ H }), h • a = a → h = 1
h2 : ∀ (g : G), ∃ h, h • g • a = a
g : G
h : { x // x ∈ H }
hh : h • g • a = a
⊢ (↑h * g) • a = a
[PROOFSTEP]
rwa [mul_smul]
[GOAL]
case intro
G : Type u_1
inst✝¹ : Group G
H K : Subgroup G
S T : Set G
α : Type u_2
inst✝ : MulAction G α
a : α
h1 : ∀ (h : { x // x ∈ H }), h • a = a → h = 1
h2 : ∀ (g : G), ∃ h, h • g • a = a
g : G
h : { x // x ∈ H }
hh : h • g • a = a
hh' : (↑h * g) • a = a
⊢ ∃! x, ↑x.fst * ↑x.snd = g
[PROOFSTEP]
refine' ⟨⟨h⁻¹, h * g, hh'⟩, inv_mul_cancel_left (↑h) g, _⟩
[GOAL]
case intro
G : Type u_1
inst✝¹ : Group G
H K : Subgroup G
S T : Set G
α : Type u_2
inst✝ : MulAction G α
a : α
h1 : ∀ (h : { x // x ∈ H }), h • a = a → h = 1
h2 : ∀ (g : G), ∃ h, h • g • a = a
g : G
h : { x // x ∈ H }
hh : h • g • a = a
hh' : (↑h * g) • a = a
⊢ ∀ (y : ↑↑H × ↑↑(MulAction.stabilizer G a)),
(fun x => ↑x.fst * ↑x.snd = g) y → y = (h⁻¹, { val := ↑h * g, property := hh' })
[PROOFSTEP]
rintro ⟨h', g, hg : g • a = a⟩ rfl
[GOAL]
case intro.mk.mk
G : Type u_1
inst✝¹ : Group G
H K : Subgroup G
S T : Set G
α : Type u_2
inst✝ : MulAction G α
a : α
h1 : ∀ (h : { x // x ∈ H }), h • a = a → h = 1
h2 : ∀ (g : G), ∃ h, h • g • a = a
h : { x // x ∈ H }
h' : ↑↑H
g : G
hg : g • a = a
hh : h • (↑(h', { val := g, property := hg }).fst * ↑(h', { val := g, property := hg }).snd) • a = a
hh' : (↑h * (↑(h', { val := g, property := hg }).fst * ↑(h', { val := g, property := hg }).snd)) • a = a
⊢ (h', { val := g, property := hg }) =
(h⁻¹,
{ val := ↑h * (↑(h', { val := g, property := hg }).fst * ↑(h', { val := g, property := hg }).snd),
property := hh' })
[PROOFSTEP]
specialize h1 (h * h') (by rwa [mul_smul, smul_def h', ← hg, ← mul_smul, hg])
[GOAL]
G : Type u_1
inst✝¹ : Group G
H K : Subgroup G
S T : Set G
α : Type u_2
inst✝ : MulAction G α
a : α
h1 : ∀ (h : { x // x ∈ H }), h • a = a → h = 1
h2 : ∀ (g : G), ∃ h, h • g • a = a
h : { x // x ∈ H }
h' : ↑↑H
g : G
hg : g • a = a
hh : h • (↑(h', { val := g, property := hg }).fst * ↑(h', { val := g, property := hg }).snd) • a = a
hh' : (↑h * (↑(h', { val := g, property := hg }).fst * ↑(h', { val := g, property := hg }).snd)) • a = a
⊢ (h * h') • a = a
[PROOFSTEP]
rwa [mul_smul, smul_def h', ← hg, ← mul_smul, hg]
[GOAL]
case intro.mk.mk
G : Type u_1
inst✝¹ : Group G
H K : Subgroup G
S T : Set G
α : Type u_2
inst✝ : MulAction G α
a : α
h2 : ∀ (g : G), ∃ h, h • g • a = a
h : { x // x ∈ H }
h' : ↑↑H
g : G
hg : g • a = a
hh : h • (↑(h', { val := g, property := hg }).fst * ↑(h', { val := g, property := hg }).snd) • a = a
hh' : (↑h * (↑(h', { val := g, property := hg }).fst * ↑(h', { val := g, property := hg }).snd)) • a = a
h1 : h * h' = 1
⊢ (h', { val := g, property := hg }) =
(h⁻¹,
{ val := ↑h * (↑(h', { val := g, property := hg }).fst * ↑(h', { val := g, property := hg }).snd),
property := hh' })
[PROOFSTEP]
refine' Prod.ext (eq_inv_of_mul_eq_one_right h1) (Subtype.ext _)
[GOAL]
case intro.mk.mk
G : Type u_1
inst✝¹ : Group G
H K : Subgroup G
S T : Set G
α : Type u_2
inst✝ : MulAction G α
a : α
h2 : ∀ (g : G), ∃ h, h • g • a = a
h : { x // x ∈ H }
h' : ↑↑H
g : G
hg : g • a = a
hh : h • (↑(h', { val := g, property := hg }).fst * ↑(h', { val := g, property := hg }).snd) • a = a
hh' : (↑h * (↑(h', { val := g, property := hg }).fst * ↑(h', { val := g, property := hg }).snd)) • a = a
h1 : h * h' = 1
⊢ ↑(h', { val := g, property := hg }).snd =
↑(h⁻¹,
{ val := ↑h * (↑(h', { val := g, property := hg }).fst * ↑(h', { val := g, property := hg }).snd),
property := hh' }).snd
[PROOFSTEP]
rwa [Subtype.ext_iff, coe_one, coe_mul, ← self_eq_mul_left, mul_assoc (↑h) (↑h') g] at h1
[GOAL]
G : Type u
inst✝ : Group G
H : Subgroup G
g : G
q : orbitRel.Quotient { x // x ∈ zpowers g } (G ⧸ H)
k : ℤ
⊢ ↑(quotientEquivSigmaZMod H g) (g ^ k • Quotient.out' q) = { fst := q, snd := ↑k }
[PROOFSTEP]
rw [apply_eq_iff_eq_symm_apply, quotientEquivSigmaZMod_symm_apply, ZMod.coe_int_cast, zpow_smul_mod_minimalPeriod]
[GOAL]
G : Type u
inst✝ : Group G
H : Subgroup G
g : G
q : G ⧸ H
⊢ ↑(transferFunction H g q) = q
[PROOFSTEP]
rw [transferFunction_apply, ← smul_eq_mul, Quotient.coe_smul_out', ← quotientEquivSigmaZMod_symm_apply, Sigma.eta,
symm_apply_apply]
[GOAL]
G : Type u
inst✝ : Group G
H : Subgroup G
g : G
q : orbitRel.Quotient { x // x ∈ zpowers g } (G ⧸ H)
k : ZMod (minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q))
⊢ ↑(↑(toEquiv (_ : ↑(transferTransversal H g) ∈ leftTransversals ↑H)) (g ^ ↑k • Quotient.out' q)) =
g ^ ↑k * Quotient.out' (Quotient.out' q)
[PROOFSTEP]
rw [transferTransversal_apply, transferFunction_apply, ← quotientEquivSigmaZMod_symm_apply, apply_symm_apply]
[GOAL]
G : Type u
inst✝ : Group G
H : Subgroup G
g : G
q : orbitRel.Quotient { x // x ∈ zpowers g } (G ⧸ H)
k : ZMod (minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q))
⊢ ↑(↑(toEquiv (_ : ↑(g • transferTransversal H g) ∈ leftTransversals ↑H)) (g ^ ↑k • Quotient.out' q)) =
if k = 0 then g ^ minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q) * Quotient.out' (Quotient.out' q)
else g ^ ↑k * Quotient.out' (Quotient.out' q)
[PROOFSTEP]
rw [smul_apply_eq_smul_apply_inv_smul, transferTransversal_apply, transferFunction_apply, ← mul_smul, ← zpow_neg_one, ←
zpow_add, quotientEquivSigmaZMod_apply, smul_eq_mul, ← mul_assoc, ← zpow_one_add, Int.cast_add, Int.cast_neg,
Int.cast_one, int_cast_cast, cast_id', id.def, ← sub_eq_neg_add, cast_sub_one, add_sub_cancel'_right]
[GOAL]
G : Type u
inst✝ : Group G
H : Subgroup G
g : G
q : orbitRel.Quotient { x // x ∈ zpowers g } (G ⧸ H)
k : ZMod (minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q))
⊢ (g ^
if k = 0 then ↑(minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' { fst := q, snd := k - 1 }.fst))
else ↑k) *
Quotient.out' (Quotient.out' { fst := q, snd := k - 1 }.fst) =
if k = 0 then g ^ minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q) * Quotient.out' (Quotient.out' q)
else g ^ ↑k * Quotient.out' (Quotient.out' q)
[PROOFSTEP]
by_cases hk : k = 0
[GOAL]
case pos
G : Type u
inst✝ : Group G
H : Subgroup G
g : G
q : orbitRel.Quotient { x // x ∈ zpowers g } (G ⧸ H)
k : ZMod (minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q))
hk : k = 0
⊢ (g ^
if k = 0 then ↑(minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' { fst := q, snd := k - 1 }.fst))
else ↑k) *
Quotient.out' (Quotient.out' { fst := q, snd := k - 1 }.fst) =
if k = 0 then g ^ minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q) * Quotient.out' (Quotient.out' q)
else g ^ ↑k * Quotient.out' (Quotient.out' q)
[PROOFSTEP]
rw [if_pos hk, if_pos hk, zpow_ofNat]
[GOAL]
case neg
G : Type u
inst✝ : Group G
H : Subgroup G
g : G
q : orbitRel.Quotient { x // x ∈ zpowers g } (G ⧸ H)
k : ZMod (minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q))
hk : ¬k = 0
⊢ (g ^
if k = 0 then ↑(minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' { fst := q, snd := k - 1 }.fst))
else ↑k) *
Quotient.out' (Quotient.out' { fst := q, snd := k - 1 }.fst) =
if k = 0 then g ^ minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q) * Quotient.out' (Quotient.out' q)
else g ^ ↑k * Quotient.out' (Quotient.out' q)
[PROOFSTEP]
rw [if_neg hk, if_neg hk]
| {"mathlib_filename": "Mathlib.GroupTheory.Complement", "llama_tokens": 19595} |
[GOAL]
α : Type u_1
M : Type ?u.8804
N : Type ?u.8800
inst✝² : Mul N
inst✝¹ : SMul M N
inst✝ : IsScalarTower M N N
x : M
y : Nᵐᵒᵖ
z : N
⊢ x • y • z = y • x • z
[PROOFSTEP]
induction y using MulOpposite.rec'
[GOAL]
case h
α : Type u_1
M : Type ?u.8804
N : Type ?u.8800
inst✝² : Mul N
inst✝¹ : SMul M N
inst✝ : IsScalarTower M N N
x : M
z X✝ : N
⊢ x • op X✝ • z = op X✝ • x • z
[PROOFSTEP]
simp only [smul_mul_assoc, MulOpposite.smul_eq_mul_unop]
| {"mathlib_filename": "Mathlib.GroupTheory.GroupAction.Opposite", "llama_tokens": 260} |
[GOAL]
M : Type u_1
N : Type u_2
α : Type u_3
inst✝³ : SMul M α
inst✝² : SMul N α
a✝ : M
b✝ : α
x✝ : Option α
inst✝¹ : SMul M N
inst✝ : IsScalarTower M N α
a : M
b : N
x : Option α
⊢ (a • b) • x = a • b • x
[PROOFSTEP]
cases x
[GOAL]
case none
M : Type u_1
N : Type u_2
α : Type u_3
inst✝³ : SMul M α
inst✝² : SMul N α
a✝ : M
b✝ : α
x : Option α
inst✝¹ : SMul M N
inst✝ : IsScalarTower M N α
a : M
b : N
⊢ (a • b) • none = a • b • none
case some
M : Type u_1
N : Type u_2
α : Type u_3
inst✝³ : SMul M α
inst✝² : SMul N α
a✝ : M
b✝ : α
x : Option α
inst✝¹ : SMul M N
inst✝ : IsScalarTower M N α
a : M
b : N
val✝ : α
⊢ (a • b) • some val✝ = a • b • some val✝
[PROOFSTEP]
exacts [rfl, congr_arg some (smul_assoc _ _ _)]
[GOAL]
M : Type u_1
N : Type u_2
α : Type u_3
inst✝³ : SMul M α
inst✝² : SMul N α
a✝ : M
b : α
x✝ : Option α
inst✝¹ : SMul Mᵐᵒᵖ α
inst✝ : IsCentralScalar M α
a : M
x : Option α
⊢ MulOpposite.op a • x = a • x
[PROOFSTEP]
cases x
[GOAL]
case none
M : Type u_1
N : Type u_2
α : Type u_3
inst✝³ : SMul M α
inst✝² : SMul N α
a✝ : M
b : α
x : Option α
inst✝¹ : SMul Mᵐᵒᵖ α
inst✝ : IsCentralScalar M α
a : M
⊢ MulOpposite.op a • none = a • none
case some
M : Type u_1
N : Type u_2
α : Type u_3
inst✝³ : SMul M α
inst✝² : SMul N α
a✝ : M
b : α
x : Option α
inst✝¹ : SMul Mᵐᵒᵖ α
inst✝ : IsCentralScalar M α
a : M
val✝ : α
⊢ MulOpposite.op a • some val✝ = a • some val✝
[PROOFSTEP]
exacts [rfl, congr_arg some (op_smul_eq_smul _ _)]
[GOAL]
M : Type u_1
N : Type u_2
α : Type u_3
inst✝² : SMul M α
inst✝¹ : SMul N α
a : M
b✝ : α
x : Option α
inst✝ : FaithfulSMul M α
m₁✝ m₂✝ : M
h : ∀ (a : Option α), m₁✝ • a = m₂✝ • a
b : α
⊢ m₁✝ • b = m₂✝ • b
[PROOFSTEP]
injection h (some b)
[GOAL]
M : Type u_1
N : Type u_2
α : Type u_3
inst✝¹ : Monoid M
inst✝ : MulAction M α
b : Option α
⊢ 1 • b = b
[PROOFSTEP]
cases b
[GOAL]
case none
M : Type u_1
N : Type u_2
α : Type u_3
inst✝¹ : Monoid M
inst✝ : MulAction M α
⊢ 1 • none = none
case some
M : Type u_1
N : Type u_2
α : Type u_3
inst✝¹ : Monoid M
inst✝ : MulAction M α
val✝ : α
⊢ 1 • some val✝ = some val✝
[PROOFSTEP]
exacts [rfl, congr_arg some (one_smul _ _)]
[GOAL]
M : Type u_1
N : Type u_2
α : Type u_3
inst✝¹ : Monoid M
inst✝ : MulAction M α
a₁ a₂ : M
b : Option α
⊢ (a₁ * a₂) • b = a₁ • a₂ • b
[PROOFSTEP]
cases b
[GOAL]
case none
M : Type u_1
N : Type u_2
α : Type u_3
inst✝¹ : Monoid M
inst✝ : MulAction M α
a₁ a₂ : M
⊢ (a₁ * a₂) • none = a₁ • a₂ • none
case some
M : Type u_1
N : Type u_2
α : Type u_3
inst✝¹ : Monoid M
inst✝ : MulAction M α
a₁ a₂ : M
val✝ : α
⊢ (a₁ * a₂) • some val✝ = a₁ • a₂ • some val✝
[PROOFSTEP]
exacts [rfl, congr_arg some (mul_smul _ _ _)]
| {"mathlib_filename": "Mathlib.GroupTheory.GroupAction.Option", "llama_tokens": 1475} |
[GOAL]
G : Type u_1
H : Type u_2
M : Type u_3
N : Type u_4
α : Type u_5
inst✝⁴ : Group G
inst✝³ : Monoid M
inst✝² : MulAction G M
inst✝¹ : SMulCommClass G M M
inst✝ : IsScalarTower G M M
g : G
m : Mˣ
⊢ g • ↑m * g⁻¹ • ↑m⁻¹ = 1
[PROOFSTEP]
rw [smul_mul_smul, Units.mul_inv, mul_right_inv, one_smul]
[GOAL]
G : Type u_1
H : Type u_2
M : Type u_3
N : Type u_4
α : Type u_5
inst✝⁴ : Group G
inst✝³ : Monoid M
inst✝² : MulAction G M
inst✝¹ : SMulCommClass G M M
inst✝ : IsScalarTower G M M
g : G
m : Mˣ
⊢ g⁻¹ • ↑m⁻¹ * g • ↑m = 1
[PROOFSTEP]
rw [smul_mul_smul, Units.inv_mul, mul_left_inv, one_smul]
| {"mathlib_filename": "Mathlib.GroupTheory.GroupAction.Units", "llama_tokens": 326} |
{"mathlib_filename": "Mathlib.GroupTheory.GroupAction.BigOperators", "llama_tokens": 0} |
|
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
E : Type u_4
α✝ : Type u_5
β : Type u_6
inst✝⁶ : SMul M α✝
inst✝⁵ : SMul M β
inst✝⁴ : SMul N α✝
inst✝³ : SMul N β
a✝ : M
x : α✝ × β
α : Type u_7
inst✝² : Monoid M
inst✝¹ : AddMonoid α
inst✝ : DistribMulAction M α
a : M
c : β
⊢ a • (0, c) = (0, a • c)
[PROOFSTEP]
rw [Prod.smul_mk, smul_zero]
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
E : Type u_4
α : Type u_5
β✝ : Type u_6
inst✝⁶ : SMul M α
inst✝⁵ : SMul M β✝
inst✝⁴ : SMul N α
inst✝³ : SMul N β✝
a✝ : M
x : α × β✝
β : Type u_7
inst✝² : Monoid M
inst✝¹ : AddMonoid β
inst✝ : DistribMulAction M β
a : M
b : α
⊢ a • (b, 0) = (a • b, 0)
[PROOFSTEP]
rw [Prod.smul_mk, smul_zero]
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
E : Type u_4
α : Type u_5
β : Type u_6
inst✝⁷ : SMul M α
inst✝⁶ : SMul M β
inst✝⁵ : SMul N α
inst✝⁴ : SMul N β
a✝ : M
x : α × β
inst✝³ : Pow α E
inst✝² : Pow β E
inst✝¹ : FaithfulSMul M α
inst✝ : Nonempty β
m₁✝ m₂✝ : M
h : ∀ (a : α × β), m₁✝ • a = m₂✝ • a
b : β
a : α
⊢ m₁✝ • a = m₂✝ • a
[PROOFSTEP]
injection h (a, b)
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
E : Type u_4
α : Type u_5
β : Type u_6
inst✝⁷ : SMul M α
inst✝⁶ : SMul M β
inst✝⁵ : SMul N α
inst✝⁴ : SMul N β
a✝ : M
x : α × β
inst✝³ : Pow α E
inst✝² : Pow β E
inst✝¹ : Nonempty α
inst✝ : FaithfulSMul M β
m₁✝ m₂✝ : M
h : ∀ (a : α × β), m₁✝ • a = m₂✝ • a
a : α
b : β
⊢ m₁✝ • b = m₂✝ • b
[PROOFSTEP]
injection h (a, b)
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
E : Type u_4
α : Type u_5
β : Type u_6
inst✝⁵ : Mul N
inst✝⁴ : Mul P
inst✝³ : SMul M N
inst✝² : SMul M P
inst✝¹ : SMulCommClass M N N
inst✝ : SMulCommClass M P P
c : M
x y : N × P
⊢ c • x • y = x • c • y
[PROOFSTEP]
simp [smul_def, mul_def, mul_smul_comm]
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
E : Type u_4
α : Type u_5
β : Type u_6
inst✝⁵ : Mul N
inst✝⁴ : Mul P
inst✝³ : SMul M N
inst✝² : SMul M P
inst✝¹ : IsScalarTower M N N
inst✝ : IsScalarTower M P P
c : M
x y : N × P
⊢ (c • x) • y = c • x • y
[PROOFSTEP]
simp [smul_def, mul_def, smul_mul_assoc]
| {"mathlib_filename": "Mathlib.GroupTheory.GroupAction.Prod", "llama_tokens": 1225} |
[GOAL]
G : Type u_1
inst✝² : Group G
H : Subgroup G
A : Type u_2
inst✝¹ : CommGroup A
ϕ : { x // x ∈ H } →* A
R S T : ↑(leftTransversals ↑H)
inst✝ : FiniteIndex H
q : G ⧸ H
x✝ : q ∈ univ
⊢ {
val :=
(↑(↑(MemLeftTransversals.toEquiv (_ : ↑R ∈ leftTransversals ↑H)) q))⁻¹ *
↑(↑(MemLeftTransversals.toEquiv (_ : ↑S ∈ leftTransversals ↑H)) q),
property :=
(_ :
(↑(↑(MemLeftTransversals.toEquiv (_ : ↑R ∈ leftTransversals ↑H)) q))⁻¹ *
↑(↑(MemLeftTransversals.toEquiv (_ : ↑S ∈ leftTransversals ↑H)) q) ∈
H) } *
{
val :=
(↑(↑(MemLeftTransversals.toEquiv (_ : ↑S ∈ leftTransversals ↑H)) q))⁻¹ *
↑(↑(MemLeftTransversals.toEquiv (_ : ↑T ∈ leftTransversals ↑H)) q),
property :=
(_ :
(↑(↑(MemLeftTransversals.toEquiv (_ : ↑S ∈ leftTransversals ↑H)) q))⁻¹ *
↑(↑(MemLeftTransversals.toEquiv (_ : ↑T ∈ leftTransversals ↑H)) q) ∈
H) } =
{
val :=
(↑(↑(MemLeftTransversals.toEquiv (_ : ↑R ∈ leftTransversals ↑H)) q))⁻¹ *
↑(↑(MemLeftTransversals.toEquiv (_ : ↑T ∈ leftTransversals ↑H)) q),
property :=
(_ :
(↑(↑(MemLeftTransversals.toEquiv (_ : ↑R ∈ leftTransversals ↑H)) q))⁻¹ *
↑(↑(MemLeftTransversals.toEquiv (_ : ↑T ∈ leftTransversals ↑H)) q) ∈
H) }
[PROOFSTEP]
simp_rw [Subtype.ext_iff, coe_mul, mul_assoc, mul_inv_cancel_left]
[GOAL]
G : Type u_1
inst✝² : Group G
H : Subgroup G
A : Type u_2
inst✝¹ : CommGroup A
ϕ : { x // x ∈ H } →* A
R S T : ↑(leftTransversals ↑H)
inst✝ : FiniteIndex H
g : G
x✝² : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H
x✝¹ : G ⧸ H
x✝ : x✝¹ ∈ univ
⊢ {
val :=
(↑(↑(MemLeftTransversals.toEquiv (_ : ↑(g • S) ∈ leftTransversals ↑H)) x✝¹))⁻¹ *
↑(↑(MemLeftTransversals.toEquiv (_ : ↑(g • T) ∈ leftTransversals ↑H)) x✝¹),
property :=
(_ :
(↑(↑(MemLeftTransversals.toEquiv (_ : ↑(g • S) ∈ leftTransversals ↑H)) x✝¹))⁻¹ *
↑(↑(MemLeftTransversals.toEquiv (_ : ↑(g • T) ∈ leftTransversals ↑H)) x✝¹) ∈
H) } =
{
val :=
(↑(↑(MemLeftTransversals.toEquiv (_ : ↑S ∈ leftTransversals ↑H)) ((fun q x => g⁻¹ • q) x✝¹ x✝)))⁻¹ *
↑(↑(MemLeftTransversals.toEquiv (_ : ↑T ∈ leftTransversals ↑H)) ((fun q x => g⁻¹ • q) x✝¹ x✝)),
property :=
(_ :
(↑(↑(MemLeftTransversals.toEquiv (_ : ↑S ∈ leftTransversals ↑H)) ((fun q x => g⁻¹ • q) x✝¹ x✝)))⁻¹ *
↑(↑(MemLeftTransversals.toEquiv (_ : ↑T ∈ leftTransversals ↑H)) ((fun q x => g⁻¹ • q) x✝¹ x✝)) ∈
H) }
[PROOFSTEP]
simp_rw [smul_apply_eq_smul_apply_inv_smul, smul_eq_mul, mul_inv_rev, mul_assoc, inv_mul_cancel_left]
[GOAL]
G : Type u_1
inst✝² : Group G
H : Subgroup G
A : Type u_2
inst✝¹ : CommGroup A
ϕ : { x // x ∈ H } →* A
inst✝ : FiniteIndex H
T : ↑(leftTransversals ↑H) := default
⊢ (fun g => diff ϕ T (g • T)) 1 = 1
[PROOFSTEP]
simp only
[GOAL]
G : Type u_1
inst✝² : Group G
H : Subgroup G
A : Type u_2
inst✝¹ : CommGroup A
ϕ : { x // x ∈ H } →* A
inst✝ : FiniteIndex H
T : ↑(leftTransversals ↑H) := default
⊢ diff ϕ default (1 • default) = 1
[PROOFSTEP]
rw [one_smul, diff_self]
-- porting note: added `simp only`
[GOAL]
G : Type u_1
inst✝² : Group G
H : Subgroup G
A : Type u_2
inst✝¹ : CommGroup A
ϕ : { x // x ∈ H } →* A
inst✝ : FiniteIndex H
T : ↑(leftTransversals ↑H) := default
g h : G
⊢ OneHom.toFun { toFun := fun g => diff ϕ T (g • T), map_one' := (_ : (fun g => diff ϕ T (g • T)) 1 = 1) } (g * h) =
OneHom.toFun { toFun := fun g => diff ϕ T (g • T), map_one' := (_ : (fun g => diff ϕ T (g • T)) 1 = 1) } g *
OneHom.toFun { toFun := fun g => diff ϕ T (g • T), map_one' := (_ : (fun g => diff ϕ T (g • T)) 1 = 1) } h
[PROOFSTEP]
simp only
[GOAL]
G : Type u_1
inst✝² : Group G
H : Subgroup G
A : Type u_2
inst✝¹ : CommGroup A
ϕ : { x // x ∈ H } →* A
inst✝ : FiniteIndex H
T : ↑(leftTransversals ↑H) := default
g h : G
⊢ diff ϕ default ((g * h) • default) = diff ϕ default (g • default) * diff ϕ default (h • default)
[PROOFSTEP]
rw [mul_smul, ← diff_mul_diff, smul_diff_smul]
[GOAL]
G : Type u_1
inst✝² : Group G
H : Subgroup G
A : Type u_2
inst✝¹ : CommGroup A
ϕ : { x // x ∈ H } →* A
T : ↑(leftTransversals ↑H)
inst✝ : FiniteIndex H
g : G
⊢ ↑(transfer ϕ) g = diff ϕ T (g • T)
[PROOFSTEP]
rw [transfer, ← diff_mul_diff, ← smul_diff_smul, mul_comm, diff_mul_diff]
[GOAL]
G : Type u_1
inst✝² : Group G
H : Subgroup G
A : Type u_2
inst✝¹ : CommGroup A
ϕ : { x // x ∈ H } →* A
T : ↑(leftTransversals ↑H)
inst✝ : FiniteIndex H
g : G
⊢ ↑(let T := default;
{
toOneHom :=
{ toFun := fun g => diff ϕ T (g • T), map_one' := (_ : (fun g => diff ϕ default (g • default)) 1 = 1) },
map_mul' :=
(_ :
∀ (g h : G),
OneHom.toFun
{ toFun := fun g => diff ϕ default (g • default),
map_one' := (_ : (fun g => diff ϕ default (g • default)) 1 = 1) }
(g * h) =
OneHom.toFun
{ toFun := fun g => diff ϕ default (g • default),
map_one' := (_ : (fun g => diff ϕ default (g • default)) 1 = 1) }
g *
OneHom.toFun
{ toFun := fun g => diff ϕ default (g • default),
map_one' := (_ : (fun g => diff ϕ default (g • default)) 1 = 1) }
h) })
g =
diff ϕ ?R (g • ?R)
[PROOFSTEP]
rfl
[GOAL]
G : Type u_1
inst✝³ : Group G
H : Subgroup G
A : Type u_2
inst✝² : CommGroup A
ϕ : { x // x ∈ H } →* A
T : ↑(leftTransversals ↑H)
inst✝¹ : FiniteIndex H
g : G
inst✝ : Fintype (Quotient (orbitRel { x // x ∈ zpowers g } (G ⧸ H)))
⊢ ↑(transfer ϕ) g =
∏ q : Quotient (orbitRel { x // x ∈ zpowers g } (G ⧸ H)),
↑ϕ
{
val :=
(Quotient.out' (Quotient.out' q))⁻¹ *
g ^ Function.minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q) *
Quotient.out' (Quotient.out' q),
property :=
(_ :
(Quotient.out' (Quotient.out' q))⁻¹ *
g ^ Function.minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q) *
Quotient.out' (Quotient.out' q) ∈
H) }
[PROOFSTEP]
classical
letI := H.fintypeQuotientOfFiniteIndex
calc
transfer ϕ g = ∏ q : G ⧸ H, _ := transfer_def ϕ (transferTransversal H g) g
_ = _ := ((quotientEquivSigmaZMod H g).symm.prod_comp _).symm
_ = _ := (Finset.prod_sigma _ _ _)
_ = _ := by
refine' Fintype.prod_congr _ _ (fun q => _)
simp only [quotientEquivSigmaZMod_symm_apply, transferTransversal_apply', transferTransversal_apply'']
rw [Fintype.prod_eq_single (0 : ZMod (Function.minimalPeriod ((· • ·) g) q.out')) _]
· simp only [if_pos, ZMod.cast_zero, zpow_zero, one_mul, mul_assoc]
· intro k hk
simp only [if_neg hk, inv_mul_self]
exact map_one ϕ
[GOAL]
G : Type u_1
inst✝³ : Group G
H : Subgroup G
A : Type u_2
inst✝² : CommGroup A
ϕ : { x // x ∈ H } →* A
T : ↑(leftTransversals ↑H)
inst✝¹ : FiniteIndex H
g : G
inst✝ : Fintype (Quotient (orbitRel { x // x ∈ zpowers g } (G ⧸ H)))
⊢ ↑(transfer ϕ) g =
∏ q : Quotient (orbitRel { x // x ∈ zpowers g } (G ⧸ H)),
↑ϕ
{
val :=
(Quotient.out' (Quotient.out' q))⁻¹ *
g ^ Function.minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q) *
Quotient.out' (Quotient.out' q),
property :=
(_ :
(Quotient.out' (Quotient.out' q))⁻¹ *
g ^ Function.minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q) *
Quotient.out' (Quotient.out' q) ∈
H) }
[PROOFSTEP]
letI := H.fintypeQuotientOfFiniteIndex
[GOAL]
G : Type u_1
inst✝³ : Group G
H : Subgroup G
A : Type u_2
inst✝² : CommGroup A
ϕ : { x // x ∈ H } →* A
T : ↑(leftTransversals ↑H)
inst✝¹ : FiniteIndex H
g : G
inst✝ : Fintype (Quotient (orbitRel { x // x ∈ zpowers g } (G ⧸ H)))
this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H
⊢ ↑(transfer ϕ) g =
∏ q : Quotient (orbitRel { x // x ∈ zpowers g } (G ⧸ H)),
↑ϕ
{
val :=
(Quotient.out' (Quotient.out' q))⁻¹ *
g ^ Function.minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q) *
Quotient.out' (Quotient.out' q),
property :=
(_ :
(Quotient.out' (Quotient.out' q))⁻¹ *
g ^ Function.minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q) *
Quotient.out' (Quotient.out' q) ∈
H) }
[PROOFSTEP]
calc
transfer ϕ g = ∏ q : G ⧸ H, _ := transfer_def ϕ (transferTransversal H g) g
_ = _ := ((quotientEquivSigmaZMod H g).symm.prod_comp _).symm
_ = _ := (Finset.prod_sigma _ _ _)
_ = _ := by
refine' Fintype.prod_congr _ _ (fun q => _)
simp only [quotientEquivSigmaZMod_symm_apply, transferTransversal_apply', transferTransversal_apply'']
rw [Fintype.prod_eq_single (0 : ZMod (Function.minimalPeriod ((· • ·) g) q.out')) _]
· simp only [if_pos, ZMod.cast_zero, zpow_zero, one_mul, mul_assoc]
· intro k hk
simp only [if_neg hk, inv_mul_self]
exact map_one ϕ
[GOAL]
G : Type u_1
inst✝³ : Group G
H : Subgroup G
A : Type u_2
inst✝² : CommGroup A
ϕ : { x // x ∈ H } →* A
T : ↑(leftTransversals ↑H)
inst✝¹ : FiniteIndex H
g : G
inst✝ : Fintype (Quotient (orbitRel { x // x ∈ zpowers g } (G ⧸ H)))
this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H
⊢ ∏ a : orbitRel.Quotient { x // x ∈ zpowers g } (G ⧸ H),
∏ s in (fun x => Finset.univ) a,
↑ϕ
{
val :=
(↑(↑(MemLeftTransversals.toEquiv (_ : ↑(transferTransversal H g) ∈ leftTransversals ↑H))
(↑(quotientEquivSigmaZMod H g).symm { fst := a, snd := s })))⁻¹ *
↑(↑(MemLeftTransversals.toEquiv (_ : ↑(g • transferTransversal H g) ∈ leftTransversals ↑H))
(↑(quotientEquivSigmaZMod H g).symm { fst := a, snd := s })),
property :=
(_ :
(↑(↑(MemLeftTransversals.toEquiv (_ : ↑(transferTransversal H g) ∈ leftTransversals ↑H))
(↑(quotientEquivSigmaZMod H g).symm { fst := a, snd := s })))⁻¹ *
↑(↑(MemLeftTransversals.toEquiv (_ : ↑(g • transferTransversal H g) ∈ leftTransversals ↑H))
(↑(quotientEquivSigmaZMod H g).symm { fst := a, snd := s })) ∈
H) } =
∏ q : Quotient (orbitRel { x // x ∈ zpowers g } (G ⧸ H)),
↑ϕ
{
val :=
(Quotient.out' (Quotient.out' q))⁻¹ *
g ^ Function.minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q) *
Quotient.out' (Quotient.out' q),
property :=
(_ :
(Quotient.out' (Quotient.out' q))⁻¹ *
g ^ Function.minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q) *
Quotient.out' (Quotient.out' q) ∈
H) }
[PROOFSTEP]
refine' Fintype.prod_congr _ _ (fun q => _)
[GOAL]
G : Type u_1
inst✝³ : Group G
H : Subgroup G
A : Type u_2
inst✝² : CommGroup A
ϕ : { x // x ∈ H } →* A
T : ↑(leftTransversals ↑H)
inst✝¹ : FiniteIndex H
g : G
inst✝ : Fintype (Quotient (orbitRel { x // x ∈ zpowers g } (G ⧸ H)))
this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H
q : orbitRel.Quotient { x // x ∈ zpowers g } (G ⧸ H)
⊢ ∏ s in (fun x => Finset.univ) q,
↑ϕ
{
val :=
(↑(↑(MemLeftTransversals.toEquiv (_ : ↑(transferTransversal H g) ∈ leftTransversals ↑H))
(↑(quotientEquivSigmaZMod H g).symm { fst := q, snd := s })))⁻¹ *
↑(↑(MemLeftTransversals.toEquiv (_ : ↑(g • transferTransversal H g) ∈ leftTransversals ↑H))
(↑(quotientEquivSigmaZMod H g).symm { fst := q, snd := s })),
property :=
(_ :
(↑(↑(MemLeftTransversals.toEquiv (_ : ↑(transferTransversal H g) ∈ leftTransversals ↑H))
(↑(quotientEquivSigmaZMod H g).symm { fst := q, snd := s })))⁻¹ *
↑(↑(MemLeftTransversals.toEquiv (_ : ↑(g • transferTransversal H g) ∈ leftTransversals ↑H))
(↑(quotientEquivSigmaZMod H g).symm { fst := q, snd := s })) ∈
H) } =
↑ϕ
{
val :=
(Quotient.out' (Quotient.out' q))⁻¹ *
g ^ Function.minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q) *
Quotient.out' (Quotient.out' q),
property :=
(_ :
(Quotient.out' (Quotient.out' q))⁻¹ *
g ^ Function.minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q) *
Quotient.out' (Quotient.out' q) ∈
H) }
[PROOFSTEP]
simp only [quotientEquivSigmaZMod_symm_apply, transferTransversal_apply', transferTransversal_apply'']
[GOAL]
G : Type u_1
inst✝³ : Group G
H : Subgroup G
A : Type u_2
inst✝² : CommGroup A
ϕ : { x // x ∈ H } →* A
T : ↑(leftTransversals ↑H)
inst✝¹ : FiniteIndex H
g : G
inst✝ : Fintype (Quotient (orbitRel { x // x ∈ zpowers g } (G ⧸ H)))
this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H
q : orbitRel.Quotient { x // x ∈ zpowers g } (G ⧸ H)
⊢ ∏ x : ZMod (Function.minimalPeriod (fun x => g • x) (Quotient.out' q)),
↑ϕ
{
val :=
(g ^ ↑x * Quotient.out' (Quotient.out' q))⁻¹ *
if x = 0 then
g ^ Function.minimalPeriod (fun x => g • x) (Quotient.out' q) * Quotient.out' (Quotient.out' q)
else g ^ ↑x * Quotient.out' (Quotient.out' q),
property :=
(_ :
(fun x => x ∈ H)
((g ^ ↑x * Quotient.out' (Quotient.out' q))⁻¹ *
if x = 0 then
g ^ Function.minimalPeriod (fun x => g • x) (Quotient.out' q) * Quotient.out' (Quotient.out' q)
else g ^ ↑x * Quotient.out' (Quotient.out' q))) } =
↑ϕ
{
val :=
(Quotient.out' (Quotient.out' q))⁻¹ * g ^ Function.minimalPeriod (fun x => g • x) (Quotient.out' q) *
Quotient.out' (Quotient.out' q),
property :=
(_ :
(Quotient.out' (Quotient.out' q))⁻¹ *
g ^ Function.minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q) *
Quotient.out' (Quotient.out' q) ∈
H) }
[PROOFSTEP]
rw [Fintype.prod_eq_single (0 : ZMod (Function.minimalPeriod ((· • ·) g) q.out')) _]
[GOAL]
G : Type u_1
inst✝³ : Group G
H : Subgroup G
A : Type u_2
inst✝² : CommGroup A
ϕ : { x // x ∈ H } →* A
T : ↑(leftTransversals ↑H)
inst✝¹ : FiniteIndex H
g : G
inst✝ : Fintype (Quotient (orbitRel { x // x ∈ zpowers g } (G ⧸ H)))
this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H
q : orbitRel.Quotient { x // x ∈ zpowers g } (G ⧸ H)
⊢ ↑ϕ
{
val :=
(g ^ ↑0 * Quotient.out' (Quotient.out' q))⁻¹ *
if 0 = 0 then
g ^ Function.minimalPeriod (fun x => g • x) (Quotient.out' q) * Quotient.out' (Quotient.out' q)
else g ^ ↑0 * Quotient.out' (Quotient.out' q),
property :=
(_ :
(fun x => x ∈ H)
((g ^ ↑0 * Quotient.out' (Quotient.out' q))⁻¹ *
if 0 = 0 then
g ^ Function.minimalPeriod (fun x => g • x) (Quotient.out' q) * Quotient.out' (Quotient.out' q)
else g ^ ↑0 * Quotient.out' (Quotient.out' q))) } =
↑ϕ
{
val :=
(Quotient.out' (Quotient.out' q))⁻¹ * g ^ Function.minimalPeriod (fun x => g • x) (Quotient.out' q) *
Quotient.out' (Quotient.out' q),
property :=
(_ :
(Quotient.out' (Quotient.out' q))⁻¹ *
g ^ Function.minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q) *
Quotient.out' (Quotient.out' q) ∈
H) }
[PROOFSTEP]
simp only [if_pos, ZMod.cast_zero, zpow_zero, one_mul, mul_assoc]
[GOAL]
G : Type u_1
inst✝³ : Group G
H : Subgroup G
A : Type u_2
inst✝² : CommGroup A
ϕ : { x // x ∈ H } →* A
T : ↑(leftTransversals ↑H)
inst✝¹ : FiniteIndex H
g : G
inst✝ : Fintype (Quotient (orbitRel { x // x ∈ zpowers g } (G ⧸ H)))
this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H
q : orbitRel.Quotient { x // x ∈ zpowers g } (G ⧸ H)
⊢ ∀ (x : ZMod (Function.minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q))),
x ≠ 0 →
↑ϕ
{
val :=
(g ^ ↑x * Quotient.out' (Quotient.out' q))⁻¹ *
if x = 0 then
g ^ Function.minimalPeriod (fun x => g • x) (Quotient.out' q) * Quotient.out' (Quotient.out' q)
else g ^ ↑x * Quotient.out' (Quotient.out' q),
property :=
(_ :
(fun x => x ∈ H)
((g ^ ↑x * Quotient.out' (Quotient.out' q))⁻¹ *
if x = 0 then
g ^ Function.minimalPeriod (fun x => g • x) (Quotient.out' q) * Quotient.out' (Quotient.out' q)
else g ^ ↑x * Quotient.out' (Quotient.out' q))) } =
1
[PROOFSTEP]
intro k hk
[GOAL]
G : Type u_1
inst✝³ : Group G
H : Subgroup G
A : Type u_2
inst✝² : CommGroup A
ϕ : { x // x ∈ H } →* A
T : ↑(leftTransversals ↑H)
inst✝¹ : FiniteIndex H
g : G
inst✝ : Fintype (Quotient (orbitRel { x // x ∈ zpowers g } (G ⧸ H)))
this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H
q : orbitRel.Quotient { x // x ∈ zpowers g } (G ⧸ H)
k : ZMod (Function.minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q))
hk : k ≠ 0
⊢ ↑ϕ
{
val :=
(g ^ ↑k * Quotient.out' (Quotient.out' q))⁻¹ *
if k = 0 then
g ^ Function.minimalPeriod (fun x => g • x) (Quotient.out' q) * Quotient.out' (Quotient.out' q)
else g ^ ↑k * Quotient.out' (Quotient.out' q),
property :=
(_ :
(fun x => x ∈ H)
((g ^ ↑k * Quotient.out' (Quotient.out' q))⁻¹ *
if k = 0 then
g ^ Function.minimalPeriod (fun x => g • x) (Quotient.out' q) * Quotient.out' (Quotient.out' q)
else g ^ ↑k * Quotient.out' (Quotient.out' q))) } =
1
[PROOFSTEP]
simp only [if_neg hk, inv_mul_self]
[GOAL]
G : Type u_1
inst✝³ : Group G
H : Subgroup G
A : Type u_2
inst✝² : CommGroup A
ϕ : { x // x ∈ H } →* A
T : ↑(leftTransversals ↑H)
inst✝¹ : FiniteIndex H
g : G
inst✝ : Fintype (Quotient (orbitRel { x // x ∈ zpowers g } (G ⧸ H)))
this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H
q : orbitRel.Quotient { x // x ∈ zpowers g } (G ⧸ H)
k : ZMod (Function.minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q))
hk : k ≠ 0
⊢ ↑ϕ { val := 1, property := (_ : (fun x => x ∈ H) 1) } = 1
[PROOFSTEP]
exact map_one ϕ
[GOAL]
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
A : Type u_2
inst✝ : CommGroup A
ϕ : { x // x ∈ H } →* A
T : ↑(leftTransversals ↑H)
g : G
key : ∀ (k : ℕ) (g₀ : G), g₀⁻¹ * g ^ k * g₀ ∈ H → g₀⁻¹ * g ^ k * g₀ = g ^ k
⊢ g ^ index H ∈ H
[PROOFSTEP]
by_cases hH : H.index = 0
[GOAL]
case pos
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
A : Type u_2
inst✝ : CommGroup A
ϕ : { x // x ∈ H } →* A
T : ↑(leftTransversals ↑H)
g : G
key : ∀ (k : ℕ) (g₀ : G), g₀⁻¹ * g ^ k * g₀ ∈ H → g₀⁻¹ * g ^ k * g₀ = g ^ k
hH : index H = 0
⊢ g ^ index H ∈ H
[PROOFSTEP]
rw [hH, pow_zero]
[GOAL]
case pos
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
A : Type u_2
inst✝ : CommGroup A
ϕ : { x // x ∈ H } →* A
T : ↑(leftTransversals ↑H)
g : G
key : ∀ (k : ℕ) (g₀ : G), g₀⁻¹ * g ^ k * g₀ ∈ H → g₀⁻¹ * g ^ k * g₀ = g ^ k
hH : index H = 0
⊢ 1 ∈ H
[PROOFSTEP]
exact H.one_mem
[GOAL]
case neg
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
A : Type u_2
inst✝ : CommGroup A
ϕ : { x // x ∈ H } →* A
T : ↑(leftTransversals ↑H)
g : G
key : ∀ (k : ℕ) (g₀ : G), g₀⁻¹ * g ^ k * g₀ ∈ H → g₀⁻¹ * g ^ k * g₀ = g ^ k
hH : ¬index H = 0
⊢ g ^ index H ∈ H
[PROOFSTEP]
letI := fintypeOfIndexNeZero hH
[GOAL]
case neg
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
A : Type u_2
inst✝ : CommGroup A
ϕ : { x // x ∈ H } →* A
T : ↑(leftTransversals ↑H)
g : G
key : ∀ (k : ℕ) (g₀ : G), g₀⁻¹ * g ^ k * g₀ ∈ H → g₀⁻¹ * g ^ k * g₀ = g ^ k
hH : ¬index H = 0
this : Fintype (G ⧸ H) := fintypeOfIndexNeZero hH
⊢ g ^ index H ∈ H
[PROOFSTEP]
classical
replace key : ∀ (k : ℕ) (g₀ : G), g₀⁻¹ * g ^ k * g₀ ∈ H → g ^ k ∈ H := fun k g₀ hk =>
(_root_.congr_arg (· ∈ H) (key k g₀ hk)).mp hk
replace key : ∀ q : G ⧸ H, g ^ Function.minimalPeriod ((· • ·) g) q ∈ H := fun q =>
key (Function.minimalPeriod ((· • ·) g) q) q.out' (QuotientGroup.out'_conj_pow_minimalPeriod_mem H g q)
let f : Quotient (orbitRel (zpowers g) (G ⧸ H)) → zpowers g := fun q =>
(⟨g, mem_zpowers g⟩ : zpowers g) ^ Function.minimalPeriod ((· • ·) g) q.out'
have hf : ∀ q, f q ∈ H.subgroupOf (zpowers g) := fun q => key q.out'
replace key := Subgroup.prod_mem (H.subgroupOf (zpowers g)) fun q (_ : q ∈ Finset.univ) => hf q
simpa only [minimalPeriod_eq_card, Finset.prod_pow_eq_pow_sum, Fintype.card_sigma,
Fintype.card_congr (selfEquivSigmaOrbits (zpowers g) (G ⧸ H)), index_eq_card] using key
[GOAL]
case neg
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
A : Type u_2
inst✝ : CommGroup A
ϕ : { x // x ∈ H } →* A
T : ↑(leftTransversals ↑H)
g : G
key : ∀ (k : ℕ) (g₀ : G), g₀⁻¹ * g ^ k * g₀ ∈ H → g₀⁻¹ * g ^ k * g₀ = g ^ k
hH : ¬index H = 0
this : Fintype (G ⧸ H) := fintypeOfIndexNeZero hH
⊢ g ^ index H ∈ H
[PROOFSTEP]
replace key : ∀ (k : ℕ) (g₀ : G), g₀⁻¹ * g ^ k * g₀ ∈ H → g ^ k ∈ H := fun k g₀ hk =>
(_root_.congr_arg (· ∈ H) (key k g₀ hk)).mp hk
[GOAL]
case neg
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
A : Type u_2
inst✝ : CommGroup A
ϕ : { x // x ∈ H } →* A
T : ↑(leftTransversals ↑H)
g : G
hH : ¬index H = 0
this : Fintype (G ⧸ H) := fintypeOfIndexNeZero hH
key : ∀ (k : ℕ) (g₀ : G), g₀⁻¹ * g ^ k * g₀ ∈ H → g ^ k ∈ H
⊢ g ^ index H ∈ H
[PROOFSTEP]
replace key : ∀ q : G ⧸ H, g ^ Function.minimalPeriod ((· • ·) g) q ∈ H := fun q =>
key (Function.minimalPeriod ((· • ·) g) q) q.out' (QuotientGroup.out'_conj_pow_minimalPeriod_mem H g q)
[GOAL]
case neg
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
A : Type u_2
inst✝ : CommGroup A
ϕ : { x // x ∈ H } →* A
T : ↑(leftTransversals ↑H)
g : G
hH : ¬index H = 0
this : Fintype (G ⧸ H) := fintypeOfIndexNeZero hH
key : ∀ (q : G ⧸ H), g ^ Function.minimalPeriod ((fun x x_1 => x • x_1) g) q ∈ H
⊢ g ^ index H ∈ H
[PROOFSTEP]
let f : Quotient (orbitRel (zpowers g) (G ⧸ H)) → zpowers g := fun q =>
(⟨g, mem_zpowers g⟩ : zpowers g) ^ Function.minimalPeriod ((· • ·) g) q.out'
[GOAL]
case neg
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
A : Type u_2
inst✝ : CommGroup A
ϕ : { x // x ∈ H } →* A
T : ↑(leftTransversals ↑H)
g : G
hH : ¬index H = 0
this : Fintype (G ⧸ H) := fintypeOfIndexNeZero hH
key : ∀ (q : G ⧸ H), g ^ Function.minimalPeriod ((fun x x_1 => x • x_1) g) q ∈ H
f : Quotient (orbitRel { x // x ∈ zpowers g } (G ⧸ H)) → { x // x ∈ zpowers g } :=
fun q =>
{ val := g, property := (_ : g ∈ zpowers g) } ^ Function.minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q)
⊢ g ^ index H ∈ H
[PROOFSTEP]
have hf : ∀ q, f q ∈ H.subgroupOf (zpowers g) := fun q => key q.out'
[GOAL]
case neg
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
A : Type u_2
inst✝ : CommGroup A
ϕ : { x // x ∈ H } →* A
T : ↑(leftTransversals ↑H)
g : G
hH : ¬index H = 0
this : Fintype (G ⧸ H) := fintypeOfIndexNeZero hH
key : ∀ (q : G ⧸ H), g ^ Function.minimalPeriod ((fun x x_1 => x • x_1) g) q ∈ H
f : Quotient (orbitRel { x // x ∈ zpowers g } (G ⧸ H)) → { x // x ∈ zpowers g } :=
fun q =>
{ val := g, property := (_ : g ∈ zpowers g) } ^ Function.minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q)
hf : ∀ (q : Quotient (orbitRel { x // x ∈ zpowers g } (G ⧸ H))), f q ∈ subgroupOf H (zpowers g)
⊢ g ^ index H ∈ H
[PROOFSTEP]
replace key := Subgroup.prod_mem (H.subgroupOf (zpowers g)) fun q (_ : q ∈ Finset.univ) => hf q
[GOAL]
case neg
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
A : Type u_2
inst✝ : CommGroup A
ϕ : { x // x ∈ H } →* A
T : ↑(leftTransversals ↑H)
g : G
hH : ¬index H = 0
this : Fintype (G ⧸ H) := fintypeOfIndexNeZero hH
f : Quotient (orbitRel { x // x ∈ zpowers g } (G ⧸ H)) → { x // x ∈ zpowers g } :=
fun q =>
{ val := g, property := (_ : g ∈ zpowers g) } ^ Function.minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q)
hf : ∀ (q : Quotient (orbitRel { x // x ∈ zpowers g } (G ⧸ H))), f q ∈ subgroupOf H (zpowers g)
key : ∏ c : Quotient (orbitRel { x // x ∈ zpowers g } (G ⧸ H)), f c ∈ subgroupOf H (zpowers g)
⊢ g ^ index H ∈ H
[PROOFSTEP]
simpa only [minimalPeriod_eq_card, Finset.prod_pow_eq_pow_sum, Fintype.card_sigma,
Fintype.card_congr (selfEquivSigmaOrbits (zpowers g) (G ⧸ H)), index_eq_card] using key
[GOAL]
G : Type u_1
inst✝² : Group G
H : Subgroup G
A : Type u_2
inst✝¹ : CommGroup A
ϕ : { x // x ∈ H } →* A
T : ↑(leftTransversals ↑H)
inst✝ : FiniteIndex H
g : G
key : ∀ (k : ℕ) (g₀ : G), g₀⁻¹ * g ^ k * g₀ ∈ H → g₀⁻¹ * g ^ k * g₀ = g ^ k
⊢ ↑(transfer ϕ) g = ↑ϕ { val := g ^ index H, property := (_ : g ^ index H ∈ H) }
[PROOFSTEP]
classical
letI := H.fintypeQuotientOfFiniteIndex
change ∀ (k g₀) (hk : g₀⁻¹ * g ^ k * g₀ ∈ H), ↑(⟨g₀⁻¹ * g ^ k * g₀, hk⟩ : H) = g ^ k at key
rw [transfer_eq_prod_quotient_orbitRel_zpowers_quot, ← Finset.prod_to_list]
refine'
(List.prod_map_hom _ _ _).trans
_
-- porting note: this used to be in the `rw`
refine' congrArg ϕ (Subtype.coe_injective _)
simp only
-- porting note: added `simp only`
rw [H.coe_mk, ← (zpowers g).coe_mk g (mem_zpowers g), ← (zpowers g).coe_pow, index_eq_card,
Fintype.card_congr (selfEquivSigmaOrbits (zpowers g) (G ⧸ H)), Fintype.card_sigma, ← Finset.prod_pow_eq_pow_sum, ←
Finset.prod_to_list]
simp only [Subgroup.val_list_prod, List.map_map, ← minimalPeriod_eq_card]
congr
funext
apply key
[GOAL]
G : Type u_1
inst✝² : Group G
H : Subgroup G
A : Type u_2
inst✝¹ : CommGroup A
ϕ : { x // x ∈ H } →* A
T : ↑(leftTransversals ↑H)
inst✝ : FiniteIndex H
g : G
key : ∀ (k : ℕ) (g₀ : G), g₀⁻¹ * g ^ k * g₀ ∈ H → g₀⁻¹ * g ^ k * g₀ = g ^ k
⊢ ↑(transfer ϕ) g = ↑ϕ { val := g ^ index H, property := (_ : g ^ index H ∈ H) }
[PROOFSTEP]
letI := H.fintypeQuotientOfFiniteIndex
[GOAL]
G : Type u_1
inst✝² : Group G
H : Subgroup G
A : Type u_2
inst✝¹ : CommGroup A
ϕ : { x // x ∈ H } →* A
T : ↑(leftTransversals ↑H)
inst✝ : FiniteIndex H
g : G
key : ∀ (k : ℕ) (g₀ : G), g₀⁻¹ * g ^ k * g₀ ∈ H → g₀⁻¹ * g ^ k * g₀ = g ^ k
this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H
⊢ ↑(transfer ϕ) g = ↑ϕ { val := g ^ index H, property := (_ : g ^ index H ∈ H) }
[PROOFSTEP]
change ∀ (k g₀) (hk : g₀⁻¹ * g ^ k * g₀ ∈ H), ↑(⟨g₀⁻¹ * g ^ k * g₀, hk⟩ : H) = g ^ k at key
[GOAL]
G : Type u_1
inst✝² : Group G
H : Subgroup G
A : Type u_2
inst✝¹ : CommGroup A
ϕ : { x // x ∈ H } →* A
T : ↑(leftTransversals ↑H)
inst✝ : FiniteIndex H
g : G
this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H
key : ∀ (k : ℕ) (g₀ : G) (hk : g₀⁻¹ * g ^ k * g₀ ∈ H), ↑{ val := g₀⁻¹ * g ^ k * g₀, property := hk } = g ^ k
⊢ ↑(transfer ϕ) g = ↑ϕ { val := g ^ index H, property := (_ : g ^ index H ∈ H) }
[PROOFSTEP]
rw [transfer_eq_prod_quotient_orbitRel_zpowers_quot, ← Finset.prod_to_list]
[GOAL]
G : Type u_1
inst✝² : Group G
H : Subgroup G
A : Type u_2
inst✝¹ : CommGroup A
ϕ : { x // x ∈ H } →* A
T : ↑(leftTransversals ↑H)
inst✝ : FiniteIndex H
g : G
this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H
key : ∀ (k : ℕ) (g₀ : G) (hk : g₀⁻¹ * g ^ k * g₀ ∈ H), ↑{ val := g₀⁻¹ * g ^ k * g₀, property := hk } = g ^ k
⊢ List.prod
(List.map
(fun q =>
↑ϕ
{
val :=
(Quotient.out' (Quotient.out' q))⁻¹ *
g ^ Function.minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q) *
Quotient.out' (Quotient.out' q),
property :=
(_ :
(Quotient.out' (Quotient.out' q))⁻¹ *
g ^ Function.minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q) *
Quotient.out' (Quotient.out' q) ∈
H) })
(Finset.toList Finset.univ)) =
↑ϕ { val := g ^ index H, property := (_ : g ^ index H ∈ H) }
[PROOFSTEP]
refine'
(List.prod_map_hom _ _ _).trans
_
-- porting note: this used to be in the `rw`
[GOAL]
G : Type u_1
inst✝² : Group G
H : Subgroup G
A : Type u_2
inst✝¹ : CommGroup A
ϕ : { x // x ∈ H } →* A
T : ↑(leftTransversals ↑H)
inst✝ : FiniteIndex H
g : G
this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H
key : ∀ (k : ℕ) (g₀ : G) (hk : g₀⁻¹ * g ^ k * g₀ ∈ H), ↑{ val := g₀⁻¹ * g ^ k * g₀, property := hk } = g ^ k
⊢ ↑ϕ
(List.prod
(List.map
(fun q =>
{
val :=
(Quotient.out' (Quotient.out' q))⁻¹ *
g ^ Function.minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q) *
Quotient.out' (Quotient.out' q),
property :=
(_ :
(Quotient.out' (Quotient.out' q))⁻¹ *
g ^ Function.minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q) *
Quotient.out' (Quotient.out' q) ∈
H) })
(Finset.toList Finset.univ))) =
↑ϕ { val := g ^ index H, property := (_ : g ^ index H ∈ H) }
[PROOFSTEP]
refine' congrArg ϕ (Subtype.coe_injective _)
[GOAL]
G : Type u_1
inst✝² : Group G
H : Subgroup G
A : Type u_2
inst✝¹ : CommGroup A
ϕ : { x // x ∈ H } →* A
T : ↑(leftTransversals ↑H)
inst✝ : FiniteIndex H
g : G
this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H
key : ∀ (k : ℕ) (g₀ : G) (hk : g₀⁻¹ * g ^ k * g₀ ∈ H), ↑{ val := g₀⁻¹ * g ^ k * g₀, property := hk } = g ^ k
⊢ (fun a => ↑a)
(List.prod
(List.map
(fun q =>
{
val :=
(Quotient.out' (Quotient.out' q))⁻¹ *
g ^ Function.minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q) *
Quotient.out' (Quotient.out' q),
property :=
(_ :
(Quotient.out' (Quotient.out' q))⁻¹ *
g ^ Function.minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q) *
Quotient.out' (Quotient.out' q) ∈
H) })
(Finset.toList Finset.univ))) =
(fun a => ↑a) { val := g ^ index H, property := (_ : g ^ index H ∈ H) }
[PROOFSTEP]
simp only
-- porting note: added `simp only`
[GOAL]
G : Type u_1
inst✝² : Group G
H : Subgroup G
A : Type u_2
inst✝¹ : CommGroup A
ϕ : { x // x ∈ H } →* A
T : ↑(leftTransversals ↑H)
inst✝ : FiniteIndex H
g : G
this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H
key : ∀ (k : ℕ) (g₀ : G) (hk : g₀⁻¹ * g ^ k * g₀ ∈ H), ↑{ val := g₀⁻¹ * g ^ k * g₀, property := hk } = g ^ k
⊢ ↑(List.prod
(List.map
(fun q =>
{
val :=
(Quotient.out' (Quotient.out' q))⁻¹ * g ^ Function.minimalPeriod (fun x => g • x) (Quotient.out' q) *
Quotient.out' (Quotient.out' q),
property :=
(_ :
(Quotient.out' (Quotient.out' q))⁻¹ *
g ^ Function.minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q) *
Quotient.out' (Quotient.out' q) ∈
H) })
(Finset.toList Finset.univ))) =
g ^ index H
[PROOFSTEP]
rw [H.coe_mk, ← (zpowers g).coe_mk g (mem_zpowers g), ← (zpowers g).coe_pow, index_eq_card,
Fintype.card_congr (selfEquivSigmaOrbits (zpowers g) (G ⧸ H)), Fintype.card_sigma, ← Finset.prod_pow_eq_pow_sum, ←
Finset.prod_to_list]
[GOAL]
G : Type u_1
inst✝² : Group G
H : Subgroup G
A : Type u_2
inst✝¹ : CommGroup A
ϕ : { x // x ∈ H } →* A
T : ↑(leftTransversals ↑H)
inst✝ : FiniteIndex H
g : G
this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H
key : ∀ (k : ℕ) (g₀ : G) (hk : g₀⁻¹ * g ^ k * g₀ ∈ H), ↑{ val := g₀⁻¹ * g ^ k * g₀, property := hk } = g ^ k
⊢ ↑(List.prod
(List.map
(fun q =>
{
val :=
(Quotient.out' (Quotient.out' q))⁻¹ *
↑{ val := g, property := (_ : g ∈ zpowers g) } ^
Function.minimalPeriod (fun x => ↑{ val := g, property := (_ : g ∈ zpowers g) } • x)
(Quotient.out' q) *
Quotient.out' (Quotient.out' q),
property :=
(_ :
(Quotient.out' (Quotient.out' q))⁻¹ *
↑{ val := g, property := (_ : g ∈ zpowers g) } ^
Function.minimalPeriod ((fun x x_1 => x • x_1) ↑{ val := g, property := (_ : g ∈ zpowers g) })
(Quotient.out' q) *
Quotient.out' (Quotient.out' q) ∈
H) })
(Finset.toList Finset.univ))) =
↑(List.prod
(List.map
(fun i =>
{ val := g, property := (_ : g ∈ zpowers g) } ^
Fintype.card ↑(orbit { x // x ∈ zpowers g } (Quotient.out' i)))
(Finset.toList Finset.univ)))
[PROOFSTEP]
simp only [Subgroup.val_list_prod, List.map_map, ← minimalPeriod_eq_card]
[GOAL]
G : Type u_1
inst✝² : Group G
H : Subgroup G
A : Type u_2
inst✝¹ : CommGroup A
ϕ : { x // x ∈ H } →* A
T : ↑(leftTransversals ↑H)
inst✝ : FiniteIndex H
g : G
this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H
key : ∀ (k : ℕ) (g₀ : G) (hk : g₀⁻¹ * g ^ k * g₀ ∈ H), ↑{ val := g₀⁻¹ * g ^ k * g₀, property := hk } = g ^ k
⊢ List.prod
(List.map
(Subtype.val ∘ fun q =>
{
val :=
(Quotient.out' (Quotient.out' q))⁻¹ * g ^ Function.minimalPeriod (fun x => g • x) (Quotient.out' q) *
Quotient.out' (Quotient.out' q),
property :=
(_ :
(Quotient.out' (Quotient.out' q))⁻¹ *
↑{ val := g, property := (_ : g ∈ zpowers g) } ^
Function.minimalPeriod ((fun x x_1 => x • x_1) ↑{ val := g, property := (_ : g ∈ zpowers g) })
(Quotient.out' q) *
Quotient.out' (Quotient.out' q) ∈
H) })
(Finset.toList Finset.univ)) =
List.prod
(List.map
(Subtype.val ∘ fun i =>
{ val := g, property := (_ : g ∈ zpowers g) } ^ Function.minimalPeriod (fun x => g • x) (Quotient.out' i))
(Finset.toList Finset.univ))
[PROOFSTEP]
congr
[GOAL]
case e_a.e_f
G : Type u_1
inst✝² : Group G
H : Subgroup G
A : Type u_2
inst✝¹ : CommGroup A
ϕ : { x // x ∈ H } →* A
T : ↑(leftTransversals ↑H)
inst✝ : FiniteIndex H
g : G
this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H
key : ∀ (k : ℕ) (g₀ : G) (hk : g₀⁻¹ * g ^ k * g₀ ∈ H), ↑{ val := g₀⁻¹ * g ^ k * g₀, property := hk } = g ^ k
⊢ (Subtype.val ∘ fun q =>
{
val :=
(Quotient.out' (Quotient.out' q))⁻¹ * g ^ Function.minimalPeriod (fun x => g • x) (Quotient.out' q) *
Quotient.out' (Quotient.out' q),
property :=
(_ :
(Quotient.out' (Quotient.out' q))⁻¹ *
↑{ val := g, property := (_ : g ∈ zpowers g) } ^
Function.minimalPeriod ((fun x x_1 => x • x_1) ↑{ val := g, property := (_ : g ∈ zpowers g) })
(Quotient.out' q) *
Quotient.out' (Quotient.out' q) ∈
H) }) =
Subtype.val ∘ fun i =>
{ val := g, property := (_ : g ∈ zpowers g) } ^ Function.minimalPeriod (fun x => g • x) (Quotient.out' i)
[PROOFSTEP]
funext
[GOAL]
case e_a.e_f.h
G : Type u_1
inst✝² : Group G
H : Subgroup G
A : Type u_2
inst✝¹ : CommGroup A
ϕ : { x // x ∈ H } →* A
T : ↑(leftTransversals ↑H)
inst✝ : FiniteIndex H
g : G
this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H
key : ∀ (k : ℕ) (g₀ : G) (hk : g₀⁻¹ * g ^ k * g₀ ∈ H), ↑{ val := g₀⁻¹ * g ^ k * g₀, property := hk } = g ^ k
x✝ : Quotient (orbitRel { x // x ∈ zpowers g } (G ⧸ H))
⊢ (Subtype.val ∘ fun q =>
{
val :=
(Quotient.out' (Quotient.out' q))⁻¹ * g ^ Function.minimalPeriod (fun x => g • x) (Quotient.out' q) *
Quotient.out' (Quotient.out' q),
property :=
(_ :
(Quotient.out' (Quotient.out' q))⁻¹ *
↑{ val := g, property := (_ : g ∈ zpowers g) } ^
Function.minimalPeriod ((fun x x_1 => x • x_1) ↑{ val := g, property := (_ : g ∈ zpowers g) })
(Quotient.out' q) *
Quotient.out' (Quotient.out' q) ∈
H) })
x✝ =
(Subtype.val ∘ fun i =>
{ val := g, property := (_ : g ∈ zpowers g) } ^ Function.minimalPeriod (fun x => g • x) (Quotient.out' i))
x✝
[PROOFSTEP]
apply key
[GOAL]
G : Type u_1
inst✝² : Group G
H : Subgroup G
A : Type u_2
inst✝¹ : CommGroup A
ϕ : { x // x ∈ H } →* A
T : ↑(leftTransversals ↑H)
inst✝ : FiniteIndex (center G)
g : G
k : ℕ
x✝ : G
hk : x✝⁻¹ * g ^ k * x✝ ∈ center G
⊢ x✝⁻¹ * g ^ k * x✝ = g ^ k
[PROOFSTEP]
rw [← mul_right_inj, hk, mul_inv_cancel_right]
[GOAL]
G : Type u_1
inst✝² : Group G
H : Subgroup G
A : Type u_2
inst✝¹ : CommGroup A
ϕ : { x // x ∈ H } →* A
T : ↑(leftTransversals ↑H)
inst✝ : FiniteIndex (center G)
a b : G
⊢ OneHom.toFun
{ toFun := fun g => { val := g ^ index (center G), property := (_ : g ^ index (center G) ∈ center G) },
map_one' :=
(_ : (fun g => { val := g ^ index (center G), property := (_ : g ^ index (center G) ∈ center G) }) 1 = 1) }
(a * b) =
OneHom.toFun
{ toFun := fun g => { val := g ^ index (center G), property := (_ : g ^ index (center G) ∈ center G) },
map_one' :=
(_ : (fun g => { val := g ^ index (center G), property := (_ : g ^ index (center G) ∈ center G) }) 1 = 1) }
a *
OneHom.toFun
{ toFun := fun g => { val := g ^ index (center G), property := (_ : g ^ index (center G) ∈ center G) },
map_one' :=
(_ : (fun g => { val := g ^ index (center G), property := (_ : g ^ index (center G) ∈ center G) }) 1 = 1) }
b
[PROOFSTEP]
simp_rw [← show ∀ _, (_ : center G) = _ from transfer_center_eq_pow, map_mul]
[GOAL]
G : Type u_1
inst✝³ : Group G
H : Subgroup G
A : Type u_2
inst✝² : CommGroup A
ϕ : { x // x ∈ H } →* A
T : ↑(leftTransversals ↑H)
p : ℕ
P : Sylow p G
hP : normalizer ↑P ≤ centralizer ↑P
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
g : G
hg : g ∈ P
k : ℕ
g₀ : G
h : g₀⁻¹ * g ^ k * g₀ ∈ P
⊢ g₀⁻¹ * g ^ k * g₀ = g ^ k
[PROOFSTEP]
haveI : (P : Subgroup G).IsCommutative := ⟨⟨fun a b => Subtype.ext (hP (le_normalizer b.2) a a.2)⟩⟩
[GOAL]
G : Type u_1
inst✝³ : Group G
H : Subgroup G
A : Type u_2
inst✝² : CommGroup A
ϕ : { x // x ∈ H } →* A
T : ↑(leftTransversals ↑H)
p : ℕ
P : Sylow p G
hP : normalizer ↑P ≤ centralizer ↑P
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
g : G
hg : g ∈ P
k : ℕ
g₀ : G
h : g₀⁻¹ * g ^ k * g₀ ∈ P
this : Subgroup.IsCommutative ↑P
⊢ g₀⁻¹ * g ^ k * g₀ = g ^ k
[PROOFSTEP]
replace hg := (P : Subgroup G).pow_mem hg k
[GOAL]
G : Type u_1
inst✝³ : Group G
H : Subgroup G
A : Type u_2
inst✝² : CommGroup A
ϕ : { x // x ∈ H } →* A
T : ↑(leftTransversals ↑H)
p : ℕ
P : Sylow p G
hP : normalizer ↑P ≤ centralizer ↑P
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
g : G
k : ℕ
g₀ : G
h : g₀⁻¹ * g ^ k * g₀ ∈ P
this : Subgroup.IsCommutative ↑P
hg : g ^ k ∈ ↑P
⊢ g₀⁻¹ * g ^ k * g₀ = g ^ k
[PROOFSTEP]
obtain ⟨n, hn, h⟩ := P.conj_eq_normalizer_conj_of_mem (g ^ k) g₀ hg h
[GOAL]
case intro.intro
G : Type u_1
inst✝³ : Group G
H : Subgroup G
A : Type u_2
inst✝² : CommGroup A
ϕ : { x // x ∈ H } →* A
T : ↑(leftTransversals ↑H)
p : ℕ
P : Sylow p G
hP : normalizer ↑P ≤ centralizer ↑P
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
g : G
k : ℕ
g₀ : G
h✝ : g₀⁻¹ * g ^ k * g₀ ∈ P
this : Subgroup.IsCommutative ↑P
hg : g ^ k ∈ ↑P
n : G
hn : n ∈ normalizer ↑P
h : g₀⁻¹ * g ^ k * g₀ = n⁻¹ * g ^ k * n
⊢ g₀⁻¹ * g ^ k * g₀ = g ^ k
[PROOFSTEP]
exact h.trans (Commute.inv_mul_cancel (hP hn (g ^ k) hg).symm)
[GOAL]
G : Type u_1
inst✝⁴ : Group G
H : Subgroup G
A : Type u_2
inst✝³ : CommGroup A
ϕ : { x // x ∈ H } →* A
T : ↑(leftTransversals ↑H)
p : ℕ
P : Sylow p G
hP : normalizer ↑P ≤ centralizer ↑P
inst✝² : Fact (Nat.Prime p)
inst✝¹ : Finite (Sylow p G)
inst✝ : FiniteIndex ↑P
⊢ IsComplement' (ker (transferSylow P hP)) ↑P
[PROOFSTEP]
have hf : Function.Bijective ((transferSylow P hP).restrict (P : Subgroup G)) :=
(transferSylow_restrict_eq_pow P hP).symm ▸
(P.2.powEquiv' (not_dvd_index_sylow P (mt index_eq_zero_of_relindex_eq_zero index_ne_zero_of_finite))).bijective
[GOAL]
G : Type u_1
inst✝⁴ : Group G
H : Subgroup G
A : Type u_2
inst✝³ : CommGroup A
ϕ : { x // x ∈ H } →* A
T : ↑(leftTransversals ↑H)
p : ℕ
P : Sylow p G
hP : normalizer ↑P ≤ centralizer ↑P
inst✝² : Fact (Nat.Prime p)
inst✝¹ : Finite (Sylow p G)
inst✝ : FiniteIndex ↑P
hf : Function.Bijective ↑(restrict (transferSylow P hP) ↑P)
⊢ IsComplement' (ker (transferSylow P hP)) ↑P
[PROOFSTEP]
rw [Function.Bijective, ← range_top_iff_surjective, restrict_range] at hf
[GOAL]
G : Type u_1
inst✝⁴ : Group G
H : Subgroup G
A : Type u_2
inst✝³ : CommGroup A
ϕ : { x // x ∈ H } →* A
T : ↑(leftTransversals ↑H)
p : ℕ
P : Sylow p G
hP : normalizer ↑P ≤ centralizer ↑P
inst✝² : Fact (Nat.Prime p)
inst✝¹ : Finite (Sylow p G)
inst✝ : FiniteIndex ↑P
hf : Function.Injective ↑(restrict (transferSylow P hP) ↑P) ∧ map (transferSylow P hP) ↑P = ⊤
⊢ IsComplement' (ker (transferSylow P hP)) ↑P
[PROOFSTEP]
have := range_top_iff_surjective.mp (top_le_iff.mp (hf.2.ge.trans (map_le_range (transferSylow P hP) P)))
[GOAL]
G : Type u_1
inst✝⁴ : Group G
H : Subgroup G
A : Type u_2
inst✝³ : CommGroup A
ϕ : { x // x ∈ H } →* A
T : ↑(leftTransversals ↑H)
p : ℕ
P : Sylow p G
hP : normalizer ↑P ≤ centralizer ↑P
inst✝² : Fact (Nat.Prime p)
inst✝¹ : Finite (Sylow p G)
inst✝ : FiniteIndex ↑P
hf : Function.Injective ↑(restrict (transferSylow P hP) ↑P) ∧ map (transferSylow P hP) ↑P = ⊤
this : Function.Surjective ↑(transferSylow P hP)
⊢ IsComplement' (ker (transferSylow P hP)) ↑P
[PROOFSTEP]
rw [← (comap_injective this).eq_iff, comap_top, comap_map_eq, sup_comm, SetLike.ext'_iff, normal_mul, ← ker_eq_bot_iff,
← (map_injective (P : Subgroup G).subtype_injective).eq_iff, ker_restrict, subgroupOf_map_subtype, Subgroup.map_bot,
coe_top] at hf
[GOAL]
G : Type u_1
inst✝⁴ : Group G
H : Subgroup G
A : Type u_2
inst✝³ : CommGroup A
ϕ : { x // x ∈ H } →* A
T : ↑(leftTransversals ↑H)
p : ℕ
P : Sylow p G
hP : normalizer ↑P ≤ centralizer ↑P
inst✝² : Fact (Nat.Prime p)
inst✝¹ : Finite (Sylow p G)
inst✝ : FiniteIndex ↑P
hf✝ : Function.Injective ↑(restrict (transferSylow P hP) ↑P) ∧ ker (transferSylow P hP) ⊔ ↑P = ⊤
hf : ker (transferSylow P hP) ⊓ ↑P = ⊥ ∧ ↑(ker (transferSylow P hP)) * ↑↑P = Set.univ
this : Function.Surjective ↑(transferSylow P hP)
⊢ IsComplement' (ker (transferSylow P hP)) ↑P
[PROOFSTEP]
exact isComplement'_of_disjoint_and_mul_eq_univ (disjoint_iff.2 hf.1) hf.2
| {"mathlib_filename": "Mathlib.GroupTheory.Transfer", "llama_tokens": 19076} |
[GOAL]
f g : CircleDeg1Lift
x : ℝ
⊢ ↑f (1 + x) = 1 + ↑f x
[PROOFSTEP]
rw [add_comm, map_add_one, add_comm 1]
[GOAL]
f✝ g✝ f g : CircleDeg1Lift
x : ℝ
⊢ OrderHom.toFun (OrderHom.comp f.toOrderHom g.toOrderHom) (x + 1) =
OrderHom.toFun (OrderHom.comp f.toOrderHom g.toOrderHom) x + 1
[PROOFSTEP]
simp [map_add_one]
[GOAL]
f✝ g : CircleDeg1Lift
f : CircleDeg1Liftˣ
x : ℝ
⊢ ↑↑f⁻¹ (↑↑f x) = x
[PROOFSTEP]
simp only [← mul_apply, f.inv_mul, coe_one, id]
[GOAL]
f✝ g : CircleDeg1Lift
f : CircleDeg1Liftˣ
x : ℝ
⊢ ↑↑f (↑↑f⁻¹ x) = x
[PROOFSTEP]
simp only [← mul_apply, f.mul_inv, coe_one, id]
[GOAL]
f✝ g : CircleDeg1Lift
f : CircleDeg1Liftˣ
a✝ b✝ : ℝ
h :
↑{ toFun := ↑↑f, invFun := ↑↑f⁻¹, left_inv := (_ : ∀ (x : ℝ), ↑↑f⁻¹ (↑↑f x) = x),
right_inv := (_ : ∀ (x : ℝ), ↑↑f (↑↑f⁻¹ x) = x) }
a✝ ≤
↑{ toFun := ↑↑f, invFun := ↑↑f⁻¹, left_inv := (_ : ∀ (x : ℝ), ↑↑f⁻¹ (↑↑f x) = x),
right_inv := (_ : ∀ (x : ℝ), ↑↑f (↑↑f⁻¹ x) = x) }
b✝
⊢ a✝ ≤ b✝
[PROOFSTEP]
simpa using mono (↑f⁻¹) h
[GOAL]
f✝ g f : CircleDeg1Lift
h : Bijective ↑f
x y : ℝ
hxy : x ≤ y
⊢ ↑f (↑(Equiv.ofBijective (↑f) h).symm x) ≤ ↑f (↑(Equiv.ofBijective (↑f) h).symm y)
[PROOFSTEP]
simp only [Equiv.ofBijective_apply_symm_apply f h, hxy]
[GOAL]
f✝ g f : CircleDeg1Lift
h : Bijective ↑f
x : ℝ
⊢ ↑f
(OrderHom.toFun
{ toFun := ↑(Equiv.ofBijective (↑f) h).symm,
monotone' :=
(_ : ∀ (x y : ℝ), x ≤ y → ↑(Equiv.ofBijective (↑f) h).symm x ≤ ↑(Equiv.ofBijective (↑f) h).symm y) }
(x + 1)) =
↑f
(OrderHom.toFun
{ toFun := ↑(Equiv.ofBijective (↑f) h).symm,
monotone' :=
(_ : ∀ (x y : ℝ), x ≤ y → ↑(Equiv.ofBijective (↑f) h).symm x ≤ ↑(Equiv.ofBijective (↑f) h).symm y) }
x +
1)
[PROOFSTEP]
simp only [Equiv.ofBijective_apply_symm_apply f, f.map_add_one]
[GOAL]
f g : CircleDeg1Lift
n : ℕ
⊢ ↑(f ^ (n + 1)) = (↑f)^[n + 1]
[PROOFSTEP]
ext x
[GOAL]
case h
f g : CircleDeg1Lift
n : ℕ
x : ℝ
⊢ ↑(f ^ (n + 1)) x = (↑f)^[n + 1] x
[PROOFSTEP]
simp [coe_pow n, pow_succ']
[GOAL]
f g : CircleDeg1Lift
x : ℝ
n : ℤ
⊢ ↑translate (↑Multiplicative.ofAdd x) ^ n = ↑translate (↑Multiplicative.ofAdd (↑n * x))
[PROOFSTEP]
simp only [← zsmul_eq_mul, ofAdd_zsmul, MonoidHom.map_zpow]
[GOAL]
f g : CircleDeg1Lift
x : ℝ
n : ℕ
⊢ (↑↑(↑translate (↑Multiplicative.ofAdd x)))^[n] = ↑↑(↑translate (↑Multiplicative.ofAdd (↑n * x)))
[PROOFSTEP]
rw [← coe_pow, ← Units.val_pow_eq_pow_val, translate_pow]
[GOAL]
f g : CircleDeg1Lift
n : ℕ
⊢ Function.Commute ↑f fun x => ↑n + x
[PROOFSTEP]
simpa only [nsmul_one, add_left_iterate] using Function.Commute.iterate_right f.map_one_add n
[GOAL]
f g : CircleDeg1Lift
n : ℕ
⊢ Function.Commute ↑f fun x => x + ↑n
[PROOFSTEP]
simp only [add_comm _ (n : ℝ), f.commute_nat_add n]
[GOAL]
f g : CircleDeg1Lift
n : ℕ
⊢ Function.Commute ↑f fun x => x - ↑n
[PROOFSTEP]
simpa only [sub_eq_add_neg] using
(f.commute_add_nat n).inverses_right (Equiv.addRight _).right_inv (Equiv.addRight _).left_inv
[GOAL]
f g : CircleDeg1Lift
n : ℕ
⊢ Function.Commute ↑f fun x => x + ↑-[n+1]
[PROOFSTEP]
simpa [sub_eq_add_neg] using f.commute_sub_nat (n + 1)
[GOAL]
f g : CircleDeg1Lift
n : ℤ
⊢ Function.Commute ↑f fun x => ↑n + x
[PROOFSTEP]
simpa only [add_comm _ (n : ℝ)] using f.commute_add_int n
[GOAL]
f g : CircleDeg1Lift
n : ℤ
⊢ Function.Commute ↑f fun x => x - ↑n
[PROOFSTEP]
simpa only [sub_eq_add_neg] using
(f.commute_add_int n).inverses_right (Equiv.addRight _).right_inv (Equiv.addRight _).left_inv
[GOAL]
f g : CircleDeg1Lift
n : ℤ
⊢ ↑f ↑n = ↑f 0 + ↑n
[PROOFSTEP]
rw [← f.map_add_int, zero_add]
[GOAL]
f g : CircleDeg1Lift
x : ℝ
⊢ ↑f (fract x) - fract x = ↑f x - x
[PROOFSTEP]
rw [Int.fract, f.map_sub_int, sub_sub_sub_cancel_right]
[GOAL]
f✝ g✝ f g : CircleDeg1Lift
x : ℝ
⊢ OrderHom.toFun
{ toFun := fun x => max (↑f x) (↑g x),
monotone' := (_ : ∀ (x y : ℝ), x ≤ y → max (↑f x) (↑g x) ≤ max (↑f y) (↑g y)) }
(x + 1) =
OrderHom.toFun
{ toFun := fun x => max (↑f x) (↑g x),
monotone' := (_ : ∀ (x y : ℝ), x ≤ y → max (↑f x) (↑g x) ≤ max (↑f y) (↑g y)) }
x +
1
[PROOFSTEP]
simp [max_add_add_right]
[GOAL]
f✝ g✝ f g : CircleDeg1Lift
x : ℝ
⊢ OrderHom.toFun
{ toFun := fun x => min (↑f x) (↑g x),
monotone' := (_ : ∀ (x y : ℝ), x ≤ y → min (↑f x) (↑g x) ≤ min (↑f y) (↑g y)) }
(x + 1) =
OrderHom.toFun
{ toFun := fun x => min (↑f x) (↑g x),
monotone' := (_ : ∀ (x y : ℝ), x ≤ y → min (↑f x) (↑g x) ≤ min (↑f y) (↑g y)) }
x +
1
[PROOFSTEP]
simp [min_add_add_right]
[GOAL]
f✝ g✝ f g : CircleDeg1Lift
h : f ≤ g
n : ℕ
x : ℝ
⊢ ↑(f ^ n) x ≤ ↑(g ^ n) x
[PROOFSTEP]
simp only [coe_pow, iterate_mono h n x]
[GOAL]
f g : CircleDeg1Lift
⊢ dist (↑f 0 + ↑g 0) (↑f (↑g 0)) < 1
[PROOFSTEP]
rw [dist_comm, Real.dist_eq, abs_lt, lt_sub_iff_add_lt', sub_lt_iff_lt_add', ← sub_eq_add_neg]
[GOAL]
f g : CircleDeg1Lift
⊢ ↑f 0 + ↑g 0 - 1 < ↑f (↑g 0) ∧ ↑f (↑g 0) < ↑f 0 + ↑g 0 + 1
[PROOFSTEP]
exact ⟨f.lt_map_map_zero g, f.map_map_zero_lt g⟩
[GOAL]
f✝ g f g₁ g₂ : CircleDeg1Lift
h : Semiconj ↑f ↑g₁ ↑g₂
⊢ dist (↑g₁ 0) (↑f (↑g₁ 0) - ↑f 0) + dist (↑f (↑g₁ 0) - ↑f 0) (↑g₂ 0) =
dist (↑f 0 + ↑g₁ 0) (↑f (↑g₁ 0)) + dist (↑g₂ 0 + ↑f 0) (↑g₂ (↑f 0))
[PROOFSTEP]
simp only [h.eq, Real.dist_eq, sub_sub, add_comm (f 0), sub_sub_eq_add_sub, abs_sub_comm (g₂ (f 0))]
[GOAL]
f g : CircleDeg1Lift
⊢ Tendsto (fun x => x - 1) atTop atTop
[PROOFSTEP]
simpa [sub_eq_add_neg] using tendsto_atTop_add_const_right _ _ tendsto_id
[GOAL]
f g : CircleDeg1Lift
x : ℝ
m : ℤ
h : ↑f x ≤ x + ↑m
n : ℕ
⊢ (↑f)^[n] x ≤ x + ↑n * ↑m
[PROOFSTEP]
simpa only [nsmul_eq_mul, add_right_iterate] using
(f.commute_add_int m).iterate_le_of_map_le f.monotone (monotone_id.add_const (m : ℝ)) h n
[GOAL]
f g : CircleDeg1Lift
x : ℝ
m : ℤ
h : x + ↑m ≤ ↑f x
n : ℕ
⊢ x + ↑n * ↑m ≤ (↑f)^[n] x
[PROOFSTEP]
simpa only [nsmul_eq_mul, add_right_iterate] using
(f.commute_add_int m).symm.iterate_le_of_map_le (monotone_id.add_const (m : ℝ)) f.monotone h n
[GOAL]
f g : CircleDeg1Lift
x : ℝ
m : ℤ
h : ↑f x = x + ↑m
n : ℕ
⊢ (↑f)^[n] x = x + ↑n * ↑m
[PROOFSTEP]
simpa only [nsmul_eq_mul, add_right_iterate] using (f.commute_add_int m).iterate_eq_of_map_eq n h
[GOAL]
f g : CircleDeg1Lift
x : ℝ
m : ℤ
n : ℕ
hn : 0 < n
⊢ (↑f)^[n] x ≤ x + ↑n * ↑m ↔ ↑f x ≤ x + ↑m
[PROOFSTEP]
simpa only [nsmul_eq_mul, add_right_iterate] using
(f.commute_add_int m).iterate_pos_le_iff_map_le f.monotone (strictMono_id.add_const (m : ℝ)) hn
[GOAL]
f g : CircleDeg1Lift
x : ℝ
m : ℤ
n : ℕ
hn : 0 < n
⊢ (↑f)^[n] x < x + ↑n * ↑m ↔ ↑f x < x + ↑m
[PROOFSTEP]
simpa only [nsmul_eq_mul, add_right_iterate] using
(f.commute_add_int m).iterate_pos_lt_iff_map_lt f.monotone (strictMono_id.add_const (m : ℝ)) hn
[GOAL]
f g : CircleDeg1Lift
x : ℝ
m : ℤ
n : ℕ
hn : 0 < n
⊢ (↑f)^[n] x = x + ↑n * ↑m ↔ ↑f x = x + ↑m
[PROOFSTEP]
simpa only [nsmul_eq_mul, add_right_iterate] using
(f.commute_add_int m).iterate_pos_eq_iff_map_eq f.monotone (strictMono_id.add_const (m : ℝ)) hn
[GOAL]
f g : CircleDeg1Lift
x : ℝ
m : ℤ
n : ℕ
hn : 0 < n
⊢ x + ↑n * ↑m ≤ (↑f)^[n] x ↔ x + ↑m ≤ ↑f x
[PROOFSTEP]
simpa only [not_lt] using not_congr (f.iterate_pos_lt_iff hn)
[GOAL]
f g : CircleDeg1Lift
x : ℝ
m : ℤ
n : ℕ
hn : 0 < n
⊢ x + ↑n * ↑m < (↑f)^[n] x ↔ x + ↑m < ↑f x
[PROOFSTEP]
simpa only [not_le] using not_congr (f.iterate_pos_le_iff hn)
[GOAL]
f g : CircleDeg1Lift
n : ℕ
⊢ ↑n * ⌊↑f 0⌋ ≤ ⌊(↑f)^[n] 0⌋
[PROOFSTEP]
rw [le_floor, Int.cast_mul, Int.cast_ofNat, ← zero_add ((n : ℝ) * _)]
[GOAL]
f g : CircleDeg1Lift
n : ℕ
⊢ 0 + ↑n * ↑⌊↑f 0⌋ ≤ (↑f)^[n] 0
[PROOFSTEP]
apply le_iterate_of_add_int_le_map
[GOAL]
case h
f g : CircleDeg1Lift
n : ℕ
⊢ 0 + ↑⌊↑f 0⌋ ≤ ↑f 0
[PROOFSTEP]
simp [floor_le]
[GOAL]
f g : CircleDeg1Lift
τ' : ℝ
h : Tendsto (fun n => (↑f)^[n] 0 / ↑n) atTop (𝓝 τ')
⊢ Tendsto (transnumAuxSeq f) atTop (𝓝 τ')
[PROOFSTEP]
simpa [(· ∘ ·), transnumAuxSeq_def, coe_pow] using h.comp (Nat.tendsto_pow_atTop_atTop_of_one_lt one_lt_two)
[GOAL]
f g : CircleDeg1Lift
τ' : ℝ
h : Tendsto (fun n => (↑f)^[n + 1] 0 / (↑n + 1)) atTop (𝓝 τ')
⊢ Tendsto (fun n => (↑f)^[n + 1] 0 / ↑(n + 1)) atTop (𝓝 τ')
[PROOFSTEP]
exact_mod_cast h
[GOAL]
f g : CircleDeg1Lift
⊢ transnumAuxSeq f 0 = ↑f 0
[PROOFSTEP]
simp [transnumAuxSeq]
[GOAL]
f g : CircleDeg1Lift
n : ℕ
⊢ dist (transnumAuxSeq f n) (transnumAuxSeq f (n + 1)) < 1 / 2 / 2 ^ n
[PROOFSTEP]
have : 0 < (2 ^ (n + 1) : ℝ) := pow_pos zero_lt_two _
[GOAL]
f g : CircleDeg1Lift
n : ℕ
this : 0 < 2 ^ (n + 1)
⊢ dist (transnumAuxSeq f n) (transnumAuxSeq f (n + 1)) < 1 / 2 / 2 ^ n
[PROOFSTEP]
rw [div_div, ← pow_succ, ← abs_of_pos this]
[GOAL]
f g : CircleDeg1Lift
n : ℕ
this : 0 < 2 ^ (n + 1)
⊢ dist (transnumAuxSeq f n) (transnumAuxSeq f (n + 1)) < 1 / |2 ^ (n + 1)|
[PROOFSTEP]
replace := abs_pos.2 (ne_of_gt this)
[GOAL]
f g : CircleDeg1Lift
n : ℕ
this : 0 < |2 ^ (n + 1)|
⊢ dist (transnumAuxSeq f n) (transnumAuxSeq f (n + 1)) < 1 / |2 ^ (n + 1)|
[PROOFSTEP]
convert (div_lt_div_right this).2 ((f ^ 2 ^ n).dist_map_map_zero_lt (f ^ 2 ^ n)) using 1
[GOAL]
case h.e'_3
f g : CircleDeg1Lift
n : ℕ
this : 0 < |2 ^ (n + 1)|
⊢ dist (transnumAuxSeq f n) (transnumAuxSeq f (n + 1)) =
dist (↑(f ^ 2 ^ n) 0 + ↑(f ^ 2 ^ n) 0) (↑(f ^ 2 ^ n) (↑(f ^ 2 ^ n) 0)) / |2 ^ (n + 1)|
[PROOFSTEP]
simp_rw [transnumAuxSeq, Real.dist_eq]
[GOAL]
case h.e'_3
f g : CircleDeg1Lift
n : ℕ
this : 0 < |2 ^ (n + 1)|
⊢ |↑(f ^ 2 ^ n) 0 / 2 ^ n - ↑(f ^ 2 ^ (n + 1)) 0 / 2 ^ (n + 1)| =
|↑(f ^ 2 ^ n) 0 + ↑(f ^ 2 ^ n) 0 - ↑(f ^ 2 ^ n) (↑(f ^ 2 ^ n) 0)| / |2 ^ (n + 1)|
[PROOFSTEP]
rw [← abs_div, sub_div, pow_succ', pow_succ, ← two_mul, mul_div_mul_left _ _ (two_ne_zero' ℝ), pow_mul, sq, mul_apply]
[GOAL]
f g : CircleDeg1Lift
x : ℕ → ℝ
C : ℝ
H : ∀ (n : ℕ), dist (↑(f ^ n) 0) (x n) ≤ C
⊢ Tendsto (fun n => x (2 ^ n) / 2 ^ n) atTop (𝓝 (τ f))
[PROOFSTEP]
refine' f.tendsto_translationNumber_aux.congr_dist (squeeze_zero (fun _ => dist_nonneg) _ _)
[GOAL]
case refine'_1
f g : CircleDeg1Lift
x : ℕ → ℝ
C : ℝ
H : ∀ (n : ℕ), dist (↑(f ^ n) 0) (x n) ≤ C
⊢ ℕ → ℝ
[PROOFSTEP]
exact fun n => C / 2 ^ n
[GOAL]
case refine'_2
f g : CircleDeg1Lift
x : ℕ → ℝ
C : ℝ
H : ∀ (n : ℕ), dist (↑(f ^ n) 0) (x n) ≤ C
⊢ ∀ (t : ℕ), dist (transnumAuxSeq f t) (x (2 ^ t) / 2 ^ t) ≤ C / 2 ^ t
[PROOFSTEP]
intro n
[GOAL]
case refine'_2
f g : CircleDeg1Lift
x : ℕ → ℝ
C : ℝ
H : ∀ (n : ℕ), dist (↑(f ^ n) 0) (x n) ≤ C
n : ℕ
⊢ dist (transnumAuxSeq f n) (x (2 ^ n) / 2 ^ n) ≤ C / 2 ^ n
[PROOFSTEP]
have : 0 < (2 ^ n : ℝ) := pow_pos zero_lt_two _
[GOAL]
case refine'_2
f g : CircleDeg1Lift
x : ℕ → ℝ
C : ℝ
H : ∀ (n : ℕ), dist (↑(f ^ n) 0) (x n) ≤ C
n : ℕ
this : 0 < 2 ^ n
⊢ dist (transnumAuxSeq f n) (x (2 ^ n) / 2 ^ n) ≤ C / 2 ^ n
[PROOFSTEP]
convert (div_le_div_right this).2 (H (2 ^ n)) using 1
[GOAL]
case h.e'_3
f g : CircleDeg1Lift
x : ℕ → ℝ
C : ℝ
H : ∀ (n : ℕ), dist (↑(f ^ n) 0) (x n) ≤ C
n : ℕ
this : 0 < 2 ^ n
⊢ dist (transnumAuxSeq f n) (x (2 ^ n) / 2 ^ n) = dist (↑(f ^ 2 ^ n) 0) (x (2 ^ n)) / 2 ^ n
[PROOFSTEP]
rw [transnumAuxSeq, Real.dist_eq, ← sub_div, abs_div, abs_of_pos this, Real.dist_eq]
[GOAL]
case refine'_3
f g : CircleDeg1Lift
x : ℕ → ℝ
C : ℝ
H : ∀ (n : ℕ), dist (↑(f ^ n) 0) (x n) ≤ C
⊢ Tendsto (fun n => C / 2 ^ n) atTop (𝓝 0)
[PROOFSTEP]
exact mul_zero C ▸ tendsto_const_nhds.mul <| tendsto_inv_atTop_zero.comp <| tendsto_pow_atTop_atTop_of_one_lt one_lt_two
[GOAL]
f g : CircleDeg1Lift
⊢ Tendsto (fun n => (↑1)^[n] 0 / ↑n) atTop (𝓝 0)
[PROOFSTEP]
simp [tendsto_const_nhds]
[GOAL]
f✝ g✝ f g : CircleDeg1Lift
h : Commute f g
⊢ τ (f * g) = τ f + τ g
[PROOFSTEP]
refine tendsto_nhds_unique ?_ (f.tendsto_translationNumber_aux.add g.tendsto_translationNumber_aux)
[GOAL]
f✝ g✝ f g : CircleDeg1Lift
h : Commute f g
⊢ Tendsto (fun x => transnumAuxSeq f x + transnumAuxSeq g x) atTop (𝓝 (τ (f * g)))
[PROOFSTEP]
simp only [transnumAuxSeq, ← add_div]
[GOAL]
f✝ g✝ f g : CircleDeg1Lift
h : Commute f g
⊢ Tendsto (fun x => (↑(f ^ 2 ^ x) 0 + ↑(g ^ 2 ^ x) 0) / 2 ^ x) atTop (𝓝 (τ (f * g)))
[PROOFSTEP]
refine (f * g).tendsto_translationNumber_of_dist_bounded_aux (fun n ↦ (f ^ n) 0 + (g ^ n) 0) 1 fun n ↦ ?_
[GOAL]
f✝ g✝ f g : CircleDeg1Lift
h : Commute f g
n : ℕ
⊢ dist (↑((f * g) ^ n) 0) ((fun n => ↑(f ^ n) 0 + ↑(g ^ n) 0) n) ≤ 1
[PROOFSTEP]
rw [h.mul_pow, dist_comm]
[GOAL]
f✝ g✝ f g : CircleDeg1Lift
h : Commute f g
n : ℕ
⊢ dist ((fun n => ↑(f ^ n) 0 + ↑(g ^ n) 0) n) (↑(f ^ n * g ^ n) 0) ≤ 1
[PROOFSTEP]
exact le_of_lt ((f ^ n).dist_map_map_zero_lt (g ^ n))
[GOAL]
f✝ g : CircleDeg1Lift
f : CircleDeg1Liftˣ
⊢ τ ↑f⁻¹ + τ ↑f = 0
[PROOFSTEP]
simp [← translationNumber_mul_of_commute (Commute.refl _).units_inv_left]
[GOAL]
f g : CircleDeg1Lift
⊢ τ (f ^ 0) = ↑0 * τ f
[PROOFSTEP]
simp
[GOAL]
f g : CircleDeg1Lift
n : ℕ
⊢ τ (f ^ (n + 1)) = ↑(n + 1) * τ f
[PROOFSTEP]
rw [pow_succ', translationNumber_mul_of_commute (Commute.pow_self f n), translationNumber_pow n, Nat.cast_add_one,
add_mul, one_mul]
[GOAL]
f✝ g : CircleDeg1Lift
f : CircleDeg1Liftˣ
n : ℕ
⊢ τ ↑(f ^ ↑n) = ↑↑n * τ ↑f
[PROOFSTEP]
simp [translationNumber_pow f n]
[GOAL]
f✝ g : CircleDeg1Lift
f : CircleDeg1Liftˣ
n : ℕ
⊢ τ ↑(f ^ -[n+1]) = ↑-[n+1] * τ ↑f
[PROOFSTEP]
simp
[GOAL]
f✝ g : CircleDeg1Lift
f : CircleDeg1Liftˣ
n : ℕ
⊢ -((↑n + 1) * τ ↑f) = (-1 + -↑n) * τ ↑f
[PROOFSTEP]
ring
[GOAL]
f g : CircleDeg1Lift
⊢ Tendsto (fun n => ↑(f ^ (n + 1)) 0 / (↑n + 1)) atTop (𝓝 (τ f))
[PROOFSTEP]
refine'
tendsto_iff_dist_tendsto_zero.2 <|
squeeze_zero (fun _ => dist_nonneg) (fun n => _)
((tendsto_const_div_atTop_nhds_0_nat 1).comp (tendsto_add_atTop_nat 1))
[GOAL]
f g : CircleDeg1Lift
n : ℕ
⊢ dist (↑(f ^ (n + 1)) 0 / (↑n + 1)) (τ f) ≤ ((fun n => 1 / ↑n) ∘ fun a => a + 1) n
[PROOFSTEP]
dsimp
[GOAL]
f g : CircleDeg1Lift
n : ℕ
⊢ dist (↑(f ^ (n + 1)) 0 / (↑n + 1)) (τ f) ≤ 1 / ↑(n + 1)
[PROOFSTEP]
have : (0 : ℝ) < n + 1 := n.cast_add_one_pos
[GOAL]
f g : CircleDeg1Lift
n : ℕ
this : 0 < ↑n + 1
⊢ dist (↑(f ^ (n + 1)) 0 / (↑n + 1)) (τ f) ≤ 1 / ↑(n + 1)
[PROOFSTEP]
rw [Real.dist_eq, div_sub' _ _ _ (ne_of_gt this), abs_div, ← Real.dist_eq, abs_of_pos this, Nat.cast_add_one,
div_le_div_right this, ← Nat.cast_add_one]
[GOAL]
f g : CircleDeg1Lift
n : ℕ
this : 0 < ↑n + 1
⊢ dist (↑(f ^ (n + 1)) 0) (↑(n + 1) * τ f) ≤ 1
[PROOFSTEP]
apply dist_pow_map_zero_mul_translationNumber_le
[GOAL]
f g : CircleDeg1Lift
⊢ Tendsto (fun n => ↑(f ^ (n + 1)) 0 / ↑(n + 1)) atTop (𝓝 (τ f))
[PROOFSTEP]
exact_mod_cast f.tendsto_translation_number₀'
[GOAL]
f g : CircleDeg1Lift
x : ℝ
⊢ Tendsto (fun n => (↑(f ^ n) x - x) / ↑n) atTop (𝓝 (τ f))
[PROOFSTEP]
rw [← translationNumber_conj_eq' (translate <| Multiplicative.ofAdd x)]
[GOAL]
f g : CircleDeg1Lift
x : ℝ
⊢ Tendsto (fun n => (↑(f ^ n) x - x) / ↑n) atTop
(𝓝 (τ (↑(↑translate (↑Multiplicative.ofAdd x))⁻¹ * f * ↑(↑translate (↑Multiplicative.ofAdd x)))))
[PROOFSTEP]
refine (tendsto_translation_number₀ _).congr fun n ↦ ?_
[GOAL]
f g : CircleDeg1Lift
x : ℝ
n : ℕ
⊢ ↑((↑(↑translate (↑Multiplicative.ofAdd x))⁻¹ * f * ↑(↑translate (↑Multiplicative.ofAdd x))) ^ n) 0 / ↑n =
(↑(f ^ n) x - x) / ↑n
[PROOFSTEP]
simp [sub_eq_neg_add, Units.conj_pow']
[GOAL]
f g : CircleDeg1Lift
x : ℝ
⊢ Tendsto (fun n => (↑(f ^ (n + 1)) x - x) / (↑n + 1)) atTop (𝓝 (τ f))
[PROOFSTEP]
exact_mod_cast (tendsto_add_atTop_iff_nat 1).2 (f.tendsto_translationNumber x)
[GOAL]
f g : CircleDeg1Lift
x : ℝ
⊢ Tendsto (fun n => (↑↑(↑translate (↑Multiplicative.ofAdd x)))^[n + 1] 0 / (↑n + 1)) atTop (𝓝 x)
[PROOFSTEP]
simp only [translate_iterate, translate_apply, add_zero, Nat.cast_succ,
mul_div_cancel_left (G₀ := ℝ) _ (Nat.cast_add_one_ne_zero _), tendsto_const_nhds]
[GOAL]
f g : CircleDeg1Lift
x : ℝ
m : ℤ
h : x + ↑m ≤ ↑f x
n : ℕ
⊢ x + ↑m * (↑n + 1) ≤ ↑(f ^ (n + 1)) x
[PROOFSTEP]
simp only [coe_pow, mul_comm (m : ℝ), ← Nat.cast_add_one, f.le_iterate_of_add_int_le_map h]
[GOAL]
f g : CircleDeg1Lift
x : ℝ
⊢ ↑f x < x + ↑⌊τ f⌋ + 1
[PROOFSTEP]
rw [add_assoc]
[GOAL]
f g : CircleDeg1Lift
x : ℝ
⊢ ↑f x < x + (↑⌊τ f⌋ + 1)
[PROOFSTEP]
norm_cast
[GOAL]
f g : CircleDeg1Lift
x : ℝ
⊢ ↑f x < x + ↑(⌊τ f⌋ + 1)
[PROOFSTEP]
refine' map_lt_of_translationNumber_lt_int _ _ _
[GOAL]
f g : CircleDeg1Lift
x : ℝ
⊢ τ f < ↑(⌊τ f⌋ + 1)
[PROOFSTEP]
push_cast
[GOAL]
f g : CircleDeg1Lift
x : ℝ
⊢ τ f < ↑⌊τ f⌋ + 1
[PROOFSTEP]
exact lt_floor_add_one _
[GOAL]
f g : CircleDeg1Lift
x : ℝ
⊢ x + ↑⌊τ f⌋ + 1 ≤ x + τ f + 1
[PROOFSTEP]
gcongr
[GOAL]
case bc.bc
f g : CircleDeg1Lift
x : ℝ
⊢ ↑⌊τ f⌋ ≤ τ f
[PROOFSTEP]
apply floor_le
[GOAL]
f g : CircleDeg1Lift
x : ℝ
n : ℕ
m : ℤ
h : ↑(f ^ n) x = x + ↑m
hn : 0 < n
⊢ τ f = ↑m / ↑n
[PROOFSTEP]
have := (f ^ n).translationNumber_of_eq_add_int h
[GOAL]
f g : CircleDeg1Lift
x : ℝ
n : ℕ
m : ℤ
h : ↑(f ^ n) x = x + ↑m
hn : 0 < n
this : τ (f ^ n) = ↑m
⊢ τ f = ↑m / ↑n
[PROOFSTEP]
rwa [translationNumber_pow, mul_comm, ← eq_div_iff] at this
[GOAL]
f g : CircleDeg1Lift
x : ℝ
n : ℕ
m : ℤ
h : ↑(f ^ n) x = x + ↑m
hn : 0 < n
this : τ f * ↑n = ↑m
⊢ ↑n ≠ 0
[PROOFSTEP]
exact Nat.cast_ne_zero.2 (ne_of_gt hn)
[GOAL]
f g : CircleDeg1Lift
hf : Continuous ↑f
z : ℝ
hz : ∀ (x : ℝ), ↑f x < x + z
⊢ τ f < z
[PROOFSTEP]
obtain ⟨x, -, hx⟩ : ∃ x ∈ Icc (0 : ℝ) 1, ∀ y ∈ Icc (0 : ℝ) 1, f y - y ≤ f x - x :=
isCompact_Icc.exists_forall_ge (nonempty_Icc.2 zero_le_one) (hf.sub continuous_id).continuousOn
[GOAL]
case intro.intro
f g : CircleDeg1Lift
hf : Continuous ↑f
z : ℝ
hz : ∀ (x : ℝ), ↑f x < x + z
x : ℝ
hx : ∀ (y : ℝ), y ∈ Icc 0 1 → ↑f y - y ≤ ↑f x - x
⊢ τ f < z
[PROOFSTEP]
refine' lt_of_le_of_lt _ (sub_lt_iff_lt_add'.2 <| hz x)
[GOAL]
case intro.intro
f g : CircleDeg1Lift
hf : Continuous ↑f
z : ℝ
hz : ∀ (x : ℝ), ↑f x < x + z
x : ℝ
hx : ∀ (y : ℝ), y ∈ Icc 0 1 → ↑f y - y ≤ ↑f x - x
⊢ τ f ≤ ↑f x - x
[PROOFSTEP]
apply translationNumber_le_of_le_add
[GOAL]
case intro.intro.hz
f g : CircleDeg1Lift
hf : Continuous ↑f
z : ℝ
hz : ∀ (x : ℝ), ↑f x < x + z
x : ℝ
hx : ∀ (y : ℝ), y ∈ Icc 0 1 → ↑f y - y ≤ ↑f x - x
⊢ ∀ (x_1 : ℝ), ↑f x_1 ≤ x_1 + (↑f x - x)
[PROOFSTEP]
simp only [← sub_le_iff_le_add']
[GOAL]
case intro.intro.hz
f g : CircleDeg1Lift
hf : Continuous ↑f
z : ℝ
hz : ∀ (x : ℝ), ↑f x < x + z
x : ℝ
hx : ∀ (y : ℝ), y ∈ Icc 0 1 → ↑f y - y ≤ ↑f x - x
⊢ ∀ (x_1 : ℝ), ↑f x_1 - x_1 ≤ ↑f x - x
[PROOFSTEP]
exact f.forall_map_sub_of_Icc (fun a => a ≤ f x - x) hx
[GOAL]
f g : CircleDeg1Lift
hf : Continuous ↑f
z : ℝ
hz : ∀ (x : ℝ), x + z < ↑f x
⊢ z < τ f
[PROOFSTEP]
obtain ⟨x, -, hx⟩ : ∃ x ∈ Icc (0 : ℝ) 1, ∀ y ∈ Icc (0 : ℝ) 1, f x - x ≤ f y - y
[GOAL]
f g : CircleDeg1Lift
hf : Continuous ↑f
z : ℝ
hz : ∀ (x : ℝ), x + z < ↑f x
⊢ ∃ x, x ∈ Icc 0 1 ∧ ∀ (y : ℝ), y ∈ Icc 0 1 → ↑f x - x ≤ ↑f y - y
case intro.intro
f g : CircleDeg1Lift
hf : Continuous ↑f
z : ℝ
hz : ∀ (x : ℝ), x + z < ↑f x
x : ℝ
hx : ∀ (y : ℝ), y ∈ Icc 0 1 → ↑f x - x ≤ ↑f y - y
⊢ z < τ f
[PROOFSTEP]
exact isCompact_Icc.exists_forall_le (nonempty_Icc.2 zero_le_one) (hf.sub continuous_id).continuousOn
[GOAL]
case intro.intro
f g : CircleDeg1Lift
hf : Continuous ↑f
z : ℝ
hz : ∀ (x : ℝ), x + z < ↑f x
x : ℝ
hx : ∀ (y : ℝ), y ∈ Icc 0 1 → ↑f x - x ≤ ↑f y - y
⊢ z < τ f
[PROOFSTEP]
refine' lt_of_lt_of_le (lt_sub_iff_add_lt'.2 <| hz x) _
[GOAL]
case intro.intro
f g : CircleDeg1Lift
hf : Continuous ↑f
z : ℝ
hz : ∀ (x : ℝ), x + z < ↑f x
x : ℝ
hx : ∀ (y : ℝ), y ∈ Icc 0 1 → ↑f x - x ≤ ↑f y - y
⊢ ↑f x - x ≤ τ f
[PROOFSTEP]
apply le_translationNumber_of_add_le
[GOAL]
case intro.intro.hz
f g : CircleDeg1Lift
hf : Continuous ↑f
z : ℝ
hz : ∀ (x : ℝ), x + z < ↑f x
x : ℝ
hx : ∀ (y : ℝ), y ∈ Icc 0 1 → ↑f x - x ≤ ↑f y - y
⊢ ∀ (x_1 : ℝ), x_1 + (↑f x - x) ≤ ↑f x_1
[PROOFSTEP]
simp only [← le_sub_iff_add_le']
[GOAL]
case intro.intro.hz
f g : CircleDeg1Lift
hf : Continuous ↑f
z : ℝ
hz : ∀ (x : ℝ), x + z < ↑f x
x : ℝ
hx : ∀ (y : ℝ), y ∈ Icc 0 1 → ↑f x - x ≤ ↑f y - y
⊢ ∀ (x_1 : ℝ), ↑f x - x ≤ ↑f x_1 - x_1
[PROOFSTEP]
exact f.forall_map_sub_of_Icc _ hx
[GOAL]
f g : CircleDeg1Lift
hf : Continuous ↑f
⊢ ∃ x, ↑f x = x + τ f
[PROOFSTEP]
obtain ⟨a, ha⟩ : ∃ x, f x ≤ x + τ f := by
by_contra' H
exact lt_irrefl _ (f.lt_translationNumber_of_forall_add_lt hf H)
[GOAL]
f g : CircleDeg1Lift
hf : Continuous ↑f
⊢ ∃ x, ↑f x ≤ x + τ f
[PROOFSTEP]
by_contra' H
[GOAL]
f g : CircleDeg1Lift
hf : Continuous ↑f
H : ∀ (x : ℝ), x + τ f < ↑f x
⊢ False
[PROOFSTEP]
exact lt_irrefl _ (f.lt_translationNumber_of_forall_add_lt hf H)
[GOAL]
case intro
f g : CircleDeg1Lift
hf : Continuous ↑f
a : ℝ
ha : ↑f a ≤ a + τ f
⊢ ∃ x, ↑f x = x + τ f
[PROOFSTEP]
obtain ⟨b, hb⟩ : ∃ x, x + τ f ≤ f x := by
by_contra' H
exact lt_irrefl _ (f.translationNumber_lt_of_forall_lt_add hf H)
[GOAL]
f g : CircleDeg1Lift
hf : Continuous ↑f
a : ℝ
ha : ↑f a ≤ a + τ f
⊢ ∃ x, x + τ f ≤ ↑f x
[PROOFSTEP]
by_contra' H
[GOAL]
f g : CircleDeg1Lift
hf : Continuous ↑f
a : ℝ
ha : ↑f a ≤ a + τ f
H : ∀ (x : ℝ), ↑f x < x + τ f
⊢ False
[PROOFSTEP]
exact lt_irrefl _ (f.translationNumber_lt_of_forall_lt_add hf H)
[GOAL]
case intro.intro
f g : CircleDeg1Lift
hf : Continuous ↑f
a : ℝ
ha : ↑f a ≤ a + τ f
b : ℝ
hb : b + τ f ≤ ↑f b
⊢ ∃ x, ↑f x = x + τ f
[PROOFSTEP]
exact intermediate_value_univ₂ hf (continuous_id.add continuous_const) ha hb
[GOAL]
f g : CircleDeg1Lift
hf : Continuous ↑f
m : ℤ
⊢ τ f = ↑m ↔ ∃ x, ↑f x = x + ↑m
[PROOFSTEP]
constructor
[GOAL]
case mp
f g : CircleDeg1Lift
hf : Continuous ↑f
m : ℤ
⊢ τ f = ↑m → ∃ x, ↑f x = x + ↑m
[PROOFSTEP]
intro h
[GOAL]
case mp
f g : CircleDeg1Lift
hf : Continuous ↑f
m : ℤ
h : τ f = ↑m
⊢ ∃ x, ↑f x = x + ↑m
[PROOFSTEP]
simp only [← h]
[GOAL]
case mp
f g : CircleDeg1Lift
hf : Continuous ↑f
m : ℤ
h : τ f = ↑m
⊢ ∃ x, ↑f x = x + τ f
[PROOFSTEP]
exact f.exists_eq_add_translationNumber hf
[GOAL]
case mpr
f g : CircleDeg1Lift
hf : Continuous ↑f
m : ℤ
⊢ (∃ x, ↑f x = x + ↑m) → τ f = ↑m
[PROOFSTEP]
rintro ⟨x, hx⟩
[GOAL]
case mpr.intro
f g : CircleDeg1Lift
hf : Continuous ↑f
m : ℤ
x : ℝ
hx : ↑f x = x + ↑m
⊢ τ f = ↑m
[PROOFSTEP]
exact f.translationNumber_of_eq_add_int hx
[GOAL]
f g : CircleDeg1Lift
hf : Continuous ↑f
n : ℕ
⊢ Continuous ↑(f ^ n)
[PROOFSTEP]
rw [coe_pow]
[GOAL]
f g : CircleDeg1Lift
hf : Continuous ↑f
n : ℕ
⊢ Continuous (↑f)^[n]
[PROOFSTEP]
exact hf.iterate n
[GOAL]
f g : CircleDeg1Lift
hf : Continuous ↑f
m : ℤ
n : ℕ
hn : 0 < n
⊢ τ f = ↑m / ↑n ↔ ∃ x, ↑(f ^ n) x = x + ↑m
[PROOFSTEP]
rw [eq_div_iff, mul_comm, ← translationNumber_pow] <;> [skip; exact ne_of_gt (Nat.cast_pos.2 hn)]
[GOAL]
f g : CircleDeg1Lift
hf : Continuous ↑f
m : ℤ
n : ℕ
hn : 0 < n
⊢ τ f = ↑m / ↑n ↔ ∃ x, ↑(f ^ n) x = x + ↑m
[PROOFSTEP]
rw [eq_div_iff, mul_comm, ← translationNumber_pow]
[GOAL]
f g : CircleDeg1Lift
hf : Continuous ↑f
m : ℤ
n : ℕ
hn : 0 < n
⊢ τ (f ^ n) = ↑m ↔ ∃ x, ↑(f ^ n) x = x + ↑m
[PROOFSTEP]
skip
[GOAL]
f g : CircleDeg1Lift
hf : Continuous ↑f
m : ℤ
n : ℕ
hn : 0 < n
⊢ ↑n ≠ 0
[PROOFSTEP]
exact ne_of_gt (Nat.cast_pos.2 hn)
[GOAL]
f g : CircleDeg1Lift
hf : Continuous ↑f
m : ℤ
n : ℕ
hn : 0 < n
⊢ τ (f ^ n) = ↑m ↔ ∃ x, ↑(f ^ n) x = x + ↑m
[PROOFSTEP]
exact (f ^ n).translationNumber_eq_int_iff (f.continuous_pow hf n)
[GOAL]
f g : CircleDeg1Lift
G : Type u_1
inst✝ : Group G
f₁ f₂ : G →* CircleDeg1Lift
h : ∀ (g : G), τ (↑f₁ g) = τ (↑f₂ g)
⊢ ∃ F, ∀ (g : G), Semiconj ↑F ↑(↑f₁ g) ↑(↑f₂ g)
[PROOFSTEP]
have : ∀ x, BddAbove (range fun g => f₂ g⁻¹ (f₁ g x)) :=
by
refine' fun x => ⟨x + 2, _⟩
rintro _ ⟨g, rfl⟩
have : τ (f₂ g⁻¹) = -τ (f₂ g) := by
rw [← MonoidHom.coe_toHomUnits, MonoidHom.map_inv, translationNumber_units_inv, MonoidHom.coe_toHomUnits]
calc
f₂ g⁻¹ (f₁ g x) ≤ f₂ g⁻¹ (x + τ (f₁ g) + 1) := mono _ (map_lt_add_translationNumber_add_one _ _).le
_ = f₂ g⁻¹ (x + τ (f₂ g)) + 1 := by rw [h, map_add_one]
_ ≤ x + τ (f₂ g) + τ (f₂ g⁻¹) + 1 + 1 := (add_le_add_right (map_lt_add_translationNumber_add_one _ _).le _)
_ = x + 2 := by
simp [this, add_assoc, one_add_one_eq_two]
-- We have a theorem about actions by `OrderIso`, so we introduce auxiliary maps
-- to `ℝ ≃o ℝ`.
[GOAL]
f g : CircleDeg1Lift
G : Type u_1
inst✝ : Group G
f₁ f₂ : G →* CircleDeg1Lift
h : ∀ (g : G), τ (↑f₁ g) = τ (↑f₂ g)
⊢ ∀ (x : ℝ), BddAbove (range fun g => ↑(↑f₂ g⁻¹) (↑(↑f₁ g) x))
[PROOFSTEP]
refine' fun x => ⟨x + 2, _⟩
[GOAL]
f g : CircleDeg1Lift
G : Type u_1
inst✝ : Group G
f₁ f₂ : G →* CircleDeg1Lift
h : ∀ (g : G), τ (↑f₁ g) = τ (↑f₂ g)
x : ℝ
⊢ x + 2 ∈ upperBounds (range fun g => ↑(↑f₂ g⁻¹) (↑(↑f₁ g) x))
[PROOFSTEP]
rintro _ ⟨g, rfl⟩
[GOAL]
case intro
f g✝ : CircleDeg1Lift
G : Type u_1
inst✝ : Group G
f₁ f₂ : G →* CircleDeg1Lift
h : ∀ (g : G), τ (↑f₁ g) = τ (↑f₂ g)
x : ℝ
g : G
⊢ (fun g => ↑(↑f₂ g⁻¹) (↑(↑f₁ g) x)) g ≤ x + 2
[PROOFSTEP]
have : τ (f₂ g⁻¹) = -τ (f₂ g) := by
rw [← MonoidHom.coe_toHomUnits, MonoidHom.map_inv, translationNumber_units_inv, MonoidHom.coe_toHomUnits]
[GOAL]
f g✝ : CircleDeg1Lift
G : Type u_1
inst✝ : Group G
f₁ f₂ : G →* CircleDeg1Lift
h : ∀ (g : G), τ (↑f₁ g) = τ (↑f₂ g)
x : ℝ
g : G
⊢ τ (↑f₂ g⁻¹) = -τ (↑f₂ g)
[PROOFSTEP]
rw [← MonoidHom.coe_toHomUnits, MonoidHom.map_inv, translationNumber_units_inv, MonoidHom.coe_toHomUnits]
[GOAL]
case intro
f g✝ : CircleDeg1Lift
G : Type u_1
inst✝ : Group G
f₁ f₂ : G →* CircleDeg1Lift
h : ∀ (g : G), τ (↑f₁ g) = τ (↑f₂ g)
x : ℝ
g : G
this : τ (↑f₂ g⁻¹) = -τ (↑f₂ g)
⊢ (fun g => ↑(↑f₂ g⁻¹) (↑(↑f₁ g) x)) g ≤ x + 2
[PROOFSTEP]
calc
f₂ g⁻¹ (f₁ g x) ≤ f₂ g⁻¹ (x + τ (f₁ g) + 1) := mono _ (map_lt_add_translationNumber_add_one _ _).le
_ = f₂ g⁻¹ (x + τ (f₂ g)) + 1 := by rw [h, map_add_one]
_ ≤ x + τ (f₂ g) + τ (f₂ g⁻¹) + 1 + 1 := (add_le_add_right (map_lt_add_translationNumber_add_one _ _).le _)
_ = x + 2 := by
simp [this, add_assoc, one_add_one_eq_two]
-- We have a theorem about actions by `OrderIso`, so we introduce auxiliary maps
-- to `ℝ ≃o ℝ`.
[GOAL]
f g✝ : CircleDeg1Lift
G : Type u_1
inst✝ : Group G
f₁ f₂ : G →* CircleDeg1Lift
h : ∀ (g : G), τ (↑f₁ g) = τ (↑f₂ g)
x : ℝ
g : G
this : τ (↑f₂ g⁻¹) = -τ (↑f₂ g)
⊢ ↑(↑f₂ g⁻¹) (x + τ (↑f₁ g) + 1) = ↑(↑f₂ g⁻¹) (x + τ (↑f₂ g)) + 1
[PROOFSTEP]
rw [h, map_add_one]
[GOAL]
f g✝ : CircleDeg1Lift
G : Type u_1
inst✝ : Group G
f₁ f₂ : G →* CircleDeg1Lift
h : ∀ (g : G), τ (↑f₁ g) = τ (↑f₂ g)
x : ℝ
g : G
this : τ (↑f₂ g⁻¹) = -τ (↑f₂ g)
⊢ x + τ (↑f₂ g) + τ (↑f₂ g⁻¹) + 1 + 1 = x + 2
[PROOFSTEP]
simp [this, add_assoc, one_add_one_eq_two]
-- We have a theorem about actions by `OrderIso`, so we introduce auxiliary maps
-- to `ℝ ≃o ℝ`.
[GOAL]
f g : CircleDeg1Lift
G : Type u_1
inst✝ : Group G
f₁ f₂ : G →* CircleDeg1Lift
h : ∀ (g : G), τ (↑f₁ g) = τ (↑f₂ g)
this : ∀ (x : ℝ), BddAbove (range fun g => ↑(↑f₂ g⁻¹) (↑(↑f₁ g) x))
⊢ ∃ F, ∀ (g : G), Semiconj ↑F ↑(↑f₁ g) ↑(↑f₂ g)
[PROOFSTEP]
set F₁ := toOrderIso.comp f₁.toHomUnits
[GOAL]
f g : CircleDeg1Lift
G : Type u_1
inst✝ : Group G
f₁ f₂ : G →* CircleDeg1Lift
h : ∀ (g : G), τ (↑f₁ g) = τ (↑f₂ g)
this : ∀ (x : ℝ), BddAbove (range fun g => ↑(↑f₂ g⁻¹) (↑(↑f₁ g) x))
F₁ : G →* ℝ ≃o ℝ := MonoidHom.comp toOrderIso (MonoidHom.toHomUnits f₁)
⊢ ∃ F, ∀ (g : G), Semiconj ↑F ↑(↑f₁ g) ↑(↑f₂ g)
[PROOFSTEP]
set F₂ := toOrderIso.comp f₂.toHomUnits
[GOAL]
f g : CircleDeg1Lift
G : Type u_1
inst✝ : Group G
f₁ f₂ : G →* CircleDeg1Lift
h : ∀ (g : G), τ (↑f₁ g) = τ (↑f₂ g)
this : ∀ (x : ℝ), BddAbove (range fun g => ↑(↑f₂ g⁻¹) (↑(↑f₁ g) x))
F₁ : G →* ℝ ≃o ℝ := MonoidHom.comp toOrderIso (MonoidHom.toHomUnits f₁)
F₂ : G →* ℝ ≃o ℝ := MonoidHom.comp toOrderIso (MonoidHom.toHomUnits f₂)
⊢ ∃ F, ∀ (g : G), Semiconj ↑F ↑(↑f₁ g) ↑(↑f₂ g)
[PROOFSTEP]
have hF₁ : ∀ g, ⇑(F₁ g) = f₁ g := fun _ => rfl
[GOAL]
f g : CircleDeg1Lift
G : Type u_1
inst✝ : Group G
f₁ f₂ : G →* CircleDeg1Lift
h : ∀ (g : G), τ (↑f₁ g) = τ (↑f₂ g)
this : ∀ (x : ℝ), BddAbove (range fun g => ↑(↑f₂ g⁻¹) (↑(↑f₁ g) x))
F₁ : G →* ℝ ≃o ℝ := MonoidHom.comp toOrderIso (MonoidHom.toHomUnits f₁)
F₂ : G →* ℝ ≃o ℝ := MonoidHom.comp toOrderIso (MonoidHom.toHomUnits f₂)
hF₁ : ∀ (g : G), ↑(↑F₁ g) = ↑(↑f₁ g)
⊢ ∃ F, ∀ (g : G), Semiconj ↑F ↑(↑f₁ g) ↑(↑f₂ g)
[PROOFSTEP]
have hF₂ : ∀ g, ⇑(F₂ g) = f₂ g := fun _ => rfl
[GOAL]
f g : CircleDeg1Lift
G : Type u_1
inst✝ : Group G
f₁ f₂ : G →* CircleDeg1Lift
h : ∀ (g : G), τ (↑f₁ g) = τ (↑f₂ g)
this : ∀ (x : ℝ), BddAbove (range fun g => ↑(↑f₂ g⁻¹) (↑(↑f₁ g) x))
F₁ : G →* ℝ ≃o ℝ := MonoidHom.comp toOrderIso (MonoidHom.toHomUnits f₁)
F₂ : G →* ℝ ≃o ℝ := MonoidHom.comp toOrderIso (MonoidHom.toHomUnits f₂)
hF₁ : ∀ (g : G), ↑(↑F₁ g) = ↑(↑f₁ g)
hF₂ : ∀ (g : G), ↑(↑F₂ g) = ↑(↑f₂ g)
⊢ ∃ F, ∀ (g : G), Semiconj ↑F ↑(↑f₁ g) ↑(↑f₂ g)
[PROOFSTEP]
refine' ⟨⟨⟨_, fun x y hxy => _⟩, fun x => _⟩, csSup_div_semiconj F₂ F₁ fun x => _⟩
[GOAL]
case refine'_1
f g : CircleDeg1Lift
G : Type u_1
inst✝ : Group G
f₁ f₂ : G →* CircleDeg1Lift
h : ∀ (g : G), τ (↑f₁ g) = τ (↑f₂ g)
this : ∀ (x : ℝ), BddAbove (range fun g => ↑(↑f₂ g⁻¹) (↑(↑f₁ g) x))
F₁ : G →* ℝ ≃o ℝ := MonoidHom.comp toOrderIso (MonoidHom.toHomUnits f₁)
F₂ : G →* ℝ ≃o ℝ := MonoidHom.comp toOrderIso (MonoidHom.toHomUnits f₂)
hF₁ : ∀ (g : G), ↑(↑F₁ g) = ↑(↑f₁ g)
hF₂ : ∀ (g : G), ↑(↑F₂ g) = ↑(↑f₂ g)
x y : ℝ
hxy : x ≤ y
⊢ sSup (range fun g' => ↑(↑F₂ g')⁻¹ (↑(↑F₁ g') x)) ≤ sSup (range fun g' => ↑(↑F₂ g')⁻¹ (↑(↑F₁ g') y))
[PROOFSTEP]
simp only [hF₁, hF₂, ← map_inv, coe_mk]
[GOAL]
case refine'_2
f g : CircleDeg1Lift
G : Type u_1
inst✝ : Group G
f₁ f₂ : G →* CircleDeg1Lift
h : ∀ (g : G), τ (↑f₁ g) = τ (↑f₂ g)
this : ∀ (x : ℝ), BddAbove (range fun g => ↑(↑f₂ g⁻¹) (↑(↑f₁ g) x))
F₁ : G →* ℝ ≃o ℝ := MonoidHom.comp toOrderIso (MonoidHom.toHomUnits f₁)
F₂ : G →* ℝ ≃o ℝ := MonoidHom.comp toOrderIso (MonoidHom.toHomUnits f₂)
hF₁ : ∀ (g : G), ↑(↑F₁ g) = ↑(↑f₁ g)
hF₂ : ∀ (g : G), ↑(↑F₂ g) = ↑(↑f₂ g)
x : ℝ
⊢ OrderHom.toFun
{ toFun := fun x => sSup (range fun g' => ↑(↑F₂ g')⁻¹ (↑(↑F₁ g') x)),
monotone' :=
(_ :
∀ (x y : ℝ),
x ≤ y →
sSup (range fun g' => ↑(↑F₂ g')⁻¹ (↑(↑F₁ g') x)) ≤ sSup (range fun g' => ↑(↑F₂ g')⁻¹ (↑(↑F₁ g') y))) }
(x + 1) =
OrderHom.toFun
{ toFun := fun x => sSup (range fun g' => ↑(↑F₂ g')⁻¹ (↑(↑F₁ g') x)),
monotone' :=
(_ :
∀ (x y : ℝ),
x ≤ y →
sSup (range fun g' => ↑(↑F₂ g')⁻¹ (↑(↑F₁ g') x)) ≤ sSup (range fun g' => ↑(↑F₂ g')⁻¹ (↑(↑F₁ g') y))) }
x +
1
[PROOFSTEP]
simp only [hF₁, hF₂, ← map_inv, coe_mk]
[GOAL]
case refine'_3
f g : CircleDeg1Lift
G : Type u_1
inst✝ : Group G
f₁ f₂ : G →* CircleDeg1Lift
h : ∀ (g : G), τ (↑f₁ g) = τ (↑f₂ g)
this : ∀ (x : ℝ), BddAbove (range fun g => ↑(↑f₂ g⁻¹) (↑(↑f₁ g) x))
F₁ : G →* ℝ ≃o ℝ := MonoidHom.comp toOrderIso (MonoidHom.toHomUnits f₁)
F₂ : G →* ℝ ≃o ℝ := MonoidHom.comp toOrderIso (MonoidHom.toHomUnits f₂)
hF₁ : ∀ (g : G), ↑(↑F₁ g) = ↑(↑f₁ g)
hF₂ : ∀ (g : G), ↑(↑F₂ g) = ↑(↑f₂ g)
x : ℝ
⊢ BddAbove (range fun g => ↑(↑F₂ g)⁻¹ (↑(↑F₁ g) x))
[PROOFSTEP]
simp only [hF₁, hF₂, ← map_inv, coe_mk]
[GOAL]
case refine'_1
f g : CircleDeg1Lift
G : Type u_1
inst✝ : Group G
f₁ f₂ : G →* CircleDeg1Lift
h : ∀ (g : G), τ (↑f₁ g) = τ (↑f₂ g)
this : ∀ (x : ℝ), BddAbove (range fun g => ↑(↑f₂ g⁻¹) (↑(↑f₁ g) x))
F₁ : G →* ℝ ≃o ℝ := MonoidHom.comp toOrderIso (MonoidHom.toHomUnits f₁)
F₂ : G →* ℝ ≃o ℝ := MonoidHom.comp toOrderIso (MonoidHom.toHomUnits f₂)
hF₁ : ∀ (g : G), ↑(↑F₁ g) = ↑(↑f₁ g)
hF₂ : ∀ (g : G), ↑(↑F₂ g) = ↑(↑f₂ g)
x y : ℝ
hxy : x ≤ y
⊢ sSup (range fun g' => ↑(↑f₂ g'⁻¹) (↑(↑f₁ g') x)) ≤ sSup (range fun g' => ↑(↑f₂ g'⁻¹) (↑(↑f₁ g') y))
[PROOFSTEP]
exact ciSup_mono (this y) fun g => mono _ (mono _ hxy)
[GOAL]
case refine'_2
f g : CircleDeg1Lift
G : Type u_1
inst✝ : Group G
f₁ f₂ : G →* CircleDeg1Lift
h : ∀ (g : G), τ (↑f₁ g) = τ (↑f₂ g)
this : ∀ (x : ℝ), BddAbove (range fun g => ↑(↑f₂ g⁻¹) (↑(↑f₁ g) x))
F₁ : G →* ℝ ≃o ℝ := MonoidHom.comp toOrderIso (MonoidHom.toHomUnits f₁)
F₂ : G →* ℝ ≃o ℝ := MonoidHom.comp toOrderIso (MonoidHom.toHomUnits f₂)
hF₁ : ∀ (g : G), ↑(↑F₁ g) = ↑(↑f₁ g)
hF₂ : ∀ (g : G), ↑(↑F₂ g) = ↑(↑f₂ g)
x : ℝ
⊢ sSup (range fun g' => ↑(↑f₂ g'⁻¹) (↑(↑f₁ g') (x + 1))) = sSup (range fun g' => ↑(↑f₂ g'⁻¹) (↑(↑f₁ g') x)) + 1
[PROOFSTEP]
simp only [map_add_one]
[GOAL]
case refine'_2
f g : CircleDeg1Lift
G : Type u_1
inst✝ : Group G
f₁ f₂ : G →* CircleDeg1Lift
h : ∀ (g : G), τ (↑f₁ g) = τ (↑f₂ g)
this : ∀ (x : ℝ), BddAbove (range fun g => ↑(↑f₂ g⁻¹) (↑(↑f₁ g) x))
F₁ : G →* ℝ ≃o ℝ := MonoidHom.comp toOrderIso (MonoidHom.toHomUnits f₁)
F₂ : G →* ℝ ≃o ℝ := MonoidHom.comp toOrderIso (MonoidHom.toHomUnits f₂)
hF₁ : ∀ (g : G), ↑(↑F₁ g) = ↑(↑f₁ g)
hF₂ : ∀ (g : G), ↑(↑F₂ g) = ↑(↑f₂ g)
x : ℝ
⊢ sSup (range fun g' => ↑(↑f₂ g'⁻¹) (↑(↑f₁ g') x) + 1) = sSup (range fun g' => ↑(↑f₂ g'⁻¹) (↑(↑f₁ g') x)) + 1
[PROOFSTEP]
exact
(Monotone.map_ciSup_of_continuousAt (continuousAt_id.add continuousAt_const) (monotone_id.add_const (1 : ℝ))
(this x)).symm
[GOAL]
case refine'_3
f g : CircleDeg1Lift
G : Type u_1
inst✝ : Group G
f₁ f₂ : G →* CircleDeg1Lift
h : ∀ (g : G), τ (↑f₁ g) = τ (↑f₂ g)
this : ∀ (x : ℝ), BddAbove (range fun g => ↑(↑f₂ g⁻¹) (↑(↑f₁ g) x))
F₁ : G →* ℝ ≃o ℝ := MonoidHom.comp toOrderIso (MonoidHom.toHomUnits f₁)
F₂ : G →* ℝ ≃o ℝ := MonoidHom.comp toOrderIso (MonoidHom.toHomUnits f₂)
hF₁ : ∀ (g : G), ↑(↑F₁ g) = ↑(↑f₁ g)
hF₂ : ∀ (g : G), ↑(↑F₂ g) = ↑(↑f₂ g)
x : ℝ
⊢ BddAbove (range fun g => ↑(↑f₂ g⁻¹) (↑(↑f₁ g) x))
[PROOFSTEP]
exact this x
[GOAL]
f g : CircleDeg1Lift
f₁ f₂ : CircleDeg1Liftˣ
h : τ ↑f₁ = τ ↑f₂
n : Multiplicative ℤ
⊢ τ (↑(MonoidHom.comp (Units.coeHom CircleDeg1Lift) (↑(zpowersHom CircleDeg1Liftˣ) f₁)) n) =
τ (↑(MonoidHom.comp (Units.coeHom CircleDeg1Lift) (↑(zpowersHom CircleDeg1Liftˣ) f₂)) n)
[PROOFSTEP]
simp [h]
[GOAL]
f g : CircleDeg1Lift
f₁ f₂ : CircleDeg1Liftˣ
h : τ ↑f₁ = τ ↑f₂
this :
∀ (n : Multiplicative ℤ),
τ (↑(MonoidHom.comp (Units.coeHom CircleDeg1Lift) (↑(zpowersHom CircleDeg1Liftˣ) f₁)) n) =
τ (↑(MonoidHom.comp (Units.coeHom CircleDeg1Lift) (↑(zpowersHom CircleDeg1Liftˣ) f₂)) n)
F : CircleDeg1Lift
hF :
∀ (g : Multiplicative ℤ),
Semiconj ↑F ↑(↑(MonoidHom.comp (Units.coeHom CircleDeg1Lift) (↑(zpowersHom CircleDeg1Liftˣ) f₁)) g)
↑(↑(MonoidHom.comp (Units.coeHom CircleDeg1Lift) (↑(zpowersHom CircleDeg1Liftˣ) f₂)) g)
⊢ Semiconj ↑F ↑↑f₁ ↑↑f₂
[PROOFSTEP]
simpa using hF (Multiplicative.ofAdd 1)
[GOAL]
f g f₁ f₂ : CircleDeg1Lift
h₁ : IsUnit f₁
h₂ : IsUnit f₂
h : τ f₁ = τ f₂
⊢ ∃ F, Semiconj ↑F ↑f₁ ↑f₂
[PROOFSTEP]
rcases h₁, h₂ with ⟨⟨f₁, rfl⟩, ⟨f₂, rfl⟩⟩
[GOAL]
case intro.intro
f g : CircleDeg1Lift
f₁ f₂ : CircleDeg1Liftˣ
h : τ ↑f₁ = τ ↑f₂
⊢ ∃ F, Semiconj ↑F ↑↑f₁ ↑↑f₂
[PROOFSTEP]
exact units_semiconj_of_translationNumber_eq h
| {"mathlib_filename": "Mathlib.Dynamics.Circle.RotationNumber.TranslationNumber", "llama_tokens": 19112} |
[GOAL]
R : Type u_1
inst✝ : AddMonoidWithOne R
n m : ℕ
⊢ IsNat n m → IsNat (↑n) m
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
case mk.refl
R : Type u_1
inst✝ : AddMonoidWithOne R
m : ℕ
⊢ IsNat (↑↑m) m
[PROOFSTEP]
exact ⟨rfl⟩
[GOAL]
R : Type u_1
inst✝ : Ring R
n : ℤ
m : ℕ
⊢ IsNat n m → IsNat (↑n) m
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
case mk.refl
R : Type u_1
inst✝ : Ring R
m : ℕ
⊢ IsNat (↑↑m) m
[PROOFSTEP]
exact ⟨by simp⟩
[GOAL]
R : Type u_1
inst✝ : Ring R
m : ℕ
⊢ ↑↑m = ↑m
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝ : Ring R
n m : ℤ
⊢ IsInt n m → IsInt (↑n) m
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
case mk.refl
R : Type u_1
inst✝ : Ring R
m : ℤ
⊢ IsInt (↑↑m) m
[PROOFSTEP]
exact ⟨rfl⟩
[GOAL]
R : Type u_1
inst✝ : DivisionRing R
n✝ : ℕ
⊢ ↑↑n✝ = ↑n✝
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝ : DivisionRing R
n✝ : ℤ
⊢ ↑↑n✝ = ↑n✝
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
inst✝¹ : DivisionRing R
inst✝ : CharZero R
num✝ : ℤ
denom✝ : ℕ
qi : ℚ
invOf_mul_self✝ : qi * ↑denom✝ = 1
mul_invOf_self✝ : ↑denom✝ * qi = 1
⊢ ↑qi * ↑denom✝ = 1
[PROOFSTEP]
norm_cast
[GOAL]
R : Type u_1
inst✝¹ : DivisionRing R
inst✝ : CharZero R
num✝ : ℤ
denom✝ : ℕ
qi : ℚ
invOf_mul_self✝ : qi * ↑denom✝ = 1
mul_invOf_self✝ : ↑denom✝ * qi = 1
⊢ ↑denom✝ * ↑qi = 1
[PROOFSTEP]
norm_cast
[GOAL]
R : Type u_1
inst✝¹ : DivisionRing R
inst✝ : CharZero R
num✝ : ℤ
denom✝ : ℕ
qi : ℚ
invOf_mul_self✝ : qi * ↑denom✝ = 1
mul_invOf_self✝ : ↑denom✝ * qi = 1
⊢ ↑(↑num✝ * ⅟↑denom✝) = ↑num✝ * ⅟↑denom✝
[PROOFSTEP]
simp only []
[GOAL]
R : Type u_1
inst✝¹ : DivisionRing R
inst✝ : CharZero R
num✝ : ℤ
denom✝ : ℕ
qi : ℚ
invOf_mul_self✝ : qi * ↑denom✝ = 1
mul_invOf_self✝ : ↑denom✝ * qi = 1
⊢ ↑(↑num✝ * qi) = ↑num✝ * ↑qi
[PROOFSTEP]
norm_cast
[GOAL]
α : Type ?u.44519
inst✝ : Semiring α
k : ℕ
b c : α
hc1 : c * (↑k * b) = 1
hc2 : ↑k * b * c = 1
⊢ Invertible b
[PROOFSTEP]
rw [← mul_assoc] at hc1
[GOAL]
α : Type ?u.44519
inst✝ : Semiring α
k : ℕ
b c : α
hc1 : c * ↑k * b = 1
hc2 : ↑k * b * c = 1
⊢ Invertible b
[PROOFSTEP]
rw [Nat.cast_commute k, mul_assoc, Nat.cast_commute k] at hc2
[GOAL]
α : Type ?u.44519
inst✝ : Semiring α
k : ℕ
b c : α
hc1 : c * ↑k * b = 1
hc2 : b * (c * ↑k) = 1
⊢ Invertible b
[PROOFSTEP]
exact ⟨_, hc1, hc2⟩
[GOAL]
α : Type ?u.46618
inst✝¹ : Semiring α
a k b : ℕ
inst✝ : Invertible ↑a
h : a = k * b
⊢ ↑a = ↑k * ↑b
[PROOFSTEP]
simp [h]
[GOAL]
α : Type u_1
inst✝ : Ring α
f : α → α → α
a b : α
na nb nc : ℤ
da db dc k : ℕ
⊢ f = HAdd.hAdd →
IsRat a na da →
IsRat b nb db →
Int.add (Int.mul na ↑db) (Int.mul nb ↑da) = Int.mul (↑k) nc → Nat.mul da db = Nat.mul k dc → IsRat (f a b) nc dc
[PROOFSTEP]
rintro rfl ⟨_, rfl⟩ ⟨_, rfl⟩ (h₁ : na * db + nb * da = k * nc) (h₂ : da * db = k * dc)
[GOAL]
case mk.mk
α : Type u_1
inst✝ : Ring α
na nb nc : ℤ
da db dc k : ℕ
inv✝¹ : Invertible ↑da
inv✝ : Invertible ↑db
h₁ : na * ↑db + nb * ↑da = ↑k * nc
h₂ : da * db = k * dc
⊢ IsRat (↑na * ⅟↑da + ↑nb * ⅟↑db) nc dc
[PROOFSTEP]
have : Invertible (↑(da * db) : α) := by simpa using invertibleMul (da : α) db
[GOAL]
α : Type u_1
inst✝ : Ring α
na nb nc : ℤ
da db dc k : ℕ
inv✝¹ : Invertible ↑da
inv✝ : Invertible ↑db
h₁ : na * ↑db + nb * ↑da = ↑k * nc
h₂ : da * db = k * dc
⊢ Invertible ↑(da * db)
[PROOFSTEP]
simpa using invertibleMul (da : α) db
[GOAL]
case mk.mk
α : Type u_1
inst✝ : Ring α
na nb nc : ℤ
da db dc k : ℕ
inv✝¹ : Invertible ↑da
inv✝ : Invertible ↑db
h₁ : na * ↑db + nb * ↑da = ↑k * nc
h₂ : da * db = k * dc
this : Invertible ↑(da * db)
⊢ IsRat (↑na * ⅟↑da + ↑nb * ⅟↑db) nc dc
[PROOFSTEP]
have := invertibleOfMul' (α := α) h₂
[GOAL]
case mk.mk
α : Type u_1
inst✝ : Ring α
na nb nc : ℤ
da db dc k : ℕ
inv✝¹ : Invertible ↑da
inv✝ : Invertible ↑db
h₁ : na * ↑db + nb * ↑da = ↑k * nc
h₂ : da * db = k * dc
this✝ : Invertible ↑(da * db)
this : Invertible ↑dc
⊢ IsRat (↑na * ⅟↑da + ↑nb * ⅟↑db) nc dc
[PROOFSTEP]
use this
[GOAL]
case eq
α : Type u_1
inst✝ : Ring α
na nb nc : ℤ
da db dc k : ℕ
inv✝¹ : Invertible ↑da
inv✝ : Invertible ↑db
h₁ : na * ↑db + nb * ↑da = ↑k * nc
h₂ : da * db = k * dc
this✝ : Invertible ↑(da * db)
this : Invertible ↑dc
⊢ ↑na * ⅟↑da + ↑nb * ⅟↑db = ↑nc * ⅟↑dc
[PROOFSTEP]
have H := (Nat.cast_commute (α := α) da db).invOf_left.invOf_right.right_comm
[GOAL]
case eq
α : Type u_1
inst✝ : Ring α
na nb nc : ℤ
da db dc k : ℕ
inv✝¹ : Invertible ↑da
inv✝ : Invertible ↑db
h₁ : na * ↑db + nb * ↑da = ↑k * nc
h₂ : da * db = k * dc
this✝ : Invertible ↑(da * db)
this : Invertible ↑dc
H : ∀ (a : α), a * ⅟↑da * ⅟↑db = a * ⅟↑db * ⅟↑da
⊢ ↑na * ⅟↑da + ↑nb * ⅟↑db = ↑nc * ⅟↑dc
[PROOFSTEP]
have h₁ := congr_arg (↑· * (⅟↑da * ⅟↑db : α)) h₁
[GOAL]
case eq
α : Type u_1
inst✝ : Ring α
na nb nc : ℤ
da db dc k : ℕ
inv✝¹ : Invertible ↑da
inv✝ : Invertible ↑db
h₁✝ : na * ↑db + nb * ↑da = ↑k * nc
h₂ : da * db = k * dc
this✝ : Invertible ↑(da * db)
this : Invertible ↑dc
H : ∀ (a : α), a * ⅟↑da * ⅟↑db = a * ⅟↑db * ⅟↑da
h₁ : (fun x => ↑x * (⅟↑da * ⅟↑db)) (na * ↑db + nb * ↑da) = (fun x => ↑x * (⅟↑da * ⅟↑db)) (↑k * nc)
⊢ ↑na * ⅟↑da + ↑nb * ⅟↑db = ↑nc * ⅟↑dc
[PROOFSTEP]
simp only [Int.cast_add, Int.cast_mul, Int.cast_ofNat, ← mul_assoc, add_mul, mul_mul_invOf_self_cancel] at h₁
[GOAL]
case eq
α : Type u_1
inst✝ : Ring α
na nb nc : ℤ
da db dc k : ℕ
inv✝¹ : Invertible ↑da
inv✝ : Invertible ↑db
h₁✝ : na * ↑db + nb * ↑da = ↑k * nc
h₂ : da * db = k * dc
this✝ : Invertible ↑(da * db)
this : Invertible ↑dc
H : ∀ (a : α), a * ⅟↑da * ⅟↑db = a * ⅟↑db * ⅟↑da
h₁ : ↑na * ↑db * ⅟↑da * ⅟↑db + ↑nb * ⅟↑db = ↑k * ↑nc * ⅟↑da * ⅟↑db
⊢ ↑na * ⅟↑da + ↑nb * ⅟↑db = ↑nc * ⅟↑dc
[PROOFSTEP]
have h₂ := congr_arg (↑nc * ↑· * (⅟↑da * ⅟↑db * ⅟↑dc : α)) h₂
[GOAL]
case eq
α : Type u_1
inst✝ : Ring α
na nb nc : ℤ
da db dc k : ℕ
inv✝¹ : Invertible ↑da
inv✝ : Invertible ↑db
h₁✝ : na * ↑db + nb * ↑da = ↑k * nc
h₂✝ : da * db = k * dc
this✝ : Invertible ↑(da * db)
this : Invertible ↑dc
H : ∀ (a : α), a * ⅟↑da * ⅟↑db = a * ⅟↑db * ⅟↑da
h₁ : ↑na * ↑db * ⅟↑da * ⅟↑db + ↑nb * ⅟↑db = ↑k * ↑nc * ⅟↑da * ⅟↑db
h₂ : (fun x => ↑nc * ↑x * (⅟↑da * ⅟↑db * ⅟↑dc)) (da * db) = (fun x => ↑nc * ↑x * (⅟↑da * ⅟↑db * ⅟↑dc)) (k * dc)
⊢ ↑na * ⅟↑da + ↑nb * ⅟↑db = ↑nc * ⅟↑dc
[PROOFSTEP]
simp [← mul_assoc, H] at h₁ h₂
[GOAL]
case eq
α : Type u_1
inst✝ : Ring α
na nb nc : ℤ
da db dc k : ℕ
inv✝¹ : Invertible ↑da
inv✝ : Invertible ↑db
h₁✝ : na * ↑db + nb * ↑da = ↑k * nc
h₂✝ : da * db = k * dc
this✝ : Invertible ↑(da * db)
this : Invertible ↑dc
H : ∀ (a : α), a * ⅟↑da * ⅟↑db = a * ⅟↑db * ⅟↑da
h₁ : ↑na * ⅟↑da + ↑nb * ⅟↑db = ↑k * ↑nc * ⅟↑db * ⅟↑da
h₂ : ↑nc * ⅟↑dc = ↑nc * ↑k * ↑dc * ⅟↑db * ⅟↑da * ⅟↑dc
⊢ ↑na * ⅟↑da + ↑nb * ⅟↑db = ↑nc * ⅟↑dc
[PROOFSTEP]
rw [h₁, h₂, Nat.cast_commute]
[GOAL]
case eq
α : Type u_1
inst✝ : Ring α
na nb nc : ℤ
da db dc k : ℕ
inv✝¹ : Invertible ↑da
inv✝ : Invertible ↑db
h₁✝ : na * ↑db + nb * ↑da = ↑k * nc
h₂✝ : da * db = k * dc
this✝ : Invertible ↑(da * db)
this : Invertible ↑dc
H : ∀ (a : α), a * ⅟↑da * ⅟↑db = a * ⅟↑db * ⅟↑da
h₁ : ↑na * ⅟↑da + ↑nb * ⅟↑db = ↑k * ↑nc * ⅟↑db * ⅟↑da
h₂ : ↑nc * ⅟↑dc = ↑nc * ↑k * ↑dc * ⅟↑db * ⅟↑da * ⅟↑dc
⊢ ↑nc * ↑k * ⅟↑db * ⅟↑da = ↑nc * ↑k * ↑dc * ⅟↑db * ⅟↑da * ⅟↑dc
[PROOFSTEP]
simp only [mul_mul_invOf_self_cancel, (Nat.cast_commute (α := α) da dc).invOf_left.invOf_right.right_comm,
(Nat.cast_commute (α := α) db dc).invOf_left.invOf_right.right_comm]
[GOAL]
α : Type u_1
inst✝ : Ring α
num✝ : ℤ
denom✝ : ℕ
h : Invertible ↑denom✝
⊢ -(↑num✝ * ⅟↑denom✝) = ↑(Int.neg num✝) * ⅟↑denom✝
[PROOFSTEP]
rw [← neg_mul, ← Int.cast_neg]
[GOAL]
α : Type u_1
inst✝ : Ring α
num✝ : ℤ
denom✝ : ℕ
h : Invertible ↑denom✝
⊢ ↑(-num✝) * ⅟↑denom✝ = ↑(Int.neg num✝) * ⅟↑denom✝
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
inst✝ : Ring α
f : α → α → α
a b : α
na nb nc : ℤ
da db dc k : ℕ
hf : f = HSub.hSub
ra : IsRat a na da
rb : IsRat b nb db
h₁ : Int.sub (Int.mul na ↑db) (Int.mul nb ↑da) = Int.mul (↑k) nc
h₂ : Nat.mul da db = Nat.mul k dc
⊢ IsRat (f a b) nc dc
[PROOFSTEP]
rw [hf, sub_eq_add_neg]
[GOAL]
α : Type u_1
inst✝ : Ring α
f : α → α → α
a b : α
na nb nc : ℤ
da db dc k : ℕ
hf : f = HSub.hSub
ra : IsRat a na da
rb : IsRat b nb db
h₁ : Int.sub (Int.mul na ↑db) (Int.mul nb ↑da) = Int.mul (↑k) nc
h₂ : Nat.mul da db = Nat.mul k dc
⊢ IsRat (a + -b) nc dc
[PROOFSTEP]
refine isRat_add rfl ra (isRat_neg (n' := -nb) rfl rb rfl) (k := k) (nc := nc) ?_ h₂
[GOAL]
α : Type u_1
inst✝ : Ring α
f : α → α → α
a b : α
na nb nc : ℤ
da db dc k : ℕ
hf : f = HSub.hSub
ra : IsRat a na da
rb : IsRat b nb db
h₁ : Int.sub (Int.mul na ↑db) (Int.mul nb ↑da) = Int.mul (↑k) nc
h₂ : Nat.mul da db = Nat.mul k dc
⊢ Int.add (Int.mul na ↑db) (Int.mul (-nb) ↑da) = Int.mul (↑k) nc
[PROOFSTEP]
rw [show Int.mul (-nb) _ = _ from neg_mul ..]
[GOAL]
α : Type u_1
inst✝ : Ring α
f : α → α → α
a b : α
na nb nc : ℤ
da db dc k : ℕ
hf : f = HSub.hSub
ra : IsRat a na da
rb : IsRat b nb db
h₁ : Int.sub (Int.mul na ↑db) (Int.mul nb ↑da) = Int.mul (↑k) nc
h₂ : Nat.mul da db = Nat.mul k dc
⊢ Int.add (Int.mul na ↑db) (-(nb * ↑da)) = Int.mul (↑k) nc
[PROOFSTEP]
exact h₁
[GOAL]
α : Type u_1
inst✝ : Ring α
f : α → α → α
a b : α
na nb nc : ℤ
da db dc k : ℕ
⊢ f = HMul.hMul →
IsRat a na da → IsRat b nb db → Int.mul na nb = Int.mul (↑k) nc → Nat.mul da db = Nat.mul k dc → IsRat (f a b) nc dc
[PROOFSTEP]
rintro rfl ⟨_, rfl⟩ ⟨_, rfl⟩ (h₁ : na * nb = k * nc) (h₂ : da * db = k * dc)
[GOAL]
case mk.mk
α : Type u_1
inst✝ : Ring α
na nb nc : ℤ
da db dc k : ℕ
inv✝¹ : Invertible ↑da
inv✝ : Invertible ↑db
h₁ : na * nb = ↑k * nc
h₂ : da * db = k * dc
⊢ IsRat (↑na * ⅟↑da * (↑nb * ⅟↑db)) nc dc
[PROOFSTEP]
have : Invertible (↑(da * db) : α) := by simpa using invertibleMul (da : α) db
[GOAL]
α : Type u_1
inst✝ : Ring α
na nb nc : ℤ
da db dc k : ℕ
inv✝¹ : Invertible ↑da
inv✝ : Invertible ↑db
h₁ : na * nb = ↑k * nc
h₂ : da * db = k * dc
⊢ Invertible ↑(da * db)
[PROOFSTEP]
simpa using invertibleMul (da : α) db
[GOAL]
case mk.mk
α : Type u_1
inst✝ : Ring α
na nb nc : ℤ
da db dc k : ℕ
inv✝¹ : Invertible ↑da
inv✝ : Invertible ↑db
h₁ : na * nb = ↑k * nc
h₂ : da * db = k * dc
this : Invertible ↑(da * db)
⊢ IsRat (↑na * ⅟↑da * (↑nb * ⅟↑db)) nc dc
[PROOFSTEP]
have := invertibleOfMul' (α := α) h₂
[GOAL]
case mk.mk
α : Type u_1
inst✝ : Ring α
na nb nc : ℤ
da db dc k : ℕ
inv✝¹ : Invertible ↑da
inv✝ : Invertible ↑db
h₁ : na * nb = ↑k * nc
h₂ : da * db = k * dc
this✝ : Invertible ↑(da * db)
this : Invertible ↑dc
⊢ IsRat (↑na * ⅟↑da * (↑nb * ⅟↑db)) nc dc
[PROOFSTEP]
refine ⟨this, ?_⟩
[GOAL]
case mk.mk
α : Type u_1
inst✝ : Ring α
na nb nc : ℤ
da db dc k : ℕ
inv✝¹ : Invertible ↑da
inv✝ : Invertible ↑db
h₁ : na * nb = ↑k * nc
h₂ : da * db = k * dc
this✝ : Invertible ↑(da * db)
this : Invertible ↑dc
⊢ ↑na * ⅟↑da * (↑nb * ⅟↑db) = ↑nc * ⅟↑dc
[PROOFSTEP]
have H := (Nat.cast_commute (α := α) da db).invOf_left.invOf_right.right_comm
[GOAL]
case mk.mk
α : Type u_1
inst✝ : Ring α
na nb nc : ℤ
da db dc k : ℕ
inv✝¹ : Invertible ↑da
inv✝ : Invertible ↑db
h₁ : na * nb = ↑k * nc
h₂ : da * db = k * dc
this✝ : Invertible ↑(da * db)
this : Invertible ↑dc
H : ∀ (a : α), a * ⅟↑da * ⅟↑db = a * ⅟↑db * ⅟↑da
⊢ ↑na * ⅟↑da * (↑nb * ⅟↑db) = ↑nc * ⅟↑dc
[PROOFSTEP]
have h₁ := congr_arg (Int.cast (R := α)) h₁
[GOAL]
case mk.mk
α : Type u_1
inst✝ : Ring α
na nb nc : ℤ
da db dc k : ℕ
inv✝¹ : Invertible ↑da
inv✝ : Invertible ↑db
h₁✝ : na * nb = ↑k * nc
h₂ : da * db = k * dc
this✝ : Invertible ↑(da * db)
this : Invertible ↑dc
H : ∀ (a : α), a * ⅟↑da * ⅟↑db = a * ⅟↑db * ⅟↑da
h₁ : ↑(na * nb) = ↑(↑k * nc)
⊢ ↑na * ⅟↑da * (↑nb * ⅟↑db) = ↑nc * ⅟↑dc
[PROOFSTEP]
simp only [Int.cast_mul, Int.cast_ofNat] at h₁
[GOAL]
case mk.mk
α : Type u_1
inst✝ : Ring α
na nb nc : ℤ
da db dc k : ℕ
inv✝¹ : Invertible ↑da
inv✝ : Invertible ↑db
h₁✝ : na * nb = ↑k * nc
h₂ : da * db = k * dc
this✝ : Invertible ↑(da * db)
this : Invertible ↑dc
H : ∀ (a : α), a * ⅟↑da * ⅟↑db = a * ⅟↑db * ⅟↑da
h₁ : ↑na * ↑nb = ↑k * ↑nc
⊢ ↑na * ⅟↑da * (↑nb * ⅟↑db) = ↑nc * ⅟↑dc
[PROOFSTEP]
simp [← mul_assoc, (Nat.cast_commute (α := α) da nb).invOf_left.right_comm, h₁]
[GOAL]
case mk.mk
α : Type u_1
inst✝ : Ring α
na nb nc : ℤ
da db dc k : ℕ
inv✝¹ : Invertible ↑da
inv✝ : Invertible ↑db
h₁✝ : na * nb = ↑k * nc
h₂ : da * db = k * dc
this✝ : Invertible ↑(da * db)
this : Invertible ↑dc
H : ∀ (a : α), a * ⅟↑da * ⅟↑db = a * ⅟↑db * ⅟↑da
h₁ : ↑na * ↑nb = ↑k * ↑nc
⊢ ↑k * ↑nc * ⅟↑da * ⅟↑db = ↑nc * ⅟↑dc
[PROOFSTEP]
have h₂ := congr_arg (↑nc * ↑· * (⅟↑da * ⅟↑db * ⅟↑dc : α)) h₂
[GOAL]
case mk.mk
α : Type u_1
inst✝ : Ring α
na nb nc : ℤ
da db dc k : ℕ
inv✝¹ : Invertible ↑da
inv✝ : Invertible ↑db
h₁✝ : na * nb = ↑k * nc
h₂✝ : da * db = k * dc
this✝ : Invertible ↑(da * db)
this : Invertible ↑dc
H : ∀ (a : α), a * ⅟↑da * ⅟↑db = a * ⅟↑db * ⅟↑da
h₁ : ↑na * ↑nb = ↑k * ↑nc
h₂ : (fun x => ↑nc * ↑x * (⅟↑da * ⅟↑db * ⅟↑dc)) (da * db) = (fun x => ↑nc * ↑x * (⅟↑da * ⅟↑db * ⅟↑dc)) (k * dc)
⊢ ↑k * ↑nc * ⅟↑da * ⅟↑db = ↑nc * ⅟↑dc
[PROOFSTEP]
simp [← mul_assoc] at h₂
[GOAL]
case mk.mk
α : Type u_1
inst✝ : Ring α
na nb nc : ℤ
da db dc k : ℕ
inv✝¹ : Invertible ↑da
inv✝ : Invertible ↑db
h₁✝ : na * nb = ↑k * nc
h₂✝ : da * db = k * dc
this✝ : Invertible ↑(da * db)
this : Invertible ↑dc
H : ∀ (a : α), a * ⅟↑da * ⅟↑db = a * ⅟↑db * ⅟↑da
h₁ : ↑na * ↑nb = ↑k * ↑nc
h₂ : ↑nc * ↑da * ↑db * ⅟↑da * ⅟↑db * ⅟↑dc = ↑nc * ↑k * ↑dc * ⅟↑da * ⅟↑db * ⅟↑dc
⊢ ↑k * ↑nc * ⅟↑da * ⅟↑db = ↑nc * ⅟↑dc
[PROOFSTEP]
rw [H] at h₂
[GOAL]
case mk.mk
α : Type u_1
inst✝ : Ring α
na nb nc : ℤ
da db dc k : ℕ
inv✝¹ : Invertible ↑da
inv✝ : Invertible ↑db
h₁✝ : na * nb = ↑k * nc
h₂✝ : da * db = k * dc
this✝ : Invertible ↑(da * db)
this : Invertible ↑dc
H : ∀ (a : α), a * ⅟↑da * ⅟↑db = a * ⅟↑db * ⅟↑da
h₁ : ↑na * ↑nb = ↑k * ↑nc
h₂ : ↑nc * ↑da * ↑db * ⅟↑db * ⅟↑da * ⅟↑dc = ↑nc * ↑k * ↑dc * ⅟↑da * ⅟↑db * ⅟↑dc
⊢ ↑k * ↑nc * ⅟↑da * ⅟↑db = ↑nc * ⅟↑dc
[PROOFSTEP]
simp [mul_mul_invOf_self_cancel] at h₂
[GOAL]
case mk.mk
α : Type u_1
inst✝ : Ring α
na nb nc : ℤ
da db dc k : ℕ
inv✝¹ : Invertible ↑da
inv✝ : Invertible ↑db
h₁✝ : na * nb = ↑k * nc
h₂✝ : da * db = k * dc
this✝ : Invertible ↑(da * db)
this : Invertible ↑dc
H : ∀ (a : α), a * ⅟↑da * ⅟↑db = a * ⅟↑db * ⅟↑da
h₁ : ↑na * ↑nb = ↑k * ↑nc
h₂ : ↑nc * ⅟↑dc = ↑nc * ↑k * ↑dc * ⅟↑da * ⅟↑db * ⅟↑dc
⊢ ↑k * ↑nc * ⅟↑da * ⅟↑db = ↑nc * ⅟↑dc
[PROOFSTEP]
rw [h₂, Nat.cast_commute]
[GOAL]
case mk.mk
α : Type u_1
inst✝ : Ring α
na nb nc : ℤ
da db dc k : ℕ
inv✝¹ : Invertible ↑da
inv✝ : Invertible ↑db
h₁✝ : na * nb = ↑k * nc
h₂✝ : da * db = k * dc
this✝ : Invertible ↑(da * db)
this : Invertible ↑dc
H : ∀ (a : α), a * ⅟↑da * ⅟↑db = a * ⅟↑db * ⅟↑da
h₁ : ↑na * ↑nb = ↑k * ↑nc
h₂ : ↑nc * ⅟↑dc = ↑nc * ↑k * ↑dc * ⅟↑da * ⅟↑db * ⅟↑dc
⊢ ↑nc * ↑k * ⅟↑da * ⅟↑db = ↑nc * ↑k * ↑dc * ⅟↑da * ⅟↑db * ⅟↑dc
[PROOFSTEP]
simp only [mul_mul_invOf_self_cancel, (Nat.cast_commute (α := α) da dc).invOf_left.invOf_right.right_comm,
(Nat.cast_commute (α := α) db dc).invOf_left.invOf_right.right_comm]
[GOAL]
«$α» : Type u
«$a» «$b» : «$α»
«$sα» : Semiring «$α»
«$f» : «$α» → «$α» → «$α» := HMul.hMul
«$e» : «$α» := «$a» * «$b»
«$mα'» : AddMonoidWithOne «$α»
«$na» : ℕ
«$pa» : IsNat «$a» «$na»
«$mα» : AddMonoidWithOne «$α»
«$nb» : ℕ
«$pb» : IsNat «$b» «$nb»
⊢ AddMonoidWithOne «$α»
[PROOFSTEP]
clear! «$mα» «$mα'»
[GOAL]
«$α» : Type u
«$a» «$b» : «$α»
«$sα» : Semiring «$α»
«$f» : «$α» → «$α» → «$α» := HMul.hMul
«$e» : «$α» := «$a» * «$b»
«$na» «$nb» : ℕ
⊢ AddMonoidWithOne «$α»
[PROOFSTEP]
apply AddCommMonoidWithOne.toAddMonoidWithOne
[GOAL]
a b : ℕ
c : ℕ
h1 : Nat.pow a b = c
⊢ Nat.pow a (2 * b) = Nat.mul c c
[PROOFSTEP]
simp [two_mul, pow_add, ← h1]
[GOAL]
a b : ℕ
c : ℕ
h1 : Nat.pow a b = c
⊢ Nat.pow a (2 * b + 1) = Nat.mul c (Nat.mul c a)
[PROOFSTEP]
simp [two_mul, pow_add, mul_assoc, ← h1]
[GOAL]
a✝ b✝ : Q(ℕ)
depth : ℕ
a b₀ c₀ b : Q(ℕ)
p : Q(Prop)
hp : «$p» =Q (Nat.pow «$a» «$b₀» = «$c₀»)
b' : ℕ := Expr.natLit! b
d : ℕ := depth >>> 1
hi : Q(ℕ)
⊢ «$p» =Q (Nat.pow «$a» «$b₀» = «$c₀»)
[PROOFSTEP]
exact hp
[GOAL]
a b : ℕ
c : ℕ
h1 : Nat.pow a b = c
⊢ Int.pow (Int.ofNat a) b = Int.ofNat c
[PROOFSTEP]
simp [← h1]
[GOAL]
a b' : ℕ
c' b c : ℕ
h1 : Nat.pow a b' = c'
hb : 2 * b' = b
hc : c' * c' = c
⊢ Int.pow (Int.negOfNat a) b = Int.ofNat c
[PROOFSTEP]
rw [← hb, Int.negOfNat_eq, pow_eq, pow_mul, neg_pow_two, ← pow_mul, two_mul, pow_add, ← hc, ← h1]
[GOAL]
a b' : ℕ
c' b c : ℕ
h1 : Nat.pow a b' = c'
hb : 2 * b' = b
hc : c' * c' = c
⊢ Int.ofNat a ^ b' * Int.ofNat a ^ b' = Int.ofNat (Nat.pow a b' * Nat.pow a b')
[PROOFSTEP]
simp
[GOAL]
a b' : ℕ
c' b c : ℕ
h1 : Nat.pow a b' = c'
hb : 2 * b' + 1 = b
hc : c' * (c' * a) = c
⊢ Int.pow (Int.negOfNat a) b = Int.negOfNat c
[PROOFSTEP]
rw [← hb, Int.negOfNat_eq, Int.negOfNat_eq, pow_eq, pow_succ, pow_mul, neg_pow_two, ← pow_mul, two_mul, pow_add, ← hc, ←
h1]
[GOAL]
a b' : ℕ
c' b c : ℕ
h1 : Nat.pow a b' = c'
hb : 2 * b' + 1 = b
hc : c' * (c' * a) = c
⊢ -Int.ofNat a * (Int.ofNat a ^ b' * Int.ofNat a ^ b') = -Int.ofNat (Nat.pow a b' * (Nat.pow a b' * a))
[PROOFSTEP]
simp [mul_assoc, mul_comm, mul_left_comm]
[GOAL]
α : Type u_1
inst✝ : Semiring α
n✝¹ n✝ : ℕ
⊢ ↑n✝¹ ^ ↑n✝ = ↑(Nat.pow n✝¹ n✝)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝ : Ring α
n✝¹ : ℤ
n✝ : ℕ
⊢ ↑n✝¹ ^ ↑n✝ = ↑(Int.pow n✝¹ n✝)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝ : Ring α
f : α → ℕ → α
a : α
an cn : ℤ
ad b b' cd : ℕ
⊢ f = HPow.hPow → IsRat a an ad → IsNat b b' → Int.pow an b' = cn → Nat.pow ad b' = cd → IsRat (f a b) cn cd
[PROOFSTEP]
rintro rfl ⟨_, rfl⟩ ⟨rfl⟩ (rfl : an ^ b = _) (rfl : ad ^ b = _)
[GOAL]
case mk.mk
α : Type u_1
inst✝ : Ring α
an : ℤ
ad b : ℕ
inv✝ : Invertible ↑ad
⊢ IsRat ((↑an * ⅟↑ad) ^ b) (an ^ b) (ad ^ b)
[PROOFSTEP]
have := invertiblePow (ad : α) b
[GOAL]
case mk.mk
α : Type u_1
inst✝ : Ring α
an : ℤ
ad b : ℕ
inv✝ : Invertible ↑ad
this : Invertible (↑ad ^ b)
⊢ IsRat ((↑an * ⅟↑ad) ^ b) (an ^ b) (ad ^ b)
[PROOFSTEP]
rw [← Nat.cast_pow] at this
[GOAL]
case mk.mk
α : Type u_1
inst✝ : Ring α
an : ℤ
ad b : ℕ
inv✝ : Invertible ↑ad
this : Invertible ↑(ad ^ b)
⊢ IsRat ((↑an * ⅟↑ad) ^ b) (an ^ b) (ad ^ b)
[PROOFSTEP]
use this
[GOAL]
case eq
α : Type u_1
inst✝ : Ring α
an : ℤ
ad b : ℕ
inv✝ : Invertible ↑ad
this : Invertible ↑(ad ^ b)
⊢ (↑an * ⅟↑ad) ^ b = ↑(an ^ b) * ⅟↑(ad ^ b)
[PROOFSTEP]
simp [invOf_pow, Commute.mul_pow]
[GOAL]
α : Type u_1
inst✝¹ : DivisionRing α
inst✝ : CharZero α
a : α
n d : ℕ
⊢ IsRat a (Int.ofNat (Nat.succ n)) d → IsRat a⁻¹ (Int.ofNat d) (Nat.succ n)
[PROOFSTEP]
rintro ⟨_, rfl⟩
[GOAL]
case mk
α : Type u_1
inst✝¹ : DivisionRing α
inst✝ : CharZero α
n d : ℕ
inv✝ : Invertible ↑d
⊢ IsRat (↑(Int.ofNat (Nat.succ n)) * ⅟↑d)⁻¹ (Int.ofNat d) (Nat.succ n)
[PROOFSTEP]
have := invertibleOfNonzero (α := α) (Nat.cast_ne_zero.2 (Nat.succ_ne_zero n))
[GOAL]
case mk
α : Type u_1
inst✝¹ : DivisionRing α
inst✝ : CharZero α
n d : ℕ
inv✝ : Invertible ↑d
this : Invertible ↑(Nat.succ n)
⊢ IsRat (↑(Int.ofNat (Nat.succ n)) * ⅟↑d)⁻¹ (Int.ofNat d) (Nat.succ n)
[PROOFSTEP]
refine ⟨this, by simp⟩
[GOAL]
α : Type u_1
inst✝¹ : DivisionRing α
inst✝ : CharZero α
n d : ℕ
inv✝ : Invertible ↑d
this : Invertible ↑(Nat.succ n)
⊢ (↑(Int.ofNat (Nat.succ n)) * ⅟↑d)⁻¹ = ↑(Int.ofNat d) * ⅟↑(Nat.succ n)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝ : DivisionRing α
⊢ (↑1)⁻¹ = ↑1
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝ : DivisionRing α
⊢ (↑0)⁻¹ = ↑0
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝ : DivisionRing α
⊢ (↑(Int.negOfNat 1))⁻¹ = ↑(Int.negOfNat 1)
[PROOFSTEP]
simp [inv_neg_one]
[GOAL]
α : Type u_1
inst✝¹ : DivisionRing α
inst✝ : CharZero α
a : α
n d : ℕ
⊢ IsRat a (Int.negOfNat (Nat.succ n)) d → IsRat a⁻¹ (Int.negOfNat d) (Nat.succ n)
[PROOFSTEP]
rintro ⟨_, rfl⟩
[GOAL]
case mk
α : Type u_1
inst✝¹ : DivisionRing α
inst✝ : CharZero α
n d : ℕ
inv✝ : Invertible ↑d
⊢ IsRat (↑(Int.negOfNat (Nat.succ n)) * ⅟↑d)⁻¹ (Int.negOfNat d) (Nat.succ n)
[PROOFSTEP]
simp only [Int.negOfNat_eq]
[GOAL]
case mk
α : Type u_1
inst✝¹ : DivisionRing α
inst✝ : CharZero α
n d : ℕ
inv✝ : Invertible ↑d
⊢ IsRat (↑(-Int.ofNat (Nat.succ n)) * ⅟↑d)⁻¹ (-Int.ofNat d) (Nat.succ n)
[PROOFSTEP]
have := invertibleOfNonzero (α := α) (Nat.cast_ne_zero.2 (Nat.succ_ne_zero n))
[GOAL]
case mk
α : Type u_1
inst✝¹ : DivisionRing α
inst✝ : CharZero α
n d : ℕ
inv✝ : Invertible ↑d
this : Invertible ↑(Nat.succ n)
⊢ IsRat (↑(-Int.ofNat (Nat.succ n)) * ⅟↑d)⁻¹ (-Int.ofNat d) (Nat.succ n)
[PROOFSTEP]
generalize Nat.succ n = n at *
[GOAL]
case mk
α : Type u_1
inst✝¹ : DivisionRing α
inst✝ : CharZero α
n✝ d : ℕ
inv✝ : Invertible ↑d
n : ℕ
this : Invertible ↑n
⊢ IsRat (↑(-Int.ofNat n) * ⅟↑d)⁻¹ (-Int.ofNat d) n
[PROOFSTEP]
use this
[GOAL]
case eq
α : Type u_1
inst✝¹ : DivisionRing α
inst✝ : CharZero α
n✝ d : ℕ
inv✝ : Invertible ↑d
n : ℕ
this : Invertible ↑n
⊢ (↑(-Int.ofNat n) * ⅟↑d)⁻¹ = ↑(-Int.ofNat d) * ⅟↑n
[PROOFSTEP]
simp only [Int.ofNat_eq_coe, Int.cast_neg, Int.cast_ofNat, invOf_eq_inv, inv_neg, neg_mul, mul_inv_rev, inv_inv]
[GOAL]
α : Type u_1
inst✝ : DivisionRing α
x✝³ x✝² : α
x✝¹ : ℤ
x✝ : ℕ
h : IsRat (x✝³ * x✝²⁻¹) x✝¹ x✝
⊢ IsRat (x✝³ / x✝²) x✝¹ x✝
[PROOFSTEP]
simp [div_eq_mul_inv]
[GOAL]
α : Type u_1
inst✝ : DivisionRing α
x✝³ x✝² : α
x✝¹ : ℤ
x✝ : ℕ
h : IsRat (x✝³ * x✝²⁻¹) x✝¹ x✝
⊢ IsRat (x✝³ * x✝²⁻¹) x✝¹ x✝
[PROOFSTEP]
exact h
[GOAL]
n✝¹ num✝ : ℤ
n✝ denom✝ : ℕ
inv✝ : Invertible ↑denom✝
h : ↑n✝¹ / ↑n✝ = ↑num✝ * ⅟↑denom✝
⊢ IsRat (mkRat ↑n✝¹ ↑n✝) num✝ denom✝
[PROOFSTEP]
rw [Rat.mkRat_eq_div]
[GOAL]
n✝¹ num✝ : ℤ
n✝ denom✝ : ℕ
inv✝ : Invertible ↑denom✝
h : ↑n✝¹ / ↑n✝ = ↑num✝ * ⅟↑denom✝
⊢ IsRat (↑↑n✝¹ / ↑↑n✝) num✝ denom✝
[PROOFSTEP]
exact ⟨_, h⟩
[GOAL]
α : Type u_1
inst✝ : DivisionRing α
σα : OfScientific α
x✝¹ x✝ : ℕ
num✝ : ℤ
denom✝ : ℕ
σh : OfScientific.ofScientific = fun m s e => ↑(Rat.ofScientific m s e)
inv✝ : Invertible ↑denom✝
eq : ↑(mkRat (↑x✝¹) (10 ^ x✝)) = ↑num✝ * ⅟↑denom✝
⊢ OfScientific.ofScientific x✝¹ true x✝ = ↑num✝ * ⅟↑denom✝
[PROOFSTEP]
simp only [σh, Rat.ofScientific_true_def]
[GOAL]
α : Type u_1
inst✝ : DivisionRing α
σα : OfScientific α
x✝¹ x✝ : ℕ
num✝ : ℤ
denom✝ : ℕ
σh : OfScientific.ofScientific = fun m s e => ↑(Rat.ofScientific m s e)
inv✝ : Invertible ↑denom✝
eq : ↑(mkRat (↑x✝¹) (10 ^ x✝)) = ↑num✝ * ⅟↑denom✝
⊢ ↑(mkRat (↑x✝¹) (10 ^ x✝)) = ↑num✝ * ⅟↑denom✝
[PROOFSTEP]
exact eq
[GOAL]
α : Type u_1
inst✝ : DivisionRing α
σα : OfScientific α
n✝¹ n✝ x✝ : ℕ
σh : OfScientific.ofScientific = fun m s e => ↑(Rat.ofScientific m s e)
h : x✝ = Nat.mul n✝¹ (10 ^ n✝)
⊢ OfScientific.ofScientific (↑n✝¹) false ↑n✝ = ↑x✝
[PROOFSTEP]
simp [σh, Rat.ofScientific_false_def, h]
[GOAL]
α : Type u_1
inst✝ : DivisionRing α
σα : OfScientific α
n✝¹ n✝ x✝ : ℕ
σh : OfScientific.ofScientific = fun m s e => ↑(Rat.ofScientific m s e)
h : x✝ = Nat.mul n✝¹ (10 ^ n✝)
⊢ ↑(↑n✝¹ * 10 ^ n✝) = ↑n✝¹ * 10 ^ n✝
[PROOFSTEP]
norm_cast
[GOAL]
x y : ℕ
⊢ Nat.ble x y = false ↔ y < x
[PROOFSTEP]
rw [← Nat.not_le, ← Bool.not_eq_true, Nat.ble_eq]
[GOAL]
α : Type u_1
inst✝¹ : AddMonoidWithOne α
inst✝ : CharZero α
n✝¹ n✝ : ℕ
h : Nat.beq n✝¹ n✝ = false
⊢ ¬↑n✝¹ = ↑n✝
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝¹ : AddMonoidWithOne α
inst✝ : CharZero α
n✝¹ n✝ : ℕ
h : Nat.beq n✝¹ n✝ = false
⊢ ¬n✝¹ = n✝
[PROOFSTEP]
exact Nat.ne_of_beq_eq_false h
[GOAL]
α : Type u_1
inst✝¹ : Ring α
inst✝ : CharZero α
n✝¹ n✝ : ℤ
h : decide (n✝¹ = n✝) = false
⊢ ¬↑n✝¹ = ↑n✝
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝¹ : Ring α
inst✝ : CharZero α
n✝¹ n✝ : ℤ
h : decide (n✝¹ = n✝) = false
⊢ ¬n✝¹ = n✝
[PROOFSTEP]
exact of_decide_eq_false h
[GOAL]
α : Type u_1
inst✝² : Ring α
n₁ n₂ : ℤ
a₁ a₂ : α
inst✝¹ : Invertible a₁
inst✝ : Invertible a₂
⊢ ↑n₁ * ⅟a₁ = ↑n₂ * ⅟a₂ ↔ ↑n₁ * a₂ = ↑n₂ * a₁
[PROOFSTEP]
rw [mul_invOf_eq_iff_eq_mul_right, ← Int.commute_cast, mul_assoc, ← mul_left_eq_iff_eq_invOf_mul, Int.commute_cast]
[GOAL]
α : Type u_1
inst✝ : Ring α
num✝ : ℤ
denom✝ : ℕ
inv✝¹ inv✝ : Invertible ↑denom✝
⊢ ↑num✝ * ⅟↑denom✝ = ↑num✝ * ⅟↑denom✝
[PROOFSTEP]
congr
[GOAL]
case e_a.h.e_5.h
α : Type u_1
inst✝ : Ring α
num✝ : ℤ
denom✝ : ℕ
inv✝¹ inv✝ : Invertible ↑denom✝
⊢ inv✝¹ = inv✝
[PROOFSTEP]
apply Subsingleton.elim
[GOAL]
α : Type u_1
inst✝ : LinearOrderedRing α
num✝¹ num✝ : ℤ
da db : ℕ
inv✝¹ : Invertible ↑da
inv✝ : Invertible ↑db
h : decide (Int.mul num✝¹ (Int.ofNat db) ≤ Int.mul num✝ (Int.ofNat da)) = true
⊢ ↑num✝¹ * ⅟↑da ≤ ↑num✝ * ⅟↑db
[PROOFSTEP]
have h := Int.cast_mono (α := α) <| of_decide_eq_true h
[GOAL]
α : Type u_1
inst✝ : LinearOrderedRing α
num✝¹ num✝ : ℤ
da db : ℕ
inv✝¹ : Invertible ↑da
inv✝ : Invertible ↑db
h✝ : decide (Int.mul num✝¹ (Int.ofNat db) ≤ Int.mul num✝ (Int.ofNat da)) = true
h : (fun x => ↑x) (Int.mul num✝¹ (Int.ofNat db)) ≤ (fun x => ↑x) (Int.mul num✝ (Int.ofNat da))
⊢ ↑num✝¹ * ⅟↑da ≤ ↑num✝ * ⅟↑db
[PROOFSTEP]
have ha : 0 ≤ ⅟(da : α) := invOf_nonneg.mpr <| Nat.cast_nonneg da
[GOAL]
α : Type u_1
inst✝ : LinearOrderedRing α
num✝¹ num✝ : ℤ
da db : ℕ
inv✝¹ : Invertible ↑da
inv✝ : Invertible ↑db
h✝ : decide (Int.mul num✝¹ (Int.ofNat db) ≤ Int.mul num✝ (Int.ofNat da)) = true
h : (fun x => ↑x) (Int.mul num✝¹ (Int.ofNat db)) ≤ (fun x => ↑x) (Int.mul num✝ (Int.ofNat da))
ha : 0 ≤ ⅟↑da
⊢ ↑num✝¹ * ⅟↑da ≤ ↑num✝ * ⅟↑db
[PROOFSTEP]
have hb : 0 ≤ ⅟(db : α) := invOf_nonneg.mpr <| Nat.cast_nonneg db
[GOAL]
α : Type u_1
inst✝ : LinearOrderedRing α
num✝¹ num✝ : ℤ
da db : ℕ
inv✝¹ : Invertible ↑da
inv✝ : Invertible ↑db
h✝ : decide (Int.mul num✝¹ (Int.ofNat db) ≤ Int.mul num✝ (Int.ofNat da)) = true
h : (fun x => ↑x) (Int.mul num✝¹ (Int.ofNat db)) ≤ (fun x => ↑x) (Int.mul num✝ (Int.ofNat da))
ha : 0 ≤ ⅟↑da
hb : 0 ≤ ⅟↑db
⊢ ↑num✝¹ * ⅟↑da ≤ ↑num✝ * ⅟↑db
[PROOFSTEP]
have h := (mul_le_mul_of_nonneg_left · hb) <| mul_le_mul_of_nonneg_right h ha
[GOAL]
α : Type u_1
inst✝ : LinearOrderedRing α
num✝¹ num✝ : ℤ
da db : ℕ
inv✝¹ : Invertible ↑da
inv✝ : Invertible ↑db
h✝¹ : decide (Int.mul num✝¹ (Int.ofNat db) ≤ Int.mul num✝ (Int.ofNat da)) = true
h✝ : (fun x => ↑x) (Int.mul num✝¹ (Int.ofNat db)) ≤ (fun x => ↑x) (Int.mul num✝ (Int.ofNat da))
ha : 0 ≤ ⅟↑da
hb : 0 ≤ ⅟↑db
h :
⅟↑db * ((fun x => ↑x) (Int.mul num✝¹ (Int.ofNat db)) * ⅟↑da) ≤
⅟↑db * ((fun x => ↑x) (Int.mul num✝ (Int.ofNat da)) * ⅟↑da)
⊢ ↑num✝¹ * ⅟↑da ≤ ↑num✝ * ⅟↑db
[PROOFSTEP]
rw [← mul_assoc, Int.commute_cast] at h
[GOAL]
α : Type u_1
inst✝ : LinearOrderedRing α
num✝¹ num✝ : ℤ
da db : ℕ
inv✝¹ : Invertible ↑da
inv✝ : Invertible ↑db
h✝¹ : decide (Int.mul num✝¹ (Int.ofNat db) ≤ Int.mul num✝ (Int.ofNat da)) = true
h✝ : (fun x => ↑x) (Int.mul num✝¹ (Int.ofNat db)) ≤ (fun x => ↑x) (Int.mul num✝ (Int.ofNat da))
ha : 0 ≤ ⅟↑da
hb : 0 ≤ ⅟↑db
h : ↑(Int.mul num✝¹ (Int.ofNat db)) * ⅟↑db * ⅟↑da ≤ ⅟↑db * ((fun x => ↑x) (Int.mul num✝ (Int.ofNat da)) * ⅟↑da)
⊢ ↑num✝¹ * ⅟↑da ≤ ↑num✝ * ⅟↑db
[PROOFSTEP]
simp at h
[GOAL]
α : Type u_1
inst✝ : LinearOrderedRing α
num✝¹ num✝ : ℤ
da db : ℕ
inv✝¹ : Invertible ↑da
inv✝ : Invertible ↑db
h✝¹ : decide (Int.mul num✝¹ (Int.ofNat db) ≤ Int.mul num✝ (Int.ofNat da)) = true
h✝ : (fun x => ↑x) (Int.mul num✝¹ (Int.ofNat db)) ≤ (fun x => ↑x) (Int.mul num✝ (Int.ofNat da))
ha : 0 ≤ ⅟↑da
hb : 0 ≤ ⅟↑db
h : ↑num✝¹ * ⅟↑da ≤ ⅟↑db * ↑num✝
⊢ ↑num✝¹ * ⅟↑da ≤ ↑num✝ * ⅟↑db
[PROOFSTEP]
rwa [Int.commute_cast] at h
[GOAL]
α : Type u_1
inst✝¹ : LinearOrderedRing α
inst✝ : Nontrivial α
num✝¹ num✝ : ℤ
da db : ℕ
inv✝¹ : Invertible ↑da
inv✝ : Invertible ↑db
h : decide (num✝¹ * ↑db < num✝ * ↑da) = true
⊢ ↑num✝¹ * ⅟↑da < ↑num✝ * ⅟↑db
[PROOFSTEP]
have h := Int.cast_strictMono (α := α) <| of_decide_eq_true h
[GOAL]
α : Type u_1
inst✝¹ : LinearOrderedRing α
inst✝ : Nontrivial α
num✝¹ num✝ : ℤ
da db : ℕ
inv✝¹ : Invertible ↑da
inv✝ : Invertible ↑db
h✝ : decide (num✝¹ * ↑db < num✝ * ↑da) = true
h : (fun x => ↑x) (num✝¹ * ↑db) < (fun x => ↑x) (num✝ * ↑da)
⊢ ↑num✝¹ * ⅟↑da < ↑num✝ * ⅟↑db
[PROOFSTEP]
have ha : 0 < ⅟(da : α) := pos_invOf_of_invertible_cast da
[GOAL]
α : Type u_1
inst✝¹ : LinearOrderedRing α
inst✝ : Nontrivial α
num✝¹ num✝ : ℤ
da db : ℕ
inv✝¹ : Invertible ↑da
inv✝ : Invertible ↑db
h✝ : decide (num✝¹ * ↑db < num✝ * ↑da) = true
h : (fun x => ↑x) (num✝¹ * ↑db) < (fun x => ↑x) (num✝ * ↑da)
ha : 0 < ⅟↑da
⊢ ↑num✝¹ * ⅟↑da < ↑num✝ * ⅟↑db
[PROOFSTEP]
have hb : 0 < ⅟(db : α) := pos_invOf_of_invertible_cast db
[GOAL]
α : Type u_1
inst✝¹ : LinearOrderedRing α
inst✝ : Nontrivial α
num✝¹ num✝ : ℤ
da db : ℕ
inv✝¹ : Invertible ↑da
inv✝ : Invertible ↑db
h✝ : decide (num✝¹ * ↑db < num✝ * ↑da) = true
h : (fun x => ↑x) (num✝¹ * ↑db) < (fun x => ↑x) (num✝ * ↑da)
ha : 0 < ⅟↑da
hb : 0 < ⅟↑db
⊢ ↑num✝¹ * ⅟↑da < ↑num✝ * ⅟↑db
[PROOFSTEP]
have h := (mul_lt_mul_of_pos_left · hb) <| mul_lt_mul_of_pos_right h ha
[GOAL]
α : Type u_1
inst✝¹ : LinearOrderedRing α
inst✝ : Nontrivial α
num✝¹ num✝ : ℤ
da db : ℕ
inv✝¹ : Invertible ↑da
inv✝ : Invertible ↑db
h✝¹ : decide (num✝¹ * ↑db < num✝ * ↑da) = true
h✝ : (fun x => ↑x) (num✝¹ * ↑db) < (fun x => ↑x) (num✝ * ↑da)
ha : 0 < ⅟↑da
hb : 0 < ⅟↑db
h : ⅟↑db * ((fun x => ↑x) (num✝¹ * ↑db) * ⅟↑da) < ⅟↑db * ((fun x => ↑x) (num✝ * ↑da) * ⅟↑da)
⊢ ↑num✝¹ * ⅟↑da < ↑num✝ * ⅟↑db
[PROOFSTEP]
rw [← mul_assoc, Int.commute_cast] at h
[GOAL]
α : Type u_1
inst✝¹ : LinearOrderedRing α
inst✝ : Nontrivial α
num✝¹ num✝ : ℤ
da db : ℕ
inv✝¹ : Invertible ↑da
inv✝ : Invertible ↑db
h✝¹ : decide (num✝¹ * ↑db < num✝ * ↑da) = true
h✝ : (fun x => ↑x) (num✝¹ * ↑db) < (fun x => ↑x) (num✝ * ↑da)
ha : 0 < ⅟↑da
hb : 0 < ⅟↑db
h : ↑(num✝¹ * ↑db) * ⅟↑db * ⅟↑da < ⅟↑db * ((fun x => ↑x) (num✝ * ↑da) * ⅟↑da)
⊢ ↑num✝¹ * ⅟↑da < ↑num✝ * ⅟↑db
[PROOFSTEP]
simp at h
[GOAL]
α : Type u_1
inst✝¹ : LinearOrderedRing α
inst✝ : Nontrivial α
num✝¹ num✝ : ℤ
da db : ℕ
inv✝¹ : Invertible ↑da
inv✝ : Invertible ↑db
h✝¹ : decide (num✝¹ * ↑db < num✝ * ↑da) = true
h✝ : (fun x => ↑x) (num✝¹ * ↑db) < (fun x => ↑x) (num✝ * ↑da)
ha : 0 < ⅟↑da
hb : 0 < ⅟↑db
h : ↑num✝¹ * ⅟↑da < ⅟↑db * ↑num✝
⊢ ↑num✝¹ * ⅟↑da < ↑num✝ * ⅟↑db
[PROOFSTEP]
rwa [Int.commute_cast] at h
[GOAL]
α : Type u_1
inst✝¹ : Ring α
inst✝ : CharZero α
num✝¹ num✝ : ℤ
denom✝¹ denom✝ : ℕ
inv✝¹ : Invertible ↑denom✝¹
inv✝ : Invertible ↑denom✝
h : decide (Int.mul num✝¹ (Int.ofNat denom✝) = Int.mul num✝ (Int.ofNat denom✝¹)) = false
⊢ ¬↑num✝¹ * ⅟↑denom✝¹ = ↑num✝ * ⅟↑denom✝
[PROOFSTEP]
rw [Rat.invOf_denom_swap]
[GOAL]
α : Type u_1
inst✝¹ : Ring α
inst✝ : CharZero α
num✝¹ num✝ : ℤ
denom✝¹ denom✝ : ℕ
inv✝¹ : Invertible ↑denom✝¹
inv✝ : Invertible ↑denom✝
h : decide (Int.mul num✝¹ (Int.ofNat denom✝) = Int.mul num✝ (Int.ofNat denom✝¹)) = false
⊢ ¬↑num✝¹ * ↑denom✝ = ↑num✝ * ↑denom✝¹
[PROOFSTEP]
exact_mod_cast of_decide_eq_false h
[GOAL]
«$β» : Type := Prop
«$e» : «$β»
«$f» $a✝ $b✝ : Expr
«$u» : Level
«$α» : Type u
«$a» «$b» : «$α»
«$ra» : AddMonoidWithOne «$α»
«$na» : ℕ
«$pa» : IsNat «$a» «$na»
«$rb» : AddMonoidWithOne «$α»
«$nb» : ℕ
«$pb» : IsNat «$b» «$nb»
«$_i» : OrderedSemiring «$α»
⊢ AddMonoidWithOne «$α»
[PROOFSTEP]
clear! «$ra» «$rb»
[GOAL]
«$β» : Type := Prop
«$e» : «$β»
«$f» $a✝ $b✝ : Expr
«$u» : Level
«$α» : Type u
«$a» «$b» : «$α»
«$na» «$nb» : ℕ
«$_i» : OrderedSemiring «$α»
⊢ AddMonoidWithOne «$α»
[PROOFSTEP]
infer_instance
[GOAL]
«$β» : Type := Prop
«$e» : «$β»
«$f» $a✝ $b✝ : Expr
«$u» : Level
«$α» : Type u
«$a» «$b» : «$α»
«$na» : ℕ
«$rb» : AddMonoidWithOne «$α»
«$nb» : ℕ
«$pb» : IsNat «$b» «$nb»
«$_i» : OrderedSemiring «$α»
«$ra» : AddMonoidWithOne «$α» := inferInstance
«$pa» : IsNat «$a» «$na»
⊢ AddMonoidWithOne «$α»
[PROOFSTEP]
clear! «$ra» «$rb»
[GOAL]
«$β» : Type := Prop
«$e» : «$β»
«$f» $a✝ $b✝ : Expr
«$u» : Level
«$α» : Type u
«$a» «$b» : «$α»
«$na» «$nb» : ℕ
«$_i» : OrderedSemiring «$α»
⊢ AddMonoidWithOne «$α»
[PROOFSTEP]
infer_instance
[GOAL]
«$β» : Type := Prop
«$e» : «$β»
«$f» $a✝ $b✝ : Expr
«$u» : Level
«$α» : Type u
«$a» «$b» : «$α»
«$ra» : AddMonoidWithOne «$α»
«$na» : ℕ
«$pa» : IsNat «$a» «$na»
«$rb» : AddMonoidWithOne «$α»
«$nb» : ℕ
«$pb» : IsNat «$b» «$nb»
«$_i» : OrderedSemiring «$α»
⊢ AddMonoidWithOne «$α»
[PROOFSTEP]
clear! «$ra» «$rb»
[GOAL]
«$β» : Type := Prop
«$e» : «$β»
«$f» $a✝ $b✝ : Expr
«$u» : Level
«$α» : Type u
«$a» «$b» : «$α»
«$na» «$nb» : ℕ
«$_i» : OrderedSemiring «$α»
⊢ AddMonoidWithOne «$α»
[PROOFSTEP]
infer_instance
[GOAL]
«$β» : Type := Prop
«$e» : «$β»
«$f» $a✝ $b✝ : Expr
«$u» : Level
«$α» : Type u
«$a» «$b» : «$α»
«$na» : ℕ
«$rb» : AddMonoidWithOne «$α»
«$nb» : ℕ
«$pb» : IsNat «$b» «$nb»
«$_i» : OrderedSemiring «$α»
«$ra» : AddMonoidWithOne «$α» := inferInstance
«$pa» : IsNat «$a» «$na»
⊢ AddMonoidWithOne «$α»
[PROOFSTEP]
clear! «$ra» «$rb»
[GOAL]
«$β» : Type := Prop
«$e» : «$β»
«$f» $a✝ $b✝ : Expr
«$u» : Level
«$α» : Type u
«$a» «$b» : «$α»
«$na» «$nb» : ℕ
«$_i» : OrderedSemiring «$α»
⊢ AddMonoidWithOne «$α»
[PROOFSTEP]
infer_instance
[GOAL]
n✝ : ℕ
⊢ Nat.succ ↑n✝ = ↑(Nat.succ n✝)
[PROOFSTEP]
simp
[GOAL]
n✝¹ n✝ : ℕ
⊢ ↑n✝¹ - ↑n✝ = ↑(Nat.sub n✝¹ n✝)
[PROOFSTEP]
simp
[GOAL]
n✝¹ n✝ : ℕ
⊢ ↑n✝¹ % ↑n✝ = ↑(Nat.mod n✝¹ n✝)
[PROOFSTEP]
aesop
[GOAL]
n✝¹ n✝ : ℕ
⊢ ↑n✝¹ / ↑n✝ = ↑(Nat.div n✝¹ n✝)
[PROOFSTEP]
aesop
| {"mathlib_filename": "Mathlib.Tactic.NormNum.Basic", "llama_tokens": 19960} |
[GOAL]
M : Type u
inst✝² : AddCommGroup M
inst✝¹ : Module ℤ M
inst✝ : Finite ℤ M
hM : IsTorsion ℤ M
⊢ _root_.Finite M
[PROOFSTEP]
rcases Module.equiv_directSum_of_isTorsion hM with ⟨ι, _, p, h, e, ⟨l⟩⟩
[GOAL]
case intro.intro.intro.intro.intro.intro
M : Type u
inst✝² : AddCommGroup M
inst✝¹ : Module ℤ M
inst✝ : Finite ℤ M
hM : IsTorsion ℤ M
ι : Type
w✝ : Fintype ι
p : ι → ℤ
h : ∀ (i : ι), Irreducible (p i)
e : ι → ℕ
l : M ≃ₗ[ℤ] ⨁ (i : ι), ℤ ⧸ Submodule.span ℤ {p i ^ e i}
⊢ _root_.Finite M
[PROOFSTEP]
haveI : ∀ i : ι, NeZero (p i ^ e i).natAbs := fun i => ⟨Int.natAbs_ne_zero.mpr <| pow_ne_zero (e i) (h i).ne_zero⟩
[GOAL]
case intro.intro.intro.intro.intro.intro
M : Type u
inst✝² : AddCommGroup M
inst✝¹ : Module ℤ M
inst✝ : Finite ℤ M
hM : IsTorsion ℤ M
ι : Type
w✝ : Fintype ι
p : ι → ℤ
h : ∀ (i : ι), Irreducible (p i)
e : ι → ℕ
l : M ≃ₗ[ℤ] ⨁ (i : ι), ℤ ⧸ Submodule.span ℤ {p i ^ e i}
this : ∀ (i : ι), NeZero (Int.natAbs (p i ^ e i))
⊢ _root_.Finite M
[PROOFSTEP]
haveI : ∀ i : ι, _root_.Finite <| ℤ ⧸ Submodule.span ℤ {p i ^ e i} := fun i =>
Finite.of_equiv _ (p i ^ e i).quotientSpanEquivZMod.symm.toEquiv
[GOAL]
case intro.intro.intro.intro.intro.intro
M : Type u
inst✝² : AddCommGroup M
inst✝¹ : Module ℤ M
inst✝ : Finite ℤ M
hM : IsTorsion ℤ M
ι : Type
w✝ : Fintype ι
p : ι → ℤ
h : ∀ (i : ι), Irreducible (p i)
e : ι → ℕ
l : M ≃ₗ[ℤ] ⨁ (i : ι), ℤ ⧸ Submodule.span ℤ {p i ^ e i}
this✝ : ∀ (i : ι), NeZero (Int.natAbs (p i ^ e i))
this : ∀ (i : ι), _root_.Finite (ℤ ⧸ Submodule.span ℤ {p i ^ e i})
⊢ _root_.Finite M
[PROOFSTEP]
haveI : _root_.Finite (⨁ i, ℤ ⧸ (Submodule.span ℤ {p i ^ e i} : Submodule ℤ ℤ)) :=
Finite.of_equiv _ DFinsupp.equivFunOnFintype.symm
[GOAL]
case intro.intro.intro.intro.intro.intro
M : Type u
inst✝² : AddCommGroup M
inst✝¹ : Module ℤ M
inst✝ : Finite ℤ M
hM : IsTorsion ℤ M
ι : Type
w✝ : Fintype ι
p : ι → ℤ
h : ∀ (i : ι), Irreducible (p i)
e : ι → ℕ
l : M ≃ₗ[ℤ] ⨁ (i : ι), ℤ ⧸ Submodule.span ℤ {p i ^ e i}
this✝¹ : ∀ (i : ι), NeZero (Int.natAbs (p i ^ e i))
this✝ : ∀ (i : ι), _root_.Finite (ℤ ⧸ Submodule.span ℤ {p i ^ e i})
this : _root_.Finite (⨁ (i : ι), ℤ ⧸ Submodule.span ℤ {p i ^ e i})
⊢ _root_.Finite M
[PROOFSTEP]
exact Finite.of_equiv _ l.symm.toEquiv
[GOAL]
G : Type u
inst✝ : AddCommGroup G
hG : AddGroup.FG G
⊢ ∃ n ι x p x e, Nonempty (G ≃+ (Fin n →₀ ℤ) × ⨁ (i : ι), ZMod (p i ^ e i))
[PROOFSTEP]
obtain ⟨n, ι, fι, p, hp, e, ⟨f⟩⟩ :=
@Module.equiv_free_prod_directSum _ _ _ _ _ _ _ (Module.Finite.iff_addGroup_fg.mpr hG)
[GOAL]
case intro.intro.intro.intro.intro.intro.intro
G : Type u
inst✝ : AddCommGroup G
hG : AddGroup.FG G
n : ℕ
ι : Type
fι : Fintype ι
p : ι → ℤ
hp : ∀ (i : ι), Irreducible (p i)
e : ι → ℕ
f : G ≃ₗ[ℤ] (Fin n →₀ ℤ) × ⨁ (i : ι), ℤ ⧸ Submodule.span ℤ {p i ^ e i}
⊢ ∃ n ι x p x e, Nonempty (G ≃+ (Fin n →₀ ℤ) × ⨁ (i : ι), ZMod (p i ^ e i))
[PROOFSTEP]
refine' ⟨n, ι, fι, fun i => (p i).natAbs, fun i => _, e, ⟨_⟩⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.refine'_1
G : Type u
inst✝ : AddCommGroup G
hG : AddGroup.FG G
n : ℕ
ι : Type
fι : Fintype ι
p : ι → ℤ
hp : ∀ (i : ι), Irreducible (p i)
e : ι → ℕ
f : G ≃ₗ[ℤ] (Fin n →₀ ℤ) × ⨁ (i : ι), ℤ ⧸ Submodule.span ℤ {p i ^ e i}
i : ι
⊢ Nat.Prime ((fun i => Int.natAbs (p i)) i)
[PROOFSTEP]
rw [← Int.prime_iff_natAbs_prime, ← GCDMonoid.irreducible_iff_prime]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.refine'_1
G : Type u
inst✝ : AddCommGroup G
hG : AddGroup.FG G
n : ℕ
ι : Type
fι : Fintype ι
p : ι → ℤ
hp : ∀ (i : ι), Irreducible (p i)
e : ι → ℕ
f : G ≃ₗ[ℤ] (Fin n →₀ ℤ) × ⨁ (i : ι), ℤ ⧸ Submodule.span ℤ {p i ^ e i}
i : ι
⊢ Irreducible (p i)
[PROOFSTEP]
exact hp i
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.refine'_2
G : Type u
inst✝ : AddCommGroup G
hG : AddGroup.FG G
n : ℕ
ι : Type
fι : Fintype ι
p : ι → ℤ
hp : ∀ (i : ι), Irreducible (p i)
e : ι → ℕ
f : G ≃ₗ[ℤ] (Fin n →₀ ℤ) × ⨁ (i : ι), ℤ ⧸ Submodule.span ℤ {p i ^ e i}
⊢ G ≃+ (Fin n →₀ ℤ) × ⨁ (i : ι), ZMod ((fun i => Int.natAbs (p i)) i ^ e i)
[PROOFSTEP]
exact
f.toAddEquiv.trans
((AddEquiv.refl _).prodCongr <|
DFinsupp.mapRange.addEquiv fun i =>
((Int.quotientSpanEquivZMod _).trans <| ZMod.ringEquivCongr <| (p i).natAbs_pow _).toAddEquiv)
[GOAL]
G : Type u
inst✝¹ : AddCommGroup G
inst✝ : Finite G
⊢ ∃ ι x p x e, Nonempty (G ≃+ ⨁ (i : ι), ZMod (p i ^ e i))
[PROOFSTEP]
cases nonempty_fintype G
[GOAL]
case intro
G : Type u
inst✝¹ : AddCommGroup G
inst✝ : Finite G
val✝ : Fintype G
⊢ ∃ ι x p x e, Nonempty (G ≃+ ⨁ (i : ι), ZMod (p i ^ e i))
[PROOFSTEP]
obtain ⟨n, ι, fι, p, hp, e, ⟨f⟩⟩ := equiv_free_prod_directSum_zmod G
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
G : Type u
inst✝¹ : AddCommGroup G
inst✝ : Finite G
val✝ : Fintype G
n : ℕ
ι : Type
fι : Fintype ι
p : ι → ℕ
hp : ∀ (i : ι), Nat.Prime (p i)
e : ι → ℕ
f : G ≃+ (Fin n →₀ ℤ) × ⨁ (i : ι), ZMod (p i ^ e i)
⊢ ∃ ι x p x e, Nonempty (G ≃+ ⨁ (i : ι), ZMod (p i ^ e i))
[PROOFSTEP]
cases' n with n
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.zero
G : Type u
inst✝¹ : AddCommGroup G
inst✝ : Finite G
val✝ : Fintype G
ι : Type
fι : Fintype ι
p : ι → ℕ
hp : ∀ (i : ι), Nat.Prime (p i)
e : ι → ℕ
f : G ≃+ (Fin Nat.zero →₀ ℤ) × ⨁ (i : ι), ZMod (p i ^ e i)
⊢ ∃ ι x p x e, Nonempty (G ≃+ ⨁ (i : ι), ZMod (p i ^ e i))
[PROOFSTEP]
have : Unique (Fin Nat.zero →₀ ℤ) := { uniq := by simp only [Nat.zero_eq, eq_iff_true_of_subsingleton] }
[GOAL]
G : Type u
inst✝¹ : AddCommGroup G
inst✝ : Finite G
val✝ : Fintype G
ι : Type
fι : Fintype ι
p : ι → ℕ
hp : ∀ (i : ι), Nat.Prime (p i)
e : ι → ℕ
f : G ≃+ (Fin Nat.zero →₀ ℤ) × ⨁ (i : ι), ZMod (p i ^ e i)
⊢ ∀ (a : Fin Nat.zero →₀ ℤ), a = default
[PROOFSTEP]
simp only [Nat.zero_eq, eq_iff_true_of_subsingleton]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.zero
G : Type u
inst✝¹ : AddCommGroup G
inst✝ : Finite G
val✝ : Fintype G
ι : Type
fι : Fintype ι
p : ι → ℕ
hp : ∀ (i : ι), Nat.Prime (p i)
e : ι → ℕ
f : G ≃+ (Fin Nat.zero →₀ ℤ) × ⨁ (i : ι), ZMod (p i ^ e i)
this : Unique (Fin Nat.zero →₀ ℤ)
⊢ ∃ ι x p x e, Nonempty (G ≃+ ⨁ (i : ι), ZMod (p i ^ e i))
[PROOFSTEP]
exact ⟨ι, fι, p, hp, e, ⟨f.trans AddEquiv.uniqueProd⟩⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.succ
G : Type u
inst✝¹ : AddCommGroup G
inst✝ : Finite G
val✝ : Fintype G
ι : Type
fι : Fintype ι
p : ι → ℕ
hp : ∀ (i : ι), Nat.Prime (p i)
e : ι → ℕ
n : ℕ
f : G ≃+ (Fin (Nat.succ n) →₀ ℤ) × ⨁ (i : ι), ZMod (p i ^ e i)
⊢ ∃ ι x p x e, Nonempty (G ≃+ ⨁ (i : ι), ZMod (p i ^ e i))
[PROOFSTEP]
haveI := @Fintype.prodLeft _ _ _ (Fintype.ofEquiv G f.toEquiv) _
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.succ
G : Type u
inst✝¹ : AddCommGroup G
inst✝ : Finite G
val✝ : Fintype G
ι : Type
fι : Fintype ι
p : ι → ℕ
hp : ∀ (i : ι), Nat.Prime (p i)
e : ι → ℕ
n : ℕ
f : G ≃+ (Fin (Nat.succ n) →₀ ℤ) × ⨁ (i : ι), ZMod (p i ^ e i)
this : Fintype (Fin (Nat.succ n) →₀ ℤ)
⊢ ∃ ι x p x e, Nonempty (G ≃+ ⨁ (i : ι), ZMod (p i ^ e i))
[PROOFSTEP]
exact
(Fintype.ofSurjective (fun f : Fin n.succ →₀ ℤ => f 0) fun a =>
⟨Finsupp.single 0 a, Finsupp.single_eq_same⟩).false.elim
| {"mathlib_filename": "Mathlib.GroupTheory.FiniteAbelian", "llama_tokens": 3807} |
[GOAL]
G : Type u_1
G' : Type u_2
inst✝¹ : Group G
inst✝ : Group G'
f : G →* G'
n : ℕ
⊢ Normal (derivedSeries G n)
[PROOFSTEP]
induction' n with n ih
[GOAL]
case zero
G : Type u_1
G' : Type u_2
inst✝¹ : Group G
inst✝ : Group G'
f : G →* G'
⊢ Normal (derivedSeries G Nat.zero)
[PROOFSTEP]
exact (⊤ : Subgroup G).normal_of_characteristic
[GOAL]
case succ
G : Type u_1
G' : Type u_2
inst✝¹ : Group G
inst✝ : Group G'
f : G →* G'
n : ℕ
ih : Normal (derivedSeries G n)
⊢ Normal (derivedSeries G (Nat.succ n))
[PROOFSTEP]
exact @Subgroup.commutator_normal G _ (derivedSeries G n) (derivedSeries G n) ih ih
[GOAL]
G : Type u_1
G' : Type u_2
inst✝¹ : Group G
inst✝ : Group G'
f : G →* G'
n : ℕ
⊢ map f (derivedSeries G n) ≤ derivedSeries G' n
[PROOFSTEP]
induction' n with n ih
[GOAL]
case zero
G : Type u_1
G' : Type u_2
inst✝¹ : Group G
inst✝ : Group G'
f : G →* G'
⊢ map f (derivedSeries G Nat.zero) ≤ derivedSeries G' Nat.zero
[PROOFSTEP]
exact le_top
[GOAL]
case succ
G : Type u_1
G' : Type u_2
inst✝¹ : Group G
inst✝ : Group G'
f : G →* G'
n : ℕ
ih : map f (derivedSeries G n) ≤ derivedSeries G' n
⊢ map f (derivedSeries G (Nat.succ n)) ≤ derivedSeries G' (Nat.succ n)
[PROOFSTEP]
simp only [derivedSeries_succ, map_commutator, commutator_mono, ih]
[GOAL]
G : Type u_1
G' : Type u_2
inst✝¹ : Group G
inst✝ : Group G'
f : G →* G'
hf : Function.Surjective ↑f
n : ℕ
⊢ derivedSeries G' n ≤ map f (derivedSeries G n)
[PROOFSTEP]
induction' n with n ih
[GOAL]
case zero
G : Type u_1
G' : Type u_2
inst✝¹ : Group G
inst✝ : Group G'
f : G →* G'
hf : Function.Surjective ↑f
⊢ derivedSeries G' Nat.zero ≤ map f (derivedSeries G Nat.zero)
[PROOFSTEP]
exact (map_top_of_surjective f hf).ge
[GOAL]
case succ
G : Type u_1
G' : Type u_2
inst✝¹ : Group G
inst✝ : Group G'
f : G →* G'
hf : Function.Surjective ↑f
n : ℕ
ih : derivedSeries G' n ≤ map f (derivedSeries G n)
⊢ derivedSeries G' (Nat.succ n) ≤ map f (derivedSeries G (Nat.succ n))
[PROOFSTEP]
exact commutator_le_map_commutator ih ih
[GOAL]
G✝ : Type u_1
G' : Type u_2
inst✝¹ : Group G✝
inst✝ : Group G'
f : G✝ →* G'
G : Type u_3
hG : Group G
h : ∀ (a b : G), a * b = b * a
⊢ IsSolvable G
[PROOFSTEP]
letI hG' : CommGroup G := { hG with mul_comm := h }
[GOAL]
G✝ : Type u_1
G' : Type u_2
inst✝¹ : Group G✝
inst✝ : Group G'
f : G✝ →* G'
G : Type u_3
hG : Group G
h : ∀ (a b : G), a * b = b * a
hG' : CommGroup G := CommGroup.mk h
⊢ IsSolvable G
[PROOFSTEP]
cases hG
[GOAL]
case mk
G✝ : Type u_1
G' : Type u_2
inst✝¹ : Group G✝
inst✝ : Group G'
f : G✝ →* G'
G : Type u_3
toDivInvMonoid✝ : DivInvMonoid G
mul_left_inv✝ : ∀ (a : G), a⁻¹ * a = 1
h : ∀ (a b : G), a * b = b * a
hG' : CommGroup G := CommGroup.mk h
⊢ IsSolvable G
[PROOFSTEP]
exact CommGroup.isSolvable
[GOAL]
G : Type u_1
G' : Type u_2
inst✝² : Group G
inst✝¹ : Group G'
f : G →* G'
inst✝ : Subsingleton G
⊢ ⊤ = ⊥
[PROOFSTEP]
simp
[GOAL]
G : Type u_1
G'✝ : Type u_2
inst✝³ : Group G
inst✝² : Group G'✝
f✝ : G →* G'✝
G' : Type u_3
G'' : Type u_4
inst✝¹ : Group G'
inst✝ : Group G''
f : G' →* G
g : G →* G''
hfg : MonoidHom.ker g ≤ MonoidHom.range f
hG' : IsSolvable G'
hG'' : IsSolvable G''
⊢ IsSolvable G
[PROOFSTEP]
obtain ⟨n, hn⟩ := id hG''
[GOAL]
case mk.intro
G : Type u_1
G'✝ : Type u_2
inst✝³ : Group G
inst✝² : Group G'✝
f✝ : G →* G'✝
G' : Type u_3
G'' : Type u_4
inst✝¹ : Group G'
inst✝ : Group G''
f : G' →* G
g : G →* G''
hfg : MonoidHom.ker g ≤ MonoidHom.range f
hG' : IsSolvable G'
hG'' : IsSolvable G''
n : ℕ
hn : derivedSeries G'' n = ⊥
⊢ IsSolvable G
[PROOFSTEP]
obtain ⟨m, hm⟩ := id hG'
[GOAL]
case mk.intro.mk.intro
G : Type u_1
G'✝ : Type u_2
inst✝³ : Group G
inst✝² : Group G'✝
f✝ : G →* G'✝
G' : Type u_3
G'' : Type u_4
inst✝¹ : Group G'
inst✝ : Group G''
f : G' →* G
g : G →* G''
hfg : MonoidHom.ker g ≤ MonoidHom.range f
hG' : IsSolvable G'
hG'' : IsSolvable G''
n : ℕ
hn : derivedSeries G'' n = ⊥
m : ℕ
hm : derivedSeries G' m = ⊥
⊢ IsSolvable G
[PROOFSTEP]
refine' ⟨⟨n + m, le_bot_iff.mp (map_bot f ▸ hm ▸ _)⟩⟩
[GOAL]
case mk.intro.mk.intro
G : Type u_1
G'✝ : Type u_2
inst✝³ : Group G
inst✝² : Group G'✝
f✝ : G →* G'✝
G' : Type u_3
G'' : Type u_4
inst✝¹ : Group G'
inst✝ : Group G''
f : G' →* G
g : G →* G''
hfg : MonoidHom.ker g ≤ MonoidHom.range f
hG' : IsSolvable G'
hG'' : IsSolvable G''
n : ℕ
hn : derivedSeries G'' n = ⊥
m : ℕ
hm : derivedSeries G' m = ⊥
⊢ derivedSeries G (n + m) ≤ map f (derivedSeries G' m)
[PROOFSTEP]
clear hm
[GOAL]
case mk.intro.mk.intro
G : Type u_1
G'✝ : Type u_2
inst✝³ : Group G
inst✝² : Group G'✝
f✝ : G →* G'✝
G' : Type u_3
G'' : Type u_4
inst✝¹ : Group G'
inst✝ : Group G''
f : G' →* G
g : G →* G''
hfg : MonoidHom.ker g ≤ MonoidHom.range f
hG' : IsSolvable G'
hG'' : IsSolvable G''
n : ℕ
hn : derivedSeries G'' n = ⊥
m : ℕ
⊢ derivedSeries G (n + m) ≤ map f (derivedSeries G' m)
[PROOFSTEP]
induction' m with m hm
[GOAL]
case mk.intro.mk.intro.zero
G : Type u_1
G'✝ : Type u_2
inst✝³ : Group G
inst✝² : Group G'✝
f✝ : G →* G'✝
G' : Type u_3
G'' : Type u_4
inst✝¹ : Group G'
inst✝ : Group G''
f : G' →* G
g : G →* G''
hfg : MonoidHom.ker g ≤ MonoidHom.range f
hG' : IsSolvable G'
hG'' : IsSolvable G''
n : ℕ
hn : derivedSeries G'' n = ⊥
⊢ derivedSeries G (n + Nat.zero) ≤ map f (derivedSeries G' Nat.zero)
[PROOFSTEP]
exact
f.range_eq_map ▸
((derivedSeries G n).map_eq_bot_iff.mp (le_bot_iff.mp ((map_derivedSeries_le_derivedSeries g n).trans hn.le))).trans
hfg
[GOAL]
case mk.intro.mk.intro.succ
G : Type u_1
G'✝ : Type u_2
inst✝³ : Group G
inst✝² : Group G'✝
f✝ : G →* G'✝
G' : Type u_3
G'' : Type u_4
inst✝¹ : Group G'
inst✝ : Group G''
f : G' →* G
g : G →* G''
hfg : MonoidHom.ker g ≤ MonoidHom.range f
hG' : IsSolvable G'
hG'' : IsSolvable G''
n : ℕ
hn : derivedSeries G'' n = ⊥
m : ℕ
hm : derivedSeries G (n + m) ≤ map f (derivedSeries G' m)
⊢ derivedSeries G (n + Nat.succ m) ≤ map f (derivedSeries G' (Nat.succ m))
[PROOFSTEP]
exact commutator_le_map_commutator hm hm
[GOAL]
G : Type u_1
G' : Type u_2
inst✝² : Group G
inst✝¹ : Group G'
f : G →* G'
inst✝ : IsSimpleGroup G
n : ℕ
⊢ derivedSeries G (Nat.succ n) = _root_.commutator G
[PROOFSTEP]
induction' n with n ih
[GOAL]
case zero
G : Type u_1
G' : Type u_2
inst✝² : Group G
inst✝¹ : Group G'
f : G →* G'
inst✝ : IsSimpleGroup G
⊢ derivedSeries G (Nat.succ Nat.zero) = _root_.commutator G
[PROOFSTEP]
exact derivedSeries_one G
[GOAL]
case succ
G : Type u_1
G' : Type u_2
inst✝² : Group G
inst✝¹ : Group G'
f : G →* G'
inst✝ : IsSimpleGroup G
n : ℕ
ih : derivedSeries G (Nat.succ n) = _root_.commutator G
⊢ derivedSeries G (Nat.succ (Nat.succ n)) = _root_.commutator G
[PROOFSTEP]
rw [_root_.derivedSeries_succ, ih, _root_.commutator]
[GOAL]
case succ
G : Type u_1
G' : Type u_2
inst✝² : Group G
inst✝¹ : Group G'
f : G →* G'
inst✝ : IsSimpleGroup G
n : ℕ
ih : derivedSeries G (Nat.succ n) = _root_.commutator G
⊢ ⁅⁅⊤, ⊤⁆, ⁅⊤, ⊤⁆⁆ = ⁅⊤, ⊤⁆
[PROOFSTEP]
cases' (commutator_normal (⊤ : Subgroup G) (⊤ : Subgroup G)).eq_bot_or_eq_top with h h
[GOAL]
case succ.inl
G : Type u_1
G' : Type u_2
inst✝² : Group G
inst✝¹ : Group G'
f : G →* G'
inst✝ : IsSimpleGroup G
n : ℕ
ih : derivedSeries G (Nat.succ n) = _root_.commutator G
h : ⁅⊤, ⊤⁆ = ⊥
⊢ ⁅⁅⊤, ⊤⁆, ⁅⊤, ⊤⁆⁆ = ⁅⊤, ⊤⁆
[PROOFSTEP]
rw [h, commutator_bot_left]
[GOAL]
case succ.inr
G : Type u_1
G' : Type u_2
inst✝² : Group G
inst✝¹ : Group G'
f : G →* G'
inst✝ : IsSimpleGroup G
n : ℕ
ih : derivedSeries G (Nat.succ n) = _root_.commutator G
h : ⁅⊤, ⊤⁆ = ⊤
⊢ ⁅⁅⊤, ⊤⁆, ⁅⊤, ⊤⁆⁆ = ⁅⊤, ⊤⁆
[PROOFSTEP]
rwa [h]
[GOAL]
G : Type u_1
G' : Type u_2
inst✝² : Group G
inst✝¹ : Group G'
f : G →* G'
inst✝ : IsSimpleGroup G
x✝ : IsSolvable G
n : ℕ
hn : derivedSeries G n = ⊥
⊢ ∀ (a b : G), a * b = b * a
[PROOFSTEP]
cases n
[GOAL]
case zero
G : Type u_1
G' : Type u_2
inst✝² : Group G
inst✝¹ : Group G'
f : G →* G'
inst✝ : IsSimpleGroup G
x✝ : IsSolvable G
hn : derivedSeries G Nat.zero = ⊥
⊢ ∀ (a b : G), a * b = b * a
[PROOFSTEP]
intro a b
[GOAL]
case zero
G : Type u_1
G' : Type u_2
inst✝² : Group G
inst✝¹ : Group G'
f : G →* G'
inst✝ : IsSimpleGroup G
x✝ : IsSolvable G
hn : derivedSeries G Nat.zero = ⊥
a b : G
⊢ a * b = b * a
[PROOFSTEP]
refine' (mem_bot.1 _).trans (mem_bot.1 _).symm
[GOAL]
case zero.refine'_1
G : Type u_1
G' : Type u_2
inst✝² : Group G
inst✝¹ : Group G'
f : G →* G'
inst✝ : IsSimpleGroup G
x✝ : IsSolvable G
hn : derivedSeries G Nat.zero = ⊥
a b : G
⊢ a * b ∈ ⊥
[PROOFSTEP]
rw [← hn]
[GOAL]
case zero.refine'_1
G : Type u_1
G' : Type u_2
inst✝² : Group G
inst✝¹ : Group G'
f : G →* G'
inst✝ : IsSimpleGroup G
x✝ : IsSolvable G
hn : derivedSeries G Nat.zero = ⊥
a b : G
⊢ a * b ∈ derivedSeries G Nat.zero
[PROOFSTEP]
exact mem_top _
[GOAL]
case zero.refine'_2
G : Type u_1
G' : Type u_2
inst✝² : Group G
inst✝¹ : Group G'
f : G →* G'
inst✝ : IsSimpleGroup G
x✝ : IsSolvable G
hn : derivedSeries G Nat.zero = ⊥
a b : G
⊢ b * a ∈ ⊥
[PROOFSTEP]
rw [← hn]
[GOAL]
case zero.refine'_2
G : Type u_1
G' : Type u_2
inst✝² : Group G
inst✝¹ : Group G'
f : G →* G'
inst✝ : IsSimpleGroup G
x✝ : IsSolvable G
hn : derivedSeries G Nat.zero = ⊥
a b : G
⊢ b * a ∈ derivedSeries G Nat.zero
[PROOFSTEP]
exact mem_top _
[GOAL]
case succ
G : Type u_1
G' : Type u_2
inst✝² : Group G
inst✝¹ : Group G'
f : G →* G'
inst✝ : IsSimpleGroup G
x✝ : IsSolvable G
n✝ : ℕ
hn : derivedSeries G (Nat.succ n✝) = ⊥
⊢ ∀ (a b : G), a * b = b * a
[PROOFSTEP]
rw [IsSimpleGroup.derivedSeries_succ] at hn
[GOAL]
case succ
G : Type u_1
G' : Type u_2
inst✝² : Group G
inst✝¹ : Group G'
f : G →* G'
inst✝ : IsSimpleGroup G
x✝ : IsSolvable G
n✝ : ℕ
hn : _root_.commutator G = ⊥
⊢ ∀ (a b : G), a * b = b * a
[PROOFSTEP]
intro a b
[GOAL]
case succ
G : Type u_1
G' : Type u_2
inst✝² : Group G
inst✝¹ : Group G'
f : G →* G'
inst✝ : IsSimpleGroup G
x✝ : IsSolvable G
n✝ : ℕ
hn : _root_.commutator G = ⊥
a b : G
⊢ a * b = b * a
[PROOFSTEP]
rw [← mul_inv_eq_one, mul_inv_rev, ← mul_assoc, ← mem_bot, ← hn, commutator_eq_closure]
[GOAL]
case succ
G : Type u_1
G' : Type u_2
inst✝² : Group G
inst✝¹ : Group G'
f : G →* G'
inst✝ : IsSimpleGroup G
x✝ : IsSolvable G
n✝ : ℕ
hn : _root_.commutator G = ⊥
a b : G
⊢ a * b * a⁻¹ * b⁻¹ ∈ closure (commutatorSet G)
[PROOFSTEP]
exact subset_closure ⟨a, b, rfl⟩
[GOAL]
G : Type u_1
G' : Type u_2
inst✝¹ : Group G
inst✝ : Group G'
f : G →* G'
⊢ ¬IsSolvable (Perm (Fin 5))
[PROOFSTEP]
let x : Equiv.Perm (Fin 5) := ⟨![1, 2, 0, 3, 4], ![2, 0, 1, 3, 4], by decide, by decide⟩
[GOAL]
G : Type u_1
G' : Type u_2
inst✝¹ : Group G
inst✝ : Group G'
f : G →* G'
⊢ Function.LeftInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]
[PROOFSTEP]
decide
[GOAL]
G : Type u_1
G' : Type u_2
inst✝¹ : Group G
inst✝ : Group G'
f : G →* G'
⊢ Function.RightInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]
[PROOFSTEP]
decide
[GOAL]
G : Type u_1
G' : Type u_2
inst✝¹ : Group G
inst✝ : Group G'
f : G →* G'
x : Perm (Fin 5) :=
{ toFun := ![1, 2, 0, 3, 4], invFun := ![2, 0, 1, 3, 4],
left_inv := (_ : Function.LeftInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]),
right_inv := (_ : Function.RightInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]) }
⊢ ¬IsSolvable (Perm (Fin 5))
[PROOFSTEP]
let y : Equiv.Perm (Fin 5) := ⟨![3, 4, 2, 0, 1], ![3, 4, 2, 0, 1], by decide, by decide⟩
[GOAL]
G : Type u_1
G' : Type u_2
inst✝¹ : Group G
inst✝ : Group G'
f : G →* G'
x : Perm (Fin 5) :=
{ toFun := ![1, 2, 0, 3, 4], invFun := ![2, 0, 1, 3, 4],
left_inv := (_ : Function.LeftInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]),
right_inv := (_ : Function.RightInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]) }
⊢ Function.LeftInverse ![3, 4, 2, 0, 1] ![3, 4, 2, 0, 1]
[PROOFSTEP]
decide
[GOAL]
G : Type u_1
G' : Type u_2
inst✝¹ : Group G
inst✝ : Group G'
f : G →* G'
x : Perm (Fin 5) :=
{ toFun := ![1, 2, 0, 3, 4], invFun := ![2, 0, 1, 3, 4],
left_inv := (_ : Function.LeftInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]),
right_inv := (_ : Function.RightInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]) }
⊢ Function.RightInverse ![3, 4, 2, 0, 1] ![3, 4, 2, 0, 1]
[PROOFSTEP]
decide
[GOAL]
G : Type u_1
G' : Type u_2
inst✝¹ : Group G
inst✝ : Group G'
f : G →* G'
x : Perm (Fin 5) :=
{ toFun := ![1, 2, 0, 3, 4], invFun := ![2, 0, 1, 3, 4],
left_inv := (_ : Function.LeftInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]),
right_inv := (_ : Function.RightInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]) }
y : Perm (Fin 5) :=
{ toFun := ![3, 4, 2, 0, 1], invFun := ![3, 4, 2, 0, 1],
left_inv := (_ : Function.LeftInverse ![3, 4, 2, 0, 1] ![3, 4, 2, 0, 1]),
right_inv := (_ : Function.RightInverse ![3, 4, 2, 0, 1] ![3, 4, 2, 0, 1]) }
⊢ ¬IsSolvable (Perm (Fin 5))
[PROOFSTEP]
let z : Equiv.Perm (Fin 5) := ⟨![0, 3, 2, 1, 4], ![0, 3, 2, 1, 4], by decide, by decide⟩
[GOAL]
G : Type u_1
G' : Type u_2
inst✝¹ : Group G
inst✝ : Group G'
f : G →* G'
x : Perm (Fin 5) :=
{ toFun := ![1, 2, 0, 3, 4], invFun := ![2, 0, 1, 3, 4],
left_inv := (_ : Function.LeftInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]),
right_inv := (_ : Function.RightInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]) }
y : Perm (Fin 5) :=
{ toFun := ![3, 4, 2, 0, 1], invFun := ![3, 4, 2, 0, 1],
left_inv := (_ : Function.LeftInverse ![3, 4, 2, 0, 1] ![3, 4, 2, 0, 1]),
right_inv := (_ : Function.RightInverse ![3, 4, 2, 0, 1] ![3, 4, 2, 0, 1]) }
⊢ Function.LeftInverse ![0, 3, 2, 1, 4] ![0, 3, 2, 1, 4]
[PROOFSTEP]
decide
[GOAL]
G : Type u_1
G' : Type u_2
inst✝¹ : Group G
inst✝ : Group G'
f : G →* G'
x : Perm (Fin 5) :=
{ toFun := ![1, 2, 0, 3, 4], invFun := ![2, 0, 1, 3, 4],
left_inv := (_ : Function.LeftInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]),
right_inv := (_ : Function.RightInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]) }
y : Perm (Fin 5) :=
{ toFun := ![3, 4, 2, 0, 1], invFun := ![3, 4, 2, 0, 1],
left_inv := (_ : Function.LeftInverse ![3, 4, 2, 0, 1] ![3, 4, 2, 0, 1]),
right_inv := (_ : Function.RightInverse ![3, 4, 2, 0, 1] ![3, 4, 2, 0, 1]) }
⊢ Function.RightInverse ![0, 3, 2, 1, 4] ![0, 3, 2, 1, 4]
[PROOFSTEP]
decide
[GOAL]
G : Type u_1
G' : Type u_2
inst✝¹ : Group G
inst✝ : Group G'
f : G →* G'
x : Perm (Fin 5) :=
{ toFun := ![1, 2, 0, 3, 4], invFun := ![2, 0, 1, 3, 4],
left_inv := (_ : Function.LeftInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]),
right_inv := (_ : Function.RightInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]) }
y : Perm (Fin 5) :=
{ toFun := ![3, 4, 2, 0, 1], invFun := ![3, 4, 2, 0, 1],
left_inv := (_ : Function.LeftInverse ![3, 4, 2, 0, 1] ![3, 4, 2, 0, 1]),
right_inv := (_ : Function.RightInverse ![3, 4, 2, 0, 1] ![3, 4, 2, 0, 1]) }
z : Perm (Fin 5) :=
{ toFun := ![0, 3, 2, 1, 4], invFun := ![0, 3, 2, 1, 4],
left_inv := (_ : Function.LeftInverse ![0, 3, 2, 1, 4] ![0, 3, 2, 1, 4]),
right_inv := (_ : Function.RightInverse ![0, 3, 2, 1, 4] ![0, 3, 2, 1, 4]) }
⊢ ¬IsSolvable (Perm (Fin 5))
[PROOFSTEP]
have key : x = z * ⁅x, y * x * y⁻¹⁆ * z⁻¹ := by decide
[GOAL]
G : Type u_1
G' : Type u_2
inst✝¹ : Group G
inst✝ : Group G'
f : G →* G'
x : Perm (Fin 5) :=
{ toFun := ![1, 2, 0, 3, 4], invFun := ![2, 0, 1, 3, 4],
left_inv := (_ : Function.LeftInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]),
right_inv := (_ : Function.RightInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]) }
y : Perm (Fin 5) :=
{ toFun := ![3, 4, 2, 0, 1], invFun := ![3, 4, 2, 0, 1],
left_inv := (_ : Function.LeftInverse ![3, 4, 2, 0, 1] ![3, 4, 2, 0, 1]),
right_inv := (_ : Function.RightInverse ![3, 4, 2, 0, 1] ![3, 4, 2, 0, 1]) }
z : Perm (Fin 5) :=
{ toFun := ![0, 3, 2, 1, 4], invFun := ![0, 3, 2, 1, 4],
left_inv := (_ : Function.LeftInverse ![0, 3, 2, 1, 4] ![0, 3, 2, 1, 4]),
right_inv := (_ : Function.RightInverse ![0, 3, 2, 1, 4] ![0, 3, 2, 1, 4]) }
⊢ x = z * ⁅x, y * x * y⁻¹⁆ * z⁻¹
[PROOFSTEP]
decide
[GOAL]
G : Type u_1
G' : Type u_2
inst✝¹ : Group G
inst✝ : Group G'
f : G →* G'
x : Perm (Fin 5) :=
{ toFun := ![1, 2, 0, 3, 4], invFun := ![2, 0, 1, 3, 4],
left_inv := (_ : Function.LeftInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]),
right_inv := (_ : Function.RightInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]) }
y : Perm (Fin 5) :=
{ toFun := ![3, 4, 2, 0, 1], invFun := ![3, 4, 2, 0, 1],
left_inv := (_ : Function.LeftInverse ![3, 4, 2, 0, 1] ![3, 4, 2, 0, 1]),
right_inv := (_ : Function.RightInverse ![3, 4, 2, 0, 1] ![3, 4, 2, 0, 1]) }
z : Perm (Fin 5) :=
{ toFun := ![0, 3, 2, 1, 4], invFun := ![0, 3, 2, 1, 4],
left_inv := (_ : Function.LeftInverse ![0, 3, 2, 1, 4] ![0, 3, 2, 1, 4]),
right_inv := (_ : Function.RightInverse ![0, 3, 2, 1, 4] ![0, 3, 2, 1, 4]) }
key : x = z * ⁅x, y * x * y⁻¹⁆ * z⁻¹
⊢ ¬IsSolvable (Perm (Fin 5))
[PROOFSTEP]
refine' not_solvable_of_mem_derivedSeries (show x ≠ 1 by decide) fun n => _
[GOAL]
G : Type u_1
G' : Type u_2
inst✝¹ : Group G
inst✝ : Group G'
f : G →* G'
x : Perm (Fin 5) :=
{ toFun := ![1, 2, 0, 3, 4], invFun := ![2, 0, 1, 3, 4],
left_inv := (_ : Function.LeftInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]),
right_inv := (_ : Function.RightInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]) }
y : Perm (Fin 5) :=
{ toFun := ![3, 4, 2, 0, 1], invFun := ![3, 4, 2, 0, 1],
left_inv := (_ : Function.LeftInverse ![3, 4, 2, 0, 1] ![3, 4, 2, 0, 1]),
right_inv := (_ : Function.RightInverse ![3, 4, 2, 0, 1] ![3, 4, 2, 0, 1]) }
z : Perm (Fin 5) :=
{ toFun := ![0, 3, 2, 1, 4], invFun := ![0, 3, 2, 1, 4],
left_inv := (_ : Function.LeftInverse ![0, 3, 2, 1, 4] ![0, 3, 2, 1, 4]),
right_inv := (_ : Function.RightInverse ![0, 3, 2, 1, 4] ![0, 3, 2, 1, 4]) }
key : x = z * ⁅x, y * x * y⁻¹⁆ * z⁻¹
⊢ x ≠ 1
[PROOFSTEP]
decide
[GOAL]
G : Type u_1
G' : Type u_2
inst✝¹ : Group G
inst✝ : Group G'
f : G →* G'
x : Perm (Fin 5) :=
{ toFun := ![1, 2, 0, 3, 4], invFun := ![2, 0, 1, 3, 4],
left_inv := (_ : Function.LeftInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]),
right_inv := (_ : Function.RightInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]) }
y : Perm (Fin 5) :=
{ toFun := ![3, 4, 2, 0, 1], invFun := ![3, 4, 2, 0, 1],
left_inv := (_ : Function.LeftInverse ![3, 4, 2, 0, 1] ![3, 4, 2, 0, 1]),
right_inv := (_ : Function.RightInverse ![3, 4, 2, 0, 1] ![3, 4, 2, 0, 1]) }
z : Perm (Fin 5) :=
{ toFun := ![0, 3, 2, 1, 4], invFun := ![0, 3, 2, 1, 4],
left_inv := (_ : Function.LeftInverse ![0, 3, 2, 1, 4] ![0, 3, 2, 1, 4]),
right_inv := (_ : Function.RightInverse ![0, 3, 2, 1, 4] ![0, 3, 2, 1, 4]) }
key : x = z * ⁅x, y * x * y⁻¹⁆ * z⁻¹
n : ℕ
⊢ x ∈ derivedSeries (Perm (Fin 5)) n
[PROOFSTEP]
induction' n with n ih
[GOAL]
case zero
G : Type u_1
G' : Type u_2
inst✝¹ : Group G
inst✝ : Group G'
f : G →* G'
x : Perm (Fin 5) :=
{ toFun := ![1, 2, 0, 3, 4], invFun := ![2, 0, 1, 3, 4],
left_inv := (_ : Function.LeftInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]),
right_inv := (_ : Function.RightInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]) }
y : Perm (Fin 5) :=
{ toFun := ![3, 4, 2, 0, 1], invFun := ![3, 4, 2, 0, 1],
left_inv := (_ : Function.LeftInverse ![3, 4, 2, 0, 1] ![3, 4, 2, 0, 1]),
right_inv := (_ : Function.RightInverse ![3, 4, 2, 0, 1] ![3, 4, 2, 0, 1]) }
z : Perm (Fin 5) :=
{ toFun := ![0, 3, 2, 1, 4], invFun := ![0, 3, 2, 1, 4],
left_inv := (_ : Function.LeftInverse ![0, 3, 2, 1, 4] ![0, 3, 2, 1, 4]),
right_inv := (_ : Function.RightInverse ![0, 3, 2, 1, 4] ![0, 3, 2, 1, 4]) }
key : x = z * ⁅x, y * x * y⁻¹⁆ * z⁻¹
⊢ x ∈ derivedSeries (Perm (Fin 5)) Nat.zero
[PROOFSTEP]
exact mem_top x
[GOAL]
case succ
G : Type u_1
G' : Type u_2
inst✝¹ : Group G
inst✝ : Group G'
f : G →* G'
x : Perm (Fin 5) :=
{ toFun := ![1, 2, 0, 3, 4], invFun := ![2, 0, 1, 3, 4],
left_inv := (_ : Function.LeftInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]),
right_inv := (_ : Function.RightInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]) }
y : Perm (Fin 5) :=
{ toFun := ![3, 4, 2, 0, 1], invFun := ![3, 4, 2, 0, 1],
left_inv := (_ : Function.LeftInverse ![3, 4, 2, 0, 1] ![3, 4, 2, 0, 1]),
right_inv := (_ : Function.RightInverse ![3, 4, 2, 0, 1] ![3, 4, 2, 0, 1]) }
z : Perm (Fin 5) :=
{ toFun := ![0, 3, 2, 1, 4], invFun := ![0, 3, 2, 1, 4],
left_inv := (_ : Function.LeftInverse ![0, 3, 2, 1, 4] ![0, 3, 2, 1, 4]),
right_inv := (_ : Function.RightInverse ![0, 3, 2, 1, 4] ![0, 3, 2, 1, 4]) }
key : x = z * ⁅x, y * x * y⁻¹⁆ * z⁻¹
n : ℕ
ih : x ∈ derivedSeries (Perm (Fin 5)) n
⊢ x ∈ derivedSeries (Perm (Fin 5)) (Nat.succ n)
[PROOFSTEP]
rw [key, (derivedSeries_normal _ _).mem_comm_iff, inv_mul_cancel_left]
[GOAL]
case succ
G : Type u_1
G' : Type u_2
inst✝¹ : Group G
inst✝ : Group G'
f : G →* G'
x : Perm (Fin 5) :=
{ toFun := ![1, 2, 0, 3, 4], invFun := ![2, 0, 1, 3, 4],
left_inv := (_ : Function.LeftInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]),
right_inv := (_ : Function.RightInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]) }
y : Perm (Fin 5) :=
{ toFun := ![3, 4, 2, 0, 1], invFun := ![3, 4, 2, 0, 1],
left_inv := (_ : Function.LeftInverse ![3, 4, 2, 0, 1] ![3, 4, 2, 0, 1]),
right_inv := (_ : Function.RightInverse ![3, 4, 2, 0, 1] ![3, 4, 2, 0, 1]) }
z : Perm (Fin 5) :=
{ toFun := ![0, 3, 2, 1, 4], invFun := ![0, 3, 2, 1, 4],
left_inv := (_ : Function.LeftInverse ![0, 3, 2, 1, 4] ![0, 3, 2, 1, 4]),
right_inv := (_ : Function.RightInverse ![0, 3, 2, 1, 4] ![0, 3, 2, 1, 4]) }
key : x = z * ⁅x, y * x * y⁻¹⁆ * z⁻¹
n : ℕ
ih : x ∈ derivedSeries (Perm (Fin 5)) n
⊢ ⁅x, y * x * y⁻¹⁆ ∈ derivedSeries (Perm (Fin 5)) (Nat.succ n)
[PROOFSTEP]
exact commutator_mem_commutator ih ((derivedSeries_normal _ _).conj_mem _ ih _)
[GOAL]
G : Type u_1
G' : Type u_2
inst✝¹ : Group G
inst✝ : Group G'
f : G →* G'
X : Type u_3
hX : 5 ≤ Cardinal.mk X
⊢ ¬IsSolvable (Perm X)
[PROOFSTEP]
intro h
[GOAL]
G : Type u_1
G' : Type u_2
inst✝¹ : Group G
inst✝ : Group G'
f : G →* G'
X : Type u_3
hX : 5 ≤ Cardinal.mk X
h : IsSolvable (Perm X)
⊢ False
[PROOFSTEP]
have key : Nonempty (Fin 5 ↪ X) := by
rwa [← Cardinal.lift_mk_le, Cardinal.mk_fin, Cardinal.lift_natCast, Cardinal.lift_id]
[GOAL]
G : Type u_1
G' : Type u_2
inst✝¹ : Group G
inst✝ : Group G'
f : G →* G'
X : Type u_3
hX : 5 ≤ Cardinal.mk X
h : IsSolvable (Perm X)
⊢ Nonempty (Fin 5 ↪ X)
[PROOFSTEP]
rwa [← Cardinal.lift_mk_le, Cardinal.mk_fin, Cardinal.lift_natCast, Cardinal.lift_id]
[GOAL]
G : Type u_1
G' : Type u_2
inst✝¹ : Group G
inst✝ : Group G'
f : G →* G'
X : Type u_3
hX : 5 ≤ Cardinal.mk X
h : IsSolvable (Perm X)
key : Nonempty (Fin 5 ↪ X)
⊢ False
[PROOFSTEP]
exact
Equiv.Perm.fin_5_not_solvable
(solvable_of_solvable_injective (Equiv.Perm.viaEmbeddingHom_injective (Nonempty.some key)))
| {"mathlib_filename": "Mathlib.GroupTheory.Solvable", "llama_tokens": 12293} |
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
inst✝⁴ : SMul M α
inst✝³ : SMul N α
inst✝² : SMul M β
inst✝¹ : SMul N β
inst✝ : SMulCommClass M N β
f : α → β
hf : Injective f
h₁ : ∀ (c : M) (x : α), f (c • x) = c • f x
h₂ : ∀ (c : N) (x : α), f (c • x) = c • f x
c₁ : M
c₂ : N
x : α
⊢ f (c₁ • c₂ • x) = f (c₂ • c₁ • x)
[PROOFSTEP]
simp only [h₁, h₂, smul_comm c₁ c₂ (f x)]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
inst✝⁴ : SMul M α
inst✝³ : SMul N α
inst✝² : SMul M β
inst✝¹ : SMul N β
inst✝ : SMulCommClass M N α
f : α → β
hf : Surjective f
h₁ : ∀ (c : M) (x : α), f (c • x) = c • f x
h₂ : ∀ (c : N) (x : α), f (c • x) = c • f x
c₁ : M
c₂ : N
x : α
⊢ c₁ • c₂ • f x = c₂ • c₁ • f x
[PROOFSTEP]
simp only [← h₁, ← h₂, smul_comm c₁ c₂ x]
[GOAL]
M✝ : Type u_1
N : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α✝ : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
M : Type u_10
α : Type u_11
inst✝¹ : CommMonoid M
inst✝ : MulAction M α
a a' : M
b : α
⊢ a • a' • b = a' • a • b
[PROOFSTEP]
rw [← mul_smul, mul_comm, mul_smul]
[GOAL]
M✝ : Type u_1
N : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α✝ : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
M : Type u_10
α : Type u_11
inst✝² : SMul M α
inst✝¹ : SMul Mᵐᵒᵖ α
inst✝ : IsCentralScalar M α
m : Mᵐᵒᵖ
a : α
⊢ MulOpposite.unop m • a = m • a
[PROOFSTEP]
induction m using MulOpposite.rec'
[GOAL]
case h
M✝ : Type u_1
N : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α✝ : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
M : Type u_10
α : Type u_11
inst✝² : SMul M α
inst✝¹ : SMul Mᵐᵒᵖ α
inst✝ : IsCentralScalar M α
a : α
X✝ : M
⊢ MulOpposite.unop (MulOpposite.op X✝) • a = MulOpposite.op X✝ • a
[PROOFSTEP]
exact (IsCentralScalar.op_smul_eq_smul _ a).symm
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
inst✝⁴ : SMul M α
inst✝³ : SMul Mᵐᵒᵖ α
inst✝² : IsCentralScalar M α
inst✝¹ : SMul N α
inst✝ : SMulCommClass M N α
m : Mᵐᵒᵖ
n : N
a : α
⊢ m • n • a = n • m • a
[PROOFSTEP]
rw [← unop_smul_eq_smul m (n • a), ← unop_smul_eq_smul m a, smul_comm]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
inst✝⁴ : SMul M α
inst✝³ : SMul N α
inst✝² : SMul Nᵐᵒᵖ α
inst✝¹ : IsCentralScalar N α
inst✝ : SMulCommClass M N α
m : M
n : Nᵐᵒᵖ
a : α
⊢ m • n • a = n • m • a
[PROOFSTEP]
rw [← unop_smul_eq_smul n (m • a), ← unop_smul_eq_smul n a, smul_comm]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
inst✝⁷ : SMul M α
inst✝⁶ : SMul Mᵐᵒᵖ α
inst✝⁵ : IsCentralScalar M α
inst✝⁴ : SMul M N
inst✝³ : SMul Mᵐᵒᵖ N
inst✝² : IsCentralScalar M N
inst✝¹ : SMul N α
inst✝ : IsScalarTower M N α
m : Mᵐᵒᵖ
n : N
a : α
⊢ (m • n) • a = m • n • a
[PROOFSTEP]
rw [← unop_smul_eq_smul m (n • a), ← unop_smul_eq_smul m n, smul_assoc]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
inst✝⁵ : SMul M α
inst✝⁴ : SMul M N
inst✝³ : SMul N α
inst✝² : SMul Nᵐᵒᵖ α
inst✝¹ : IsCentralScalar N α
inst✝ : IsScalarTower M N α
m : M
n : Nᵐᵒᵖ
a : α
⊢ (m • n) • a = m • n • a
[PROOFSTEP]
rw [← unop_smul_eq_smul n a, ← unop_smul_eq_smul (m • n) a, MulOpposite.unop_smul, smul_assoc]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
inst✝³ : SMul M α
inst✝² : SMul M β
inst✝¹ : SMul α β
inst✝ : IsScalarTower M α β
g : N → M
⊢ Sort ?u.10323
[PROOFSTEP]
haveI := comp α g
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
inst✝³ : SMul M α
inst✝² : SMul M β
inst✝¹ : SMul α β
inst✝ : IsScalarTower M α β
g : N → M
this : SMul N α
⊢ Sort ?u.10323
[PROOFSTEP]
haveI := comp β g
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
inst✝³ : SMul M α
inst✝² : SMul M β
inst✝¹ : SMul α β
inst✝ : IsScalarTower M α β
g : N → M
this✝ : SMul N α
this : SMul N β
⊢ Sort ?u.10323
[PROOFSTEP]
exact IsScalarTower N α β
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
inst✝⁷ : SMul α β
inst✝⁶ : SMul α γ
inst✝⁵ : SMul β δ
inst✝⁴ : SMul α δ
inst✝³ : SMul γ δ
inst✝² : IsScalarTower α β δ
inst✝¹ : IsScalarTower α γ δ
inst✝ : SMulCommClass β γ δ
a : α
b : β
c : γ
d : δ
⊢ (a • b) • c • d = (a • c) • b • d
[PROOFSTEP]
rw [smul_assoc, smul_assoc, smul_comm b]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
inst✝¹ : SMul M α
p : Prop
inst✝ : Decidable p
a₁ a₂ : M
b : α
⊢ (if p then a₁ else a₂) • b = if p then a₁ • b else a₂ • b
[PROOFSTEP]
split_ifs
[GOAL]
case pos
M : Type u_1
N : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
inst✝¹ : SMul M α
p : Prop
inst✝ : Decidable p
a₁ a₂ : M
b : α
h✝ : p
⊢ a₁ • b = a₁ • b
[PROOFSTEP]
rfl
[GOAL]
case neg
M : Type u_1
N : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
inst✝¹ : SMul M α
p : Prop
inst✝ : Decidable p
a₁ a₂ : M
b : α
h✝ : ¬p
⊢ a₂ • b = a₂ • b
[PROOFSTEP]
rfl
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
inst✝¹ : SMul M α
p : Prop
inst✝ : Decidable p
a : M
b₁ b₂ : α
⊢ (a • if p then b₁ else b₂) = if p then a • b₁ else a • b₂
[PROOFSTEP]
split_ifs
[GOAL]
case pos
M : Type u_1
N : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
inst✝¹ : SMul M α
p : Prop
inst✝ : Decidable p
a : M
b₁ b₂ : α
h✝ : p
⊢ a • b₁ = a • b₁
[PROOFSTEP]
rfl
[GOAL]
case neg
M : Type u_1
N : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
inst✝¹ : SMul M α
p : Prop
inst✝ : Decidable p
a : M
b₁ b₂ : α
h✝ : ¬p
⊢ a • b₂ = a • b₂
[PROOFSTEP]
rfl
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
inst✝² : Monoid M
inst✝¹ : MulAction M α
inst✝ : SMul M β
f : β → α
hf : Injective f
smul : ∀ (c : M) (x : β), f (c • x) = c • f x
c₁ c₂ : M
x : β
⊢ f ((c₁ * c₂) • x) = f (c₁ • c₂ • x)
[PROOFSTEP]
simp only [smul, mul_smul]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
inst✝² : Monoid M
inst✝¹ : MulAction M α
inst✝ : SMul M β
f : α → β
hf : Surjective f
smul : ∀ (c : M) (x : α), f (c • x) = c • f x
y : β
⊢ 1 • y = y
[PROOFSTEP]
rcases hf y with ⟨x, rfl⟩
[GOAL]
case intro
M : Type u_1
N : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
inst✝² : Monoid M
inst✝¹ : MulAction M α
inst✝ : SMul M β
f : α → β
hf : Surjective f
smul : ∀ (c : M) (x : α), f (c • x) = c • f x
x : α
⊢ 1 • f x = f x
[PROOFSTEP]
rw [← smul, one_smul]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
inst✝² : Monoid M
inst✝¹ : MulAction M α
inst✝ : SMul M β
f : α → β
hf : Surjective f
smul : ∀ (c : M) (x : α), f (c • x) = c • f x
c₁ c₂ : M
y : β
⊢ (c₁ * c₂) • y = c₁ • c₂ • y
[PROOFSTEP]
rcases hf y with ⟨x, rfl⟩
[GOAL]
case intro
M : Type u_1
N : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
inst✝² : Monoid M
inst✝¹ : MulAction M α
inst✝ : SMul M β
f : α → β
hf : Surjective f
smul : ∀ (c : M) (x : α), f (c • x) = c • f x
c₁ c₂ : M
x : α
⊢ (c₁ * c₂) • f x = c₁ • c₂ • f x
[PROOFSTEP]
simp only [← smul, mul_smul]
[GOAL]
M✝ : Type u_1
N : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
inst✝⁵ : Monoid M✝
inst✝⁴ : MulAction M✝ α
R : Type u_10
S : Type u_11
M : Type u_12
inst✝³ : Monoid R
inst✝² : MulAction R M
inst✝¹ : Monoid S
inst✝ : SMul S M
f : R →* S
hf : Surjective ↑f
hsmul : ∀ (c : R) (x : M), ↑f c • x = c • x
b : M
⊢ 1 • b = b
[PROOFSTEP]
rw [← f.map_one, hsmul, one_smul]
[GOAL]
M✝ : Type u_1
N : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
inst✝⁵ : Monoid M✝
inst✝⁴ : MulAction M✝ α
R : Type u_10
S : Type u_11
M : Type u_12
inst✝³ : Monoid R
inst✝² : MulAction R M
inst✝¹ : Monoid S
inst✝ : SMul S M
f : R →* S
hf : Surjective ↑f
hsmul : ∀ (c : R) (x : M), ↑f c • x = c • x
a b : R
x : M
⊢ (↑f a * ↑f b) • x = ↑f a • ↑f b • x
[PROOFSTEP]
simp only [← f.map_mul, hsmul, mul_smul]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
inst✝⁴ : Monoid M
inst✝³ : MulAction M α
inst✝² : Mul α
r s : M
x y : α
inst✝¹ : IsScalarTower M α α
inst✝ : SMulCommClass M α α
⊢ r • x * s • y = (r * s) • (x * y)
[PROOFSTEP]
rw [smul_mul_assoc, mul_smul_comm, ← smul_assoc, smul_eq_mul]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
inst✝¹ : Monoid M
inst✝ : MulAction M α
y₁ y₂ : α
H : (fun y x => x • y) y₁ = (fun y x => x • y) y₂
⊢ 1 • y₁ = 1 • y₂
[PROOFSTEP]
convert congr_fun H 1
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
inst✝² : Monoid M
inst✝¹ : MulAction M α
inst✝ : Monoid N
g : N →* M
x✝ : α
⊢ 1 • x✝ = x✝
[PROOFSTEP]
simp [(· • ·)]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
inst✝² : Monoid M
inst✝¹ : MulAction M α
inst✝ : Monoid N
g : N →* M
x✝ : α
⊢ SMul.smul 1 x✝ = x✝
[PROOFSTEP]
apply MulAction.one_smul
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
inst✝² : Monoid M
inst✝¹ : MulAction M α
inst✝ : Monoid N
g : N →* M
x✝² x✝¹ : N
x✝ : α
⊢ (x✝² * x✝¹) • x✝ = x✝² • x✝¹ • x✝
[PROOFSTEP]
simp [(· • ·)]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
inst✝² : Monoid M
inst✝¹ : MulAction M α
inst✝ : Monoid N
g : N →* M
x✝² x✝¹ : N
x✝ : α
⊢ SMul.smul (↑g x✝² * ↑g x✝¹) x✝ = SMul.smul (↑g x✝²) (SMul.smul (↑g x✝¹) x✝)
[PROOFSTEP]
apply MulAction.mul_smul
[GOAL]
M✝ : Type u_1
N✝ : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
M : Type u_10
N : Type u_11
inst✝⁴ : Monoid N
inst✝³ : SMul M N
inst✝² : MulAction N α
inst✝¹ : SMul M α
inst✝ : IsScalarTower M N α
x : M
y : α
⊢ (x • 1) • y = x • y
[PROOFSTEP]
rw [smul_assoc, one_smul]
[GOAL]
M✝ : Type u_1
N✝ : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
M : Type u_10
N : Type u_11
inst✝² : MulOneClass N
inst✝¹ : SMul M N
inst✝ : IsScalarTower M N N
x : M
y : N
⊢ x • 1 * y = x • y
[PROOFSTEP]
rw [smul_mul_assoc, one_mul]
[GOAL]
M✝ : Type u_1
N✝ : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
M : Type u_10
N : Type u_11
inst✝² : MulOneClass N
inst✝¹ : SMul M N
inst✝ : SMulCommClass M N N
x : M
y : N
⊢ y * x • 1 = x • y
[PROOFSTEP]
rw [← smul_eq_mul, ← smul_comm, smul_eq_mul, mul_one]
[GOAL]
M✝ : Type u_1
N✝ : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
M : Type u_10
N : Type u_11
inst✝¹ : Monoid N
inst✝ : SMul M N
h : ∀ (x : M) (y : N), x • 1 * y = x • y
x : M
y z : N
⊢ (x • y) • z = x • y • z
[PROOFSTEP]
rw [← h, smul_eq_mul, mul_assoc, h, smul_eq_mul]
[GOAL]
M✝ : Type u_1
N✝ : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
M : Type u_10
N : Type u_11
inst✝¹ : Monoid N
inst✝ : SMul M N
H : ∀ (x : M) (y : N), y * x • 1 = x • y
x : M
y z : N
⊢ x • y • z = y • x • z
[PROOFSTEP]
rw [← H x z, smul_eq_mul, ← H, smul_eq_mul, mul_assoc]
[GOAL]
M✝ : Type u_1
N✝ : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
M : Type ?u.30564
N : Type ?u.30567
inst✝³ : Monoid M
inst✝² : Monoid N
inst✝¹ : MulAction M N
inst✝ : IsScalarTower M N N
x y : M
⊢ OneHom.toFun { toFun := fun x => x • 1, map_one' := (_ : 1 • 1 = 1) } (x * y) =
OneHom.toFun { toFun := fun x => x • 1, map_one' := (_ : 1 • 1 = 1) } x *
OneHom.toFun { toFun := fun x => x • 1, map_one' := (_ : 1 • 1 = 1) } y
[PROOFSTEP]
rw [smul_one_mul, smul_smul]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
inst✝³ : Zero A
inst✝² : SMulZeroClass M A
inst✝¹ : Zero B
inst✝ : SMul M B
f : ZeroHom B A
hf : Injective ↑f
smul : ∀ (c : M) (x : B), ↑f (c • x) = c • ↑f x
c : M
⊢ ↑f (c • 0) = ↑f 0
[PROOFSTEP]
simp only [smul, map_zero, smul_zero]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
inst✝³ : Zero A
inst✝² : SMulZeroClass M A
inst✝¹ : Zero B
inst✝ : SMul M B
f : ZeroHom A B
smul : ∀ (c : M) (x : A), ↑f (c • x) = c • ↑f x
c : M
⊢ c • 0 = 0
[PROOFSTEP]
rw [← map_zero f, ← smul, smul_zero]
[GOAL]
M✝ : Type u_1
N : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
inst✝⁴ : Zero A
inst✝³ : SMulZeroClass M✝ A
R : Type u_10
S : Type u_11
M : Type u_12
inst✝² : Zero M
inst✝¹ : SMulZeroClass R M
inst✝ : SMul S M
f : R → S
hf : Surjective f
hsmul : ∀ (c : R) (x : M), f c • x = c • x
c : R
⊢ f c • 0 = 0
[PROOFSTEP]
rw [hsmul, smul_zero]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
inst✝² : AddZeroClass A
inst✝¹ : DistribSMul M A
inst✝ : AddZeroClass B
r : M
f : B →+ A
⊢ (fun a => r • ↑f a) 0 = 0
[PROOFSTEP]
simp only [map_zero, smul_zero]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
inst✝² : AddZeroClass A
inst✝¹ : DistribSMul M A
inst✝ : AddZeroClass B
r : M
f : B →+ A
x y : B
⊢ ZeroHom.toFun { toFun := fun a => r • ↑f a, map_zero' := (_ : r • ↑f 0 = 0) } (x + y) =
ZeroHom.toFun { toFun := fun a => r • ↑f a, map_zero' := (_ : r • ↑f 0 = 0) } x +
ZeroHom.toFun { toFun := fun a => r • ↑f a, map_zero' := (_ : r • ↑f 0 = 0) } y
[PROOFSTEP]
simp only [map_add, smul_add]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
inst✝³ : AddZeroClass A
inst✝² : DistribSMul M A
inst✝¹ : AddZeroClass B
inst✝ : SMul M B
f : B →+ A
hf : Injective ↑f
smul : ∀ (c : M) (x : B), ↑f (c • x) = c • ↑f x
src✝ : SMulZeroClass M B := Injective.smulZeroClass (↑f) hf smul
c : M
x y : B
⊢ ↑f (c • (x + y)) = ↑f (c • x + c • y)
[PROOFSTEP]
simp only [smul, map_add, smul_add]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
inst✝³ : AddZeroClass A
inst✝² : DistribSMul M A
inst✝¹ : AddZeroClass B
inst✝ : SMul M B
f : A →+ B
hf : Surjective ↑f
smul : ∀ (c : M) (x : A), ↑f (c • x) = c • ↑f x
src✝ : SMulZeroClass M B := ZeroHom.smulZeroClass (↑f) smul
c : M
x y : B
⊢ c • (x + y) = c • x + c • y
[PROOFSTEP]
rcases hf x with ⟨x, rfl⟩
[GOAL]
case intro
M : Type u_1
N : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
inst✝³ : AddZeroClass A
inst✝² : DistribSMul M A
inst✝¹ : AddZeroClass B
inst✝ : SMul M B
f : A →+ B
hf : Surjective ↑f
smul : ∀ (c : M) (x : A), ↑f (c • x) = c • ↑f x
src✝ : SMulZeroClass M B := ZeroHom.smulZeroClass (↑f) smul
c : M
y : B
x : A
⊢ c • (↑f x + y) = c • ↑f x + c • y
[PROOFSTEP]
rcases hf y with ⟨y, rfl⟩
[GOAL]
case intro.intro
M : Type u_1
N : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
inst✝³ : AddZeroClass A
inst✝² : DistribSMul M A
inst✝¹ : AddZeroClass B
inst✝ : SMul M B
f : A →+ B
hf : Surjective ↑f
smul : ∀ (c : M) (x : A), ↑f (c • x) = c • ↑f x
src✝ : SMulZeroClass M B := ZeroHom.smulZeroClass (↑f) smul
c : M
x y : A
⊢ c • (↑f x + ↑f y) = c • ↑f x + c • ↑f y
[PROOFSTEP]
simp only [smul_add, ← smul, ← map_add]
[GOAL]
M✝ : Type u_1
N : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
inst✝⁴ : AddZeroClass A
inst✝³ : DistribSMul M✝ A
R : Type u_10
S : Type u_11
M : Type u_12
inst✝² : AddZeroClass M
inst✝¹ : DistribSMul R M
inst✝ : SMul S M
f : R → S
hf : Surjective f
hsmul : ∀ (c : R) (x : M), f c • x = c • x
src✝ : SMulZeroClass S M := smulZeroClassLeft f hf hsmul
c : R
x y : M
⊢ f c • (x + y) = f c • x + f c • y
[PROOFSTEP]
simp only [hsmul, smul_add]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
inst✝² : Monoid M
inst✝¹ : AddGroup A
inst✝ : DistribMulAction M A
r : M
x : A
⊢ r • -x + r • x = 0
[PROOFSTEP]
rw [← smul_add, neg_add_self, smul_zero]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
inst✝² : Monoid M
inst✝¹ : AddGroup A
inst✝ : DistribMulAction M A
r : M
x y : A
⊢ r • (x - y) = r • x - r • y
[PROOFSTEP]
rw [sub_eq_add_neg, sub_eq_add_neg, smul_add, smul_neg]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
inst✝⁴ : Monoid M
inst✝³ : Monoid A
inst✝² : MulDistribMulAction M A
inst✝¹ : Monoid B
inst✝ : SMul M B
f : B →* A
hf : Injective ↑f
smul : ∀ (c : M) (x : B), ↑f (c • x) = c • ↑f x
src✝ : MulAction M B := Injective.mulAction (↑f) hf smul
c : M
x y : B
⊢ ↑f (c • (x * y)) = ↑f (c • x * c • y)
[PROOFSTEP]
simp only [smul, f.map_mul, smul_mul']
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
inst✝⁴ : Monoid M
inst✝³ : Monoid A
inst✝² : MulDistribMulAction M A
inst✝¹ : Monoid B
inst✝ : SMul M B
f : B →* A
hf : Injective ↑f
smul : ∀ (c : M) (x : B), ↑f (c • x) = c • ↑f x
src✝ : MulAction M B := Injective.mulAction (↑f) hf smul
c : M
⊢ ↑f (c • 1) = ↑f 1
[PROOFSTEP]
simp only [smul, f.map_one, smul_one]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
inst✝⁴ : Monoid M
inst✝³ : Monoid A
inst✝² : MulDistribMulAction M A
inst✝¹ : Monoid B
inst✝ : SMul M B
f : A →* B
hf : Surjective ↑f
smul : ∀ (c : M) (x : A), ↑f (c • x) = c • ↑f x
src✝ : MulAction M B := Surjective.mulAction (↑f) hf smul
c : M
x y : B
⊢ c • (x * y) = c • x * c • y
[PROOFSTEP]
rcases hf x with ⟨x, rfl⟩
[GOAL]
case intro
M : Type u_1
N : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
inst✝⁴ : Monoid M
inst✝³ : Monoid A
inst✝² : MulDistribMulAction M A
inst✝¹ : Monoid B
inst✝ : SMul M B
f : A →* B
hf : Surjective ↑f
smul : ∀ (c : M) (x : A), ↑f (c • x) = c • ↑f x
src✝ : MulAction M B := Surjective.mulAction (↑f) hf smul
c : M
y : B
x : A
⊢ c • (↑f x * y) = c • ↑f x * c • y
[PROOFSTEP]
rcases hf y with ⟨y, rfl⟩
[GOAL]
case intro.intro
M : Type u_1
N : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
inst✝⁴ : Monoid M
inst✝³ : Monoid A
inst✝² : MulDistribMulAction M A
inst✝¹ : Monoid B
inst✝ : SMul M B
f : A →* B
hf : Surjective ↑f
smul : ∀ (c : M) (x : A), ↑f (c • x) = c • ↑f x
src✝ : MulAction M B := Surjective.mulAction (↑f) hf smul
c : M
x y : A
⊢ c • (↑f x * ↑f y) = c • ↑f x * c • ↑f y
[PROOFSTEP]
simp only [smul_mul', ← smul, ← f.map_mul]
[GOAL]
M : Type u_1
N : Type u_2
G : Type u_3
A : Type u_4
B : Type u_5
α : Type u_6
β : Type u_7
γ : Type u_8
δ : Type u_9
inst✝⁴ : Monoid M
inst✝³ : Monoid A
inst✝² : MulDistribMulAction M A
inst✝¹ : Monoid B
inst✝ : SMul M B
f : A →* B
hf : Surjective ↑f
smul : ∀ (c : M) (x : A), ↑f (c • x) = c • ↑f x
src✝ : MulAction M B := Surjective.mulAction (↑f) hf smul
c : M
⊢ c • 1 = 1
[PROOFSTEP]
rw [← f.map_one, ← smul, smul_one]
| {"mathlib_filename": "Mathlib.GroupTheory.GroupAction.Defs", "llama_tokens": 11331} |
[GOAL]
α : Type u_1
M : Type u_2
G : Type u_3
G₀ : Type u_4
R : Type u_5
K : Type u_6
inst✝ : Monoid M
⊢ ∀ (b : M), 1 • b = b
[PROOFSTEP]
simp only [units_smul_def, ofConjAct_one, Units.val_one, one_mul, inv_one, mul_one, forall_const]
[GOAL]
α : Type u_1
M : Type u_2
G : Type u_3
G₀ : Type u_4
R : Type u_5
K : Type u_6
inst✝ : Monoid M
⊢ ∀ (x y : ConjAct Mˣ) (b : M), (x * y) • b = x • y • b
[PROOFSTEP]
simp only [units_smul_def]
[GOAL]
α : Type u_1
M : Type u_2
G : Type u_3
G₀ : Type u_4
R : Type u_5
K : Type u_6
inst✝ : Monoid M
⊢ ∀ (x y : ConjAct Mˣ) (b : M),
↑(↑ofConjAct (x * y)) * b * ↑(↑ofConjAct (x * y))⁻¹ =
↑(↑ofConjAct x) * (↑(↑ofConjAct y) * b * ↑(↑ofConjAct y)⁻¹) * ↑(↑ofConjAct x)⁻¹
[PROOFSTEP]
simp only [map_mul, Units.val_mul, mul_assoc, mul_inv_rev, forall_const, forall]
[GOAL]
α : Type u_1
M : Type u_2
G : Type u_3
G₀ : Type u_4
R : Type u_5
K : Type u_6
inst✝ : Monoid M
⊢ ∀ (r : ConjAct Mˣ) (x y : M), r • (x * y) = r • x * r • y
[PROOFSTEP]
simp only [units_smul_def]
[GOAL]
α : Type u_1
M : Type u_2
G : Type u_3
G₀ : Type u_4
R : Type u_5
K : Type u_6
inst✝ : Monoid M
⊢ ∀ (r : ConjAct Mˣ) (x y : M),
↑(↑ofConjAct r) * (x * y) * ↑(↑ofConjAct r)⁻¹ =
↑(↑ofConjAct r) * x * ↑(↑ofConjAct r)⁻¹ * (↑(↑ofConjAct r) * y * ↑(↑ofConjAct r)⁻¹)
[PROOFSTEP]
simp only [mul_assoc, Units.inv_mul_cancel_left, forall_const, forall]
[GOAL]
α : Type u_1
M : Type u_2
G : Type u_3
G₀ : Type u_4
R : Type u_5
K : Type u_6
inst✝ : Monoid M
⊢ ∀ (r : ConjAct Mˣ), r • 1 = 1
[PROOFSTEP]
simp [units_smul_def, mul_one, Units.mul_inv, forall, forall_const]
[GOAL]
α : Type u_1
M : Type u_2
G : Type u_3
G₀ : Type u_4
R : Type u_5
K : Type u_6
inst✝³ : Monoid M
inst✝² : SMul α M
inst✝¹ : SMulCommClass α M M
inst✝ : IsScalarTower α M M
a : α
um : ConjAct Mˣ
m : M
⊢ a • um • m = um • a • m
[PROOFSTEP]
rw [units_smul_def, units_smul_def, mul_smul_comm, smul_mul_assoc]
[GOAL]
α : Type u_1
M : Type u_2
G : Type u_3
G₀ : Type u_4
R : Type u_5
K : Type u_6
inst✝ : Semiring R
src✝ : MulDistribMulAction (ConjAct Rˣ) R := unitsMulDistribMulAction
⊢ ∀ (a : ConjAct Rˣ), a • 0 = 0
[PROOFSTEP]
simp only [units_smul_def, mul_zero, zero_mul, forall, forall_const]
[GOAL]
α : Type u_1
M : Type u_2
G : Type u_3
G₀ : Type u_4
R : Type u_5
K : Type u_6
inst✝ : Semiring R
src✝ : MulDistribMulAction (ConjAct Rˣ) R := unitsMulDistribMulAction
⊢ ∀ (a : ConjAct Rˣ) (x y : R), a • (x + y) = a • x + a • y
[PROOFSTEP]
simp only [units_smul_def]
[GOAL]
α : Type u_1
M : Type u_2
G : Type u_3
G₀ : Type u_4
R : Type u_5
K : Type u_6
inst✝ : Semiring R
src✝ : MulDistribMulAction (ConjAct Rˣ) R := unitsMulDistribMulAction
⊢ ∀ (a : ConjAct Rˣ) (x y : R),
↑(↑ofConjAct a) * (x + y) * ↑(↑ofConjAct a)⁻¹ =
↑(↑ofConjAct a) * x * ↑(↑ofConjAct a)⁻¹ + ↑(↑ofConjAct a) * y * ↑(↑ofConjAct a)⁻¹
[PROOFSTEP]
simp only [mul_add, add_mul, forall_const, forall]
[GOAL]
α : Type u_1
M : Type u_2
G : Type u_3
G₀ : Type u_4
R : Type u_5
K : Type u_6
inst✝ : GroupWithZero G₀
⊢ ∀ (b : G₀), 1 • b = b
[PROOFSTEP]
simp only [smul_def]
[GOAL]
α : Type u_1
M : Type u_2
G : Type u_3
G₀ : Type u_4
R : Type u_5
K : Type u_6
inst✝ : GroupWithZero G₀
⊢ ∀ (b : G₀), ↑ofConjAct 1 * b * (↑ofConjAct 1)⁻¹ = b
[PROOFSTEP]
simp only [map_one, one_mul, inv_one, mul_one, forall_const]
[GOAL]
α : Type u_1
M : Type u_2
G : Type u_3
G₀ : Type u_4
R : Type u_5
K : Type u_6
inst✝ : GroupWithZero G₀
⊢ ∀ (x y : ConjAct G₀) (b : G₀), (x * y) • b = x • y • b
[PROOFSTEP]
simp only [smul_def]
[GOAL]
α : Type u_1
M : Type u_2
G : Type u_3
G₀ : Type u_4
R : Type u_5
K : Type u_6
inst✝ : GroupWithZero G₀
⊢ ∀ (x y : ConjAct G₀) (b : G₀),
↑ofConjAct (x * y) * b * (↑ofConjAct (x * y))⁻¹ =
↑ofConjAct x * (↑ofConjAct y * b * (↑ofConjAct y)⁻¹) * (↑ofConjAct x)⁻¹
[PROOFSTEP]
simp only [map_mul, mul_assoc, mul_inv_rev, forall_const, forall]
[GOAL]
α : Type u_1
M : Type u_2
G : Type u_3
G₀ : Type u_4
R : Type u_5
K : Type u_6
inst✝³ : GroupWithZero G₀
inst✝² : SMul α G₀
inst✝¹ : SMulCommClass α G₀ G₀
inst✝ : IsScalarTower α G₀ G₀
a : α
ug : ConjAct G₀
g : G₀
⊢ a • ug • g = ug • a • g
[PROOFSTEP]
rw [smul_def, smul_def, mul_smul_comm, smul_mul_assoc]
[GOAL]
α : Type u_1
M : Type u_2
G : Type u_3
G₀ : Type u_4
R : Type u_5
K : Type u_6
inst✝ : DivisionRing K
src✝ : MulAction (ConjAct K) K := mulAction₀
⊢ ∀ (a : ConjAct K), a • 0 = 0
[PROOFSTEP]
simp only [smul_def]
[GOAL]
α : Type u_1
M : Type u_2
G : Type u_3
G₀ : Type u_4
R : Type u_5
K : Type u_6
inst✝ : DivisionRing K
src✝ : MulAction (ConjAct K) K := mulAction₀
⊢ ∀ (a : ConjAct K), ↑ofConjAct a * 0 * (↑ofConjAct a)⁻¹ = 0
[PROOFSTEP]
simp only [mul_zero, zero_mul, forall, forall_const]
[GOAL]
α : Type u_1
M : Type u_2
G : Type u_3
G₀ : Type u_4
R : Type u_5
K : Type u_6
inst✝ : DivisionRing K
src✝ : MulAction (ConjAct K) K := mulAction₀
⊢ ∀ (a : ConjAct K) (x y : K), a • (x + y) = a • x + a • y
[PROOFSTEP]
simp only [smul_def]
[GOAL]
α : Type u_1
M : Type u_2
G : Type u_3
G₀ : Type u_4
R : Type u_5
K : Type u_6
inst✝ : DivisionRing K
src✝ : MulAction (ConjAct K) K := mulAction₀
⊢ ∀ (a : ConjAct K) (x y : K),
↑ofConjAct a * (x + y) * (↑ofConjAct a)⁻¹ =
↑ofConjAct a * x * (↑ofConjAct a)⁻¹ + ↑ofConjAct a * y * (↑ofConjAct a)⁻¹
[PROOFSTEP]
simp only [mul_add, add_mul, forall_const, forall]
[GOAL]
α : Type u_1
M : Type u_2
G : Type u_3
G₀ : Type u_4
R : Type u_5
K : Type u_6
inst✝ : Group G
⊢ ∀ (b : G), 1 • b = b
[PROOFSTEP]
simp only [smul_def, ofConjAct_one, one_mul, inv_one, mul_one, forall_const]
[GOAL]
α : Type u_1
M : Type u_2
G : Type u_3
G₀ : Type u_4
R : Type u_5
K : Type u_6
inst✝ : Group G
⊢ ∀ (x y : ConjAct G) (b : G), (x * y) • b = x • y • b
[PROOFSTEP]
simp only [smul_def]
[GOAL]
α : Type u_1
M : Type u_2
G : Type u_3
G₀ : Type u_4
R : Type u_5
K : Type u_6
inst✝ : Group G
⊢ ∀ (x y : ConjAct G) (b : G),
↑ofConjAct (x * y) * b * (↑ofConjAct (x * y))⁻¹ =
↑ofConjAct x * (↑ofConjAct y * b * (↑ofConjAct y)⁻¹) * (↑ofConjAct x)⁻¹
[PROOFSTEP]
simp only [map_mul, mul_assoc, mul_inv_rev, forall_const, forall]
[GOAL]
α : Type u_1
M : Type u_2
G : Type u_3
G₀ : Type u_4
R : Type u_5
K : Type u_6
inst✝ : Group G
⊢ ∀ (r : ConjAct G) (x y : G), r • (x * y) = r • x * r • y
[PROOFSTEP]
simp only [smul_def]
[GOAL]
α : Type u_1
M : Type u_2
G : Type u_3
G₀ : Type u_4
R : Type u_5
K : Type u_6
inst✝ : Group G
⊢ ∀ (r : ConjAct G) (x y : G),
↑ofConjAct r * (x * y) * (↑ofConjAct r)⁻¹ =
↑ofConjAct r * x * (↑ofConjAct r)⁻¹ * (↑ofConjAct r * y * (↑ofConjAct r)⁻¹)
[PROOFSTEP]
simp only [mul_assoc, inv_mul_cancel_left, forall_const, forall]
[GOAL]
α : Type u_1
M : Type u_2
G : Type u_3
G₀ : Type u_4
R : Type u_5
K : Type u_6
inst✝ : Group G
⊢ ∀ (r : ConjAct G), r • 1 = 1
[PROOFSTEP]
simp only [smul_def, mul_one, mul_right_inv, forall, forall_const]
[GOAL]
α : Type u_1
M : Type u_2
G : Type u_3
G₀ : Type u_4
R : Type u_5
K : Type u_6
inst✝³ : Group G
inst✝² : SMul α G
inst✝¹ : SMulCommClass α G G
inst✝ : IsScalarTower α G G
a : α
ug : ConjAct G
g : G
⊢ a • ug • g = ug • a • g
[PROOFSTEP]
rw [smul_def, smul_def, mul_smul_comm, smul_mul_assoc]
[GOAL]
α : Type u_1
M : Type u_2
G : Type u_3
G₀ : Type u_4
R : Type u_5
K : Type u_6
inst✝ : Group G
⊢ fixedPoints (ConjAct G) G = ↑(center G)
[PROOFSTEP]
ext x
[GOAL]
case h
α : Type u_1
M : Type u_2
G : Type u_3
G₀ : Type u_4
R : Type u_5
K : Type u_6
inst✝ : Group G
x : G
⊢ x ∈ fixedPoints (ConjAct G) G ↔ x ∈ ↑(center G)
[PROOFSTEP]
simp [mem_center_iff, smul_def, mul_inv_eq_iff_eq_mul]
[GOAL]
α : Type u_1
M : Type u_2
G : Type u_3
G₀ : Type u_4
R : Type u_5
K : Type u_6
inst✝ : Group G
g h : G
⊢ g ∈ orbit (ConjAct G) h ↔ IsConj g h
[PROOFSTEP]
rw [isConj_comm, isConj_iff, mem_orbit_iff]
[GOAL]
α : Type u_1
M : Type u_2
G : Type u_3
G₀ : Type u_4
R : Type u_5
K : Type u_6
inst✝ : Group G
g h : G
⊢ (∃ x, x • h = g) ↔ ∃ c, c * h * c⁻¹ = g
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
M : Type u_2
G : Type u_3
G₀ : Type u_4
R : Type u_5
K : Type u_6
inst✝ : Group G
g h : G
⊢ Setoid.Rel (orbitRel (ConjAct G) G) g h = IsConj g h
[PROOFSTEP]
rw [orbitRel_apply, mem_orbit_conjAct]
[GOAL]
α : Type u_1
M : Type u_2
G : Type u_3
G₀ : Type u_4
R : Type u_5
K : Type u_6
inst✝¹ inst✝ : Group G
g : G
⊢ orbit (ConjAct G) g = ConjClasses.carrier (ConjClasses.mk g)
[PROOFSTEP]
ext h
[GOAL]
case h
α : Type u_1
M : Type u_2
G : Type u_3
G₀ : Type u_4
R : Type u_5
K : Type u_6
inst✝¹ inst✝ : Group G
g h : G
⊢ h ∈ orbit (ConjAct G) g ↔ h ∈ ConjClasses.carrier (ConjClasses.mk g)
[PROOFSTEP]
rw [ConjClasses.mem_carrier_iff_mk_eq, ConjClasses.mk_eq_mk_iff_isConj, mem_orbit_conjAct]
[GOAL]
α : Type u_1
M : Type u_2
G : Type u_3
G₀ : Type u_4
R : Type u_5
K : Type u_6
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
g : G
h : { x // x ∈ H }
⊢ ↑(↑(MulEquiv.symm (↑MulAut.conjNormal g)) h) = g⁻¹ * ↑h * g
[PROOFSTEP]
change _ * _⁻¹⁻¹ = _
[GOAL]
α : Type u_1
M : Type u_2
G : Type u_3
G₀ : Type u_4
R : Type u_5
K : Type u_6
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
g : G
h : { x // x ∈ H }
⊢ ↑ofConjAct (↑(MulEquiv.toMonoidHom toConjAct) g)⁻¹ * ↑h * (↑(MulEquiv.toMonoidHom toConjAct) g)⁻¹⁻¹ = g⁻¹ * ↑h * g
[PROOFSTEP]
rw [inv_inv]
[GOAL]
α : Type u_1
M : Type u_2
G : Type u_3
G₀ : Type u_4
R : Type u_5
K : Type u_6
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
g : G
h : { x // x ∈ H }
⊢ ↑ofConjAct (↑(MulEquiv.toMonoidHom toConjAct) g)⁻¹ * ↑h * ↑(MulEquiv.toMonoidHom toConjAct) g = g⁻¹ * ↑h * g
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
M : Type u_2
G : Type u_3
G₀ : Type u_4
R : Type u_5
K✝ : Type u_6
inst✝ : Group G
H : Subgroup G
hH : Normal H
K : Subgroup { x // x ∈ H }
h : Characteristic K
a : G
ha : a ∈ map (Subgroup.subtype H) K
b : G
⊢ b * a * b⁻¹ ∈ map (Subgroup.subtype H) K
[PROOFSTEP]
obtain ⟨a, ha, rfl⟩ := ha
[GOAL]
case intro.intro
α : Type u_1
M : Type u_2
G : Type u_3
G₀ : Type u_4
R : Type u_5
K✝ : Type u_6
inst✝ : Group G
H : Subgroup G
hH : Normal H
K : Subgroup { x // x ∈ H }
h : Characteristic K
b : G
a : { x // x ∈ H }
ha : a ∈ ↑K
⊢ b * ↑(Subgroup.subtype H) a * b⁻¹ ∈ map (Subgroup.subtype H) K
[PROOFSTEP]
exact K.apply_coe_mem_map H.subtype ⟨_, (SetLike.ext_iff.mp (h.fixed (MulAut.conjNormal b)) a).mpr ha⟩
| {"mathlib_filename": "Mathlib.GroupTheory.GroupAction.ConjAct", "llama_tokens": 5282} |
[GOAL]
M : Type u_1
α : Type u_2
inst✝¹ : Monoid M
inst✝ : MulAction M α
s : Set α
x y : M
hx : x ∈ {ϕ | ∀ (x : ↑s), ϕ • ↑x = ↑x}
hy : y ∈ {ϕ | ∀ (x : ↑s), ϕ • ↑x = ↑x}
z : ↑s
⊢ (x * y) • ↑z = ↑z
[PROOFSTEP]
rw [mul_smul, hy z, hx z]
[GOAL]
M : Type u_1
α : Type u_2
inst✝¹ : Group M
inst✝ : MulAction M α
s : Set α
src✝ : Submonoid M := fixingSubmonoid M s
x✝ : M
hx : x✝ ∈ { toSubsemigroup := src✝.toSubsemigroup, one_mem' := (_ : 1 ∈ src✝.carrier) }.toSubsemigroup.carrier
z : ↑s
⊢ x✝⁻¹ • ↑z = ↑z
[PROOFSTEP]
rw [inv_smul_eq_iff, hx z]
| {"mathlib_filename": "Mathlib.GroupTheory.GroupAction.FixingSubgroup", "llama_tokens": 322} |
[GOAL]
N : Type u_1
G : Type u_2
H : Type u_3
inst✝² : Group N
inst✝¹ : Group G
inst✝ : Group H
φ : G →* MulAut N
a b c : N ⋊[φ] G
⊢ (a * b * c).left = (a * (b * c)).left
[PROOFSTEP]
simp [mul_assoc]
[GOAL]
N : Type u_1
G : Type u_2
H : Type u_3
inst✝² : Group N
inst✝¹ : Group G
inst✝ : Group H
φ : G →* MulAut N
a b c : N ⋊[φ] G
⊢ (a * b * c).right = (a * (b * c)).right
[PROOFSTEP]
simp [mul_assoc]
[GOAL]
N : Type u_1
G : Type u_2
H : Type u_3
inst✝² : Group N
inst✝¹ : Group G
inst✝ : Group H
φ : G →* MulAut N
a : N ⋊[φ] G
⊢ (1 * a).left = a.left
[PROOFSTEP]
simp
[GOAL]
N : Type u_1
G : Type u_2
H : Type u_3
inst✝² : Group N
inst✝¹ : Group G
inst✝ : Group H
φ : G →* MulAut N
a : N ⋊[φ] G
⊢ (a * 1).left = a.left
[PROOFSTEP]
simp
[GOAL]
N : Type u_1
G : Type u_2
H : Type u_3
inst✝² : Group N
inst✝¹ : Group G
inst✝ : Group H
φ : G →* MulAut N
a : N ⋊[φ] G
⊢ (a⁻¹ * a).left = 1.left
[PROOFSTEP]
simp
[GOAL]
N : Type u_1
G : Type u_2
H : Type u_3
inst✝² : Group N
inst✝¹ : Group G
inst✝ : Group H
φ : G →* MulAut N
a : N ⋊[φ] G
⊢ (a⁻¹ * a).right = 1.right
[PROOFSTEP]
simp
[GOAL]
N : Type u_1
G : Type u_2
H : Type u_3
inst✝² : Group N
inst✝¹ : Group G
inst✝ : Group H
φ : G →* MulAut N
⊢ ∀ (x y : N),
OneHom.toFun
{ toFun := fun n => { left := n, right := 1 },
map_one' := (_ : (fun n => { left := n, right := 1 }) 1 = (fun n => { left := n, right := 1 }) 1) }
(x * y) =
OneHom.toFun
{ toFun := fun n => { left := n, right := 1 },
map_one' := (_ : (fun n => { left := n, right := 1 }) 1 = (fun n => { left := n, right := 1 }) 1) }
x *
OneHom.toFun
{ toFun := fun n => { left := n, right := 1 },
map_one' := (_ : (fun n => { left := n, right := 1 }) 1 = (fun n => { left := n, right := 1 }) 1) }
y
[PROOFSTEP]
intros
[GOAL]
N : Type u_1
G : Type u_2
H : Type u_3
inst✝² : Group N
inst✝¹ : Group G
inst✝ : Group H
φ : G →* MulAut N
x✝ y✝ : N
⊢ OneHom.toFun
{ toFun := fun n => { left := n, right := 1 },
map_one' := (_ : (fun n => { left := n, right := 1 }) 1 = (fun n => { left := n, right := 1 }) 1) }
(x✝ * y✝) =
OneHom.toFun
{ toFun := fun n => { left := n, right := 1 },
map_one' := (_ : (fun n => { left := n, right := 1 }) 1 = (fun n => { left := n, right := 1 }) 1) }
x✝ *
OneHom.toFun
{ toFun := fun n => { left := n, right := 1 },
map_one' := (_ : (fun n => { left := n, right := 1 }) 1 = (fun n => { left := n, right := 1 }) 1) }
y✝
[PROOFSTEP]
ext
[GOAL]
case left
N : Type u_1
G : Type u_2
H : Type u_3
inst✝² : Group N
inst✝¹ : Group G
inst✝ : Group H
φ : G →* MulAut N
x✝ y✝ : N
⊢ (OneHom.toFun
{ toFun := fun n => { left := n, right := 1 },
map_one' := (_ : (fun n => { left := n, right := 1 }) 1 = (fun n => { left := n, right := 1 }) 1) }
(x✝ * y✝)).left =
(OneHom.toFun
{ toFun := fun n => { left := n, right := 1 },
map_one' := (_ : (fun n => { left := n, right := 1 }) 1 = (fun n => { left := n, right := 1 }) 1) }
x✝ *
OneHom.toFun
{ toFun := fun n => { left := n, right := 1 },
map_one' := (_ : (fun n => { left := n, right := 1 }) 1 = (fun n => { left := n, right := 1 }) 1) }
y✝).left
[PROOFSTEP]
simp only [mul_left, map_one, MulAut.one_apply, mul_right, mul_one]
[GOAL]
case right
N : Type u_1
G : Type u_2
H : Type u_3
inst✝² : Group N
inst✝¹ : Group G
inst✝ : Group H
φ : G →* MulAut N
x✝ y✝ : N
⊢ (OneHom.toFun
{ toFun := fun n => { left := n, right := 1 },
map_one' := (_ : (fun n => { left := n, right := 1 }) 1 = (fun n => { left := n, right := 1 }) 1) }
(x✝ * y✝)).right =
(OneHom.toFun
{ toFun := fun n => { left := n, right := 1 },
map_one' := (_ : (fun n => { left := n, right := 1 }) 1 = (fun n => { left := n, right := 1 }) 1) }
x✝ *
OneHom.toFun
{ toFun := fun n => { left := n, right := 1 },
map_one' := (_ : (fun n => { left := n, right := 1 }) 1 = (fun n => { left := n, right := 1 }) 1) }
y✝).right
[PROOFSTEP]
simp only [mul_left, map_one, MulAut.one_apply, mul_right, mul_one]
[GOAL]
N : Type u_1
G : Type u_2
H : Type u_3
inst✝² : Group N
inst✝¹ : Group G
inst✝ : Group H
φ : G →* MulAut N
⊢ ∀ (x y : G),
OneHom.toFun
{ toFun := fun g => { left := 1, right := g },
map_one' := (_ : (fun g => { left := 1, right := g }) 1 = (fun g => { left := 1, right := g }) 1) }
(x * y) =
OneHom.toFun
{ toFun := fun g => { left := 1, right := g },
map_one' := (_ : (fun g => { left := 1, right := g }) 1 = (fun g => { left := 1, right := g }) 1) }
x *
OneHom.toFun
{ toFun := fun g => { left := 1, right := g },
map_one' := (_ : (fun g => { left := 1, right := g }) 1 = (fun g => { left := 1, right := g }) 1) }
y
[PROOFSTEP]
intros
[GOAL]
N : Type u_1
G : Type u_2
H : Type u_3
inst✝² : Group N
inst✝¹ : Group G
inst✝ : Group H
φ : G →* MulAut N
x✝ y✝ : G
⊢ OneHom.toFun
{ toFun := fun g => { left := 1, right := g },
map_one' := (_ : (fun g => { left := 1, right := g }) 1 = (fun g => { left := 1, right := g }) 1) }
(x✝ * y✝) =
OneHom.toFun
{ toFun := fun g => { left := 1, right := g },
map_one' := (_ : (fun g => { left := 1, right := g }) 1 = (fun g => { left := 1, right := g }) 1) }
x✝ *
OneHom.toFun
{ toFun := fun g => { left := 1, right := g },
map_one' := (_ : (fun g => { left := 1, right := g }) 1 = (fun g => { left := 1, right := g }) 1) }
y✝
[PROOFSTEP]
ext
[GOAL]
case left
N : Type u_1
G : Type u_2
H : Type u_3
inst✝² : Group N
inst✝¹ : Group G
inst✝ : Group H
φ : G →* MulAut N
x✝ y✝ : G
⊢ (OneHom.toFun
{ toFun := fun g => { left := 1, right := g },
map_one' := (_ : (fun g => { left := 1, right := g }) 1 = (fun g => { left := 1, right := g }) 1) }
(x✝ * y✝)).left =
(OneHom.toFun
{ toFun := fun g => { left := 1, right := g },
map_one' := (_ : (fun g => { left := 1, right := g }) 1 = (fun g => { left := 1, right := g }) 1) }
x✝ *
OneHom.toFun
{ toFun := fun g => { left := 1, right := g },
map_one' := (_ : (fun g => { left := 1, right := g }) 1 = (fun g => { left := 1, right := g }) 1) }
y✝).left
[PROOFSTEP]
simp
[GOAL]
case right
N : Type u_1
G : Type u_2
H : Type u_3
inst✝² : Group N
inst✝¹ : Group G
inst✝ : Group H
φ : G →* MulAut N
x✝ y✝ : G
⊢ (OneHom.toFun
{ toFun := fun g => { left := 1, right := g },
map_one' := (_ : (fun g => { left := 1, right := g }) 1 = (fun g => { left := 1, right := g }) 1) }
(x✝ * y✝)).right =
(OneHom.toFun
{ toFun := fun g => { left := 1, right := g },
map_one' := (_ : (fun g => { left := 1, right := g }) 1 = (fun g => { left := 1, right := g }) 1) }
x✝ *
OneHom.toFun
{ toFun := fun g => { left := 1, right := g },
map_one' := (_ : (fun g => { left := 1, right := g }) 1 = (fun g => { left := 1, right := g }) 1) }
y✝).right
[PROOFSTEP]
simp
[GOAL]
N : Type u_1
G : Type u_2
H : Type u_3
inst✝² : Group N
inst✝¹ : Group G
inst✝ : Group H
φ : G →* MulAut N
g : G
n : N
⊢ ↑inl (↑(↑φ g) n) = ↑inr g * ↑inl n * ↑inr g⁻¹
[PROOFSTEP]
ext
[GOAL]
case left
N : Type u_1
G : Type u_2
H : Type u_3
inst✝² : Group N
inst✝¹ : Group G
inst✝ : Group H
φ : G →* MulAut N
g : G
n : N
⊢ (↑inl (↑(↑φ g) n)).left = (↑inr g * ↑inl n * ↑inr g⁻¹).left
[PROOFSTEP]
simp
[GOAL]
case right
N : Type u_1
G : Type u_2
H : Type u_3
inst✝² : Group N
inst✝¹ : Group G
inst✝ : Group H
φ : G →* MulAut N
g : G
n : N
⊢ (↑inl (↑(↑φ g) n)).right = (↑inr g * ↑inl n * ↑inr g⁻¹).right
[PROOFSTEP]
simp
[GOAL]
N : Type u_1
G : Type u_2
H : Type u_3
inst✝² : Group N
inst✝¹ : Group G
inst✝ : Group H
φ : G →* MulAut N
g : G
n : N
⊢ ↑inl (↑(↑φ g)⁻¹ n) = ↑inr g⁻¹ * ↑inl n * ↑inr g
[PROOFSTEP]
rw [← MonoidHom.map_inv, inl_aut, inv_inv]
[GOAL]
N : Type u_1
G : Type u_2
H : Type u_3
inst✝² : Group N
inst✝¹ : Group G
inst✝ : Group H
φ : G →* MulAut N
g : G
n : N
⊢ { left := n, right := g } = ↑inl n * ↑inr g
[PROOFSTEP]
ext
[GOAL]
case left
N : Type u_1
G : Type u_2
H : Type u_3
inst✝² : Group N
inst✝¹ : Group G
inst✝ : Group H
φ : G →* MulAut N
g : G
n : N
⊢ { left := n, right := g }.left = (↑inl n * ↑inr g).left
[PROOFSTEP]
simp
[GOAL]
case right
N : Type u_1
G : Type u_2
H : Type u_3
inst✝² : Group N
inst✝¹ : Group G
inst✝ : Group H
φ : G →* MulAut N
g : G
n : N
⊢ { left := n, right := g }.right = (↑inl n * ↑inr g).right
[PROOFSTEP]
simp
[GOAL]
N : Type u_1
G : Type u_2
H : Type u_3
inst✝² : Group N
inst✝¹ : Group G
inst✝ : Group H
φ : G →* MulAut N
x : N ⋊[φ] G
⊢ ↑inl x.left * ↑inr x.right = x
[PROOFSTEP]
ext
[GOAL]
case left
N : Type u_1
G : Type u_2
H : Type u_3
inst✝² : Group N
inst✝¹ : Group G
inst✝ : Group H
φ : G →* MulAut N
x : N ⋊[φ] G
⊢ (↑inl x.left * ↑inr x.right).left = x.left
[PROOFSTEP]
simp
[GOAL]
case right
N : Type u_1
G : Type u_2
H : Type u_3
inst✝² : Group N
inst✝¹ : Group G
inst✝ : Group H
φ : G →* MulAut N
x : N ⋊[φ] G
⊢ (↑inl x.left * ↑inr x.right).right = x.right
[PROOFSTEP]
simp
[GOAL]
N : Type u_1
G : Type u_2
H : Type u_3
inst✝² : Group N
inst✝¹ : Group G
inst✝ : Group H
φ : G →* MulAut N
⊢ MonoidHom.comp rightHom inl = 1
[PROOFSTEP]
ext
[GOAL]
case h
N : Type u_1
G : Type u_2
H : Type u_3
inst✝² : Group N
inst✝¹ : Group G
inst✝ : Group H
φ : G →* MulAut N
x✝ : N
⊢ ↑(MonoidHom.comp rightHom inl) x✝ = ↑1 x✝
[PROOFSTEP]
simp [rightHom]
[GOAL]
N : Type u_1
G : Type u_2
H : Type u_3
inst✝² : Group N
inst✝¹ : Group G
inst✝ : Group H
φ : G →* MulAut N
⊢ MonoidHom.comp rightHom inr = MonoidHom.id G
[PROOFSTEP]
ext
[GOAL]
case h
N : Type u_1
G : Type u_2
H : Type u_3
inst✝² : Group N
inst✝¹ : Group G
inst✝ : Group H
φ : G →* MulAut N
x✝ : G
⊢ ↑(MonoidHom.comp rightHom inr) x✝ = ↑(MonoidHom.id G) x✝
[PROOFSTEP]
simp [rightHom]
[GOAL]
N : Type u_1
G : Type u_2
H : Type u_3
inst✝² : Group N
inst✝¹ : Group G
inst✝ : Group H
φ : G →* MulAut N
n : N
⊢ ↑rightHom (↑inl n) = 1
[PROOFSTEP]
simp [rightHom]
[GOAL]
N : Type u_1
G : Type u_2
H : Type u_3
inst✝² : Group N
inst✝¹ : Group G
inst✝ : Group H
φ : G →* MulAut N
g : G
⊢ ↑rightHom (↑inr g) = g
[PROOFSTEP]
simp [rightHom]
[GOAL]
N : Type u_1
G : Type u_2
H : Type u_3
inst✝² : Group N
inst✝¹ : Group G
inst✝ : Group H
φ : G →* MulAut N
x✝ : N ⋊[φ] G
⊢ x✝ ∈ MonoidHom.range inl → x✝ ∈ MonoidHom.ker rightHom
[PROOFSTEP]
simp (config := { contextual := true }) [MonoidHom.mem_ker, eq_comm]
[GOAL]
N : Type u_1
G : Type u_2
H : Type u_3
inst✝² : Group N
inst✝¹ : Group G
inst✝ : Group H
φ : G →* MulAut N
x : N ⋊[φ] G
hx : x ∈ MonoidHom.ker rightHom
⊢ ↑inl x.left = x
[PROOFSTEP]
ext
[GOAL]
case left
N : Type u_1
G : Type u_2
H : Type u_3
inst✝² : Group N
inst✝¹ : Group G
inst✝ : Group H
φ : G →* MulAut N
x : N ⋊[φ] G
hx : x ∈ MonoidHom.ker rightHom
⊢ (↑inl x.left).left = x.left
[PROOFSTEP]
simp_all [MonoidHom.mem_ker]
[GOAL]
case right
N : Type u_1
G : Type u_2
H : Type u_3
inst✝² : Group N
inst✝¹ : Group G
inst✝ : Group H
φ : G →* MulAut N
x : N ⋊[φ] G
hx : x ∈ MonoidHom.ker rightHom
⊢ (↑inl x.left).right = x.right
[PROOFSTEP]
simp_all [MonoidHom.mem_ker]
[GOAL]
N : Type u_1
G : Type u_2
H : Type u_3
inst✝² : Group N
inst✝¹ : Group G
inst✝ : Group H
φ : G →* MulAut N
f₁✝ : N →* H
f₂✝ : G →* H
h✝ :
∀ (g : G),
MonoidHom.comp f₁✝ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑f₂✝ g))) f₁✝
f₁ : N →* H
f₂ : G →* H
h :
∀ (g : G),
MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑f₂ g))) f₁
⊢ (fun a => ↑f₁ a.left * ↑f₂ a.right) 1 = 1
[PROOFSTEP]
simp
[GOAL]
N : Type u_1
G : Type u_2
H : Type u_3
inst✝² : Group N
inst✝¹ : Group G
inst✝ : Group H
φ : G →* MulAut N
f₁✝ : N →* H
f₂✝ : G →* H
h✝ :
∀ (g : G),
MonoidHom.comp f₁✝ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑f₂✝ g))) f₁✝
f₁ : N →* H
f₂ : G →* H
h :
∀ (g : G),
MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑f₂ g))) f₁
a b : N ⋊[φ] G
⊢ OneHom.toFun { toFun := fun a => ↑f₁ a.left * ↑f₂ a.right, map_one' := (_ : ↑f₁ 1 * ↑f₂ 1 = 1) } (a * b) =
OneHom.toFun { toFun := fun a => ↑f₁ a.left * ↑f₂ a.right, map_one' := (_ : ↑f₁ 1 * ↑f₂ 1 = 1) } a *
OneHom.toFun { toFun := fun a => ↑f₁ a.left * ↑f₂ a.right, map_one' := (_ : ↑f₁ 1 * ↑f₂ 1 = 1) } b
[PROOFSTEP]
have := fun n g ↦ FunLike.ext_iff.1 (h n) g
[GOAL]
N : Type u_1
G : Type u_2
H : Type u_3
inst✝² : Group N
inst✝¹ : Group G
inst✝ : Group H
φ : G →* MulAut N
f₁✝ : N →* H
f₂✝ : G →* H
h✝ :
∀ (g : G),
MonoidHom.comp f₁✝ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑f₂✝ g))) f₁✝
f₁ : N →* H
f₂ : G →* H
h :
∀ (g : G),
MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑f₂ g))) f₁
a b : N ⋊[φ] G
this :
∀ (n : G) (g : N),
↑(MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ n))) g =
↑(MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑f₂ n))) f₁) g
⊢ OneHom.toFun { toFun := fun a => ↑f₁ a.left * ↑f₂ a.right, map_one' := (_ : ↑f₁ 1 * ↑f₂ 1 = 1) } (a * b) =
OneHom.toFun { toFun := fun a => ↑f₁ a.left * ↑f₂ a.right, map_one' := (_ : ↑f₁ 1 * ↑f₂ 1 = 1) } a *
OneHom.toFun { toFun := fun a => ↑f₁ a.left * ↑f₂ a.right, map_one' := (_ : ↑f₁ 1 * ↑f₂ 1 = 1) } b
[PROOFSTEP]
simp only [MulAut.conj_apply, MonoidHom.comp_apply, MulEquiv.coe_toMonoidHom] at this
[GOAL]
N : Type u_1
G : Type u_2
H : Type u_3
inst✝² : Group N
inst✝¹ : Group G
inst✝ : Group H
φ : G →* MulAut N
f₁✝ : N →* H
f₂✝ : G →* H
h✝ :
∀ (g : G),
MonoidHom.comp f₁✝ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑f₂✝ g))) f₁✝
f₁ : N →* H
f₂ : G →* H
h :
∀ (g : G),
MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑f₂ g))) f₁
a b : N ⋊[φ] G
this : ∀ (n : G) (g : N), ↑f₁ (↑(↑φ n) g) = ↑f₂ n * ↑f₁ g * (↑f₂ n)⁻¹
⊢ OneHom.toFun { toFun := fun a => ↑f₁ a.left * ↑f₂ a.right, map_one' := (_ : ↑f₁ 1 * ↑f₂ 1 = 1) } (a * b) =
OneHom.toFun { toFun := fun a => ↑f₁ a.left * ↑f₂ a.right, map_one' := (_ : ↑f₁ 1 * ↑f₂ 1 = 1) } a *
OneHom.toFun { toFun := fun a => ↑f₁ a.left * ↑f₂ a.right, map_one' := (_ : ↑f₁ 1 * ↑f₂ 1 = 1) } b
[PROOFSTEP]
simp only [mul_left, mul_right, map_mul, this, mul_assoc, inv_mul_cancel_left]
[GOAL]
N : Type u_1
G : Type u_2
H : Type u_3
inst✝² : Group N
inst✝¹ : Group G
inst✝ : Group H
φ : G →* MulAut N
f₁ : N →* H
f₂ : G →* H
h :
∀ (g : G),
MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑f₂ g))) f₁
n : N
⊢ ↑(lift f₁ f₂ h) (↑inl n) = ↑f₁ n
[PROOFSTEP]
simp [lift]
[GOAL]
N : Type u_1
G : Type u_2
H : Type u_3
inst✝² : Group N
inst✝¹ : Group G
inst✝ : Group H
φ : G →* MulAut N
f₁ : N →* H
f₂ : G →* H
h :
∀ (g : G),
MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑f₂ g))) f₁
⊢ MonoidHom.comp (lift f₁ f₂ h) inl = f₁
[PROOFSTEP]
ext
[GOAL]
case h
N : Type u_1
G : Type u_2
H : Type u_3
inst✝² : Group N
inst✝¹ : Group G
inst✝ : Group H
φ : G →* MulAut N
f₁ : N →* H
f₂ : G →* H
h :
∀ (g : G),
MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑f₂ g))) f₁
x✝ : N
⊢ ↑(MonoidHom.comp (lift f₁ f₂ h) inl) x✝ = ↑f₁ x✝
[PROOFSTEP]
simp
[GOAL]
N : Type u_1
G : Type u_2
H : Type u_3
inst✝² : Group N
inst✝¹ : Group G
inst✝ : Group H
φ : G →* MulAut N
f₁ : N →* H
f₂ : G →* H
h :
∀ (g : G),
MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑f₂ g))) f₁
g : G
⊢ ↑(lift f₁ f₂ h) (↑inr g) = ↑f₂ g
[PROOFSTEP]
simp [lift]
[GOAL]
N : Type u_1
G : Type u_2
H : Type u_3
inst✝² : Group N
inst✝¹ : Group G
inst✝ : Group H
φ : G →* MulAut N
f₁ : N →* H
f₂ : G →* H
h :
∀ (g : G),
MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑f₂ g))) f₁
⊢ MonoidHom.comp (lift f₁ f₂ h) inr = f₂
[PROOFSTEP]
ext
[GOAL]
case h
N : Type u_1
G : Type u_2
H : Type u_3
inst✝² : Group N
inst✝¹ : Group G
inst✝ : Group H
φ : G →* MulAut N
f₁ : N →* H
f₂ : G →* H
h :
∀ (g : G),
MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑f₂ g))) f₁
x✝ : G
⊢ ↑(MonoidHom.comp (lift f₁ f₂ h) inr) x✝ = ↑f₂ x✝
[PROOFSTEP]
simp
[GOAL]
N : Type u_1
G : Type u_2
H : Type u_3
inst✝² : Group N
inst✝¹ : Group G
inst✝ : Group H
φ : G →* MulAut N
f₁ : N →* H
f₂ : G →* H
h :
∀ (g : G),
MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑f₂ g))) f₁
F : N ⋊[φ] G →* H
x✝ : G
⊢ MonoidHom.comp (MonoidHom.comp F inl) (MulEquiv.toMonoidHom (↑φ x✝)) =
MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑(MonoidHom.comp F inr) x✝))) (MonoidHom.comp F inl)
[PROOFSTEP]
ext
[GOAL]
case h
N : Type u_1
G : Type u_2
H : Type u_3
inst✝² : Group N
inst✝¹ : Group G
inst✝ : Group H
φ : G →* MulAut N
f₁ : N →* H
f₂ : G →* H
h :
∀ (g : G),
MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑f₂ g))) f₁
F : N ⋊[φ] G →* H
x✝¹ : G
x✝ : N
⊢ ↑(MonoidHom.comp (MonoidHom.comp F inl) (MulEquiv.toMonoidHom (↑φ x✝¹))) x✝ =
↑(MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑(MonoidHom.comp F inr) x✝¹))) (MonoidHom.comp F inl)) x✝
[PROOFSTEP]
simp [inl_aut]
[GOAL]
N : Type u_1
G : Type u_2
H : Type u_3
inst✝² : Group N
inst✝¹ : Group G
inst✝ : Group H
φ : G →* MulAut N
f₁ : N →* H
f₂ : G →* H
h :
∀ (g : G),
MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑f₂ g))) f₁
F : N ⋊[φ] G →* H
⊢ F =
lift (MonoidHom.comp F inl) (MonoidHom.comp F inr)
(_ :
∀ (x : G),
MonoidHom.comp (MonoidHom.comp F inl) (MulEquiv.toMonoidHom (↑φ x)) =
MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑(MonoidHom.comp F inr) x))) (MonoidHom.comp F inl))
[PROOFSTEP]
rw [FunLike.ext_iff]
[GOAL]
N : Type u_1
G : Type u_2
H : Type u_3
inst✝² : Group N
inst✝¹ : Group G
inst✝ : Group H
φ : G →* MulAut N
f₁ : N →* H
f₂ : G →* H
h :
∀ (g : G),
MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑f₂ g))) f₁
F : N ⋊[φ] G →* H
⊢ ∀ (x : N ⋊[φ] G),
↑F x =
↑(lift (MonoidHom.comp F inl) (MonoidHom.comp F inr)
(_ :
∀ (x : G),
MonoidHom.comp (MonoidHom.comp F inl) (MulEquiv.toMonoidHom (↑φ x)) =
MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑(MonoidHom.comp F inr) x)))
(MonoidHom.comp F inl)))
x
[PROOFSTEP]
simp only [lift, MonoidHom.comp_apply, MonoidHom.coe_mk, OneHom.coe_mk, ← map_mul, inl_left_mul_inr_right, forall_const]
[GOAL]
N : Type u_1
G : Type u_2
H : Type u_3
inst✝² : Group N
inst✝¹ : Group G
inst✝ : Group H
φ : G →* MulAut N
f₁ : N →* H
f₂ : G →* H
h :
∀ (g : G),
MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑f₂ g))) f₁
f g : N ⋊[φ] G →* H
hl : MonoidHom.comp f inl = MonoidHom.comp g inl
hr : MonoidHom.comp f inr = MonoidHom.comp g inr
⊢ f = g
[PROOFSTEP]
rw [lift_unique f, lift_unique g]
[GOAL]
N : Type u_1
G : Type u_2
H : Type u_3
inst✝² : Group N
inst✝¹ : Group G
inst✝ : Group H
φ : G →* MulAut N
f₁ : N →* H
f₂ : G →* H
h :
∀ (g : G),
MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑f₂ g))) f₁
f g : N ⋊[φ] G →* H
hl : MonoidHom.comp f inl = MonoidHom.comp g inl
hr : MonoidHom.comp f inr = MonoidHom.comp g inr
⊢ lift (MonoidHom.comp f inl) (MonoidHom.comp f inr)
(_ :
∀ (x : G),
MonoidHom.comp (MonoidHom.comp f inl) (MulEquiv.toMonoidHom (↑φ x)) =
MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑(MonoidHom.comp f inr) x))) (MonoidHom.comp f inl)) =
lift (MonoidHom.comp g inl) (MonoidHom.comp g inr)
(_ :
∀ (x : G),
MonoidHom.comp (MonoidHom.comp g inl) (MulEquiv.toMonoidHom (↑φ x)) =
MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑(MonoidHom.comp g inr) x))) (MonoidHom.comp g inl))
[PROOFSTEP]
simp only [*]
[GOAL]
N : Type u_1
G : Type u_2
H : Type u_3
inst✝⁴ : Group N
inst✝³ : Group G
inst✝² : Group H
φ : G →* MulAut N
N₁ : Type u_4
G₁ : Type u_5
inst✝¹ : Group N₁
inst✝ : Group G₁
φ₁ : G₁ →* MulAut N₁
f₁ : N →* N₁
f₂ : G →* G₁
h : ∀ (g : G), MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑φ₁ (↑f₂ g))) f₁
⊢ (fun x => { left := ↑f₁ x.left, right := ↑f₂ x.right }) 1 = 1
[PROOFSTEP]
simp
[GOAL]
N : Type u_1
G : Type u_2
H : Type u_3
inst✝⁴ : Group N
inst✝³ : Group G
inst✝² : Group H
φ : G →* MulAut N
N₁ : Type u_4
G₁ : Type u_5
inst✝¹ : Group N₁
inst✝ : Group G₁
φ₁ : G₁ →* MulAut N₁
f₁ : N →* N₁
f₂ : G →* G₁
h : ∀ (g : G), MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑φ₁ (↑f₂ g))) f₁
x y : N ⋊[φ] G
⊢ OneHom.toFun
{ toFun := fun x => { left := ↑f₁ x.left, right := ↑f₂ x.right },
map_one' := (_ : { left := ↑f₁ 1, right := ↑f₂ 1 } = 1) }
(x * y) =
OneHom.toFun
{ toFun := fun x => { left := ↑f₁ x.left, right := ↑f₂ x.right },
map_one' := (_ : { left := ↑f₁ 1, right := ↑f₂ 1 } = 1) }
x *
OneHom.toFun
{ toFun := fun x => { left := ↑f₁ x.left, right := ↑f₂ x.right },
map_one' := (_ : { left := ↑f₁ 1, right := ↑f₂ 1 } = 1) }
y
[PROOFSTEP]
replace h := FunLike.ext_iff.1 (h x.right) y.left
[GOAL]
N : Type u_1
G : Type u_2
H : Type u_3
inst✝⁴ : Group N
inst✝³ : Group G
inst✝² : Group H
φ : G →* MulAut N
N₁ : Type u_4
G₁ : Type u_5
inst✝¹ : Group N₁
inst✝ : Group G₁
φ₁ : G₁ →* MulAut N₁
f₁ : N →* N₁
f₂ : G →* G₁
x y : N ⋊[φ] G
h :
↑(MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ x.right))) y.left =
↑(MonoidHom.comp (MulEquiv.toMonoidHom (↑φ₁ (↑f₂ x.right))) f₁) y.left
⊢ OneHom.toFun
{ toFun := fun x => { left := ↑f₁ x.left, right := ↑f₂ x.right },
map_one' := (_ : { left := ↑f₁ 1, right := ↑f₂ 1 } = 1) }
(x * y) =
OneHom.toFun
{ toFun := fun x => { left := ↑f₁ x.left, right := ↑f₂ x.right },
map_one' := (_ : { left := ↑f₁ 1, right := ↑f₂ 1 } = 1) }
x *
OneHom.toFun
{ toFun := fun x => { left := ↑f₁ x.left, right := ↑f₂ x.right },
map_one' := (_ : { left := ↑f₁ 1, right := ↑f₂ 1 } = 1) }
y
[PROOFSTEP]
ext
[GOAL]
case left
N : Type u_1
G : Type u_2
H : Type u_3
inst✝⁴ : Group N
inst✝³ : Group G
inst✝² : Group H
φ : G →* MulAut N
N₁ : Type u_4
G₁ : Type u_5
inst✝¹ : Group N₁
inst✝ : Group G₁
φ₁ : G₁ →* MulAut N₁
f₁ : N →* N₁
f₂ : G →* G₁
x y : N ⋊[φ] G
h :
↑(MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ x.right))) y.left =
↑(MonoidHom.comp (MulEquiv.toMonoidHom (↑φ₁ (↑f₂ x.right))) f₁) y.left
⊢ (OneHom.toFun
{ toFun := fun x => { left := ↑f₁ x.left, right := ↑f₂ x.right },
map_one' := (_ : { left := ↑f₁ 1, right := ↑f₂ 1 } = 1) }
(x * y)).left =
(OneHom.toFun
{ toFun := fun x => { left := ↑f₁ x.left, right := ↑f₂ x.right },
map_one' := (_ : { left := ↑f₁ 1, right := ↑f₂ 1 } = 1) }
x *
OneHom.toFun
{ toFun := fun x => { left := ↑f₁ x.left, right := ↑f₂ x.right },
map_one' := (_ : { left := ↑f₁ 1, right := ↑f₂ 1 } = 1) }
y).left
[PROOFSTEP]
simp_all
[GOAL]
case right
N : Type u_1
G : Type u_2
H : Type u_3
inst✝⁴ : Group N
inst✝³ : Group G
inst✝² : Group H
φ : G →* MulAut N
N₁ : Type u_4
G₁ : Type u_5
inst✝¹ : Group N₁
inst✝ : Group G₁
φ₁ : G₁ →* MulAut N₁
f₁ : N →* N₁
f₂ : G →* G₁
x y : N ⋊[φ] G
h :
↑(MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ x.right))) y.left =
↑(MonoidHom.comp (MulEquiv.toMonoidHom (↑φ₁ (↑f₂ x.right))) f₁) y.left
⊢ (OneHom.toFun
{ toFun := fun x => { left := ↑f₁ x.left, right := ↑f₂ x.right },
map_one' := (_ : { left := ↑f₁ 1, right := ↑f₂ 1 } = 1) }
(x * y)).right =
(OneHom.toFun
{ toFun := fun x => { left := ↑f₁ x.left, right := ↑f₂ x.right },
map_one' := (_ : { left := ↑f₁ 1, right := ↑f₂ 1 } = 1) }
x *
OneHom.toFun
{ toFun := fun x => { left := ↑f₁ x.left, right := ↑f₂ x.right },
map_one' := (_ : { left := ↑f₁ 1, right := ↑f₂ 1 } = 1) }
y).right
[PROOFSTEP]
simp_all
[GOAL]
N : Type u_1
G : Type u_2
H : Type u_3
inst✝⁴ : Group N
inst✝³ : Group G
inst✝² : Group H
φ : G →* MulAut N
N₁ : Type u_4
G₁ : Type u_5
inst✝¹ : Group N₁
inst✝ : Group G₁
φ₁ : G₁ →* MulAut N₁
f₁ : N →* N₁
f₂ : G →* G₁
h : ∀ (g : G), MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑φ₁ (↑f₂ g))) f₁
n : N
⊢ ↑(map f₁ f₂ h) (↑inl n) = ↑inl (↑f₁ n)
[PROOFSTEP]
simp [map]
[GOAL]
N : Type u_1
G : Type u_2
H : Type u_3
inst✝⁴ : Group N
inst✝³ : Group G
inst✝² : Group H
φ : G →* MulAut N
N₁ : Type u_4
G₁ : Type u_5
inst✝¹ : Group N₁
inst✝ : Group G₁
φ₁ : G₁ →* MulAut N₁
f₁ : N →* N₁
f₂ : G →* G₁
h : ∀ (g : G), MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑φ₁ (↑f₂ g))) f₁
⊢ MonoidHom.comp (map f₁ f₂ h) inl = MonoidHom.comp inl f₁
[PROOFSTEP]
ext
[GOAL]
case h.left
N : Type u_1
G : Type u_2
H : Type u_3
inst✝⁴ : Group N
inst✝³ : Group G
inst✝² : Group H
φ : G →* MulAut N
N₁ : Type u_4
G₁ : Type u_5
inst✝¹ : Group N₁
inst✝ : Group G₁
φ₁ : G₁ →* MulAut N₁
f₁ : N →* N₁
f₂ : G →* G₁
h : ∀ (g : G), MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑φ₁ (↑f₂ g))) f₁
x✝ : N
⊢ (↑(MonoidHom.comp (map f₁ f₂ h) inl) x✝).left = (↑(MonoidHom.comp inl f₁) x✝).left
[PROOFSTEP]
simp
[GOAL]
case h.right
N : Type u_1
G : Type u_2
H : Type u_3
inst✝⁴ : Group N
inst✝³ : Group G
inst✝² : Group H
φ : G →* MulAut N
N₁ : Type u_4
G₁ : Type u_5
inst✝¹ : Group N₁
inst✝ : Group G₁
φ₁ : G₁ →* MulAut N₁
f₁ : N →* N₁
f₂ : G →* G₁
h : ∀ (g : G), MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑φ₁ (↑f₂ g))) f₁
x✝ : N
⊢ (↑(MonoidHom.comp (map f₁ f₂ h) inl) x✝).right = (↑(MonoidHom.comp inl f₁) x✝).right
[PROOFSTEP]
simp
[GOAL]
N : Type u_1
G : Type u_2
H : Type u_3
inst✝⁴ : Group N
inst✝³ : Group G
inst✝² : Group H
φ : G →* MulAut N
N₁ : Type u_4
G₁ : Type u_5
inst✝¹ : Group N₁
inst✝ : Group G₁
φ₁ : G₁ →* MulAut N₁
f₁ : N →* N₁
f₂ : G →* G₁
h : ∀ (g : G), MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑φ₁ (↑f₂ g))) f₁
g : G
⊢ ↑(map f₁ f₂ h) (↑inr g) = ↑inr (↑f₂ g)
[PROOFSTEP]
simp [map]
[GOAL]
N : Type u_1
G : Type u_2
H : Type u_3
inst✝⁴ : Group N
inst✝³ : Group G
inst✝² : Group H
φ : G →* MulAut N
N₁ : Type u_4
G₁ : Type u_5
inst✝¹ : Group N₁
inst✝ : Group G₁
φ₁ : G₁ →* MulAut N₁
f₁ : N →* N₁
f₂ : G →* G₁
h : ∀ (g : G), MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑φ₁ (↑f₂ g))) f₁
⊢ MonoidHom.comp (map f₁ f₂ h) inr = MonoidHom.comp inr f₂
[PROOFSTEP]
ext
[GOAL]
case h.left
N : Type u_1
G : Type u_2
H : Type u_3
inst✝⁴ : Group N
inst✝³ : Group G
inst✝² : Group H
φ : G →* MulAut N
N₁ : Type u_4
G₁ : Type u_5
inst✝¹ : Group N₁
inst✝ : Group G₁
φ₁ : G₁ →* MulAut N₁
f₁ : N →* N₁
f₂ : G →* G₁
h : ∀ (g : G), MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑φ₁ (↑f₂ g))) f₁
x✝ : G
⊢ (↑(MonoidHom.comp (map f₁ f₂ h) inr) x✝).left = (↑(MonoidHom.comp inr f₂) x✝).left
[PROOFSTEP]
simp [map]
[GOAL]
case h.right
N : Type u_1
G : Type u_2
H : Type u_3
inst✝⁴ : Group N
inst✝³ : Group G
inst✝² : Group H
φ : G →* MulAut N
N₁ : Type u_4
G₁ : Type u_5
inst✝¹ : Group N₁
inst✝ : Group G₁
φ₁ : G₁ →* MulAut N₁
f₁ : N →* N₁
f₂ : G →* G₁
h : ∀ (g : G), MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑φ₁ (↑f₂ g))) f₁
x✝ : G
⊢ (↑(MonoidHom.comp (map f₁ f₂ h) inr) x✝).right = (↑(MonoidHom.comp inr f₂) x✝).right
[PROOFSTEP]
simp [map]
| {"mathlib_filename": "Mathlib.GroupTheory.SemidirectProduct", "llama_tokens": 14341} |
[GOAL]
I : Type u
f : I → Type v
x y : (i : I) → f i
i✝ : I
α : Type u_1
inst✝² : (i : I) → SMul α (f i)
inst✝¹ : ∀ (i : I), Nonempty (f i)
i : I
inst✝ : FaithfulSMul α (f i)
m₁✝ m₂✝ : α
h : ∀ (a : (i : I) → f i), m₁✝ • a = m₂✝ • a
a : f i
⊢ m₁✝ • a = m₂✝ • a
[PROOFSTEP]
classical
have := congr_fun (h <| Function.update (fun j => Classical.choice (‹∀ i, Nonempty (f i)› j)) i a) i
simpa using this
[GOAL]
I : Type u
f : I → Type v
x y : (i : I) → f i
i✝ : I
α : Type u_1
inst✝² : (i : I) → SMul α (f i)
inst✝¹ : ∀ (i : I), Nonempty (f i)
i : I
inst✝ : FaithfulSMul α (f i)
m₁✝ m₂✝ : α
h : ∀ (a : (i : I) → f i), m₁✝ • a = m₂✝ • a
a : f i
⊢ m₁✝ • a = m₂✝ • a
[PROOFSTEP]
have := congr_fun (h <| Function.update (fun j => Classical.choice (‹∀ i, Nonempty (f i)› j)) i a) i
[GOAL]
I : Type u
f : I → Type v
x y : (i : I) → f i
i✝ : I
α : Type u_1
inst✝² : (i : I) → SMul α (f i)
inst✝¹ : ∀ (i : I), Nonempty (f i)
i : I
inst✝ : FaithfulSMul α (f i)
m₁✝ m₂✝ : α
h : ∀ (a : (i : I) → f i), m₁✝ • a = m₂✝ • a
a : f i
this :
(m₁✝ • Function.update (fun j => Classical.choice (_ : Nonempty (f j))) i a) i =
(m₂✝ • Function.update (fun j => Classical.choice (_ : Nonempty (f j))) i a) i
⊢ m₁✝ • a = m₂✝ • a
[PROOFSTEP]
simpa using this
[GOAL]
I : Type u
f : I → Type v
x y : (i : I) → f i
i : I
g : I → Type u_1
n : (i : I) → Zero (g i)
inst✝ : (i : I) → SMulZeroClass (f i) (g i)
⊢ ∀ (a : (i : I) → f i), a • 0 = 0
[PROOFSTEP]
intros
[GOAL]
I : Type u
f : I → Type v
x y : (i : I) → f i
i : I
g : I → Type u_1
n : (i : I) → Zero (g i)
inst✝ : (i : I) → SMulZeroClass (f i) (g i)
a✝ : (i : I) → f i
⊢ a✝ • 0 = 0
[PROOFSTEP]
ext x
[GOAL]
case h
I : Type u
f : I → Type v
x✝ y : (i : I) → f i
i : I
g : I → Type u_1
n : (i : I) → Zero (g i)
inst✝ : (i : I) → SMulZeroClass (f i) (g i)
a✝ : (i : I) → f i
x : I
⊢ (a✝ • 0) x = OfNat.ofNat 0 x
[PROOFSTEP]
exact smul_zero _
[GOAL]
I : Type u
f : I → Type v
x y : (i : I) → f i
i : I
g : I → Type u_1
n : (i : I) → AddZeroClass (g i)
inst✝ : (i : I) → DistribSMul (f i) (g i)
⊢ ∀ (a : (i : I) → f i), a • 0 = 0
[PROOFSTEP]
intros
[GOAL]
I : Type u
f : I → Type v
x y : (i : I) → f i
i : I
g : I → Type u_1
n : (i : I) → AddZeroClass (g i)
inst✝ : (i : I) → DistribSMul (f i) (g i)
a✝ : (i : I) → f i
⊢ a✝ • 0 = 0
[PROOFSTEP]
ext x
[GOAL]
case h
I : Type u
f : I → Type v
x✝ y : (i : I) → f i
i : I
g : I → Type u_1
n : (i : I) → AddZeroClass (g i)
inst✝ : (i : I) → DistribSMul (f i) (g i)
a✝ : (i : I) → f i
x : I
⊢ (a✝ • 0) x = OfNat.ofNat 0 x
[PROOFSTEP]
exact smul_zero _
[GOAL]
I : Type u
f : I → Type v
x y : (i : I) → f i
i : I
g : I → Type u_1
n : (i : I) → AddZeroClass (g i)
inst✝ : (i : I) → DistribSMul (f i) (g i)
⊢ ∀ (a : (i : I) → f i) (x y : (i : I) → g i), a • (x + y) = a • x + a • y
[PROOFSTEP]
intros
[GOAL]
I : Type u
f : I → Type v
x y : (i : I) → f i
i : I
g : I → Type u_1
n : (i : I) → AddZeroClass (g i)
inst✝ : (i : I) → DistribSMul (f i) (g i)
a✝ : (i : I) → f i
x✝ y✝ : (i : I) → g i
⊢ a✝ • (x✝ + y✝) = a✝ • x✝ + a✝ • y✝
[PROOFSTEP]
ext x
[GOAL]
case h
I : Type u
f : I → Type v
x✝¹ y : (i : I) → f i
i : I
g : I → Type u_1
n : (i : I) → AddZeroClass (g i)
inst✝ : (i : I) → DistribSMul (f i) (g i)
a✝ : (i : I) → f i
x✝ y✝ : (i : I) → g i
x : I
⊢ (a✝ • (x✝ + y✝)) x = (a✝ • x✝ + a✝ • y✝) x
[PROOFSTEP]
exact smul_add _ _ _
[GOAL]
I : Type u
f : I → Type v
x y : (i : I) → f i
i : I
g : I → Type u_1
m : (i : I) → Monoid (f i)
n : (i : I) → Monoid (g i)
inst✝ : (i : I) → MulDistribMulAction (f i) (g i)
⊢ ∀ (r : (i : I) → f i) (x y : (i : I) → g i), r • (x * y) = r • x * r • y
[PROOFSTEP]
intros
[GOAL]
I : Type u
f : I → Type v
x y : (i : I) → f i
i : I
g : I → Type u_1
m : (i : I) → Monoid (f i)
n : (i : I) → Monoid (g i)
inst✝ : (i : I) → MulDistribMulAction (f i) (g i)
r✝ : (i : I) → f i
x✝ y✝ : (i : I) → g i
⊢ r✝ • (x✝ * y✝) = r✝ • x✝ * r✝ • y✝
[PROOFSTEP]
ext x
[GOAL]
case h
I : Type u
f : I → Type v
x✝¹ y : (i : I) → f i
i : I
g : I → Type u_1
m : (i : I) → Monoid (f i)
n : (i : I) → Monoid (g i)
inst✝ : (i : I) → MulDistribMulAction (f i) (g i)
r✝ : (i : I) → f i
x✝ y✝ : (i : I) → g i
x : I
⊢ (r✝ • (x✝ * y✝)) x = (r✝ • x✝ * r✝ • y✝) x
[PROOFSTEP]
apply smul_mul'
[GOAL]
I : Type u
f : I → Type v
x y : (i : I) → f i
i : I
g : I → Type u_1
m : (i : I) → Monoid (f i)
n : (i : I) → Monoid (g i)
inst✝ : (i : I) → MulDistribMulAction (f i) (g i)
⊢ ∀ (r : (i : I) → f i), r • 1 = 1
[PROOFSTEP]
intros
[GOAL]
I : Type u
f : I → Type v
x y : (i : I) → f i
i : I
g : I → Type u_1
m : (i : I) → Monoid (f i)
n : (i : I) → Monoid (g i)
inst✝ : (i : I) → MulDistribMulAction (f i) (g i)
r✝ : (i : I) → f i
⊢ r✝ • 1 = 1
[PROOFSTEP]
ext x
[GOAL]
case h
I : Type u
f : I → Type v
x✝ y : (i : I) → f i
i : I
g : I → Type u_1
m : (i : I) → Monoid (f i)
n : (i : I) → Monoid (g i)
inst✝ : (i : I) → MulDistribMulAction (f i) (g i)
r✝ : (i : I) → f i
x : I
⊢ (r✝ • 1) x = OfNat.ofNat 1 x
[PROOFSTEP]
apply smul_one
[GOAL]
I : Type u
f✝ : I → Type v
x✝ y : (i : I) → f✝ i
i : I
R : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : SMul R γ
r : R
f : α → β
g : α → γ
e : β → γ
x : β
⊢ extend f (r • g) (r • e) x = (r • extend f g e) x
[PROOFSTEP]
haveI : Decidable (∃ a : α, f a = x) := Classical.propDecidable _
[GOAL]
I : Type u
f✝ : I → Type v
x✝ y : (i : I) → f✝ i
i : I
R : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : SMul R γ
r : R
f : α → β
g : α → γ
e : β → γ
x : β
this : Decidable (∃ a, f a = x)
⊢ extend f (r • g) (r • e) x = (r • extend f g e) x
[PROOFSTEP]
rw [extend_def, Pi.smul_apply, Pi.smul_apply, extend_def]
[GOAL]
I : Type u
f✝ : I → Type v
x✝ y : (i : I) → f✝ i
i : I
R : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : SMul R γ
r : R
f : α → β
g : α → γ
e : β → γ
x : β
this : Decidable (∃ a, f a = x)
⊢ (if h : ∃ a, f a = x then (r • g) (Classical.choose h) else r • e x) =
r • if h : ∃ a, f a = x then g (Classical.choose h) else e x
[PROOFSTEP]
split_ifs
[GOAL]
case pos
I : Type u
f✝ : I → Type v
x✝ y : (i : I) → f✝ i
i : I
R : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : SMul R γ
r : R
f : α → β
g : α → γ
e : β → γ
x : β
this : Decidable (∃ a, f a = x)
h✝ : ∃ a, f a = x
⊢ (r • g) (Classical.choose h✝) = r • g (Classical.choose h✝)
[PROOFSTEP]
rfl
-- convert (apply_dite (fun c : γ => r • c) _ _ _).symm
[GOAL]
case neg
I : Type u
f✝ : I → Type v
x✝ y : (i : I) → f✝ i
i : I
R : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : SMul R γ
r : R
f : α → β
g : α → γ
e : β → γ
x : β
this : Decidable (∃ a, f a = x)
h✝ : ¬∃ a, f a = x
⊢ r • e x = r • e x
[PROOFSTEP]
rfl
-- convert (apply_dite (fun c : γ => r • c) _ _ _).symm
| {"mathlib_filename": "Mathlib.GroupTheory.GroupAction.Pi", "llama_tokens": 3831} |
[GOAL]
G : Type u_1
H : Type u_2
α : Type u_3
β : Type u_4
inst✝⁶ : Group H
inst✝⁵ : SMul G α
inst✝⁴ : SMul G β
inst✝³ : MulAction H α
inst✝² : SMul H β
inst✝¹ : SMulCommClass G H β
inst✝ : SMulCommClass G H α
s t : Set α
b : β
g : H
h : Supports G s b
⊢ Supports G (g • s) (g • b)
[PROOFSTEP]
rintro g' hg'
[GOAL]
G : Type u_1
H : Type u_2
α : Type u_3
β : Type u_4
inst✝⁶ : Group H
inst✝⁵ : SMul G α
inst✝⁴ : SMul G β
inst✝³ : MulAction H α
inst✝² : SMul H β
inst✝¹ : SMulCommClass G H β
inst✝ : SMulCommClass G H α
s t : Set α
b : β
g : H
h : Supports G s b
g' : G
hg' : ∀ ⦃a : α⦄, a ∈ g • s → g' • a = a
⊢ g' • g • b = g • b
[PROOFSTEP]
rw [smul_comm, h]
[GOAL]
case a
G : Type u_1
H : Type u_2
α : Type u_3
β : Type u_4
inst✝⁶ : Group H
inst✝⁵ : SMul G α
inst✝⁴ : SMul G β
inst✝³ : MulAction H α
inst✝² : SMul H β
inst✝¹ : SMulCommClass G H β
inst✝ : SMulCommClass G H α
s t : Set α
b : β
g : H
h : Supports G s b
g' : G
hg' : ∀ ⦃a : α⦄, a ∈ g • s → g' • a = a
⊢ ∀ ⦃a : α⦄, a ∈ s → g' • a = a
[PROOFSTEP]
rintro a ha
[GOAL]
case a
G : Type u_1
H : Type u_2
α : Type u_3
β : Type u_4
inst✝⁶ : Group H
inst✝⁵ : SMul G α
inst✝⁴ : SMul G β
inst✝³ : MulAction H α
inst✝² : SMul H β
inst✝¹ : SMulCommClass G H β
inst✝ : SMulCommClass G H α
s t : Set α
b : β
g : H
h : Supports G s b
g' : G
hg' : ∀ ⦃a : α⦄, a ∈ g • s → g' • a = a
a : α
ha : a ∈ s
⊢ g' • a = a
[PROOFSTEP]
have := Set.ball_image_iff.1 hg' a ha
[GOAL]
case a
G : Type u_1
H : Type u_2
α : Type u_3
β : Type u_4
inst✝⁶ : Group H
inst✝⁵ : SMul G α
inst✝⁴ : SMul G β
inst✝³ : MulAction H α
inst✝² : SMul H β
inst✝¹ : SMulCommClass G H β
inst✝ : SMulCommClass G H α
s t : Set α
b : β
g : H
h : Supports G s b
g' : G
hg' : ∀ ⦃a : α⦄, a ∈ g • s → g' • a = a
a : α
ha : a ∈ s
this : g' • g • a = g • a
⊢ g' • a = a
[PROOFSTEP]
rwa [smul_comm, smul_left_cancel_iff] at this
| {"mathlib_filename": "Mathlib.GroupTheory.GroupAction.Support", "llama_tokens": 1048} |
[GOAL]
M : Type u
α : Type v
inst✝¹ : Monoid M
inst✝ : MulAction M α
a : α
⊢ (fun m => m • a) 1 = a
[PROOFSTEP]
simp [MulAction.one_smul]
[GOAL]
M : Type u
α : Type v
inst✝¹ : Monoid M
inst✝ : MulAction M α
a : α
m m' : M
ha : m • a = a
hb : m' • a = a
⊢ (m * m') • a = a
[PROOFSTEP]
rw [← smul_smul, hb, ha]
[GOAL]
M : Type u
α : Type v
inst✝² : Monoid M
inst✝¹ : MulAction M α
a : α
inst✝ : Fintype ↑(orbit M a)
⊢ a ∈ fixedPoints M α ↔ Fintype.card ↑(orbit M a) = 1
[PROOFSTEP]
rw [Fintype.card_eq_one_iff, mem_fixedPoints]
[GOAL]
M : Type u
α : Type v
inst✝² : Monoid M
inst✝¹ : MulAction M α
a : α
inst✝ : Fintype ↑(orbit M a)
⊢ (∀ (m : M), m • a = a) ↔ ∃ x, ∀ (y : ↑(orbit M a)), y = x
[PROOFSTEP]
constructor
[GOAL]
case mp
M : Type u
α : Type v
inst✝² : Monoid M
inst✝¹ : MulAction M α
a : α
inst✝ : Fintype ↑(orbit M a)
⊢ (∀ (m : M), m • a = a) → ∃ x, ∀ (y : ↑(orbit M a)), y = x
[PROOFSTEP]
exact fun h => ⟨⟨a, mem_orbit_self _⟩, fun ⟨a, ⟨x, hx⟩⟩ => Subtype.eq <| by simp [h x, hx.symm]⟩
[GOAL]
M : Type u
α : Type v
inst✝² : Monoid M
inst✝¹ : MulAction M α
a✝ : α
inst✝ : Fintype ↑(orbit M a✝)
h : ∀ (m : M), m • a✝ = a✝
x✝ : ↑(orbit M a✝)
a : α
x : M
hx : (fun m => m • a✝) x = a
⊢ ↑{ val := a, property := (_ : ∃ y, (fun m => m • a✝) y = a) } = ↑{ val := a✝, property := (_ : a✝ ∈ orbit M a✝) }
[PROOFSTEP]
simp [h x, hx.symm]
[GOAL]
case mpr
M : Type u
α : Type v
inst✝² : Monoid M
inst✝¹ : MulAction M α
a : α
inst✝ : Fintype ↑(orbit M a)
⊢ (∃ x, ∀ (y : ↑(orbit M a)), y = x) → ∀ (m : M), m • a = a
[PROOFSTEP]
intro h x
[GOAL]
case mpr
M : Type u
α : Type v
inst✝² : Monoid M
inst✝¹ : MulAction M α
a : α
inst✝ : Fintype ↑(orbit M a)
h : ∃ x, ∀ (y : ↑(orbit M a)), y = x
x : M
⊢ x • a = a
[PROOFSTEP]
rcases h with ⟨⟨z, hz⟩, hz₁⟩
[GOAL]
case mpr.intro.mk
M : Type u
α : Type v
inst✝² : Monoid M
inst✝¹ : MulAction M α
a : α
inst✝ : Fintype ↑(orbit M a)
x : M
z : α
hz : z ∈ orbit M a
hz₁ : ∀ (y : ↑(orbit M a)), y = { val := z, property := hz }
⊢ x • a = a
[PROOFSTEP]
calc
x • a = z := Subtype.mk.inj (hz₁ ⟨x • a, mem_orbit _ _⟩)
_ = a := (Subtype.mk.inj (hz₁ ⟨a, mem_orbit_self _⟩)).symm
[GOAL]
G : Type u
α : Type v
inst✝¹ : Group G
inst✝ : MulAction G α
a : α
src✝ : Submonoid G := Stabilizer.submonoid G a
m : G
ha : m • a = a
⊢ m⁻¹ • a = a
[PROOFSTEP]
rw [inv_smul_eq_iff, ha]
[GOAL]
G : Type u
α : Type v
inst✝¹ : Group G
inst✝ : MulAction G α
g : G
a : α
⊢ orbit G a = orbit G (g⁻¹ • g • a)
[PROOFSTEP]
rw [inv_smul_smul]
[GOAL]
G : Type u
α : Type v
inst✝¹ : Group G
inst✝ : MulAction G α
a : α
⊢ ∀ (x y : ↑(orbit G a)), ∃ g, g • x = y
[PROOFSTEP]
rintro ⟨_, g, rfl⟩ ⟨_, h, rfl⟩
[GOAL]
case mk.intro.mk.intro
G : Type u
α : Type v
inst✝¹ : Group G
inst✝ : MulAction G α
a : α
g h : G
⊢ ∃ g_1,
g_1 • { val := (fun m => m • a) g, property := (_ : ∃ y, (fun m => m • a) y = (fun m => m • a) g) } =
{ val := (fun m => m • a) h, property := (_ : ∃ y, (fun m => m • a) y = (fun m => m • a) h) }
[PROOFSTEP]
use h * g⁻¹
[GOAL]
case h
G : Type u
α : Type v
inst✝¹ : Group G
inst✝ : MulAction G α
a : α
g h : G
⊢ (h * g⁻¹) • { val := (fun m => m • a) g, property := (_ : ∃ y, (fun m => m • a) y = (fun m => m • a) g) } =
{ val := (fun m => m • a) h, property := (_ : ∃ y, (fun m => m • a) y = (fun m => m • a) h) }
[PROOFSTEP]
ext1
[GOAL]
case h.a
G : Type u
α : Type v
inst✝¹ : Group G
inst✝ : MulAction G α
a : α
g h : G
⊢ ↑((h * g⁻¹) • { val := (fun m => m • a) g, property := (_ : ∃ y, (fun m => m • a) y = (fun m => m • a) g) }) =
↑{ val := (fun m => m • a) h, property := (_ : ∃ y, (fun m => m • a) y = (fun m => m • a) h) }
[PROOFSTEP]
simp [mul_smul]
[GOAL]
G : Type u
α : Type v
inst✝¹ : Group G
inst✝ : MulAction G α
g : G
a : α
⊢ a ∈ orbit G (g • a)
[PROOFSTEP]
simp only [orbit_smul, mem_orbit_self]
[GOAL]
G : Type u
α : Type v
inst✝¹ : Group G
inst✝ : MulAction G α
g h : G
a : α
⊢ g • a ∈ orbit G (h • a)
[PROOFSTEP]
simp only [orbit_smul, mem_orbit]
[GOAL]
G : Type u
α : Type v
inst✝¹ : Group G
inst✝ : MulAction G α
a b : α
⊢ a ∈ orbit G b → b ∈ orbit G a
[PROOFSTEP]
simp [orbit_eq_iff.symm, eq_comm]
[GOAL]
G : Type u
α : Type v
inst✝¹ : Group G
inst✝ : MulAction G α
a b : α
⊢ ∀ {z : α}, a ∈ orbit G b → b ∈ orbit G z → a ∈ orbit G z
[PROOFSTEP]
simp (config := { contextual := true }) [orbit_eq_iff.symm, eq_comm]
[GOAL]
G : Type u
α : Type v
inst✝¹ : Group G
inst✝ : MulAction G α
U : Set α
⊢ Quotient.mk' ⁻¹' (Quotient.mk' '' U) = ⋃ (g : G), (fun x x_1 => x • x_1) g '' U
[PROOFSTEP]
letI := orbitRel G α
[GOAL]
G : Type u
α : Type v
inst✝¹ : Group G
inst✝ : MulAction G α
U : Set α
this : Setoid α := orbitRel G α
⊢ Quotient.mk' ⁻¹' (Quotient.mk' '' U) = ⋃ (g : G), (fun x x_1 => x • x_1) g '' U
[PROOFSTEP]
set f : α → Quotient (MulAction.orbitRel G α) := Quotient.mk'
[GOAL]
G : Type u
α : Type v
inst✝¹ : Group G
inst✝ : MulAction G α
U : Set α
this : Setoid α := orbitRel G α
f : α → Quotient (orbitRel G α) := Quotient.mk'
⊢ f ⁻¹' (f '' U) = ⋃ (g : G), (fun x x_1 => x • x_1) g '' U
[PROOFSTEP]
ext a
[GOAL]
case h
G : Type u
α : Type v
inst✝¹ : Group G
inst✝ : MulAction G α
U : Set α
this : Setoid α := orbitRel G α
f : α → Quotient (orbitRel G α) := Quotient.mk'
a : α
⊢ a ∈ f ⁻¹' (f '' U) ↔ a ∈ ⋃ (g : G), (fun x x_1 => x • x_1) g '' U
[PROOFSTEP]
constructor
[GOAL]
case h.mp
G : Type u
α : Type v
inst✝¹ : Group G
inst✝ : MulAction G α
U : Set α
this : Setoid α := orbitRel G α
f : α → Quotient (orbitRel G α) := Quotient.mk'
a : α
⊢ a ∈ f ⁻¹' (f '' U) → a ∈ ⋃ (g : G), (fun x x_1 => x • x_1) g '' U
[PROOFSTEP]
rintro ⟨b, hb, hab⟩
[GOAL]
case h.mp.intro.intro
G : Type u
α : Type v
inst✝¹ : Group G
inst✝ : MulAction G α
U : Set α
this : Setoid α := orbitRel G α
f : α → Quotient (orbitRel G α) := Quotient.mk'
a b : α
hb : b ∈ U
hab : f b = f a
⊢ a ∈ ⋃ (g : G), (fun x x_1 => x • x_1) g '' U
[PROOFSTEP]
obtain ⟨g, rfl⟩ := Quotient.exact hab
[GOAL]
case h.mp.intro.intro.intro
G : Type u
α : Type v
inst✝¹ : Group G
inst✝ : MulAction G α
U : Set α
this : Setoid α := orbitRel G α
f : α → Quotient (orbitRel G α) := Quotient.mk'
a : α
g : G
hb : (fun m => m • a) g ∈ U
hab : f ((fun m => m • a) g) = f a
⊢ a ∈ ⋃ (g : G), (fun x x_1 => x • x_1) g '' U
[PROOFSTEP]
rw [Set.mem_iUnion]
[GOAL]
case h.mp.intro.intro.intro
G : Type u
α : Type v
inst✝¹ : Group G
inst✝ : MulAction G α
U : Set α
this : Setoid α := orbitRel G α
f : α → Quotient (orbitRel G α) := Quotient.mk'
a : α
g : G
hb : (fun m => m • a) g ∈ U
hab : f ((fun m => m • a) g) = f a
⊢ ∃ i, a ∈ (fun x x_1 => x • x_1) i '' U
[PROOFSTEP]
exact ⟨g⁻¹, g • a, hb, inv_smul_smul g a⟩
[GOAL]
case h.mpr
G : Type u
α : Type v
inst✝¹ : Group G
inst✝ : MulAction G α
U : Set α
this : Setoid α := orbitRel G α
f : α → Quotient (orbitRel G α) := Quotient.mk'
a : α
⊢ a ∈ ⋃ (g : G), (fun x x_1 => x • x_1) g '' U → a ∈ f ⁻¹' (f '' U)
[PROOFSTEP]
intro hx
[GOAL]
case h.mpr
G : Type u
α : Type v
inst✝¹ : Group G
inst✝ : MulAction G α
U : Set α
this : Setoid α := orbitRel G α
f : α → Quotient (orbitRel G α) := Quotient.mk'
a : α
hx : a ∈ ⋃ (g : G), (fun x x_1 => x • x_1) g '' U
⊢ a ∈ f ⁻¹' (f '' U)
[PROOFSTEP]
rw [Set.mem_iUnion] at hx
[GOAL]
case h.mpr
G : Type u
α : Type v
inst✝¹ : Group G
inst✝ : MulAction G α
U : Set α
this : Setoid α := orbitRel G α
f : α → Quotient (orbitRel G α) := Quotient.mk'
a : α
hx : ∃ i, a ∈ (fun x x_1 => x • x_1) i '' U
⊢ a ∈ f ⁻¹' (f '' U)
[PROOFSTEP]
obtain ⟨g, u, hu₁, hu₂⟩ := hx
[GOAL]
case h.mpr.intro.intro.intro
G : Type u
α : Type v
inst✝¹ : Group G
inst✝ : MulAction G α
U : Set α
this : Setoid α := orbitRel G α
f : α → Quotient (orbitRel G α) := Quotient.mk'
a : α
g : G
u : α
hu₁ : u ∈ U
hu₂ : (fun x x_1 => x • x_1) g u = a
⊢ a ∈ f ⁻¹' (f '' U)
[PROOFSTEP]
rw [Set.mem_preimage, Set.mem_image_iff_bex]
[GOAL]
case h.mpr.intro.intro.intro
G : Type u
α : Type v
inst✝¹ : Group G
inst✝ : MulAction G α
U : Set α
this : Setoid α := orbitRel G α
f : α → Quotient (orbitRel G α) := Quotient.mk'
a : α
g : G
u : α
hu₁ : u ∈ U
hu₂ : (fun x x_1 => x • x_1) g u = a
⊢ ∃ x x_1, f x = f a
[PROOFSTEP]
refine' ⟨g⁻¹ • a, _, by simp only [Quotient.eq']; use g⁻¹⟩
[GOAL]
G : Type u
α : Type v
inst✝¹ : Group G
inst✝ : MulAction G α
U : Set α
this : Setoid α := orbitRel G α
f : α → Quotient (orbitRel G α) := Quotient.mk'
a : α
g : G
u : α
hu₁ : u ∈ U
hu₂ : (fun x x_1 => x • x_1) g u = a
⊢ f (g⁻¹ • a) = f a
[PROOFSTEP]
simp only [Quotient.eq']
[GOAL]
G : Type u
α : Type v
inst✝¹ : Group G
inst✝ : MulAction G α
U : Set α
this : Setoid α := orbitRel G α
f : α → Quotient (orbitRel G α) := Quotient.mk'
a : α
g : G
u : α
hu₁ : u ∈ U
hu₂ : (fun x x_1 => x • x_1) g u = a
⊢ Setoid.r (g⁻¹ • a) a
[PROOFSTEP]
use g⁻¹
[GOAL]
case h.mpr.intro.intro.intro
G : Type u
α : Type v
inst✝¹ : Group G
inst✝ : MulAction G α
U : Set α
this : Setoid α := orbitRel G α
f : α → Quotient (orbitRel G α) := Quotient.mk'
a : α
g : G
u : α
hu₁ : u ∈ U
hu₂ : (fun x x_1 => x • x_1) g u = a
⊢ g⁻¹ • a ∈ U
[PROOFSTEP]
rw [← hu₂]
[GOAL]
case h.mpr.intro.intro.intro
G : Type u
α : Type v
inst✝¹ : Group G
inst✝ : MulAction G α
U : Set α
this : Setoid α := orbitRel G α
f : α → Quotient (orbitRel G α) := Quotient.mk'
a : α
g : G
u : α
hu₁ : u ∈ U
hu₂ : (fun x x_1 => x • x_1) g u = a
⊢ g⁻¹ • (fun x x_1 => x • x_1) g u ∈ U
[PROOFSTEP]
convert hu₁
[GOAL]
case h.e'_4
G : Type u
α : Type v
inst✝¹ : Group G
inst✝ : MulAction G α
U : Set α
this : Setoid α := orbitRel G α
f : α → Quotient (orbitRel G α) := Quotient.mk'
a : α
g : G
u : α
hu₁ : u ∈ U
hu₂ : (fun x x_1 => x • x_1) g u = a
⊢ g⁻¹ • (fun x x_1 => x • x_1) g u = u
[PROOFSTEP]
simp only [inv_smul_smul]
[GOAL]
G : Type u
α : Type v
inst✝¹ : Group G
inst✝ : MulAction G α
U V : Set α
⊢ Disjoint (Quotient.mk' '' U) (Quotient.mk' '' V) ↔ ∀ (x : α), x ∈ U → ∀ (g : G), ¬g • x ∈ V
[PROOFSTEP]
letI := orbitRel G α
[GOAL]
G : Type u
α : Type v
inst✝¹ : Group G
inst✝ : MulAction G α
U V : Set α
this : Setoid α := orbitRel G α
⊢ Disjoint (Quotient.mk' '' U) (Quotient.mk' '' V) ↔ ∀ (x : α), x ∈ U → ∀ (g : G), ¬g • x ∈ V
[PROOFSTEP]
set f : α → Quotient (MulAction.orbitRel G α) := Quotient.mk'
[GOAL]
G : Type u
α : Type v
inst✝¹ : Group G
inst✝ : MulAction G α
U V : Set α
this : Setoid α := orbitRel G α
f : α → Quotient (orbitRel G α) := Quotient.mk'
⊢ Disjoint (f '' U) (f '' V) ↔ ∀ (x : α), x ∈ U → ∀ (g : G), ¬g • x ∈ V
[PROOFSTEP]
refine' ⟨fun h a a_in_U g g_in_V => h.le_bot ⟨⟨a, a_in_U, Quotient.sound ⟨g⁻¹, _⟩⟩, ⟨g • a, g_in_V, rfl⟩⟩, _⟩
[GOAL]
case refine'_1
G : Type u
α : Type v
inst✝¹ : Group G
inst✝ : MulAction G α
U V : Set α
this : Setoid α := orbitRel G α
f : α → Quotient (orbitRel G α) := Quotient.mk'
h : Disjoint (f '' U) (f '' V)
a : α
a_in_U : a ∈ U
g : G
g_in_V : g • a ∈ V
⊢ (fun m => m • g • a) g⁻¹ = a
[PROOFSTEP]
simp
[GOAL]
case refine'_2
G : Type u
α : Type v
inst✝¹ : Group G
inst✝ : MulAction G α
U V : Set α
this : Setoid α := orbitRel G α
f : α → Quotient (orbitRel G α) := Quotient.mk'
⊢ (∀ (x : α), x ∈ U → ∀ (g : G), ¬g • x ∈ V) → Disjoint (f '' U) (f '' V)
[PROOFSTEP]
intro h
[GOAL]
case refine'_2
G : Type u
α : Type v
inst✝¹ : Group G
inst✝ : MulAction G α
U V : Set α
this : Setoid α := orbitRel G α
f : α → Quotient (orbitRel G α) := Quotient.mk'
h : ∀ (x : α), x ∈ U → ∀ (g : G), ¬g • x ∈ V
⊢ Disjoint (f '' U) (f '' V)
[PROOFSTEP]
rw [Set.disjoint_left]
[GOAL]
case refine'_2
G : Type u
α : Type v
inst✝¹ : Group G
inst✝ : MulAction G α
U V : Set α
this : Setoid α := orbitRel G α
f : α → Quotient (orbitRel G α) := Quotient.mk'
h : ∀ (x : α), x ∈ U → ∀ (g : G), ¬g • x ∈ V
⊢ ∀ ⦃a : Quotient (orbitRel G α)⦄, a ∈ f '' U → ¬a ∈ f '' V
[PROOFSTEP]
rintro _ ⟨b, hb₁, hb₂⟩ ⟨c, hc₁, hc₂⟩
[GOAL]
case refine'_2.intro.intro.intro.intro
G : Type u
α : Type v
inst✝¹ : Group G
inst✝ : MulAction G α
U V : Set α
this : Setoid α := orbitRel G α
f : α → Quotient (orbitRel G α) := Quotient.mk'
h : ∀ (x : α), x ∈ U → ∀ (g : G), ¬g • x ∈ V
a✝ : Quotient (orbitRel G α)
b : α
hb₁ : b ∈ U
hb₂ : f b = a✝
c : α
hc₁ : c ∈ V
hc₂ : f c = a✝
⊢ False
[PROOFSTEP]
obtain ⟨g, rfl⟩ := Quotient.exact (hc₂.trans hb₂.symm)
[GOAL]
case refine'_2.intro.intro.intro.intro.intro
G : Type u
α : Type v
inst✝¹ : Group G
inst✝ : MulAction G α
U V : Set α
this : Setoid α := orbitRel G α
f : α → Quotient (orbitRel G α) := Quotient.mk'
h : ∀ (x : α), x ∈ U → ∀ (g : G), ¬g • x ∈ V
a✝ : Quotient (orbitRel G α)
b : α
hb₁ : b ∈ U
hb₂ : f b = a✝
g : G
hc₁ : (fun m => m • b) g ∈ V
hc₂ : f ((fun m => m • b) g) = a✝
⊢ False
[PROOFSTEP]
exact h b hb₁ g hc₁
[GOAL]
G : Type u
α : Type v
inst✝¹ : Group G
inst✝ : MulAction G α
a : α
x : Quotient G α
⊢ a ∈ orbit x ↔ Quotient.mk'' a = x
[PROOFSTEP]
induction x using Quotient.inductionOn'
[GOAL]
case h
G : Type u
α : Type v
inst✝¹ : Group G
inst✝ : MulAction G α
a a✝ : α
⊢ a ∈ orbit (Quotient.mk'' a✝) ↔ Quotient.mk'' a = Quotient.mk'' a✝
[PROOFSTEP]
rw [Quotient.eq'']
[GOAL]
case h
G : Type u
α : Type v
inst✝¹ : Group G
inst✝ : MulAction G α
a a✝ : α
⊢ a ∈ orbit (Quotient.mk'' a✝) ↔ Setoid.r a a✝
[PROOFSTEP]
rfl
[GOAL]
G : Type u
α : Type v
inst✝¹ : Group G
inst✝ : MulAction G α
x : Quotient G α
φ : Quotient G α → α
hφ : Function.RightInverse φ Quotient.mk'
⊢ orbit x = MulAction.orbit G (φ x)
[PROOFSTEP]
conv_lhs => rw [← hφ x]
[GOAL]
G : Type u
α : Type v
inst✝¹ : Group G
inst✝ : MulAction G α
x : Quotient G α
φ : Quotient G α → α
hφ : Function.RightInverse φ Quotient.mk'
| orbit x
[PROOFSTEP]
rw [← hφ x]
[GOAL]
G : Type u
α : Type v
inst✝¹ : Group G
inst✝ : MulAction G α
x : Quotient G α
φ : Quotient G α → α
hφ : Function.RightInverse φ Quotient.mk'
| orbit x
[PROOFSTEP]
rw [← hφ x]
[GOAL]
G : Type u
α : Type v
inst✝¹ : Group G
inst✝ : MulAction G α
x : Quotient G α
φ : Quotient G α → α
hφ : Function.RightInverse φ Quotient.mk'
| orbit x
[PROOFSTEP]
rw [← hφ x]
[GOAL]
G : Type u
α : Type v
inst✝¹ : Group G
inst✝ : MulAction G α
g : G
a : α
⊢ stabilizer G (g • a) = Subgroup.map (MulEquiv.toMonoidHom (↑MulAut.conj g)) (stabilizer G a)
[PROOFSTEP]
ext h
[GOAL]
case h
G : Type u
α : Type v
inst✝¹ : Group G
inst✝ : MulAction G α
g : G
a : α
h : G
⊢ h ∈ stabilizer G (g • a) ↔ h ∈ Subgroup.map (MulEquiv.toMonoidHom (↑MulAut.conj g)) (stabilizer G a)
[PROOFSTEP]
rw [mem_stabilizer_iff, ← smul_left_cancel_iff g⁻¹, smul_smul, smul_smul, smul_smul, mul_left_inv, one_smul, ←
mem_stabilizer_iff, Subgroup.mem_map_equiv, MulAut.conj_symm_apply]
[GOAL]
G : Type u
α : Type v
inst✝¹ : Group G
inst✝ : MulAction G α
a b : α
h : Setoid.Rel (orbitRel G α) a b
g : G := Classical.choose h
hg : g • b = a
⊢ stabilizer G a = Subgroup.map (MulEquiv.toMonoidHom (↑MulAut.conj g)) (stabilizer G b)
[PROOFSTEP]
rw [← hg, stabilizer_smul_eq_stabilizer_map_conj]
[GOAL]
G : Type u
α : Type v
inst✝¹ : AddGroup G
inst✝ : AddAction G α
g : G
a : α
⊢ stabilizer G (g +ᵥ a) = AddSubgroup.map (AddEquiv.toAddMonoidHom (↑AddAut.conj g)) (stabilizer G a)
[PROOFSTEP]
ext h
[GOAL]
case h
G : Type u
α : Type v
inst✝¹ : AddGroup G
inst✝ : AddAction G α
g : G
a : α
h : G
⊢ h ∈ stabilizer G (g +ᵥ a) ↔ h ∈ AddSubgroup.map (AddEquiv.toAddMonoidHom (↑AddAut.conj g)) (stabilizer G a)
[PROOFSTEP]
rw [mem_stabilizer_iff, ← vadd_left_cancel_iff (-g), vadd_vadd, vadd_vadd, vadd_vadd, add_left_neg, zero_vadd, ←
mem_stabilizer_iff, AddSubgroup.mem_map_equiv, AddAut.conj_symm_apply]
[GOAL]
G : Type u
α : Type v
inst✝¹ : AddGroup G
inst✝ : AddAction G α
a b : α
h : Setoid.Rel (orbitRel G α) a b
g : G := Classical.choose h
hg : g +ᵥ b = a
⊢ stabilizer G a = AddSubgroup.map (AddEquiv.toAddMonoidHom (↑AddAut.conj g)) (stabilizer G b)
[PROOFSTEP]
rw [← hg, stabilizer_vadd_eq_stabilizer_map_conj]
[GOAL]
M : Type u_1
R : Type u_2
inst✝² : Monoid M
inst✝¹ : NonUnitalNonAssocRing R
inst✝ : DistribMulAction M R
k : M
h : ∀ (x : R), k • x = 0 → x = 0
a b : R
h' : k • a = k • b
⊢ a = b
[PROOFSTEP]
rw [← sub_eq_zero]
[GOAL]
M : Type u_1
R : Type u_2
inst✝² : Monoid M
inst✝¹ : NonUnitalNonAssocRing R
inst✝ : DistribMulAction M R
k : M
h : ∀ (x : R), k • x = 0 → x = 0
a b : R
h' : k • a = k • b
⊢ a - b = 0
[PROOFSTEP]
refine' h _ _
[GOAL]
M : Type u_1
R : Type u_2
inst✝² : Monoid M
inst✝¹ : NonUnitalNonAssocRing R
inst✝ : DistribMulAction M R
k : M
h : ∀ (x : R), k • x = 0 → x = 0
a b : R
h' : k • a = k • b
⊢ k • (a - b) = 0
[PROOFSTEP]
rw [smul_sub, h', sub_self]
| {"mathlib_filename": "Mathlib.GroupTheory.GroupAction.Basic", "llama_tokens": 8307} |
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a b c x : R
e : ℕ
pq_pf : a + b = c
⊢ x ^ e * a + x ^ e * b = x ^ e * c
[PROOFSTEP]
subst_vars
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a b x : R
e : ℕ
⊢ x ^ e * a + x ^ e * b = x ^ e * (a + b)
[PROOFSTEP]
simp [mul_add]
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a b x : R
e : ℕ
h : a + b = ↑0
⊢ x ^ e * a + x ^ e * b = ↑0
[PROOFSTEP]
simp [h, ← mul_add]
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
b : R
⊢ 0 + b = b
[PROOFSTEP]
simp
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a : R
⊢ a + 0 = a
[PROOFSTEP]
simp
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a₁ b₁ c₁ a₂ b₂ c₂ : R
x✝¹ : a₁ + b₁ = c₁
x✝ : a₂ + b₂ = c₂
⊢ a₁ + a₂ + (b₁ + b₂) = c₁ + c₂
[PROOFSTEP]
subst_vars
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a₁ b₁ a₂ b₂ : R
⊢ a₁ + a₂ + (b₁ + b₂) = a₁ + b₁ + (a₂ + b₂)
[PROOFSTEP]
simp [add_assoc, add_left_comm]
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a₁ b₁ a₂ b₂ c : R
h : IsNat (a₁ + b₁) 0
h₄ : a₂ + b₂ = c
⊢ a₁ + a₂ + (b₁ + b₂) = c
[PROOFSTEP]
subst_vars
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a₁ b₁ a₂ b₂ : R
h : IsNat (a₁ + b₁) 0
⊢ a₁ + a₂ + (b₁ + b₂) = a₂ + b₂
[PROOFSTEP]
rw [add_add_add_comm, h.1, Nat.cast_zero, add_pf_zero_add]
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a₂ b c a₁ : R
x✝ : a₂ + b = c
⊢ a₁ + a₂ + b = a₁ + c
[PROOFSTEP]
simp [*, add_assoc]
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a b₂ c b₁ : R
x✝ : a + b₂ = c
⊢ a + (b₁ + b₂) = b₁ + c
[PROOFSTEP]
subst_vars
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a b₂ b₁ : R
⊢ a + (b₁ + b₂) = b₁ + (a + b₂)
[PROOFSTEP]
simp [add_left_comm]
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a : R
⊢ Nat.rawCast 1 * a = a
[PROOFSTEP]
simp [Nat.rawCast]
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a : R
⊢ a * Nat.rawCast 1 = a
[PROOFSTEP]
simp [Nat.rawCast]
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a₃ b c a₁ : R
a₂ : ℕ
x✝ : a₃ * b = c
⊢ a₁ ^ a₂ * a₃ * b = a₁ ^ a₂ * c
[PROOFSTEP]
subst_vars
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a₃ b a₁ : R
a₂ : ℕ
⊢ a₁ ^ a₂ * a₃ * b = a₁ ^ a₂ * (a₃ * b)
[PROOFSTEP]
rw [mul_assoc]
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a b₃ c b₁ : R
b₂ : ℕ
x✝ : a * b₃ = c
⊢ a * (b₁ ^ b₂ * b₃) = b₁ ^ b₂ * c
[PROOFSTEP]
subst_vars
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a b₃ b₁ : R
b₂ : ℕ
⊢ a * (b₁ ^ b₂ * b₃) = b₁ ^ b₂ * (a * b₃)
[PROOFSTEP]
rw [mul_left_comm]
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
ea eb e : ℕ
a₂ b₂ c x : R
x✝¹ : ea + eb = e
x✝ : a₂ * b₂ = c
⊢ x ^ ea * a₂ * (x ^ eb * b₂) = x ^ e * c
[PROOFSTEP]
subst_vars
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
ea eb : ℕ
a₂ b₂ x : R
⊢ x ^ ea * a₂ * (x ^ eb * b₂) = x ^ (ea + eb) * (a₂ * b₂)
[PROOFSTEP]
simp [pow_add, mul_mul_mul_comm]
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a : R
⊢ a * 0 = 0
[PROOFSTEP]
simp
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a b₁ c₁ b₂ c₂ d : R
x✝² : a * b₁ = c₁
x✝¹ : a * b₂ = c₂
x✝ : c₁ + 0 + c₂ = d
⊢ a * (b₁ + b₂) = d
[PROOFSTEP]
subst_vars
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a b₁ b₂ : R
⊢ a * (b₁ + b₂) = a * b₁ + 0 + a * b₂
[PROOFSTEP]
simp [_root_.mul_add]
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
b : R
⊢ 0 * b = 0
[PROOFSTEP]
simp
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a₁ b c₁ a₂ c₂ d : R
x✝² : a₁ * b = c₁
x✝¹ : a₂ * b = c₂
x✝ : c₁ + c₂ = d
⊢ (a₁ + a₂) * b = d
[PROOFSTEP]
subst_vars
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a₁ b a₂ : R
⊢ (a₁ + a₂) * b = a₁ * b + a₂ * b
[PROOFSTEP]
simp [_root_.add_mul]
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
n : ℕ
⊢ ↑(Nat.rawCast n) = Nat.rawCast n
[PROOFSTEP]
simp
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a₁ : ℕ
b₁ : R
a₃ : ℕ
b₃ : R
a₂ : ℕ
x✝¹ : ↑a₁ = b₁
x✝ : ↑a₃ = b₃
⊢ ↑(a₁ ^ a₂ * a₃) = b₁ ^ a₂ * b₃
[PROOFSTEP]
subst_vars
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a₁ a₃ a₂ : ℕ
⊢ ↑(a₁ ^ a₂ * a₃) = ↑a₁ ^ a₂ * ↑a₃
[PROOFSTEP]
simp
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a₁ : ℕ
b₁ : R
a₂ : ℕ
b₂ : R
x✝¹ : ↑a₁ = b₁
x✝ : ↑a₂ = b₂
⊢ ↑(a₁ + a₂) = b₁ + b₂
[PROOFSTEP]
subst_vars
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a₁ a₂ : ℕ
⊢ ↑(a₁ + a₂) = ↑a₁ + ↑a₂
[PROOFSTEP]
simp
[GOAL]
u : Lean.Level
R : Type ?u.195007
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a b c : ℕ
x✝ : a * b = c
⊢ a • b = c
[PROOFSTEP]
subst_vars
[GOAL]
u : Lean.Level
R : Type ?u.195007
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a b : ℕ
⊢ a • b = a * b
[PROOFSTEP]
simp
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a : ℕ
a' b c : R
x✝¹ : ↑a = a'
x✝ : a' * b = c
⊢ a • b = c
[PROOFSTEP]
subst_vars
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a : ℕ
b : R
⊢ a • b = ↑a * b
[PROOFSTEP]
simp
[GOAL]
u : Lean.Level
R✝ : Type ?u.203137
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝¹ : CommSemiring R✝
R : Type u_1
inst✝ : Ring R
a b : R
x✝ : Int.rawCast (Int.negOfNat 1) * a = b
⊢ -a = b
[PROOFSTEP]
subst_vars
[GOAL]
u : Lean.Level
R✝ : Type ?u.203137
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝¹ : CommSemiring R✝
R : Type u_1
inst✝ : Ring R
a : R
⊢ -a = Int.rawCast (Int.negOfNat 1) * a
[PROOFSTEP]
simp [Int.negOfNat]
[GOAL]
u : Lean.Level
R✝ : Type ?u.204069
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝¹ : CommSemiring R✝
R : Type u_1
inst✝ : Ring R
a₁ : R
a₂ : ℕ
a₃ b : R
x✝ : -a₃ = b
⊢ -(a₁ ^ a₂ * a₃) = a₁ ^ a₂ * b
[PROOFSTEP]
subst_vars
[GOAL]
u : Lean.Level
R✝ : Type ?u.204069
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝¹ : CommSemiring R✝
R : Type u_1
inst✝ : Ring R
a₁ : R
a₂ : ℕ
a₃ : R
⊢ -(a₁ ^ a₂ * a₃) = a₁ ^ a₂ * -a₃
[PROOFSTEP]
simp
[GOAL]
u : Lean.Level
R✝ : Type ?u.213000
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝¹ : CommSemiring R✝
R : Type u_1
inst✝ : Ring R
⊢ -0 = 0
[PROOFSTEP]
simp
[GOAL]
u : Lean.Level
R✝ : Type ?u.213479
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝¹ : CommSemiring R✝
R : Type u_1
inst✝ : Ring R
a₁ a₂ b₁ b₂ : R
x✝¹ : -a₁ = b₁
x✝ : -a₂ = b₂
⊢ -(a₁ + a₂) = b₁ + b₂
[PROOFSTEP]
subst_vars
[GOAL]
u : Lean.Level
R✝ : Type ?u.213479
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝¹ : CommSemiring R✝
R : Type u_1
inst✝ : Ring R
a₁ a₂ : R
⊢ -(a₁ + a₂) = -a₁ + -a₂
[PROOFSTEP]
simp [add_comm]
[GOAL]
u : Lean.Level
R✝ : Type ?u.219543
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝¹ : CommSemiring R✝
R : Type u_1
inst✝ : Ring R
a b c d : R
x✝¹ : -b = c
x✝ : a + c = d
⊢ a - b = d
[PROOFSTEP]
subst_vars
[GOAL]
u : Lean.Level
R✝ : Type ?u.219543
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝¹ : CommSemiring R✝
R : Type u_1
inst✝ : Ring R
a b : R
⊢ a - b = a + -b
[PROOFSTEP]
simp [sub_eq_add_neg]
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a : R
b : ℕ
⊢ a ^ b = (a + 0) ^ b * Nat.rawCast 1
[PROOFSTEP]
simp
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a : R
b : ℕ
⊢ a ^ b = a ^ b * Nat.rawCast 1 + 0
[PROOFSTEP]
simp
[GOAL]
u : Lean.Level
R : Type ?u.229716
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a✝ : Q(ℕ)
va : ExProd sℕ a✝
a : Q(ℕ)
value✝ : ℚ
hyp✝ : Option Expr
lit : Q(ℕ)
this : «$a» =Q Nat.rawCast «$lit»
p : Nat.ble 1 «$lit» =Q true
⊢ Option Q(0 < «$a»)
[PROOFSTEP]
exact some (q(const_pos $lit $p))
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a : R
⊢ a ^ 1 = a
[PROOFSTEP]
simp
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a : R
k : ℕ
b c : R
x✝¹ : a ^ k = b
x✝ : b * b = c
⊢ a ^ Nat.mul 2 k = c
[PROOFSTEP]
subst_vars
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a : R
k : ℕ
⊢ a ^ Nat.mul 2 k = a ^ k * a ^ k
[PROOFSTEP]
simp [Nat.succ_mul, pow_add]
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a : R
k : ℕ
b c d : R
x✝² : a ^ k = b
x✝¹ : b * b = c
x✝ : c * a = d
⊢ a ^ Nat.add (Nat.mul 2 k) 1 = d
[PROOFSTEP]
subst_vars
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a : R
k : ℕ
⊢ a ^ Nat.add (Nat.mul 2 k) 1 = a ^ k * a ^ k * a
[PROOFSTEP]
simp [Nat.succ_mul, pow_add]
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
b : ℕ
⊢ Nat.rawCast 1 ^ b = Nat.rawCast 1
[PROOFSTEP]
simp
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
ea₁ b c₁ : ℕ
a₂ c₂ xa₁ : R
x✝¹ : ea₁ * b = c₁
x✝ : a₂ ^ b = c₂
⊢ (xa₁ ^ ea₁ * a₂) ^ b = xa₁ ^ c₁ * c₂
[PROOFSTEP]
subst_vars
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
ea₁ b : ℕ
a₂ xa₁ : R
⊢ (xa₁ ^ ea₁ * a₂) ^ b = xa₁ ^ (ea₁ * b) * a₂ ^ b
[PROOFSTEP]
simp [_root_.mul_pow, pow_mul]
[GOAL]
u : Lean.Level
R : Type ?u.271767
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
k : ℕ
⊢ Nat.rawCast k = Nat.rawCast 1 * k
[PROOFSTEP]
simp
[GOAL]
u : Lean.Level
R : Type ?u.272246
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a₃ c₂ k a₁ a₂ : ℕ
x✝ : a₃ = c₂ * k
⊢ a₁ ^ a₂ * a₃ = a₁ ^ a₂ * c₂ * k
[PROOFSTEP]
subst_vars
[GOAL]
u : Lean.Level
R : Type ?u.272246
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
c₂ k a₁ a₂ : ℕ
⊢ a₁ ^ a₂ * (c₂ * k) = a₁ ^ a₂ * c₂ * k
[PROOFSTEP]
rw [mul_assoc]
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a : R
⊢ a ^ Nat.rawCast 1 = a
[PROOFSTEP]
simp
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
b✝ b : ℕ
x✝ : 0 < b + 1
⊢ 0 ^ (b + 1) = 0
[PROOFSTEP]
simp [pow_succ]
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a : R
b : ℕ
c : R
x✝ : a ^ b = c
⊢ (a + 0) ^ b = c + 0
[PROOFSTEP]
simp [*]
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
b c k : ℕ
a d e : R
x✝² : b = c * k
x✝¹ : a ^ c = d
x✝ : d ^ k = e
⊢ a ^ b = e
[PROOFSTEP]
subst_vars
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
c k : ℕ
a : R
⊢ a ^ (c * k) = (a ^ c) ^ k
[PROOFSTEP]
simp [pow_mul]
[GOAL]
u : Lean.Level
R : Type ?u.283538
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a✝ : Q(«$α»)
b : Q(ℕ)
va✝ : ExSum sα a✝
vb : ExProd sℕ b
a : Q(«$α»)
va : ExSum sα a
this : «$b» =Q Nat.rawCast 1
⊢ Q(«$a» ^ «$b» = «$a»)
[PROOFSTEP]
exact q(pow_one_cast $a)
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a : R
⊢ a ^ 0 = Nat.rawCast 1 + 0
[PROOFSTEP]
simp
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a : R
b₁ : ℕ
c₁ : R
b₂ : ℕ
c₂ d : R
x✝² : a ^ b₁ = c₁
x✝¹ : a ^ b₂ = c₂
x✝ : c₁ * c₂ = d
⊢ a ^ (b₁ + b₂) = d
[PROOFSTEP]
subst_vars
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a : R
b₁ b₂ : ℕ
⊢ a ^ (b₁ + b₂) = a ^ b₁ * a ^ b₂
[PROOFSTEP]
simp [_root_.pow_add]
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a : R
n : ℕ
e : a = ↑n
⊢ a = Nat.rawCast n + 0
[PROOFSTEP]
simp [e]
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a : R
e : a = ↑0
⊢ a = 0
[PROOFSTEP]
simp [e]
[GOAL]
u : Lean.Level
R✝ : Type ?u.333286
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝¹ : CommSemiring R✝
n : ℕ
R : Type u_1
inst✝ : Ring R
a : R
e : a = ↑(Int.negOfNat n)
⊢ a = Int.rawCast (Int.negOfNat n) + 0
[PROOFSTEP]
simp [e]
[GOAL]
u : Lean.Level
R✝ : Type ?u.334205
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝¹ : CommSemiring R✝
n : ℤ
d : ℕ
R : Type u_1
inst✝ : DivisionRing R
a : R
inv✝ : Invertible ↑d
e : a = ↑n * ⅟↑d
⊢ a = Rat.rawCast n d + 0
[PROOFSTEP]
simp [e, div_eq_mul_inv]
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a a' : R
p : a = a'
⊢ a = a' ^ Nat.rawCast 1 * Nat.rawCast 1
[PROOFSTEP]
simp [*]
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a : R
⊢ a = a ^ Nat.rawCast 1 * Nat.rawCast 1 + 0
[PROOFSTEP]
simp
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a a' : R
p : a = a'
⊢ a = a' ^ Nat.rawCast 1 * Nat.rawCast 1 + 0
[PROOFSTEP]
simp [*]
[GOAL]
u : Lean.Level
R✝ : Type ?u.354097
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝¹ : CommSemiring R✝
R : Type u_1
inst✝ : DivisionRing R
a₁ : R
a₂ : ℕ
a₃ b₁ b₃ c : R
x✝² : a₁⁻¹ = b₁
x✝¹ : a₃⁻¹ = b₃
x✝ : b₃ * (b₁ ^ a₂ * Nat.rawCast 1) = c
⊢ (a₁ ^ a₂ * a₃)⁻¹ = c
[PROOFSTEP]
subst_vars
[GOAL]
u : Lean.Level
R✝ : Type ?u.354097
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝¹ : CommSemiring R✝
R : Type u_1
inst✝ : DivisionRing R
a₁ : R
a₂ : ℕ
a₃ : R
⊢ (a₁ ^ a₂ * a₃)⁻¹ = a₃⁻¹ * (a₁⁻¹ ^ a₂ * Nat.rawCast 1)
[PROOFSTEP]
simp
[GOAL]
u : Lean.Level
R✝ : Type ?u.357008
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝¹ : CommSemiring R✝
R : Type u_1
inst✝ : DivisionRing R
a b : R
x✝ : a⁻¹ = b
⊢ (a + 0)⁻¹ = b + 0
[PROOFSTEP]
simp [*]
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a₁ : ℕ
b₁ : R
a₂ : ℕ
b₂ : R
x✝¹ : ↑a₁ = b₁
x✝ : ↑a₂ = b₂
⊢ ↑(a₁ + a₂) = b₁ + b₂
[PROOFSTEP]
subst_vars
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a₁ a₂ : ℕ
⊢ ↑(a₁ + a₂) = ↑a₁ + ↑a₂
[PROOFSTEP]
simp
[GOAL]
u : Lean.Level
R✝ : Type ?u.392566
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝¹ : CommSemiring R✝
R : Type u_1
inst✝ : DivisionRing R
a b c d : R
x✝¹ : b⁻¹ = c
x✝ : a * c = d
⊢ a / b = d
[PROOFSTEP]
subst_vars
[GOAL]
u : Lean.Level
R✝ : Type ?u.392566
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝¹ : CommSemiring R✝
R : Type u_1
inst✝ : DivisionRing R
a b : R
⊢ a / b = a * b⁻¹
[PROOFSTEP]
simp [div_eq_mul_inv]
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a a' b b' c : R
x✝² : a = a'
x✝¹ : b = b'
x✝ : a' + b' = c
⊢ a + b = c
[PROOFSTEP]
subst_vars
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a' b' : R
⊢ a' + b' = a' + b'
[PROOFSTEP]
rfl
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a a' b b' c : R
x✝² : a = a'
x✝¹ : b = b'
x✝ : a' * b' = c
⊢ a * b = c
[PROOFSTEP]
subst_vars
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a' b' : R
⊢ a' * b' = a' * b'
[PROOFSTEP]
rfl
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a a' : ℕ
b b' c : R
x✝² : a = a'
x✝¹ : b = b'
x✝ : a' • b' = c
⊢ a • b = c
[PROOFSTEP]
subst_vars
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a' : ℕ
b' : R
⊢ a' • b' = a' • b'
[PROOFSTEP]
rfl
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a a' : R
b b' : ℕ
c : R
x✝² : a = a'
x✝¹ : b = b'
x✝ : a' ^ b' = c
⊢ a ^ b = c
[PROOFSTEP]
subst_vars
[GOAL]
u : Lean.Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a' : R
b' : ℕ
⊢ a' ^ b' = a' ^ b'
[PROOFSTEP]
rfl
[GOAL]
u : Lean.Level
R✝ : Type ?u.398592
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝¹ : CommSemiring R✝
R : Type u_1
inst✝ : Ring R
a a' b : R
x✝¹ : a = a'
x✝ : -a' = b
⊢ -a = b
[PROOFSTEP]
subst_vars
[GOAL]
u : Lean.Level
R✝ : Type ?u.398592
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝¹ : CommSemiring R✝
R : Type u_1
inst✝ : Ring R
a' : R
⊢ -a' = -a'
[PROOFSTEP]
rfl
[GOAL]
u : Lean.Level
R✝ : Type ?u.398710
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝¹ : CommSemiring R✝
R : Type u_1
inst✝ : Ring R
a a' b b' c : R
x✝² : a = a'
x✝¹ : b = b'
x✝ : a' - b' = c
⊢ a - b = c
[PROOFSTEP]
subst_vars
[GOAL]
u : Lean.Level
R✝ : Type ?u.398710
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝¹ : CommSemiring R✝
R : Type u_1
inst✝ : Ring R
a' b' : R
⊢ a' - b' = a' - b'
[PROOFSTEP]
rfl
[GOAL]
u : Lean.Level
R✝ : Type ?u.398916
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝¹ : CommSemiring R✝
R : Type u_1
inst✝ : DivisionRing R
a a' b : R
x✝¹ : a = a'
x✝ : a'⁻¹ = b
⊢ a⁻¹ = b
[PROOFSTEP]
subst_vars
[GOAL]
u : Lean.Level
R✝ : Type ?u.398916
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝¹ : CommSemiring R✝
R : Type u_1
inst✝ : DivisionRing R
a' : R
⊢ a'⁻¹ = a'⁻¹
[PROOFSTEP]
rfl
[GOAL]
u : Lean.Level
R✝ : Type ?u.399091
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝¹ : CommSemiring R✝
R : Type u_1
inst✝ : DivisionRing R
a a' b b' c : R
x✝² : a = a'
x✝¹ : b = b'
x✝ : a' / b' = c
⊢ a / b = c
[PROOFSTEP]
subst_vars
[GOAL]
u : Lean.Level
R✝ : Type ?u.399091
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝¹ : CommSemiring R✝
R : Type u_1
inst✝ : DivisionRing R
a' b' : R
⊢ a' / b' = a' / b'
[PROOFSTEP]
rfl
[GOAL]
u : Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
a c b : R
x✝¹ : a = c
x✝ : b = c
⊢ a = b
[PROOFSTEP]
subst_vars
[GOAL]
u : Level
R : Type u_1
α : Q(Type u)
sα : Q(CommSemiring «$α»)
inst✝ : CommSemiring R
b : R
⊢ b = b
[PROOFSTEP]
rfl
| {"mathlib_filename": "Mathlib.Tactic.Ring.Basic", "llama_tokens": 10668} |
{"mathlib_filename": "Mathlib.GroupTheory.GroupAction.Embedding", "llama_tokens": 0} |
|
[GOAL]
p : ℕ
G : Type u_1
inst✝ : Group G
hp : Fact (Nat.Prime p)
g : G
k : ℕ
hk : orderOf g = p ^ k
⊢ g ^ p ^ k = 1
[PROOFSTEP]
rw [← hk, pow_orderOf_eq_one]
[GOAL]
p : ℕ
G : Type u_1
inst✝¹ : Group G
inst✝ : Fintype G
n : ℕ
hG : card G = p ^ n
g : G
⊢ g ^ p ^ n = 1
[PROOFSTEP]
rw [← hG, pow_card_eq_one]
[GOAL]
p : ℕ
G : Type u_1
inst✝² : Group G
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Fintype G
⊢ IsPGroup p G ↔ ∃ n, card G = p ^ n
[PROOFSTEP]
have hG : card G ≠ 0 := card_ne_zero
[GOAL]
p : ℕ
G : Type u_1
inst✝² : Group G
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Fintype G
hG : card G ≠ 0
⊢ IsPGroup p G ↔ ∃ n, card G = p ^ n
[PROOFSTEP]
refine' ⟨fun h => _, fun ⟨n, hn⟩ => of_card hn⟩
[GOAL]
p : ℕ
G : Type u_1
inst✝² : Group G
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Fintype G
hG : card G ≠ 0
h : IsPGroup p G
⊢ ∃ n, card G = p ^ n
[PROOFSTEP]
suffices ∀ q ∈ Nat.factors (card G), q = p by
use(card G).factors.length
rw [← List.prod_replicate, ← List.eq_replicate_of_mem this, Nat.prod_factors hG]
[GOAL]
p : ℕ
G : Type u_1
inst✝² : Group G
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Fintype G
hG : card G ≠ 0
h : IsPGroup p G
this : ∀ (q : ℕ), q ∈ Nat.factors (card G) → q = p
⊢ ∃ n, card G = p ^ n
[PROOFSTEP]
use(card G).factors.length
[GOAL]
case h
p : ℕ
G : Type u_1
inst✝² : Group G
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Fintype G
hG : card G ≠ 0
h : IsPGroup p G
this : ∀ (q : ℕ), q ∈ Nat.factors (card G) → q = p
⊢ card G = p ^ List.length (Nat.factors (card G))
[PROOFSTEP]
rw [← List.prod_replicate, ← List.eq_replicate_of_mem this, Nat.prod_factors hG]
[GOAL]
p : ℕ
G : Type u_1
inst✝² : Group G
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Fintype G
hG : card G ≠ 0
h : IsPGroup p G
⊢ ∀ (q : ℕ), q ∈ Nat.factors (card G) → q = p
[PROOFSTEP]
intro q hq
[GOAL]
p : ℕ
G : Type u_1
inst✝² : Group G
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Fintype G
hG : card G ≠ 0
h : IsPGroup p G
q : ℕ
hq : q ∈ Nat.factors (card G)
⊢ q = p
[PROOFSTEP]
obtain ⟨hq1, hq2⟩ := (Nat.mem_factors hG).mp hq
[GOAL]
case intro
p : ℕ
G : Type u_1
inst✝² : Group G
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Fintype G
hG : card G ≠ 0
h : IsPGroup p G
q : ℕ
hq : q ∈ Nat.factors (card G)
hq1 : Nat.Prime q
hq2 : q ∣ card G
⊢ q = p
[PROOFSTEP]
haveI : Fact q.Prime := ⟨hq1⟩
[GOAL]
case intro
p : ℕ
G : Type u_1
inst✝² : Group G
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Fintype G
hG : card G ≠ 0
h : IsPGroup p G
q : ℕ
hq : q ∈ Nat.factors (card G)
hq1 : Nat.Prime q
hq2 : q ∣ card G
this : Fact (Nat.Prime q)
⊢ q = p
[PROOFSTEP]
obtain ⟨g, hg⟩ := exists_prime_orderOf_dvd_card q hq2
[GOAL]
case intro.intro
p : ℕ
G : Type u_1
inst✝² : Group G
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Fintype G
hG : card G ≠ 0
h : IsPGroup p G
q : ℕ
hq : q ∈ Nat.factors (card G)
hq1 : Nat.Prime q
hq2 : q ∣ card G
this : Fact (Nat.Prime q)
g : G
hg : orderOf g = q
⊢ q = p
[PROOFSTEP]
obtain ⟨k, hk⟩ := (iff_orderOf.mp h) g
[GOAL]
case intro.intro.intro
p : ℕ
G : Type u_1
inst✝² : Group G
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Fintype G
hG : card G ≠ 0
h : IsPGroup p G
q : ℕ
hq : q ∈ Nat.factors (card G)
hq1 : Nat.Prime q
hq2 : q ∣ card G
this : Fact (Nat.Prime q)
g : G
hg : orderOf g = q
k : ℕ
hk : orderOf g = p ^ k
⊢ q = p
[PROOFSTEP]
exact (hq1.pow_eq_iff.mp (hg.symm.trans hk).symm).1.symm
[GOAL]
p : ℕ
G : Type u_1
inst✝¹ : Group G
hG : IsPGroup p G
H : Type u_2
inst✝ : Group H
ϕ : H →* G
hϕ : Function.Injective ↑ϕ
⊢ IsPGroup p H
[PROOFSTEP]
simp_rw [IsPGroup, ← hϕ.eq_iff, ϕ.map_pow, ϕ.map_one]
[GOAL]
p : ℕ
G : Type u_1
inst✝¹ : Group G
hG : IsPGroup p G
H : Type u_2
inst✝ : Group H
ϕ : H →* G
hϕ : Function.Injective ↑ϕ
⊢ ∀ (g : H), ∃ k, ↑ϕ g ^ p ^ k = 1
[PROOFSTEP]
exact fun h => hG (ϕ h)
[GOAL]
p : ℕ
G : Type u_1
inst✝¹ : Group G
hG : IsPGroup p G
H : Type u_2
inst✝ : Group H
ϕ : G →* H
hϕ : Function.Surjective ↑ϕ
⊢ IsPGroup p H
[PROOFSTEP]
refine' fun h => Exists.elim (hϕ h) fun g hg => Exists.imp (fun k hk => _) (hG g)
[GOAL]
p : ℕ
G : Type u_1
inst✝¹ : Group G
hG : IsPGroup p G
H : Type u_2
inst✝ : Group H
ϕ : G →* H
hϕ : Function.Surjective ↑ϕ
h : H
g : G
hg : ↑ϕ g = h
k : ℕ
hk : g ^ p ^ k = 1
⊢ h ^ p ^ k = 1
[PROOFSTEP]
rw [← hg, ← ϕ.map_pow, hk, ϕ.map_one]
[GOAL]
p : ℕ
G : Type u_1
inst✝ : Group G
hG : IsPGroup p G
n : ℕ
hn : Nat.coprime p n
g : G
⊢ ↑(powEquiv hG hn).symm g = g ^ Nat.gcdB (orderOf g) n
[PROOFSTEP]
rw [order_eq_card_zpowers']
[GOAL]
p : ℕ
G : Type u_1
inst✝ : Group G
hG : IsPGroup p G
n : ℕ
hn : Nat.coprime p n
g : G
⊢ ↑(powEquiv hG hn).symm g = g ^ Nat.gcdB (Nat.card { x // x ∈ Subgroup.zpowers g }) n
[PROOFSTEP]
rfl
[GOAL]
p : ℕ
G : Type u_1
inst✝¹ : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
H : Subgroup G
inst✝ : Subgroup.FiniteIndex H
⊢ ∃ n, Subgroup.index H = p ^ n
[PROOFSTEP]
haveI := H.normalCore.fintypeQuotientOfFiniteIndex
[GOAL]
p : ℕ
G : Type u_1
inst✝¹ : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
H : Subgroup G
inst✝ : Subgroup.FiniteIndex H
this : Fintype (G ⧸ Subgroup.normalCore H)
⊢ ∃ n, Subgroup.index H = p ^ n
[PROOFSTEP]
obtain ⟨n, hn⟩ := iff_card.mp (hG.to_quotient H.normalCore)
[GOAL]
case intro
p : ℕ
G : Type u_1
inst✝¹ : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
H : Subgroup G
inst✝ : Subgroup.FiniteIndex H
this : Fintype (G ⧸ Subgroup.normalCore H)
n : ℕ
hn : card (G ⧸ Subgroup.normalCore H) = p ^ n
⊢ ∃ n, Subgroup.index H = p ^ n
[PROOFSTEP]
obtain ⟨k, _, hk2⟩ :=
(Nat.dvd_prime_pow hp.out).mp
((congr_arg _ (H.normalCore.index_eq_card.trans hn)).mp (Subgroup.index_dvd_of_le H.normalCore_le))
[GOAL]
case intro.intro.intro
p : ℕ
G : Type u_1
inst✝¹ : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
H : Subgroup G
inst✝ : Subgroup.FiniteIndex H
this : Fintype (G ⧸ Subgroup.normalCore H)
n : ℕ
hn : card (G ⧸ Subgroup.normalCore H) = p ^ n
k : ℕ
left✝ : k ≤ n
hk2 : Subgroup.index H = p ^ k
⊢ ∃ n, Subgroup.index H = p ^ n
[PROOFSTEP]
exact ⟨k, hk2⟩
[GOAL]
p : ℕ
G : Type u_1
inst✝ : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
⊢ Nat.card G = 1 ∨ p ∣ Nat.card G
[PROOFSTEP]
cases fintypeOrInfinite G
[GOAL]
case inl
p : ℕ
G : Type u_1
inst✝ : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
val✝ : Fintype G
⊢ Nat.card G = 1 ∨ p ∣ Nat.card G
[PROOFSTEP]
obtain ⟨n, hn⟩ := iff_card.mp hG
[GOAL]
case inl.intro
p : ℕ
G : Type u_1
inst✝ : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
val✝ : Fintype G
n : ℕ
hn : card G = p ^ n
⊢ Nat.card G = 1 ∨ p ∣ Nat.card G
[PROOFSTEP]
rw [Nat.card_eq_fintype_card, hn]
[GOAL]
case inl.intro
p : ℕ
G : Type u_1
inst✝ : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
val✝ : Fintype G
n : ℕ
hn : card G = p ^ n
⊢ p ^ n = 1 ∨ p ∣ p ^ n
[PROOFSTEP]
cases' n with n n
[GOAL]
case inl.intro.zero
p : ℕ
G : Type u_1
inst✝ : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
val✝ : Fintype G
hn : card G = p ^ Nat.zero
⊢ p ^ Nat.zero = 1 ∨ p ∣ p ^ Nat.zero
[PROOFSTEP]
exact Or.inl rfl
[GOAL]
case inl.intro.succ
p : ℕ
G : Type u_1
inst✝ : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
val✝ : Fintype G
n : ℕ
hn : card G = p ^ Nat.succ n
⊢ p ^ Nat.succ n = 1 ∨ p ∣ p ^ Nat.succ n
[PROOFSTEP]
exact Or.inr ⟨p ^ n, by rw [pow_succ]⟩
[GOAL]
p : ℕ
G : Type u_1
inst✝ : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
val✝ : Fintype G
n : ℕ
hn : card G = p ^ Nat.succ n
⊢ p ^ Nat.succ n = p * p ^ n
[PROOFSTEP]
rw [pow_succ]
[GOAL]
case inr
p : ℕ
G : Type u_1
inst✝ : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
val✝ : Infinite G
⊢ Nat.card G = 1 ∨ p ∣ Nat.card G
[PROOFSTEP]
rw [Nat.card_eq_zero_of_infinite]
[GOAL]
case inr
p : ℕ
G : Type u_1
inst✝ : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
val✝ : Infinite G
⊢ 0 = 1 ∨ p ∣ 0
[PROOFSTEP]
exact Or.inr ⟨0, rfl⟩
[GOAL]
p : ℕ
G : Type u_1
inst✝¹ : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
inst✝ : Fintype G
hGnt : Nontrivial G
k : ℕ
hk : card G = p ^ k
hk0 : k = 0
⊢ False
[PROOFSTEP]
rw [hk0, pow_zero] at hk
[GOAL]
p : ℕ
G : Type u_1
inst✝¹ : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
inst✝ : Fintype G
hGnt : Nontrivial G
k : ℕ
hk : card G = 1
hk0 : k = 0
⊢ False
[PROOFSTEP]
exact Fintype.one_lt_card.ne' hk
[GOAL]
p : ℕ
G : Type u_1
inst✝² : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
α : Type u_2
inst✝¹ : MulAction G α
a : α
inst✝ : Fintype ↑(orbit G a)
⊢ ∃ n, card ↑(orbit G a) = p ^ n
[PROOFSTEP]
let ϕ := orbitEquivQuotientStabilizer G a
[GOAL]
p : ℕ
G : Type u_1
inst✝² : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
α : Type u_2
inst✝¹ : MulAction G α
a : α
inst✝ : Fintype ↑(orbit G a)
ϕ : ↑(orbit G a) ≃ G ⧸ stabilizer G a := orbitEquivQuotientStabilizer G a
⊢ ∃ n, card ↑(orbit G a) = p ^ n
[PROOFSTEP]
haveI := Fintype.ofEquiv (orbit G a) ϕ
[GOAL]
p : ℕ
G : Type u_1
inst✝² : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
α : Type u_2
inst✝¹ : MulAction G α
a : α
inst✝ : Fintype ↑(orbit G a)
ϕ : ↑(orbit G a) ≃ G ⧸ stabilizer G a := orbitEquivQuotientStabilizer G a
this : Fintype (G ⧸ stabilizer G a)
⊢ ∃ n, card ↑(orbit G a) = p ^ n
[PROOFSTEP]
haveI := (stabilizer G a).finiteIndex_of_finite_quotient
[GOAL]
p : ℕ
G : Type u_1
inst✝² : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
α : Type u_2
inst✝¹ : MulAction G α
a : α
inst✝ : Fintype ↑(orbit G a)
ϕ : ↑(orbit G a) ≃ G ⧸ stabilizer G a := orbitEquivQuotientStabilizer G a
this✝ : Fintype (G ⧸ stabilizer G a)
this : Subgroup.FiniteIndex (stabilizer G a)
⊢ ∃ n, card ↑(orbit G a) = p ^ n
[PROOFSTEP]
rw [card_congr ϕ, ← Subgroup.index_eq_card]
[GOAL]
p : ℕ
G : Type u_1
inst✝² : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
α : Type u_2
inst✝¹ : MulAction G α
a : α
inst✝ : Fintype ↑(orbit G a)
ϕ : ↑(orbit G a) ≃ G ⧸ stabilizer G a := orbitEquivQuotientStabilizer G a
this✝ : Fintype (G ⧸ stabilizer G a)
this : Subgroup.FiniteIndex (stabilizer G a)
⊢ ∃ n, Subgroup.index (stabilizer G a) = p ^ n
[PROOFSTEP]
exact hG.index (stabilizer G a)
[GOAL]
p : ℕ
G : Type u_1
inst✝³ : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
α : Type u_2
inst✝² : MulAction G α
inst✝¹ : Fintype α
inst✝ : Fintype ↑(fixedPoints G α)
⊢ card α ≡ card ↑(fixedPoints G α) [MOD p]
[PROOFSTEP]
classical
calc
card α = card (Σ y : Quotient (orbitRel G α), { x // Quotient.mk'' x = y }) :=
card_congr (Equiv.sigmaFiberEquiv (@Quotient.mk'' _ (orbitRel G α))).symm
_ = ∑ a : Quotient (orbitRel G α), card { x // Quotient.mk'' x = a } := (card_sigma _)
_ ≡ ∑ _a : fixedPoints G α, 1 [MOD p] := ?_
_ = _ := by simp; rfl
rw [← ZMod.eq_iff_modEq_nat p, Nat.cast_sum, Nat.cast_sum]
have key : ∀ x, card { y // (Quotient.mk'' y : Quotient (orbitRel G α)) = Quotient.mk'' x } = card (orbit G x) :=
fun x => by simp only [Quotient.eq'']; congr
refine'
Eq.symm
(Finset.sum_bij_ne_zero (fun a _ _ => Quotient.mk'' a.1) (fun _ _ _ => Finset.mem_univ _)
(fun a₁ a₂ _ _ _ _ h => Subtype.eq ((mem_fixedPoints' α).mp a₂.2 a₁.1 (Quotient.exact' h)))
(fun b => Quotient.inductionOn' b fun b _ hb => _) fun a ha _ => by
rw [key, mem_fixedPoints_iff_card_orbit_eq_one.mp a.2])
obtain ⟨k, hk⟩ := hG.card_orbit b
have : k = 0 :=
le_zero_iff.1
(Nat.le_of_lt_succ
(lt_of_not_ge
(mt (pow_dvd_pow p)
(by rwa [pow_one, ← hk, ← Nat.modEq_zero_iff_dvd, ← ZMod.eq_iff_modEq_nat, ← key, Nat.cast_zero]))))
exact
⟨⟨b, mem_fixedPoints_iff_card_orbit_eq_one.2 <| by rw [hk, this, pow_zero]⟩, Finset.mem_univ _,
ne_of_eq_of_ne Nat.cast_one one_ne_zero, rfl⟩
[GOAL]
p : ℕ
G : Type u_1
inst✝³ : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
α : Type u_2
inst✝² : MulAction G α
inst✝¹ : Fintype α
inst✝ : Fintype ↑(fixedPoints G α)
⊢ card α ≡ card ↑(fixedPoints G α) [MOD p]
[PROOFSTEP]
calc
card α = card (Σ y : Quotient (orbitRel G α), { x // Quotient.mk'' x = y }) :=
card_congr (Equiv.sigmaFiberEquiv (@Quotient.mk'' _ (orbitRel G α))).symm
_ = ∑ a : Quotient (orbitRel G α), card { x // Quotient.mk'' x = a } := (card_sigma _)
_ ≡ ∑ _a : fixedPoints G α, 1 [MOD p] := ?_
_ = _ := by simp; rfl
[GOAL]
p : ℕ
G : Type u_1
inst✝³ : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
α : Type u_2
inst✝² : MulAction G α
inst✝¹ : Fintype α
inst✝ : Fintype ↑(fixedPoints G α)
⊢ ∑ _a : ↑(fixedPoints G α), 1 = card ↑(fixedPoints G α)
[PROOFSTEP]
simp
[GOAL]
p : ℕ
G : Type u_1
inst✝³ : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
α : Type u_2
inst✝² : MulAction G α
inst✝¹ : Fintype α
inst✝ : Fintype ↑(fixedPoints G α)
⊢ Finset.card Finset.univ = card ↑(fixedPoints G α)
[PROOFSTEP]
rfl
[GOAL]
p : ℕ
G : Type u_1
inst✝³ : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
α : Type u_2
inst✝² : MulAction G α
inst✝¹ : Fintype α
inst✝ : Fintype ↑(fixedPoints G α)
⊢ ∑ a : Quotient (orbitRel G α), card { x // Quotient.mk'' x = a } ≡ ∑ _a : ↑(fixedPoints G α), 1 [MOD p]
[PROOFSTEP]
rw [← ZMod.eq_iff_modEq_nat p, Nat.cast_sum, Nat.cast_sum]
[GOAL]
p : ℕ
G : Type u_1
inst✝³ : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
α : Type u_2
inst✝² : MulAction G α
inst✝¹ : Fintype α
inst✝ : Fintype ↑(fixedPoints G α)
⊢ ∑ x : Quotient (orbitRel G α), ↑(card { x_1 // Quotient.mk'' x_1 = x }) = ∑ x : ↑(fixedPoints G α), ↑1
[PROOFSTEP]
have key : ∀ x, card { y // (Quotient.mk'' y : Quotient (orbitRel G α)) = Quotient.mk'' x } = card (orbit G x) :=
fun x => by simp only [Quotient.eq'']; congr
[GOAL]
p : ℕ
G : Type u_1
inst✝³ : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
α : Type u_2
inst✝² : MulAction G α
inst✝¹ : Fintype α
inst✝ : Fintype ↑(fixedPoints G α)
x : α
⊢ card { y // Quotient.mk'' y = Quotient.mk'' x } = card ↑(orbit G x)
[PROOFSTEP]
simp only [Quotient.eq'']
[GOAL]
p : ℕ
G : Type u_1
inst✝³ : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
α : Type u_2
inst✝² : MulAction G α
inst✝¹ : Fintype α
inst✝ : Fintype ↑(fixedPoints G α)
x : α
⊢ card { y // Setoid.r y x } = card ↑(orbit G x)
[PROOFSTEP]
congr
[GOAL]
p : ℕ
G : Type u_1
inst✝³ : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
α : Type u_2
inst✝² : MulAction G α
inst✝¹ : Fintype α
inst✝ : Fintype ↑(fixedPoints G α)
key : ∀ (x : α), card { y // Quotient.mk'' y = Quotient.mk'' x } = card ↑(orbit G x)
⊢ ∑ x : Quotient (orbitRel G α), ↑(card { x_1 // Quotient.mk'' x_1 = x }) = ∑ x : ↑(fixedPoints G α), ↑1
[PROOFSTEP]
refine'
Eq.symm
(Finset.sum_bij_ne_zero (fun a _ _ => Quotient.mk'' a.1) (fun _ _ _ => Finset.mem_univ _)
(fun a₁ a₂ _ _ _ _ h => Subtype.eq ((mem_fixedPoints' α).mp a₂.2 a₁.1 (Quotient.exact' h)))
(fun b => Quotient.inductionOn' b fun b _ hb => _) fun a ha _ => by
rw [key, mem_fixedPoints_iff_card_orbit_eq_one.mp a.2])
[GOAL]
p : ℕ
G : Type u_1
inst✝³ : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
α : Type u_2
inst✝² : MulAction G α
inst✝¹ : Fintype α
inst✝ : Fintype ↑(fixedPoints G α)
key : ∀ (x : α), card { y // Quotient.mk'' y = Quotient.mk'' x } = card ↑(orbit G x)
a : ↑(fixedPoints G α)
ha : a ∈ Finset.univ
x✝ : ↑1 ≠ 0
⊢ ↑1 = ↑(card { x // Quotient.mk'' x = (fun a x x => Quotient.mk'' ↑a) a ha x✝ })
[PROOFSTEP]
rw [key, mem_fixedPoints_iff_card_orbit_eq_one.mp a.2]
[GOAL]
p : ℕ
G : Type u_1
inst✝³ : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
α : Type u_2
inst✝² : MulAction G α
inst✝¹ : Fintype α
inst✝ : Fintype ↑(fixedPoints G α)
key : ∀ (x : α), card { y // Quotient.mk'' y = Quotient.mk'' x } = card ↑(orbit G x)
b✝ : Quotient (orbitRel G α)
b : α
x✝ : Quotient.mk'' b ∈ Finset.univ
hb : ↑(card { x // Quotient.mk'' x = Quotient.mk'' b }) ≠ 0
⊢ ∃ a h₁ h₂, Quotient.mk'' b = (fun a x x => Quotient.mk'' ↑a) a h₁ h₂
[PROOFSTEP]
obtain ⟨k, hk⟩ := hG.card_orbit b
[GOAL]
case intro
p : ℕ
G : Type u_1
inst✝³ : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
α : Type u_2
inst✝² : MulAction G α
inst✝¹ : Fintype α
inst✝ : Fintype ↑(fixedPoints G α)
key : ∀ (x : α), card { y // Quotient.mk'' y = Quotient.mk'' x } = card ↑(orbit G x)
b✝ : Quotient (orbitRel G α)
b : α
x✝ : Quotient.mk'' b ∈ Finset.univ
hb : ↑(card { x // Quotient.mk'' x = Quotient.mk'' b }) ≠ 0
k : ℕ
hk : card ↑(orbit G b) = p ^ k
⊢ ∃ a h₁ h₂, Quotient.mk'' b = (fun a x x => Quotient.mk'' ↑a) a h₁ h₂
[PROOFSTEP]
have : k = 0 :=
le_zero_iff.1
(Nat.le_of_lt_succ
(lt_of_not_ge
(mt (pow_dvd_pow p)
(by rwa [pow_one, ← hk, ← Nat.modEq_zero_iff_dvd, ← ZMod.eq_iff_modEq_nat, ← key, Nat.cast_zero]))))
[GOAL]
p : ℕ
G : Type u_1
inst✝³ : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
α : Type u_2
inst✝² : MulAction G α
inst✝¹ : Fintype α
inst✝ : Fintype ↑(fixedPoints G α)
key : ∀ (x : α), card { y // Quotient.mk'' y = Quotient.mk'' x } = card ↑(orbit G x)
b✝ : Quotient (orbitRel G α)
b : α
x✝ : Quotient.mk'' b ∈ Finset.univ
hb : ↑(card { x // Quotient.mk'' x = Quotient.mk'' b }) ≠ 0
k : ℕ
hk : card ↑(orbit G b) = p ^ k
⊢ ¬p ^ Nat.succ 0 ∣ p ^ k
[PROOFSTEP]
rwa [pow_one, ← hk, ← Nat.modEq_zero_iff_dvd, ← ZMod.eq_iff_modEq_nat, ← key, Nat.cast_zero]
[GOAL]
case intro
p : ℕ
G : Type u_1
inst✝³ : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
α : Type u_2
inst✝² : MulAction G α
inst✝¹ : Fintype α
inst✝ : Fintype ↑(fixedPoints G α)
key : ∀ (x : α), card { y // Quotient.mk'' y = Quotient.mk'' x } = card ↑(orbit G x)
b✝ : Quotient (orbitRel G α)
b : α
x✝ : Quotient.mk'' b ∈ Finset.univ
hb : ↑(card { x // Quotient.mk'' x = Quotient.mk'' b }) ≠ 0
k : ℕ
hk : card ↑(orbit G b) = p ^ k
this : k = 0
⊢ ∃ a h₁ h₂, Quotient.mk'' b = (fun a x x => Quotient.mk'' ↑a) a h₁ h₂
[PROOFSTEP]
exact
⟨⟨b, mem_fixedPoints_iff_card_orbit_eq_one.2 <| by rw [hk, this, pow_zero]⟩, Finset.mem_univ _,
ne_of_eq_of_ne Nat.cast_one one_ne_zero, rfl⟩
[GOAL]
p : ℕ
G : Type u_1
inst✝³ : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
α : Type u_2
inst✝² : MulAction G α
inst✝¹ : Fintype α
inst✝ : Fintype ↑(fixedPoints G α)
key : ∀ (x : α), card { y // Quotient.mk'' y = Quotient.mk'' x } = card ↑(orbit G x)
b✝ : Quotient (orbitRel G α)
b : α
x✝ : Quotient.mk'' b ∈ Finset.univ
hb : ↑(card { x // Quotient.mk'' x = Quotient.mk'' b }) ≠ 0
k : ℕ
hk : card ↑(orbit G b) = p ^ k
this : k = 0
⊢ card ↑(orbit G b) = 1
[PROOFSTEP]
rw [hk, this, pow_zero]
[GOAL]
p : ℕ
G : Type u_1
inst✝³ : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
α : Type u_2
inst✝² : MulAction G α
inst✝¹ : Fintype α
hpα : ¬p ∣ card α
inst✝ : Finite ↑(fixedPoints G α)
⊢ Nonempty ↑(fixedPoints G α)
[PROOFSTEP]
cases nonempty_fintype (fixedPoints G α)
[GOAL]
case intro
p : ℕ
G : Type u_1
inst✝³ : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
α : Type u_2
inst✝² : MulAction G α
inst✝¹ : Fintype α
hpα : ¬p ∣ card α
inst✝ : Finite ↑(fixedPoints G α)
val✝ : Fintype ↑(fixedPoints G α)
⊢ Nonempty ↑(fixedPoints G α)
[PROOFSTEP]
rw [← card_pos_iff, pos_iff_ne_zero]
[GOAL]
case intro
p : ℕ
G : Type u_1
inst✝³ : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
α : Type u_2
inst✝² : MulAction G α
inst✝¹ : Fintype α
hpα : ¬p ∣ card α
inst✝ : Finite ↑(fixedPoints G α)
val✝ : Fintype ↑(fixedPoints G α)
⊢ card ↑(fixedPoints G α) ≠ 0
[PROOFSTEP]
contrapose! hpα
[GOAL]
case intro
p : ℕ
G : Type u_1
inst✝³ : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
α : Type u_2
inst✝² : MulAction G α
inst✝¹ : Fintype α
inst✝ : Finite ↑(fixedPoints G α)
val✝ : Fintype ↑(fixedPoints G α)
hpα : card ↑(fixedPoints G α) = 0
⊢ p ∣ card α
[PROOFSTEP]
rw [← Nat.modEq_zero_iff_dvd, ← hpα]
[GOAL]
case intro
p : ℕ
G : Type u_1
inst✝³ : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
α : Type u_2
inst✝² : MulAction G α
inst✝¹ : Fintype α
inst✝ : Finite ↑(fixedPoints G α)
val✝ : Fintype ↑(fixedPoints G α)
hpα : card ↑(fixedPoints G α) = 0
⊢ card α ≡ card ↑(fixedPoints G α) [MOD p]
[PROOFSTEP]
exact hG.card_modEq_card_fixedPoints α
[GOAL]
p : ℕ
G : Type u_1
inst✝² : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
α : Type u_2
inst✝¹ : MulAction G α
inst✝ : Fintype α
hpα : p ∣ card α
a : α
ha : a ∈ fixedPoints G α
⊢ ∃ b, b ∈ fixedPoints G α ∧ a ≠ b
[PROOFSTEP]
cases nonempty_fintype (fixedPoints G α)
[GOAL]
case intro
p : ℕ
G : Type u_1
inst✝² : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
α : Type u_2
inst✝¹ : MulAction G α
inst✝ : Fintype α
hpα : p ∣ card α
a : α
ha : a ∈ fixedPoints G α
val✝ : Fintype ↑(fixedPoints G α)
⊢ ∃ b, b ∈ fixedPoints G α ∧ a ≠ b
[PROOFSTEP]
have hpf : p ∣ card (fixedPoints G α) :=
Nat.modEq_zero_iff_dvd.mp ((hG.card_modEq_card_fixedPoints α).symm.trans hpα.modEq_zero_nat)
[GOAL]
case intro
p : ℕ
G : Type u_1
inst✝² : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
α : Type u_2
inst✝¹ : MulAction G α
inst✝ : Fintype α
hpα : p ∣ card α
a : α
ha : a ∈ fixedPoints G α
val✝ : Fintype ↑(fixedPoints G α)
hpf : p ∣ card ↑(fixedPoints G α)
⊢ ∃ b, b ∈ fixedPoints G α ∧ a ≠ b
[PROOFSTEP]
have hα : 1 < card (fixedPoints G α) :=
(Fact.out (p := p.Prime)).one_lt.trans_le (Nat.le_of_dvd (card_pos_iff.2 ⟨⟨a, ha⟩⟩) hpf)
[GOAL]
case intro
p : ℕ
G : Type u_1
inst✝² : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
α : Type u_2
inst✝¹ : MulAction G α
inst✝ : Fintype α
hpα : p ∣ card α
a : α
ha : a ∈ fixedPoints G α
val✝ : Fintype ↑(fixedPoints G α)
hpf : p ∣ card ↑(fixedPoints G α)
hα : 1 < card ↑(fixedPoints G α)
⊢ ∃ b, b ∈ fixedPoints G α ∧ a ≠ b
[PROOFSTEP]
exact
let ⟨⟨b, hb⟩, hba⟩ := exists_ne_of_one_lt_card hα ⟨a, ha⟩
⟨b, hb, fun hab => hba (by simp_rw [hab])⟩
[GOAL]
p : ℕ
G : Type u_1
inst✝² : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
α : Type u_2
inst✝¹ : MulAction G α
inst✝ : Fintype α
hpα : p ∣ card α
a : α
ha : a ∈ fixedPoints G α
val✝ : Fintype ↑(fixedPoints G α)
hpf : p ∣ card ↑(fixedPoints G α)
hα : 1 < card ↑(fixedPoints G α)
b : α
hb : b ∈ fixedPoints G α
hba : { val := b, property := hb } ≠ { val := a, property := ha }
hab : a = b
⊢ { val := b, property := hb } = { val := a, property := ha }
[PROOFSTEP]
simp_rw [hab]
[GOAL]
p : ℕ
G : Type u_1
inst✝⁴ : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
α : Type u_2
inst✝³ : MulAction G α
inst✝² : Fintype α
inst✝¹ : Nontrivial G
inst✝ : Finite G
⊢ Nontrivial { x // x ∈ Subgroup.center G }
[PROOFSTEP]
classical
cases nonempty_fintype G
have := (hG.of_equiv ConjAct.toConjAct).exists_fixed_point_of_prime_dvd_card_of_fixed_point G
rw [ConjAct.fixedPoints_eq_center] at this
have dvd : p ∣ card G := by
obtain ⟨n, hn0, hn⟩ := hG.nontrivial_iff_card.mp inferInstance
exact hn.symm ▸ dvd_pow_self _ (ne_of_gt hn0)
obtain ⟨g, hg⟩ := this dvd (Subgroup.center G).one_mem
exact ⟨⟨1, ⟨g, hg.1⟩, mt Subtype.ext_iff.mp hg.2⟩⟩
[GOAL]
p : ℕ
G : Type u_1
inst✝⁴ : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
α : Type u_2
inst✝³ : MulAction G α
inst✝² : Fintype α
inst✝¹ : Nontrivial G
inst✝ : Finite G
⊢ Nontrivial { x // x ∈ Subgroup.center G }
[PROOFSTEP]
cases nonempty_fintype G
[GOAL]
case intro
p : ℕ
G : Type u_1
inst✝⁴ : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
α : Type u_2
inst✝³ : MulAction G α
inst✝² : Fintype α
inst✝¹ : Nontrivial G
inst✝ : Finite G
val✝ : Fintype G
⊢ Nontrivial { x // x ∈ Subgroup.center G }
[PROOFSTEP]
have := (hG.of_equiv ConjAct.toConjAct).exists_fixed_point_of_prime_dvd_card_of_fixed_point G
[GOAL]
case intro
p : ℕ
G : Type u_1
inst✝⁴ : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
α : Type u_2
inst✝³ : MulAction G α
inst✝² : Fintype α
inst✝¹ : Nontrivial G
inst✝ : Finite G
val✝ : Fintype G
this : p ∣ card G → ∀ {a : G}, a ∈ fixedPoints (ConjAct G) G → ∃ b, b ∈ fixedPoints (ConjAct G) G ∧ a ≠ b
⊢ Nontrivial { x // x ∈ Subgroup.center G }
[PROOFSTEP]
rw [ConjAct.fixedPoints_eq_center] at this
[GOAL]
case intro
p : ℕ
G : Type u_1
inst✝⁴ : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
α : Type u_2
inst✝³ : MulAction G α
inst✝² : Fintype α
inst✝¹ : Nontrivial G
inst✝ : Finite G
val✝ : Fintype G
this : p ∣ card G → ∀ {a : G}, a ∈ ↑(Subgroup.center G) → ∃ b, b ∈ ↑(Subgroup.center G) ∧ a ≠ b
⊢ Nontrivial { x // x ∈ Subgroup.center G }
[PROOFSTEP]
have dvd : p ∣ card G := by
obtain ⟨n, hn0, hn⟩ := hG.nontrivial_iff_card.mp inferInstance
exact hn.symm ▸ dvd_pow_self _ (ne_of_gt hn0)
[GOAL]
p : ℕ
G : Type u_1
inst✝⁴ : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
α : Type u_2
inst✝³ : MulAction G α
inst✝² : Fintype α
inst✝¹ : Nontrivial G
inst✝ : Finite G
val✝ : Fintype G
this : p ∣ card G → ∀ {a : G}, a ∈ ↑(Subgroup.center G) → ∃ b, b ∈ ↑(Subgroup.center G) ∧ a ≠ b
⊢ p ∣ card G
[PROOFSTEP]
obtain ⟨n, hn0, hn⟩ := hG.nontrivial_iff_card.mp inferInstance
[GOAL]
case intro.intro
p : ℕ
G : Type u_1
inst✝⁴ : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
α : Type u_2
inst✝³ : MulAction G α
inst✝² : Fintype α
inst✝¹ : Nontrivial G
inst✝ : Finite G
val✝ : Fintype G
this : p ∣ card G → ∀ {a : G}, a ∈ ↑(Subgroup.center G) → ∃ b, b ∈ ↑(Subgroup.center G) ∧ a ≠ b
n : ℕ
hn0 : n > 0
hn : card G = p ^ n
⊢ p ∣ card G
[PROOFSTEP]
exact hn.symm ▸ dvd_pow_self _ (ne_of_gt hn0)
[GOAL]
case intro
p : ℕ
G : Type u_1
inst✝⁴ : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
α : Type u_2
inst✝³ : MulAction G α
inst✝² : Fintype α
inst✝¹ : Nontrivial G
inst✝ : Finite G
val✝ : Fintype G
this : p ∣ card G → ∀ {a : G}, a ∈ ↑(Subgroup.center G) → ∃ b, b ∈ ↑(Subgroup.center G) ∧ a ≠ b
dvd : p ∣ card G
⊢ Nontrivial { x // x ∈ Subgroup.center G }
[PROOFSTEP]
obtain ⟨g, hg⟩ := this dvd (Subgroup.center G).one_mem
[GOAL]
case intro.intro
p : ℕ
G : Type u_1
inst✝⁴ : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
α : Type u_2
inst✝³ : MulAction G α
inst✝² : Fintype α
inst✝¹ : Nontrivial G
inst✝ : Finite G
val✝ : Fintype G
this : p ∣ card G → ∀ {a : G}, a ∈ ↑(Subgroup.center G) → ∃ b, b ∈ ↑(Subgroup.center G) ∧ a ≠ b
dvd : p ∣ card G
g : G
hg : g ∈ ↑(Subgroup.center G) ∧ 1 ≠ g
⊢ Nontrivial { x // x ∈ Subgroup.center G }
[PROOFSTEP]
exact ⟨⟨1, ⟨g, hg.1⟩, mt Subtype.ext_iff.mp hg.2⟩⟩
[GOAL]
p : ℕ
G : Type u_1
inst✝⁴ : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
α : Type u_2
inst✝³ : MulAction G α
inst✝² : Fintype α
inst✝¹ : Nontrivial G
inst✝ : Finite G
⊢ ⊥ < Subgroup.center G
[PROOFSTEP]
haveI := center_nontrivial hG
[GOAL]
p : ℕ
G : Type u_1
inst✝⁴ : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
α : Type u_2
inst✝³ : MulAction G α
inst✝² : Fintype α
inst✝¹ : Nontrivial G
inst✝ : Finite G
this : Nontrivial { x // x ∈ Subgroup.center G }
⊢ ⊥ < Subgroup.center G
[PROOFSTEP]
cases nonempty_fintype G
[GOAL]
case intro
p : ℕ
G : Type u_1
inst✝⁴ : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
α : Type u_2
inst✝³ : MulAction G α
inst✝² : Fintype α
inst✝¹ : Nontrivial G
inst✝ : Finite G
this : Nontrivial { x // x ∈ Subgroup.center G }
val✝ : Fintype G
⊢ ⊥ < Subgroup.center G
[PROOFSTEP]
classical exact bot_lt_iff_ne_bot.mpr ((Subgroup.center G).one_lt_card_iff_ne_bot.mp Fintype.one_lt_card)
[GOAL]
case intro
p : ℕ
G : Type u_1
inst✝⁴ : Group G
hG : IsPGroup p G
hp : Fact (Nat.Prime p)
α : Type u_2
inst✝³ : MulAction G α
inst✝² : Fintype α
inst✝¹ : Nontrivial G
inst✝ : Finite G
this : Nontrivial { x // x ∈ Subgroup.center G }
val✝ : Fintype G
⊢ ⊥ < Subgroup.center G
[PROOFSTEP]
exact bot_lt_iff_ne_bot.mpr ((Subgroup.center G).one_lt_card_iff_ne_bot.mp Fintype.one_lt_card)
[GOAL]
p : ℕ
G : Type u_1
inst✝ : Group G
H K : Subgroup G
hK : IsPGroup p { x // x ∈ K }
hHK : H ≤ K
a b : { x // x ∈ H }
h : ↑(Subgroup.inclusion hHK) a = ↑(Subgroup.inclusion hHK) b
⊢ ↑a = ↑b
[PROOFSTEP]
change ((Subgroup.inclusion hHK) a : G) = (Subgroup.inclusion hHK) b
[GOAL]
p : ℕ
G : Type u_1
inst✝ : Group G
H K : Subgroup G
hK : IsPGroup p { x // x ∈ K }
hHK : H ≤ K
a b : { x // x ∈ H }
h : ↑(Subgroup.inclusion hHK) a = ↑(Subgroup.inclusion hHK) b
⊢ ↑(↑(Subgroup.inclusion hHK) a) = ↑(↑(Subgroup.inclusion hHK) b)
[PROOFSTEP]
apply Subtype.ext_iff.mp h
[GOAL]
p : ℕ
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
hH : IsPGroup p { x // x ∈ H }
K : Type u_2
inst✝ : Group K
ϕ : G →* K
⊢ IsPGroup p { x // x ∈ Subgroup.map ϕ H }
[PROOFSTEP]
rw [← H.subtype_range, MonoidHom.map_range]
[GOAL]
p : ℕ
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
hH : IsPGroup p { x // x ∈ H }
K : Type u_2
inst✝ : Group K
ϕ : G →* K
⊢ IsPGroup p { x // x ∈ MonoidHom.range (MonoidHom.comp ϕ (Subgroup.subtype H)) }
[PROOFSTEP]
exact hH.of_surjective (ϕ.restrict H).rangeRestrict (ϕ.restrict H).rangeRestrict_surjective
[GOAL]
p : ℕ
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
hH : IsPGroup p { x // x ∈ H }
K : Type u_2
inst✝ : Group K
ϕ : K →* G
hϕ : IsPGroup p { x // x ∈ MonoidHom.ker ϕ }
⊢ IsPGroup p { x // x ∈ Subgroup.comap ϕ H }
[PROOFSTEP]
intro g
[GOAL]
p : ℕ
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
hH : IsPGroup p { x // x ∈ H }
K : Type u_2
inst✝ : Group K
ϕ : K →* G
hϕ : IsPGroup p { x // x ∈ MonoidHom.ker ϕ }
g : { x // x ∈ Subgroup.comap ϕ H }
⊢ ∃ k, g ^ p ^ k = 1
[PROOFSTEP]
obtain ⟨j, hj⟩ := hH ⟨ϕ g.1, g.2⟩
[GOAL]
case intro
p : ℕ
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
hH : IsPGroup p { x // x ∈ H }
K : Type u_2
inst✝ : Group K
ϕ : K →* G
hϕ : IsPGroup p { x // x ∈ MonoidHom.ker ϕ }
g : { x // x ∈ Subgroup.comap ϕ H }
j : ℕ
hj : { val := ↑ϕ ↑g, property := (_ : ↑g ∈ Subgroup.comap ϕ H) } ^ p ^ j = 1
⊢ ∃ k, g ^ p ^ k = 1
[PROOFSTEP]
rw [Subtype.ext_iff, H.coe_pow, Subtype.coe_mk, ← ϕ.map_pow] at hj
[GOAL]
case intro
p : ℕ
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
hH : IsPGroup p { x // x ∈ H }
K : Type u_2
inst✝ : Group K
ϕ : K →* G
hϕ : IsPGroup p { x // x ∈ MonoidHom.ker ϕ }
g : { x // x ∈ Subgroup.comap ϕ H }
j : ℕ
hj : ↑ϕ (↑g ^ p ^ j) = ↑1
⊢ ∃ k, g ^ p ^ k = 1
[PROOFSTEP]
obtain ⟨k, hk⟩ := hϕ ⟨g.1 ^ p ^ j, hj⟩
[GOAL]
case intro.intro
p : ℕ
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
hH : IsPGroup p { x // x ∈ H }
K : Type u_2
inst✝ : Group K
ϕ : K →* G
hϕ : IsPGroup p { x // x ∈ MonoidHom.ker ϕ }
g : { x // x ∈ Subgroup.comap ϕ H }
j : ℕ
hj : ↑ϕ (↑g ^ p ^ j) = ↑1
k : ℕ
hk : { val := ↑g ^ p ^ j, property := hj } ^ p ^ k = 1
⊢ ∃ k, g ^ p ^ k = 1
[PROOFSTEP]
rw [Subtype.ext_iff, ϕ.ker.coe_pow, Subtype.coe_mk, ← pow_mul, ← pow_add] at hk
[GOAL]
case intro.intro
p : ℕ
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
hH : IsPGroup p { x // x ∈ H }
K : Type u_2
inst✝ : Group K
ϕ : K →* G
hϕ : IsPGroup p { x // x ∈ MonoidHom.ker ϕ }
g : { x // x ∈ Subgroup.comap ϕ H }
j : ℕ
hj : ↑ϕ (↑g ^ p ^ j) = ↑1
k : ℕ
hk : ↑g ^ p ^ (j + k) = ↑1
⊢ ∃ k, g ^ p ^ k = 1
[PROOFSTEP]
exact ⟨j + k, by rwa [Subtype.ext_iff, (H.comap ϕ).coe_pow]⟩
[GOAL]
p : ℕ
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
hH : IsPGroup p { x // x ∈ H }
K : Type u_2
inst✝ : Group K
ϕ : K →* G
hϕ : IsPGroup p { x // x ∈ MonoidHom.ker ϕ }
g : { x // x ∈ Subgroup.comap ϕ H }
j : ℕ
hj : ↑ϕ (↑g ^ p ^ j) = ↑1
k : ℕ
hk : ↑g ^ p ^ (j + k) = ↑1
⊢ g ^ p ^ (j + k) = 1
[PROOFSTEP]
rwa [Subtype.ext_iff, (H.comap ϕ).coe_pow]
[GOAL]
p : ℕ
G : Type u_1
inst✝¹ : Group G
H K : Subgroup G
hH : IsPGroup p { x // x ∈ H }
hK : IsPGroup p { x // x ∈ K }
inst✝ : Subgroup.Normal K
⊢ IsPGroup p { x // x ∈ H ⊔ K }
[PROOFSTEP]
rw [← QuotientGroup.ker_mk' K, ← Subgroup.comap_map_eq]
[GOAL]
p : ℕ
G : Type u_1
inst✝¹ : Group G
H K : Subgroup G
hH : IsPGroup p { x // x ∈ H }
hK : IsPGroup p { x // x ∈ K }
inst✝ : Subgroup.Normal K
⊢ IsPGroup p { x // x ∈ Subgroup.comap (QuotientGroup.mk' K) (Subgroup.map (QuotientGroup.mk' K) H) }
[PROOFSTEP]
apply (hH.map (QuotientGroup.mk' K)).comap_of_ker_isPGroup
[GOAL]
case hϕ
p : ℕ
G : Type u_1
inst✝¹ : Group G
H K : Subgroup G
hH : IsPGroup p { x // x ∈ H }
hK : IsPGroup p { x // x ∈ K }
inst✝ : Subgroup.Normal K
⊢ IsPGroup p { x // x ∈ MonoidHom.ker (QuotientGroup.mk' K) }
[PROOFSTEP]
rwa [QuotientGroup.ker_mk']
[GOAL]
p : ℕ
G : Type u_1
inst✝³ : Group G
G₂ : Type u_2
inst✝² : Group G₂
p₁ p₂ : ℕ
hp₁ : Fact (Nat.Prime p₁)
hp₂ : Fact (Nat.Prime p₂)
hne : p₁ ≠ p₂
H₁ : Subgroup G
H₂ : Subgroup G₂
inst✝¹ : Fintype { x // x ∈ H₁ }
inst✝ : Fintype { x // x ∈ H₂ }
hH₁ : IsPGroup p₁ { x // x ∈ H₁ }
hH₂ : IsPGroup p₂ { x // x ∈ H₂ }
⊢ Nat.coprime (card { x // x ∈ H₁ }) (card { x // x ∈ H₂ })
[PROOFSTEP]
obtain ⟨n₁, heq₁⟩ := iff_card.mp hH₁
[GOAL]
case intro
p : ℕ
G : Type u_1
inst✝³ : Group G
G₂ : Type u_2
inst✝² : Group G₂
p₁ p₂ : ℕ
hp₁ : Fact (Nat.Prime p₁)
hp₂ : Fact (Nat.Prime p₂)
hne : p₁ ≠ p₂
H₁ : Subgroup G
H₂ : Subgroup G₂
inst✝¹ : Fintype { x // x ∈ H₁ }
inst✝ : Fintype { x // x ∈ H₂ }
hH₁ : IsPGroup p₁ { x // x ∈ H₁ }
hH₂ : IsPGroup p₂ { x // x ∈ H₂ }
n₁ : ℕ
heq₁ : card { x // x ∈ H₁ } = p₁ ^ n₁
⊢ Nat.coprime (card { x // x ∈ H₁ }) (card { x // x ∈ H₂ })
[PROOFSTEP]
rw [heq₁]
[GOAL]
case intro
p : ℕ
G : Type u_1
inst✝³ : Group G
G₂ : Type u_2
inst✝² : Group G₂
p₁ p₂ : ℕ
hp₁ : Fact (Nat.Prime p₁)
hp₂ : Fact (Nat.Prime p₂)
hne : p₁ ≠ p₂
H₁ : Subgroup G
H₂ : Subgroup G₂
inst✝¹ : Fintype { x // x ∈ H₁ }
inst✝ : Fintype { x // x ∈ H₂ }
hH₁ : IsPGroup p₁ { x // x ∈ H₁ }
hH₂ : IsPGroup p₂ { x // x ∈ H₂ }
n₁ : ℕ
heq₁ : card { x // x ∈ H₁ } = p₁ ^ n₁
⊢ Nat.coprime (p₁ ^ n₁) (card { x // x ∈ H₂ })
[PROOFSTEP]
clear heq₁
[GOAL]
case intro
p : ℕ
G : Type u_1
inst✝³ : Group G
G₂ : Type u_2
inst✝² : Group G₂
p₁ p₂ : ℕ
hp₁ : Fact (Nat.Prime p₁)
hp₂ : Fact (Nat.Prime p₂)
hne : p₁ ≠ p₂
H₁ : Subgroup G
H₂ : Subgroup G₂
inst✝¹ : Fintype { x // x ∈ H₁ }
inst✝ : Fintype { x // x ∈ H₂ }
hH₁ : IsPGroup p₁ { x // x ∈ H₁ }
hH₂ : IsPGroup p₂ { x // x ∈ H₂ }
n₁ : ℕ
⊢ Nat.coprime (p₁ ^ n₁) (card { x // x ∈ H₂ })
[PROOFSTEP]
obtain ⟨n₂, heq₂⟩ := iff_card.mp hH₂
[GOAL]
case intro.intro
p : ℕ
G : Type u_1
inst✝³ : Group G
G₂ : Type u_2
inst✝² : Group G₂
p₁ p₂ : ℕ
hp₁ : Fact (Nat.Prime p₁)
hp₂ : Fact (Nat.Prime p₂)
hne : p₁ ≠ p₂
H₁ : Subgroup G
H₂ : Subgroup G₂
inst✝¹ : Fintype { x // x ∈ H₁ }
inst✝ : Fintype { x // x ∈ H₂ }
hH₁ : IsPGroup p₁ { x // x ∈ H₁ }
hH₂ : IsPGroup p₂ { x // x ∈ H₂ }
n₁ n₂ : ℕ
heq₂ : card { x // x ∈ H₂ } = p₂ ^ n₂
⊢ Nat.coprime (p₁ ^ n₁) (card { x // x ∈ H₂ })
[PROOFSTEP]
rw [heq₂]
[GOAL]
case intro.intro
p : ℕ
G : Type u_1
inst✝³ : Group G
G₂ : Type u_2
inst✝² : Group G₂
p₁ p₂ : ℕ
hp₁ : Fact (Nat.Prime p₁)
hp₂ : Fact (Nat.Prime p₂)
hne : p₁ ≠ p₂
H₁ : Subgroup G
H₂ : Subgroup G₂
inst✝¹ : Fintype { x // x ∈ H₁ }
inst✝ : Fintype { x // x ∈ H₂ }
hH₁ : IsPGroup p₁ { x // x ∈ H₁ }
hH₂ : IsPGroup p₂ { x // x ∈ H₂ }
n₁ n₂ : ℕ
heq₂ : card { x // x ∈ H₂ } = p₂ ^ n₂
⊢ Nat.coprime (p₁ ^ n₁) (p₂ ^ n₂)
[PROOFSTEP]
clear heq₂
[GOAL]
case intro.intro
p : ℕ
G : Type u_1
inst✝³ : Group G
G₂ : Type u_2
inst✝² : Group G₂
p₁ p₂ : ℕ
hp₁ : Fact (Nat.Prime p₁)
hp₂ : Fact (Nat.Prime p₂)
hne : p₁ ≠ p₂
H₁ : Subgroup G
H₂ : Subgroup G₂
inst✝¹ : Fintype { x // x ∈ H₁ }
inst✝ : Fintype { x // x ∈ H₂ }
hH₁ : IsPGroup p₁ { x // x ∈ H₁ }
hH₂ : IsPGroup p₂ { x // x ∈ H₂ }
n₁ n₂ : ℕ
⊢ Nat.coprime (p₁ ^ n₁) (p₂ ^ n₂)
[PROOFSTEP]
exact Nat.coprime_pow_primes _ _ hp₁.elim hp₂.elim hne
[GOAL]
p : ℕ
G : Type u_1
inst✝ : Group G
p₁ p₂ : ℕ
hp₁ : Fact (Nat.Prime p₁)
hp₂ : Fact (Nat.Prime p₂)
hne : p₁ ≠ p₂
H₁ H₂ : Subgroup G
hH₁ : IsPGroup p₁ { x // x ∈ H₁ }
hH₂ : IsPGroup p₂ { x // x ∈ H₂ }
⊢ Disjoint H₁ H₂
[PROOFSTEP]
rw [Subgroup.disjoint_def]
[GOAL]
p : ℕ
G : Type u_1
inst✝ : Group G
p₁ p₂ : ℕ
hp₁ : Fact (Nat.Prime p₁)
hp₂ : Fact (Nat.Prime p₂)
hne : p₁ ≠ p₂
H₁ H₂ : Subgroup G
hH₁ : IsPGroup p₁ { x // x ∈ H₁ }
hH₂ : IsPGroup p₂ { x // x ∈ H₂ }
⊢ ∀ {x : G}, x ∈ H₁ → x ∈ H₂ → x = 1
[PROOFSTEP]
intro x hx₁ hx₂
[GOAL]
p : ℕ
G : Type u_1
inst✝ : Group G
p₁ p₂ : ℕ
hp₁ : Fact (Nat.Prime p₁)
hp₂ : Fact (Nat.Prime p₂)
hne : p₁ ≠ p₂
H₁ H₂ : Subgroup G
hH₁ : IsPGroup p₁ { x // x ∈ H₁ }
hH₂ : IsPGroup p₂ { x // x ∈ H₂ }
x : G
hx₁ : x ∈ H₁
hx₂ : x ∈ H₂
⊢ x = 1
[PROOFSTEP]
obtain ⟨n₁, hn₁⟩ := iff_orderOf.mp hH₁ ⟨x, hx₁⟩
[GOAL]
case intro
p : ℕ
G : Type u_1
inst✝ : Group G
p₁ p₂ : ℕ
hp₁ : Fact (Nat.Prime p₁)
hp₂ : Fact (Nat.Prime p₂)
hne : p₁ ≠ p₂
H₁ H₂ : Subgroup G
hH₁ : IsPGroup p₁ { x // x ∈ H₁ }
hH₂ : IsPGroup p₂ { x // x ∈ H₂ }
x : G
hx₁ : x ∈ H₁
hx₂ : x ∈ H₂
n₁ : ℕ
hn₁ : orderOf { val := x, property := hx₁ } = p₁ ^ n₁
⊢ x = 1
[PROOFSTEP]
obtain ⟨n₂, hn₂⟩ := iff_orderOf.mp hH₂ ⟨x, hx₂⟩
[GOAL]
case intro.intro
p : ℕ
G : Type u_1
inst✝ : Group G
p₁ p₂ : ℕ
hp₁ : Fact (Nat.Prime p₁)
hp₂ : Fact (Nat.Prime p₂)
hne : p₁ ≠ p₂
H₁ H₂ : Subgroup G
hH₁ : IsPGroup p₁ { x // x ∈ H₁ }
hH₂ : IsPGroup p₂ { x // x ∈ H₂ }
x : G
hx₁ : x ∈ H₁
hx₂ : x ∈ H₂
n₁ : ℕ
hn₁ : orderOf { val := x, property := hx₁ } = p₁ ^ n₁
n₂ : ℕ
hn₂ : orderOf { val := x, property := hx₂ } = p₂ ^ n₂
⊢ x = 1
[PROOFSTEP]
rw [← orderOf_subgroup, Subgroup.coe_mk] at hn₁ hn₂
[GOAL]
case intro.intro
p : ℕ
G : Type u_1
inst✝ : Group G
p₁ p₂ : ℕ
hp₁ : Fact (Nat.Prime p₁)
hp₂ : Fact (Nat.Prime p₂)
hne : p₁ ≠ p₂
H₁ H₂ : Subgroup G
hH₁ : IsPGroup p₁ { x // x ∈ H₁ }
hH₂ : IsPGroup p₂ { x // x ∈ H₂ }
x : G
hx₁ : x ∈ H₁
hx₂ : x ∈ H₂
n₁ : ℕ
hn₁ : orderOf x = p₁ ^ n₁
n₂ : ℕ
hn₂ : orderOf x = p₂ ^ n₂
⊢ x = 1
[PROOFSTEP]
have : p₁ ^ n₁ = p₂ ^ n₂ := by rw [← hn₁, ← hn₂]
[GOAL]
p : ℕ
G : Type u_1
inst✝ : Group G
p₁ p₂ : ℕ
hp₁ : Fact (Nat.Prime p₁)
hp₂ : Fact (Nat.Prime p₂)
hne : p₁ ≠ p₂
H₁ H₂ : Subgroup G
hH₁ : IsPGroup p₁ { x // x ∈ H₁ }
hH₂ : IsPGroup p₂ { x // x ∈ H₂ }
x : G
hx₁ : x ∈ H₁
hx₂ : x ∈ H₂
n₁ : ℕ
hn₁ : orderOf x = p₁ ^ n₁
n₂ : ℕ
hn₂ : orderOf x = p₂ ^ n₂
⊢ p₁ ^ n₁ = p₂ ^ n₂
[PROOFSTEP]
rw [← hn₁, ← hn₂]
[GOAL]
case intro.intro
p : ℕ
G : Type u_1
inst✝ : Group G
p₁ p₂ : ℕ
hp₁ : Fact (Nat.Prime p₁)
hp₂ : Fact (Nat.Prime p₂)
hne : p₁ ≠ p₂
H₁ H₂ : Subgroup G
hH₁ : IsPGroup p₁ { x // x ∈ H₁ }
hH₂ : IsPGroup p₂ { x // x ∈ H₂ }
x : G
hx₁ : x ∈ H₁
hx₂ : x ∈ H₂
n₁ : ℕ
hn₁ : orderOf x = p₁ ^ n₁
n₂ : ℕ
hn₂ : orderOf x = p₂ ^ n₂
this : p₁ ^ n₁ = p₂ ^ n₂
⊢ x = 1
[PROOFSTEP]
rcases n₁.eq_zero_or_pos with (rfl | hn₁)
[GOAL]
case intro.intro.inl
p : ℕ
G : Type u_1
inst✝ : Group G
p₁ p₂ : ℕ
hp₁ : Fact (Nat.Prime p₁)
hp₂ : Fact (Nat.Prime p₂)
hne : p₁ ≠ p₂
H₁ H₂ : Subgroup G
hH₁ : IsPGroup p₁ { x // x ∈ H₁ }
hH₂ : IsPGroup p₂ { x // x ∈ H₂ }
x : G
hx₁ : x ∈ H₁
hx₂ : x ∈ H₂
n₂ : ℕ
hn₂ : orderOf x = p₂ ^ n₂
hn₁ : orderOf x = p₁ ^ 0
this : p₁ ^ 0 = p₂ ^ n₂
⊢ x = 1
[PROOFSTEP]
simpa using hn₁
[GOAL]
case intro.intro.inr
p : ℕ
G : Type u_1
inst✝ : Group G
p₁ p₂ : ℕ
hp₁ : Fact (Nat.Prime p₁)
hp₂ : Fact (Nat.Prime p₂)
hne : p₁ ≠ p₂
H₁ H₂ : Subgroup G
hH₁ : IsPGroup p₁ { x // x ∈ H₁ }
hH₂ : IsPGroup p₂ { x // x ∈ H₂ }
x : G
hx₁ : x ∈ H₁
hx₂ : x ∈ H₂
n₁ : ℕ
hn₁✝ : orderOf x = p₁ ^ n₁
n₂ : ℕ
hn₂ : orderOf x = p₂ ^ n₂
this : p₁ ^ n₁ = p₂ ^ n₂
hn₁ : n₁ > 0
⊢ x = 1
[PROOFSTEP]
exact absurd (eq_of_prime_pow_eq hp₁.out.prime hp₂.out.prime hn₁ this) hne
[GOAL]
p : ℕ
G : Type u_1
inst✝³ : Group G
inst✝² : Fintype G
inst✝¹ : Fact (Nat.Prime p)
n : ℕ
hGpn : card G = p ^ n
hn : 0 < n
inst✝ : Fintype { x // x ∈ center G }
⊢ ∃ k, k > 0 ∧ card { x // x ∈ center G } = p ^ k
[PROOFSTEP]
have hcG := to_subgroup (of_card hGpn) (center G)
[GOAL]
p : ℕ
G : Type u_1
inst✝³ : Group G
inst✝² : Fintype G
inst✝¹ : Fact (Nat.Prime p)
n : ℕ
hGpn : card G = p ^ n
hn : 0 < n
inst✝ : Fintype { x // x ∈ center G }
hcG : IsPGroup p { x // x ∈ center G }
⊢ ∃ k, k > 0 ∧ card { x // x ∈ center G } = p ^ k
[PROOFSTEP]
rcases iff_card.1 hcG with _
[GOAL]
p : ℕ
G : Type u_1
inst✝³ : Group G
inst✝² : Fintype G
inst✝¹ : Fact (Nat.Prime p)
n : ℕ
hGpn : card G = p ^ n
hn : 0 < n
inst✝ : Fintype { x // x ∈ center G }
hcG : IsPGroup p { x // x ∈ center G }
x✝ : ∃ n, card { x // x ∈ center G } = p ^ n
⊢ ∃ k, k > 0 ∧ card { x // x ∈ center G } = p ^ k
[PROOFSTEP]
haveI : Nontrivial G := (nontrivial_iff_card <| of_card hGpn).2 ⟨n, hn, hGpn⟩
[GOAL]
p : ℕ
G : Type u_1
inst✝³ : Group G
inst✝² : Fintype G
inst✝¹ : Fact (Nat.Prime p)
n : ℕ
hGpn : card G = p ^ n
hn : 0 < n
inst✝ : Fintype { x // x ∈ center G }
hcG : IsPGroup p { x // x ∈ center G }
x✝ : ∃ n, card { x // x ∈ center G } = p ^ n
this : Nontrivial G
⊢ ∃ k, k > 0 ∧ card { x // x ∈ center G } = p ^ k
[PROOFSTEP]
exact (nontrivial_iff_card hcG).mp (center_nontrivial (of_card hGpn))
[GOAL]
p : ℕ
G : Type u_1
inst✝² : Group G
inst✝¹ : Fintype G
inst✝ : Fact (Nat.Prime p)
n : ℕ
hGpn : card G = p ^ n
hG : card G = p ^ 2
⊢ IsCyclic (G ⧸ center G)
[PROOFSTEP]
classical
rcases card_center_eq_prime_pow hG zero_lt_two with ⟨k, hk0, hk⟩
rw [card_eq_card_quotient_mul_card_subgroup (center G), mul_comm, hk] at hG
have hk2 := (Nat.pow_dvd_pow_iff_le_right (Fact.out (p := p.Prime)).one_lt).1 ⟨_, hG.symm⟩
interval_cases k
· rw [sq, pow_one, mul_right_inj' (Fact.out (p := p.Prime)).ne_zero] at hG
exact isCyclic_of_prime_card hG
·
exact
@isCyclic_of_subsingleton _ _
⟨Fintype.card_le_one_iff.1
(mul_right_injective₀ (pow_ne_zero 2 (NeZero.ne p)) (hG.trans (mul_one (p ^ 2)).symm)).le⟩
[GOAL]
p : ℕ
G : Type u_1
inst✝² : Group G
inst✝¹ : Fintype G
inst✝ : Fact (Nat.Prime p)
n : ℕ
hGpn : card G = p ^ n
hG : card G = p ^ 2
⊢ IsCyclic (G ⧸ center G)
[PROOFSTEP]
rcases card_center_eq_prime_pow hG zero_lt_two with ⟨k, hk0, hk⟩
[GOAL]
case intro.intro
p : ℕ
G : Type u_1
inst✝² : Group G
inst✝¹ : Fintype G
inst✝ : Fact (Nat.Prime p)
n : ℕ
hGpn : card G = p ^ n
hG : card G = p ^ 2
k : ℕ
hk0 : k > 0
hk : card { x // x ∈ center G } = p ^ k
⊢ IsCyclic (G ⧸ center G)
[PROOFSTEP]
rw [card_eq_card_quotient_mul_card_subgroup (center G), mul_comm, hk] at hG
[GOAL]
case intro.intro
p : ℕ
G : Type u_1
inst✝² : Group G
inst✝¹ : Fintype G
inst✝ : Fact (Nat.Prime p)
n : ℕ
hGpn : card G = p ^ n
k : ℕ
hG : p ^ k * card (G ⧸ center G) = p ^ 2
hk0 : k > 0
hk : card { x // x ∈ center G } = p ^ k
⊢ IsCyclic (G ⧸ center G)
[PROOFSTEP]
have hk2 := (Nat.pow_dvd_pow_iff_le_right (Fact.out (p := p.Prime)).one_lt).1 ⟨_, hG.symm⟩
[GOAL]
case intro.intro
p : ℕ
G : Type u_1
inst✝² : Group G
inst✝¹ : Fintype G
inst✝ : Fact (Nat.Prime p)
n : ℕ
hGpn : card G = p ^ n
k : ℕ
hG : p ^ k * card (G ⧸ center G) = p ^ 2
hk0 : k > 0
hk : card { x // x ∈ center G } = p ^ k
hk2 : k ≤ 2
⊢ IsCyclic (G ⧸ center G)
[PROOFSTEP]
interval_cases k
[GOAL]
case intro.intro.«1»
p : ℕ
G : Type u_1
inst✝² : Group G
inst✝¹ : Fintype G
inst✝ : Fact (Nat.Prime p)
n : ℕ
hGpn : card G = p ^ n
k : ℕ
hG : p ^ 1 * card (G ⧸ center G) = p ^ 2
hk0 : 1 > 0
hk : card { x // x ∈ center G } = p ^ 1
hk2 : 1 ≤ 2
⊢ IsCyclic (G ⧸ center G)
[PROOFSTEP]
rw [sq, pow_one, mul_right_inj' (Fact.out (p := p.Prime)).ne_zero] at hG
[GOAL]
case intro.intro.«1»
p : ℕ
G : Type u_1
inst✝² : Group G
inst✝¹ : Fintype G
inst✝ : Fact (Nat.Prime p)
n : ℕ
hGpn : card G = p ^ n
k : ℕ
hG : card (G ⧸ center G) = p
hk0 : 1 > 0
hk : card { x // x ∈ center G } = p ^ 1
hk2 : 1 ≤ 2
⊢ IsCyclic (G ⧸ center G)
[PROOFSTEP]
exact isCyclic_of_prime_card hG
[GOAL]
case intro.intro.«2»
p : ℕ
G : Type u_1
inst✝² : Group G
inst✝¹ : Fintype G
inst✝ : Fact (Nat.Prime p)
n : ℕ
hGpn : card G = p ^ n
k : ℕ
hG : p ^ 2 * card (G ⧸ center G) = p ^ 2
hk0 : 2 > 0
hk : card { x // x ∈ center G } = p ^ 2
hk2 : 2 ≤ 2
⊢ IsCyclic (G ⧸ center G)
[PROOFSTEP]
exact
@isCyclic_of_subsingleton _ _
⟨Fintype.card_le_one_iff.1
(mul_right_injective₀ (pow_ne_zero 2 (NeZero.ne p)) (hG.trans (mul_one (p ^ 2)).symm)).le⟩
| {"mathlib_filename": "Mathlib.GroupTheory.PGroup", "llama_tokens": 22165} |
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x✝ y : G
a b : A
n m : ℕ
x : G
⊢ IsPeriodicPt ((fun x x_1 => x * x_1) x) n 1 ↔ x ^ n = 1
[PROOFSTEP]
rw [IsPeriodicPt, IsFixedPt, mul_left_iterate]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x✝ y : G
a b : A
n m : ℕ
x : G
⊢ (fun x_1 => x ^ n * x_1) 1 = 1 ↔ x ^ n = 1
[PROOFSTEP]
dsimp
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x✝ y : G
a b : A
n m : ℕ
x : G
⊢ x ^ n * 1 = 1 ↔ x ^ n = 1
[PROOFSTEP]
rw [mul_one]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x✝ y : G
a b : A
n m : ℕ
x : G
⊢ IsOfFinOrder x ↔ ∃ n, 0 < n ∧ x ^ n = 1
[PROOFSTEP]
simp [IsOfFinOrder, mem_periodicPts, isPeriodicPt_mul_iff_pow_eq_one]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x✝ y : G
a b : A
n m : ℕ
x : G
h : Injective fun n => x ^ n
⊢ ¬IsOfFinOrder x
[PROOFSTEP]
simp_rw [isOfFinOrder_iff_pow_eq_one, not_exists, not_and]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x✝ y : G
a b : A
n m : ℕ
x : G
h : Injective fun n => x ^ n
⊢ ∀ (x_1 : ℕ), 0 < x_1 → ¬x ^ x_1 = 1
[PROOFSTEP]
intro n hn_pos hnx
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x✝ y : G
a b : A
n✝ m : ℕ
x : G
h : Injective fun n => x ^ n
n : ℕ
hn_pos : 0 < n
hnx : x ^ n = 1
⊢ False
[PROOFSTEP]
rw [← pow_zero x] at hnx
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x✝ y : G
a b : A
n✝ m : ℕ
x : G
h : Injective fun n => x ^ n
n : ℕ
hn_pos : 0 < n
hnx : x ^ n = x ^ 0
⊢ False
[PROOFSTEP]
rw [h hnx] at hn_pos
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x✝ y : G
a b : A
n✝ m : ℕ
x : G
h : Injective fun n => x ^ n
n : ℕ
hn_pos : 0 < 0
hnx : x ^ n = x ^ 0
⊢ False
[PROOFSTEP]
exact irrefl 0 hn_pos
[GOAL]
G : Type u_1
H✝ : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x✝ y : G
a b : A
n m : ℕ
H : Submonoid G
x : { x // x ∈ H }
⊢ IsOfFinOrder x ↔ IsOfFinOrder ↑x
[PROOFSTEP]
rw [isOfFinOrder_iff_pow_eq_one, isOfFinOrder_iff_pow_eq_one]
[GOAL]
G : Type u_1
H✝ : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x✝ y : G
a b : A
n m : ℕ
H : Submonoid G
x : { x // x ∈ H }
⊢ (∃ n, 0 < n ∧ x ^ n = 1) ↔ ∃ n, 0 < n ∧ ↑x ^ n = 1
[PROOFSTEP]
norm_cast
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝² : Monoid G
inst✝¹ : AddMonoid A
x✝ y : G
a b : A
n m : ℕ
inst✝ : Monoid H
f : G →* H
x : G
h : IsOfFinOrder x
⊢ ∃ n, 0 < n ∧ ↑f x ^ n = 1
[PROOFSTEP]
rcases(isOfFinOrder_iff_pow_eq_one _).mp h with ⟨n, npos, hn⟩
[GOAL]
case intro.intro
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝² : Monoid G
inst✝¹ : AddMonoid A
x✝ y : G
a b : A
n✝ m : ℕ
inst✝ : Monoid H
f : G →* H
x : G
h : IsOfFinOrder x
n : ℕ
npos : 0 < n
hn : x ^ n = 1
⊢ ∃ n, 0 < n ∧ ↑f x ^ n = 1
[PROOFSTEP]
exact ⟨n, npos, by rw [← f.map_pow, hn, f.map_one]⟩
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝² : Monoid G
inst✝¹ : AddMonoid A
x✝ y : G
a b : A
n✝ m : ℕ
inst✝ : Monoid H
f : G →* H
x : G
h : IsOfFinOrder x
n : ℕ
npos : 0 < n
hn : x ^ n = 1
⊢ ↑f x ^ n = 1
[PROOFSTEP]
rw [← f.map_pow, hn, f.map_one]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝² : Monoid G
inst✝¹ : AddMonoid A
x✝ y : G
a b : A
n m : ℕ
η : Type u_6
Gs : η → Type u_7
inst✝ : (i : η) → Monoid (Gs i)
x : (i : η) → Gs i
h : IsOfFinOrder x
⊢ ∀ (i : η), IsOfFinOrder (x i)
[PROOFSTEP]
rcases(isOfFinOrder_iff_pow_eq_one _).mp h with ⟨n, npos, hn⟩
[GOAL]
case intro.intro
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝² : Monoid G
inst✝¹ : AddMonoid A
x✝ y : G
a b : A
n✝ m : ℕ
η : Type u_6
Gs : η → Type u_7
inst✝ : (i : η) → Monoid (Gs i)
x : (i : η) → Gs i
h : IsOfFinOrder x
n : ℕ
npos : 0 < n
hn : x ^ n = 1
⊢ ∀ (i : η), IsOfFinOrder (x i)
[PROOFSTEP]
exact fun _ => (isOfFinOrder_iff_pow_eq_one _).mpr ⟨n, npos, (congr_fun hn.symm _).symm⟩
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x✝ y : G
a b : A
n m : ℕ
x : G
⊢ x ^ orderOf x = 1
[PROOFSTEP]
refine
Eq.trans ?_
(isPeriodicPt_minimalPeriod (x * ·) 1)
-- porting note: we need a `dsimp` in the middle of the rewrite to do beta reduction
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x✝ y : G
a b : A
n m : ℕ
x : G
⊢ x ^ orderOf x = (fun x_1 => x * x_1)^[minimalPeriod (fun x_1 => x * x_1) 1] 1
[PROOFSTEP]
rw [orderOf, mul_left_iterate]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x✝ y : G
a b : A
n m : ℕ
x : G
⊢ x ^ minimalPeriod (fun x_1 => x * x_1) 1 = (fun x_1 => x ^ minimalPeriod (fun x_2 => x * x_2) 1 * x_1) 1
[PROOFSTEP]
dsimp
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x✝ y : G
a b : A
n m : ℕ
x : G
⊢ x ^ minimalPeriod (fun x_1 => x * x_1) 1 = x ^ minimalPeriod (fun x_1 => x * x_1) 1 * 1
[PROOFSTEP]
rw [mul_one]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m : ℕ
h : ¬IsOfFinOrder x
⊢ orderOf x = 0
[PROOFSTEP]
rwa [orderOf, minimalPeriod, dif_neg]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m : ℕ
⊢ orderOf x = 0 ↔ ∀ (n : ℕ), 0 < n → x ^ n ≠ 1
[PROOFSTEP]
simp_rw [orderOf_eq_zero_iff, isOfFinOrder_iff_pow_eq_one, not_exists, not_and]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n✝ m n : ℕ
h : 0 < n
⊢ orderOf x = n ↔ x ^ n = 1 ∧ ∀ (m : ℕ), m < n → 0 < m → x ^ m ≠ 1
[PROOFSTEP]
simp_rw [Ne, ← isPeriodicPt_mul_iff_pow_eq_one, orderOf, minimalPeriod]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n✝ m n : ℕ
h : 0 < n
⊢ (if h : 1 ∈ periodicPts fun x_1 => x * x_1 then Nat.find h else 0) = n ↔
IsPeriodicPt (fun x_1 => x * x_1) n 1 ∧ ∀ (m : ℕ), m < n → 0 < m → ¬IsPeriodicPt (fun x_1 => x * x_1) m 1
[PROOFSTEP]
split_ifs with h1
[GOAL]
case pos
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n✝ m n : ℕ
h : 0 < n
h1 : 1 ∈ periodicPts fun x_1 => x * x_1
⊢ Nat.find h1 = n ↔
IsPeriodicPt (fun x_1 => x * x_1) n 1 ∧ ∀ (m : ℕ), m < n → 0 < m → ¬IsPeriodicPt (fun x_1 => x * x_1) m 1
[PROOFSTEP]
classical
rw [find_eq_iff]
simp only [h, true_and]
push_neg
rfl
[GOAL]
case pos
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n✝ m n : ℕ
h : 0 < n
h1 : 1 ∈ periodicPts fun x_1 => x * x_1
⊢ Nat.find h1 = n ↔
IsPeriodicPt (fun x_1 => x * x_1) n 1 ∧ ∀ (m : ℕ), m < n → 0 < m → ¬IsPeriodicPt (fun x_1 => x * x_1) m 1
[PROOFSTEP]
rw [find_eq_iff]
[GOAL]
case pos
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n✝ m n : ℕ
h : 0 < n
h1 : 1 ∈ periodicPts fun x_1 => x * x_1
⊢ ((n > 0 ∧ IsPeriodicPt (fun x_1 => x * x_1) n 1) ∧
∀ (n_1 : ℕ), n_1 < n → ¬(n_1 > 0 ∧ IsPeriodicPt (fun x_1 => x * x_1) n_1 1)) ↔
IsPeriodicPt (fun x_1 => x * x_1) n 1 ∧ ∀ (m : ℕ), m < n → 0 < m → ¬IsPeriodicPt (fun x_1 => x * x_1) m 1
[PROOFSTEP]
simp only [h, true_and]
[GOAL]
case pos
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n✝ m n : ℕ
h : 0 < n
h1 : 1 ∈ periodicPts fun x_1 => x * x_1
⊢ (IsPeriodicPt (fun x_1 => x * x_1) n 1 ∧
∀ (n_1 : ℕ), n_1 < n → ¬(n_1 > 0 ∧ IsPeriodicPt (fun x_1 => x * x_1) n_1 1)) ↔
IsPeriodicPt (fun x_1 => x * x_1) n 1 ∧ ∀ (m : ℕ), m < n → 0 < m → ¬IsPeriodicPt (fun x_1 => x * x_1) m 1
[PROOFSTEP]
push_neg
[GOAL]
case pos
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n✝ m n : ℕ
h : 0 < n
h1 : 1 ∈ periodicPts fun x_1 => x * x_1
⊢ (IsPeriodicPt (fun x_1 => x * x_1) n 1 ∧ ∀ (n_1 : ℕ), n_1 < n → n_1 > 0 → ¬IsPeriodicPt (fun x_1 => x * x_1) n_1 1) ↔
IsPeriodicPt (fun x_1 => x * x_1) n 1 ∧ ∀ (m : ℕ), m < n → 0 < m → ¬IsPeriodicPt (fun x_1 => x * x_1) m 1
[PROOFSTEP]
rfl
[GOAL]
case neg
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n✝ m n : ℕ
h : 0 < n
h1 : ¬1 ∈ periodicPts fun x_1 => x * x_1
⊢ 0 = n ↔ IsPeriodicPt (fun x_1 => x * x_1) n 1 ∧ ∀ (m : ℕ), m < n → 0 < m → ¬IsPeriodicPt (fun x_1 => x * x_1) m 1
[PROOFSTEP]
rw [iff_false_left h.ne]
[GOAL]
case neg
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n✝ m n : ℕ
h : 0 < n
h1 : ¬1 ∈ periodicPts fun x_1 => x * x_1
⊢ ¬(IsPeriodicPt (fun x_1 => x * x_1) n 1 ∧ ∀ (m : ℕ), m < n → 0 < m → ¬IsPeriodicPt (fun x_1 => x * x_1) m 1)
[PROOFSTEP]
rintro ⟨h', -⟩
[GOAL]
case neg.intro
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n✝ m n : ℕ
h : 0 < n
h1 : ¬1 ∈ periodicPts fun x_1 => x * x_1
h' : IsPeriodicPt (fun x_1 => x * x_1) n 1
⊢ False
[PROOFSTEP]
exact h1 ⟨n, h, h'⟩
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m : ℕ
⊢ 0 < orderOf x ↔ IsOfFinOrder x
[PROOFSTEP]
rw [iff_not_comm.mp orderOf_eq_zero_iff, pos_iff_ne_zero]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝² : Monoid G
inst✝¹ : AddMonoid A
x y✝ : G
a b : A
n m : ℕ
inst✝ : Monoid β
y : β
hx : IsOfFinOrder x
h : orderOf y ∣ orderOf x
⊢ IsOfFinOrder y
[PROOFSTEP]
rw [← orderOf_pos_iff] at hx ⊢
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝² : Monoid G
inst✝¹ : AddMonoid A
x y✝ : G
a b : A
n m : ℕ
inst✝ : Monoid β
y : β
hx : 0 < orderOf x
h : orderOf y ∣ orderOf x
⊢ 0 < orderOf y
[PROOFSTEP]
exact Nat.pos_of_dvd_of_pos h hx
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m : ℕ
hn : 0 < n
h : x ^ n = 1
⊢ IsPeriodicPt (fun x_1 => x * x_1) n 1
[PROOFSTEP]
rwa [isPeriodicPt_mul_iff_pow_eq_one]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m : ℕ
⊢ orderOf 1 = 1
[PROOFSTEP]
rw [orderOf, ← minimalPeriod_id (x := (1 : G)), ← one_mul_eq_id]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m : ℕ
⊢ orderOf x = 1 ↔ x = 1
[PROOFSTEP]
rw [orderOf, minimalPeriod_eq_one_iff_isFixedPt, IsFixedPt, mul_one]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n✝ m n : ℕ
⊢ x ^ n = x ^ (n % orderOf x + orderOf x * (n / orderOf x))
[PROOFSTEP]
rw [Nat.mod_add_div]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n✝ m n : ℕ
⊢ x ^ (n % orderOf x + orderOf x * (n / orderOf x)) = x ^ (n % orderOf x)
[PROOFSTEP]
simp [pow_add, pow_mul, pow_orderOf_eq_one]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n✝ m n : ℕ
h : orderOf x ∣ n
⊢ x ^ n = 1
[PROOFSTEP]
rw [pow_eq_mod_orderOf, Nat.mod_eq_zero_of_dvd h, _root_.pow_zero]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n✝ m n : ℕ
⊢ orderOf (x ^ n) ∣ orderOf x
[PROOFSTEP]
rw [orderOf_dvd_iff_pow_eq_one, pow_right_comm, pow_orderOf_eq_one, one_pow]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x✝ y : G
a b : A
n m : ℕ
x : G
hn : n < orderOf x
hm : m < orderOf x
eq : x ^ n = x ^ m
⊢ (fun x_1 => x * x_1)^[n] 1 = (fun x_1 => x * x_1)^[m] 1
[PROOFSTEP]
simpa only [mul_left_iterate, mul_one]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m : ℕ
⊢ x ^ n = 1 ↔ n ≡ 0 [MOD orderOf x]
[PROOFSTEP]
rw [modEq_zero_iff_dvd, orderOf_dvd_iff_pow_eq_one]
[GOAL]
G : Type u_1
H✝ : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝² : Monoid G
inst✝¹ : AddMonoid A
x✝ y : G
a b : A
n m : ℕ
H : Type u_6
inst✝ : Monoid H
ψ : G →* H
x : G
⊢ orderOf (↑ψ x) ∣ orderOf x
[PROOFSTEP]
apply orderOf_dvd_of_pow_eq_one
[GOAL]
case h
G : Type u_1
H✝ : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝² : Monoid G
inst✝¹ : AddMonoid A
x✝ y : G
a b : A
n m : ℕ
H : Type u_6
inst✝ : Monoid H
ψ : G →* H
x : G
⊢ ↑ψ x ^ orderOf x = 1
[PROOFSTEP]
rw [← map_pow, pow_orderOf_eq_one]
[GOAL]
case h
G : Type u_1
H✝ : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝² : Monoid G
inst✝¹ : AddMonoid A
x✝ y : G
a b : A
n m : ℕ
H : Type u_6
inst✝ : Monoid H
ψ : G →* H
x : G
⊢ ↑ψ 1 = 1
[PROOFSTEP]
apply map_one
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m : ℕ
h : coprime n (orderOf x)
⊢ ∃ m, (x ^ n) ^ m = x
[PROOFSTEP]
by_cases h0 : orderOf x = 0
[GOAL]
case pos
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m : ℕ
h : coprime n (orderOf x)
h0 : orderOf x = 0
⊢ ∃ m, (x ^ n) ^ m = x
[PROOFSTEP]
rw [h0, coprime_zero_right] at h
[GOAL]
case pos
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m : ℕ
h : n = 1
h0 : orderOf x = 0
⊢ ∃ m, (x ^ n) ^ m = x
[PROOFSTEP]
exact ⟨1, by rw [h, pow_one, pow_one]⟩
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m : ℕ
h : n = 1
h0 : orderOf x = 0
⊢ (x ^ n) ^ 1 = x
[PROOFSTEP]
rw [h, pow_one, pow_one]
[GOAL]
case neg
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m : ℕ
h : coprime n (orderOf x)
h0 : ¬orderOf x = 0
⊢ ∃ m, (x ^ n) ^ m = x
[PROOFSTEP]
by_cases h1 : orderOf x = 1
[GOAL]
case pos
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m : ℕ
h : coprime n (orderOf x)
h0 : ¬orderOf x = 0
h1 : orderOf x = 1
⊢ ∃ m, (x ^ n) ^ m = x
[PROOFSTEP]
exact ⟨0, by rw [orderOf_eq_one_iff.mp h1, one_pow, one_pow]⟩
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m : ℕ
h : coprime n (orderOf x)
h0 : ¬orderOf x = 0
h1 : orderOf x = 1
⊢ (x ^ n) ^ 0 = x
[PROOFSTEP]
rw [orderOf_eq_one_iff.mp h1, one_pow, one_pow]
[GOAL]
case neg
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m : ℕ
h : coprime n (orderOf x)
h0 : ¬orderOf x = 0
h1 : ¬orderOf x = 1
⊢ ∃ m, (x ^ n) ^ m = x
[PROOFSTEP]
obtain ⟨m, h⟩ := exists_mul_emod_eq_one_of_coprime h (one_lt_iff_ne_zero_and_ne_one.mpr ⟨h0, h1⟩)
[GOAL]
case neg.intro
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m✝ : ℕ
h✝ : coprime n (orderOf x)
h0 : ¬orderOf x = 0
h1 : ¬orderOf x = 1
m : ℕ
h : n * m % orderOf x = 1
⊢ ∃ m, (x ^ n) ^ m = x
[PROOFSTEP]
exact ⟨m, by rw [← pow_mul, pow_eq_mod_orderOf, h, pow_one]⟩
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m✝ : ℕ
h✝ : coprime n (orderOf x)
h0 : ¬orderOf x = 0
h1 : ¬orderOf x = 1
m : ℕ
h : n * m % orderOf x = 1
⊢ (x ^ n) ^ m = x
[PROOFSTEP]
rw [← pow_mul, pow_eq_mod_orderOf, h, pow_one]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m : ℕ
hn : 0 < n
hx : x ^ n = 1
hd : ∀ (p : ℕ), Nat.Prime p → p ∣ n → x ^ (n / p) ≠ 1
⊢ orderOf x = n
[PROOFSTEP]
cases' exists_eq_mul_right_of_dvd (orderOf_dvd_of_pow_eq_one hx) with a ha
[GOAL]
case intro
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a✝ b : A
n m : ℕ
hn : 0 < n
hx : x ^ n = 1
hd : ∀ (p : ℕ), Nat.Prime p → p ∣ n → x ^ (n / p) ≠ 1
a : ℕ
ha : n = orderOf x * a
⊢ orderOf x = n
[PROOFSTEP]
suffices a = 1 by
simp [this, ha]
-- Assume `a` is not one...
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a✝ b : A
n m : ℕ
hn : 0 < n
hx : x ^ n = 1
hd : ∀ (p : ℕ), Nat.Prime p → p ∣ n → x ^ (n / p) ≠ 1
a : ℕ
ha : n = orderOf x * a
this : a = 1
⊢ orderOf x = n
[PROOFSTEP]
simp [this, ha]
-- Assume `a` is not one...
[GOAL]
case intro
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a✝ b : A
n m : ℕ
hn : 0 < n
hx : x ^ n = 1
hd : ∀ (p : ℕ), Nat.Prime p → p ∣ n → x ^ (n / p) ≠ 1
a : ℕ
ha : n = orderOf x * a
⊢ a = 1
[PROOFSTEP]
by_contra h
[GOAL]
case intro
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a✝ b : A
n m : ℕ
hn : 0 < n
hx : x ^ n = 1
hd : ∀ (p : ℕ), Nat.Prime p → p ∣ n → x ^ (n / p) ≠ 1
a : ℕ
ha : n = orderOf x * a
h : ¬a = 1
⊢ False
[PROOFSTEP]
have a_min_fac_dvd_p_sub_one : a.minFac ∣ n :=
by
obtain ⟨b, hb⟩ : ∃ b : ℕ, a = b * a.minFac := exists_eq_mul_left_of_dvd a.minFac_dvd
rw [hb, ← mul_assoc] at ha
exact Dvd.intro_left (orderOf x * b) ha.symm
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a✝ b : A
n m : ℕ
hn : 0 < n
hx : x ^ n = 1
hd : ∀ (p : ℕ), Nat.Prime p → p ∣ n → x ^ (n / p) ≠ 1
a : ℕ
ha : n = orderOf x * a
h : ¬a = 1
⊢ minFac a ∣ n
[PROOFSTEP]
obtain ⟨b, hb⟩ : ∃ b : ℕ, a = b * a.minFac := exists_eq_mul_left_of_dvd a.minFac_dvd
[GOAL]
case intro
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a✝ b✝ : A
n m : ℕ
hn : 0 < n
hx : x ^ n = 1
hd : ∀ (p : ℕ), Nat.Prime p → p ∣ n → x ^ (n / p) ≠ 1
a : ℕ
ha : n = orderOf x * a
h : ¬a = 1
b : ℕ
hb : a = b * minFac a
⊢ minFac a ∣ n
[PROOFSTEP]
rw [hb, ← mul_assoc] at ha
[GOAL]
case intro
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a✝ b✝ : A
n m : ℕ
hn : 0 < n
hx : x ^ n = 1
hd : ∀ (p : ℕ), Nat.Prime p → p ∣ n → x ^ (n / p) ≠ 1
a : ℕ
h : ¬a = 1
b : ℕ
ha : n = orderOf x * b * minFac a
hb : a = b * minFac a
⊢ minFac a ∣ n
[PROOFSTEP]
exact Dvd.intro_left (orderOf x * b) ha.symm
[GOAL]
case intro
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a✝ b : A
n m : ℕ
hn : 0 < n
hx : x ^ n = 1
hd : ∀ (p : ℕ), Nat.Prime p → p ∣ n → x ^ (n / p) ≠ 1
a : ℕ
ha : n = orderOf x * a
h : ¬a = 1
a_min_fac_dvd_p_sub_one : minFac a ∣ n
⊢ False
[PROOFSTEP]
refine' hd a.minFac (Nat.minFac_prime h) a_min_fac_dvd_p_sub_one _
[GOAL]
case intro
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a✝ b : A
n m : ℕ
hn : 0 < n
hx : x ^ n = 1
hd : ∀ (p : ℕ), Nat.Prime p → p ∣ n → x ^ (n / p) ≠ 1
a : ℕ
ha : n = orderOf x * a
h : ¬a = 1
a_min_fac_dvd_p_sub_one : minFac a ∣ n
⊢ x ^ (n / minFac a) = 1
[PROOFSTEP]
rw [← orderOf_dvd_iff_pow_eq_one, Nat.dvd_div_iff a_min_fac_dvd_p_sub_one, ha, mul_comm,
Nat.mul_dvd_mul_iff_left (orderOf_pos' _)]
[GOAL]
case intro
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a✝ b : A
n m : ℕ
hn : 0 < n
hx : x ^ n = 1
hd : ∀ (p : ℕ), Nat.Prime p → p ∣ n → x ^ (n / p) ≠ 1
a : ℕ
ha : n = orderOf x * a
h : ¬a = 1
a_min_fac_dvd_p_sub_one : minFac a ∣ n
⊢ minFac a ∣ a
[PROOFSTEP]
exact Nat.minFac_dvd a
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a✝ b : A
n m : ℕ
hn : 0 < n
hx : x ^ n = 1
hd : ∀ (p : ℕ), Nat.Prime p → p ∣ n → x ^ (n / p) ≠ 1
a : ℕ
ha : n = orderOf x * a
h : ¬a = 1
a_min_fac_dvd_p_sub_one : minFac a ∣ n
⊢ IsOfFinOrder x
[PROOFSTEP]
rw [isOfFinOrder_iff_pow_eq_one]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a✝ b : A
n m : ℕ
hn : 0 < n
hx : x ^ n = 1
hd : ∀ (p : ℕ), Nat.Prime p → p ∣ n → x ^ (n / p) ≠ 1
a : ℕ
ha : n = orderOf x * a
h : ¬a = 1
a_min_fac_dvd_p_sub_one : minFac a ∣ n
⊢ ∃ n, 0 < n ∧ x ^ n = 1
[PROOFSTEP]
exact Exists.intro n (id ⟨hn, hx⟩)
[GOAL]
G : Type u_1
H✝ : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝² : Monoid G
inst✝¹ : AddMonoid A
x y✝ : G
a b : A
n m : ℕ
H : Type u_6
inst✝ : Monoid H
y : H
⊢ orderOf x = orderOf y ↔ ∀ (n : ℕ), x ^ n = 1 ↔ y ^ n = 1
[PROOFSTEP]
simp_rw [← isPeriodicPt_mul_iff_pow_eq_one, ← minimalPeriod_eq_minimalPeriod_iff, orderOf]
[GOAL]
G : Type u_1
H✝ : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝² : Monoid G
inst✝¹ : AddMonoid A
x✝ y : G
a b : A
n m : ℕ
H : Type u_6
inst✝ : Monoid H
f : G →* H
hf : Injective ↑f
x : G
⊢ orderOf (↑f x) = orderOf x
[PROOFSTEP]
simp_rw [orderOf_eq_orderOf_iff, ← f.map_pow, ← f.map_one, hf.eq_iff, forall_const]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m : ℕ
h : n ≠ 0
⊢ orderOf (x ^ n) = orderOf x / gcd (orderOf x) n
[PROOFSTEP]
unfold orderOf
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m : ℕ
h : n ≠ 0
⊢ minimalPeriod (fun x_1 => x ^ n * x_1) 1 =
minimalPeriod (fun x_1 => x * x_1) 1 / gcd (minimalPeriod (fun x_1 => x * x_1) 1) n
[PROOFSTEP]
rw [← minimalPeriod_iterate_eq_div_gcd h, mul_left_iterate]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m : ℕ
h : IsOfFinOrder x
⊢ orderOf (x ^ n) = orderOf x / gcd (orderOf x) n
[PROOFSTEP]
unfold orderOf
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m : ℕ
h : IsOfFinOrder x
⊢ minimalPeriod (fun x_1 => x ^ n * x_1) 1 =
minimalPeriod (fun x_1 => x * x_1) 1 / gcd (minimalPeriod (fun x_1 => x * x_1) 1) n
[PROOFSTEP]
rw [← minimalPeriod_iterate_eq_div_gcd' h, mul_left_iterate]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m : ℕ
h : coprime (orderOf y) m
⊢ orderOf (y ^ m) = orderOf y
[PROOFSTEP]
by_cases hg : orderOf y = 0
[GOAL]
case pos
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m : ℕ
h : coprime (orderOf y) m
hg : orderOf y = 0
⊢ orderOf (y ^ m) = orderOf y
[PROOFSTEP]
rw [m.coprime_zero_left.mp (hg ▸ h), pow_one]
[GOAL]
case neg
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m : ℕ
h : coprime (orderOf y) m
hg : ¬orderOf y = 0
⊢ orderOf (y ^ m) = orderOf y
[PROOFSTEP]
rw [orderOf_pow'' y m (hg.imp_symm orderOf_eq_zero), h.gcd_eq_one, Nat.div_one]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m : ℕ
h : Commute x y
⊢ orderOf (x * y) ∣ lcm (orderOf x) (orderOf y)
[PROOFSTEP]
rw [orderOf, ← comp_mul_left]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m : ℕ
h : Commute x y
⊢ minimalPeriod ((fun x_1 => x * x_1) ∘ fun x => y * x) 1 ∣ lcm (orderOf x) (orderOf y)
[PROOFSTEP]
exact Function.Commute.minimalPeriod_of_comp_dvd_lcm h.function_commute_mul_left
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m : ℕ
h : Commute x y
⊢ orderOf y ∣ lcm (orderOf x) (orderOf (x * y))
[PROOFSTEP]
by_cases h0 : orderOf x = 0
[GOAL]
case pos
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m : ℕ
h : Commute x y
h0 : orderOf x = 0
⊢ orderOf y ∣ lcm (orderOf x) (orderOf (x * y))
[PROOFSTEP]
rw [h0, lcm_zero_left]
[GOAL]
case pos
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m : ℕ
h : Commute x y
h0 : orderOf x = 0
⊢ orderOf y ∣ 0
[PROOFSTEP]
apply dvd_zero
[GOAL]
case neg
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m : ℕ
h : Commute x y
h0 : ¬orderOf x = 0
⊢ orderOf y ∣ lcm (orderOf x) (orderOf (x * y))
[PROOFSTEP]
conv_lhs =>
rw [← one_mul y, ← pow_orderOf_eq_one x, ← succ_pred_eq_of_pos (Nat.pos_of_ne_zero h0), _root_.pow_succ', mul_assoc]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m : ℕ
h : Commute x y
h0 : ¬orderOf x = 0
| orderOf y
[PROOFSTEP]
rw [← one_mul y, ← pow_orderOf_eq_one x, ← succ_pred_eq_of_pos (Nat.pos_of_ne_zero h0), _root_.pow_succ', mul_assoc]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m : ℕ
h : Commute x y
h0 : ¬orderOf x = 0
| orderOf y
[PROOFSTEP]
rw [← one_mul y, ← pow_orderOf_eq_one x, ← succ_pred_eq_of_pos (Nat.pos_of_ne_zero h0), _root_.pow_succ', mul_assoc]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m : ℕ
h : Commute x y
h0 : ¬orderOf x = 0
| orderOf y
[PROOFSTEP]
rw [← one_mul y, ← pow_orderOf_eq_one x, ← succ_pred_eq_of_pos (Nat.pos_of_ne_zero h0), _root_.pow_succ', mul_assoc]
[GOAL]
case neg
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m : ℕ
h : Commute x y
h0 : ¬orderOf x = 0
⊢ orderOf (x ^ pred (orderOf x) * (x * y)) ∣ lcm (orderOf x) (orderOf (x * y))
[PROOFSTEP]
exact
(((Commute.refl x).mul_right h).pow_left _).orderOf_mul_dvd_lcm.trans
(lcm_dvd_iff.2 ⟨(orderOf_pow_dvd _).trans (dvd_lcm_left _ _), dvd_lcm_right _ _⟩)
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m : ℕ
h : Commute x y
hco : coprime (orderOf x) (orderOf y)
⊢ orderOf (x * y) = orderOf x * orderOf y
[PROOFSTEP]
rw [orderOf, ← comp_mul_left]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m : ℕ
h : Commute x y
hco : coprime (orderOf x) (orderOf y)
⊢ minimalPeriod ((fun x_1 => x * x_1) ∘ fun x => y * x) 1 = orderOf x * orderOf y
[PROOFSTEP]
exact h.function_commute_mul_left.minimalPeriod_of_comp_eq_mul_of_coprime hco
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m : ℕ
h : Commute x y
hy : IsOfFinOrder y
hdvd : ∀ (p : ℕ), Nat.Prime p → p ∣ orderOf x → p * orderOf x ∣ orderOf y
⊢ orderOf (x * y) = orderOf y
[PROOFSTEP]
have hoy := orderOf_pos' hy
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m : ℕ
h : Commute x y
hy : IsOfFinOrder y
hdvd : ∀ (p : ℕ), Nat.Prime p → p ∣ orderOf x → p * orderOf x ∣ orderOf y
hoy : 0 < orderOf y
⊢ orderOf (x * y) = orderOf y
[PROOFSTEP]
have hxy := dvd_of_forall_prime_mul_dvd hdvd
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m : ℕ
h : Commute x y
hy : IsOfFinOrder y
hdvd : ∀ (p : ℕ), Nat.Prime p → p ∣ orderOf x → p * orderOf x ∣ orderOf y
hoy : 0 < orderOf y
hxy : orderOf x ∣ orderOf y
⊢ orderOf (x * y) = orderOf y
[PROOFSTEP]
apply orderOf_eq_of_pow_and_pow_div_prime hoy
[GOAL]
case hx
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m : ℕ
h : Commute x y
hy : IsOfFinOrder y
hdvd : ∀ (p : ℕ), Nat.Prime p → p ∣ orderOf x → p * orderOf x ∣ orderOf y
hoy : 0 < orderOf y
hxy : orderOf x ∣ orderOf y
⊢ (x * y) ^ orderOf y = 1
[PROOFSTEP]
simp only [Ne, ← orderOf_dvd_iff_pow_eq_one]
[GOAL]
case hd
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m : ℕ
h : Commute x y
hy : IsOfFinOrder y
hdvd : ∀ (p : ℕ), Nat.Prime p → p ∣ orderOf x → p * orderOf x ∣ orderOf y
hoy : 0 < orderOf y
hxy : orderOf x ∣ orderOf y
⊢ ∀ (p : ℕ), Nat.Prime p → p ∣ orderOf y → (x * y) ^ (orderOf y / p) ≠ 1
[PROOFSTEP]
simp only [Ne, ← orderOf_dvd_iff_pow_eq_one]
[GOAL]
case hx
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m : ℕ
h : Commute x y
hy : IsOfFinOrder y
hdvd : ∀ (p : ℕ), Nat.Prime p → p ∣ orderOf x → p * orderOf x ∣ orderOf y
hoy : 0 < orderOf y
hxy : orderOf x ∣ orderOf y
⊢ orderOf (x * y) ∣ orderOf y
[PROOFSTEP]
exact h.orderOf_mul_dvd_lcm.trans (lcm_dvd hxy dvd_rfl)
[GOAL]
case hd
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m : ℕ
h : Commute x y
hy : IsOfFinOrder y
hdvd : ∀ (p : ℕ), Nat.Prime p → p ∣ orderOf x → p * orderOf x ∣ orderOf y
hoy : 0 < orderOf y
hxy : orderOf x ∣ orderOf y
⊢ ∀ (p : ℕ), Nat.Prime p → p ∣ orderOf y → ¬orderOf (x * y) ∣ orderOf y / p
[PROOFSTEP]
refine' fun p hp hpy hd => hp.ne_one _
[GOAL]
case hd
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m : ℕ
h : Commute x y
hy : IsOfFinOrder y
hdvd : ∀ (p : ℕ), Nat.Prime p → p ∣ orderOf x → p * orderOf x ∣ orderOf y
hoy : 0 < orderOf y
hxy : orderOf x ∣ orderOf y
p : ℕ
hp : Nat.Prime p
hpy : p ∣ orderOf y
hd : orderOf (x * y) ∣ orderOf y / p
⊢ p = 1
[PROOFSTEP]
rw [← Nat.dvd_one, ← mul_dvd_mul_iff_right hoy.ne', one_mul, ← dvd_div_iff hpy]
[GOAL]
case hd
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m : ℕ
h : Commute x y
hy : IsOfFinOrder y
hdvd : ∀ (p : ℕ), Nat.Prime p → p ∣ orderOf x → p * orderOf x ∣ orderOf y
hoy : 0 < orderOf y
hxy : orderOf x ∣ orderOf y
p : ℕ
hp : Nat.Prime p
hpy : p ∣ orderOf y
hd : orderOf (x * y) ∣ orderOf y / p
⊢ orderOf y ∣ orderOf y / p
[PROOFSTEP]
refine' (orderOf_dvd_lcm_mul h).trans (lcm_dvd ((dvd_div_iff hpy).2 _) hd)
[GOAL]
case hd
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m : ℕ
h : Commute x y
hy : IsOfFinOrder y
hdvd : ∀ (p : ℕ), Nat.Prime p → p ∣ orderOf x → p * orderOf x ∣ orderOf y
hoy : 0 < orderOf y
hxy : orderOf x ∣ orderOf y
p : ℕ
hp : Nat.Prime p
hpy : p ∣ orderOf y
hd : orderOf (x * y) ∣ orderOf y / p
⊢ p * orderOf x ∣ orderOf y
[PROOFSTEP]
by_cases h : p ∣ orderOf x
[GOAL]
case pos
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m : ℕ
h✝ : Commute x y
hy : IsOfFinOrder y
hdvd : ∀ (p : ℕ), Nat.Prime p → p ∣ orderOf x → p * orderOf x ∣ orderOf y
hoy : 0 < orderOf y
hxy : orderOf x ∣ orderOf y
p : ℕ
hp : Nat.Prime p
hpy : p ∣ orderOf y
hd : orderOf (x * y) ∣ orderOf y / p
h : p ∣ orderOf x
⊢ p * orderOf x ∣ orderOf y
case neg
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m : ℕ
h✝ : Commute x y
hy : IsOfFinOrder y
hdvd : ∀ (p : ℕ), Nat.Prime p → p ∣ orderOf x → p * orderOf x ∣ orderOf y
hoy : 0 < orderOf y
hxy : orderOf x ∣ orderOf y
p : ℕ
hp : Nat.Prime p
hpy : p ∣ orderOf y
hd : orderOf (x * y) ∣ orderOf y / p
h : ¬p ∣ orderOf x
⊢ p * orderOf x ∣ orderOf y
[PROOFSTEP]
exacts [hdvd p hp h, (hp.coprime_iff_not_dvd.2 h).mul_dvd_of_dvd_of_dvd hpy hxy]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m p : ℕ
hp : Fact (Nat.Prime p)
hg : x ^ p = 1
hg1 : x ≠ 1
⊢ ¬IsFixedPt (fun x_1 => x * x_1) 1
[PROOFSTEP]
rwa [IsFixedPt, mul_one]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m p : ℕ
hp : Fact (Nat.Prime p)
hnot : ¬x ^ p ^ n = 1
hfin : x ^ p ^ (n + 1) = 1
⊢ orderOf x = p ^ (n + 1)
[PROOFSTEP]
apply minimalPeriod_eq_prime_pow
[GOAL]
case hk
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m p : ℕ
hp : Fact (Nat.Prime p)
hnot : ¬x ^ p ^ n = 1
hfin : x ^ p ^ (n + 1) = 1
⊢ ¬IsPeriodicPt (fun x_1 => x * x_1) (p ^ n) 1
[PROOFSTEP]
rwa [isPeriodicPt_mul_iff_pow_eq_one]
[GOAL]
case hk1
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m p : ℕ
hp : Fact (Nat.Prime p)
hnot : ¬x ^ p ^ n = 1
hfin : x ^ p ^ (n + 1) = 1
⊢ IsPeriodicPt (fun x_1 => x * x_1) (p ^ (n + 1)) 1
[PROOFSTEP]
rwa [isPeriodicPt_mul_iff_pow_eq_one]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m p : ℕ
hp : Fact (Nat.Prime p)
x✝ : ∃ k, orderOf x = p ^ k
k : ℕ
hk : orderOf x = p ^ k
⊢ x ^ p ^ k = 1
[PROOFSTEP]
rw [← hk, pow_orderOf_eq_one]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m p : ℕ
hp : Fact (Nat.Prime p)
x✝ : ∃ m, x ^ p ^ m = 1
w✝ : ℕ
hm : x ^ p ^ w✝ = 1
⊢ ∃ k, orderOf x = p ^ k
[PROOFSTEP]
obtain ⟨k, _, hk⟩ := (Nat.dvd_prime_pow hp.elim).mp (orderOf_dvd_of_pow_eq_one hm)
[GOAL]
case intro.intro
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid G
inst✝ : AddMonoid A
x y : G
a b : A
n m p : ℕ
hp : Fact (Nat.Prime p)
x✝ : ∃ m, x ^ p ^ m = 1
w✝ : ℕ
hm : x ^ p ^ w✝ = 1
k : ℕ
left✝ : k ≤ w✝
hk : orderOf x = p ^ k
⊢ ∃ k, orderOf x = p ^ k
[PROOFSTEP]
exact ⟨k, hk⟩
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : LeftCancelMonoid G
x y : G
m n : ℕ
⊢ x ^ n = x ^ m ↔ n ≡ m [MOD orderOf x]
[PROOFSTEP]
wlog hmn : m ≤ n generalizing m n
[GOAL]
case inr
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : LeftCancelMonoid G
x y : G
m n : ℕ
this : ∀ {m n : ℕ}, m ≤ n → (x ^ n = x ^ m ↔ n ≡ m [MOD orderOf x])
hmn : ¬m ≤ n
⊢ x ^ n = x ^ m ↔ n ≡ m [MOD orderOf x]
[PROOFSTEP]
rw [eq_comm, ModEq.comm, this (le_of_not_le hmn)]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : LeftCancelMonoid G
x y : G
m✝ n✝ m n : ℕ
hmn : m ≤ n
⊢ x ^ n = x ^ m ↔ n ≡ m [MOD orderOf x]
[PROOFSTEP]
obtain ⟨k, rfl⟩ := Nat.exists_eq_add_of_le hmn
[GOAL]
case intro
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : LeftCancelMonoid G
x y : G
m✝ n m k : ℕ
hmn : m ≤ m + k
⊢ x ^ (m + k) = x ^ m ↔ m + k ≡ m [MOD orderOf x]
[PROOFSTEP]
rw [← mul_one (x ^ m), pow_add, mul_left_cancel_iff, pow_eq_one_iff_modEq]
[GOAL]
case intro
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : LeftCancelMonoid G
x y : G
m✝ n m k : ℕ
hmn : m ≤ m + k
⊢ k ≡ 0 [MOD orderOf x] ↔ m + k ≡ m [MOD orderOf x]
[PROOFSTEP]
exact ⟨fun h => Nat.ModEq.add_left _ h, fun h => Nat.ModEq.add_left_cancel' _ h⟩
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : LeftCancelMonoid G
x✝ y : G
m n : ℕ
x : G
⊢ (Injective fun n => x ^ n) ↔ ¬IsOfFinOrder x
[PROOFSTEP]
refine' ⟨fun h => not_isOfFinOrder_of_injective_pow h, fun h n m hnm => _⟩
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : LeftCancelMonoid G
x✝ y : G
m✝ n✝ : ℕ
x : G
h : ¬IsOfFinOrder x
n m : ℕ
hnm : (fun n => x ^ n) n = (fun n => x ^ n) m
⊢ n = m
[PROOFSTEP]
rwa [pow_eq_pow_iff_modEq, orderOf_eq_zero_iff.mpr h, modEq_zero_iff] at hnm
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : LeftCancelMonoid G
x y : G
m✝ n✝ : ℕ
h : orderOf x = 0
n m : ℕ
⊢ x ^ n = x ^ m ↔ n = m
[PROOFSTEP]
rw [pow_eq_pow_iff_modEq, h, modEq_zero_iff]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : LeftCancelMonoid G
x✝ y : G
m n : ℕ
x : G
h : ¬IsOfFinOrder x
⊢ Set.Infinite {y | ¬IsOfFinOrder y}
[PROOFSTEP]
let s := {n | 0 < n}.image fun n : ℕ => x ^ n
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : LeftCancelMonoid G
x✝ y : G
m n : ℕ
x : G
h : ¬IsOfFinOrder x
s : Set G := (fun n => x ^ n) '' {n | 0 < n}
⊢ Set.Infinite {y | ¬IsOfFinOrder y}
[PROOFSTEP]
have hs : s ⊆ {y : G | ¬IsOfFinOrder y} :=
by
rintro - ⟨n, hn : 0 < n, rfl⟩ (contra : IsOfFinOrder (x ^ n))
apply h
rw [isOfFinOrder_iff_pow_eq_one] at contra ⊢
obtain ⟨m, hm, hm'⟩ := contra
exact ⟨n * m, mul_pos hn hm, by rwa [pow_mul]⟩
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : LeftCancelMonoid G
x✝ y : G
m n : ℕ
x : G
h : ¬IsOfFinOrder x
s : Set G := (fun n => x ^ n) '' {n | 0 < n}
⊢ s ⊆ {y | ¬IsOfFinOrder y}
[PROOFSTEP]
rintro - ⟨n, hn : 0 < n, rfl⟩ (contra : IsOfFinOrder (x ^ n))
[GOAL]
case intro.intro
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : LeftCancelMonoid G
x✝ y : G
m n✝ : ℕ
x : G
h : ¬IsOfFinOrder x
s : Set G := (fun n => x ^ n) '' {n | 0 < n}
n : ℕ
hn : 0 < n
contra : IsOfFinOrder (x ^ n)
⊢ False
[PROOFSTEP]
apply h
[GOAL]
case intro.intro
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : LeftCancelMonoid G
x✝ y : G
m n✝ : ℕ
x : G
h : ¬IsOfFinOrder x
s : Set G := (fun n => x ^ n) '' {n | 0 < n}
n : ℕ
hn : 0 < n
contra : IsOfFinOrder (x ^ n)
⊢ IsOfFinOrder x
[PROOFSTEP]
rw [isOfFinOrder_iff_pow_eq_one] at contra ⊢
[GOAL]
case intro.intro
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : LeftCancelMonoid G
x✝ y : G
m n✝ : ℕ
x : G
h : ¬IsOfFinOrder x
s : Set G := (fun n => x ^ n) '' {n | 0 < n}
n : ℕ
hn : 0 < n
contra : ∃ n_1, 0 < n_1 ∧ (x ^ n) ^ n_1 = 1
⊢ ∃ n, 0 < n ∧ x ^ n = 1
[PROOFSTEP]
obtain ⟨m, hm, hm'⟩ := contra
[GOAL]
case intro.intro.intro.intro
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : LeftCancelMonoid G
x✝ y : G
m✝ n✝ : ℕ
x : G
h : ¬IsOfFinOrder x
s : Set G := (fun n => x ^ n) '' {n | 0 < n}
n : ℕ
hn : 0 < n
m : ℕ
hm : 0 < m
hm' : (x ^ n) ^ m = 1
⊢ ∃ n, 0 < n ∧ x ^ n = 1
[PROOFSTEP]
exact ⟨n * m, mul_pos hn hm, by rwa [pow_mul]⟩
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : LeftCancelMonoid G
x✝ y : G
m✝ n✝ : ℕ
x : G
h : ¬IsOfFinOrder x
s : Set G := (fun n => x ^ n) '' {n | 0 < n}
n : ℕ
hn : 0 < n
m : ℕ
hm : 0 < m
hm' : (x ^ n) ^ m = 1
⊢ x ^ (n * m) = 1
[PROOFSTEP]
rwa [pow_mul]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : LeftCancelMonoid G
x✝ y : G
m n : ℕ
x : G
h : ¬IsOfFinOrder x
s : Set G := (fun n => x ^ n) '' {n | 0 < n}
hs : s ⊆ {y | ¬IsOfFinOrder y}
⊢ Set.Infinite {y | ¬IsOfFinOrder y}
[PROOFSTEP]
suffices s.Infinite by exact this.mono hs
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : LeftCancelMonoid G
x✝ y : G
m n : ℕ
x : G
h : ¬IsOfFinOrder x
s : Set G := (fun n => x ^ n) '' {n | 0 < n}
hs : s ⊆ {y | ¬IsOfFinOrder y}
this : Set.Infinite s
⊢ Set.Infinite {y | ¬IsOfFinOrder y}
[PROOFSTEP]
exact this.mono hs
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : LeftCancelMonoid G
x✝ y : G
m n : ℕ
x : G
h : ¬IsOfFinOrder x
s : Set G := (fun n => x ^ n) '' {n | 0 < n}
hs : s ⊆ {y | ¬IsOfFinOrder y}
⊢ Set.Infinite s
[PROOFSTEP]
contrapose! h
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : LeftCancelMonoid G
x✝ y : G
m n : ℕ
x : G
s : Set G := (fun n => x ^ n) '' {n | 0 < n}
hs : s ⊆ {y | ¬IsOfFinOrder y}
h : ¬Set.Infinite ((fun n => x ^ n) '' {n | 0 < n})
⊢ IsOfFinOrder x
[PROOFSTEP]
have : ¬Injective fun n : ℕ => x ^ n :=
by
have := Set.not_injOn_infinite_finite_image (Set.Ioi_infinite 0) (Set.not_infinite.mp h)
contrapose! this
exact Set.injOn_of_injective this _
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : LeftCancelMonoid G
x✝ y : G
m n : ℕ
x : G
s : Set G := (fun n => x ^ n) '' {n | 0 < n}
hs : s ⊆ {y | ¬IsOfFinOrder y}
h : ¬Set.Infinite ((fun n => x ^ n) '' {n | 0 < n})
⊢ ¬Injective fun n => x ^ n
[PROOFSTEP]
have := Set.not_injOn_infinite_finite_image (Set.Ioi_infinite 0) (Set.not_infinite.mp h)
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : LeftCancelMonoid G
x✝ y : G
m n : ℕ
x : G
s : Set G := (fun n => x ^ n) '' {n | 0 < n}
hs : s ⊆ {y | ¬IsOfFinOrder y}
h : ¬Set.Infinite ((fun n => x ^ n) '' {n | 0 < n})
this : ¬Set.InjOn (fun n => x ^ n) (Set.Ioi 0)
⊢ ¬Injective fun n => x ^ n
[PROOFSTEP]
contrapose! this
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : LeftCancelMonoid G
x✝ y : G
m n : ℕ
x : G
s : Set G := (fun n => x ^ n) '' {n | 0 < n}
hs : s ⊆ {y | ¬IsOfFinOrder y}
h : ¬Set.Infinite ((fun n => x ^ n) '' {n | 0 < n})
this : Injective fun n => x ^ n
⊢ Set.InjOn (fun n => x ^ n) (Set.Ioi 0)
[PROOFSTEP]
exact Set.injOn_of_injective this _
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : LeftCancelMonoid G
x✝ y : G
m n : ℕ
x : G
s : Set G := (fun n => x ^ n) '' {n | 0 < n}
hs : s ⊆ {y | ¬IsOfFinOrder y}
h : ¬Set.Infinite ((fun n => x ^ n) '' {n | 0 < n})
this : ¬Injective fun n => x ^ n
⊢ IsOfFinOrder x
[PROOFSTEP]
rwa [injective_pow_iff_not_isOfFinOrder, Classical.not_not] at this
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : Group G
x✝ y : G
i : ℤ
x : G
hx : IsOfFinOrder x
⊢ ∃ n, 0 < n ∧ x⁻¹ ^ n = 1
[PROOFSTEP]
rcases(isOfFinOrder_iff_pow_eq_one x).mp hx with ⟨n, npos, hn⟩
[GOAL]
case intro.intro
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : Group G
x✝ y : G
i : ℤ
x : G
hx : IsOfFinOrder x
n : ℕ
npos : 0 < n
hn : x ^ n = 1
⊢ ∃ n, 0 < n ∧ x⁻¹ ^ n = 1
[PROOFSTEP]
refine' ⟨n, npos, by simp_rw [inv_pow, hn, inv_one]⟩
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : Group G
x✝ y : G
i : ℤ
x : G
hx : IsOfFinOrder x
n : ℕ
npos : 0 < n
hn : x ^ n = 1
⊢ x⁻¹ ^ n = 1
[PROOFSTEP]
simp_rw [inv_pow, hn, inv_one]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : Group G
x y : G
i : ℤ
⊢ ↑(orderOf x) ∣ i ↔ x ^ i = 1
[PROOFSTEP]
rcases Int.eq_nat_or_neg i with ⟨i, rfl | rfl⟩
[GOAL]
case intro.inl
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : Group G
x y : G
i : ℕ
⊢ ↑(orderOf x) ∣ ↑i ↔ x ^ ↑i = 1
[PROOFSTEP]
rw [Int.coe_nat_dvd, orderOf_dvd_iff_pow_eq_one, zpow_ofNat]
[GOAL]
case intro.inr
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : Group G
x y : G
i : ℕ
⊢ ↑(orderOf x) ∣ -↑i ↔ x ^ (-↑i) = 1
[PROOFSTEP]
rw [dvd_neg, Int.coe_nat_dvd, zpow_neg, inv_eq_one, zpow_ofNat, orderOf_dvd_iff_pow_eq_one]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : Group G
x✝ y : G
i : ℤ
x : G
⊢ orderOf x⁻¹ = orderOf x
[PROOFSTEP]
simp [orderOf_eq_orderOf_iff]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : Group G
x y : G
i : ℤ
⊢ x ^ i = ?m.965169
[PROOFSTEP]
rw [← Int.emod_add_ediv i (orderOf x)]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : Group G
x y : G
i : ℤ
⊢ x ^ (i % ↑(orderOf x) + ↑(orderOf x) * (i / ↑(orderOf x))) = x ^ (i % ↑(orderOf x))
[PROOFSTEP]
simp [zpow_add, zpow_mul, pow_orderOf_eq_one]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : Group G
x y : G
i : ℤ
⊢ (x ^ i) ^ orderOf x = 1
[PROOFSTEP]
by_cases h : IsOfFinOrder x
[GOAL]
case pos
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : Group G
x y : G
i : ℤ
h : IsOfFinOrder x
⊢ (x ^ i) ^ orderOf x = 1
[PROOFSTEP]
rw [← zpow_ofNat, ← zpow_mul, mul_comm, zpow_mul, zpow_ofNat, pow_orderOf_eq_one, one_zpow]
[GOAL]
case neg
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : Group G
x y : G
i : ℤ
h : ¬IsOfFinOrder x
⊢ (x ^ i) ^ orderOf x = 1
[PROOFSTEP]
rw [orderOf_eq_zero h, _root_.pow_zero]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : Group G
x y : G
i : ℤ
h : IsOfFinOrder x
h' : y ∈ Subgroup.zpowers x
⊢ IsOfFinOrder y
[PROOFSTEP]
obtain ⟨k, rfl⟩ := Subgroup.mem_zpowers_iff.mp h'
[GOAL]
case intro
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : Group G
x : G
i : ℤ
h : IsOfFinOrder x
k : ℤ
h' : x ^ k ∈ Subgroup.zpowers x
⊢ IsOfFinOrder (x ^ k)
[PROOFSTEP]
exact h.zpow
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : Group G
x y : G
i : ℤ
h : y ∈ Subgroup.zpowers x
⊢ orderOf y ∣ orderOf x
[PROOFSTEP]
obtain ⟨k, rfl⟩ := Subgroup.mem_zpowers_iff.mp h
[GOAL]
case intro
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : Group G
x : G
i k : ℤ
h : x ^ k ∈ Subgroup.zpowers x
⊢ orderOf (x ^ k) ∣ orderOf x
[PROOFSTEP]
rw [orderOf_dvd_iff_pow_eq_one]
[GOAL]
case intro
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : Group G
x : G
i k : ℤ
h : x ^ k ∈ Subgroup.zpowers x
⊢ (x ^ k) ^ orderOf x = 1
[PROOFSTEP]
exact zpow_pow_orderOf
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α✝ : Type u_4
β : Type u_5
inst✝¹ : Group G
x y : G
i : ℤ
α : Type u_6
inst✝ : MulAction G α
hx : x ∈ Subgroup.zpowers y
a : α
hs : y • a = a
⊢ x • a = a
[PROOFSTEP]
obtain ⟨k, rfl⟩ := Subgroup.mem_zpowers_iff.mp hx
[GOAL]
case intro
G : Type u_1
H : Type u_2
A : Type u_3
α✝ : Type u_4
β : Type u_5
inst✝¹ : Group G
y : G
i : ℤ
α : Type u_6
inst✝ : MulAction G α
a : α
hs : y • a = a
k : ℤ
hx : y ^ k ∈ Subgroup.zpowers y
⊢ y ^ k • a = a
[PROOFSTEP]
rw [← MulAction.toPerm_apply, ← MulAction.toPermHom_apply, MonoidHom.map_zpow _ y k, MulAction.toPermHom_apply]
[GOAL]
case intro
G : Type u_1
H : Type u_2
A : Type u_3
α✝ : Type u_4
β : Type u_5
inst✝¹ : Group G
y : G
i : ℤ
α : Type u_6
inst✝ : MulAction G α
a : α
hs : y • a = a
k : ℤ
hx : y ^ k ∈ Subgroup.zpowers y
⊢ ↑(MulAction.toPerm y ^ k) a = a
[PROOFSTEP]
exact Function.IsFixedPt.perm_zpow (by exact hs) k
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α✝ : Type u_4
β : Type u_5
inst✝¹ : Group G
y : G
i : ℤ
α : Type u_6
inst✝ : MulAction G α
a : α
hs : y • a = a
k : ℤ
hx : y ^ k ∈ Subgroup.zpowers y
⊢ IsFixedPt (↑(MulAction.toPerm y)) a
[PROOFSTEP]
exact hs
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝² : Monoid G
x : G
n : ℕ
inst✝¹ : Fintype G
inst✝ : DecidableEq G
hn : n ≠ 0
⊢ ∀ (x : ℕ),
x ∈ Finset.filter (fun x => x ∣ n) (Finset.range (succ n)) →
∀ (y : ℕ),
y ∈ Finset.filter (fun x => x ∣ n) (Finset.range (succ n)) →
x ≠ y →
Disjoint (Finset.filter (fun x_1 => orderOf x_1 = x) Finset.univ)
(Finset.filter (fun x => orderOf x = y) Finset.univ)
[PROOFSTEP]
intros
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝² : Monoid G
x : G
n : ℕ
inst✝¹ : Fintype G
inst✝ : DecidableEq G
hn : n ≠ 0
x✝ : ℕ
a✝² : x✝ ∈ Finset.filter (fun x => x ∣ n) (Finset.range (succ n))
y✝ : ℕ
a✝¹ : y✝ ∈ Finset.filter (fun x => x ∣ n) (Finset.range (succ n))
a✝ : x✝ ≠ y✝
⊢ Disjoint (Finset.filter (fun x => orderOf x = x✝) Finset.univ) (Finset.filter (fun x => orderOf x = y✝) Finset.univ)
[PROOFSTEP]
apply Finset.disjoint_filter.2
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝² : Monoid G
x : G
n : ℕ
inst✝¹ : Fintype G
inst✝ : DecidableEq G
hn : n ≠ 0
x✝ : ℕ
a✝² : x✝ ∈ Finset.filter (fun x => x ∣ n) (Finset.range (succ n))
y✝ : ℕ
a✝¹ : y✝ ∈ Finset.filter (fun x => x ∣ n) (Finset.range (succ n))
a✝ : x✝ ≠ y✝
⊢ ∀ (x : G), x ∈ Finset.univ → orderOf x = x✝ → ¬orderOf x = y✝
[PROOFSTEP]
rintro _ _ rfl
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝² : Monoid G
x : G
n : ℕ
inst✝¹ : Fintype G
inst✝ : DecidableEq G
hn : n ≠ 0
y✝ : ℕ
a✝³ : y✝ ∈ Finset.filter (fun x => x ∣ n) (Finset.range (succ n))
x✝ : G
a✝² : x✝ ∈ Finset.univ
a✝¹ : orderOf x✝ ∈ Finset.filter (fun x => x ∣ n) (Finset.range (succ n))
a✝ : orderOf x✝ ≠ y✝
⊢ ¬orderOf x✝ = y✝
[PROOFSTEP]
assumption
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝² : Monoid G
x : G
n : ℕ
inst✝¹ : Fintype G
inst✝ : DecidableEq G
hn : n ≠ 0
⊢ ∀ (a : G),
(a ∈
Finset.biUnion (Finset.filter (fun x => x ∣ n) (Finset.range (succ n))) fun m =>
Finset.filter (fun x => orderOf x = m) Finset.univ) ↔
a ∈ Finset.filter (fun x => x ^ n = 1) Finset.univ
[PROOFSTEP]
intro x
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝² : Monoid G
x✝ : G
n : ℕ
inst✝¹ : Fintype G
inst✝ : DecidableEq G
hn : n ≠ 0
x : G
⊢ (x ∈
Finset.biUnion (Finset.filter (fun x => x ∣ n) (Finset.range (succ n))) fun m =>
Finset.filter (fun x => orderOf x = m) Finset.univ) ↔
x ∈ Finset.filter (fun x => x ^ n = 1) Finset.univ
[PROOFSTEP]
suffices orderOf x ≤ n ∧ orderOf x ∣ n ↔ x ^ n = 1 by simpa [Nat.lt_succ_iff]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝² : Monoid G
x✝ : G
n : ℕ
inst✝¹ : Fintype G
inst✝ : DecidableEq G
hn : n ≠ 0
x : G
this : orderOf x ≤ n ∧ orderOf x ∣ n ↔ x ^ n = 1
⊢ (x ∈
Finset.biUnion (Finset.filter (fun x => x ∣ n) (Finset.range (succ n))) fun m =>
Finset.filter (fun x => orderOf x = m) Finset.univ) ↔
x ∈ Finset.filter (fun x => x ^ n = 1) Finset.univ
[PROOFSTEP]
simpa [Nat.lt_succ_iff]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝² : Monoid G
x✝ : G
n : ℕ
inst✝¹ : Fintype G
inst✝ : DecidableEq G
hn : n ≠ 0
x : G
⊢ orderOf x ≤ n ∧ orderOf x ∣ n ↔ x ^ n = 1
[PROOFSTEP]
exact
⟨fun h => by
let ⟨m, hm⟩ := h.2
rw [hm, pow_mul, pow_orderOf_eq_one, one_pow], fun h =>
⟨orderOf_le_of_pow_eq_one hn.bot_lt h, orderOf_dvd_of_pow_eq_one h⟩⟩
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝² : Monoid G
x✝ : G
n : ℕ
inst✝¹ : Fintype G
inst✝ : DecidableEq G
hn : n ≠ 0
x : G
h : orderOf x ≤ n ∧ orderOf x ∣ n
⊢ x ^ n = 1
[PROOFSTEP]
let ⟨m, hm⟩ := h.2
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝² : Monoid G
x✝ : G
n : ℕ
inst✝¹ : Fintype G
inst✝ : DecidableEq G
hn : n ≠ 0
x : G
h : orderOf x ≤ n ∧ orderOf x ∣ n
m : ℕ
hm : n = orderOf x * m
⊢ x ^ n = 1
[PROOFSTEP]
rw [hm, pow_mul, pow_orderOf_eq_one, one_pow]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : LeftCancelMonoid G
x✝ y : G
n : ℕ
inst✝ : Finite G
x : G
⊢ IsOfFinOrder x
[PROOFSTEP]
have : (Set.univ : Set G).Finite := Set.univ.toFinite
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : LeftCancelMonoid G
x✝ y : G
n : ℕ
inst✝ : Finite G
x : G
this : Set.Finite Set.univ
⊢ IsOfFinOrder x
[PROOFSTEP]
contrapose! this
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : LeftCancelMonoid G
x✝ y : G
n : ℕ
inst✝ : Finite G
x : G
this : ¬IsOfFinOrder x
⊢ ¬Set.Finite Set.univ
[PROOFSTEP]
exact Set.Infinite.mono (Set.subset_univ _) (infinite_not_isOfFinOrder this)
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : LeftCancelMonoid G
x✝ y : G
n✝ : ℕ
inst✝ : Finite G
x : G
n : ℕ
hn : ∃ m, x ^ m = x ^ n
⊢ ↑(finEquivPowers x).symm { val := x ^ n, property := hn } =
{ val := n % orderOf x, isLt := (_ : n % orderOf x < orderOf x) }
[PROOFSTEP]
rw [Equiv.symm_apply_eq, finEquivPowers_apply, Subtype.mk_eq_mk, pow_eq_mod_orderOf, Fin.val_mk]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : LeftCancelMonoid G
x y : G
n✝ : ℕ
inst✝ : Finite G
h : orderOf x = orderOf y
n : ℕ
⊢ ↑(powersEquivPowers h) { val := x ^ n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) x y = x ^ n) } =
{ val := y ^ n, property := (_ : ∃ y_1, (fun x x_1 => x ^ x_1) y y_1 = y ^ n) }
[PROOFSTEP]
rw [powersEquivPowers, Equiv.trans_apply, Equiv.trans_apply, finEquivPowers_symm_apply, ← Equiv.eq_symm_apply,
finEquivPowers_symm_apply]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : LeftCancelMonoid G
x y : G
n✝ : ℕ
inst✝ : Finite G
h : orderOf x = orderOf y
n : ℕ
⊢ ↑(Fin.castIso h).toEquiv { val := n % orderOf x, isLt := (_ : n % orderOf x < orderOf x) } =
{ val := n % orderOf y, isLt := (_ : n % orderOf y < orderOf y) }
[PROOFSTEP]
simp [h]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Group G
x✝ y : G
n : ℕ
inst✝ : Finite G
x : G
⊢ ∃ i x_1, x ^ i = 1
[PROOFSTEP]
rcases exists_pow_eq_one x with ⟨w, hw1, hw2⟩
[GOAL]
case intro.intro
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Group G
x✝ y : G
n : ℕ
inst✝ : Finite G
x : G
w : ℕ
hw1 : w > 0
hw2 : IsPeriodicPt ((fun x x_1 => x * x_1) x) w 1
⊢ ∃ i x_1, x ^ i = 1
[PROOFSTEP]
refine' ⟨w, Int.coe_nat_ne_zero.mpr (_root_.ne_of_gt hw1), _⟩
[GOAL]
case intro.intro
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Group G
x✝ y : G
n : ℕ
inst✝ : Finite G
x : G
w : ℕ
hw1 : w > 0
hw2 : IsPeriodicPt ((fun x x_1 => x * x_1) x) w 1
⊢ x ^ ↑w = 1
[PROOFSTEP]
rw [zpow_ofNat]
[GOAL]
case intro.intro
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Group G
x✝ y : G
n : ℕ
inst✝ : Finite G
x : G
w : ℕ
hw1 : w > 0
hw2 : IsPeriodicPt ((fun x x_1 => x * x_1) x) w 1
⊢ x ^ w = 1
[PROOFSTEP]
exact (isPeriodicPt_mul_iff_pow_eq_one _).mp hw2
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Group G
x y : G
n✝ : ℕ
inst✝ : Finite G
x✝ : y ∈ Submonoid.powers x
n : ℕ
hn : (fun x x_1 => x ^ x_1) x n = y
⊢ (fun x x_1 => x ^ x_1) x ↑n = y
[PROOFSTEP]
simp_all
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Group G
x y : G
n : ℕ
inst✝ : Finite G
x✝ : y ∈ zpowers x
i : ℤ
hi : (fun x x_1 => x ^ x_1) x i = y
⊢ (fun x x_1 => x ^ x_1) x (Int.natAbs (i % ↑(orderOf x))) = y
[PROOFSTEP]
dsimp only
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Group G
x y : G
n : ℕ
inst✝ : Finite G
x✝ : y ∈ zpowers x
i : ℤ
hi : (fun x x_1 => x ^ x_1) x i = y
⊢ x ^ Int.natAbs (i % ↑(orderOf x)) = y
[PROOFSTEP]
rwa [← zpow_ofNat, Int.natAbs_of_nonneg (Int.emod_nonneg _ (Int.coe_nat_ne_zero_iff_pos.2 (orderOf_pos x))), ←
zpow_eq_mod_orderOf]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝² : Group G
x y : G
n : ℕ
inst✝¹ : Finite G
inst✝ : DecidableEq G
⊢ y ∈ zpowers x ↔ y ∈ Finset.image ((fun x x_1 => x ^ x_1) x) (Finset.range (orderOf x))
[PROOFSTEP]
rw [← mem_powers_iff_mem_zpowers, mem_powers_iff_mem_range_orderOf]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : Group G
x y : G
n✝ : ℕ
n : ℤ
⊢ x ^ n = 1 ↔ n ≡ 0 [ZMOD ↑(orderOf x)]
[PROOFSTEP]
rw [Int.modEq_zero_iff_dvd, orderOf_dvd_iff_zpow_eq_one]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : Group G
x y : G
n✝ : ℕ
m n : ℤ
⊢ x ^ m = x ^ n ↔ m ≡ n [ZMOD ↑(orderOf x)]
[PROOFSTEP]
rw [← mul_inv_eq_one, ← zpow_sub, zpow_eq_one_iff_modEq, Int.modEq_iff_dvd, Int.modEq_iff_dvd, zero_sub, neg_sub]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : Group G
x y : G
n : ℕ
⊢ (Injective fun n => x ^ n) ↔ ¬IsOfFinOrder x
[PROOFSTEP]
refine' ⟨_, fun h n m hnm => _⟩
[GOAL]
case refine'_1
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : Group G
x y : G
n : ℕ
⊢ (Injective fun n => x ^ n) → ¬IsOfFinOrder x
[PROOFSTEP]
simp_rw [isOfFinOrder_iff_pow_eq_one]
[GOAL]
case refine'_1
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : Group G
x y : G
n : ℕ
⊢ (Injective fun n => x ^ n) → ¬∃ n, 0 < n ∧ x ^ n = 1
[PROOFSTEP]
rintro h ⟨n, hn, hx⟩
[GOAL]
case refine'_1.intro.intro
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : Group G
x y : G
n✝ : ℕ
h : Injective fun n => x ^ n
n : ℕ
hn : 0 < n
hx : x ^ n = 1
⊢ False
[PROOFSTEP]
exact Nat.cast_ne_zero.2 hn.ne' (h <| by simpa using hx)
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : Group G
x y : G
n✝ : ℕ
h : Injective fun n => x ^ n
n : ℕ
hn : 0 < n
hx : x ^ n = 1
⊢ (fun n => x ^ n) ↑n = (fun n => x ^ n) 0
[PROOFSTEP]
simpa using hx
[GOAL]
case refine'_2
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : Group G
x y : G
n✝ : ℕ
h : ¬IsOfFinOrder x
n m : ℤ
hnm : (fun n => x ^ n) n = (fun n => x ^ n) m
⊢ n = m
[PROOFSTEP]
rwa [zpow_eq_zpow_iff_modEq, orderOf_eq_zero_iff.2 h, Nat.cast_zero, Int.modEq_zero_iff] at hnm
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Group G
x✝ y : G
n✝ : ℕ
inst✝ : Finite G
x : G
n : ℕ
hn : ∃ m, x ^ m = x ^ n
⊢ ↑(finEquivZpowers x).symm { val := x ^ n, property := hn } =
{ val := n % orderOf x, isLt := (_ : n % orderOf x < orderOf x) }
[PROOFSTEP]
rw [finEquivZpowers, Equiv.symm_trans_apply]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Group G
x✝ y : G
n✝ : ℕ
inst✝ : Finite G
x : G
n : ℕ
hn : ∃ m, x ^ m = x ^ n
⊢ ↑(finEquivPowers x).symm
(↑(Equiv.Set.ofEq (_ : ↑(Submonoid.powers x) = ↑(zpowers x))).symm { val := x ^ n, property := hn }) =
{ val := n % orderOf x, isLt := (_ : n % orderOf x < orderOf x) }
[PROOFSTEP]
exact finEquivPowers_symm_apply x n
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Group G
x y : G
n✝ : ℕ
inst✝ : Finite G
h : orderOf x = orderOf y
n : ℕ
⊢ ↑(zpowersEquivZpowers h) { val := x ^ n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) x y = x ^ n) } =
{ val := y ^ n, property := (_ : ∃ y_1, (fun x x_1 => x ^ x_1) y y_1 = y ^ n) }
[PROOFSTEP]
rw [zpowersEquivZpowers, Equiv.trans_apply, Equiv.trans_apply, finEquivZpowers_symm_apply, ← Equiv.eq_symm_apply,
finEquivZpowers_symm_apply]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Group G
x y : G
n✝ : ℕ
inst✝ : Finite G
h : orderOf x = orderOf y
n : ℕ
⊢ ↑(Fin.castIso h).toEquiv { val := n % orderOf x, isLt := (_ : n % orderOf x < orderOf x) } =
{ val := n % orderOf y, isLt := (_ : n % orderOf y < orderOf y) }
[PROOFSTEP]
simp [h]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Group G
x y : G
n : ℕ
inst✝ : Fintype G
⊢ orderOf x ∣ Fintype.card G
[PROOFSTEP]
classical
have ft_prod : Fintype ((G ⧸ zpowers x) × zpowers x) := Fintype.ofEquiv G groupEquivQuotientProdSubgroup
have ft_s : Fintype (zpowers x) := @Fintype.prodRight _ _ _ ft_prod _
have ft_cosets : Fintype (G ⧸ zpowers x) := @Fintype.prodLeft _ _ _ ft_prod ⟨⟨1, (zpowers x).one_mem⟩⟩
have eq₁ : Fintype.card G = @Fintype.card _ ft_cosets * @Fintype.card _ ft_s :=
calc
Fintype.card G = @Fintype.card _ ft_prod := @Fintype.card_congr _ _ _ ft_prod groupEquivQuotientProdSubgroup
_ = @Fintype.card _ (@instFintypeProd _ _ ft_cosets ft_s) := (congr_arg (@Fintype.card _) <| Subsingleton.elim _ _)
_ = @Fintype.card _ ft_cosets * @Fintype.card _ ft_s := @Fintype.card_prod _ _ ft_cosets ft_s
have eq₂ : orderOf x = @Fintype.card _ ft_s :=
calc
orderOf x = _ := orderOf_eq_card_zpowers
_ = _ := congr_arg (@Fintype.card _) <| Subsingleton.elim _ _
exact Dvd.intro (@Fintype.card (G ⧸ Subgroup.zpowers x) ft_cosets) (by rw [eq₁, eq₂, mul_comm])
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Group G
x y : G
n : ℕ
inst✝ : Fintype G
⊢ orderOf x ∣ Fintype.card G
[PROOFSTEP]
have ft_prod : Fintype ((G ⧸ zpowers x) × zpowers x) := Fintype.ofEquiv G groupEquivQuotientProdSubgroup
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Group G
x y : G
n : ℕ
inst✝ : Fintype G
ft_prod : Fintype ((G ⧸ zpowers x) × { x_1 // x_1 ∈ zpowers x })
⊢ orderOf x ∣ Fintype.card G
[PROOFSTEP]
have ft_s : Fintype (zpowers x) := @Fintype.prodRight _ _ _ ft_prod _
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Group G
x y : G
n : ℕ
inst✝ : Fintype G
ft_prod : Fintype ((G ⧸ zpowers x) × { x_1 // x_1 ∈ zpowers x })
ft_s : Fintype { x_1 // x_1 ∈ zpowers x }
⊢ orderOf x ∣ Fintype.card G
[PROOFSTEP]
have ft_cosets : Fintype (G ⧸ zpowers x) := @Fintype.prodLeft _ _ _ ft_prod ⟨⟨1, (zpowers x).one_mem⟩⟩
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Group G
x y : G
n : ℕ
inst✝ : Fintype G
ft_prod : Fintype ((G ⧸ zpowers x) × { x_1 // x_1 ∈ zpowers x })
ft_s : Fintype { x_1 // x_1 ∈ zpowers x }
ft_cosets : Fintype (G ⧸ zpowers x)
⊢ orderOf x ∣ Fintype.card G
[PROOFSTEP]
have eq₁ : Fintype.card G = @Fintype.card _ ft_cosets * @Fintype.card _ ft_s :=
calc
Fintype.card G = @Fintype.card _ ft_prod := @Fintype.card_congr _ _ _ ft_prod groupEquivQuotientProdSubgroup
_ = @Fintype.card _ (@instFintypeProd _ _ ft_cosets ft_s) := (congr_arg (@Fintype.card _) <| Subsingleton.elim _ _)
_ = @Fintype.card _ ft_cosets * @Fintype.card _ ft_s := @Fintype.card_prod _ _ ft_cosets ft_s
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Group G
x y : G
n : ℕ
inst✝ : Fintype G
ft_prod : Fintype ((G ⧸ zpowers x) × { x_1 // x_1 ∈ zpowers x })
ft_s : Fintype { x_1 // x_1 ∈ zpowers x }
ft_cosets : Fintype (G ⧸ zpowers x)
eq₁ : Fintype.card G = Fintype.card (G ⧸ zpowers x) * Fintype.card { x_1 // x_1 ∈ zpowers x }
⊢ orderOf x ∣ Fintype.card G
[PROOFSTEP]
have eq₂ : orderOf x = @Fintype.card _ ft_s :=
calc
orderOf x = _ := orderOf_eq_card_zpowers
_ = _ := congr_arg (@Fintype.card _) <| Subsingleton.elim _ _
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Group G
x y : G
n : ℕ
inst✝ : Fintype G
ft_prod : Fintype ((G ⧸ zpowers x) × { x_1 // x_1 ∈ zpowers x })
ft_s : Fintype { x_1 // x_1 ∈ zpowers x }
ft_cosets : Fintype (G ⧸ zpowers x)
eq₁ : Fintype.card G = Fintype.card (G ⧸ zpowers x) * Fintype.card { x_1 // x_1 ∈ zpowers x }
eq₂ : orderOf x = Fintype.card { x_1 // x_1 ∈ zpowers x }
⊢ orderOf x ∣ Fintype.card G
[PROOFSTEP]
exact Dvd.intro (@Fintype.card (G ⧸ Subgroup.zpowers x) ft_cosets) (by rw [eq₁, eq₂, mul_comm])
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Group G
x y : G
n : ℕ
inst✝ : Fintype G
ft_prod : Fintype ((G ⧸ zpowers x) × { x_1 // x_1 ∈ zpowers x })
ft_s : Fintype { x_1 // x_1 ∈ zpowers x }
ft_cosets : Fintype (G ⧸ zpowers x)
eq₁ : Fintype.card G = Fintype.card (G ⧸ zpowers x) * Fintype.card { x_1 // x_1 ∈ zpowers x }
eq₂ : orderOf x = Fintype.card { x_1 // x_1 ∈ zpowers x }
⊢ orderOf x * Fintype.card (G ⧸ zpowers x) = Fintype.card G
[PROOFSTEP]
rw [eq₁, eq₂, mul_comm]
[GOAL]
G✝ : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝² : Group G✝
x✝ y : G✝
n : ℕ
inst✝¹ : Fintype G✝
G : Type u_6
inst✝ : Group G
x : G
⊢ orderOf x ∣ Nat.card G
[PROOFSTEP]
cases' fintypeOrInfinite G with h h
[GOAL]
case inl
G✝ : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝² : Group G✝
x✝ y : G✝
n : ℕ
inst✝¹ : Fintype G✝
G : Type u_6
inst✝ : Group G
x : G
h : Fintype G
⊢ orderOf x ∣ Nat.card G
[PROOFSTEP]
simp only [Nat.card_eq_fintype_card, orderOf_dvd_card_univ]
[GOAL]
case inr
G✝ : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝² : Group G✝
x✝ y : G✝
n : ℕ
inst✝¹ : Fintype G✝
G : Type u_6
inst✝ : Group G
x : G
h : Infinite G
⊢ orderOf x ∣ Nat.card G
[PROOFSTEP]
simp only [card_eq_zero_of_infinite, dvd_zero]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Group G
x y : G
n : ℕ
inst✝ : Fintype G
⊢ x ^ Fintype.card G = 1
[PROOFSTEP]
rw [← Nat.card_eq_fintype_card, pow_card_eq_one']
[GOAL]
G✝ : Type u_1
H✝ : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝³ : Group G✝
x y : G✝
n : ℕ
inst✝² : Fintype G✝
G : Type u_6
inst✝¹ : Group G
H : Subgroup G
inst✝ : Normal H
g : G
⊢ g ^ index H ∈ H
[PROOFSTEP]
rw [← eq_one_iff, QuotientGroup.mk_pow H, index, pow_card_eq_one']
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Group G
x y : G
n✝ : ℕ
inst✝ : Fintype G
n : ℕ
⊢ x ^ n = x ^ (n % Fintype.card G)
[PROOFSTEP]
rw [pow_eq_mod_orderOf, ← Nat.mod_mod_of_dvd n orderOf_dvd_card_univ, ← pow_eq_mod_orderOf]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Group G
x y : G
n✝ : ℕ
inst✝ : Fintype G
n : ℤ
⊢ x ^ n = x ^ (n % ↑(Fintype.card G))
[PROOFSTEP]
rw [zpow_eq_mod_orderOf, ← Int.emod_emod_of_dvd n (Int.coe_nat_dvd.2 orderOf_dvd_card_univ), ← zpow_eq_mod_orderOf]
[GOAL]
G✝ : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝² : Group G✝
x y : G✝
n : ℕ
inst✝¹ : Fintype G✝
G : Type u_6
inst✝ : Group G
h : coprime (Nat.card G) n
g : G
⊢ (fun g => g ^ gcdB (Nat.card G) n) ((fun g => g ^ n) g) = g
[PROOFSTEP]
have key := congr_arg ((· ^ ·) g) ((Nat.card G).gcd_eq_gcd_ab n)
[GOAL]
G✝ : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝² : Group G✝
x y : G✝
n : ℕ
inst✝¹ : Fintype G✝
G : Type u_6
inst✝ : Group G
h : coprime (Nat.card G) n
g : G
key :
(fun x x_1 => x ^ x_1) g ↑(gcd (Nat.card G) n) =
(fun x x_1 => x ^ x_1) g (↑(Nat.card G) * gcdA (Nat.card G) n + ↑n * gcdB (Nat.card G) n)
⊢ (fun g => g ^ gcdB (Nat.card G) n) ((fun g => g ^ n) g) = g
[PROOFSTEP]
dsimp only at key
[GOAL]
G✝ : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝² : Group G✝
x y : G✝
n : ℕ
inst✝¹ : Fintype G✝
G : Type u_6
inst✝ : Group G
h : coprime (Nat.card G) n
g : G
key : g ^ ↑(gcd (Nat.card G) n) = g ^ (↑(Nat.card G) * gcdA (Nat.card G) n + ↑n * gcdB (Nat.card G) n)
⊢ (fun g => g ^ gcdB (Nat.card G) n) ((fun g => g ^ n) g) = g
[PROOFSTEP]
rwa [zpow_add, zpow_mul, zpow_mul, zpow_ofNat, zpow_ofNat, zpow_ofNat, h.gcd_eq_one, pow_one, pow_card_eq_one',
one_zpow, one_mul, eq_comm] at key
[GOAL]
G✝ : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝² : Group G✝
x y : G✝
n : ℕ
inst✝¹ : Fintype G✝
G : Type u_6
inst✝ : Group G
h : coprime (Nat.card G) n
g : G
⊢ (fun g => g ^ n) ((fun g => g ^ gcdB (Nat.card G) n) g) = g
[PROOFSTEP]
have key := congr_arg ((· ^ ·) g) ((Nat.card G).gcd_eq_gcd_ab n)
[GOAL]
G✝ : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝² : Group G✝
x y : G✝
n : ℕ
inst✝¹ : Fintype G✝
G : Type u_6
inst✝ : Group G
h : coprime (Nat.card G) n
g : G
key :
(fun x x_1 => x ^ x_1) g ↑(gcd (Nat.card G) n) =
(fun x x_1 => x ^ x_1) g (↑(Nat.card G) * gcdA (Nat.card G) n + ↑n * gcdB (Nat.card G) n)
⊢ (fun g => g ^ n) ((fun g => g ^ gcdB (Nat.card G) n) g) = g
[PROOFSTEP]
dsimp only at key
[GOAL]
G✝ : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝² : Group G✝
x y : G✝
n : ℕ
inst✝¹ : Fintype G✝
G : Type u_6
inst✝ : Group G
h : coprime (Nat.card G) n
g : G
key : g ^ ↑(gcd (Nat.card G) n) = g ^ (↑(Nat.card G) * gcdA (Nat.card G) n + ↑n * gcdB (Nat.card G) n)
⊢ (fun g => g ^ n) ((fun g => g ^ gcdB (Nat.card G) n) g) = g
[PROOFSTEP]
rwa [zpow_add, zpow_mul, zpow_mul', zpow_ofNat, zpow_ofNat, zpow_ofNat, h.gcd_eq_one, pow_one, pow_card_eq_one',
one_zpow, one_mul, eq_comm] at key
[GOAL]
G✝ : Type u_1
H✝ : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝⁴ : Group G✝
x y : G✝
n : ℕ
inst✝³ : Fintype G✝
G : Type u_6
inst✝² : Group G
H K : Subgroup G
inst✝¹ : Fintype { x // x ∈ H }
inst✝ : Fintype { x // x ∈ K }
h : coprime (Fintype.card { x // x ∈ H }) (Fintype.card { x // x ∈ K })
⊢ H ⊓ K = ⊥
[PROOFSTEP]
refine' (H ⊓ K).eq_bot_iff_forall.mpr fun x hx => _
[GOAL]
G✝ : Type u_1
H✝ : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝⁴ : Group G✝
x✝ y : G✝
n : ℕ
inst✝³ : Fintype G✝
G : Type u_6
inst✝² : Group G
H K : Subgroup G
inst✝¹ : Fintype { x // x ∈ H }
inst✝ : Fintype { x // x ∈ K }
h : coprime (Fintype.card { x // x ∈ H }) (Fintype.card { x // x ∈ K })
x : G
hx : x ∈ H ⊓ K
⊢ x = 1
[PROOFSTEP]
rw [← orderOf_eq_one_iff, ← Nat.dvd_one, ← h.gcd_eq_one, Nat.dvd_gcd_iff]
[GOAL]
G✝ : Type u_1
H✝ : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝⁴ : Group G✝
x✝ y : G✝
n : ℕ
inst✝³ : Fintype G✝
G : Type u_6
inst✝² : Group G
H K : Subgroup G
inst✝¹ : Fintype { x // x ∈ H }
inst✝ : Fintype { x // x ∈ K }
h : coprime (Fintype.card { x // x ∈ H }) (Fintype.card { x // x ∈ K })
x : G
hx : x ∈ H ⊓ K
⊢ orderOf x ∣ Fintype.card { x // x ∈ H } ∧ orderOf x ∣ Fintype.card { x // x ∈ K }
[PROOFSTEP]
exact
⟨(congr_arg (· ∣ Fintype.card H) (orderOf_subgroup ⟨x, hx.1⟩)).mpr orderOf_dvd_card_univ,
(congr_arg (· ∣ Fintype.card K) (orderOf_subgroup ⟨x, hx.2⟩)).mpr orderOf_dvd_card_univ⟩
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝² : Group G
x y : G
n : ℕ
inst✝¹ : Fintype G
inst✝ : DecidableEq G
⊢ Finset.image (fun i => x ^ i) (Finset.range (orderOf x)) = Set.toFinset ↑(zpowers x)
[PROOFSTEP]
ext x
[GOAL]
case a
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝² : Group G
x✝ y : G
n : ℕ
inst✝¹ : Fintype G
inst✝ : DecidableEq G
x : G
⊢ x ∈ Finset.image (fun i => x✝ ^ i) (Finset.range (orderOf x✝)) ↔ x ∈ Set.toFinset ↑(zpowers x✝)
[PROOFSTEP]
rw [Set.mem_toFinset, SetLike.mem_coe, mem_zpowers_iff_mem_range_orderOf]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Group G
x y : G
n : ℕ
inst✝ : Fintype G
h : x ^ gcd n (Fintype.card G) = 1
⊢ x ^ n = 1
[PROOFSTEP]
let ⟨m, hm⟩ := gcd_dvd_left n (Fintype.card G)
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Group G
x y : G
n : ℕ
inst✝ : Fintype G
h : x ^ gcd n (Fintype.card G) = 1
m : ℕ
hm : n = gcd n (Fintype.card G) * m
⊢ x ^ n = 1
[PROOFSTEP]
rw [hm, pow_mul, h, one_pow]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
M : Type u_6
inst✝¹ : LeftCancelMonoid M
inst✝ : Fintype M
S : Set M
hS1 : Set.Nonempty S
hS2 : S * S = S
a : M
ha : a ∈ S
⊢ a ^ (zero + 1) ∈ S
[PROOFSTEP]
rwa [Nat.zero_eq, zero_add, pow_one]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
M : Type u_6
inst✝¹ : LeftCancelMonoid M
inst✝ : Fintype M
S : Set M
hS1 : Set.Nonempty S
hS2 : S * S = S
pow_mem : ∀ (a : M), a ∈ S → ∀ (n : ℕ), a ^ (n + 1) ∈ S
⊢ 1 ∈ { carrier := S, mul_mem' := (_ : ∀ {a b : M}, a ∈ S → b ∈ S → a * b ∈ S) }.carrier
[PROOFSTEP]
obtain ⟨a, ha⟩ := hS1
[GOAL]
case intro
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
M : Type u_6
inst✝¹ : LeftCancelMonoid M
inst✝ : Fintype M
S : Set M
hS2 : S * S = S
pow_mem : ∀ (a : M), a ∈ S → ∀ (n : ℕ), a ^ (n + 1) ∈ S
a : M
ha : a ∈ S
⊢ 1 ∈ { carrier := S, mul_mem' := (_ : ∀ {a b : M}, a ∈ S → b ∈ S → a * b ∈ S) }.carrier
[PROOFSTEP]
rw [← pow_orderOf_eq_one a, ← tsub_add_cancel_of_le (succ_le_of_lt (orderOf_pos a))]
[GOAL]
case intro
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
M : Type u_6
inst✝¹ : LeftCancelMonoid M
inst✝ : Fintype M
S : Set M
hS2 : S * S = S
pow_mem : ∀ (a : M), a ∈ S → ∀ (n : ℕ), a ^ (n + 1) ∈ S
a : M
ha : a ∈ S
⊢ a ^ (orderOf a - succ 0 + succ 0) ∈ { carrier := S, mul_mem' := (_ : ∀ {a b : M}, a ∈ S → b ∈ S → a * b ∈ S) }.carrier
[PROOFSTEP]
exact pow_mem a ha (orderOf a - 1)
[GOAL]
G✝ : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
G : Type u_6
inst✝¹ : Group G
inst✝ : Fintype G
S : Set G
hS1 : Set.Nonempty S
hS2 : S * S = S
src✝ : Submonoid G := submonoidOfIdempotent S hS1 hS2
a : G
ha :
a ∈
{
toSubsemigroup :=
{ carrier := S, mul_mem' := (_ : ∀ {a b : G}, a ∈ src✝.carrier → b ∈ src✝.carrier → a * b ∈ src✝.carrier) },
one_mem' := (_ : 1 ∈ src✝.carrier) }.toSubsemigroup.carrier
⊢ a⁻¹ ∈ submonoidOfIdempotent S hS1 hS2
[PROOFSTEP]
rw [← one_mul a⁻¹, ← pow_one a, ← pow_orderOf_eq_one a, ← pow_sub a (orderOf_pos a)]
[GOAL]
G✝ : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
G : Type u_6
inst✝¹ : Group G
inst✝ : Fintype G
S : Set G
hS1 : Set.Nonempty S
hS2 : S * S = S
src✝ : Submonoid G := submonoidOfIdempotent S hS1 hS2
a : G
ha :
a ∈
{
toSubsemigroup :=
{ carrier := S, mul_mem' := (_ : ∀ {a b : G}, a ∈ src✝.carrier → b ∈ src✝.carrier → a * b ∈ src✝.carrier) },
one_mem' := (_ : 1 ∈ src✝.carrier) }.toSubsemigroup.carrier
⊢ a ^ (orderOf a - succ 0) ∈ submonoidOfIdempotent S hS1 hS2
[PROOFSTEP]
exact pow_mem ha (orderOf a - 1)
[GOAL]
G✝ : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
G : Type u_6
inst✝¹ : Group G
inst✝ : Fintype G
S : Set G
hS : Set.Nonempty S
⊢ 1 ∈ S ^ Fintype.card G
[PROOFSTEP]
obtain ⟨a, ha⟩ := hS
[GOAL]
case intro
G✝ : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
G : Type u_6
inst✝¹ : Group G
inst✝ : Fintype G
S : Set G
a : G
ha : a ∈ S
⊢ 1 ∈ S ^ Fintype.card G
[PROOFSTEP]
rw [← pow_card_eq_one]
[GOAL]
case intro
G✝ : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
G : Type u_6
inst✝¹ : Group G
inst✝ : Fintype G
S : Set G
a : G
ha : a ∈ S
⊢ ?m.1815695 ^ Fintype.card G ∈ S ^ Fintype.card G
G✝ : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
G : Type u_6
inst✝¹ : Group G
inst✝ : Fintype G
S : Set G
a : G
ha : a ∈ S
⊢ G
[PROOFSTEP]
exact Set.pow_mem_pow ha (Fintype.card G)
[GOAL]
G✝ : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
G : Type u_6
inst✝¹ : Group G
inst✝ : Fintype G
S : Set G
hS : Set.Nonempty S
one_mem : 1 ∈ S ^ Fintype.card G
⊢ S ^ Fintype.card G * S ^ Fintype.card G = S ^ Fintype.card G
[PROOFSTEP]
classical!
[GOAL]
G✝ : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
G : Type u_6
inst✝¹ : Group G
inst✝ : Fintype G
S : Set G
hS : Set.Nonempty S
one_mem : 1 ∈ S ^ Fintype.card G
em✝ : (a : Prop) → Decidable a
⊢ S ^ Fintype.card G * S ^ Fintype.card G = S ^ Fintype.card G
[PROOFSTEP]
apply (Set.eq_of_subset_of_card_le (Set.subset_mul_left _ one_mem) (ge_of_eq _)).symm
[GOAL]
G✝ : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
G : Type u_6
inst✝¹ : Group G
inst✝ : Fintype G
S : Set G
hS : Set.Nonempty S
one_mem : 1 ∈ S ^ Fintype.card G
em✝ : (a : Prop) → Decidable a
⊢ Fintype.card ↑(S ^ Fintype.card G) = Fintype.card ↑(S ^ Fintype.card G * S ^ Fintype.card G)
[PROOFSTEP]
simp_rw [← pow_add, Group.card_pow_eq_card_pow_card_univ S (Fintype.card G + Fintype.card G) le_add_self]
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : LinearOrderedRing G
x : G
h : |x| ≠ 1
⊢ orderOf x = 0
[PROOFSTEP]
rw [orderOf_eq_zero_iff']
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : LinearOrderedRing G
x : G
h : |x| ≠ 1
⊢ ∀ (n : ℕ), 0 < n → x ^ n ≠ 1
[PROOFSTEP]
intro n hn hx
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : LinearOrderedRing G
x : G
h : |x| ≠ 1
n : ℕ
hn : 0 < n
hx : x ^ n = 1
⊢ False
[PROOFSTEP]
replace hx : |x| ^ n = 1 := by simpa only [abs_one, abs_pow] using congr_arg abs hx
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : LinearOrderedRing G
x : G
h : |x| ≠ 1
n : ℕ
hn : 0 < n
hx : x ^ n = 1
⊢ |x| ^ n = 1
[PROOFSTEP]
simpa only [abs_one, abs_pow] using congr_arg abs hx
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : LinearOrderedRing G
x : G
h : |x| ≠ 1
n : ℕ
hn : 0 < n
hx : |x| ^ n = 1
⊢ False
[PROOFSTEP]
cases' h.lt_or_lt with h h
[GOAL]
case inl
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : LinearOrderedRing G
x : G
h✝ : |x| ≠ 1
n : ℕ
hn : 0 < n
hx : |x| ^ n = 1
h : |x| < 1
⊢ False
[PROOFSTEP]
exact ((pow_lt_one (abs_nonneg x) h hn.ne').ne hx).elim
[GOAL]
case inr
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : LinearOrderedRing G
x : G
h✝ : |x| ≠ 1
n : ℕ
hn : 0 < n
hx : |x| ^ n = 1
h : 1 < |x|
⊢ False
[PROOFSTEP]
exact ((one_lt_pow h hn.ne').ne' hx).elim
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : LinearOrderedRing G
x : G
⊢ orderOf x ≤ 2
[PROOFSTEP]
cases' ne_or_eq |x| 1 with h h
[GOAL]
case inl
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : LinearOrderedRing G
x : G
h : |x| ≠ 1
⊢ orderOf x ≤ 2
[PROOFSTEP]
simp [orderOf_abs_ne_one h]
[GOAL]
case inr
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : LinearOrderedRing G
x : G
h : |x| = 1
⊢ orderOf x ≤ 2
[PROOFSTEP]
rcases eq_or_eq_neg_of_abs_eq h with (rfl | rfl)
[GOAL]
case inr.inl
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : LinearOrderedRing G
h : |1| = 1
⊢ orderOf 1 ≤ 2
[PROOFSTEP]
simp
[GOAL]
case inr.inr
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : LinearOrderedRing G
h : |(-1)| = 1
⊢ orderOf (-1) ≤ 2
[PROOFSTEP]
apply orderOf_le_of_pow_eq_one
[GOAL]
case inr.inr.hn
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : LinearOrderedRing G
h : |(-1)| = 1
⊢ 0 < 2
[PROOFSTEP]
norm_num
[GOAL]
case inr.inr.h
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝ : LinearOrderedRing G
h : |(-1)| = 1
⊢ (-1) ^ 2 = 1
[PROOFSTEP]
norm_num
[GOAL]
G : Type u_1
H : Type u_2
A : Type u_3
α : Type u_4
β : Type u_5
inst✝¹ : Monoid α
inst✝ : Monoid β
x : α × β
a : α
b : β
⊢ IsOfFinOrder a → IsOfFinOrder b → IsOfFinOrder (a, b)
[PROOFSTEP]
simpa only [← orderOf_pos_iff, Prod.orderOf] using Nat.lcm_pos
| {"mathlib_filename": "Mathlib.GroupTheory.OrderOfElement", "llama_tokens": 42156} |
[GOAL]
α : Type u
β : Type v
γ : Type w
inst✝¹ : Group α
inst✝ : MulAction α β
c : α
x : β
⊢ c⁻¹ • c • x = x
[PROOFSTEP]
rw [smul_smul, mul_left_inv, one_smul]
[GOAL]
α : Type u
β : Type v
γ : Type w
inst✝¹ : Group α
inst✝ : MulAction α β
c : α
x : β
⊢ c • c⁻¹ • x = x
[PROOFSTEP]
rw [smul_smul, mul_right_inv, one_smul]
[GOAL]
α : Type u
β : Type v
γ : Type w
inst✝⁴ : Group α
inst✝³ : MulAction α β
inst✝² : Group β
inst✝¹ : SMulCommClass α β β
inst✝ : IsScalarTower α β β
c : α
x : β
⊢ (c • x)⁻¹ = c⁻¹ • x⁻¹
[PROOFSTEP]
rw [inv_eq_iff_mul_eq_one, smul_mul_smul, mul_right_inv, mul_right_inv, one_smul]
[GOAL]
α : Type u
β : Type v
γ : Type w
inst✝⁴ : Group α
inst✝³ : MulAction α β
inst✝² : Group β
inst✝¹ : SMulCommClass α β β
inst✝ : IsScalarTower α β β
c : α
x : β
p : ℤ
⊢ (c • x) ^ p = c ^ p • x ^ p
[PROOFSTEP]
cases p
[GOAL]
case ofNat
α : Type u
β : Type v
γ : Type w
inst✝⁴ : Group α
inst✝³ : MulAction α β
inst✝² : Group β
inst✝¹ : SMulCommClass α β β
inst✝ : IsScalarTower α β β
c : α
x : β
a✝ : ℕ
⊢ (c • x) ^ Int.ofNat a✝ = c ^ Int.ofNat a✝ • x ^ Int.ofNat a✝
[PROOFSTEP]
simp [smul_pow, smul_inv]
[GOAL]
case negSucc
α : Type u
β : Type v
γ : Type w
inst✝⁴ : Group α
inst✝³ : MulAction α β
inst✝² : Group β
inst✝¹ : SMulCommClass α β β
inst✝ : IsScalarTower α β β
c : α
x : β
a✝ : ℕ
⊢ (c • x) ^ Int.negSucc a✝ = c ^ Int.negSucc a✝ • x ^ Int.negSucc a✝
[PROOFSTEP]
simp [smul_pow, smul_inv]
[GOAL]
α : Type u
β : Type v
γ : Type w
inst✝⁴ : Group α
inst✝³ : MulAction α β
inst✝² : Mul β
inst✝¹ : SMulCommClass α β β
inst✝ : IsScalarTower α β β
a b : β
r : α
⊢ Commute (r • a) b ↔ Commute a b
[PROOFSTEP]
rw [Commute.symm_iff, Commute.smul_right_iff, Commute.symm_iff]
[GOAL]
α : Type u
β : Type v
γ : Type w
inst✝¹ : GroupWithZero α
inst✝ : MulAction α β
a✝ a : α
ha : a ≠ 0
x y : β
h : a⁻¹ • x = y
⊢ x = a • y
[PROOFSTEP]
rw [← h, smul_inv_smul₀ ha]
[GOAL]
α : Type u
β : Type v
γ : Type w
inst✝¹ : GroupWithZero α
inst✝ : MulAction α β
a✝ a : α
ha : a ≠ 0
x y : β
h : x = a • y
⊢ a⁻¹ • x = y
[PROOFSTEP]
rw [h, inv_smul_smul₀ ha]
[GOAL]
α : Type u
β : Type v
γ : Type w
inst✝² : Group α
inst✝¹ : AddMonoid β
inst✝ : DistribMulAction α β
a : α
x : β
h : a • x = 0
⊢ x = 0
[PROOFSTEP]
rw [← inv_smul_smul a x, h, smul_zero]
[GOAL]
α : Type u
β : Type v
γ : Type w
G : Type u_1
A : Type u_2
B : Type u_3
inst✝¹ : DivisionMonoid G
inst✝ : MulAction G A
⊢ ∀ (b : A → B), 1 • b = b
[PROOFSTEP]
intro f
[GOAL]
α : Type u
β : Type v
γ : Type w
G : Type u_1
A : Type u_2
B : Type u_3
inst✝¹ : DivisionMonoid G
inst✝ : MulAction G A
f : A → B
⊢ 1 • f = f
[PROOFSTEP]
show (fun x => f ((1 : G)⁻¹ • x)) = f
[GOAL]
α : Type u
β : Type v
γ : Type w
G : Type u_1
A : Type u_2
B : Type u_3
inst✝¹ : DivisionMonoid G
inst✝ : MulAction G A
f : A → B
⊢ (fun x => f (1⁻¹ • x)) = f
[PROOFSTEP]
simp only [inv_one, one_smul]
[GOAL]
α : Type u
β : Type v
γ : Type w
G : Type u_1
A : Type u_2
B : Type u_3
inst✝¹ : DivisionMonoid G
inst✝ : MulAction G A
⊢ ∀ (x y : G) (b : A → B), (x * y) • b = x • y • b
[PROOFSTEP]
intros x y f
[GOAL]
α : Type u
β : Type v
γ : Type w
G : Type u_1
A : Type u_2
B : Type u_3
inst✝¹ : DivisionMonoid G
inst✝ : MulAction G A
x y : G
f : A → B
⊢ (x * y) • f = x • y • f
[PROOFSTEP]
show (fun a => f ((x * y)⁻¹ • a)) = (fun a => f (y⁻¹ • x⁻¹ • a))
[GOAL]
α : Type u
β : Type v
γ : Type w
G : Type u_1
A : Type u_2
B : Type u_3
inst✝¹ : DivisionMonoid G
inst✝ : MulAction G A
x y : G
f : A → B
⊢ (fun a => f ((x * y)⁻¹ • a)) = fun a => f (y⁻¹ • x⁻¹ • a)
[PROOFSTEP]
simp only [mul_smul, mul_inv_rev]
[GOAL]
α : Type u
β : Type v
γ : Type w
inst✝⁵ : Group α
inst✝⁴ : Monoid β
inst✝³ : AddGroup β
inst✝² : DistribMulAction α β
inst✝¹ : IsScalarTower α β β
inst✝ : SMulCommClass α β β
r : α
a : β
⊢ IsUnit (r • 1 - a) ↔ IsUnit (1 - r⁻¹ • a)
[PROOFSTEP]
rw [← isUnit_smul_iff r (1 - r⁻¹ • a), smul_sub, smul_inv_smul]
| {"mathlib_filename": "Mathlib.GroupTheory.GroupAction.Group", "llama_tokens": 2082} |
[GOAL]
α : Type u
β : Type v
γ : Type w
inst✝² : Group α
inst✝¹ : Monoid β
inst✝ : MulAction β α
H : Subgroup α
x✝³ x✝² x✝¹ : α
x✝ : x✝²⁻¹ * x✝¹ ∈ H
⊢ (x✝³ • x✝²)⁻¹ * x✝³ • x✝¹ ∈ H
[PROOFSTEP]
rwa [smul_eq_mul, smul_eq_mul, mul_inv_rev, mul_assoc, inv_mul_cancel_left]
[GOAL]
α : Type u
β : Type v
γ : Type w
inst✝² : Group α
inst✝¹ : Monoid β
inst✝ : MulAction β α
H : Subgroup α
b : { x // x ∈ ↑opposite (normalizer H) }
c x✝¹ : α
x✝ : c⁻¹ * x✝¹ ∈ H
⊢ (b • c)⁻¹ * b • x✝¹ ∈ H
[PROOFSTEP]
rwa [smul_def, smul_def, smul_eq_mul_unop, smul_eq_mul_unop, mul_inv_rev, ← mul_assoc, mem_normalizer_iff'.mp b.prop,
mul_assoc, mul_inv_cancel_left]
[GOAL]
α : Type u
β : Type v
γ : Type w
inst✝² : Group α
inst✝¹ : Monoid β
inst✝ : MulAction β α
H : Subgroup α
hH : Normal H
x✝³ : αᵐᵒᵖ
x✝² x✝¹ : α
x✝ : x✝²⁻¹ * x✝¹ ∈ H
⊢ (x✝³ • x✝²)⁻¹ * x✝³ • x✝¹ ∈ H
[PROOFSTEP]
rwa [smul_eq_mul_unop, smul_eq_mul_unop, mul_inv_rev, mul_assoc, hH.mem_comm_iff, mul_assoc, mul_inv_cancel_right]
[GOAL]
α : Type u
β : Type v
γ : Type w
inst✝³ : Group α
inst✝² : Monoid β
inst✝¹ : MulAction β α
H : Subgroup α
inst✝ : QuotientAction β H
b : β
q : α ⧸ H
⊢ ↑(b • Quotient.out' q) = b • q
[PROOFSTEP]
rw [← Quotient.smul_mk, QuotientGroup.out_eq']
[GOAL]
α : Type u
β : Type v
γ : Type w
inst✝² : Group α
inst✝¹ : Monoid β
inst✝ : MulAction β α
H : Subgroup α
a : α
q : α ⧸ H
⊢ (Quotient.out' q)⁻¹ * a ^ minimalPeriod ((fun x x_1 => x • x_1) a) q * Quotient.out' q ∈ H
[PROOFSTEP]
rw [mul_assoc, ← QuotientGroup.eq', QuotientGroup.out_eq', ← smul_eq_mul, Quotient.mk_smul_out', eq_comm,
pow_smul_eq_iff_minimalPeriod_dvd]
[GOAL]
α : Type u
β : Type v
γ : Type w
inst✝² inst✝¹ : Group α
inst✝ : MulAction α β
x : β
g : α ⧸ stabilizer α x
g1 g2 : α
H : Setoid.r g1 g2
⊢ g1 • (g1⁻¹ * g2) • x = g2 • x
[PROOFSTEP]
rw [smul_smul, mul_inv_cancel_left]
[GOAL]
α : Type u
β : Type v
γ : Type w
inst✝² inst✝¹ : Group α
inst✝ : MulAction α β
x : β
y₁ y₂ : α ⧸ stabilizer α x
g₁ g₂ : α
H : g₁ • x = g₂ • x
⊢ Setoid.r g₁ g₂
[PROOFSTEP]
rw [leftRel_apply]
[GOAL]
α : Type u
β : Type v
γ : Type w
inst✝² inst✝¹ : Group α
inst✝ : MulAction α β
x : β
y₁ y₂ : α ⧸ stabilizer α x
g₁ g₂ : α
H : g₁ • x = g₂ • x
⊢ g₁⁻¹ * g₂ ∈ stabilizer α x
[PROOFSTEP]
show (g₁⁻¹ * g₂) • x = x
[GOAL]
α : Type u
β : Type v
γ : Type w
inst✝² inst✝¹ : Group α
inst✝ : MulAction α β
x : β
y₁ y₂ : α ⧸ stabilizer α x
g₁ g₂ : α
H : g₁ • x = g₂ • x
⊢ (g₁⁻¹ * g₂) • x = x
[PROOFSTEP]
rw [mul_smul, ← H, inv_smul_smul]
[GOAL]
α : Type u
β : Type v
γ : Type w
inst✝² inst✝¹ : Group α
inst✝ : MulAction α β
x✝ b : β
x y : α ⧸ stabilizer α b
hxy :
(fun g => { val := ofQuotientStabilizer α b g, property := (_ : ofQuotientStabilizer α b g ∈ orbit α b) }) x =
(fun g => { val := ofQuotientStabilizer α b g, property := (_ : ofQuotientStabilizer α b g ∈ orbit α b) }) y
⊢ ofQuotientStabilizer α b x = ofQuotientStabilizer α b y
[PROOFSTEP]
convert congr_arg Subtype.val hxy
[GOAL]
α : Type u
β : Type v
γ : Type w
inst✝⁵ inst✝⁴ : Group α
inst✝³ : MulAction α β
x b : β
inst✝² : Fintype α
inst✝¹ : Fintype ↑(orbit α b)
inst✝ : Fintype { x // x ∈ stabilizer α b }
⊢ Fintype.card ↑(orbit α b) * Fintype.card { x // x ∈ stabilizer α b } = Fintype.card α
[PROOFSTEP]
rw [← Fintype.card_prod, Fintype.card_congr (orbitProdStabilizerEquivGroup α b)]
[GOAL]
α : Type u
β : Type v
γ : Type w
inst✝³ inst✝² : Group α
inst✝¹ : MulAction α β
x : β
G : Type u_1
inst✝ : Group G
H : Subgroup G
⊢ stabilizer G ↑1 = H
[PROOFSTEP]
ext
[GOAL]
case h
α : Type u
β : Type v
γ : Type w
inst✝³ inst✝² : Group α
inst✝¹ : MulAction α β
x : β
G : Type u_1
inst✝ : Group G
H : Subgroup G
x✝ : G
⊢ x✝ ∈ stabilizer G ↑1 ↔ x✝ ∈ H
[PROOFSTEP]
simp [QuotientGroup.eq]
[GOAL]
α : Type u
β : Type v
γ : Type w
inst✝⁶ inst✝⁵ : Group α
inst✝⁴ : MulAction α β
x : β
inst✝³ : Fintype α
inst✝² : Fintype β
inst✝¹ : Fintype (Quotient (orbitRel α β))
inst✝ : (b : β) → Fintype { x // x ∈ stabilizer α b }
φ : Quotient (orbitRel α β) → β
hφ : LeftInverse Quotient.mk'' φ
⊢ Fintype.card β = ∑ ω : Quotient (orbitRel α β), Fintype.card α / Fintype.card { x // x ∈ stabilizer α (φ ω) }
[PROOFSTEP]
classical
have : ∀ ω : Ω, Fintype.card α / Fintype.card (stabilizer α (φ ω)) = Fintype.card (α ⧸ stabilizer α (φ ω)) :=
by
intro ω
rw [Fintype.card_congr (@Subgroup.groupEquivQuotientProdSubgroup α _ (stabilizer α <| φ ω)), Fintype.card_prod,
Nat.mul_div_cancel]
exact Fintype.card_pos_iff.mpr (by infer_instance)
simp_rw [this, ← Fintype.card_sigma, Fintype.card_congr (selfEquivSigmaOrbitsQuotientStabilizer' α β hφ)]
[GOAL]
α : Type u
β : Type v
γ : Type w
inst✝⁶ inst✝⁵ : Group α
inst✝⁴ : MulAction α β
x : β
inst✝³ : Fintype α
inst✝² : Fintype β
inst✝¹ : Fintype (Quotient (orbitRel α β))
inst✝ : (b : β) → Fintype { x // x ∈ stabilizer α b }
φ : Quotient (orbitRel α β) → β
hφ : LeftInverse Quotient.mk'' φ
⊢ Fintype.card β = ∑ ω : Quotient (orbitRel α β), Fintype.card α / Fintype.card { x // x ∈ stabilizer α (φ ω) }
[PROOFSTEP]
have : ∀ ω : Ω, Fintype.card α / Fintype.card (stabilizer α (φ ω)) = Fintype.card (α ⧸ stabilizer α (φ ω)) :=
by
intro ω
rw [Fintype.card_congr (@Subgroup.groupEquivQuotientProdSubgroup α _ (stabilizer α <| φ ω)), Fintype.card_prod,
Nat.mul_div_cancel]
exact Fintype.card_pos_iff.mpr (by infer_instance)
[GOAL]
α : Type u
β : Type v
γ : Type w
inst✝⁶ inst✝⁵ : Group α
inst✝⁴ : MulAction α β
x : β
inst✝³ : Fintype α
inst✝² : Fintype β
inst✝¹ : Fintype (Quotient (orbitRel α β))
inst✝ : (b : β) → Fintype { x // x ∈ stabilizer α b }
φ : Quotient (orbitRel α β) → β
hφ : LeftInverse Quotient.mk'' φ
⊢ ∀ (ω : Quotient (orbitRel α β)),
Fintype.card α / Fintype.card { x // x ∈ stabilizer α (φ ω) } = Fintype.card (α ⧸ stabilizer α (φ ω))
[PROOFSTEP]
intro ω
[GOAL]
α : Type u
β : Type v
γ : Type w
inst✝⁶ inst✝⁵ : Group α
inst✝⁴ : MulAction α β
x : β
inst✝³ : Fintype α
inst✝² : Fintype β
inst✝¹ : Fintype (Quotient (orbitRel α β))
inst✝ : (b : β) → Fintype { x // x ∈ stabilizer α b }
φ : Quotient (orbitRel α β) → β
hφ : LeftInverse Quotient.mk'' φ
ω : Quotient (orbitRel α β)
⊢ Fintype.card α / Fintype.card { x // x ∈ stabilizer α (φ ω) } = Fintype.card (α ⧸ stabilizer α (φ ω))
[PROOFSTEP]
rw [Fintype.card_congr (@Subgroup.groupEquivQuotientProdSubgroup α _ (stabilizer α <| φ ω)), Fintype.card_prod,
Nat.mul_div_cancel]
[GOAL]
case H
α : Type u
β : Type v
γ : Type w
inst✝⁶ inst✝⁵ : Group α
inst✝⁴ : MulAction α β
x : β
inst✝³ : Fintype α
inst✝² : Fintype β
inst✝¹ : Fintype (Quotient (orbitRel α β))
inst✝ : (b : β) → Fintype { x // x ∈ stabilizer α b }
φ : Quotient (orbitRel α β) → β
hφ : LeftInverse Quotient.mk'' φ
ω : Quotient (orbitRel α β)
⊢ 0 < Fintype.card { x // x ∈ stabilizer α (φ ω) }
[PROOFSTEP]
exact Fintype.card_pos_iff.mpr (by infer_instance)
[GOAL]
α : Type u
β : Type v
γ : Type w
inst✝⁶ inst✝⁵ : Group α
inst✝⁴ : MulAction α β
x : β
inst✝³ : Fintype α
inst✝² : Fintype β
inst✝¹ : Fintype (Quotient (orbitRel α β))
inst✝ : (b : β) → Fintype { x // x ∈ stabilizer α b }
φ : Quotient (orbitRel α β) → β
hφ : LeftInverse Quotient.mk'' φ
ω : Quotient (orbitRel α β)
⊢ Nonempty { x // x ∈ stabilizer α (φ ω) }
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u
β : Type v
γ : Type w
inst✝⁶ inst✝⁵ : Group α
inst✝⁴ : MulAction α β
x : β
inst✝³ : Fintype α
inst✝² : Fintype β
inst✝¹ : Fintype (Quotient (orbitRel α β))
inst✝ : (b : β) → Fintype { x // x ∈ stabilizer α b }
φ : Quotient (orbitRel α β) → β
hφ : LeftInverse Quotient.mk'' φ
this :
∀ (ω : Quotient (orbitRel α β)),
Fintype.card α / Fintype.card { x // x ∈ stabilizer α (φ ω) } = Fintype.card (α ⧸ stabilizer α (φ ω))
⊢ Fintype.card β = ∑ ω : Quotient (orbitRel α β), Fintype.card α / Fintype.card { x // x ∈ stabilizer α (φ ω) }
[PROOFSTEP]
simp_rw [this, ← Fintype.card_sigma, Fintype.card_congr (selfEquivSigmaOrbitsQuotientStabilizer' α β hφ)]
[GOAL]
α : Type u
β : Type v
γ : Type w
inst✝⁵ inst✝⁴ : Group α
inst✝³ : MulAction α β
x : β
inst✝² : Fintype α
inst✝¹ : (a : α) → Fintype ↑(fixedBy α β a)
inst✝ : Fintype (Quotient (orbitRel α β))
⊢ ∑ a : α, Fintype.card ↑(fixedBy α β a) = Fintype.card (Quotient (orbitRel α β)) * Fintype.card α
[PROOFSTEP]
rw [← Fintype.card_prod, ← Fintype.card_sigma, Fintype.card_congr (sigmaFixedByEquivOrbitsProdGroup α β)]
[GOAL]
α : Type u
β : Type v
γ : Type w
inst✝³ inst✝² : Group α
inst✝¹ : MulAction α β
x : β
G : Type ?u.117012
inst✝ : Group G
H : Subgroup G
⊢ ∀ (x y : G ⧸ H), ∃ g, g • x = y
[PROOFSTEP]
{ rintro ⟨x⟩ ⟨y⟩
refine' ⟨y * x⁻¹, QuotientGroup.eq.mpr _⟩
simp only [smul_eq_mul, H.one_mem, mul_left_inv, inv_mul_cancel_right]
}
[GOAL]
α : Type u
β : Type v
γ : Type w
inst✝³ inst✝² : Group α
inst✝¹ : MulAction α β
x : β
G : Type ?u.117012
inst✝ : Group G
H : Subgroup G
⊢ ∀ (x y : G ⧸ H), ∃ g, g • x = y
[PROOFSTEP]
rintro ⟨x⟩ ⟨y⟩
[GOAL]
case mk.mk
α : Type u
β : Type v
γ : Type w
inst✝³ inst✝² : Group α
inst✝¹ : MulAction α β
x✝¹ : β
G : Type ?u.117012
inst✝ : Group G
H : Subgroup G
x✝ : G ⧸ H
x : G
y✝ : G ⧸ H
y : G
⊢ ∃ g, g • Quot.mk Setoid.r x = Quot.mk Setoid.r y
[PROOFSTEP]
refine' ⟨y * x⁻¹, QuotientGroup.eq.mpr _⟩
[GOAL]
case mk.mk
α : Type u
β : Type v
γ : Type w
inst✝³ inst✝² : Group α
inst✝¹ : MulAction α β
x✝¹ : β
G : Type ?u.117012
inst✝ : Group G
H : Subgroup G
x✝ : G ⧸ H
x : G
y✝ : G ⧸ H
y : G
⊢ ((fun x x_1 => x • x_1) (y * x⁻¹) x)⁻¹ * y ∈ H
[PROOFSTEP]
simp only [smul_eq_mul, H.one_mem, mul_left_inv, inv_mul_cancel_right]
[GOAL]
α : Type u
β : Type v
γ : Type w
G : Type u_1
inst✝³ : Group G
inst✝² : Fintype G
g : G
inst✝¹ : Fintype ↑(carrier (ConjClasses.mk g))
inst✝ : Fintype { x // x ∈ MulAction.stabilizer (ConjAct G) g }
⊢ Fintype.card ↑(carrier (ConjClasses.mk g)) =
Fintype.card G / Fintype.card { x // x ∈ MulAction.stabilizer (ConjAct G) g }
[PROOFSTEP]
classical
rw [Fintype.card_congr <| ConjAct.toConjAct (G := G) |>.toEquiv]
rw [← MulAction.card_orbit_mul_card_stabilizer_eq_card_group (ConjAct G) g, Nat.mul_div_cancel]
simp_rw [ConjAct.orbit_eq_carrier_conjClasses]
exact Fintype.card_pos_iff.mpr inferInstance
[GOAL]
α : Type u
β : Type v
γ : Type w
G : Type u_1
inst✝³ : Group G
inst✝² : Fintype G
g : G
inst✝¹ : Fintype ↑(carrier (ConjClasses.mk g))
inst✝ : Fintype { x // x ∈ MulAction.stabilizer (ConjAct G) g }
⊢ Fintype.card ↑(carrier (ConjClasses.mk g)) =
Fintype.card G / Fintype.card { x // x ∈ MulAction.stabilizer (ConjAct G) g }
[PROOFSTEP]
rw [Fintype.card_congr <| ConjAct.toConjAct (G := G) |>.toEquiv]
[GOAL]
α : Type u
β : Type v
γ : Type w
G : Type u_1
inst✝³ : Group G
inst✝² : Fintype G
g : G
inst✝¹ : Fintype ↑(carrier (ConjClasses.mk g))
inst✝ : Fintype { x // x ∈ MulAction.stabilizer (ConjAct G) g }
⊢ Fintype.card ↑(carrier (ConjClasses.mk g)) =
Fintype.card (ConjAct G) / Fintype.card { x // x ∈ MulAction.stabilizer (ConjAct G) g }
[PROOFSTEP]
rw [← MulAction.card_orbit_mul_card_stabilizer_eq_card_group (ConjAct G) g, Nat.mul_div_cancel]
[GOAL]
α : Type u
β : Type v
γ : Type w
G : Type u_1
inst✝³ : Group G
inst✝² : Fintype G
g : G
inst✝¹ : Fintype ↑(carrier (ConjClasses.mk g))
inst✝ : Fintype { x // x ∈ MulAction.stabilizer (ConjAct G) g }
⊢ Fintype.card ↑(carrier (ConjClasses.mk g)) = Fintype.card ↑(MulAction.orbit (ConjAct G) g)
case H
α : Type u
β : Type v
γ : Type w
G : Type u_1
inst✝³ : Group G
inst✝² : Fintype G
g : G
inst✝¹ : Fintype ↑(carrier (ConjClasses.mk g))
inst✝ : Fintype { x // x ∈ MulAction.stabilizer (ConjAct G) g }
⊢ 0 < Fintype.card { x // x ∈ MulAction.stabilizer (ConjAct G) g }
[PROOFSTEP]
simp_rw [ConjAct.orbit_eq_carrier_conjClasses]
[GOAL]
case H
α : Type u
β : Type v
γ : Type w
G : Type u_1
inst✝³ : Group G
inst✝² : Fintype G
g : G
inst✝¹ : Fintype ↑(carrier (ConjClasses.mk g))
inst✝ : Fintype { x // x ∈ MulAction.stabilizer (ConjAct G) g }
⊢ 0 < Fintype.card { x // x ∈ MulAction.stabilizer (ConjAct G) g }
[PROOFSTEP]
exact Fintype.card_pos_iff.mpr inferInstance
[GOAL]
α : Type u
β : Type v
γ : Type w
G : Type u_1
inst✝ : Group G
H : Subgroup G
⊢ normalCore H = MonoidHom.ker (MulAction.toPermHom G (G ⧸ H))
[PROOFSTEP]
apply le_antisymm
[GOAL]
case a
α : Type u
β : Type v
γ : Type w
G : Type u_1
inst✝ : Group G
H : Subgroup G
⊢ normalCore H ≤ MonoidHom.ker (MulAction.toPermHom G (G ⧸ H))
[PROOFSTEP]
intro g hg
[GOAL]
case a
α : Type u
β : Type v
γ : Type w
G : Type u_1
inst✝ : Group G
H : Subgroup G
g : G
hg : g ∈ normalCore H
⊢ g ∈ MonoidHom.ker (MulAction.toPermHom G (G ⧸ H))
[PROOFSTEP]
apply Equiv.Perm.ext
[GOAL]
case a.H
α : Type u
β : Type v
γ : Type w
G : Type u_1
inst✝ : Group G
H : Subgroup G
g : G
hg : g ∈ normalCore H
⊢ ∀ (x : G ⧸ H), ↑(↑(MulAction.toPermHom G (G ⧸ H)) g) x = ↑1 x
[PROOFSTEP]
refine' fun q ↦ QuotientGroup.induction_on q _
[GOAL]
case a.H
α : Type u
β : Type v
γ : Type w
G : Type u_1
inst✝ : Group G
H : Subgroup G
g : G
hg : g ∈ normalCore H
q : G ⧸ H
⊢ ∀ (z : G), ↑(↑(MulAction.toPermHom G (G ⧸ H)) g) ↑z = ↑1 ↑z
[PROOFSTEP]
refine' fun g' => (MulAction.Quotient.smul_mk H g g').trans (QuotientGroup.eq.mpr _)
[GOAL]
case a.H
α : Type u
β : Type v
γ : Type w
G : Type u_1
inst✝ : Group G
H : Subgroup G
g : G
hg : g ∈ normalCore H
q : G ⧸ H
g' : G
⊢ (g • g')⁻¹ * g' ∈ H
[PROOFSTEP]
rw [smul_eq_mul, mul_inv_rev, ← inv_inv g', inv_inv]
[GOAL]
case a.H
α : Type u
β : Type v
γ : Type w
G : Type u_1
inst✝ : Group G
H : Subgroup G
g : G
hg : g ∈ normalCore H
q : G ⧸ H
g' : G
⊢ g'⁻¹ * g⁻¹ * g'⁻¹⁻¹ ∈ H
[PROOFSTEP]
exact H.normalCore.inv_mem hg g'⁻¹
[GOAL]
case a
α : Type u
β : Type v
γ : Type w
G : Type u_1
inst✝ : Group G
H : Subgroup G
⊢ MonoidHom.ker (MulAction.toPermHom G (G ⧸ H)) ≤ normalCore H
[PROOFSTEP]
refine' (Subgroup.normal_le_normalCore.mpr fun g hg => _)
[GOAL]
case a
α : Type u
β : Type v
γ : Type w
G : Type u_1
inst✝ : Group G
H : Subgroup G
g : G
hg : g ∈ MonoidHom.ker (MulAction.toPermHom G (G ⧸ H))
⊢ g ∈ H
[PROOFSTEP]
rw [← H.inv_mem_iff, ← mul_one g⁻¹, ← QuotientGroup.eq, ← mul_one g]
[GOAL]
case a
α : Type u
β : Type v
γ : Type w
G : Type u_1
inst✝ : Group G
H : Subgroup G
g : G
hg : g ∈ MonoidHom.ker (MulAction.toPermHom G (G ⧸ H))
⊢ ↑(g * 1) = ↑1
[PROOFSTEP]
exact (MulAction.Quotient.smul_mk H g 1).symm.trans (Equiv.Perm.ext_iff.mp hg (1 : G))
[GOAL]
α : Type u
β : Type v
γ : Type w
G : Type u_1
inst✝ : Group G
⊢ Nat.card { p // Commute p.fst p.snd } = Nat.card (ConjClasses G) * Nat.card G
[PROOFSTEP]
classical
rcases fintypeOrInfinite G; swap
· rw [mul_comm, Nat.card_eq_zero_of_infinite, Nat.card_eq_zero_of_infinite, zero_mul]
simp only [Nat.card_eq_fintype_card]
-- Porting note: Changed `calc` proof into a `rw` proof.
rw [card_congr (Equiv.subtypeProdEquivSigmaSubtype Commute), card_sigma,
sum_equiv ConjAct.toConjAct.toEquiv (fun a ↦ card { b // Commute a b })
(fun g ↦ card (MulAction.fixedBy (ConjAct G) G g)) fun g ↦
card_congr' <| congr_arg _ <| funext fun h ↦ mul_inv_eq_iff_eq_mul.symm.to_eq,
MulAction.sum_card_fixedBy_eq_card_orbits_mul_card_group]
congr 1; apply card_congr'; congr; ext; exact (Setoid.comm' _).trans isConj_iff.symm
[GOAL]
α : Type u
β : Type v
γ : Type w
G : Type u_1
inst✝ : Group G
⊢ Nat.card { p // Commute p.fst p.snd } = Nat.card (ConjClasses G) * Nat.card G
[PROOFSTEP]
rcases fintypeOrInfinite G
[GOAL]
case inl
α : Type u
β : Type v
γ : Type w
G : Type u_1
inst✝ : Group G
val✝ : Fintype G
⊢ Nat.card { p // Commute p.fst p.snd } = Nat.card (ConjClasses G) * Nat.card G
case inr
α : Type u
β : Type v
γ : Type w
G : Type u_1
inst✝ : Group G
val✝ : Infinite G
⊢ Nat.card { p // Commute p.fst p.snd } = Nat.card (ConjClasses G) * Nat.card G
[PROOFSTEP]
swap
[GOAL]
case inr
α : Type u
β : Type v
γ : Type w
G : Type u_1
inst✝ : Group G
val✝ : Infinite G
⊢ Nat.card { p // Commute p.fst p.snd } = Nat.card (ConjClasses G) * Nat.card G
[PROOFSTEP]
rw [mul_comm, Nat.card_eq_zero_of_infinite, Nat.card_eq_zero_of_infinite, zero_mul]
[GOAL]
case inl
α : Type u
β : Type v
γ : Type w
G : Type u_1
inst✝ : Group G
val✝ : Fintype G
⊢ Nat.card { p // Commute p.fst p.snd } = Nat.card (ConjClasses G) * Nat.card G
[PROOFSTEP]
simp only [Nat.card_eq_fintype_card]
-- Porting note: Changed `calc` proof into a `rw` proof.
[GOAL]
case inl
α : Type u
β : Type v
γ : Type w
G : Type u_1
inst✝ : Group G
val✝ : Fintype G
⊢ card { p // Commute p.fst p.snd } = card (ConjClasses G) * card G
[PROOFSTEP]
rw [card_congr (Equiv.subtypeProdEquivSigmaSubtype Commute), card_sigma,
sum_equiv ConjAct.toConjAct.toEquiv (fun a ↦ card { b // Commute a b })
(fun g ↦ card (MulAction.fixedBy (ConjAct G) G g)) fun g ↦
card_congr' <| congr_arg _ <| funext fun h ↦ mul_inv_eq_iff_eq_mul.symm.to_eq,
MulAction.sum_card_fixedBy_eq_card_orbits_mul_card_group]
[GOAL]
case inl
α : Type u
β : Type v
γ : Type w
G : Type u_1
inst✝ : Group G
val✝ : Fintype G
⊢ card (Quotient (MulAction.orbitRel (ConjAct G) G)) * card (ConjAct G) = card (ConjClasses G) * card G
[PROOFSTEP]
congr 1
[GOAL]
case inl.e_a
α : Type u
β : Type v
γ : Type w
G : Type u_1
inst✝ : Group G
val✝ : Fintype G
⊢ card (Quotient (MulAction.orbitRel (ConjAct G) G)) = card (ConjClasses G)
[PROOFSTEP]
apply card_congr'
[GOAL]
case inl.e_a.h
α : Type u
β : Type v
γ : Type w
G : Type u_1
inst✝ : Group G
val✝ : Fintype G
⊢ Quotient (MulAction.orbitRel (ConjAct G) G) = ConjClasses G
[PROOFSTEP]
congr
[GOAL]
case inl.e_a.h.e_s
α : Type u
β : Type v
γ : Type w
G : Type u_1
inst✝ : Group G
val✝ : Fintype G
⊢ MulAction.orbitRel (ConjAct G) G = IsConj.setoid G
[PROOFSTEP]
ext
[GOAL]
case inl.e_a.h.e_s.H
α : Type u
β : Type v
γ : Type w
G : Type u_1
inst✝ : Group G
val✝ : Fintype G
a✝ b✝ : G
⊢ Setoid.Rel (MulAction.orbitRel (ConjAct G) G) a✝ b✝ ↔ Setoid.Rel (IsConj.setoid G) a✝ b✝
[PROOFSTEP]
exact (Setoid.comm' _).trans isConj_iff.symm
| {"mathlib_filename": "Mathlib.GroupTheory.GroupAction.Quotient", "llama_tokens": 8850} |
[GOAL]
S✝ : Type u'
T : Type u''
R✝ : Type u
M✝ : Type v
inst✝⁵ : SMul R✝ M✝
inst✝⁴ : SetLike S✝ M✝
hS : SMulMemClass S✝ R✝ M✝
s : S✝
R : Type u_1
M : Type u_2
S : Type u_3
inst✝³ : Monoid R
inst✝² : MulAction R M
inst✝¹ : SetLike S M
inst✝ : SMulMemClass S R M
N : S
x : M
h : ∀ (a : R), a • x ∈ N
⊢ x ∈ N
[PROOFSTEP]
simpa using h 1
[GOAL]
S : Type u'
T : Type u''
R : Type u
M : Type v
inst✝ : SMul R M
p q : SubMulAction R M
h : p.carrier = q.carrier
⊢ p = q
[PROOFSTEP]
cases p
[GOAL]
case mk
S : Type u'
T : Type u''
R : Type u
M : Type v
inst✝ : SMul R M
q : SubMulAction R M
carrier✝ : Set M
smul_mem'✝ : ∀ (c : R) {x : M}, x ∈ carrier✝ → c • x ∈ carrier✝
h : { carrier := carrier✝, smul_mem' := smul_mem'✝ }.carrier = q.carrier
⊢ { carrier := carrier✝, smul_mem' := smul_mem'✝ } = q
[PROOFSTEP]
cases q
[GOAL]
case mk.mk
S : Type u'
T : Type u''
R : Type u
M : Type v
inst✝ : SMul R M
carrier✝¹ : Set M
smul_mem'✝¹ : ∀ (c : R) {x : M}, x ∈ carrier✝¹ → c • x ∈ carrier✝¹
carrier✝ : Set M
smul_mem'✝ : ∀ (c : R) {x : M}, x ∈ carrier✝ → c • x ∈ carrier✝
h :
{ carrier := carrier✝¹, smul_mem' := smul_mem'✝¹ }.carrier = { carrier := carrier✝, smul_mem' := smul_mem'✝ }.carrier
⊢ { carrier := carrier✝¹, smul_mem' := smul_mem'✝¹ } = { carrier := carrier✝, smul_mem' := smul_mem'✝ }
[PROOFSTEP]
congr
[GOAL]
S : Type u'
T : Type u''
R : Type u
M : Type v
inst✝ : SMul R M
p : SubMulAction R M
r : R
x : M
⊢ { x // x ∈ p } →[R] M
[PROOFSTEP]
refine' { toFun := Subtype.val .. }
[GOAL]
S : Type u'
T : Type u''
R : Type u
M : Type v
inst✝ : SMul R M
p : SubMulAction R M
r : R
x : M
⊢ ∀ (m : R) (x : { x // x ∈ p }), ↑(m • x) = m • ↑x
[PROOFSTEP]
simp [val_smul]
[GOAL]
S : Type u'
T : Type u''
R : Type u
M : Type v
inst✝⁴ : Monoid R
inst✝³ : MulAction R M
inst✝² : SMul S R
inst✝¹ : SMul S M
inst✝ : IsScalarTower S R M
p : SubMulAction R M
s : S
x : M
h : x ∈ p
⊢ s • x ∈ p
[PROOFSTEP]
rw [← one_smul R x, ← smul_assoc]
[GOAL]
S : Type u'
T : Type u''
R : Type u
M : Type v
inst✝⁴ : Monoid R
inst✝³ : MulAction R M
inst✝² : SMul S R
inst✝¹ : SMul S M
inst✝ : IsScalarTower S R M
p : SubMulAction R M
s : S
x : M
h : x ∈ p
⊢ (s • 1) • x ∈ p
[PROOFSTEP]
exact p.smul_mem _ h
[GOAL]
S : Type u'
T : Type u''
R : Type u
M : Type v
inst✝¹ : Monoid R
inst✝ : MulAction R M
p : SubMulAction R M
m : { x // x ∈ p }
⊢ MulAction.Stabilizer.submonoid R m = MulAction.Stabilizer.submonoid R ↑m
[PROOFSTEP]
ext
[GOAL]
case h
S : Type u'
T : Type u''
R : Type u
M : Type v
inst✝¹ : Monoid R
inst✝ : MulAction R M
p : SubMulAction R M
m : { x // x ∈ p }
x✝ : R
⊢ x✝ ∈ MulAction.Stabilizer.submonoid R m ↔ x✝ ∈ MulAction.Stabilizer.submonoid R ↑m
[PROOFSTEP]
simp only [MulAction.mem_stabilizer_submonoid_iff, ← SubMulAction.val_smul, SetLike.coe_eq_coe]
[GOAL]
S : Type u'
T : Type u''
R : Type u
M : Type v
inst✝¹ : Group R
inst✝ : MulAction R M
p : SubMulAction R M
m : { x // x ∈ p }
⊢ MulAction.stabilizer R m = MulAction.stabilizer R ↑m
[PROOFSTEP]
rw [← Subgroup.toSubmonoid_eq]
[GOAL]
S : Type u'
T : Type u''
R : Type u
M : Type v
inst✝¹ : Group R
inst✝ : MulAction R M
p : SubMulAction R M
m : { x // x ∈ p }
⊢ (MulAction.stabilizer R m).toSubmonoid = (MulAction.stabilizer R ↑m).toSubmonoid
[PROOFSTEP]
exact stabilizer_of_subMul.submonoid m
[GOAL]
S : Type u'
T : Type u''
R : Type u
M : Type v
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
p p' : SubMulAction R M
r : R
x y : M
hx : x ∈ p
⊢ -x ∈ p
[PROOFSTEP]
rw [← neg_one_smul R]
[GOAL]
S : Type u'
T : Type u''
R : Type u
M : Type v
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
p p' : SubMulAction R M
r : R
x y : M
hx : x ∈ p
⊢ -1 • x ∈ p
[PROOFSTEP]
exact p.smul_mem _ hx
[GOAL]
S : Type u'
T : Type u''
R : Type u
M : Type v
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
p p' : SubMulAction R M
r : R
x y : M
h : -x ∈ p
⊢ x ∈ p
[PROOFSTEP]
rw [← neg_neg x]
[GOAL]
S : Type u'
T : Type u''
R : Type u
M : Type v
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
p p' : SubMulAction R M
r : R
x y : M
h : -x ∈ p
⊢ - -x ∈ p
[PROOFSTEP]
exact neg_mem _ h
| {"mathlib_filename": "Mathlib.GroupTheory.GroupAction.SubMulAction", "llama_tokens": 2153} |
{"mathlib_filename": "Mathlib.GroupTheory.Submonoid.Centralizer", "llama_tokens": 0} |
|
[GOAL]
M : Type u_1
inst✝ : Monoid M
⊢ SMulCommClass { x // x ∈ center M } { x // x ∈ center M } M
[PROOFSTEP]
infer_instance
| {"mathlib_filename": "Mathlib.GroupTheory.Submonoid.Center", "llama_tokens": 58} |
[GOAL]
α : Type u
β : Type v
inst✝ : AddCommGroup β
f : α → β
x : α
⊢ ↑(↑lift f) (of x) = f x
[PROOFSTEP]
convert Abelianization.lift.of (FreeGroup.lift f (β := Multiplicative β)) (FreeGroup.of x) using 1
[GOAL]
case h.e'_3.h
α : Type u
β : Type v
inst✝ : AddCommGroup β
f : α → β
x : α
e_1✝ : (fun x => β) (of x) = (fun x => Multiplicative β) (↑Abelianization.of (FreeGroup.of x))
⊢ f x = ↑(↑FreeGroup.lift f) (FreeGroup.of x)
[PROOFSTEP]
exact (FreeGroup.lift.of (β := Multiplicative β)).symm
[GOAL]
α✝ : Type u
β✝ : Type v
inst✝² : AddCommGroup β✝
f✝ : α✝ → β✝
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝¹ : AddCommGroup β
inst✝ : AddCommGroup γ
a : FreeAbelianGroup α
f : α → β
g : β →+ γ
⊢ ↑g (↑(↑lift f) a) = ↑(↑lift (↑g ∘ f)) a
[PROOFSTEP]
show (g.comp (lift f)) a = lift (g ∘ f) a
[GOAL]
α✝ : Type u
β✝ : Type v
inst✝² : AddCommGroup β✝
f✝ : α✝ → β✝
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝¹ : AddCommGroup β
inst✝ : AddCommGroup γ
a : FreeAbelianGroup α
f : α → β
g : β →+ γ
⊢ ↑(AddMonoidHom.comp g (↑lift f)) a = ↑(↑lift (↑g ∘ f)) a
[PROOFSTEP]
apply lift.unique
[GOAL]
case hg
α✝ : Type u
β✝ : Type v
inst✝² : AddCommGroup β✝
f✝ : α✝ → β✝
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝¹ : AddCommGroup β
inst✝ : AddCommGroup γ
a : FreeAbelianGroup α
f : α → β
g : β →+ γ
⊢ ∀ (x : α), ↑(AddMonoidHom.comp g (↑lift f)) (of x) = (↑g ∘ f) x
[PROOFSTEP]
intro a
[GOAL]
case hg
α✝ : Type u
β✝ : Type v
inst✝² : AddCommGroup β✝
f✝ : α✝ → β✝
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝¹ : AddCommGroup β
inst✝ : AddCommGroup γ
a✝ : FreeAbelianGroup α
f : α → β
g : β →+ γ
a : α
⊢ ↑(AddMonoidHom.comp g (↑lift f)) (of a) = (↑g ∘ f) a
[PROOFSTEP]
show g ((lift f) (of a)) = g (f a)
[GOAL]
case hg
α✝ : Type u
β✝ : Type v
inst✝² : AddCommGroup β✝
f✝ : α✝ → β✝
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝¹ : AddCommGroup β
inst✝ : AddCommGroup γ
a✝ : FreeAbelianGroup α
f : α → β
g : β →+ γ
a : α
⊢ ↑g (↑(↑lift f) (of a)) = ↑g (f a)
[PROOFSTEP]
simp only [(· ∘ ·), lift.of]
[GOAL]
α✝ : Type u
α : Type u_1
β : Type u_2
inst✝ : AddCommGroup β
a : FreeAbelianGroup α
f g : α → β
⊢ ↑(↑lift (f + g)) a = ↑(↑lift f) a + ↑(↑lift g) a
[PROOFSTEP]
refine' FreeAbelianGroup.induction_on a _ _ _ _
[GOAL]
case refine'_1
α✝ : Type u
α : Type u_1
β : Type u_2
inst✝ : AddCommGroup β
a : FreeAbelianGroup α
f g : α → β
⊢ ↑(↑lift (f + g)) 0 = ↑(↑lift f) 0 + ↑(↑lift g) 0
[PROOFSTEP]
simp only [(lift _).map_zero, zero_add]
[GOAL]
case refine'_2
α✝ : Type u
α : Type u_1
β : Type u_2
inst✝ : AddCommGroup β
a : FreeAbelianGroup α
f g : α → β
⊢ ∀ (x : α), ↑(↑lift (f + g)) (of x) = ↑(↑lift f) (of x) + ↑(↑lift g) (of x)
[PROOFSTEP]
intro x
[GOAL]
case refine'_2
α✝ : Type u
α : Type u_1
β : Type u_2
inst✝ : AddCommGroup β
a : FreeAbelianGroup α
f g : α → β
x : α
⊢ ↑(↑lift (f + g)) (of x) = ↑(↑lift f) (of x) + ↑(↑lift g) (of x)
[PROOFSTEP]
simp only [lift.of, Pi.add_apply]
[GOAL]
case refine'_3
α✝ : Type u
α : Type u_1
β : Type u_2
inst✝ : AddCommGroup β
a : FreeAbelianGroup α
f g : α → β
⊢ ∀ (x : α),
↑(↑lift (f + g)) (of x) = ↑(↑lift f) (of x) + ↑(↑lift g) (of x) →
↑(↑lift (f + g)) (-of x) = ↑(↑lift f) (-of x) + ↑(↑lift g) (-of x)
[PROOFSTEP]
intro x _
[GOAL]
case refine'_3
α✝ : Type u
α : Type u_1
β : Type u_2
inst✝ : AddCommGroup β
a : FreeAbelianGroup α
f g : α → β
x : α
a✝ : ↑(↑lift (f + g)) (of x) = ↑(↑lift f) (of x) + ↑(↑lift g) (of x)
⊢ ↑(↑lift (f + g)) (-of x) = ↑(↑lift f) (-of x) + ↑(↑lift g) (-of x)
[PROOFSTEP]
simp only [map_neg, lift.of, Pi.add_apply, neg_add]
[GOAL]
case refine'_4
α✝ : Type u
α : Type u_1
β : Type u_2
inst✝ : AddCommGroup β
a : FreeAbelianGroup α
f g : α → β
⊢ ∀ (x y : FreeAbelianGroup α),
↑(↑lift (f + g)) x = ↑(↑lift f) x + ↑(↑lift g) x →
↑(↑lift (f + g)) y = ↑(↑lift f) y + ↑(↑lift g) y →
↑(↑lift (f + g)) (x + y) = ↑(↑lift f) (x + y) + ↑(↑lift g) (x + y)
[PROOFSTEP]
intro x y hx hy
[GOAL]
case refine'_4
α✝ : Type u
α : Type u_1
β : Type u_2
inst✝ : AddCommGroup β
a : FreeAbelianGroup α
f g : α → β
x y : FreeAbelianGroup α
hx : ↑(↑lift (f + g)) x = ↑(↑lift f) x + ↑(↑lift g) x
hy : ↑(↑lift (f + g)) y = ↑(↑lift f) y + ↑(↑lift g) y
⊢ ↑(↑lift (f + g)) (x + y) = ↑(↑lift f) (x + y) + ↑(↑lift g) (x + y)
[PROOFSTEP]
simp only [(lift _).map_add, hx, hy, add_add_add_comm]
[GOAL]
α β : Type u
f : FreeAbelianGroup (α → β)
x y : FreeAbelianGroup α
⊢ ↑(↑lift fun x_1 => x_1 <$> (x + y)) f =
(fun x x_1 => Seq.seq x fun x => x_1) f x + (fun x x_1 => Seq.seq x fun x => x_1) f y
[PROOFSTEP]
simp only [FreeAbelianGroup.map_add]
[GOAL]
α β : Type u
f : FreeAbelianGroup (α → β)
x y : FreeAbelianGroup α
⊢ ↑(↑lift fun x_1 => x_1 <$> x + x_1 <$> y) f = (Seq.seq f fun x_1 => x) + Seq.seq f fun x => y
[PROOFSTEP]
exact lift.add' f _ _
[GOAL]
α β α✝ : Type u
x✝ : FreeAbelianGroup α✝
x : α✝
ih : id <$> pure x = pure x
⊢ id <$> (-pure x) = -pure x
[PROOFSTEP]
rw [FreeAbelianGroup.map_neg, ih]
[GOAL]
α β α✝ : Type u
x✝ x y : FreeAbelianGroup α✝
ihx : id <$> x = x
ihy : id <$> y = y
⊢ id <$> (x + y) = x + y
[PROOFSTEP]
rw [FreeAbelianGroup.map_add, ihx, ihy]
[GOAL]
α β α✝ β✝ γ✝ : Type u
x : FreeAbelianGroup α✝
f : α✝ → FreeAbelianGroup β✝
g : β✝ → FreeAbelianGroup γ✝
⊢ 0 >>= f >>= g = 0 >>= fun x => f x >>= g
[PROOFSTEP]
iterate 3 rw [zero_bind]
[GOAL]
α β α✝ β✝ γ✝ : Type u
x : FreeAbelianGroup α✝
f : α✝ → FreeAbelianGroup β✝
g : β✝ → FreeAbelianGroup γ✝
⊢ 0 >>= f >>= g = 0 >>= fun x => f x >>= g
[PROOFSTEP]
rw [zero_bind]
[GOAL]
α β α✝ β✝ γ✝ : Type u
x : FreeAbelianGroup α✝
f : α✝ → FreeAbelianGroup β✝
g : β✝ → FreeAbelianGroup γ✝
⊢ 0 >>= g = 0 >>= fun x => f x >>= g
[PROOFSTEP]
rw [zero_bind]
[GOAL]
α β α✝ β✝ γ✝ : Type u
x : FreeAbelianGroup α✝
f : α✝ → FreeAbelianGroup β✝
g : β✝ → FreeAbelianGroup γ✝
⊢ 0 = 0 >>= fun x => f x >>= g
[PROOFSTEP]
rw [zero_bind]
[GOAL]
α β α✝ β✝ γ✝ : Type u
x✝ : FreeAbelianGroup α✝
f : α✝ → FreeAbelianGroup β✝
g : β✝ → FreeAbelianGroup γ✝
x : α✝
⊢ pure x >>= f >>= g = pure x >>= fun x => f x >>= g
[PROOFSTEP]
iterate 2 rw [pure_bind]
[GOAL]
α β α✝ β✝ γ✝ : Type u
x✝ : FreeAbelianGroup α✝
f : α✝ → FreeAbelianGroup β✝
g : β✝ → FreeAbelianGroup γ✝
x : α✝
⊢ pure x >>= f >>= g = pure x >>= fun x => f x >>= g
[PROOFSTEP]
rw [pure_bind]
[GOAL]
α β α✝ β✝ γ✝ : Type u
x✝ : FreeAbelianGroup α✝
f : α✝ → FreeAbelianGroup β✝
g : β✝ → FreeAbelianGroup γ✝
x : α✝
⊢ f x >>= g = pure x >>= fun x => f x >>= g
[PROOFSTEP]
rw [pure_bind]
[GOAL]
α β α✝ β✝ γ✝ : Type u
x✝ : FreeAbelianGroup α✝
f : α✝ → FreeAbelianGroup β✝
g : β✝ → FreeAbelianGroup γ✝
x : α✝
ih : pure x >>= f >>= g = pure x >>= fun x => f x >>= g
⊢ -pure x >>= f >>= g = -pure x >>= fun x => f x >>= g
[PROOFSTEP]
iterate 3 rw [neg_bind] <;> try rw [ih]
[GOAL]
α β α✝ β✝ γ✝ : Type u
x✝ : FreeAbelianGroup α✝
f : α✝ → FreeAbelianGroup β✝
g : β✝ → FreeAbelianGroup γ✝
x : α✝
ih : pure x >>= f >>= g = pure x >>= fun x => f x >>= g
⊢ -pure x >>= f >>= g = -pure x >>= fun x => f x >>= g
[PROOFSTEP]
rw [neg_bind]
[GOAL]
α β α✝ β✝ γ✝ : Type u
x✝ : FreeAbelianGroup α✝
f : α✝ → FreeAbelianGroup β✝
g : β✝ → FreeAbelianGroup γ✝
x : α✝
ih : pure x >>= f >>= g = pure x >>= fun x => f x >>= g
⊢ -(pure x >>= f) >>= g = -pure x >>= fun x => f x >>= g
[PROOFSTEP]
try rw [ih]
[GOAL]
α β α✝ β✝ γ✝ : Type u
x✝ : FreeAbelianGroup α✝
f : α✝ → FreeAbelianGroup β✝
g : β✝ → FreeAbelianGroup γ✝
x : α✝
ih : pure x >>= f >>= g = pure x >>= fun x => f x >>= g
⊢ -(pure x >>= f) >>= g = -pure x >>= fun x => f x >>= g
[PROOFSTEP]
rw [ih]
[GOAL]
α β α✝ β✝ γ✝ : Type u
x✝ : FreeAbelianGroup α✝
f : α✝ → FreeAbelianGroup β✝
g : β✝ → FreeAbelianGroup γ✝
x : α✝
ih : pure x >>= f >>= g = pure x >>= fun x => f x >>= g
⊢ -(pure x >>= f) >>= g = -pure x >>= fun x => f x >>= g
[PROOFSTEP]
rw [neg_bind]
[GOAL]
α β α✝ β✝ γ✝ : Type u
x✝ : FreeAbelianGroup α✝
f : α✝ → FreeAbelianGroup β✝
g : β✝ → FreeAbelianGroup γ✝
x : α✝
ih : pure x >>= f >>= g = pure x >>= fun x => f x >>= g
⊢ -(pure x >>= f >>= g) = -pure x >>= fun x => f x >>= g
[PROOFSTEP]
try rw [ih]
[GOAL]
α β α✝ β✝ γ✝ : Type u
x✝ : FreeAbelianGroup α✝
f : α✝ → FreeAbelianGroup β✝
g : β✝ → FreeAbelianGroup γ✝
x : α✝
ih : pure x >>= f >>= g = pure x >>= fun x => f x >>= g
⊢ -(pure x >>= f >>= g) = -pure x >>= fun x => f x >>= g
[PROOFSTEP]
rw [ih]
[GOAL]
α β α✝ β✝ γ✝ : Type u
x✝ : FreeAbelianGroup α✝
f : α✝ → FreeAbelianGroup β✝
g : β✝ → FreeAbelianGroup γ✝
x : α✝
ih : pure x >>= f >>= g = pure x >>= fun x => f x >>= g
⊢ -(pure x >>= fun x => f x >>= g) = -pure x >>= fun x => f x >>= g
[PROOFSTEP]
rw [neg_bind]
[GOAL]
α β α✝ β✝ γ✝ : Type u
x✝ : FreeAbelianGroup α✝
f : α✝ → FreeAbelianGroup β✝
g : β✝ → FreeAbelianGroup γ✝
x y : FreeAbelianGroup α✝
ihx : x >>= f >>= g = x >>= fun x => f x >>= g
ihy : y >>= f >>= g = y >>= fun x => f x >>= g
⊢ x + y >>= f >>= g = x + y >>= fun x => f x >>= g
[PROOFSTEP]
iterate 3 rw [add_bind] <;> try rw [ihx, ihy]
[GOAL]
α β α✝ β✝ γ✝ : Type u
x✝ : FreeAbelianGroup α✝
f : α✝ → FreeAbelianGroup β✝
g : β✝ → FreeAbelianGroup γ✝
x y : FreeAbelianGroup α✝
ihx : x >>= f >>= g = x >>= fun x => f x >>= g
ihy : y >>= f >>= g = y >>= fun x => f x >>= g
⊢ x + y >>= f >>= g = x + y >>= fun x => f x >>= g
[PROOFSTEP]
rw [add_bind]
[GOAL]
α β α✝ β✝ γ✝ : Type u
x✝ : FreeAbelianGroup α✝
f : α✝ → FreeAbelianGroup β✝
g : β✝ → FreeAbelianGroup γ✝
x y : FreeAbelianGroup α✝
ihx : x >>= f >>= g = x >>= fun x => f x >>= g
ihy : y >>= f >>= g = y >>= fun x => f x >>= g
⊢ (x >>= f) + (y >>= f) >>= g = x + y >>= fun x => f x >>= g
[PROOFSTEP]
try rw [ihx, ihy]
[GOAL]
α β α✝ β✝ γ✝ : Type u
x✝ : FreeAbelianGroup α✝
f : α✝ → FreeAbelianGroup β✝
g : β✝ → FreeAbelianGroup γ✝
x y : FreeAbelianGroup α✝
ihx : x >>= f >>= g = x >>= fun x => f x >>= g
ihy : y >>= f >>= g = y >>= fun x => f x >>= g
⊢ (x >>= f) + (y >>= f) >>= g = x + y >>= fun x => f x >>= g
[PROOFSTEP]
rw [ihx, ihy]
[GOAL]
α β α✝ β✝ γ✝ : Type u
x✝ : FreeAbelianGroup α✝
f : α✝ → FreeAbelianGroup β✝
g : β✝ → FreeAbelianGroup γ✝
x y : FreeAbelianGroup α✝
ihx : x >>= f >>= g = x >>= fun x => f x >>= g
ihy : y >>= f >>= g = y >>= fun x => f x >>= g
⊢ (x >>= f) + (y >>= f) >>= g = x + y >>= fun x => f x >>= g
[PROOFSTEP]
rw [add_bind]
[GOAL]
α β α✝ β✝ γ✝ : Type u
x✝ : FreeAbelianGroup α✝
f : α✝ → FreeAbelianGroup β✝
g : β✝ → FreeAbelianGroup γ✝
x y : FreeAbelianGroup α✝
ihx : x >>= f >>= g = x >>= fun x => f x >>= g
ihy : y >>= f >>= g = y >>= fun x => f x >>= g
⊢ (x >>= f >>= g) + (y >>= f >>= g) = x + y >>= fun x => f x >>= g
[PROOFSTEP]
try rw [ihx, ihy]
[GOAL]
α β α✝ β✝ γ✝ : Type u
x✝ : FreeAbelianGroup α✝
f : α✝ → FreeAbelianGroup β✝
g : β✝ → FreeAbelianGroup γ✝
x y : FreeAbelianGroup α✝
ihx : x >>= f >>= g = x >>= fun x => f x >>= g
ihy : y >>= f >>= g = y >>= fun x => f x >>= g
⊢ (x >>= f >>= g) + (y >>= f >>= g) = x + y >>= fun x => f x >>= g
[PROOFSTEP]
rw [ihx, ihy]
[GOAL]
α β α✝ β✝ γ✝ : Type u
x✝ : FreeAbelianGroup α✝
f : α✝ → FreeAbelianGroup β✝
g : β✝ → FreeAbelianGroup γ✝
x y : FreeAbelianGroup α✝
ihx : x >>= f >>= g = x >>= fun x => f x >>= g
ihy : y >>= f >>= g = y >>= fun x => f x >>= g
⊢ (x >>= fun x => f x >>= g) + (y >>= fun x => f x >>= g) = x + y >>= fun x => f x >>= g
[PROOFSTEP]
rw [add_bind]
[GOAL]
α β α✝ β✝ : Type u
x : FreeAbelianGroup α✝
y : FreeAbelianGroup β✝
⊢ (Seq.seq (Prod.mk <$> x) fun x => y) = Seq.seq ((fun b a => (a, b)) <$> y) fun x_1 => x
[PROOFSTEP]
refine' FreeAbelianGroup.induction_on' x _ _ _ _
[GOAL]
case refine'_1
α β α✝ β✝ : Type u
x : FreeAbelianGroup α✝
y : FreeAbelianGroup β✝
⊢ (Seq.seq (Prod.mk <$> 0) fun x => y) = Seq.seq ((fun b a => (a, b)) <$> y) fun x => 0
[PROOFSTEP]
rw [FreeAbelianGroup.map_zero, zero_seq, seq_zero]
[GOAL]
case refine'_2
α β α✝ β✝ : Type u
x : FreeAbelianGroup α✝
y : FreeAbelianGroup β✝
⊢ ∀ (x : α✝), (Seq.seq (Prod.mk <$> pure x) fun x => y) = Seq.seq ((fun b a => (a, b)) <$> y) fun x_1 => pure x
[PROOFSTEP]
intro p
[GOAL]
case refine'_2
α β α✝ β✝ : Type u
x : FreeAbelianGroup α✝
y : FreeAbelianGroup β✝
p : α✝
⊢ (Seq.seq (Prod.mk <$> pure p) fun x => y) = Seq.seq ((fun b a => (a, b)) <$> y) fun x => pure p
[PROOFSTEP]
rw [map_pure, pure_seq]
[GOAL]
case refine'_2
α β α✝ β✝ : Type u
x : FreeAbelianGroup α✝
y : FreeAbelianGroup β✝
p : α✝
⊢ Prod.mk p <$> y = Seq.seq ((fun b a => (a, b)) <$> y) fun x => pure p
[PROOFSTEP]
exact
FreeAbelianGroup.induction_on' y (by rw [FreeAbelianGroup.map_zero, FreeAbelianGroup.map_zero, zero_seq])
(fun q ↦ by rw [map_pure, map_pure, pure_seq, map_pure])
(fun q ih ↦ by rw [FreeAbelianGroup.map_neg, FreeAbelianGroup.map_neg, neg_seq, ih]) fun y₁ y₂ ih1 ih2 ↦ by
rw [FreeAbelianGroup.map_add, FreeAbelianGroup.map_add, add_seq, ih1, ih2]
[GOAL]
α β α✝ β✝ : Type u
x : FreeAbelianGroup α✝
y : FreeAbelianGroup β✝
p : α✝
⊢ Prod.mk p <$> 0 = Seq.seq ((fun b a => (a, b)) <$> 0) fun x => pure p
[PROOFSTEP]
rw [FreeAbelianGroup.map_zero, FreeAbelianGroup.map_zero, zero_seq]
[GOAL]
α β α✝ β✝ : Type u
x : FreeAbelianGroup α✝
y : FreeAbelianGroup β✝
p : α✝
q : β✝
⊢ Prod.mk p <$> pure q = Seq.seq ((fun b a => (a, b)) <$> pure q) fun x => pure p
[PROOFSTEP]
rw [map_pure, map_pure, pure_seq, map_pure]
[GOAL]
α β α✝ β✝ : Type u
x : FreeAbelianGroup α✝
y : FreeAbelianGroup β✝
p : α✝
q : β✝
ih : Prod.mk p <$> pure q = Seq.seq ((fun b a => (a, b)) <$> pure q) fun x => pure p
⊢ Prod.mk p <$> (-pure q) = Seq.seq ((fun b a => (a, b)) <$> (-pure q)) fun x => pure p
[PROOFSTEP]
rw [FreeAbelianGroup.map_neg, FreeAbelianGroup.map_neg, neg_seq, ih]
[GOAL]
α β α✝ β✝ : Type u
x : FreeAbelianGroup α✝
y : FreeAbelianGroup β✝
p : α✝
y₁ y₂ : FreeAbelianGroup β✝
ih1 : Prod.mk p <$> y₁ = Seq.seq ((fun b a => (a, b)) <$> y₁) fun x => pure p
ih2 : Prod.mk p <$> y₂ = Seq.seq ((fun b a => (a, b)) <$> y₂) fun x => pure p
⊢ Prod.mk p <$> (y₁ + y₂) = Seq.seq ((fun b a => (a, b)) <$> (y₁ + y₂)) fun x => pure p
[PROOFSTEP]
rw [FreeAbelianGroup.map_add, FreeAbelianGroup.map_add, add_seq, ih1, ih2]
[GOAL]
case refine'_3
α β α✝ β✝ : Type u
x : FreeAbelianGroup α✝
y : FreeAbelianGroup β✝
⊢ ∀ (x : α✝),
((Seq.seq (Prod.mk <$> pure x) fun x => y) = Seq.seq ((fun b a => (a, b)) <$> y) fun x_1 => pure x) →
(Seq.seq (Prod.mk <$> (-pure x)) fun x => y) = Seq.seq ((fun b a => (a, b)) <$> y) fun x_1 => -pure x
[PROOFSTEP]
intro p ih
[GOAL]
case refine'_3
α β α✝ β✝ : Type u
x : FreeAbelianGroup α✝
y : FreeAbelianGroup β✝
p : α✝
ih : (Seq.seq (Prod.mk <$> pure p) fun x => y) = Seq.seq ((fun b a => (a, b)) <$> y) fun x => pure p
⊢ (Seq.seq (Prod.mk <$> (-pure p)) fun x => y) = Seq.seq ((fun b a => (a, b)) <$> y) fun x => -pure p
[PROOFSTEP]
rw [FreeAbelianGroup.map_neg, neg_seq, seq_neg, ih]
[GOAL]
case refine'_4
α β α✝ β✝ : Type u
x : FreeAbelianGroup α✝
y : FreeAbelianGroup β✝
⊢ ∀ (x y_1 : FreeAbelianGroup α✝),
((Seq.seq (Prod.mk <$> x) fun x => y) = Seq.seq ((fun b a => (a, b)) <$> y) fun x_1 => x) →
((Seq.seq (Prod.mk <$> y_1) fun x => y) = Seq.seq ((fun b a => (a, b)) <$> y) fun x => y_1) →
(Seq.seq (Prod.mk <$> (x + y_1)) fun x => y) = Seq.seq ((fun b a => (a, b)) <$> y) fun x_1 => x + y_1
[PROOFSTEP]
intro x₁ x₂ ih1 ih2
[GOAL]
case refine'_4
α β α✝ β✝ : Type u
x : FreeAbelianGroup α✝
y : FreeAbelianGroup β✝
x₁ x₂ : FreeAbelianGroup α✝
ih1 : (Seq.seq (Prod.mk <$> x₁) fun x => y) = Seq.seq ((fun b a => (a, b)) <$> y) fun x => x₁
ih2 : (Seq.seq (Prod.mk <$> x₂) fun x => y) = Seq.seq ((fun b a => (a, b)) <$> y) fun x => x₂
⊢ (Seq.seq (Prod.mk <$> (x₁ + x₂)) fun x => y) = Seq.seq ((fun b a => (a, b)) <$> y) fun x => x₁ + x₂
[PROOFSTEP]
rw [FreeAbelianGroup.map_add, add_seq, seq_add, ih1, ih2]
[GOAL]
α✝ : Type u
β✝ : Type v
γ✝ : Type w
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : AddCommGroup γ
f : α → β
g : β → γ
x : FreeAbelianGroup α
⊢ ↑(↑lift (g ∘ f)) x = ↑(↑lift g) (↑(map f) x)
[PROOFSTEP]
apply FreeAbelianGroup.induction_on (C := fun x ↦ lift (g ∘ f) x = lift g (map f x)) x
[GOAL]
case C0
α✝ : Type u
β✝ : Type v
γ✝ : Type w
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : AddCommGroup γ
f : α → β
g : β → γ
x : FreeAbelianGroup α
⊢ ↑(↑lift (g ∘ f)) 0 = ↑(↑lift g) (↑(map f) 0)
[PROOFSTEP]
simp only [map_zero]
[GOAL]
case C1
α✝ : Type u
β✝ : Type v
γ✝ : Type w
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : AddCommGroup γ
f : α → β
g : β → γ
x : FreeAbelianGroup α
⊢ ∀ (x : α), ↑(↑lift (g ∘ f)) (of x) = ↑(↑lift g) (↑(map f) (of x))
[PROOFSTEP]
intro _
[GOAL]
case C1
α✝ : Type u
β✝ : Type v
γ✝ : Type w
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : AddCommGroup γ
f : α → β
g : β → γ
x : FreeAbelianGroup α
x✝ : α
⊢ ↑(↑lift (g ∘ f)) (of x✝) = ↑(↑lift g) (↑(map f) (of x✝))
[PROOFSTEP]
simp only [lift.of, map, Function.comp]
[GOAL]
case Cn
α✝ : Type u
β✝ : Type v
γ✝ : Type w
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : AddCommGroup γ
f : α → β
g : β → γ
x : FreeAbelianGroup α
⊢ ∀ (x : α),
↑(↑lift (g ∘ f)) (of x) = ↑(↑lift g) (↑(map f) (of x)) → ↑(↑lift (g ∘ f)) (-of x) = ↑(↑lift g) (↑(map f) (-of x))
[PROOFSTEP]
intro _ h
[GOAL]
case Cn
α✝ : Type u
β✝ : Type v
γ✝ : Type w
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : AddCommGroup γ
f : α → β
g : β → γ
x : FreeAbelianGroup α
x✝ : α
h : ↑(↑lift (g ∘ f)) (of x✝) = ↑(↑lift g) (↑(map f) (of x✝))
⊢ ↑(↑lift (g ∘ f)) (-of x✝) = ↑(↑lift g) (↑(map f) (-of x✝))
[PROOFSTEP]
simp only [h, AddMonoidHom.map_neg]
[GOAL]
case Cp
α✝ : Type u
β✝ : Type v
γ✝ : Type w
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : AddCommGroup γ
f : α → β
g : β → γ
x : FreeAbelianGroup α
⊢ ∀ (x y : FreeAbelianGroup α),
↑(↑lift (g ∘ f)) x = ↑(↑lift g) (↑(map f) x) →
↑(↑lift (g ∘ f)) y = ↑(↑lift g) (↑(map f) y) → ↑(↑lift (g ∘ f)) (x + y) = ↑(↑lift g) (↑(map f) (x + y))
[PROOFSTEP]
intro _ _ h₁ h₂
[GOAL]
case Cp
α✝ : Type u
β✝ : Type v
γ✝ : Type w
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : AddCommGroup γ
f : α → β
g : β → γ
x x✝ y✝ : FreeAbelianGroup α
h₁ : ↑(↑lift (g ∘ f)) x✝ = ↑(↑lift g) (↑(map f) x✝)
h₂ : ↑(↑lift (g ∘ f)) y✝ = ↑(↑lift g) (↑(map f) y✝)
⊢ ↑(↑lift (g ∘ f)) (x✝ + y✝) = ↑(↑lift g) (↑(map f) (x✝ + y✝))
[PROOFSTEP]
simp only [h₁, h₂, AddMonoidHom.map_add]
[GOAL]
α : Type u
β : Type v
γ : Type w
x : FreeAbelianGroup α
⊢ ↑(map id) x = x
[PROOFSTEP]
rw [map_id]
[GOAL]
α : Type u
β : Type v
γ : Type w
x : FreeAbelianGroup α
⊢ ↑(AddMonoidHom.id (FreeAbelianGroup α)) x = x
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : Type v
γ : Type w
f : α → β
g : β → γ
x✝ : α
⊢ ↑(AddMonoidHom.comp (map g) (map f)) (of x✝) = ↑(map (g ∘ f)) (of x✝)
[PROOFSTEP]
simp [map]
[GOAL]
α : Type u
β : Type v
γ : Type w
f : α → β
g : β → γ
x : FreeAbelianGroup α
⊢ ↑(map (g ∘ f)) x = ↑(map g) (↑(map f) x)
[PROOFSTEP]
rw [map_comp]
[GOAL]
α : Type u
β : Type v
γ : Type w
f : α → β
g : β → γ
x : FreeAbelianGroup α
⊢ ↑(AddMonoidHom.comp (map g) (map f)) x = ↑(map g) (↑(map f) x)
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : Type v
γ : Type w
inst✝ : Mul α
x y : α
⊢ of x * of y = of (x * y)
[PROOFSTEP]
rw [mul_def, lift.of, lift.of]
[GOAL]
α : Type u
β : Type v
γ : Type w
inst✝ : Mul α
src✝¹ : Mul (FreeAbelianGroup α) := mul α
src✝ : AddCommGroup (FreeAbelianGroup α) := addCommGroup α
x y z : FreeAbelianGroup α
⊢ (x + y) * z = x * z + y * z
[PROOFSTEP]
simp only [(· * ·), Mul.mul, map_add, ← Pi.add_def, lift.add']
[GOAL]
α : Type u
β : Type v
γ : Type w
inst✝ : Mul α
src✝¹ : Distrib (FreeAbelianGroup α) := distrib
src✝ : AddCommGroup (FreeAbelianGroup α) := addCommGroup α
a : FreeAbelianGroup α
⊢ 0 * a = 0
[PROOFSTEP]
have h : 0 * a + 0 * a = 0 * a := by simp [← add_mul]
[GOAL]
α : Type u
β : Type v
γ : Type w
inst✝ : Mul α
src✝¹ : Distrib (FreeAbelianGroup α) := distrib
src✝ : AddCommGroup (FreeAbelianGroup α) := addCommGroup α
a : FreeAbelianGroup α
⊢ 0 * a + 0 * a = 0 * a
[PROOFSTEP]
simp [← add_mul]
[GOAL]
α : Type u
β : Type v
γ : Type w
inst✝ : Mul α
src✝¹ : Distrib (FreeAbelianGroup α) := distrib
src✝ : AddCommGroup (FreeAbelianGroup α) := addCommGroup α
a : FreeAbelianGroup α
h : 0 * a + 0 * a = 0 * a
⊢ 0 * a = 0
[PROOFSTEP]
simpa using h
[GOAL]
α : Type u
β : Type v
γ : Type w
inst✝ : Semigroup α
src✝ : NonUnitalNonAssocRing (FreeAbelianGroup α) := nonUnitalNonAssocRing
x y z : FreeAbelianGroup α
⊢ x * y * z = x * (y * z)
[PROOFSTEP]
refine' FreeAbelianGroup.induction_on z (by simp only [mul_zero]) (fun L3 ↦ _) (fun L3 ih ↦ _) fun z₁ z₂ ih₁ ih₂ ↦ _
[GOAL]
α : Type u
β : Type v
γ : Type w
inst✝ : Semigroup α
src✝ : NonUnitalNonAssocRing (FreeAbelianGroup α) := nonUnitalNonAssocRing
x y z : FreeAbelianGroup α
⊢ x * y * 0 = x * (y * 0)
[PROOFSTEP]
simp only [mul_zero]
[GOAL]
case refine'_1
α : Type u
β : Type v
γ : Type w
inst✝ : Semigroup α
src✝ : NonUnitalNonAssocRing (FreeAbelianGroup α) := nonUnitalNonAssocRing
x y z : FreeAbelianGroup α
L3 : α
⊢ x * y * of L3 = x * (y * of L3)
[PROOFSTEP]
refine'
FreeAbelianGroup.induction_on y (by simp only [mul_zero, zero_mul]) (fun L2 ↦ _) (fun L2 ih ↦ _) fun y₁ y₂ ih₁ ih₂ ↦ _
[GOAL]
α : Type u
β : Type v
γ : Type w
inst✝ : Semigroup α
src✝ : NonUnitalNonAssocRing (FreeAbelianGroup α) := nonUnitalNonAssocRing
x y z : FreeAbelianGroup α
L3 : α
⊢ x * 0 * of L3 = x * (0 * of L3)
[PROOFSTEP]
simp only [mul_zero, zero_mul]
[GOAL]
case refine'_1.refine'_1
α : Type u
β : Type v
γ : Type w
inst✝ : Semigroup α
src✝ : NonUnitalNonAssocRing (FreeAbelianGroup α) := nonUnitalNonAssocRing
x y z : FreeAbelianGroup α
L3 L2 : α
⊢ x * of L2 * of L3 = x * (of L2 * of L3)
[PROOFSTEP]
refine' FreeAbelianGroup.induction_on x (by simp only [zero_mul]) (fun L1 ↦ _) (fun L1 ih ↦ _) fun x₁ x₂ ih₁ ih₂ ↦ _
[GOAL]
α : Type u
β : Type v
γ : Type w
inst✝ : Semigroup α
src✝ : NonUnitalNonAssocRing (FreeAbelianGroup α) := nonUnitalNonAssocRing
x y z : FreeAbelianGroup α
L3 L2 : α
⊢ 0 * of L2 * of L3 = 0 * (of L2 * of L3)
[PROOFSTEP]
simp only [zero_mul]
[GOAL]
case refine'_1.refine'_1.refine'_1
α : Type u
β : Type v
γ : Type w
inst✝ : Semigroup α
src✝ : NonUnitalNonAssocRing (FreeAbelianGroup α) := nonUnitalNonAssocRing
x y z : FreeAbelianGroup α
L3 L2 L1 : α
⊢ of L1 * of L2 * of L3 = of L1 * (of L2 * of L3)
[PROOFSTEP]
rw [of_mul_of, of_mul_of, of_mul_of, of_mul_of, mul_assoc]
[GOAL]
case refine'_1.refine'_1.refine'_2
α : Type u
β : Type v
γ : Type w
inst✝ : Semigroup α
src✝ : NonUnitalNonAssocRing (FreeAbelianGroup α) := nonUnitalNonAssocRing
x y z : FreeAbelianGroup α
L3 L2 L1 : α
ih : of L1 * of L2 * of L3 = of L1 * (of L2 * of L3)
⊢ -of L1 * of L2 * of L3 = -of L1 * (of L2 * of L3)
[PROOFSTEP]
rw [neg_mul, neg_mul, neg_mul, ih]
[GOAL]
case refine'_1.refine'_1.refine'_3
α : Type u
β : Type v
γ : Type w
inst✝ : Semigroup α
src✝ : NonUnitalNonAssocRing (FreeAbelianGroup α) := nonUnitalNonAssocRing
x y z : FreeAbelianGroup α
L3 L2 : α
x₁ x₂ : FreeAbelianGroup α
ih₁ : x₁ * of L2 * of L3 = x₁ * (of L2 * of L3)
ih₂ : x₂ * of L2 * of L3 = x₂ * (of L2 * of L3)
⊢ (x₁ + x₂) * of L2 * of L3 = (x₁ + x₂) * (of L2 * of L3)
[PROOFSTEP]
rw [add_mul, add_mul, add_mul, ih₁, ih₂]
[GOAL]
case refine'_1.refine'_2
α : Type u
β : Type v
γ : Type w
inst✝ : Semigroup α
src✝ : NonUnitalNonAssocRing (FreeAbelianGroup α) := nonUnitalNonAssocRing
x y z : FreeAbelianGroup α
L3 L2 : α
ih : x * of L2 * of L3 = x * (of L2 * of L3)
⊢ x * -of L2 * of L3 = x * (-of L2 * of L3)
[PROOFSTEP]
rw [neg_mul, mul_neg, mul_neg, neg_mul, ih]
[GOAL]
case refine'_1.refine'_3
α : Type u
β : Type v
γ : Type w
inst✝ : Semigroup α
src✝ : NonUnitalNonAssocRing (FreeAbelianGroup α) := nonUnitalNonAssocRing
x y z : FreeAbelianGroup α
L3 : α
y₁ y₂ : FreeAbelianGroup α
ih₁ : x * y₁ * of L3 = x * (y₁ * of L3)
ih₂ : x * y₂ * of L3 = x * (y₂ * of L3)
⊢ x * (y₁ + y₂) * of L3 = x * ((y₁ + y₂) * of L3)
[PROOFSTEP]
rw [add_mul, mul_add, mul_add, add_mul, ih₁, ih₂]
[GOAL]
case refine'_2
α : Type u
β : Type v
γ : Type w
inst✝ : Semigroup α
src✝ : NonUnitalNonAssocRing (FreeAbelianGroup α) := nonUnitalNonAssocRing
x y z : FreeAbelianGroup α
L3 : α
ih : x * y * of L3 = x * (y * of L3)
⊢ x * y * -of L3 = x * (y * -of L3)
[PROOFSTEP]
rw [mul_neg, mul_neg, mul_neg, ih]
[GOAL]
case refine'_3
α : Type u
β : Type v
γ : Type w
inst✝ : Semigroup α
src✝ : NonUnitalNonAssocRing (FreeAbelianGroup α) := nonUnitalNonAssocRing
x y z z₁ z₂ : FreeAbelianGroup α
ih₁ : x * y * z₁ = x * (y * z₁)
ih₂ : x * y * z₂ = x * (y * z₂)
⊢ x * y * (z₁ + z₂) = x * (y * (z₁ + z₂))
[PROOFSTEP]
rw [mul_add, mul_add, mul_add, ih₁, ih₂]
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Type u_1
inst✝¹ : Monoid α
inst✝ : Ring R
src✝¹ : NonUnitalRing (FreeAbelianGroup α) := nonUnitalRing α
src✝ : One (FreeAbelianGroup α) := one α
x : FreeAbelianGroup α
⊢ 1 * x = x
[PROOFSTEP]
dsimp only [(· * ·), Mul.mul, OfNat.ofNat, One.one]
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Type u_1
inst✝¹ : Monoid α
inst✝ : Ring R
src✝¹ : NonUnitalRing (FreeAbelianGroup α) := nonUnitalRing α
src✝ : One (FreeAbelianGroup α) := one α
x : FreeAbelianGroup α
⊢ ↑(↑lift fun x₂ => ↑(↑lift fun x₁ => of (Mul.mul x₁ x₂)) (of One.one)) x = x
[PROOFSTEP]
refine' FreeAbelianGroup.induction_on x rfl _ _ _
[GOAL]
case refine'_1
α : Type u
β : Type v
γ : Type w
R : Type u_1
inst✝¹ : Monoid α
inst✝ : Ring R
src✝¹ : NonUnitalRing (FreeAbelianGroup α) := nonUnitalRing α
src✝ : One (FreeAbelianGroup α) := one α
x : FreeAbelianGroup α
⊢ ∀ (x : α), ↑(↑lift fun x₂ => ↑(↑lift fun x₁ => of (Mul.mul x₁ x₂)) (of One.one)) (of x) = of x
[PROOFSTEP]
intro L
[GOAL]
case refine'_1
α : Type u
β : Type v
γ : Type w
R : Type u_1
inst✝¹ : Monoid α
inst✝ : Ring R
src✝¹ : NonUnitalRing (FreeAbelianGroup α) := nonUnitalRing α
src✝ : One (FreeAbelianGroup α) := one α
x : FreeAbelianGroup α
L : α
⊢ ↑(↑lift fun x₂ => ↑(↑lift fun x₁ => of (Mul.mul x₁ x₂)) (of One.one)) (of L) = of L
[PROOFSTEP]
rw [lift.of, lift.of]
[GOAL]
case refine'_1
α : Type u
β : Type v
γ : Type w
R : Type u_1
inst✝¹ : Monoid α
inst✝ : Ring R
src✝¹ : NonUnitalRing (FreeAbelianGroup α) := nonUnitalRing α
src✝ : One (FreeAbelianGroup α) := one α
x : FreeAbelianGroup α
L : α
⊢ of (Mul.mul One.one L) = of L
[PROOFSTEP]
congr 1
[GOAL]
case refine'_1.e_x
α : Type u
β : Type v
γ : Type w
R : Type u_1
inst✝¹ : Monoid α
inst✝ : Ring R
src✝¹ : NonUnitalRing (FreeAbelianGroup α) := nonUnitalRing α
src✝ : One (FreeAbelianGroup α) := one α
x : FreeAbelianGroup α
L : α
⊢ Mul.mul One.one L = L
[PROOFSTEP]
exact one_mul L
[GOAL]
case refine'_2
α : Type u
β : Type v
γ : Type w
R : Type u_1
inst✝¹ : Monoid α
inst✝ : Ring R
src✝¹ : NonUnitalRing (FreeAbelianGroup α) := nonUnitalRing α
src✝ : One (FreeAbelianGroup α) := one α
x : FreeAbelianGroup α
⊢ ∀ (x : α),
↑(↑lift fun x₂ => ↑(↑lift fun x₁ => of (Mul.mul x₁ x₂)) (of One.one)) (of x) = of x →
↑(↑lift fun x₂ => ↑(↑lift fun x₁ => of (Mul.mul x₁ x₂)) (of One.one)) (-of x) = -of x
[PROOFSTEP]
intro L ih
[GOAL]
case refine'_2
α : Type u
β : Type v
γ : Type w
R : Type u_1
inst✝¹ : Monoid α
inst✝ : Ring R
src✝¹ : NonUnitalRing (FreeAbelianGroup α) := nonUnitalRing α
src✝ : One (FreeAbelianGroup α) := one α
x : FreeAbelianGroup α
L : α
ih : ↑(↑lift fun x₂ => ↑(↑lift fun x₁ => of (Mul.mul x₁ x₂)) (of One.one)) (of L) = of L
⊢ ↑(↑lift fun x₂ => ↑(↑lift fun x₁ => of (Mul.mul x₁ x₂)) (of One.one)) (-of L) = -of L
[PROOFSTEP]
rw [map_neg, ih]
[GOAL]
case refine'_3
α : Type u
β : Type v
γ : Type w
R : Type u_1
inst✝¹ : Monoid α
inst✝ : Ring R
src✝¹ : NonUnitalRing (FreeAbelianGroup α) := nonUnitalRing α
src✝ : One (FreeAbelianGroup α) := one α
x : FreeAbelianGroup α
⊢ ∀ (x y : FreeAbelianGroup α),
↑(↑lift fun x₂ => ↑(↑lift fun x₁ => of (Mul.mul x₁ x₂)) (of One.one)) x = x →
↑(↑lift fun x₂ => ↑(↑lift fun x₁ => of (Mul.mul x₁ x₂)) (of One.one)) y = y →
↑(↑lift fun x₂ => ↑(↑lift fun x₁ => of (Mul.mul x₁ x₂)) (of One.one)) (x + y) = x + y
[PROOFSTEP]
intro x1 x2 ih1 ih2
[GOAL]
case refine'_3
α : Type u
β : Type v
γ : Type w
R : Type u_1
inst✝¹ : Monoid α
inst✝ : Ring R
src✝¹ : NonUnitalRing (FreeAbelianGroup α) := nonUnitalRing α
src✝ : One (FreeAbelianGroup α) := one α
x x1 x2 : FreeAbelianGroup α
ih1 : ↑(↑lift fun x₂ => ↑(↑lift fun x₁ => of (Mul.mul x₁ x₂)) (of One.one)) x1 = x1
ih2 : ↑(↑lift fun x₂ => ↑(↑lift fun x₁ => of (Mul.mul x₁ x₂)) (of One.one)) x2 = x2
⊢ ↑(↑lift fun x₂ => ↑(↑lift fun x₁ => of (Mul.mul x₁ x₂)) (of One.one)) (x1 + x2) = x1 + x2
[PROOFSTEP]
rw [map_add, ih1, ih2]
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Type u_1
inst✝¹ : Monoid α
inst✝ : Ring R
src✝¹ : NonUnitalRing (FreeAbelianGroup α) := nonUnitalRing α
src✝ : One (FreeAbelianGroup α) := one α
x : FreeAbelianGroup α
⊢ x * 1 = x
[PROOFSTEP]
dsimp only [(· * ·), Mul.mul, OfNat.ofNat, One.one]
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Type u_1
inst✝¹ : Monoid α
inst✝ : Ring R
src✝¹ : NonUnitalRing (FreeAbelianGroup α) := nonUnitalRing α
src✝ : One (FreeAbelianGroup α) := one α
x : FreeAbelianGroup α
⊢ ↑(↑lift fun x₂ => ↑(↑lift fun x₁ => of (Mul.mul x₁ x₂)) x) (of One.one) = x
[PROOFSTEP]
rw [lift.of]
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Type u_1
inst✝¹ : Monoid α
inst✝ : Ring R
src✝¹ : NonUnitalRing (FreeAbelianGroup α) := nonUnitalRing α
src✝ : One (FreeAbelianGroup α) := one α
x : FreeAbelianGroup α
⊢ ↑(↑lift fun x₁ => of (Mul.mul x₁ One.one)) x = x
[PROOFSTEP]
refine' FreeAbelianGroup.induction_on x rfl (fun L ↦ _) (fun L ih ↦ _) fun x1 x2 ih1 ih2 ↦ _
[GOAL]
case refine'_1
α : Type u
β : Type v
γ : Type w
R : Type u_1
inst✝¹ : Monoid α
inst✝ : Ring R
src✝¹ : NonUnitalRing (FreeAbelianGroup α) := nonUnitalRing α
src✝ : One (FreeAbelianGroup α) := one α
x : FreeAbelianGroup α
L : α
⊢ ↑(↑lift fun x₁ => of (Mul.mul x₁ One.one)) (of L) = of L
[PROOFSTEP]
erw [lift.of]
[GOAL]
case refine'_1
α : Type u
β : Type v
γ : Type w
R : Type u_1
inst✝¹ : Monoid α
inst✝ : Ring R
src✝¹ : NonUnitalRing (FreeAbelianGroup α) := nonUnitalRing α
src✝ : One (FreeAbelianGroup α) := one α
x : FreeAbelianGroup α
L : α
⊢ of (Mul.mul L One.one) = of L
[PROOFSTEP]
congr 1
[GOAL]
case refine'_1.e_x
α : Type u
β : Type v
γ : Type w
R : Type u_1
inst✝¹ : Monoid α
inst✝ : Ring R
src✝¹ : NonUnitalRing (FreeAbelianGroup α) := nonUnitalRing α
src✝ : One (FreeAbelianGroup α) := one α
x : FreeAbelianGroup α
L : α
⊢ Mul.mul L One.one = L
[PROOFSTEP]
exact mul_one L
[GOAL]
case refine'_2
α : Type u
β : Type v
γ : Type w
R : Type u_1
inst✝¹ : Monoid α
inst✝ : Ring R
src✝¹ : NonUnitalRing (FreeAbelianGroup α) := nonUnitalRing α
src✝ : One (FreeAbelianGroup α) := one α
x : FreeAbelianGroup α
L : α
ih : ↑(↑lift fun x₁ => of (Mul.mul x₁ One.one)) (of L) = of L
⊢ ↑(↑lift fun x₁ => of (Mul.mul x₁ One.one)) (-of L) = -of L
[PROOFSTEP]
rw [map_neg, ih]
[GOAL]
case refine'_3
α : Type u
β : Type v
γ : Type w
R : Type u_1
inst✝¹ : Monoid α
inst✝ : Ring R
src✝¹ : NonUnitalRing (FreeAbelianGroup α) := nonUnitalRing α
src✝ : One (FreeAbelianGroup α) := one α
x x1 x2 : FreeAbelianGroup α
ih1 : ↑(↑lift fun x₁ => of (Mul.mul x₁ One.one)) x1 = x1
ih2 : ↑(↑lift fun x₁ => of (Mul.mul x₁ One.one)) x2 = x2
⊢ ↑(↑lift fun x₁ => of (Mul.mul x₁ One.one)) (x1 + x2) = x1 + x2
[PROOFSTEP]
rw [map_add, ih1, ih2]
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Type u_1
inst✝¹ : Monoid α
inst✝ : Ring R
f : α →* R
src✝ : (fun x => FreeAbelianGroup α →+ R) ↑f := ↑lift ↑f
x y : FreeAbelianGroup α
⊢ OneHom.toFun { toFun := ↑(↑lift ↑f), map_one' := (_ : ↑(↑lift ↑f) (of 1) = 1) } (x * y) =
OneHom.toFun { toFun := ↑(↑lift ↑f), map_one' := (_ : ↑(↑lift ↑f) (of 1) = 1) } x *
OneHom.toFun { toFun := ↑(↑lift ↑f), map_one' := (_ : ↑(↑lift ↑f) (of 1) = 1) } y
[PROOFSTEP]
simp only
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Type u_1
inst✝¹ : Monoid α
inst✝ : Ring R
f : α →* R
src✝ : (fun x => FreeAbelianGroup α →+ R) ↑f := ↑lift ↑f
x y : FreeAbelianGroup α
⊢ ↑(↑lift ↑f) (x * y) = ↑(↑lift ↑f) x * ↑(↑lift ↑f) y
[PROOFSTEP]
refine' FreeAbelianGroup.induction_on y (by simp only [mul_zero, map_zero]) (fun L2 ↦ _) (fun L2 ih ↦ _) _
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Type u_1
inst✝¹ : Monoid α
inst✝ : Ring R
f : α →* R
src✝ : (fun x => FreeAbelianGroup α →+ R) ↑f := ↑lift ↑f
x y : FreeAbelianGroup α
⊢ ↑(↑lift ↑f) (x * 0) = ↑(↑lift ↑f) x * ↑(↑lift ↑f) 0
[PROOFSTEP]
simp only [mul_zero, map_zero]
[GOAL]
case refine'_1
α : Type u
β : Type v
γ : Type w
R : Type u_1
inst✝¹ : Monoid α
inst✝ : Ring R
f : α →* R
src✝ : (fun x => FreeAbelianGroup α →+ R) ↑f := ↑lift ↑f
x y : FreeAbelianGroup α
L2 : α
⊢ ↑(↑lift ↑f) (x * of L2) = ↑(↑lift ↑f) x * ↑(↑lift ↑f) (of L2)
[PROOFSTEP]
refine' FreeAbelianGroup.induction_on x (by simp only [zero_mul, map_zero]) (fun L1 ↦ _) (fun L1 ih ↦ _) _
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Type u_1
inst✝¹ : Monoid α
inst✝ : Ring R
f : α →* R
src✝ : (fun x => FreeAbelianGroup α →+ R) ↑f := ↑lift ↑f
x y : FreeAbelianGroup α
L2 : α
⊢ ↑(↑lift ↑f) (0 * of L2) = ↑(↑lift ↑f) 0 * ↑(↑lift ↑f) (of L2)
[PROOFSTEP]
simp only [zero_mul, map_zero]
[GOAL]
case refine'_1.refine'_1
α : Type u
β : Type v
γ : Type w
R : Type u_1
inst✝¹ : Monoid α
inst✝ : Ring R
f : α →* R
src✝ : (fun x => FreeAbelianGroup α →+ R) ↑f := ↑lift ↑f
x y : FreeAbelianGroup α
L2 L1 : α
⊢ ↑(↑lift ↑f) (of L1 * of L2) = ↑(↑lift ↑f) (of L1) * ↑(↑lift ↑f) (of L2)
[PROOFSTEP]
simp_rw [of_mul_of, lift.of]
[GOAL]
case refine'_1.refine'_1
α : Type u
β : Type v
γ : Type w
R : Type u_1
inst✝¹ : Monoid α
inst✝ : Ring R
f : α →* R
src✝ : (fun x => FreeAbelianGroup α →+ R) ↑f := ↑lift ↑f
x y : FreeAbelianGroup α
L2 L1 : α
⊢ ↑f (L1 * L2) = ↑f L1 * ↑f L2
[PROOFSTEP]
exact f.map_mul _ _
[GOAL]
case refine'_1.refine'_2
α : Type u
β : Type v
γ : Type w
R : Type u_1
inst✝¹ : Monoid α
inst✝ : Ring R
f : α →* R
src✝ : (fun x => FreeAbelianGroup α →+ R) ↑f := ↑lift ↑f
x y : FreeAbelianGroup α
L2 L1 : α
ih : ↑(↑lift ↑f) (of L1 * of L2) = ↑(↑lift ↑f) (of L1) * ↑(↑lift ↑f) (of L2)
⊢ ↑(↑lift ↑f) (-of L1 * of L2) = ↑(↑lift ↑f) (-of L1) * ↑(↑lift ↑f) (of L2)
[PROOFSTEP]
simp_rw [neg_mul, map_neg, neg_mul]
[GOAL]
case refine'_1.refine'_2
α : Type u
β : Type v
γ : Type w
R : Type u_1
inst✝¹ : Monoid α
inst✝ : Ring R
f : α →* R
src✝ : (fun x => FreeAbelianGroup α →+ R) ↑f := ↑lift ↑f
x y : FreeAbelianGroup α
L2 L1 : α
ih : ↑(↑lift ↑f) (of L1 * of L2) = ↑(↑lift ↑f) (of L1) * ↑(↑lift ↑f) (of L2)
⊢ -↑(↑lift ↑f) (of L1 * of L2) = -(↑(↑lift ↑f) (of L1) * ↑(↑lift ↑f) (of L2))
[PROOFSTEP]
exact congr_arg Neg.neg ih
[GOAL]
case refine'_1.refine'_3
α : Type u
β : Type v
γ : Type w
R : Type u_1
inst✝¹ : Monoid α
inst✝ : Ring R
f : α →* R
src✝ : (fun x => FreeAbelianGroup α →+ R) ↑f := ↑lift ↑f
x y : FreeAbelianGroup α
L2 : α
⊢ ∀ (x y : FreeAbelianGroup α),
↑(↑lift ↑f) (x * of L2) = ↑(↑lift ↑f) x * ↑(↑lift ↑f) (of L2) →
↑(↑lift ↑f) (y * of L2) = ↑(↑lift ↑f) y * ↑(↑lift ↑f) (of L2) →
↑(↑lift ↑f) ((x + y) * of L2) = ↑(↑lift ↑f) (x + y) * ↑(↑lift ↑f) (of L2)
[PROOFSTEP]
intro x1 x2 ih1 ih2
[GOAL]
case refine'_1.refine'_3
α : Type u
β : Type v
γ : Type w
R : Type u_1
inst✝¹ : Monoid α
inst✝ : Ring R
f : α →* R
src✝ : (fun x => FreeAbelianGroup α →+ R) ↑f := ↑lift ↑f
x y : FreeAbelianGroup α
L2 : α
x1 x2 : FreeAbelianGroup α
ih1 : ↑(↑lift ↑f) (x1 * of L2) = ↑(↑lift ↑f) x1 * ↑(↑lift ↑f) (of L2)
ih2 : ↑(↑lift ↑f) (x2 * of L2) = ↑(↑lift ↑f) x2 * ↑(↑lift ↑f) (of L2)
⊢ ↑(↑lift ↑f) ((x1 + x2) * of L2) = ↑(↑lift ↑f) (x1 + x2) * ↑(↑lift ↑f) (of L2)
[PROOFSTEP]
simp only [add_mul, map_add, ih1, ih2]
[GOAL]
case refine'_2
α : Type u
β : Type v
γ : Type w
R : Type u_1
inst✝¹ : Monoid α
inst✝ : Ring R
f : α →* R
src✝ : (fun x => FreeAbelianGroup α →+ R) ↑f := ↑lift ↑f
x y : FreeAbelianGroup α
L2 : α
ih : ↑(↑lift ↑f) (x * of L2) = ↑(↑lift ↑f) x * ↑(↑lift ↑f) (of L2)
⊢ ↑(↑lift ↑f) (x * -of L2) = ↑(↑lift ↑f) x * ↑(↑lift ↑f) (-of L2)
[PROOFSTEP]
rw [mul_neg, map_neg, map_neg, mul_neg, ih]
[GOAL]
case refine'_3
α : Type u
β : Type v
γ : Type w
R : Type u_1
inst✝¹ : Monoid α
inst✝ : Ring R
f : α →* R
src✝ : (fun x => FreeAbelianGroup α →+ R) ↑f := ↑lift ↑f
x y : FreeAbelianGroup α
⊢ ∀ (x_1 y : FreeAbelianGroup α),
↑(↑lift ↑f) (x * x_1) = ↑(↑lift ↑f) x * ↑(↑lift ↑f) x_1 →
↑(↑lift ↑f) (x * y) = ↑(↑lift ↑f) x * ↑(↑lift ↑f) y →
↑(↑lift ↑f) (x * (x_1 + y)) = ↑(↑lift ↑f) x * ↑(↑lift ↑f) (x_1 + y)
[PROOFSTEP]
intro y1 y2 ih1 ih2
[GOAL]
case refine'_3
α : Type u
β : Type v
γ : Type w
R : Type u_1
inst✝¹ : Monoid α
inst✝ : Ring R
f : α →* R
src✝ : (fun x => FreeAbelianGroup α →+ R) ↑f := ↑lift ↑f
x y y1 y2 : FreeAbelianGroup α
ih1 : ↑(↑lift ↑f) (x * y1) = ↑(↑lift ↑f) x * ↑(↑lift ↑f) y1
ih2 : ↑(↑lift ↑f) (x * y2) = ↑(↑lift ↑f) x * ↑(↑lift ↑f) y2
⊢ ↑(↑lift ↑f) (x * (y1 + y2)) = ↑(↑lift ↑f) x * ↑(↑lift ↑f) (y1 + y2)
[PROOFSTEP]
rw [mul_add, map_add, map_add, mul_add, ih1, ih2]
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Type u_1
inst✝¹ : Monoid α
inst✝ : Ring R
f : α →* R
⊢ ∀ (x : α),
↑((fun F => MonoidHom.comp (↑F) ofMulHom)
((fun f =>
let src := ↑lift ↑f;
{
toMonoidHom :=
{ toOneHom := { toFun := ↑(↑lift ↑f), map_one' := (_ : ↑(↑lift ↑f) (of 1) = 1) },
map_mul' :=
(_ :
∀ (x y : FreeAbelianGroup α),
OneHom.toFun { toFun := ↑(↑lift ↑f), map_one' := (_ : ↑(↑lift ↑f) (of 1) = 1) } (x * y) =
OneHom.toFun { toFun := ↑(↑lift ↑f), map_one' := (_ : ↑(↑lift ↑f) (of 1) = 1) } x *
OneHom.toFun { toFun := ↑(↑lift ↑f), map_one' := (_ : ↑(↑lift ↑f) (of 1) = 1) } y) },
map_zero' := (_ : ZeroHom.toFun (↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : FreeAbelianGroup α),
ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) })
f))
x =
↑f x
[PROOFSTEP]
simp only [RingHom.coe_monoidHom_mk, MonoidHom.coe_comp, MonoidHom.coe_mk, OneHom.coe_mk, ofMulHom_coe,
Function.comp_apply, lift.of, forall_const]
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Type u_1
inst✝¹ : Monoid α
inst✝ : Ring R
F : FreeAbelianGroup α →+* R
⊢ (fun f => ↑f)
((fun f =>
let src := ↑lift ↑f;
{
toMonoidHom :=
{ toOneHom := { toFun := ↑(↑lift ↑f), map_one' := (_ : ↑(↑lift ↑f) (of 1) = 1) },
map_mul' :=
(_ :
∀ (x y : FreeAbelianGroup α),
OneHom.toFun { toFun := ↑(↑lift ↑f), map_one' := (_ : ↑(↑lift ↑f) (of 1) = 1) } (x * y) =
OneHom.toFun { toFun := ↑(↑lift ↑f), map_one' := (_ : ↑(↑lift ↑f) (of 1) = 1) } x *
OneHom.toFun { toFun := ↑(↑lift ↑f), map_one' := (_ : ↑(↑lift ↑f) (of 1) = 1) } y) },
map_zero' := (_ : ZeroHom.toFun (↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : FreeAbelianGroup α),
ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) })
((fun F => MonoidHom.comp (↑F) ofMulHom) F)) =
(fun f => ↑f) F
[PROOFSTEP]
simp only
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Type u_1
inst✝¹ : Monoid α
inst✝ : Ring R
F : FreeAbelianGroup α →+* R
⊢ ↑{
toMonoidHom :=
{
toOneHom :=
{ toFun := ↑(↑lift ↑(MonoidHom.comp (↑F) ofMulHom)),
map_one' := (_ : ↑(↑lift ↑((fun F => MonoidHom.comp (↑F) ofMulHom) F)) (of 1) = 1) },
map_mul' :=
(_ :
∀ (x y : FreeAbelianGroup α),
OneHom.toFun
{ toFun := ↑(↑lift ↑((fun F => MonoidHom.comp (↑F) ofMulHom) F)),
map_one' := (_ : ↑(↑lift ↑((fun F => MonoidHom.comp (↑F) ofMulHom) F)) (of 1) = 1) }
(x * y) =
OneHom.toFun
{ toFun := ↑(↑lift ↑((fun F => MonoidHom.comp (↑F) ofMulHom) F)),
map_one' := (_ : ↑(↑lift ↑((fun F => MonoidHom.comp (↑F) ofMulHom) F)) (of 1) = 1) }
x *
OneHom.toFun
{ toFun := ↑(↑lift ↑((fun F => MonoidHom.comp (↑F) ofMulHom) F)),
map_one' := (_ : ↑(↑lift ↑((fun F => MonoidHom.comp (↑F) ofMulHom) F)) (of 1) = 1) }
y) },
map_zero' := (_ : ZeroHom.toFun (↑(↑lift ↑((fun F => MonoidHom.comp (↑F) ofMulHom) F))) 0 = 0),
map_add' :=
(_ :
∀ (x y : FreeAbelianGroup α),
ZeroHom.toFun (↑(↑lift ↑((fun F => MonoidHom.comp (↑F) ofMulHom) F))) (x + y) =
ZeroHom.toFun (↑(↑lift ↑((fun F => MonoidHom.comp (↑F) ofMulHom) F))) x +
ZeroHom.toFun (↑(↑lift ↑((fun F => MonoidHom.comp (↑F) ofMulHom) F))) y) } =
↑F
[PROOFSTEP]
rw [← lift.apply_symm_apply (↑F : FreeAbelianGroup α →+ R)]
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Type u_1
inst✝¹ : Monoid α
inst✝ : Ring R
F : FreeAbelianGroup α →+* R
⊢ ↑{
toMonoidHom :=
{
toOneHom :=
{ toFun := ↑(↑lift ↑(MonoidHom.comp (↑F) ofMulHom)),
map_one' := (_ : ↑(↑lift ↑((fun F => MonoidHom.comp (↑F) ofMulHom) F)) (of 1) = 1) },
map_mul' :=
(_ :
∀ (x y : FreeAbelianGroup α),
OneHom.toFun
{ toFun := ↑(↑lift ↑((fun F => MonoidHom.comp (↑F) ofMulHom) F)),
map_one' := (_ : ↑(↑lift ↑((fun F => MonoidHom.comp (↑F) ofMulHom) F)) (of 1) = 1) }
(x * y) =
OneHom.toFun
{ toFun := ↑(↑lift ↑((fun F => MonoidHom.comp (↑F) ofMulHom) F)),
map_one' := (_ : ↑(↑lift ↑((fun F => MonoidHom.comp (↑F) ofMulHom) F)) (of 1) = 1) }
x *
OneHom.toFun
{ toFun := ↑(↑lift ↑((fun F => MonoidHom.comp (↑F) ofMulHom) F)),
map_one' := (_ : ↑(↑lift ↑((fun F => MonoidHom.comp (↑F) ofMulHom) F)) (of 1) = 1) }
y) },
map_zero' := (_ : ZeroHom.toFun (↑(↑lift ↑((fun F => MonoidHom.comp (↑F) ofMulHom) F))) 0 = 0),
map_add' :=
(_ :
∀ (x y : FreeAbelianGroup α),
ZeroHom.toFun (↑(↑lift ↑((fun F => MonoidHom.comp (↑F) ofMulHom) F))) (x + y) =
ZeroHom.toFun (↑(↑lift ↑((fun F => MonoidHom.comp (↑F) ofMulHom) F))) x +
ZeroHom.toFun (↑(↑lift ↑((fun F => MonoidHom.comp (↑F) ofMulHom) F))) y) } =
↑lift (↑lift.symm ↑F)
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : Type v
γ : Type w
inst✝ : CommMonoid α
src✝ : Ring (FreeAbelianGroup α) := ring α
x y : FreeAbelianGroup α
⊢ x * y = y * x
[PROOFSTEP]
refine' FreeAbelianGroup.induction_on x (zero_mul y) _ _ _
[GOAL]
case refine'_1
α : Type u
β : Type v
γ : Type w
inst✝ : CommMonoid α
src✝ : Ring (FreeAbelianGroup α) := ring α
x y : FreeAbelianGroup α
⊢ ∀ (x : α), of x * y = y * of x
[PROOFSTEP]
intro s
[GOAL]
case refine'_1
α : Type u
β : Type v
γ : Type w
inst✝ : CommMonoid α
src✝ : Ring (FreeAbelianGroup α) := ring α
x y : FreeAbelianGroup α
s : α
⊢ of s * y = y * of s
[PROOFSTEP]
refine' FreeAbelianGroup.induction_on y (zero_mul _).symm _ _ _
[GOAL]
case refine'_1.refine'_1
α : Type u
β : Type v
γ : Type w
inst✝ : CommMonoid α
src✝ : Ring (FreeAbelianGroup α) := ring α
x y : FreeAbelianGroup α
s : α
⊢ ∀ (x : α), of s * of x = of x * of s
[PROOFSTEP]
intro t
[GOAL]
case refine'_1.refine'_1
α : Type u
β : Type v
γ : Type w
inst✝ : CommMonoid α
src✝ : Ring (FreeAbelianGroup α) := ring α
x y : FreeAbelianGroup α
s t : α
⊢ of s * of t = of t * of s
[PROOFSTEP]
dsimp only [(· * ·), Mul.mul]
[GOAL]
case refine'_1.refine'_1
α : Type u
β : Type v
γ : Type w
inst✝ : CommMonoid α
src✝ : Ring (FreeAbelianGroup α) := ring α
x y : FreeAbelianGroup α
s t : α
⊢ ↑(↑lift fun x₂ => ↑(↑lift fun x₁ => of (Mul.mul x₁ x₂)) (of s)) (of t) =
↑(↑lift fun x₂ => ↑(↑lift fun x₁ => of (Mul.mul x₁ x₂)) (of t)) (of s)
[PROOFSTEP]
iterate 4 rw [lift.of]
[GOAL]
case refine'_1.refine'_1
α : Type u
β : Type v
γ : Type w
inst✝ : CommMonoid α
src✝ : Ring (FreeAbelianGroup α) := ring α
x y : FreeAbelianGroup α
s t : α
⊢ ↑(↑lift fun x₂ => ↑(↑lift fun x₁ => of (Mul.mul x₁ x₂)) (of s)) (of t) =
↑(↑lift fun x₂ => ↑(↑lift fun x₁ => of (Mul.mul x₁ x₂)) (of t)) (of s)
[PROOFSTEP]
rw [lift.of]
[GOAL]
case refine'_1.refine'_1
α : Type u
β : Type v
γ : Type w
inst✝ : CommMonoid α
src✝ : Ring (FreeAbelianGroup α) := ring α
x y : FreeAbelianGroup α
s t : α
⊢ ↑(↑lift fun x₁ => of (Mul.mul x₁ t)) (of s) = ↑(↑lift fun x₂ => ↑(↑lift fun x₁ => of (Mul.mul x₁ x₂)) (of t)) (of s)
[PROOFSTEP]
rw [lift.of]
[GOAL]
case refine'_1.refine'_1
α : Type u
β : Type v
γ : Type w
inst✝ : CommMonoid α
src✝ : Ring (FreeAbelianGroup α) := ring α
x y : FreeAbelianGroup α
s t : α
⊢ of (Mul.mul s t) = ↑(↑lift fun x₂ => ↑(↑lift fun x₁ => of (Mul.mul x₁ x₂)) (of t)) (of s)
[PROOFSTEP]
rw [lift.of]
[GOAL]
case refine'_1.refine'_1
α : Type u
β : Type v
γ : Type w
inst✝ : CommMonoid α
src✝ : Ring (FreeAbelianGroup α) := ring α
x y : FreeAbelianGroup α
s t : α
⊢ of (Mul.mul s t) = ↑(↑lift fun x₁ => of (Mul.mul x₁ s)) (of t)
[PROOFSTEP]
rw [lift.of]
[GOAL]
case refine'_1.refine'_1
α : Type u
β : Type v
γ : Type w
inst✝ : CommMonoid α
src✝ : Ring (FreeAbelianGroup α) := ring α
x y : FreeAbelianGroup α
s t : α
⊢ of (Mul.mul s t) = of (Mul.mul t s)
[PROOFSTEP]
congr 1
[GOAL]
case refine'_1.refine'_1.e_x
α : Type u
β : Type v
γ : Type w
inst✝ : CommMonoid α
src✝ : Ring (FreeAbelianGroup α) := ring α
x y : FreeAbelianGroup α
s t : α
⊢ Mul.mul s t = Mul.mul t s
[PROOFSTEP]
exact mul_comm _ _
[GOAL]
case refine'_1.refine'_2
α : Type u
β : Type v
γ : Type w
inst✝ : CommMonoid α
src✝ : Ring (FreeAbelianGroup α) := ring α
x y : FreeAbelianGroup α
s : α
⊢ ∀ (x : α), of s * of x = of x * of s → of s * -of x = -of x * of s
[PROOFSTEP]
intro t ih
[GOAL]
case refine'_1.refine'_2
α : Type u
β : Type v
γ : Type w
inst✝ : CommMonoid α
src✝ : Ring (FreeAbelianGroup α) := ring α
x y : FreeAbelianGroup α
s t : α
ih : of s * of t = of t * of s
⊢ of s * -of t = -of t * of s
[PROOFSTEP]
rw [mul_neg, ih, neg_mul_eq_neg_mul]
[GOAL]
case refine'_1.refine'_3
α : Type u
β : Type v
γ : Type w
inst✝ : CommMonoid α
src✝ : Ring (FreeAbelianGroup α) := ring α
x y : FreeAbelianGroup α
s : α
⊢ ∀ (x y : FreeAbelianGroup α), of s * x = x * of s → of s * y = y * of s → of s * (x + y) = (x + y) * of s
[PROOFSTEP]
intro y1 y2 ih1 ih2
[GOAL]
case refine'_1.refine'_3
α : Type u
β : Type v
γ : Type w
inst✝ : CommMonoid α
src✝ : Ring (FreeAbelianGroup α) := ring α
x y : FreeAbelianGroup α
s : α
y1 y2 : FreeAbelianGroup α
ih1 : of s * y1 = y1 * of s
ih2 : of s * y2 = y2 * of s
⊢ of s * (y1 + y2) = (y1 + y2) * of s
[PROOFSTEP]
rw [mul_add, add_mul, ih1, ih2]
[GOAL]
case refine'_2
α : Type u
β : Type v
γ : Type w
inst✝ : CommMonoid α
src✝ : Ring (FreeAbelianGroup α) := ring α
x y : FreeAbelianGroup α
⊢ ∀ (x : α), of x * y = y * of x → -of x * y = y * -of x
[PROOFSTEP]
intro s ih
[GOAL]
case refine'_2
α : Type u
β : Type v
γ : Type w
inst✝ : CommMonoid α
src✝ : Ring (FreeAbelianGroup α) := ring α
x y : FreeAbelianGroup α
s : α
ih : of s * y = y * of s
⊢ -of s * y = y * -of s
[PROOFSTEP]
rw [neg_mul, ih, neg_mul_eq_mul_neg]
[GOAL]
case refine'_3
α : Type u
β : Type v
γ : Type w
inst✝ : CommMonoid α
src✝ : Ring (FreeAbelianGroup α) := ring α
x y : FreeAbelianGroup α
⊢ ∀ (x y_1 : FreeAbelianGroup α), x * y = y * x → y_1 * y = y * y_1 → (x + y_1) * y = y * (x + y_1)
[PROOFSTEP]
intro x1 x2 ih1 ih2
[GOAL]
case refine'_3
α : Type u
β : Type v
γ : Type w
inst✝ : CommMonoid α
src✝ : Ring (FreeAbelianGroup α) := ring α
x y x1 x2 : FreeAbelianGroup α
ih1 : x1 * y = y * x1
ih2 : x2 * y = y * x2
⊢ (x1 + x2) * y = y * (x1 + x2)
[PROOFSTEP]
rw [add_mul, mul_add, ih1, ih2]
[GOAL]
α : Type u
β : Type v
γ : Type w
x : FreeAbelianGroup PEmpty
⊢ ∀ (x y : FreeAbelianGroup PEmpty), x = default → y = default → x + y = default
[PROOFSTEP]
rintro - - rfl rfl
[GOAL]
α : Type u
β : Type v
γ : Type w
x : FreeAbelianGroup PEmpty
⊢ default + default = default
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : Type v
γ : Type w
T : Type u_1
inst✝ : Unique T
z : FreeAbelianGroup T
⊢ (fun n => n • of default) (↑(↑lift fun x => 1) 0) = 0
[PROOFSTEP]
simp only [zero_smul, AddMonoidHom.map_zero]
[GOAL]
α : Type u
β : Type v
γ : Type w
T : Type u_1
inst✝ : Unique T
z : FreeAbelianGroup T
⊢ (fun n => n • of default) (↑(↑lift fun x => 1) (of default)) = of default
[PROOFSTEP]
simp only [one_smul, lift.of]
[GOAL]
α : Type u
β : Type v
γ : Type w
T : Type u_1
inst✝ : Unique T
z : FreeAbelianGroup T
⊢ (fun n => n • of default) (↑(↑lift fun x => 1) (of default)) = of default →
(fun n => n • of default) (↑(↑lift fun x => 1) (-of default)) = -of default
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type w
T : Type u_1
inst✝ : Unique T
z x y : FreeAbelianGroup T
hx : (fun n => n • of default) (↑(↑lift fun x => 1) x) = x
hy : (fun n => n • of default) (↑(↑lift fun x => 1) y) = y
⊢ (fun n => n • of default) (↑(↑lift fun x => 1) (x + y)) = x + y
[PROOFSTEP]
simp only [AddMonoidHom.map_add, add_smul] at *
[GOAL]
α : Type u
β : Type v
γ : Type w
T : Type u_1
inst✝ : Unique T
z x y : FreeAbelianGroup T
hx : ↑(↑lift fun x => 1) x • of default = x
hy : ↑(↑lift fun x => 1) y • of default = y
⊢ ↑(↑lift fun x => 1) x • of default + ↑(↑lift fun x => 1) y • of default = x + y
[PROOFSTEP]
rw [hx, hy]
[GOAL]
α : Type u
β : Type v
γ : Type w
T : Type u_1
inst✝ : Unique T
n : ℤ
⊢ ↑(↑lift fun x => 1) ((fun n => n • of default) n) = n
[PROOFSTEP]
rw [AddMonoidHom.map_zsmul, lift.of]
[GOAL]
α : Type u
β : Type v
γ : Type w
T : Type u_1
inst✝ : Unique T
n : ℤ
⊢ n • 1 = n
[PROOFSTEP]
exact zsmul_int_one n
[GOAL]
α✝ : Type u
β✝ : Type v
γ : Type w
α : Type u_1
β : Type u_2
f : α ≃ β
⊢ Function.LeftInverse ↑(map ↑f.symm) ↑(map ↑f)
[PROOFSTEP]
intro x
[GOAL]
α✝ : Type u
β✝ : Type v
γ : Type w
α : Type u_1
β : Type u_2
f : α ≃ β
x : FreeAbelianGroup α
⊢ ↑(map ↑f.symm) (↑(map ↑f) x) = x
[PROOFSTEP]
rw [← map_comp_apply, Equiv.symm_comp_self, map_id]
[GOAL]
α✝ : Type u
β✝ : Type v
γ : Type w
α : Type u_1
β : Type u_2
f : α ≃ β
x : FreeAbelianGroup α
⊢ ↑(AddMonoidHom.id (FreeAbelianGroup α)) x = x
[PROOFSTEP]
rfl
[GOAL]
α✝ : Type u
β✝ : Type v
γ : Type w
α : Type u_1
β : Type u_2
f : α ≃ β
⊢ Function.RightInverse ↑(map ↑f.symm) ↑(map ↑f)
[PROOFSTEP]
intro x
[GOAL]
α✝ : Type u
β✝ : Type v
γ : Type w
α : Type u_1
β : Type u_2
f : α ≃ β
x : FreeAbelianGroup β
⊢ ↑(map ↑f) (↑(map ↑f.symm) x) = x
[PROOFSTEP]
rw [← map_comp_apply, Equiv.self_comp_symm, map_id]
[GOAL]
α✝ : Type u
β✝ : Type v
γ : Type w
α : Type u_1
β : Type u_2
f : α ≃ β
x : FreeAbelianGroup β
⊢ ↑(AddMonoidHom.id (FreeAbelianGroup β)) x = x
[PROOFSTEP]
rfl
| {"mathlib_filename": "Mathlib.GroupTheory.FreeAbelianGroup", "llama_tokens": 25559} |
[GOAL]
R : Type u_1
M : Type u_2
inst✝⁴ : Monoid R
inst✝³ : MulAction R M
inst✝² : MulOneClass M
inst✝¹ : IsScalarTower R M M
inst✝ : SMulCommClass R M M
a : SubMulAction R M
⊢ 1 * a = a
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u_1
M : Type u_2
inst✝⁴ : Monoid R
inst✝³ : MulAction R M
inst✝² : MulOneClass M
inst✝¹ : IsScalarTower R M M
inst✝ : SMulCommClass R M M
a : SubMulAction R M
x : M
⊢ x ∈ 1 * a ↔ x ∈ a
[PROOFSTEP]
simp only [mem_mul, mem_one, smul_mul_assoc, exists_and_left, exists_exists_eq_and, one_mul]
[GOAL]
case h
R : Type u_1
M : Type u_2
inst✝⁴ : Monoid R
inst✝³ : MulAction R M
inst✝² : MulOneClass M
inst✝¹ : IsScalarTower R M M
inst✝ : SMulCommClass R M M
a : SubMulAction R M
x : M
⊢ (∃ a_1 x_1, x_1 ∈ a ∧ a_1 • x_1 = x) ↔ x ∈ a
[PROOFSTEP]
refine' ⟨_, fun hx => ⟨1, x, hx, one_smul _ _⟩⟩
[GOAL]
case h
R : Type u_1
M : Type u_2
inst✝⁴ : Monoid R
inst✝³ : MulAction R M
inst✝² : MulOneClass M
inst✝¹ : IsScalarTower R M M
inst✝ : SMulCommClass R M M
a : SubMulAction R M
x : M
⊢ (∃ a_1 x_1, x_1 ∈ a ∧ a_1 • x_1 = x) → x ∈ a
[PROOFSTEP]
rintro ⟨r, y, hy, rfl⟩
[GOAL]
case h.intro.intro.intro
R : Type u_1
M : Type u_2
inst✝⁴ : Monoid R
inst✝³ : MulAction R M
inst✝² : MulOneClass M
inst✝¹ : IsScalarTower R M M
inst✝ : SMulCommClass R M M
a : SubMulAction R M
r : R
y : M
hy : y ∈ a
⊢ r • y ∈ a
[PROOFSTEP]
exact smul_mem _ _ hy
[GOAL]
R : Type u_1
M : Type u_2
inst✝⁴ : Monoid R
inst✝³ : MulAction R M
inst✝² : MulOneClass M
inst✝¹ : IsScalarTower R M M
inst✝ : SMulCommClass R M M
a : SubMulAction R M
⊢ a * 1 = a
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u_1
M : Type u_2
inst✝⁴ : Monoid R
inst✝³ : MulAction R M
inst✝² : MulOneClass M
inst✝¹ : IsScalarTower R M M
inst✝ : SMulCommClass R M M
a : SubMulAction R M
x : M
⊢ x ∈ a * 1 ↔ x ∈ a
[PROOFSTEP]
simp only [mem_mul, mem_one, mul_smul_comm, exists_and_left, exists_exists_eq_and, mul_one]
[GOAL]
case h
R : Type u_1
M : Type u_2
inst✝⁴ : Monoid R
inst✝³ : MulAction R M
inst✝² : MulOneClass M
inst✝¹ : IsScalarTower R M M
inst✝ : SMulCommClass R M M
a : SubMulAction R M
x : M
⊢ (∃ y, y ∈ a ∧ ∃ a, a • y = x) ↔ x ∈ a
[PROOFSTEP]
constructor
[GOAL]
case h.mp
R : Type u_1
M : Type u_2
inst✝⁴ : Monoid R
inst✝³ : MulAction R M
inst✝² : MulOneClass M
inst✝¹ : IsScalarTower R M M
inst✝ : SMulCommClass R M M
a : SubMulAction R M
x : M
⊢ (∃ y, y ∈ a ∧ ∃ a, a • y = x) → x ∈ a
[PROOFSTEP]
rintro ⟨y, hy, r, rfl⟩
[GOAL]
case h.mp.intro.intro.intro
R : Type u_1
M : Type u_2
inst✝⁴ : Monoid R
inst✝³ : MulAction R M
inst✝² : MulOneClass M
inst✝¹ : IsScalarTower R M M
inst✝ : SMulCommClass R M M
a : SubMulAction R M
y : M
hy : y ∈ a
r : R
⊢ r • y ∈ a
[PROOFSTEP]
exact smul_mem _ _ hy
[GOAL]
case h.mpr
R : Type u_1
M : Type u_2
inst✝⁴ : Monoid R
inst✝³ : MulAction R M
inst✝² : MulOneClass M
inst✝¹ : IsScalarTower R M M
inst✝ : SMulCommClass R M M
a : SubMulAction R M
x : M
⊢ x ∈ a → ∃ y, y ∈ a ∧ ∃ a, a • y = x
[PROOFSTEP]
intro hx
[GOAL]
case h.mpr
R : Type u_1
M : Type u_2
inst✝⁴ : Monoid R
inst✝³ : MulAction R M
inst✝² : MulOneClass M
inst✝¹ : IsScalarTower R M M
inst✝ : SMulCommClass R M M
a : SubMulAction R M
x : M
hx : x ∈ a
⊢ ∃ y, y ∈ a ∧ ∃ a, a • y = x
[PROOFSTEP]
exact ⟨x, hx, 1, one_smul _ _⟩
[GOAL]
R : Type u_1
M : Type u_2
inst✝⁴ : Monoid R
inst✝³ : MulAction R M
inst✝² : Monoid M
inst✝¹ : IsScalarTower R M M
inst✝ : SMulCommClass R M M
p : SubMulAction R M
x✝ : 1 ≠ 0
⊢ ↑(p ^ 1) = ↑p ^ 1
[PROOFSTEP]
rw [pow_one, pow_one]
[GOAL]
R : Type u_1
M : Type u_2
inst✝⁴ : Monoid R
inst✝³ : MulAction R M
inst✝² : Monoid M
inst✝¹ : IsScalarTower R M M
inst✝ : SMulCommClass R M M
p : SubMulAction R M
n : ℕ
x✝ : n + 2 ≠ 0
⊢ ↑(p ^ (n + 2)) = ↑p ^ (n + 2)
[PROOFSTEP]
rw [pow_succ _ (n + 1), pow_succ _ (n + 1), coe_mul, coe_pow _ n.succ_ne_zero]
[GOAL]
R : Type u_1
M : Type u_2
inst✝⁴ : Monoid R
inst✝³ : MulAction R M
inst✝² : Monoid M
inst✝¹ : IsScalarTower R M M
inst✝ : SMulCommClass R M M
p : SubMulAction R M
⊢ ↑p ^ 0 ⊆ ↑(p ^ 0)
[PROOFSTEP]
rw [pow_zero, pow_zero]
[GOAL]
R : Type u_1
M : Type u_2
inst✝⁴ : Monoid R
inst✝³ : MulAction R M
inst✝² : Monoid M
inst✝¹ : IsScalarTower R M M
inst✝ : SMulCommClass R M M
p : SubMulAction R M
⊢ 1 ⊆ ↑1
[PROOFSTEP]
exact subset_coe_one
[GOAL]
R : Type u_1
M : Type u_2
inst✝⁴ : Monoid R
inst✝³ : MulAction R M
inst✝² : Monoid M
inst✝¹ : IsScalarTower R M M
inst✝ : SMulCommClass R M M
p : SubMulAction R M
n : ℕ
⊢ ↑p ^ (n + 1) ⊆ ↑(p ^ (n + 1))
[PROOFSTEP]
rw [← Nat.succ_eq_add_one, coe_pow _ n.succ_ne_zero]
| {"mathlib_filename": "Mathlib.GroupTheory.GroupAction.SubMulAction.Pointwise", "llama_tokens": 2380} |
{"mathlib_filename": "Mathlib.GroupTheory.GroupAction.DomAct.ActionHom", "llama_tokens": 0} |
|
[GOAL]
β : Type u_1
M : Type ?u.36709
α : Type ?u.36708
inst✝² : SMul M α
inst✝¹ : FaithfulSMul M α
inst✝ : Nontrivial β
c₁ c₂ : Mᵈᵐᵃ
h : ∀ (a : α → β), c₁ • a = c₂ • a
a : α
⊢ ↑mk.symm c₁ • a = ↑mk.symm c₂ • a
[PROOFSTEP]
rcases exists_pair_ne β with ⟨x, y, hne⟩
[GOAL]
case intro.intro
β : Type u_1
M : Type ?u.36709
α : Type ?u.36708
inst✝² : SMul M α
inst✝¹ : FaithfulSMul M α
inst✝ : Nontrivial β
c₁ c₂ : Mᵈᵐᵃ
h : ∀ (a : α → β), c₁ • a = c₂ • a
a : α
x y : β
hne : x ≠ y
⊢ ↑mk.symm c₁ • a = ↑mk.symm c₂ • a
[PROOFSTEP]
contrapose! hne
[GOAL]
case intro.intro
β : Type u_1
M : Type ?u.36709
α : Type ?u.36708
inst✝² : SMul M α
inst✝¹ : FaithfulSMul M α
inst✝ : Nontrivial β
c₁ c₂ : Mᵈᵐᵃ
h : ∀ (a : α → β), c₁ • a = c₂ • a
a : α
x y : β
hne : ↑mk.symm c₁ • a ≠ ↑mk.symm c₂ • a
⊢ x = y
[PROOFSTEP]
haveI := Classical.decEq α
[GOAL]
case intro.intro
β : Type u_1
M : Type ?u.36709
α : Type ?u.36708
inst✝² : SMul M α
inst✝¹ : FaithfulSMul M α
inst✝ : Nontrivial β
c₁ c₂ : Mᵈᵐᵃ
h : ∀ (a : α → β), c₁ • a = c₂ • a
a : α
x y : β
hne : ↑mk.symm c₁ • a ≠ ↑mk.symm c₂ • a
this : DecidableEq α
⊢ x = y
[PROOFSTEP]
replace h := congr_fun (h (update (const α x) (mk.symm c₂ • a) y)) a
[GOAL]
case intro.intro
β : Type u_1
M : Type ?u.36709
α : Type ?u.36708
inst✝² : SMul M α
inst✝¹ : FaithfulSMul M α
inst✝ : Nontrivial β
c₁ c₂ : Mᵈᵐᵃ
a : α
x y : β
hne : ↑mk.symm c₁ • a ≠ ↑mk.symm c₂ • a
this : DecidableEq α
h : (c₁ • update (const α x) (↑mk.symm c₂ • a) y) a = (c₂ • update (const α x) (↑mk.symm c₂ • a) y) a
⊢ x = y
[PROOFSTEP]
simpa [smul_apply, hne] using h
| {"mathlib_filename": "Mathlib.GroupTheory.GroupAction.DomAct.Basic", "llama_tokens": 923} |
[GOAL]
M₀ : Type ?u.8
inst✝ : MonoidWithZero M₀
⊢ 1 ∈
{ carrier := {x | ∀ (y : M₀), y * x = 0 → y = 0},
mul_mem' :=
(_ :
∀ {x y : M₀},
x ∈ {x | ∀ (y : M₀), y * x = 0 → y = 0} →
y ∈ {x | ∀ (y : M₀), y * x = 0 → y = 0} → ∀ (z : M₀), z * (x * y) = 0 → z = 0) }.carrier
[PROOFSTEP]
simp
[GOAL]
M₀ : Type ?u.2171
inst✝ : MonoidWithZero M₀
⊢ 1 ∈
{ carrier := {x | ∀ (y : M₀), x * y = 0 → y = 0},
mul_mem' :=
(_ :
∀ {x y : M₀},
x ∈ {x | ∀ (y : M₀), x * y = 0 → y = 0} →
y ∈ {x | ∀ (y : M₀), x * y = 0 → y = 0} → ∀ (z : M₀), x * y * z = 0 → z = 0) }.carrier
[PROOFSTEP]
simp
[GOAL]
M₀✝ : Type ?u.4317
inst✝¹ : MonoidWithZero M₀✝
M₀ : Type u_1
inst✝ : CommMonoidWithZero M₀
⊢ nonZeroDivisorsLeft M₀ = nonZeroDivisorsRight M₀
[PROOFSTEP]
ext x
[GOAL]
case h
M₀✝ : Type ?u.4317
inst✝¹ : MonoidWithZero M₀✝
M₀ : Type u_1
inst✝ : CommMonoidWithZero M₀
x : M₀
⊢ x ∈ nonZeroDivisorsLeft M₀ ↔ x ∈ nonZeroDivisorsRight M₀
[PROOFSTEP]
simp [mul_comm x]
[GOAL]
M₀ : Type u_1
inst✝² : MonoidWithZero M₀
inst✝¹ : NoZeroDivisors M₀
inst✝ : Nontrivial M₀
⊢ ↑(nonZeroDivisorsLeft M₀) = {x | x ≠ 0}
[PROOFSTEP]
ext x
[GOAL]
case h
M₀ : Type u_1
inst✝² : MonoidWithZero M₀
inst✝¹ : NoZeroDivisors M₀
inst✝ : Nontrivial M₀
x : M₀
⊢ x ∈ ↑(nonZeroDivisorsLeft M₀) ↔ x ∈ {x | x ≠ 0}
[PROOFSTEP]
simp only [SetLike.mem_coe, mem_nonZeroDivisorsLeft_iff, mul_eq_zero, forall_eq_or_imp, true_and, Set.mem_setOf_eq]
[GOAL]
case h
M₀ : Type u_1
inst✝² : MonoidWithZero M₀
inst✝¹ : NoZeroDivisors M₀
inst✝ : Nontrivial M₀
x : M₀
⊢ (∀ (a : M₀), x = 0 → a = 0) ↔ x ≠ 0
[PROOFSTEP]
refine' ⟨fun h ↦ _, fun hx y hx' ↦ by contradiction⟩
[GOAL]
M₀ : Type u_1
inst✝² : MonoidWithZero M₀
inst✝¹ : NoZeroDivisors M₀
inst✝ : Nontrivial M₀
x : M₀
hx : x ≠ 0
y : M₀
hx' : x = 0
⊢ y = 0
[PROOFSTEP]
contradiction
[GOAL]
case h
M₀ : Type u_1
inst✝² : MonoidWithZero M₀
inst✝¹ : NoZeroDivisors M₀
inst✝ : Nontrivial M₀
x : M₀
h : ∀ (a : M₀), x = 0 → a = 0
⊢ x ≠ 0
[PROOFSTEP]
contrapose! h
[GOAL]
case h
M₀ : Type u_1
inst✝² : MonoidWithZero M₀
inst✝¹ : NoZeroDivisors M₀
inst✝ : Nontrivial M₀
x : M₀
h : x = 0
⊢ ∃ a, x = 0 ∧ a ≠ 0
[PROOFSTEP]
exact ⟨1, h, one_ne_zero⟩
[GOAL]
M₀ : Type u_1
inst✝² : MonoidWithZero M₀
inst✝¹ : NoZeroDivisors M₀
inst✝ : Nontrivial M₀
⊢ ↑(nonZeroDivisorsRight M₀) = {x | x ≠ 0}
[PROOFSTEP]
ext x
[GOAL]
case h
M₀ : Type u_1
inst✝² : MonoidWithZero M₀
inst✝¹ : NoZeroDivisors M₀
inst✝ : Nontrivial M₀
x : M₀
⊢ x ∈ ↑(nonZeroDivisorsRight M₀) ↔ x ∈ {x | x ≠ 0}
[PROOFSTEP]
simp only [SetLike.mem_coe, mem_nonZeroDivisorsRight_iff, mul_eq_zero, Set.mem_setOf_eq]
[GOAL]
case h
M₀ : Type u_1
inst✝² : MonoidWithZero M₀
inst✝¹ : NoZeroDivisors M₀
inst✝ : Nontrivial M₀
x : M₀
⊢ (∀ (y : M₀), x = 0 ∨ y = 0 → y = 0) ↔ x ≠ 0
[PROOFSTEP]
refine' ⟨fun h ↦ _, fun hx y hx' ↦ by aesop⟩
[GOAL]
M₀ : Type u_1
inst✝² : MonoidWithZero M₀
inst✝¹ : NoZeroDivisors M₀
inst✝ : Nontrivial M₀
x : M₀
hx : x ≠ 0
y : M₀
hx' : x = 0 ∨ y = 0
⊢ y = 0
[PROOFSTEP]
aesop
[GOAL]
case h
M₀ : Type u_1
inst✝² : MonoidWithZero M₀
inst✝¹ : NoZeroDivisors M₀
inst✝ : Nontrivial M₀
x : M₀
h : ∀ (y : M₀), x = 0 ∨ y = 0 → y = 0
⊢ x ≠ 0
[PROOFSTEP]
contrapose! h
[GOAL]
case h
M₀ : Type u_1
inst✝² : MonoidWithZero M₀
inst✝¹ : NoZeroDivisors M₀
inst✝ : Nontrivial M₀
x : M₀
h : x = 0
⊢ ∃ y, (x = 0 ∨ y = 0) ∧ y ≠ 0
[PROOFSTEP]
exact ⟨1, Or.inl h, one_ne_zero⟩
| {"mathlib_filename": "Mathlib.GroupTheory.Submonoid.ZeroDivisors", "llama_tokens": 1872} |
[GOAL]
M✝ : Type u_1
N : Type u_2
A✝ : Type u_3
inst✝⁴ : MulOneClass M✝
s : Set M✝
inst✝³ : AddZeroClass A✝
t : Set A✝
M : Type u_4
A : Type u_5
inst✝² : Monoid M
inst✝¹ : SetLike A M
inst✝ : SubmonoidClass A M
S : A
x : M
hx : x ∈ S
⊢ x ^ 0 ∈ S
[PROOFSTEP]
rw [pow_zero]
[GOAL]
M✝ : Type u_1
N : Type u_2
A✝ : Type u_3
inst✝⁴ : MulOneClass M✝
s : Set M✝
inst✝³ : AddZeroClass A✝
t : Set A✝
M : Type u_4
A : Type u_5
inst✝² : Monoid M
inst✝¹ : SetLike A M
inst✝ : SubmonoidClass A M
S : A
x : M
hx : x ∈ S
⊢ 1 ∈ S
[PROOFSTEP]
exact OneMemClass.one_mem S
[GOAL]
M✝ : Type u_1
N : Type u_2
A✝ : Type u_3
inst✝⁴ : MulOneClass M✝
s : Set M✝
inst✝³ : AddZeroClass A✝
t : Set A✝
M : Type u_4
A : Type u_5
inst✝² : Monoid M
inst✝¹ : SetLike A M
inst✝ : SubmonoidClass A M
S : A
x : M
hx : x ∈ S
n : ℕ
⊢ x ^ (n + 1) ∈ S
[PROOFSTEP]
rw [pow_succ]
[GOAL]
M✝ : Type u_1
N : Type u_2
A✝ : Type u_3
inst✝⁴ : MulOneClass M✝
s : Set M✝
inst✝³ : AddZeroClass A✝
t : Set A✝
M : Type u_4
A : Type u_5
inst✝² : Monoid M
inst✝¹ : SetLike A M
inst✝ : SubmonoidClass A M
S : A
x : M
hx : x ∈ S
n : ℕ
⊢ x * x ^ n ∈ S
[PROOFSTEP]
exact mul_mem hx (pow_mem hx n)
[GOAL]
M : Type u_1
N : Type u_2
A : Type u_3
inst✝¹ : MulOneClass M
s : Set M
inst✝ : AddZeroClass A
t : Set A
p q : Submonoid M
h : (fun s => s.carrier) p = (fun s => s.carrier) q
⊢ p = q
[PROOFSTEP]
cases p
[GOAL]
case mk
M : Type u_1
N : Type u_2
A : Type u_3
inst✝¹ : MulOneClass M
s : Set M
inst✝ : AddZeroClass A
t : Set A
q : Submonoid M
toSubsemigroup✝ : Subsemigroup M
one_mem'✝ : 1 ∈ toSubsemigroup✝.carrier
h : (fun s => s.carrier) { toSubsemigroup := toSubsemigroup✝, one_mem' := one_mem'✝ } = (fun s => s.carrier) q
⊢ { toSubsemigroup := toSubsemigroup✝, one_mem' := one_mem'✝ } = q
[PROOFSTEP]
cases q
[GOAL]
case mk.mk
M : Type u_1
N : Type u_2
A : Type u_3
inst✝¹ : MulOneClass M
s : Set M
inst✝ : AddZeroClass A
t : Set A
toSubsemigroup✝¹ : Subsemigroup M
one_mem'✝¹ : 1 ∈ toSubsemigroup✝¹.carrier
toSubsemigroup✝ : Subsemigroup M
one_mem'✝ : 1 ∈ toSubsemigroup✝.carrier
h :
(fun s => s.carrier) { toSubsemigroup := toSubsemigroup✝¹, one_mem' := one_mem'✝¹ } =
(fun s => s.carrier) { toSubsemigroup := toSubsemigroup✝, one_mem' := one_mem'✝ }
⊢ { toSubsemigroup := toSubsemigroup✝¹, one_mem' := one_mem'✝¹ } =
{ toSubsemigroup := toSubsemigroup✝, one_mem' := one_mem'✝ }
[PROOFSTEP]
congr
[GOAL]
case mk.mk.e_toSubsemigroup
M : Type u_1
N : Type u_2
A : Type u_3
inst✝¹ : MulOneClass M
s : Set M
inst✝ : AddZeroClass A
t : Set A
toSubsemigroup✝¹ : Subsemigroup M
one_mem'✝¹ : 1 ∈ toSubsemigroup✝¹.carrier
toSubsemigroup✝ : Subsemigroup M
one_mem'✝ : 1 ∈ toSubsemigroup✝.carrier
h :
(fun s => s.carrier) { toSubsemigroup := toSubsemigroup✝¹, one_mem' := one_mem'✝¹ } =
(fun s => s.carrier) { toSubsemigroup := toSubsemigroup✝, one_mem' := one_mem'✝ }
⊢ toSubsemigroup✝¹ = toSubsemigroup✝
[PROOFSTEP]
exact SetLike.coe_injective' h
[GOAL]
M : Type u_1
N : Type u_2
A : Type u_3
inst✝¹ : MulOneClass M
s : Set M
inst✝ : AddZeroClass A
t : Set A
S : Submonoid M
a✝ b✝ : M
ha : a✝ ∈ {1}
hb : b✝ ∈ {1}
⊢ a✝ * b✝ ∈ {1}
[PROOFSTEP]
simp only [Set.mem_singleton_iff] at *
[GOAL]
M : Type u_1
N : Type u_2
A : Type u_3
inst✝¹ : MulOneClass M
s : Set M
inst✝ : AddZeroClass A
t : Set A
S : Submonoid M
a✝ b✝ : M
ha : a✝ = 1
hb : b✝ = 1
⊢ a✝ * b✝ = 1
[PROOFSTEP]
rw [ha, hb, mul_one]
[GOAL]
M : Type u_1
N : Type u_2
A : Type u_3
inst✝¹ : MulOneClass M
s✝ : Set M
inst✝ : AddZeroClass A
t : Set A
S : Submonoid M
s : Set (Submonoid M)
a✝ b✝ : M
hx : a✝ ∈ ⋂ (t : Submonoid M) (_ : t ∈ s), ↑t
hy : b✝ ∈ ⋂ (t : Submonoid M) (_ : t ∈ s), ↑t
i : Submonoid M
h : i ∈ s
⊢ a✝ ∈ i
[PROOFSTEP]
apply Set.mem_iInter₂.1 hx i h
[GOAL]
M : Type u_1
N : Type u_2
A : Type u_3
inst✝¹ : MulOneClass M
s✝ : Set M
inst✝ : AddZeroClass A
t : Set A
S : Submonoid M
s : Set (Submonoid M)
a✝ b✝ : M
hx : a✝ ∈ ⋂ (t : Submonoid M) (_ : t ∈ s), ↑t
hy : b✝ ∈ ⋂ (t : Submonoid M) (_ : t ∈ s), ↑t
i : Submonoid M
h : i ∈ s
⊢ b✝ ∈ i
[PROOFSTEP]
apply Set.mem_iInter₂.1 hy i h
[GOAL]
M : Type u_1
N : Type u_2
A : Type u_3
inst✝¹ : MulOneClass M
s : Set M
inst✝ : AddZeroClass A
t : Set A
S✝ : Submonoid M
ι : Sort u_4
S : ι → Submonoid M
x : M
⊢ x ∈ ⨅ (i : ι), S i ↔ ∀ (i : ι), x ∈ S i
[PROOFSTEP]
simp only [iInf, mem_sInf, Set.forall_range_iff]
[GOAL]
M : Type u_1
N : Type u_2
A : Type u_3
inst✝¹ : MulOneClass M
s : Set M
inst✝ : AddZeroClass A
t : Set A
S✝ : Submonoid M
ι : Sort u_4
S : ι → Submonoid M
⊢ ↑(⨅ (i : ι), S i) = ⋂ (i : ι), ↑(S i)
[PROOFSTEP]
simp only [iInf, coe_sInf, Set.biInter_range]
[GOAL]
M : Type u_1
N : Type u_2
A : Type u_3
inst✝¹ : MulOneClass M
s : Set M
inst✝ : AddZeroClass A
t : Set A
S : Submonoid M
h : Subsingleton M
x y : Submonoid M
i : M
⊢ 1 ∈ x ↔ 1 ∈ y
[PROOFSTEP]
simp [Submonoid.one_mem]
[GOAL]
M : Type u_1
N : Type u_2
A : Type u_3
inst✝¹ : MulOneClass M
s✝ : Set M
inst✝ : AddZeroClass A
t : Set A
S : Submonoid M
s : Set M
p : (x : M) → x ∈ closure s → Prop
Hs : ∀ (x : M) (h : x ∈ s), p x (_ : x ∈ ↑(closure s))
H1 : p 1 (_ : 1 ∈ closure s)
Hmul : ∀ (x : M) (hx : x ∈ closure s) (y : M) (hy : y ∈ closure s), p x hx → p y hy → p (x * y) (_ : x * y ∈ closure s)
x : M
hx : x ∈ closure s
⊢ p x hx
[PROOFSTEP]
refine' Exists.elim _ fun (hx : x ∈ closure s) (hc : p x hx) => hc
[GOAL]
M : Type u_1
N : Type u_2
A : Type u_3
inst✝¹ : MulOneClass M
s✝ : Set M
inst✝ : AddZeroClass A
t : Set A
S : Submonoid M
s : Set M
p : (x : M) → x ∈ closure s → Prop
Hs : ∀ (x : M) (h : x ∈ s), p x (_ : x ∈ ↑(closure s))
H1 : p 1 (_ : 1 ∈ closure s)
Hmul : ∀ (x : M) (hx : x ∈ closure s) (y : M) (hy : y ∈ closure s), p x hx → p y hy → p (x * y) (_ : x * y ∈ closure s)
x : M
hx : x ∈ closure s
⊢ ∃ x_1, p x x_1
[PROOFSTEP]
exact closure_induction hx (fun x hx => ⟨_, Hs x hx⟩) ⟨_, H1⟩ fun x y ⟨hx', hx⟩ ⟨hy', hy⟩ => ⟨_, Hmul _ _ _ _ hx hy⟩
[GOAL]
M : Type u_1
N : Type u_2
A : Type u_3
inst✝¹ : MulOneClass M
s✝ : Set M
inst✝ : AddZeroClass A
t : Set A
S : Submonoid M
p : M → Prop
x : M
s : Set M
hs : closure s = ⊤
Hs : ∀ (x : M), x ∈ s → p x
H1 : p 1
Hmul : ∀ (x y : M), p x → p y → p (x * y)
⊢ p x
[PROOFSTEP]
have : ∀ x ∈ closure s, p x := fun x hx => closure_induction hx Hs H1 Hmul
[GOAL]
M : Type u_1
N : Type u_2
A : Type u_3
inst✝¹ : MulOneClass M
s✝ : Set M
inst✝ : AddZeroClass A
t : Set A
S : Submonoid M
p : M → Prop
x : M
s : Set M
hs : closure s = ⊤
Hs : ∀ (x : M), x ∈ s → p x
H1 : p 1
Hmul : ∀ (x y : M), p x → p y → p (x * y)
this : ∀ (x : M), x ∈ closure s → p x
⊢ p x
[PROOFSTEP]
simpa [hs] using this x
[GOAL]
M : Type u_1
N : Type u_2
A : Type u_3
inst✝¹ : MulOneClass M
s : Set M
inst✝ : AddZeroClass A
t : Set A
S : Submonoid M
m : M
p : Submonoid M
⊢ closure {m} ≤ p ↔ m ∈ p
[PROOFSTEP]
rw [closure_le, singleton_subset_iff, SetLike.mem_coe]
[GOAL]
M : Type u_1
N : Type u_2
A : Type u_3
inst✝¹ : MulOneClass M
s : Set M
inst✝ : AddZeroClass A
t : Set A
S : Submonoid M
ι : Sort u_4
p : ι → Submonoid M
m : M
⊢ m ∈ ⨆ (i : ι), p i ↔ ∀ (N : Submonoid M), (∀ (i : ι), p i ≤ N) → m ∈ N
[PROOFSTEP]
rw [← closure_singleton_le_iff_mem, le_iSup_iff]
[GOAL]
M : Type u_1
N : Type u_2
A : Type u_3
inst✝¹ : MulOneClass M
s : Set M
inst✝ : AddZeroClass A
t : Set A
S : Submonoid M
ι : Sort u_4
p : ι → Submonoid M
m : M
⊢ (∀ (b : Submonoid M), (∀ (i : ι), p i ≤ b) → closure {m} ≤ b) ↔ ∀ (N : Submonoid M), (∀ (i : ι), p i ≤ N) → m ∈ N
[PROOFSTEP]
simp only [closure_singleton_le_iff_mem]
[GOAL]
M : Type u_1
N : Type u_2
A : Type u_3
inst✝¹ : MulOneClass M
s : Set M
inst✝ : AddZeroClass A
t : Set A
S : Submonoid M
ι : Sort u_4
p : ι → Submonoid M
⊢ ⨆ (i : ι), p i = closure (⋃ (i : ι), ↑(p i))
[PROOFSTEP]
simp_rw [Submonoid.closure_iUnion, Submonoid.closure_eq]
[GOAL]
M : Type u_1
N : Type u_2
A : Type u_3
inst✝¹ : MulOneClass M
s : Set M
inst✝ : AddZeroClass A
t : Set A
S p₁ p₂ : Submonoid M
⊢ Disjoint p₁ p₂ ↔ ∀ {x : M}, x ∈ p₁ → x ∈ p₂ → x = 1
[PROOFSTEP]
simp_rw [disjoint_iff_inf_le, SetLike.le_def, mem_inf, and_imp, mem_bot]
[GOAL]
M : Type u_1
N : Type u_2
A : Type u_3
inst✝² : MulOneClass M
s : Set M
inst✝¹ : AddZeroClass A
t : Set A
inst✝ : MulOneClass N
f g : M →* N
a✝ b✝ : M
hx : ↑f a✝ = ↑g a✝
hy : ↑f b✝ = ↑g b✝
⊢ a✝ * b✝ ∈ {x | ↑f x = ↑g x}
[PROOFSTEP]
simp [*]
[GOAL]
M : Type u_1
N : Type u_2
A : Type u_3
inst✝² : MulOneClass M
s : Set M
inst✝¹ : AddZeroClass A
t : Set A
inst✝ : MulOneClass N
f g : M →* N
⊢ 1 ∈
{ carrier := {x | ↑f x = ↑g x},
mul_mem' := (_ : ∀ {a b : M}, ↑f a = ↑g a → ↑f b = ↑g b → ↑f (a * b) = ↑g (a * b)) }.carrier
[PROOFSTEP]
rw [Set.mem_setOf_eq, f.map_one, g.map_one]
[GOAL]
M✝ : Type u_1
N : Type u_2
A : Type u_3
inst✝² : Monoid M✝
inst✝¹ : Monoid N
s : Set M✝
M : Type u_4
inst✝ : Monoid M
⊢ ∀ {a b : M}, a ∈ setOf IsUnit → b ∈ setOf IsUnit → a * b ∈ setOf IsUnit
[PROOFSTEP]
intro a b ha hb
[GOAL]
M✝ : Type u_1
N : Type u_2
A : Type u_3
inst✝² : Monoid M✝
inst✝¹ : Monoid N
s : Set M✝
M : Type u_4
inst✝ : Monoid M
a b : M
ha : a ∈ setOf IsUnit
hb : b ∈ setOf IsUnit
⊢ a * b ∈ setOf IsUnit
[PROOFSTEP]
rw [Set.mem_setOf_eq] at *
[GOAL]
M✝ : Type u_1
N : Type u_2
A : Type u_3
inst✝² : Monoid M✝
inst✝¹ : Monoid N
s : Set M✝
M : Type u_4
inst✝ : Monoid M
a b : M
ha : IsUnit a
hb : IsUnit b
⊢ IsUnit (a * b)
[PROOFSTEP]
exact IsUnit.mul ha hb
[GOAL]
M✝ : Type u_1
N : Type u_2
A : Type u_3
inst✝² : Monoid M✝
inst✝¹ : Monoid N
s : Set M✝
M : Type u_4
inst✝ : Monoid M
⊢ 1 ∈
{ carrier := setOf IsUnit,
mul_mem' := (_ : ∀ {a b : M}, a ∈ setOf IsUnit → b ∈ setOf IsUnit → a * b ∈ setOf IsUnit) }.carrier
[PROOFSTEP]
simp only [isUnit_one, Set.mem_setOf_eq]
[GOAL]
M✝ : Type u_1
N : Type u_2
A : Type u_3
inst✝² : Monoid M✝
inst✝¹ : Monoid N
s : Set M✝
M : Type u_4
inst✝ : Monoid M
a : M
⊢ a ∈ submonoid M ↔ IsUnit a
[PROOFSTEP]
change a ∈ setOf IsUnit ↔ IsUnit a
[GOAL]
M✝ : Type u_1
N : Type u_2
A : Type u_3
inst✝² : Monoid M✝
inst✝¹ : Monoid N
s : Set M✝
M : Type u_4
inst✝ : Monoid M
a : M
⊢ a ∈ setOf IsUnit ↔ IsUnit a
[PROOFSTEP]
rw [Set.mem_setOf_eq]
[GOAL]
M✝ : Type u_1
N✝ : Type u_2
A : Type u_3
inst✝³ : Monoid M✝
inst✝² : Monoid N✝
s✝ : Set M✝
M : Type ?u.38168
N : Type ?u.38171
inst✝¹ : Monoid M
inst✝ : Monoid N
s : Set M
f : M → N
hs : closure s = ⊤
h1 : f 1 = 1
hmul : ∀ (x : M), x ∈ s → ∀ (y : M), f (x * y) = f x * f y
x y : M
⊢ f (1 * y) = f 1 * f y
[PROOFSTEP]
rw [one_mul, h1, one_mul]
[GOAL]
M✝ : Type u_1
N✝ : Type u_2
A : Type u_3
inst✝³ : Monoid M✝
inst✝² : Monoid N✝
s✝ : Set M✝
M : Type ?u.38168
N : Type ?u.38171
inst✝¹ : Monoid M
inst✝ : Monoid N
s : Set M
f : M → N
hs : closure s = ⊤
h1 : f 1 = 1
hmul : ∀ (x : M), x ∈ s → ∀ (y : M), f (x * y) = f x * f y
x a b : M
ha : ∀ (y : M), f (a * y) = f a * f y
hb : ∀ (y : M), f (b * y) = f b * f y
y : M
⊢ f (a * b * y) = f (a * b) * f y
[PROOFSTEP]
rw [mul_assoc, ha, ha, hb, mul_assoc]
[GOAL]
M✝ : Type u_1
N✝ : Type u_2
A : Type u_3
inst✝³ : Monoid M✝
inst✝² : Monoid N✝
s✝ : Set M✝
M : Type ?u.40855
N : Type ?u.40858
inst✝¹ : Monoid M
inst✝ : Monoid N
s : Set M
f : M → N
hs : closure s = ⊤
h1 : f 1 = 1
hmul : ∀ (x y : M), y ∈ s → f (x * y) = f x * f y
x y : M
⊢ ∀ (x : M),
OneHom.toFun { toFun := f, map_one' := h1 } (x * 1) =
OneHom.toFun { toFun := f, map_one' := h1 } x * OneHom.toFun { toFun := f, map_one' := h1 } 1
[PROOFSTEP]
simp [h1]
[GOAL]
M✝ : Type u_1
N✝ : Type u_2
A : Type u_3
inst✝³ : Monoid M✝
inst✝² : Monoid N✝
s✝ : Set M✝
M : Type ?u.40855
N : Type ?u.40858
inst✝¹ : Monoid M
inst✝ : Monoid N
s : Set M
f : M → N
hs : closure s = ⊤
h1 : f 1 = 1
hmul : ∀ (x y : M), y ∈ s → f (x * y) = f x * f y
x✝ y y₁ y₂ : M
h₁ : ∀ (x : M), f (x * y₁) = f x * f y₁
h₂ : ∀ (x : M), f (x * y₂) = f x * f y₂
x : M
⊢ OneHom.toFun { toFun := f, map_one' := h1 } (x * (y₁ * y₂)) =
OneHom.toFun { toFun := f, map_one' := h1 } x * OneHom.toFun { toFun := f, map_one' := h1 } (y₁ * y₂)
[PROOFSTEP]
simp [← mul_assoc, h₁, h₂]
| {"mathlib_filename": "Mathlib.GroupTheory.Submonoid.Basic", "llama_tokens": 6534} |
[GOAL]
M : Type u_1
inst✝ : CommMonoid M
src✝ : Group { x // x ∈ IsUnit.submonoid M } := inferInstanceAs (Group { x // x ∈ IsUnit.submonoid M })
a b : { x // x ∈ IsUnit.submonoid M }
⊢ a * b = b * a
[PROOFSTEP]
convert mul_comm a b
[GOAL]
M : Type u_1
inst✝ : Monoid M
S : Submonoid M
a _b : M
x✝¹ : a ∈ {x | ∃ y, x * ↑y = 1}
x✝ : _b ∈ {x | ∃ y, x * ↑y = 1}
a' : { x // x ∈ S }
ha : a * ↑a' = 1
b' : { x // x ∈ S }
hb : _b * ↑b' = 1
⊢ a * _b * ↑(b' * a') = 1
[PROOFSTEP]
simp only [coe_mul, ← mul_assoc, mul_assoc a, hb, mul_one, ha]
[GOAL]
M : Type u_1
inst✝ : Monoid M
S : Submonoid M
⊢ leftInv (leftInv S) ≤ S
[PROOFSTEP]
rintro x ⟨⟨y, z, h₁⟩, h₂ : x * y = 1⟩
[GOAL]
case intro.mk.intro
M : Type u_1
inst✝ : Monoid M
S : Submonoid M
x y : M
z : { x // x ∈ S }
h₁ : y * ↑z = 1
h₂ : x * y = 1
⊢ x ∈ S
[PROOFSTEP]
convert z.prop
[GOAL]
case h.e'_4
M : Type u_1
inst✝ : Monoid M
S : Submonoid M
x y : M
z : { x // x ∈ S }
h₁ : y * ↑z = 1
h₂ : x * y = 1
⊢ x = ↑z
[PROOFSTEP]
rw [← mul_one x, ← h₁, ← mul_assoc, h₂, one_mul]
[GOAL]
M : Type u_1
inst✝ : Monoid M
S : Submonoid M
hS : S ≤ IsUnit.submonoid M
⊢ leftInv (leftInv S) = S
[PROOFSTEP]
refine' le_antisymm S.leftInv_leftInv_le _
[GOAL]
M : Type u_1
inst✝ : Monoid M
S : Submonoid M
hS : S ≤ IsUnit.submonoid M
⊢ S ≤ leftInv (leftInv S)
[PROOFSTEP]
intro x hx
[GOAL]
M : Type u_1
inst✝ : Monoid M
S : Submonoid M
hS : S ≤ IsUnit.submonoid M
x : M
hx : x ∈ S
⊢ x ∈ leftInv (leftInv S)
[PROOFSTEP]
have : x = ((hS hx).unit⁻¹⁻¹ : Mˣ) := by
rw [inv_inv (hS hx).unit]
rfl
[GOAL]
M : Type u_1
inst✝ : Monoid M
S : Submonoid M
hS : S ≤ IsUnit.submonoid M
x : M
hx : x ∈ S
⊢ x = ↑(IsUnit.unit (_ : x ∈ IsUnit.submonoid M))⁻¹⁻¹
[PROOFSTEP]
rw [inv_inv (hS hx).unit]
[GOAL]
M : Type u_1
inst✝ : Monoid M
S : Submonoid M
hS : S ≤ IsUnit.submonoid M
x : M
hx : x ∈ S
⊢ x = ↑(IsUnit.unit (_ : x ∈ IsUnit.submonoid M))
[PROOFSTEP]
rfl
[GOAL]
M : Type u_1
inst✝ : Monoid M
S : Submonoid M
hS : S ≤ IsUnit.submonoid M
x : M
hx : x ∈ S
this : x = ↑(IsUnit.unit (_ : x ∈ IsUnit.submonoid M))⁻¹⁻¹
⊢ x ∈ leftInv (leftInv S)
[PROOFSTEP]
rw [this]
[GOAL]
M : Type u_1
inst✝ : Monoid M
S : Submonoid M
hS : S ≤ IsUnit.submonoid M
x : M
hx : x ∈ S
this : x = ↑(IsUnit.unit (_ : x ∈ IsUnit.submonoid M))⁻¹⁻¹
⊢ ↑(IsUnit.unit (_ : x ∈ IsUnit.submonoid M))⁻¹⁻¹ ∈ leftInv (leftInv S)
[PROOFSTEP]
exact S.leftInv.unit_mem_leftInv _ (S.unit_mem_leftInv _ hx)
[GOAL]
M : Type u_1
inst✝ : CommMonoid M
S : Submonoid M
x : { x // x ∈ leftInv S }
⊢ ↑(fromLeftInv S x) * ↑x = 1
[PROOFSTEP]
rw [mul_comm, mul_fromLeftInv]
[GOAL]
M : Type u_1
inst✝ : CommMonoid M
S : Submonoid M
a : { x // x ∈ leftInv S }
b : M
⊢ ↑(fromLeftInv S a) = b ↔ ↑a * b = 1
[PROOFSTEP]
rw [← IsUnit.mul_right_inj (leftInv_le_isUnit _ a.prop), S.mul_fromLeftInv, eq_comm]
[GOAL]
M : Type u_1
inst✝ : CommMonoid M
S : Submonoid M
x y : { x // x ∈ leftInv S }
⊢ ↑(OneHom.toFun { toFun := fromLeftInv S, map_one' := (_ : fromLeftInv S 1 = 1) } (x * y)) =
↑(OneHom.toFun { toFun := fromLeftInv S, map_one' := (_ : fromLeftInv S 1 = 1) } x *
OneHom.toFun { toFun := fromLeftInv S, map_one' := (_ : fromLeftInv S 1 = 1) } y)
[PROOFSTEP]
rw [fromLeftInv_eq_iff, mul_comm x, Submonoid.coe_mul, Submonoid.coe_mul, mul_assoc, ← mul_assoc (x : M),
mul_fromLeftInv, one_mul, mul_fromLeftInv]
[GOAL]
M : Type u_1
inst✝ : CommMonoid M
S : Submonoid M
hS : S ≤ IsUnit.submonoid M
src✝ : { x // x ∈ leftInv S } →* { x // x ∈ S } := fromCommLeftInv S
x : { x // x ∈ S }
⊢ { x // x ∈ leftInv S }
[PROOFSTEP]
choose x' hx using hS x.prop
[GOAL]
M : Type u_1
inst✝ : CommMonoid M
S : Submonoid M
hS : S ≤ IsUnit.submonoid M
src✝ : { x // x ∈ leftInv S } →* { x // x ∈ S } := fromCommLeftInv S
x : { x // x ∈ S }
x' : Mˣ
hx : ↑x' = ↑x
⊢ { x // x ∈ leftInv S }
[PROOFSTEP]
exact ⟨x'.inv, x, hx ▸ x'.inv_val⟩
[GOAL]
M : Type u_1
inst✝ : CommMonoid M
S : Submonoid M
hS : S ≤ IsUnit.submonoid M
src✝ : { x // x ∈ leftInv S } →* { x // x ∈ S } := fromCommLeftInv S
x : { x // x ∈ leftInv S }
⊢ ↑((fun x =>
(fun x' hx => { val := x'.inv, property := (_ : ∃ y, x'.inv * ↑y = 1) })
(Classical.choose (_ : ↑x ∈ IsUnit.submonoid M))
(_ : ↑(Classical.choose (_ : ↑x ∈ IsUnit.submonoid M)) = ↑x))
(OneHom.toFun (↑src✝) x)) =
↑x
[PROOFSTEP]
dsimp only
[GOAL]
M : Type u_1
inst✝ : CommMonoid M
S : Submonoid M
hS : S ≤ IsUnit.submonoid M
src✝ : { x // x ∈ leftInv S } →* { x // x ∈ S } := fromCommLeftInv S
x : { x // x ∈ leftInv S }
⊢ (Classical.choose (_ : ↑(OneHom.toFun (↑(fromCommLeftInv S)) x) ∈ IsUnit.submonoid M)).inv = ↑x
[PROOFSTEP]
generalize_proofs h
[GOAL]
M : Type u_1
inst✝ : CommMonoid M
S : Submonoid M
hS : S ≤ IsUnit.submonoid M
src✝ : { x // x ∈ leftInv S } →* { x // x ∈ S } := fromCommLeftInv S
x : { x // x ∈ leftInv S }
h : ↑(OneHom.toFun (↑(fromCommLeftInv S)) x) ∈ IsUnit.submonoid M
⊢ (Classical.choose h).inv = ↑x
[PROOFSTEP]
rw [← h.choose.mul_left_inj]
[GOAL]
M : Type u_1
inst✝ : CommMonoid M
S : Submonoid M
hS : S ≤ IsUnit.submonoid M
src✝ : { x // x ∈ leftInv S } →* { x // x ∈ S } := fromCommLeftInv S
x : { x // x ∈ leftInv S }
h : ↑(OneHom.toFun (↑(fromCommLeftInv S)) x) ∈ IsUnit.submonoid M
⊢ (Classical.choose h).inv * ↑(Exists.choose h) = ↑x * ↑(Exists.choose h)
[PROOFSTEP]
conv => rhs; rw [h.choose_spec]
[GOAL]
M : Type u_1
inst✝ : CommMonoid M
S : Submonoid M
hS : S ≤ IsUnit.submonoid M
src✝ : { x // x ∈ leftInv S } →* { x // x ∈ S } := fromCommLeftInv S
x : { x // x ∈ leftInv S }
h : ↑(OneHom.toFun (↑(fromCommLeftInv S)) x) ∈ IsUnit.submonoid M
| (Classical.choose h).inv * ↑(Exists.choose h) = ↑x * ↑(Exists.choose h)
[PROOFSTEP]
rhs; rw [h.choose_spec]
[GOAL]
M : Type u_1
inst✝ : CommMonoid M
S : Submonoid M
hS : S ≤ IsUnit.submonoid M
src✝ : { x // x ∈ leftInv S } →* { x // x ∈ S } := fromCommLeftInv S
x : { x // x ∈ leftInv S }
h : ↑(OneHom.toFun (↑(fromCommLeftInv S)) x) ∈ IsUnit.submonoid M
| (Classical.choose h).inv * ↑(Exists.choose h) = ↑x * ↑(Exists.choose h)
[PROOFSTEP]
rhs; rw [h.choose_spec]
[GOAL]
M : Type u_1
inst✝ : CommMonoid M
S : Submonoid M
hS : S ≤ IsUnit.submonoid M
src✝ : { x // x ∈ leftInv S } →* { x // x ∈ S } := fromCommLeftInv S
x : { x // x ∈ leftInv S }
h : ↑(OneHom.toFun (↑(fromCommLeftInv S)) x) ∈ IsUnit.submonoid M
| (Classical.choose h).inv * ↑(Exists.choose h) = ↑x * ↑(Exists.choose h)
[PROOFSTEP]
rhs
[GOAL]
M : Type u_1
inst✝ : CommMonoid M
S : Submonoid M
hS : S ≤ IsUnit.submonoid M
src✝ : { x // x ∈ leftInv S } →* { x // x ∈ S } := fromCommLeftInv S
x : { x // x ∈ leftInv S }
h : ↑(OneHom.toFun (↑(fromCommLeftInv S)) x) ∈ IsUnit.submonoid M
| ↑x * ↑(Exists.choose h)
[PROOFSTEP]
rw [h.choose_spec]
[GOAL]
M : Type u_1
inst✝ : CommMonoid M
S : Submonoid M
hS : S ≤ IsUnit.submonoid M
src✝ : { x // x ∈ leftInv S } →* { x // x ∈ S } := fromCommLeftInv S
x : { x // x ∈ leftInv S }
h : ↑(OneHom.toFun (↑(fromCommLeftInv S)) x) ∈ IsUnit.submonoid M
⊢ (Classical.choose h).inv * ↑(Exists.choose h) = ↑x * ↑(OneHom.toFun (↑(fromCommLeftInv S)) x)
[PROOFSTEP]
exact h.choose.inv_val.trans (S.mul_fromLeftInv x).symm
[GOAL]
M : Type u_1
inst✝ : CommMonoid M
S : Submonoid M
hS : S ≤ IsUnit.submonoid M
src✝ : { x // x ∈ leftInv S } →* { x // x ∈ S } := fromCommLeftInv S
x : { x // x ∈ S }
⊢ OneHom.toFun (↑src✝)
((fun x =>
(fun x' hx => { val := x'.inv, property := (_ : ∃ y, x'.inv * ↑y = 1) })
(Classical.choose (_ : ↑x ∈ IsUnit.submonoid M))
(_ : ↑(Classical.choose (_ : ↑x ∈ IsUnit.submonoid M)) = ↑x))
x) =
x
[PROOFSTEP]
dsimp only [fromCommLeftInv]
[GOAL]
M : Type u_1
inst✝ : CommMonoid M
S : Submonoid M
hS : S ≤ IsUnit.submonoid M
src✝ : { x // x ∈ leftInv S } →* { x // x ∈ S } := fromCommLeftInv S
x : { x // x ∈ S }
⊢ fromLeftInv S
{ val := (Classical.choose (_ : ↑x ∈ IsUnit.submonoid M)).inv,
property := (_ : ∃ y, (Classical.choose (_ : ↑x ∈ IsUnit.submonoid M)).inv * ↑y = 1) } =
x
[PROOFSTEP]
ext
[GOAL]
case a
M : Type u_1
inst✝ : CommMonoid M
S : Submonoid M
hS : S ≤ IsUnit.submonoid M
src✝ : { x // x ∈ leftInv S } →* { x // x ∈ S } := fromCommLeftInv S
x : { x // x ∈ S }
⊢ ↑(fromLeftInv S
{ val := (Classical.choose (_ : ↑x ∈ IsUnit.submonoid M)).inv,
property := (_ : ∃ y, (Classical.choose (_ : ↑x ∈ IsUnit.submonoid M)).inv * ↑y = 1) }) =
↑x
[PROOFSTEP]
rw [fromLeftInv_eq_iff]
[GOAL]
case a
M : Type u_1
inst✝ : CommMonoid M
S : Submonoid M
hS : S ≤ IsUnit.submonoid M
src✝ : { x // x ∈ leftInv S } →* { x // x ∈ S } := fromCommLeftInv S
x : { x // x ∈ S }
⊢ ↑{ val := (Classical.choose (_ : ↑x ∈ IsUnit.submonoid M)).inv,
property := (_ : ∃ y, (Classical.choose (_ : ↑x ∈ IsUnit.submonoid M)).inv * ↑y = 1) } *
↑x =
1
[PROOFSTEP]
convert (hS x.prop).choose.inv_val
[GOAL]
case h.e'_2.h.e'_6
M : Type u_1
inst✝ : CommMonoid M
S : Submonoid M
hS : S ≤ IsUnit.submonoid M
src✝ : { x // x ∈ leftInv S } →* { x // x ∈ S } := fromCommLeftInv S
x : { x // x ∈ S }
⊢ ↑x = ↑(Exists.choose (_ : ↑x ∈ IsUnit.submonoid M))
[PROOFSTEP]
exact (hS x.prop).choose_spec.symm
[GOAL]
M : Type u_1
inst✝ : CommMonoid M
S : Submonoid M
hS : S ≤ IsUnit.submonoid M
x : { x // x ∈ leftInv S }
⊢ ↑(↑(leftInvEquiv S hS) x) * ↑x = 1
[PROOFSTEP]
simpa only [leftInvEquiv_apply, fromCommLeftInv] using fromLeftInv_mul S x
[GOAL]
M : Type u_1
inst✝ : CommMonoid M
S : Submonoid M
hS : S ≤ IsUnit.submonoid M
x : { x // x ∈ leftInv S }
⊢ ↑x * ↑(↑(leftInvEquiv S hS) x) = 1
[PROOFSTEP]
simp only [leftInvEquiv_apply, fromCommLeftInv, mul_fromLeftInv]
[GOAL]
M : Type u_1
inst✝ : CommMonoid M
S : Submonoid M
hS : S ≤ IsUnit.submonoid M
x : { x // x ∈ S }
⊢ ↑(↑(MulEquiv.symm (leftInvEquiv S hS)) x) * ↑x = 1
[PROOFSTEP]
convert S.mul_leftInvEquiv hS ((S.leftInvEquiv hS).symm x)
[GOAL]
case h.e'_2.h.e'_6.h.e'_3
M : Type u_1
inst✝ : CommMonoid M
S : Submonoid M
hS : S ≤ IsUnit.submonoid M
x : { x // x ∈ S }
⊢ x = ↑(leftInvEquiv S hS) (↑(MulEquiv.symm (leftInvEquiv S hS)) x)
[PROOFSTEP]
simp
[GOAL]
M : Type u_1
inst✝ : CommMonoid M
S : Submonoid M
hS : S ≤ IsUnit.submonoid M
x : { x // x ∈ S }
⊢ ↑x * ↑(↑(MulEquiv.symm (leftInvEquiv S hS)) x) = 1
[PROOFSTEP]
convert S.leftInvEquiv_mul hS ((S.leftInvEquiv hS).symm x)
[GOAL]
case h.e'_2.h.e'_5.h.e'_3
M : Type u_1
inst✝ : CommMonoid M
S : Submonoid M
hS : S ≤ IsUnit.submonoid M
x : { x // x ∈ S }
⊢ x = ↑(leftInvEquiv S hS) (↑(MulEquiv.symm (leftInvEquiv S hS)) x)
[PROOFSTEP]
simp
[GOAL]
M : Type u_1
inst✝ : Group M
S : Submonoid M
x : { x // x ∈ leftInv S }
⊢ ↑(fromLeftInv S x) = (↑x)⁻¹
[PROOFSTEP]
rw [← mul_right_inj (x : M), mul_right_inv, mul_fromLeftInv]
[GOAL]
M : Type u_1
inst✝ : CommGroup M
S : Submonoid M
hS : S ≤ IsUnit.submonoid M
x : { x // x ∈ S }
⊢ ↑(↑(MulEquiv.symm (leftInvEquiv S hS)) x) = (↑x)⁻¹
[PROOFSTEP]
rw [← mul_right_inj (x : M), mul_right_inv, mul_leftInvEquiv_symm]
| {"mathlib_filename": "Mathlib.GroupTheory.Submonoid.Inverses", "llama_tokens": 5458} |
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : IsROrC 𝕜
inst✝ : NormedAddCommGroup E
c : InnerProductSpace 𝕜 E
x : E
⊢ 0 ≤ ↑re (inner x x)
[PROOFSTEP]
rw [← InnerProductSpace.norm_sq_eq_inner]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : IsROrC 𝕜
inst✝ : NormedAddCommGroup E
c : InnerProductSpace 𝕜 E
x : E
⊢ 0 ≤ ‖x‖ ^ 2
[PROOFSTEP]
apply sq_nonneg
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝¹ : IsROrC 𝕜
inst✝ : NormedAddCommGroup E
c : InnerProductSpace 𝕜 E
x : E
hx : inner x x = 0
⊢ ‖x‖ ^ 2 = 0
[PROOFSTEP]
rw [InnerProductSpace.norm_sq_eq_inner (𝕜 := 𝕜) x, hx, map_zero]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x : F
⊢ ↑im (inner x x) = 0
[PROOFSTEP]
rw [← @ofReal_inj 𝕜, im_eq_conj_sub]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x : F
⊢ I * (↑(starRingEnd 𝕜) (inner x x) - inner x x) / 2 = ↑0
[PROOFSTEP]
simp [inner_conj_symm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x y z : F
⊢ inner x (y + z) = inner x y + inner x z
[PROOFSTEP]
rw [← inner_conj_symm, inner_add_left, RingHom.map_add]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x y z : F
⊢ ↑(starRingEnd 𝕜) (inner y x) + ↑(starRingEnd 𝕜) (inner z x) = inner x y + inner x z
[PROOFSTEP]
simp only [inner_conj_symm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x : F
⊢ ↑(normSq x) = inner x x
[PROOFSTEP]
rw [ext_iff]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x : F
⊢ ↑re ↑(normSq x) = ↑re (inner x x) ∧ ↑im ↑(normSq x) = ↑im (inner x x)
[PROOFSTEP]
exact ⟨by simp only [ofReal_re]; rfl, by simp only [inner_self_im, ofReal_im]⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x : F
⊢ ↑re ↑(normSq x) = ↑re (inner x x)
[PROOFSTEP]
simp only [ofReal_re]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x : F
⊢ normSq x = ↑re (inner x x)
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x : F
⊢ ↑im ↑(normSq x) = ↑im (inner x x)
[PROOFSTEP]
simp only [inner_self_im, ofReal_im]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x y : F
⊢ ↑re (inner x y) = ↑re (inner y x)
[PROOFSTEP]
rw [← inner_conj_symm, conj_re]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x y : F
⊢ ↑im (inner x y) = -↑im (inner y x)
[PROOFSTEP]
rw [← inner_conj_symm, conj_im]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x y : F
r : 𝕜
⊢ inner x (r • y) = r * inner x y
[PROOFSTEP]
rw [← inner_conj_symm, inner_smul_left]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x y : F
r : 𝕜
⊢ ↑(starRingEnd 𝕜) (↑(starRingEnd 𝕜) r * inner y x) = r * inner x y
[PROOFSTEP]
simp only [conj_conj, inner_conj_symm, RingHom.map_mul]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x : F
⊢ inner 0 x = 0
[PROOFSTEP]
rw [← zero_smul 𝕜 (0 : F), inner_smul_left]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x : F
⊢ ↑(starRingEnd 𝕜) 0 * inner 0 x = 0
[PROOFSTEP]
simp only [zero_mul, RingHom.map_zero]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x : F
⊢ inner x 0 = 0
[PROOFSTEP]
rw [← inner_conj_symm, inner_zero_left]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x : F
⊢ ↑(starRingEnd 𝕜) 0 = 0
[PROOFSTEP]
simp only [RingHom.map_zero]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x : F
⊢ x = 0 → inner x x = 0
[PROOFSTEP]
rintro rfl
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
⊢ inner 0 0 = 0
[PROOFSTEP]
exact inner_zero_left _
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x : F
⊢ normSq x = 0 ↔ inner x x = 0
[PROOFSTEP]
simp only [normSq, ext_iff, map_zero, inner_self_im, eq_self_iff_true, and_true_iff]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x : F
⊢ ↑(↑re (inner x x)) = inner x x
[PROOFSTEP]
rw [ext_iff, inner_self_im]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x : F
⊢ ↑re ↑(↑re (inner x x)) = ↑re (inner x x) ∧ ↑im ↑(↑re (inner x x)) = 0
[PROOFSTEP]
norm_num
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x y : F
⊢ ‖inner x y‖ = ‖inner y x‖
[PROOFSTEP]
rw [← inner_conj_symm, norm_conj]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x y : F
⊢ inner (-x) y = -inner x y
[PROOFSTEP]
rw [← neg_one_smul 𝕜 x, inner_smul_left]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x y : F
⊢ ↑(starRingEnd 𝕜) (-1) * inner x y = -inner x y
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x y : F
⊢ inner x (-y) = -inner x y
[PROOFSTEP]
rw [← inner_conj_symm, inner_neg_left]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x y : F
⊢ ↑(starRingEnd 𝕜) (-inner y x) = -inner x y
[PROOFSTEP]
simp only [RingHom.map_neg, inner_conj_symm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x y z : F
⊢ inner (x - y) z = inner x z - inner y z
[PROOFSTEP]
simp [sub_eq_add_neg, inner_add_left, inner_neg_left]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x y z : F
⊢ inner x (y - z) = inner x y - inner x z
[PROOFSTEP]
simp [sub_eq_add_neg, inner_add_right, inner_neg_right]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x y : F
⊢ ↑re (inner x y * inner y x) = ‖inner x y * inner y x‖
[PROOFSTEP]
rw [← inner_conj_symm, mul_comm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x y : F
⊢ ↑re (inner y x * ↑(starRingEnd 𝕜) (inner y x)) = ‖inner y x * ↑(starRingEnd 𝕜) (inner y x)‖
[PROOFSTEP]
exact re_eq_norm_of_mul_conj (inner y x)
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x y : F
⊢ inner (x + y) (x + y) = inner x x + inner x y + inner y x + inner y y
[PROOFSTEP]
simp only [inner_add_left, inner_add_right]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x y : F
⊢ inner x x + inner y x + (inner x y + inner y y) = inner x x + inner x y + inner y x + inner y y
[PROOFSTEP]
ring
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x y : F
⊢ inner (x - y) (x - y) = inner x x - inner x y - inner y x + inner y y
[PROOFSTEP]
simp only [inner_sub_left, inner_sub_right]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x y : F
⊢ inner x x - inner y x - (inner x y - inner y y) = inner x x - inner x y - inner y x + inner y y
[PROOFSTEP]
ring
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x y : F
⊢ normSq (inner x y • x - inner x x • y) = normSq x * (normSq x * normSq y - ‖inner x y‖ ^ 2)
[PROOFSTEP]
rw [← @ofReal_inj 𝕜, ofReal_normSq_eq_inner_self]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x y : F
⊢ inner (inner x y • x - inner x x • y) (inner x y • x - inner x x • y) =
↑(normSq x * (normSq x * normSq y - ‖inner x y‖ ^ 2))
[PROOFSTEP]
simp only [inner_sub_sub_self, inner_smul_left, inner_smul_right, conj_ofReal, mul_sub, ← ofReal_normSq_eq_inner_self x,
← ofReal_normSq_eq_inner_self y]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x y : F
⊢ inner x y * (↑(starRingEnd 𝕜) (inner x y) * ↑(normSq x)) - ↑(normSq x) * (↑(starRingEnd 𝕜) (inner x y) * inner x y) -
inner x y * (↑(normSq x) * inner y x) +
↑(normSq x) * (↑(normSq x) * ↑(normSq y)) =
↑(normSq x * (normSq x * normSq y) - normSq x * ‖inner x y‖ ^ 2)
[PROOFSTEP]
rw [← mul_assoc, mul_conj, IsROrC.conj_mul, normSq_eq_def', mul_left_comm, ← inner_conj_symm y, mul_conj,
normSq_eq_def']
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x y : F
⊢ ↑(‖inner x y‖ ^ 2) * ↑(normSq x) - ↑(normSq x) * ↑(‖inner x y‖ ^ 2) - ↑(normSq x) * ↑(‖inner x y‖ ^ 2) +
↑(normSq x) * (↑(normSq x) * ↑(normSq y)) =
↑(normSq x * (normSq x * normSq y) - normSq x * ‖inner x y‖ ^ 2)
[PROOFSTEP]
push_cast
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x y : F
⊢ ↑‖inner x y‖ ^ 2 * ↑(normSq x) - ↑(normSq x) * ↑‖inner x y‖ ^ 2 - ↑(normSq x) * ↑‖inner x y‖ ^ 2 +
↑(normSq x) * (↑(normSq x) * ↑(normSq y)) =
↑(normSq x) * (↑(normSq x) * ↑(normSq y)) - ↑(normSq x) * ↑‖inner x y‖ ^ 2
[PROOFSTEP]
ring
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x y : F
⊢ ‖inner x y‖ * ‖inner y x‖ ≤ ↑re (inner x x) * ↑re (inner y y)
[PROOFSTEP]
rcases eq_or_ne x 0 with (rfl | hx)
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
y : F
⊢ ‖inner 0 y‖ * ‖inner y 0‖ ≤ ↑re (inner 0 0) * ↑re (inner y y)
[PROOFSTEP]
simpa only [inner_zero_left, map_zero, zero_mul, norm_zero] using le_rfl
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x y : F
hx : x ≠ 0
⊢ ‖inner x y‖ * ‖inner y x‖ ≤ ↑re (inner x x) * ↑re (inner y y)
[PROOFSTEP]
have hx' : 0 < normSqF x := inner_self_nonneg.lt_of_ne' (mt normSq_eq_zero.1 hx)
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x y : F
hx : x ≠ 0
hx' : 0 < normSq x
⊢ ‖inner x y‖ * ‖inner y x‖ ≤ ↑re (inner x x) * ↑re (inner y y)
[PROOFSTEP]
rw [← sub_nonneg, ← mul_nonneg_iff_right_nonneg_of_pos hx', ← normSq, ← normSq, norm_inner_symm y, ← sq, ←
cauchy_schwarz_aux]
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x y : F
hx : x ≠ 0
hx' : 0 < normSq x
⊢ 0 ≤ normSq (inner x y • x - inner x x • y)
[PROOFSTEP]
exact inner_self_nonneg
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x : F
⊢ ↑re (inner x x) = ‖x‖ * ‖x‖
[PROOFSTEP]
rw [norm_eq_sqrt_inner, ← sqrt_mul inner_self_nonneg (re ⟪x, x⟫), sqrt_mul_self inner_self_nonneg]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x y : F
⊢ ‖inner x y‖ * ‖inner x y‖ = ‖inner x y‖ * ‖inner y x‖
[PROOFSTEP]
rw [norm_inner_symm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x y : F
⊢ ↑re (inner x x) * ↑re (inner y y) = ‖x‖ * ‖y‖ * (‖x‖ * ‖y‖)
[PROOFSTEP]
simp only [inner_self_eq_norm_mul_norm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x y : F
⊢ ‖x‖ * ‖x‖ * (‖y‖ * ‖y‖) = ‖x‖ * ‖y‖ * (‖x‖ * ‖y‖)
[PROOFSTEP]
ring
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
⊢ (fun x => sqrt (↑re (inner x x))) 0 = 0
[PROOFSTEP]
simp only [sqrt_zero, inner_zero_right, map_zero]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x y : F
⊢ (fun x => sqrt (↑re (inner x x))) (x + y) ≤ (fun x => sqrt (↑re (inner x x))) x + (fun x => sqrt (↑re (inner x x))) y
[PROOFSTEP]
have h₁ : ‖⟪x, y⟫‖ ≤ ‖x‖ * ‖y‖ := norm_inner_le_norm _ _
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x y : F
h₁ : ‖inner x y‖ ≤ ‖x‖ * ‖y‖
⊢ (fun x => sqrt (↑re (inner x x))) (x + y) ≤ (fun x => sqrt (↑re (inner x x))) x + (fun x => sqrt (↑re (inner x x))) y
[PROOFSTEP]
have h₂ : re ⟪x, y⟫ ≤ ‖⟪x, y⟫‖ := re_le_norm _
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x y : F
h₁ : ‖inner x y‖ ≤ ‖x‖ * ‖y‖
h₂ : ↑re (inner x y) ≤ ‖inner x y‖
⊢ (fun x => sqrt (↑re (inner x x))) (x + y) ≤ (fun x => sqrt (↑re (inner x x))) x + (fun x => sqrt (↑re (inner x x))) y
[PROOFSTEP]
have h₃ : re ⟪x, y⟫ ≤ ‖x‖ * ‖y‖ := h₂.trans h₁
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x y : F
h₁ : ‖inner x y‖ ≤ ‖x‖ * ‖y‖
h₂ : ↑re (inner x y) ≤ ‖inner x y‖
h₃ : ↑re (inner x y) ≤ ‖x‖ * ‖y‖
⊢ (fun x => sqrt (↑re (inner x x))) (x + y) ≤ (fun x => sqrt (↑re (inner x x))) x + (fun x => sqrt (↑re (inner x x))) y
[PROOFSTEP]
have h₄ : re ⟪y, x⟫ ≤ ‖x‖ * ‖y‖ := by rwa [← inner_conj_symm, conj_re]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x y : F
h₁ : ‖inner x y‖ ≤ ‖x‖ * ‖y‖
h₂ : ↑re (inner x y) ≤ ‖inner x y‖
h₃ : ↑re (inner x y) ≤ ‖x‖ * ‖y‖
⊢ ↑re (inner y x) ≤ ‖x‖ * ‖y‖
[PROOFSTEP]
rwa [← inner_conj_symm, conj_re]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x y : F
h₁ : ‖inner x y‖ ≤ ‖x‖ * ‖y‖
h₂ : ↑re (inner x y) ≤ ‖inner x y‖
h₃ : ↑re (inner x y) ≤ ‖x‖ * ‖y‖
h₄ : ↑re (inner y x) ≤ ‖x‖ * ‖y‖
⊢ (fun x => sqrt (↑re (inner x x))) (x + y) ≤ (fun x => sqrt (↑re (inner x x))) x + (fun x => sqrt (↑re (inner x x))) y
[PROOFSTEP]
have : ‖x + y‖ * ‖x + y‖ ≤ (‖x‖ + ‖y‖) * (‖x‖ + ‖y‖) :=
by
simp only [← inner_self_eq_norm_mul_norm, inner_add_add_self, mul_add, mul_comm, map_add]
linarith
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x y : F
h₁ : ‖inner x y‖ ≤ ‖x‖ * ‖y‖
h₂ : ↑re (inner x y) ≤ ‖inner x y‖
h₃ : ↑re (inner x y) ≤ ‖x‖ * ‖y‖
h₄ : ↑re (inner y x) ≤ ‖x‖ * ‖y‖
⊢ ‖x + y‖ * ‖x + y‖ ≤ (‖x‖ + ‖y‖) * (‖x‖ + ‖y‖)
[PROOFSTEP]
simp only [← inner_self_eq_norm_mul_norm, inner_add_add_self, mul_add, mul_comm, map_add]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x y : F
h₁ : ‖inner x y‖ ≤ ‖x‖ * ‖y‖
h₂ : ↑re (inner x y) ≤ ‖inner x y‖
h₃ : ↑re (inner x y) ≤ ‖x‖ * ‖y‖
h₄ : ↑re (inner y x) ≤ ‖x‖ * ‖y‖
⊢ ↑re (inner x x) + ↑re (inner x y) + ↑re (inner y x) + ↑re (inner y y) ≤
↑re (inner x x) + ‖x‖ * ‖y‖ + (‖x‖ * ‖y‖ + ↑re (inner y y))
[PROOFSTEP]
linarith
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x y : F
h₁ : ‖inner x y‖ ≤ ‖x‖ * ‖y‖
h₂ : ↑re (inner x y) ≤ ‖inner x y‖
h₃ : ↑re (inner x y) ≤ ‖x‖ * ‖y‖
h₄ : ↑re (inner y x) ≤ ‖x‖ * ‖y‖
this : ‖x + y‖ * ‖x + y‖ ≤ (‖x‖ + ‖y‖) * (‖x‖ + ‖y‖)
⊢ (fun x => sqrt (↑re (inner x x))) (x + y) ≤ (fun x => sqrt (↑re (inner x x))) x + (fun x => sqrt (↑re (inner x x))) y
[PROOFSTEP]
exact nonneg_le_nonneg_of_sq_le_sq (add_nonneg (sqrt_nonneg _) (sqrt_nonneg _)) this
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
x : F
⊢ (fun x => sqrt (↑re (inner x x))) (-x) = (fun x => sqrt (↑re (inner x x))) x
[PROOFSTEP]
simp only [inner_neg_left, neg_neg, inner_neg_right]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
r : 𝕜
x : F
⊢ ‖r • x‖ ≤ ‖r‖ * ‖x‖
[PROOFSTEP]
rw [norm_eq_sqrt_inner, inner_smul_left, inner_smul_right, ← mul_assoc]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
r : 𝕜
x : F
⊢ sqrt (↑re (↑(starRingEnd 𝕜) r * r * inner x x)) ≤ ‖r‖ * ‖x‖
[PROOFSTEP]
rw [IsROrC.conj_mul, ofReal_mul_re, sqrt_mul, ← ofReal_normSq_eq_inner_self, ofReal_re]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
r : 𝕜
x : F
⊢ sqrt (↑IsROrC.normSq r) * sqrt (normSq x) ≤ ‖r‖ * ‖x‖
[PROOFSTEP]
simp [sqrt_normSq_eq_norm, IsROrC.sqrt_normSq_eq_norm]
[GOAL]
case hx
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
r : 𝕜
x : F
⊢ 0 ≤ ↑IsROrC.normSq r
[PROOFSTEP]
exact normSq_nonneg r
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
this : NormedSpace 𝕜 F := Core.toNormedSpace
x : F
⊢ ‖x‖ ^ 2 = ↑re (inner x x)
[PROOFSTEP]
have h₁ : ‖x‖ ^ 2 = sqrt (re (c.inner x x)) ^ 2 := rfl
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
this : NormedSpace 𝕜 F := Core.toNormedSpace
x : F
h₁ : ‖x‖ ^ 2 = sqrt (↑re (inner x x)) ^ 2
⊢ ‖x‖ ^ 2 = ↑re (inner x x)
[PROOFSTEP]
have h₂ : 0 ≤ re (c.inner x x) := InnerProductSpace.Core.inner_self_nonneg
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : AddCommGroup F
inst✝ : Module 𝕜 F
c : Core 𝕜 F
this : NormedSpace 𝕜 F := Core.toNormedSpace
x : F
h₁ : ‖x‖ ^ 2 = sqrt (↑re (inner x x)) ^ 2
h₂ : 0 ≤ ↑re (inner x x)
⊢ ‖x‖ ^ 2 = ↑re (inner x x)
[PROOFSTEP]
simp [h₁, sq_sqrt, h₂]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ inner x y = 0 ↔ inner y x = 0
[PROOFSTEP]
rw [← inner_conj_symm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ ↑(starRingEnd 𝕜) (inner y x) = 0 ↔ inner y x = 0
[PROOFSTEP]
exact star_eq_zero
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x : E
⊢ ↑im (inner x x) = 0
[PROOFSTEP]
rw [← @ofReal_inj 𝕜, im_eq_conj_sub]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x : E
⊢ I * (↑(starRingEnd 𝕜) (inner x x) - inner x x) / 2 = ↑0
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y z : E
⊢ inner x (y + z) = inner x y + inner x z
[PROOFSTEP]
rw [← inner_conj_symm, inner_add_left, RingHom.map_add]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y z : E
⊢ ↑(starRingEnd 𝕜) (inner y x) + ↑(starRingEnd 𝕜) (inner z x) = inner x y + inner x z
[PROOFSTEP]
simp only [inner_conj_symm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ ↑re (inner x y) = ↑re (inner y x)
[PROOFSTEP]
rw [← inner_conj_symm, conj_re]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ ↑im (inner x y) = -↑im (inner y x)
[PROOFSTEP]
rw [← inner_conj_symm, conj_im]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
r : ℝ
⊢ inner (↑r • x) y = r • inner x y
[PROOFSTEP]
rw [inner_smul_left, conj_ofReal, Algebra.smul_def]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
r : ℝ
⊢ ↑r * inner x y = ↑(algebraMap ℝ 𝕜) r * inner x y
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
r : 𝕜
⊢ inner x (r • y) = r * inner x y
[PROOFSTEP]
rw [← inner_conj_symm, inner_smul_left, RingHom.map_mul, conj_conj, inner_conj_symm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
r : ℝ
⊢ inner x (↑r • y) = r • inner x y
[PROOFSTEP]
rw [inner_smul_right, Algebra.smul_def]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
r : ℝ
⊢ ↑r * inner x y = ↑(algebraMap ℝ 𝕜) r * inner x y
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
l : ι →₀ 𝕜
v : ι → E
x : E
⊢ inner (sum l fun i a => a • v i) x = sum l fun i a => ↑(starRingEnd 𝕜) a • inner (v i) x
[PROOFSTEP]
convert _root_.sum_inner (𝕜 := 𝕜) l.support (fun a => l a • v a) x
[GOAL]
case h.e'_3
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
l : ι →₀ 𝕜
v : ι → E
x : E
⊢ (sum l fun i a => ↑(starRingEnd 𝕜) a • inner (v i) x) = ∑ i in l.support, inner (↑l i • v i) x
[PROOFSTEP]
simp only [inner_smul_left, Finsupp.sum, smul_eq_mul]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
l : ι →₀ 𝕜
v : ι → E
x : E
⊢ inner x (sum l fun i a => a • v i) = sum l fun i a => a • inner x (v i)
[PROOFSTEP]
convert _root_.inner_sum (𝕜 := 𝕜) l.support (fun a => l a • v a) x
[GOAL]
case h.e'_3
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
l : ι →₀ 𝕜
v : ι → E
x : E
⊢ (sum l fun i a => a • inner x (v i)) = ∑ i in l.support, inner x (↑l i • v i)
[PROOFSTEP]
simp only [inner_smul_right, Finsupp.sum, smul_eq_mul]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec : DecidableEq ι
α : ι → Type u_5
inst✝¹ : (i : ι) → AddZeroClass (α i)
inst✝ : (i : ι) → (x : α i) → Decidable (x ≠ 0)
f : (i : ι) → α i → E
l : Π₀ (i : ι), α i
x : E
⊢ inner (sum l f) x = sum l fun i a => inner (f i a) x
[PROOFSTEP]
simp (config := { contextual := true }) only [DFinsupp.sum, _root_.sum_inner, smul_eq_mul]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec : DecidableEq ι
α : ι → Type u_5
inst✝¹ : (i : ι) → AddZeroClass (α i)
inst✝ : (i : ι) → (x : α i) → Decidable (x ≠ 0)
f : (i : ι) → α i → E
l : Π₀ (i : ι), α i
x : E
⊢ inner x (sum l f) = sum l fun i a => inner x (f i a)
[PROOFSTEP]
simp (config := { contextual := true }) only [DFinsupp.sum, _root_.inner_sum, smul_eq_mul]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x : E
⊢ inner 0 x = 0
[PROOFSTEP]
rw [← zero_smul 𝕜 (0 : E), inner_smul_left, RingHom.map_zero, zero_mul]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x : E
⊢ ↑re (inner 0 x) = 0
[PROOFSTEP]
simp only [inner_zero_left, AddMonoidHom.map_zero]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x : E
⊢ inner x 0 = 0
[PROOFSTEP]
rw [← inner_conj_symm, inner_zero_left, RingHom.map_zero]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x : E
⊢ ↑re (inner x 0) = 0
[PROOFSTEP]
simp only [inner_zero_right, AddMonoidHom.map_zero]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x : E
⊢ inner x x = ↑‖x‖ ^ 2
[PROOFSTEP]
rw [← inner_self_ofReal_re, ← norm_sq_eq_inner, ofReal_pow]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x : E
⊢ ↑re (inner x x) = ‖inner x x‖
[PROOFSTEP]
conv_rhs => rw [← inner_self_ofReal_re]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x : E
| ‖inner x x‖
[PROOFSTEP]
rw [← inner_self_ofReal_re]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x : E
| ‖inner x x‖
[PROOFSTEP]
rw [← inner_self_ofReal_re]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x : E
| ‖inner x x‖
[PROOFSTEP]
rw [← inner_self_ofReal_re]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x : E
⊢ ↑re (inner x x) = ‖↑(↑re (inner x x))‖
[PROOFSTEP]
symm
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x : E
⊢ ‖↑(↑re (inner x x))‖ = ↑re (inner x x)
[PROOFSTEP]
exact norm_of_nonneg inner_self_nonneg
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x : E
⊢ ↑‖inner x x‖ = inner x x
[PROOFSTEP]
rw [← inner_self_re_eq_norm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x : E
⊢ ↑(↑re (inner x x)) = inner x x
[PROOFSTEP]
exact inner_self_ofReal_re _
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x : E
⊢ inner x x = 0 ↔ x = 0
[PROOFSTEP]
rw [inner_self_eq_norm_sq_to_K, sq_eq_zero_iff, ofReal_eq_zero, norm_eq_zero]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x : E
⊢ ↑re (inner x x) ≤ 0 ↔ x = 0
[PROOFSTEP]
rw [← norm_sq_eq_inner, (sq_nonneg _).le_iff_eq, sq_eq_zero_iff, norm_eq_zero]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ ‖inner x y‖ = ‖inner y x‖
[PROOFSTEP]
rw [← inner_conj_symm, norm_conj]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ inner (-x) y = -inner x y
[PROOFSTEP]
rw [← neg_one_smul 𝕜 x, inner_smul_left]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ ↑(starRingEnd 𝕜) (-1) * inner x y = -inner x y
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ inner x (-y) = -inner x y
[PROOFSTEP]
rw [← inner_conj_symm, inner_neg_left]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ ↑(starRingEnd 𝕜) (-inner y x) = -inner x y
[PROOFSTEP]
simp only [RingHom.map_neg, inner_conj_symm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ inner (-x) (-y) = inner x y
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y z : E
⊢ inner (x - y) z = inner x z - inner y z
[PROOFSTEP]
simp [sub_eq_add_neg, inner_add_left]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y z : E
⊢ inner x (y - z) = inner x y - inner x z
[PROOFSTEP]
simp [sub_eq_add_neg, inner_add_right]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ ↑re (inner x y * inner y x) = ‖inner x y * inner y x‖
[PROOFSTEP]
rw [← inner_conj_symm, mul_comm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ ↑re (inner y x * ↑(starRingEnd 𝕜) (inner y x)) = ‖inner y x * ↑(starRingEnd 𝕜) (inner y x)‖
[PROOFSTEP]
exact re_eq_norm_of_mul_conj (inner y x)
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ inner (x + y) (x + y) = inner x x + inner x y + inner y x + inner y y
[PROOFSTEP]
simp only [inner_add_left, inner_add_right]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ inner x x + inner y x + (inner x y + inner y y) = inner x x + inner x y + inner y x + inner y y
[PROOFSTEP]
ring
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
⊢ inner (x + y) (x + y) = inner x x + 2 * inner x y + inner y y
[PROOFSTEP]
have : ⟪y, x⟫_ℝ = ⟪x, y⟫_ℝ := by rw [← inner_conj_symm]; rfl
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
⊢ inner y x = inner x y
[PROOFSTEP]
rw [← inner_conj_symm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
⊢ ↑(starRingEnd ℝ) (inner x y) = inner x y
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
this : inner y x = inner x y
⊢ inner (x + y) (x + y) = inner x x + 2 * inner x y + inner y y
[PROOFSTEP]
simp only [inner_add_add_self, this, add_left_inj]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
this : inner y x = inner x y
⊢ inner x x + inner x y + inner x y = inner x x + 2 * inner x y
[PROOFSTEP]
ring
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ inner (x - y) (x - y) = inner x x - inner x y - inner y x + inner y y
[PROOFSTEP]
simp only [inner_sub_left, inner_sub_right]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ inner x x - inner y x - (inner x y - inner y y) = inner x x - inner x y - inner y x + inner y y
[PROOFSTEP]
ring
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
⊢ inner (x - y) (x - y) = inner x x - 2 * inner x y + inner y y
[PROOFSTEP]
have : ⟪y, x⟫_ℝ = ⟪x, y⟫_ℝ := by rw [← inner_conj_symm]; rfl
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
⊢ inner y x = inner x y
[PROOFSTEP]
rw [← inner_conj_symm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
⊢ ↑(starRingEnd ℝ) (inner x y) = inner x y
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
this : inner y x = inner x y
⊢ inner (x - y) (x - y) = inner x x - 2 * inner x y + inner y y
[PROOFSTEP]
simp only [inner_sub_sub_self, this, add_left_inj]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
this : inner y x = inner x y
⊢ inner x x - inner x y - inner x y = inner x x - 2 * inner x y
[PROOFSTEP]
ring
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
h : ∀ (v : E), inner v x = inner v y
⊢ x = y
[PROOFSTEP]
rw [← sub_eq_zero, ← @inner_self_eq_zero 𝕜, inner_sub_right, sub_eq_zero, h (x - y)]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
h : ∀ (v : E), inner x v = inner y v
⊢ x = y
[PROOFSTEP]
rw [← sub_eq_zero, ← @inner_self_eq_zero 𝕜, inner_sub_left, sub_eq_zero, h (x - y)]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ inner (x + y) (x + y) + inner (x - y) (x - y) = 2 * (inner x x + inner y y)
[PROOFSTEP]
simp only [inner_add_add_self, inner_sub_sub_self]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ inner x x + inner x y + inner y x + inner y y + (inner x x - inner x y - inner y x + inner y y) =
2 * (inner x x + inner y y)
[PROOFSTEP]
ring
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
⊢ inner x y * inner x y ≤ ‖inner x y‖ * ‖inner y x‖
[PROOFSTEP]
rw [real_inner_comm y, ← norm_mul]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
⊢ inner y x * inner y x ≤ ‖inner y x * inner y x‖
[PROOFSTEP]
exact le_abs_self _
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
v : ι → E
hz : ∀ (i : ι), v i ≠ 0
ho : ∀ (i j : ι), i ≠ j → inner (v i) (v j) = 0
⊢ LinearIndependent 𝕜 v
[PROOFSTEP]
rw [linearIndependent_iff']
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
v : ι → E
hz : ∀ (i : ι), v i ≠ 0
ho : ∀ (i j : ι), i ≠ j → inner (v i) (v j) = 0
⊢ ∀ (s : Finset ι) (g : ι → 𝕜), ∑ i in s, g i • v i = 0 → ∀ (i : ι), i ∈ s → g i = 0
[PROOFSTEP]
intro s g hg i hi
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
v : ι → E
hz : ∀ (i : ι), v i ≠ 0
ho : ∀ (i j : ι), i ≠ j → inner (v i) (v j) = 0
s : Finset ι
g : ι → 𝕜
hg : ∑ i in s, g i • v i = 0
i : ι
hi : i ∈ s
⊢ g i = 0
[PROOFSTEP]
have h' : g i * inner (v i) (v i) = inner (v i) (∑ j in s, g j • v j) :=
by
rw [inner_sum]
symm
convert Finset.sum_eq_single (β := 𝕜) i ?_ ?_
· rw [inner_smul_right]
· intro j _hj hji
rw [inner_smul_right, ho i j hji.symm, mul_zero]
· exact fun h => False.elim (h hi)
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
v : ι → E
hz : ∀ (i : ι), v i ≠ 0
ho : ∀ (i j : ι), i ≠ j → inner (v i) (v j) = 0
s : Finset ι
g : ι → 𝕜
hg : ∑ i in s, g i • v i = 0
i : ι
hi : i ∈ s
⊢ g i * inner (v i) (v i) = inner (v i) (∑ j in s, g j • v j)
[PROOFSTEP]
rw [inner_sum]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
v : ι → E
hz : ∀ (i : ι), v i ≠ 0
ho : ∀ (i j : ι), i ≠ j → inner (v i) (v j) = 0
s : Finset ι
g : ι → 𝕜
hg : ∑ i in s, g i • v i = 0
i : ι
hi : i ∈ s
⊢ g i * inner (v i) (v i) = ∑ i_1 in s, inner (v i) (g i_1 • v i_1)
[PROOFSTEP]
symm
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
v : ι → E
hz : ∀ (i : ι), v i ≠ 0
ho : ∀ (i j : ι), i ≠ j → inner (v i) (v j) = 0
s : Finset ι
g : ι → 𝕜
hg : ∑ i in s, g i • v i = 0
i : ι
hi : i ∈ s
⊢ ∑ i_1 in s, inner (v i) (g i_1 • v i_1) = g i * inner (v i) (v i)
[PROOFSTEP]
convert Finset.sum_eq_single (β := 𝕜) i ?_ ?_
[GOAL]
case h.e'_3
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
v : ι → E
hz : ∀ (i : ι), v i ≠ 0
ho : ∀ (i j : ι), i ≠ j → inner (v i) (v j) = 0
s : Finset ι
g : ι → 𝕜
hg : ∑ i in s, g i • v i = 0
i : ι
hi : i ∈ s
⊢ g i * inner (v i) (v i) = inner (v i) (g i • v i)
[PROOFSTEP]
rw [inner_smul_right]
[GOAL]
case convert_3
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
v : ι → E
hz : ∀ (i : ι), v i ≠ 0
ho : ∀ (i j : ι), i ≠ j → inner (v i) (v j) = 0
s : Finset ι
g : ι → 𝕜
hg : ∑ i in s, g i • v i = 0
i : ι
hi : i ∈ s
⊢ ∀ (b : ι), b ∈ s → b ≠ i → inner (v i) (g b • v b) = 0
[PROOFSTEP]
intro j _hj hji
[GOAL]
case convert_3
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
v : ι → E
hz : ∀ (i : ι), v i ≠ 0
ho : ∀ (i j : ι), i ≠ j → inner (v i) (v j) = 0
s : Finset ι
g : ι → 𝕜
hg : ∑ i in s, g i • v i = 0
i : ι
hi : i ∈ s
j : ι
_hj : j ∈ s
hji : j ≠ i
⊢ inner (v i) (g j • v j) = 0
[PROOFSTEP]
rw [inner_smul_right, ho i j hji.symm, mul_zero]
[GOAL]
case convert_4
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
v : ι → E
hz : ∀ (i : ι), v i ≠ 0
ho : ∀ (i j : ι), i ≠ j → inner (v i) (v j) = 0
s : Finset ι
g : ι → 𝕜
hg : ∑ i in s, g i • v i = 0
i : ι
hi : i ∈ s
⊢ ¬i ∈ s → inner (v i) (g i • v i) = 0
[PROOFSTEP]
exact fun h => False.elim (h hi)
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
v : ι → E
hz : ∀ (i : ι), v i ≠ 0
ho : ∀ (i j : ι), i ≠ j → inner (v i) (v j) = 0
s : Finset ι
g : ι → 𝕜
hg : ∑ i in s, g i • v i = 0
i : ι
hi : i ∈ s
h' : g i * inner (v i) (v i) = inner (v i) (∑ j in s, g j • v j)
⊢ g i = 0
[PROOFSTEP]
simpa [hg, hz] using h'
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v : ι → E
⊢ Orthonormal 𝕜 v ↔ ∀ (i j : ι), inner (v i) (v j) = if i = j then 1 else 0
[PROOFSTEP]
constructor
[GOAL]
case mp
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v : ι → E
⊢ Orthonormal 𝕜 v → ∀ (i j : ι), inner (v i) (v j) = if i = j then 1 else 0
[PROOFSTEP]
intro hv i j
[GOAL]
case mp
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v : ι → E
hv : Orthonormal 𝕜 v
i j : ι
⊢ inner (v i) (v j) = if i = j then 1 else 0
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v : ι → E
hv : Orthonormal 𝕜 v
i j : ι
h : i = j
⊢ inner (v i) (v j) = 1
[PROOFSTEP]
simp [h, inner_self_eq_norm_sq_to_K, hv.1]
[GOAL]
case neg
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v : ι → E
hv : Orthonormal 𝕜 v
i j : ι
h : ¬i = j
⊢ inner (v i) (v j) = 0
[PROOFSTEP]
exact hv.2 h
[GOAL]
case mpr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v : ι → E
⊢ (∀ (i j : ι), inner (v i) (v j) = if i = j then 1 else 0) → Orthonormal 𝕜 v
[PROOFSTEP]
intro h
[GOAL]
case mpr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v : ι → E
h : ∀ (i j : ι), inner (v i) (v j) = if i = j then 1 else 0
⊢ Orthonormal 𝕜 v
[PROOFSTEP]
constructor
[GOAL]
case mpr.left
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v : ι → E
h : ∀ (i j : ι), inner (v i) (v j) = if i = j then 1 else 0
⊢ ∀ (i : ι), ‖v i‖ = 1
[PROOFSTEP]
intro i
[GOAL]
case mpr.left
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v : ι → E
h : ∀ (i j : ι), inner (v i) (v j) = if i = j then 1 else 0
i : ι
⊢ ‖v i‖ = 1
[PROOFSTEP]
have h' : ‖v i‖ ^ 2 = 1 ^ 2 := by simp [@norm_sq_eq_inner 𝕜, h i i]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v : ι → E
h : ∀ (i j : ι), inner (v i) (v j) = if i = j then 1 else 0
i : ι
⊢ ‖v i‖ ^ 2 = 1 ^ 2
[PROOFSTEP]
simp [@norm_sq_eq_inner 𝕜, h i i]
[GOAL]
case mpr.left
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v : ι → E
h : ∀ (i j : ι), inner (v i) (v j) = if i = j then 1 else 0
i : ι
h' : ‖v i‖ ^ 2 = 1 ^ 2
⊢ ‖v i‖ = 1
[PROOFSTEP]
have h₁ : 0 ≤ ‖v i‖ := norm_nonneg _
[GOAL]
case mpr.left
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v : ι → E
h : ∀ (i j : ι), inner (v i) (v j) = if i = j then 1 else 0
i : ι
h' : ‖v i‖ ^ 2 = 1 ^ 2
h₁ : 0 ≤ ‖v i‖
⊢ ‖v i‖ = 1
[PROOFSTEP]
have h₂ : (0 : ℝ) ≤ 1 := zero_le_one
[GOAL]
case mpr.left
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v : ι → E
h : ∀ (i j : ι), inner (v i) (v j) = if i = j then 1 else 0
i : ι
h' : ‖v i‖ ^ 2 = 1 ^ 2
h₁ : 0 ≤ ‖v i‖
h₂ : 0 ≤ 1
⊢ ‖v i‖ = 1
[PROOFSTEP]
rwa [sq_eq_sq h₁ h₂] at h'
[GOAL]
case mpr.right
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v : ι → E
h : ∀ (i j : ι), inner (v i) (v j) = if i = j then 1 else 0
⊢ ∀ {i j : ι}, i ≠ j → inner (v i) (v j) = 0
[PROOFSTEP]
intro i j hij
[GOAL]
case mpr.right
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v : ι → E
h : ∀ (i j : ι), inner (v i) (v j) = if i = j then 1 else 0
i j : ι
hij : i ≠ j
⊢ inner (v i) (v j) = 0
[PROOFSTEP]
simpa [hij] using h i j
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
s : Set E
⊢ Orthonormal 𝕜 Subtype.val ↔ ∀ (v : E), v ∈ s → ∀ (w : E), w ∈ s → inner v w = if v = w then 1 else 0
[PROOFSTEP]
rw [orthonormal_iff_ite]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
s : Set E
⊢ (∀ (i j : { x // x ∈ s }), inner ↑i ↑j = if i = j then 1 else 0) ↔
∀ (v : E), v ∈ s → ∀ (w : E), w ∈ s → inner v w = if v = w then 1 else 0
[PROOFSTEP]
constructor
[GOAL]
case mp
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
s : Set E
⊢ (∀ (i j : { x // x ∈ s }), inner ↑i ↑j = if i = j then 1 else 0) →
∀ (v : E), v ∈ s → ∀ (w : E), w ∈ s → inner v w = if v = w then 1 else 0
[PROOFSTEP]
intro h v hv w hw
[GOAL]
case mp
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
s : Set E
h : ∀ (i j : { x // x ∈ s }), inner ↑i ↑j = if i = j then 1 else 0
v : E
hv : v ∈ s
w : E
hw : w ∈ s
⊢ inner v w = if v = w then 1 else 0
[PROOFSTEP]
convert h ⟨v, hv⟩ ⟨w, hw⟩ using 1
[GOAL]
case h.e'_3
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
s : Set E
h : ∀ (i j : { x // x ∈ s }), inner ↑i ↑j = if i = j then 1 else 0
v : E
hv : v ∈ s
w : E
hw : w ∈ s
⊢ (if v = w then 1 else 0) = if { val := v, property := hv } = { val := w, property := hw } then 1 else 0
[PROOFSTEP]
simp
[GOAL]
case mpr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
s : Set E
⊢ (∀ (v : E), v ∈ s → ∀ (w : E), w ∈ s → inner v w = if v = w then 1 else 0) →
∀ (i j : { x // x ∈ s }), inner ↑i ↑j = if i = j then 1 else 0
[PROOFSTEP]
rintro h ⟨v, hv⟩ ⟨w, hw⟩
[GOAL]
case mpr.mk.mk
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
s : Set E
h : ∀ (v : E), v ∈ s → ∀ (w : E), w ∈ s → inner v w = if v = w then 1 else 0
v : E
hv : v ∈ s
w : E
hw : w ∈ s
⊢ inner ↑{ val := v, property := hv } ↑{ val := w, property := hw } =
if { val := v, property := hv } = { val := w, property := hw } then 1 else 0
[PROOFSTEP]
convert h v hv w hw using 1
[GOAL]
case h.e'_3
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
s : Set E
h : ∀ (v : E), v ∈ s → ∀ (w : E), w ∈ s → inner v w = if v = w then 1 else 0
v : E
hv : v ∈ s
w : E
hw : w ∈ s
⊢ (if { val := v, property := hv } = { val := w, property := hw } then 1 else 0) = if v = w then 1 else 0
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v : ι → E
hv : Orthonormal 𝕜 v
l : ι →₀ 𝕜
i : ι
⊢ inner (v i) (↑(Finsupp.total ι E 𝕜 v) l) = ↑l i
[PROOFSTEP]
classical!
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v : ι → E
hv : Orthonormal 𝕜 v
l : ι →₀ 𝕜
i : ι
em✝ : (a : Prop) → Decidable a
⊢ inner (v i) (↑(Finsupp.total ι E 𝕜 v) l) = ↑l i
[PROOFSTEP]
simpa [Finsupp.total_apply, Finsupp.inner_sum, orthonormal_iff_ite.mp hv] using Eq.symm
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v : ι → E
hv : Orthonormal 𝕜 v
l : ι → 𝕜
s : Finset ι
i : ι
hi : i ∈ s
⊢ inner (v i) (∑ i in s, l i • v i) = l i
[PROOFSTEP]
classical!
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v : ι → E
hv : Orthonormal 𝕜 v
l : ι → 𝕜
s : Finset ι
i : ι
hi : i ∈ s
em✝ : (a : Prop) → Decidable a
⊢ inner (v i) (∑ i in s, l i • v i) = l i
[PROOFSTEP]
simp [inner_sum, inner_smul_right, orthonormal_iff_ite.mp hv, hi]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v : ι → E
hv : Orthonormal 𝕜 v
l : ι →₀ 𝕜
i : ι
⊢ inner (↑(Finsupp.total ι E 𝕜 v) l) (v i) = ↑(starRingEnd ((fun x => 𝕜) i)) (↑l i)
[PROOFSTEP]
rw [← inner_conj_symm, hv.inner_right_finsupp]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v : ι → E
hv : Orthonormal 𝕜 v
l : ι → 𝕜
s : Finset ι
i : ι
hi : i ∈ s
⊢ inner (∑ i in s, l i • v i) (v i) = ↑(starRingEnd 𝕜) (l i)
[PROOFSTEP]
classical!
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v : ι → E
hv : Orthonormal 𝕜 v
l : ι → 𝕜
s : Finset ι
i : ι
hi : i ∈ s
em✝ : (a : Prop) → Decidable a
⊢ inner (∑ i in s, l i • v i) (v i) = ↑(starRingEnd 𝕜) (l i)
[PROOFSTEP]
simp only [sum_inner, inner_smul_left, orthonormal_iff_ite.mp hv, hi, mul_boole, Finset.sum_ite_eq', if_true]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v : ι → E
hv : Orthonormal 𝕜 v
l₁ l₂ : ι →₀ 𝕜
⊢ inner (↑(Finsupp.total ι E 𝕜 v) l₁) (↑(Finsupp.total ι E 𝕜 v) l₂) =
Finsupp.sum l₁ fun i y => ↑(starRingEnd 𝕜) y * ↑l₂ i
[PROOFSTEP]
simp only [l₁.total_apply _, Finsupp.sum_inner, hv.inner_right_finsupp, smul_eq_mul]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v : ι → E
hv : Orthonormal 𝕜 v
l₁ l₂ : ι →₀ 𝕜
⊢ inner (↑(Finsupp.total ι E 𝕜 v) l₁) (↑(Finsupp.total ι E 𝕜 v) l₂) =
Finsupp.sum l₂ fun i y => ↑(starRingEnd ((fun x => 𝕜) i)) (↑l₁ i) * y
[PROOFSTEP]
simp only [l₂.total_apply _, Finsupp.inner_sum, hv.inner_left_finsupp, mul_comm, smul_eq_mul]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v : ι → E
hv : Orthonormal 𝕜 v
l₁ l₂ : ι → 𝕜
s : Finset ι
⊢ inner (∑ i in s, l₁ i • v i) (∑ i in s, l₂ i • v i) = ∑ i in s, ↑(starRingEnd 𝕜) (l₁ i) * l₂ i
[PROOFSTEP]
simp_rw [sum_inner, inner_smul_left]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v : ι → E
hv : Orthonormal 𝕜 v
l₁ l₂ : ι → 𝕜
s : Finset ι
⊢ ∑ x in s, ↑(starRingEnd 𝕜) (l₁ x) * inner (v x) (∑ i in s, l₂ i • v i) = ∑ x in s, ↑(starRingEnd 𝕜) (l₁ x) * l₂ x
[PROOFSTEP]
refine' Finset.sum_congr rfl fun i hi => _
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v : ι → E
hv : Orthonormal 𝕜 v
l₁ l₂ : ι → 𝕜
s : Finset ι
i : ι
hi : i ∈ s
⊢ ↑(starRingEnd 𝕜) (l₁ i) * inner (v i) (∑ i in s, l₂ i • v i) = ↑(starRingEnd 𝕜) (l₁ i) * l₂ i
[PROOFSTEP]
rw [hv.inner_right_sum l₂ hi]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
s : Finset ι
v : ι → E
hv : Orthonormal 𝕜 v
a : ι → ι → 𝕜
⊢ ∑ i in s, ∑ j in s, a i j • inner (v j) (v i) = ∑ k in s, a k k
[PROOFSTEP]
classical!
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
s : Finset ι
v : ι → E
hv : Orthonormal 𝕜 v
a : ι → ι → 𝕜
em✝ : (a : Prop) → Decidable a
⊢ ∑ i in s, ∑ j in s, a i j • inner (v j) (v i) = ∑ k in s, a k k
[PROOFSTEP]
simp [orthonormal_iff_ite.mp hv, Finset.sum_ite_of_true]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v : ι → E
hv : Orthonormal 𝕜 v
⊢ LinearIndependent 𝕜 v
[PROOFSTEP]
rw [linearIndependent_iff]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v : ι → E
hv : Orthonormal 𝕜 v
⊢ ∀ (l : ι →₀ 𝕜), ↑(Finsupp.total ι E 𝕜 v) l = 0 → l = 0
[PROOFSTEP]
intro l hl
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v : ι → E
hv : Orthonormal 𝕜 v
l : ι →₀ 𝕜
hl : ↑(Finsupp.total ι E 𝕜 v) l = 0
⊢ l = 0
[PROOFSTEP]
ext i
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v : ι → E
hv : Orthonormal 𝕜 v
l : ι →₀ 𝕜
hl : ↑(Finsupp.total ι E 𝕜 v) l = 0
i : ι
⊢ ↑l i = ↑0 i
[PROOFSTEP]
have key : ⟪v i, Finsupp.total ι E 𝕜 v l⟫ = ⟪v i, 0⟫ := by rw [hl]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v : ι → E
hv : Orthonormal 𝕜 v
l : ι →₀ 𝕜
hl : ↑(Finsupp.total ι E 𝕜 v) l = 0
i : ι
⊢ inner (v i) (↑(Finsupp.total ι E 𝕜 v) l) = inner (v i) 0
[PROOFSTEP]
rw [hl]
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v : ι → E
hv : Orthonormal 𝕜 v
l : ι →₀ 𝕜
hl : ↑(Finsupp.total ι E 𝕜 v) l = 0
i : ι
key : inner (v i) (↑(Finsupp.total ι E 𝕜 v) l) = inner (v i) 0
⊢ ↑l i = ↑0 i
[PROOFSTEP]
simpa only [hv.inner_right_finsupp, inner_zero_right] using key
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
ι' : Type u_5
v : ι → E
hv : Orthonormal 𝕜 v
f : ι' → ι
hf : Function.Injective f
⊢ Orthonormal 𝕜 (v ∘ f)
[PROOFSTEP]
classical!
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
ι' : Type u_5
v : ι → E
hv : Orthonormal 𝕜 v
f : ι' → ι
hf : Function.Injective f
em✝ : (a : Prop) → Decidable a
⊢ Orthonormal 𝕜 (v ∘ f)
[PROOFSTEP]
rw [orthonormal_iff_ite] at hv ⊢
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
ι' : Type u_5
v : ι → E
f : ι' → ι
hf : Function.Injective f
em✝ : (a : Prop) → Decidable a
hv : ∀ (i j : ι), inner (v i) (v j) = if i = j then 1 else 0
⊢ ∀ (i j : ι'), inner ((v ∘ f) i) ((v ∘ f) j) = if i = j then 1 else 0
[PROOFSTEP]
intro i j
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
ι' : Type u_5
v : ι → E
f : ι' → ι
hf : Function.Injective f
em✝ : (a : Prop) → Decidable a
hv : ∀ (i j : ι), inner (v i) (v j) = if i = j then 1 else 0
i j : ι'
⊢ inner ((v ∘ f) i) ((v ∘ f) j) = if i = j then 1 else 0
[PROOFSTEP]
convert hv (f i) (f j) using 1
[GOAL]
case h.e'_3
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
ι' : Type u_5
v : ι → E
f : ι' → ι
hf : Function.Injective f
em✝ : (a : Prop) → Decidable a
hv : ∀ (i j : ι), inner (v i) (v j) = if i = j then 1 else 0
i j : ι'
⊢ (if i = j then 1 else 0) = if f i = f j then 1 else 0
[PROOFSTEP]
simp [hf.eq_iff]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v : ι → E
hv : Function.Injective v
⊢ Orthonormal 𝕜 Subtype.val ↔ Orthonormal 𝕜 v
[PROOFSTEP]
let f : ι ≃ Set.range v := Equiv.ofInjective v hv
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v : ι → E
hv : Function.Injective v
f : ι ≃ ↑(Set.range v) := Equiv.ofInjective v hv
⊢ Orthonormal 𝕜 Subtype.val ↔ Orthonormal 𝕜 v
[PROOFSTEP]
refine' ⟨fun h => h.comp f f.injective, fun h => _⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v : ι → E
hv : Function.Injective v
f : ι ≃ ↑(Set.range v) := Equiv.ofInjective v hv
h : Orthonormal 𝕜 v
⊢ Orthonormal 𝕜 Subtype.val
[PROOFSTEP]
rw [← Equiv.self_comp_ofInjective_symm hv]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v : ι → E
hv : Function.Injective v
f : ι ≃ ↑(Set.range v) := Equiv.ofInjective v hv
h : Orthonormal 𝕜 v
⊢ Orthonormal 𝕜 (v ∘ ↑(Equiv.ofInjective v hv).symm)
[PROOFSTEP]
exact h.comp f.symm f.symm.injective
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v : ι → E
hv : Orthonormal 𝕜 v
s : Set ι
i : ι
hi : ¬i ∈ s
l : ι →₀ 𝕜
hl : l ∈ Finsupp.supported 𝕜 𝕜 s
⊢ inner (↑(Finsupp.total ι E 𝕜 v) l) (v i) = 0
[PROOFSTEP]
rw [Finsupp.mem_supported'] at hl
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v : ι → E
hv : Orthonormal 𝕜 v
s : Set ι
i : ι
hi : ¬i ∈ s
l : ι →₀ 𝕜
hl : ∀ (x : ι), ¬x ∈ s → ↑l x = 0
⊢ inner (↑(Finsupp.total ι E 𝕜 v) l) (v i) = 0
[PROOFSTEP]
simp only [hv.inner_left_finsupp, hl i hi, map_zero]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v w : ι → E
hv : Orthonormal 𝕜 v
hw : ∀ (i : ι), w i = v i ∨ w i = -v i
⊢ Orthonormal 𝕜 w
[PROOFSTEP]
classical!
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v w : ι → E
hv : Orthonormal 𝕜 v
hw : ∀ (i : ι), w i = v i ∨ w i = -v i
em✝ : (a : Prop) → Decidable a
⊢ Orthonormal 𝕜 w
[PROOFSTEP]
rw [orthonormal_iff_ite] at *
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v w : ι → E
hw : ∀ (i : ι), w i = v i ∨ w i = -v i
em✝ : (a : Prop) → Decidable a
hv : ∀ (i j : ι), inner (v i) (v j) = if i = j then 1 else 0
⊢ ∀ (i j : ι), inner (w i) (w j) = if i = j then 1 else 0
[PROOFSTEP]
intro i j
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v w : ι → E
hw : ∀ (i : ι), w i = v i ∨ w i = -v i
em✝ : (a : Prop) → Decidable a
hv : ∀ (i j : ι), inner (v i) (v j) = if i = j then 1 else 0
i j : ι
⊢ inner (w i) (w j) = if i = j then 1 else 0
[PROOFSTEP]
cases' hw i with hi hi
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v w : ι → E
hw : ∀ (i : ι), w i = v i ∨ w i = -v i
em✝ : (a : Prop) → Decidable a
hv : ∀ (i j : ι), inner (v i) (v j) = if i = j then 1 else 0
i j : ι
hi : w i = v i
⊢ inner (w i) (w j) = if i = j then 1 else 0
[PROOFSTEP]
cases' hw j with hj hj
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v w : ι → E
hw : ∀ (i : ι), w i = v i ∨ w i = -v i
em✝ : (a : Prop) → Decidable a
hv : ∀ (i j : ι), inner (v i) (v j) = if i = j then 1 else 0
i j : ι
hi : w i = -v i
⊢ inner (w i) (w j) = if i = j then 1 else 0
[PROOFSTEP]
cases' hw j with hj hj
[GOAL]
case inl.inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v w : ι → E
hw : ∀ (i : ι), w i = v i ∨ w i = -v i
em✝ : (a : Prop) → Decidable a
hv : ∀ (i j : ι), inner (v i) (v j) = if i = j then 1 else 0
i j : ι
hi : w i = v i
hj : w j = v j
⊢ inner (w i) (w j) = if i = j then 1 else 0
[PROOFSTEP]
replace hv := hv i j
[GOAL]
case inl.inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v w : ι → E
hw : ∀ (i : ι), w i = v i ∨ w i = -v i
em✝ : (a : Prop) → Decidable a
hv : ∀ (i j : ι), inner (v i) (v j) = if i = j then 1 else 0
i j : ι
hi : w i = v i
hj : w j = -v j
⊢ inner (w i) (w j) = if i = j then 1 else 0
[PROOFSTEP]
replace hv := hv i j
[GOAL]
case inr.inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v w : ι → E
hw : ∀ (i : ι), w i = v i ∨ w i = -v i
em✝ : (a : Prop) → Decidable a
hv : ∀ (i j : ι), inner (v i) (v j) = if i = j then 1 else 0
i j : ι
hi : w i = -v i
hj : w j = v j
⊢ inner (w i) (w j) = if i = j then 1 else 0
[PROOFSTEP]
replace hv := hv i j
[GOAL]
case inr.inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v w : ι → E
hw : ∀ (i : ι), w i = v i ∨ w i = -v i
em✝ : (a : Prop) → Decidable a
hv : ∀ (i j : ι), inner (v i) (v j) = if i = j then 1 else 0
i j : ι
hi : w i = -v i
hj : w j = -v j
⊢ inner (w i) (w j) = if i = j then 1 else 0
[PROOFSTEP]
replace hv := hv i j
[GOAL]
case inl.inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v w : ι → E
hw : ∀ (i : ι), w i = v i ∨ w i = -v i
em✝ : (a : Prop) → Decidable a
i j : ι
hi : w i = v i
hj : w j = v j
hv : inner (v i) (v j) = if i = j then 1 else 0
⊢ inner (w i) (w j) = if i = j then 1 else 0
[PROOFSTEP]
split_ifs at hv ⊢ with h
[GOAL]
case inl.inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v w : ι → E
hw : ∀ (i : ι), w i = v i ∨ w i = -v i
em✝ : (a : Prop) → Decidable a
i j : ι
hi : w i = v i
hj : w j = -v j
hv : inner (v i) (v j) = if i = j then 1 else 0
⊢ inner (w i) (w j) = if i = j then 1 else 0
[PROOFSTEP]
split_ifs at hv ⊢ with h
[GOAL]
case inr.inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v w : ι → E
hw : ∀ (i : ι), w i = v i ∨ w i = -v i
em✝ : (a : Prop) → Decidable a
i j : ι
hi : w i = -v i
hj : w j = v j
hv : inner (v i) (v j) = if i = j then 1 else 0
⊢ inner (w i) (w j) = if i = j then 1 else 0
[PROOFSTEP]
split_ifs at hv ⊢ with h
[GOAL]
case inr.inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v w : ι → E
hw : ∀ (i : ι), w i = v i ∨ w i = -v i
em✝ : (a : Prop) → Decidable a
i j : ι
hi : w i = -v i
hj : w j = -v j
hv : inner (v i) (v j) = if i = j then 1 else 0
⊢ inner (w i) (w j) = if i = j then 1 else 0
[PROOFSTEP]
split_ifs at hv ⊢ with h
[GOAL]
case pos
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v w : ι → E
hw : ∀ (i : ι), w i = v i ∨ w i = -v i
em✝ : (a : Prop) → Decidable a
i j : ι
hi : w i = v i
hj : w j = v j
h : i = j
hv : inner (v i) (v j) = 1
⊢ inner (w i) (w j) = 1
[PROOFSTEP]
simpa only [hi, hj, h, inner_neg_right, inner_neg_left, neg_neg, eq_self_iff_true, neg_eq_zero] using hv
[GOAL]
case neg
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v w : ι → E
hw : ∀ (i : ι), w i = v i ∨ w i = -v i
em✝ : (a : Prop) → Decidable a
i j : ι
hi : w i = v i
hj : w j = v j
h : ¬i = j
hv : inner (v i) (v j) = 0
⊢ inner (w i) (w j) = 0
[PROOFSTEP]
simpa only [hi, hj, h, inner_neg_right, inner_neg_left, neg_neg, eq_self_iff_true, neg_eq_zero] using hv
[GOAL]
case pos
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v w : ι → E
hw : ∀ (i : ι), w i = v i ∨ w i = -v i
em✝ : (a : Prop) → Decidable a
i j : ι
hi : w i = v i
hj : w j = -v j
h : i = j
hv : inner (v i) (v j) = 1
⊢ inner (w i) (w j) = 1
[PROOFSTEP]
simpa only [hi, hj, h, inner_neg_right, inner_neg_left, neg_neg, eq_self_iff_true, neg_eq_zero] using hv
[GOAL]
case neg
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v w : ι → E
hw : ∀ (i : ι), w i = v i ∨ w i = -v i
em✝ : (a : Prop) → Decidable a
i j : ι
hi : w i = v i
hj : w j = -v j
h : ¬i = j
hv : inner (v i) (v j) = 0
⊢ inner (w i) (w j) = 0
[PROOFSTEP]
simpa only [hi, hj, h, inner_neg_right, inner_neg_left, neg_neg, eq_self_iff_true, neg_eq_zero] using hv
[GOAL]
case pos
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v w : ι → E
hw : ∀ (i : ι), w i = v i ∨ w i = -v i
em✝ : (a : Prop) → Decidable a
i j : ι
hi : w i = -v i
hj : w j = v j
h : i = j
hv : inner (v i) (v j) = 1
⊢ inner (w i) (w j) = 1
[PROOFSTEP]
simpa only [hi, hj, h, inner_neg_right, inner_neg_left, neg_neg, eq_self_iff_true, neg_eq_zero] using hv
[GOAL]
case neg
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v w : ι → E
hw : ∀ (i : ι), w i = v i ∨ w i = -v i
em✝ : (a : Prop) → Decidable a
i j : ι
hi : w i = -v i
hj : w j = v j
h : ¬i = j
hv : inner (v i) (v j) = 0
⊢ inner (w i) (w j) = 0
[PROOFSTEP]
simpa only [hi, hj, h, inner_neg_right, inner_neg_left, neg_neg, eq_self_iff_true, neg_eq_zero] using hv
[GOAL]
case pos
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v w : ι → E
hw : ∀ (i : ι), w i = v i ∨ w i = -v i
em✝ : (a : Prop) → Decidable a
i j : ι
hi : w i = -v i
hj : w j = -v j
h : i = j
hv : inner (v i) (v j) = 1
⊢ inner (w i) (w j) = 1
[PROOFSTEP]
simpa only [hi, hj, h, inner_neg_right, inner_neg_left, neg_neg, eq_self_iff_true, neg_eq_zero] using hv
[GOAL]
case neg
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v w : ι → E
hw : ∀ (i : ι), w i = v i ∨ w i = -v i
em✝ : (a : Prop) → Decidable a
i j : ι
hi : w i = -v i
hj : w j = -v j
h : ¬i = j
hv : inner (v i) (v j) = 0
⊢ inner (w i) (w j) = 0
[PROOFSTEP]
simpa only [hi, hj, h, inner_neg_right, inner_neg_left, neg_neg, eq_self_iff_true, neg_eq_zero] using hv
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
⊢ Orthonormal 𝕜 fun x => ↑x
[PROOFSTEP]
classical!
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
em✝ : (a : Prop) → Decidable a
⊢ Orthonormal 𝕜 fun x => ↑x
[PROOFSTEP]
simp [orthonormal_subtype_iff_ite]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
η : Type u_5
s : η → Set E
hs : Directed (fun x x_1 => x ⊆ x_1) s
h : ∀ (i : η), Orthonormal 𝕜 fun x => ↑x
⊢ Orthonormal 𝕜 fun x => ↑x
[PROOFSTEP]
classical!
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
η : Type u_5
s : η → Set E
hs : Directed (fun x x_1 => x ⊆ x_1) s
h : ∀ (i : η), Orthonormal 𝕜 fun x => ↑x
em✝ : (a : Prop) → Decidable a
⊢ Orthonormal 𝕜 fun x => ↑x
[PROOFSTEP]
rw [orthonormal_subtype_iff_ite]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
η : Type u_5
s : η → Set E
hs : Directed (fun x x_1 => x ⊆ x_1) s
h : ∀ (i : η), Orthonormal 𝕜 fun x => ↑x
em✝ : (a : Prop) → Decidable a
⊢ ∀ (v : E), v ∈ ⋃ (i : η), s i → ∀ (w : E), w ∈ ⋃ (i : η), s i → inner v w = if v = w then 1 else 0
[PROOFSTEP]
rintro x ⟨_, ⟨i, rfl⟩, hxi⟩ y ⟨_, ⟨j, rfl⟩, hyj⟩
[GOAL]
case intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
η : Type u_5
s : η → Set E
hs : Directed (fun x x_1 => x ⊆ x_1) s
h : ∀ (i : η), Orthonormal 𝕜 fun x => ↑x
em✝ : (a : Prop) → Decidable a
x : E
i : η
hxi : x ∈ (fun i => s i) i
y : E
j : η
hyj : y ∈ (fun i => s i) j
⊢ inner x y = if x = y then 1 else 0
[PROOFSTEP]
obtain ⟨k, hik, hjk⟩ := hs i j
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
η : Type u_5
s : η → Set E
hs : Directed (fun x x_1 => x ⊆ x_1) s
h : ∀ (i : η), Orthonormal 𝕜 fun x => ↑x
em✝ : (a : Prop) → Decidable a
x : E
i : η
hxi : x ∈ (fun i => s i) i
y : E
j : η
hyj : y ∈ (fun i => s i) j
k : η
hik : s i ⊆ s k
hjk : s j ⊆ s k
⊢ inner x y = if x = y then 1 else 0
[PROOFSTEP]
have h_orth : Orthonormal 𝕜 (fun x => x : s k → E) := h k
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
η : Type u_5
s : η → Set E
hs : Directed (fun x x_1 => x ⊆ x_1) s
h : ∀ (i : η), Orthonormal 𝕜 fun x => ↑x
em✝ : (a : Prop) → Decidable a
x : E
i : η
hxi : x ∈ (fun i => s i) i
y : E
j : η
hyj : y ∈ (fun i => s i) j
k : η
hik : s i ⊆ s k
hjk : s j ⊆ s k
h_orth : Orthonormal 𝕜 fun x => ↑x
⊢ inner x y = if x = y then 1 else 0
[PROOFSTEP]
rw [orthonormal_subtype_iff_ite] at h_orth
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
η : Type u_5
s : η → Set E
hs : Directed (fun x x_1 => x ⊆ x_1) s
h : ∀ (i : η), Orthonormal 𝕜 fun x => ↑x
em✝ : (a : Prop) → Decidable a
x : E
i : η
hxi : x ∈ (fun i => s i) i
y : E
j : η
hyj : y ∈ (fun i => s i) j
k : η
hik : s i ⊆ s k
hjk : s j ⊆ s k
h_orth : ∀ (v : E), v ∈ s k → ∀ (w : E), w ∈ s k → inner v w = if v = w then 1 else 0
⊢ inner x y = if x = y then 1 else 0
[PROOFSTEP]
exact h_orth x (hik hxi) y (hjk hyj)
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
s : Set (Set E)
hs : DirectedOn (fun x x_1 => x ⊆ x_1) s
h : ∀ (a : Set E), a ∈ s → Orthonormal 𝕜 fun x => ↑x
⊢ Orthonormal 𝕜 fun x => ↑x
[PROOFSTEP]
rw [Set.sUnion_eq_iUnion]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
s : Set (Set E)
hs : DirectedOn (fun x x_1 => x ⊆ x_1) s
h : ∀ (a : Set E), a ∈ s → Orthonormal 𝕜 fun x => ↑x
⊢ Orthonormal 𝕜 fun x => ↑x
[PROOFSTEP]
exact orthonormal_iUnion_of_directed hs.directed_val (by simpa using h)
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
s : Set (Set E)
hs : DirectedOn (fun x x_1 => x ⊆ x_1) s
h : ∀ (a : Set E), a ∈ s → Orthonormal 𝕜 fun x => ↑x
⊢ ∀ (i : ↑s), Orthonormal 𝕜 fun x => ↑x
[PROOFSTEP]
simpa using h
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
s : Set E
hs : Orthonormal 𝕜 Subtype.val
⊢ ∃ w _hw, Orthonormal 𝕜 Subtype.val ∧ ∀ (u : Set E), u ⊇ w → Orthonormal 𝕜 Subtype.val → u = w
[PROOFSTEP]
have := zorn_subset_nonempty {b | Orthonormal 𝕜 (Subtype.val : b → E)} ?_ _ hs
[GOAL]
case refine_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
s : Set E
hs : Orthonormal 𝕜 Subtype.val
this :
∃ m, m ∈ {b | Orthonormal 𝕜 Subtype.val} ∧ s ⊆ m ∧ ∀ (a : Set E), a ∈ {b | Orthonormal 𝕜 Subtype.val} → m ⊆ a → a = m
⊢ ∃ w _hw, Orthonormal 𝕜 Subtype.val ∧ ∀ (u : Set E), u ⊇ w → Orthonormal 𝕜 Subtype.val → u = w
case refine_1
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
s : Set E
hs : Orthonormal 𝕜 Subtype.val
⊢ ∀ (c : Set (Set E)),
c ⊆ {b | Orthonormal 𝕜 Subtype.val} →
IsChain (fun x x_1 => x ⊆ x_1) c →
Set.Nonempty c → ∃ ub, ub ∈ {b | Orthonormal 𝕜 Subtype.val} ∧ ∀ (s : Set E), s ∈ c → s ⊆ ub
[PROOFSTEP]
obtain ⟨b, bi, sb, h⟩ := this
[GOAL]
case refine_2.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
s : Set E
hs : Orthonormal 𝕜 Subtype.val
b : Set E
bi : b ∈ {b | Orthonormal 𝕜 Subtype.val}
sb : s ⊆ b
h : ∀ (a : Set E), a ∈ {b | Orthonormal 𝕜 Subtype.val} → b ⊆ a → a = b
⊢ ∃ w _hw, Orthonormal 𝕜 Subtype.val ∧ ∀ (u : Set E), u ⊇ w → Orthonormal 𝕜 Subtype.val → u = w
[PROOFSTEP]
refine' ⟨b, sb, bi, _⟩
[GOAL]
case refine_2.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
s : Set E
hs : Orthonormal 𝕜 Subtype.val
b : Set E
bi : b ∈ {b | Orthonormal 𝕜 Subtype.val}
sb : s ⊆ b
h : ∀ (a : Set E), a ∈ {b | Orthonormal 𝕜 Subtype.val} → b ⊆ a → a = b
⊢ ∀ (u : Set E), u ⊇ b → Orthonormal 𝕜 Subtype.val → u = b
[PROOFSTEP]
exact fun u hus hu => h u hu hus
[GOAL]
case refine_1
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
s : Set E
hs : Orthonormal 𝕜 Subtype.val
⊢ ∀ (c : Set (Set E)),
c ⊆ {b | Orthonormal 𝕜 Subtype.val} →
IsChain (fun x x_1 => x ⊆ x_1) c →
Set.Nonempty c → ∃ ub, ub ∈ {b | Orthonormal 𝕜 Subtype.val} ∧ ∀ (s : Set E), s ∈ c → s ⊆ ub
[PROOFSTEP]
refine' fun c hc cc _c0 => ⟨⋃₀ c, _, _⟩
[GOAL]
case refine_1.refine'_1
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
s : Set E
hs : Orthonormal 𝕜 Subtype.val
c : Set (Set E)
hc : c ⊆ {b | Orthonormal 𝕜 Subtype.val}
cc : IsChain (fun x x_1 => x ⊆ x_1) c
_c0 : Set.Nonempty c
⊢ ⋃₀ c ∈ {b | Orthonormal 𝕜 Subtype.val}
[PROOFSTEP]
exact orthonormal_sUnion_of_directed cc.directedOn fun x xc => hc xc
[GOAL]
case refine_1.refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
s : Set E
hs : Orthonormal 𝕜 Subtype.val
c : Set (Set E)
hc : c ⊆ {b | Orthonormal 𝕜 Subtype.val}
cc : IsChain (fun x x_1 => x ⊆ x_1) c
_c0 : Set.Nonempty c
⊢ ∀ (s : Set E), s ∈ c → s ⊆ ⋃₀ c
[PROOFSTEP]
exact fun _ => Set.subset_sUnion_of_mem
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v : ι → E
hv : Orthonormal 𝕜 v
i : ι
⊢ v i ≠ 0
[PROOFSTEP]
have : ‖v i‖ ≠ 0 := by
rw [hv.1 i]
norm_num
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v : ι → E
hv : Orthonormal 𝕜 v
i : ι
⊢ ‖v i‖ ≠ 0
[PROOFSTEP]
rw [hv.1 i]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v : ι → E
hv : Orthonormal 𝕜 v
i : ι
⊢ 1 ≠ 0
[PROOFSTEP]
norm_num
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
v : ι → E
hv : Orthonormal 𝕜 v
i : ι
this : ‖v i‖ ≠ 0
⊢ v i ≠ 0
[PROOFSTEP]
simpa using this
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x : E
⊢ ↑re (inner x x) = ‖x‖ * ‖x‖
[PROOFSTEP]
rw [@norm_eq_sqrt_inner 𝕜, ← sqrt_mul inner_self_nonneg (re ⟪x, x⟫), sqrt_mul_self inner_self_nonneg]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x : E
⊢ ↑re (inner x x) = ‖x‖ ^ 2
[PROOFSTEP]
rw [pow_two, inner_self_eq_norm_mul_norm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x : F
⊢ inner x x = ‖x‖ * ‖x‖
[PROOFSTEP]
have h := @inner_self_eq_norm_mul_norm ℝ F _ _ _ x
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x : F
h : ↑re (inner x x) = ‖x‖ * ‖x‖
⊢ inner x x = ‖x‖ * ‖x‖
[PROOFSTEP]
simpa using h
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x : F
⊢ inner x x = ‖x‖ ^ 2
[PROOFSTEP]
rw [pow_two, real_inner_self_eq_norm_mul_norm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ ‖x + y‖ ^ 2 = ‖x‖ ^ 2 + 2 * ↑re (inner x y) + ‖y‖ ^ 2
[PROOFSTEP]
repeat' rw [sq (M := ℝ), ← @inner_self_eq_norm_mul_norm 𝕜]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ ‖x + y‖ ^ 2 = ‖x‖ ^ 2 + 2 * ↑re (inner x y) + ‖y‖ ^ 2
[PROOFSTEP]
rw [sq (M := ℝ), ← @inner_self_eq_norm_mul_norm 𝕜]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ ↑re (inner (x + y) (x + y)) = ‖x‖ ^ 2 + 2 * ↑re (inner x y) + ‖y‖ ^ 2
[PROOFSTEP]
rw [sq (M := ℝ), ← @inner_self_eq_norm_mul_norm 𝕜]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ ↑re (inner (x + y) (x + y)) = ↑re (inner x x) + 2 * ↑re (inner x y) + ‖y‖ ^ 2
[PROOFSTEP]
rw [sq (M := ℝ), ← @inner_self_eq_norm_mul_norm 𝕜]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ ↑re (inner (x + y) (x + y)) = ↑re (inner x x) + 2 * ↑re (inner x y) + ↑re (inner y y)
[PROOFSTEP]
rw [sq (M := ℝ), ← @inner_self_eq_norm_mul_norm 𝕜]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ ↑re (inner (x + y) (x + y)) = ↑re (inner x x) + 2 * ↑re (inner x y) + ↑re (inner y y)
[PROOFSTEP]
rw [inner_add_add_self, two_mul]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ ↑re (inner x x + inner x y + inner y x + inner y y) =
↑re (inner x x) + (↑re (inner x y) + ↑re (inner x y)) + ↑re (inner y y)
[PROOFSTEP]
simp only [add_assoc, add_left_inj, add_right_inj, AddMonoidHom.map_add]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ ↑re (inner y x) = ↑re (inner x y)
[PROOFSTEP]
rw [← inner_conj_symm, conj_re]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
⊢ ‖x + y‖ ^ 2 = ‖x‖ ^ 2 + 2 * inner x y + ‖y‖ ^ 2
[PROOFSTEP]
have h := @norm_add_sq ℝ _ _ _ _ x y
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
h : ‖x + y‖ ^ 2 = ‖x‖ ^ 2 + 2 * ↑re (inner x y) + ‖y‖ ^ 2
⊢ ‖x + y‖ ^ 2 = ‖x‖ ^ 2 + 2 * inner x y + ‖y‖ ^ 2
[PROOFSTEP]
simpa using h
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ ‖x + y‖ * ‖x + y‖ = ‖x‖ * ‖x‖ + 2 * ↑re (inner x y) + ‖y‖ * ‖y‖
[PROOFSTEP]
repeat' rw [← sq (M := ℝ)]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ ‖x + y‖ * ‖x + y‖ = ‖x‖ * ‖x‖ + 2 * ↑re (inner x y) + ‖y‖ * ‖y‖
[PROOFSTEP]
rw [← sq (M := ℝ)]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ ‖x + y‖ ^ 2 = ‖x‖ * ‖x‖ + 2 * ↑re (inner x y) + ‖y‖ * ‖y‖
[PROOFSTEP]
rw [← sq (M := ℝ)]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ ‖x + y‖ ^ 2 = ‖x‖ ^ 2 + 2 * ↑re (inner x y) + ‖y‖ * ‖y‖
[PROOFSTEP]
rw [← sq (M := ℝ)]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ ‖x + y‖ ^ 2 = ‖x‖ ^ 2 + 2 * ↑re (inner x y) + ‖y‖ ^ 2
[PROOFSTEP]
rw [← sq (M := ℝ)]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ ‖x + y‖ ^ 2 = ‖x‖ ^ 2 + 2 * ↑re (inner x y) + ‖y‖ ^ 2
[PROOFSTEP]
exact norm_add_sq _ _
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
⊢ ‖x + y‖ * ‖x + y‖ = ‖x‖ * ‖x‖ + 2 * inner x y + ‖y‖ * ‖y‖
[PROOFSTEP]
have h := @norm_add_mul_self ℝ _ _ _ _ x y
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
h : ‖x + y‖ * ‖x + y‖ = ‖x‖ * ‖x‖ + 2 * ↑re (inner x y) + ‖y‖ * ‖y‖
⊢ ‖x + y‖ * ‖x + y‖ = ‖x‖ * ‖x‖ + 2 * inner x y + ‖y‖ * ‖y‖
[PROOFSTEP]
simpa using h
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ ‖x - y‖ ^ 2 = ‖x‖ ^ 2 - 2 * ↑re (inner x y) + ‖y‖ ^ 2
[PROOFSTEP]
rw [sub_eq_add_neg, @norm_add_sq 𝕜 _ _ _ _ x (-y), norm_neg, inner_neg_right, map_neg, mul_neg, sub_eq_add_neg]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ ‖x - y‖ * ‖x - y‖ = ‖x‖ * ‖x‖ - 2 * ↑re (inner x y) + ‖y‖ * ‖y‖
[PROOFSTEP]
repeat' rw [← sq (M := ℝ)]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ ‖x - y‖ * ‖x - y‖ = ‖x‖ * ‖x‖ - 2 * ↑re (inner x y) + ‖y‖ * ‖y‖
[PROOFSTEP]
rw [← sq (M := ℝ)]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ ‖x - y‖ ^ 2 = ‖x‖ * ‖x‖ - 2 * ↑re (inner x y) + ‖y‖ * ‖y‖
[PROOFSTEP]
rw [← sq (M := ℝ)]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ ‖x - y‖ ^ 2 = ‖x‖ ^ 2 - 2 * ↑re (inner x y) + ‖y‖ * ‖y‖
[PROOFSTEP]
rw [← sq (M := ℝ)]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ ‖x - y‖ ^ 2 = ‖x‖ ^ 2 - 2 * ↑re (inner x y) + ‖y‖ ^ 2
[PROOFSTEP]
rw [← sq (M := ℝ)]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ ‖x - y‖ ^ 2 = ‖x‖ ^ 2 - 2 * ↑re (inner x y) + ‖y‖ ^ 2
[PROOFSTEP]
exact norm_sub_sq _ _
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
⊢ ‖x - y‖ * ‖x - y‖ = ‖x‖ * ‖x‖ - 2 * inner x y + ‖y‖ * ‖y‖
[PROOFSTEP]
have h := @norm_sub_mul_self ℝ _ _ _ _ x y
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
h : ‖x - y‖ * ‖x - y‖ = ‖x‖ * ‖x‖ - 2 * ↑re (inner x y) + ‖y‖ * ‖y‖
⊢ ‖x - y‖ * ‖x - y‖ = ‖x‖ * ‖x‖ - 2 * inner x y + ‖y‖ * ‖y‖
[PROOFSTEP]
simpa using h
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ ‖inner x y‖ ≤ ‖x‖ * ‖y‖
[PROOFSTEP]
rw [norm_eq_sqrt_inner (𝕜 := 𝕜) x, norm_eq_sqrt_inner (𝕜 := 𝕜) y]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ ‖inner x y‖ ≤ sqrt (↑re (inner x x)) * sqrt (↑re (inner y y))
[PROOFSTEP]
letI : InnerProductSpace.Core 𝕜 E := InnerProductSpace.toCore
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
this : InnerProductSpace.Core 𝕜 E := InnerProductSpace.toCore
⊢ ‖inner x y‖ ≤ sqrt (↑re (inner x x)) * sqrt (↑re (inner y y))
[PROOFSTEP]
exact InnerProductSpace.Core.norm_inner_le_norm x y
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ ‖x + y‖ * ‖x + y‖ + ‖x - y‖ * ‖x - y‖ = 2 * (‖x‖ * ‖x‖ + ‖y‖ * ‖y‖)
[PROOFSTEP]
simp only [← @inner_self_eq_norm_mul_norm 𝕜]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ ↑re (inner (x + y) (x + y)) + ↑re (inner (x - y) (x - y)) = 2 * (↑re (inner x x) + ↑re (inner y y))
[PROOFSTEP]
rw [← re.map_add, parallelogram_law, two_mul, two_mul]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ ↑re (inner x x + inner y y + (inner x x + inner y y)) =
↑re (inner x x) + ↑re (inner y y) + (↑re (inner x x) + ↑re (inner y y))
[PROOFSTEP]
simp only [re.map_add]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ ↑re (inner x y) = (‖x + y‖ * ‖x + y‖ - ‖x‖ * ‖x‖ - ‖y‖ * ‖y‖) / 2
[PROOFSTEP]
rw [@norm_add_mul_self 𝕜]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ ↑re (inner x y) = (‖x‖ * ‖x‖ + 2 * ↑re (inner x y) + ‖y‖ * ‖y‖ - ‖x‖ * ‖x‖ - ‖y‖ * ‖y‖) / 2
[PROOFSTEP]
ring
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ ↑re (inner x y) = (‖x‖ * ‖x‖ + ‖y‖ * ‖y‖ - ‖x - y‖ * ‖x - y‖) / 2
[PROOFSTEP]
rw [@norm_sub_mul_self 𝕜]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ ↑re (inner x y) = (‖x‖ * ‖x‖ + ‖y‖ * ‖y‖ - (‖x‖ * ‖x‖ - 2 * ↑re (inner x y) + ‖y‖ * ‖y‖)) / 2
[PROOFSTEP]
ring
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ ↑re (inner x y) = (‖x + y‖ * ‖x + y‖ - ‖x - y‖ * ‖x - y‖) / 4
[PROOFSTEP]
rw [@norm_add_mul_self 𝕜, @norm_sub_mul_self 𝕜]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ ↑re (inner x y) = (‖x‖ * ‖x‖ + 2 * ↑re (inner x y) + ‖y‖ * ‖y‖ - (‖x‖ * ‖x‖ - 2 * ↑re (inner x y) + ‖y‖ * ‖y‖)) / 4
[PROOFSTEP]
ring
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ ↑im (inner x y) = (‖x - I • y‖ * ‖x - I • y‖ - ‖x + I • y‖ * ‖x + I • y‖) / 4
[PROOFSTEP]
simp only [@norm_add_mul_self 𝕜, @norm_sub_mul_self 𝕜, inner_smul_right, I_mul_re]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ ↑im (inner x y) =
(‖x‖ * ‖x‖ - 2 * -↑im (inner x y) + ‖I • y‖ * ‖I • y‖ - (‖x‖ * ‖x‖ + 2 * -↑im (inner x y) + ‖I • y‖ * ‖I • y‖)) / 4
[PROOFSTEP]
ring
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ inner x y = (↑‖x + y‖ ^ 2 - ↑‖x - y‖ ^ 2 + (↑‖x - I • y‖ ^ 2 - ↑‖x + I • y‖ ^ 2) * I) / 4
[PROOFSTEP]
rw [← re_add_im ⟪x, y⟫, re_inner_eq_norm_add_mul_self_sub_norm_sub_mul_self_div_four,
im_inner_eq_norm_sub_i_smul_mul_self_sub_norm_add_i_smul_mul_self_div_four]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ ↑((‖x + y‖ * ‖x + y‖ - ‖x - y‖ * ‖x - y‖) / 4) + ↑((‖x - I • y‖ * ‖x - I • y‖ - ‖x + I • y‖ * ‖x + I • y‖) / 4) * I =
(↑‖x + y‖ ^ 2 - ↑‖x - y‖ ^ 2 + (↑‖x - I • y‖ ^ 2 - ↑‖x + I • y‖ ^ 2) * I) / 4
[PROOFSTEP]
push_cast
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ (↑‖x + y‖ * ↑‖x + y‖ - ↑‖x - y‖ * ↑‖x - y‖) / 4 +
(↑‖x - I • y‖ * ↑‖x - I • y‖ - ↑‖x + I • y‖ * ↑‖x + I • y‖) / 4 * I =
(↑‖x + y‖ ^ 2 - ↑‖x - y‖ ^ 2 + (↑‖x - I • y‖ ^ 2 - ↑‖x + I • y‖ ^ 2) * I) / 4
[PROOFSTEP]
simp only [sq, ← mul_div_right_comm, ← add_div]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
hx : x ≠ 0
hy : y ≠ 0
R : ℝ
hx' : ‖x‖ ≠ 0
hy' : ‖y‖ ≠ 0
⊢ dist ((R / ‖x‖) ^ 2 • x) ((R / ‖y‖) ^ 2 • y) = sqrt (‖(R / ‖x‖) ^ 2 • x - (R / ‖y‖) ^ 2 • y‖ ^ 2)
[PROOFSTEP]
rw [dist_eq_norm, sqrt_sq (norm_nonneg _)]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
hx : x ≠ 0
hy : y ≠ 0
R : ℝ
hx' : ‖x‖ ≠ 0
hy' : ‖y‖ ≠ 0
⊢ ‖(R / ‖x‖) ^ 2 • x - (R / ‖y‖) ^ 2 • y‖ ^ 2 = (R ^ 2 / (‖x‖ * ‖y‖)) ^ 2 * ‖x - y‖ ^ 2
[PROOFSTEP]
field_simp [sq, norm_sub_mul_self_real, norm_smul, real_inner_smul_left, inner_smul_right,
Real.norm_of_nonneg (mul_self_nonneg _)]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
hx : x ≠ 0
hy : y ≠ 0
R : ℝ
hx' : ‖x‖ ≠ 0
hy' : ‖y‖ ≠ 0
⊢ ((R * R * ‖x‖ * (R * R * ‖x‖) * (‖y‖ * ‖y‖ * (‖x‖ * ‖x‖)) -
‖x‖ * ‖x‖ * (‖x‖ * ‖x‖) * (2 * (R * R * (R * R * inner x y)))) *
(‖y‖ * ‖y‖ * (‖y‖ * ‖y‖)) +
R * R * ‖y‖ * (R * R * ‖y‖) * (‖x‖ * ‖x‖ * (‖x‖ * ‖x‖) * (‖y‖ * ‖y‖ * (‖x‖ * ‖x‖)))) *
(‖x‖ * ‖y‖ * (‖x‖ * ‖y‖)) =
R * R * (R * R) * (‖x‖ * ‖x‖ - 2 * inner x y + ‖y‖ * ‖y‖) *
(‖x‖ * ‖x‖ * (‖x‖ * ‖x‖) * (‖y‖ * ‖y‖ * (‖x‖ * ‖x‖)) * (‖y‖ * ‖y‖ * (‖y‖ * ‖y‖)))
[PROOFSTEP]
ring
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
hx : x ≠ 0
hy : y ≠ 0
R : ℝ
hx' : ‖x‖ ≠ 0
hy' : ‖y‖ ≠ 0
⊢ sqrt ((R ^ 2 / (‖x‖ * ‖y‖)) ^ 2 * ‖x - y‖ ^ 2) = R ^ 2 / (‖x‖ * ‖y‖) * dist x y
[PROOFSTEP]
rw [sqrt_mul (sq_nonneg _), sqrt_sq (norm_nonneg _),
sqrt_sq (div_nonneg (sq_nonneg _) (mul_nonneg (norm_nonneg _) (norm_nonneg _))), dist_eq_norm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ε : ℝ
hε : 0 < ε
⊢ ∃ δ, 0 < δ ∧ ∀ ⦃x : F⦄, ‖x‖ = 1 → ∀ ⦃y : F⦄, ‖y‖ = 1 → ε ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ
[PROOFSTEP]
refine' ⟨2 - sqrt (4 - ε ^ 2), sub_pos_of_lt <| (sqrt_lt' zero_lt_two).2 _, fun x hx y hy hxy => _⟩
[GOAL]
case refine'_1
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ε : ℝ
hε : 0 < ε
⊢ 4 - ε ^ 2 < 2 ^ 2
[PROOFSTEP]
norm_num
[GOAL]
case refine'_1
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ε : ℝ
hε : 0 < ε
⊢ 0 < ε ^ 2
[PROOFSTEP]
exact pow_pos hε _
[GOAL]
case refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ε : ℝ
hε : 0 < ε
x : F
hx : ‖x‖ = 1
y : F
hy : ‖y‖ = 1
hxy : ε ≤ ‖x - y‖
⊢ ‖x + y‖ ≤ 2 - (2 - sqrt (4 - ε ^ 2))
[PROOFSTEP]
rw [sub_sub_cancel]
[GOAL]
case refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ε : ℝ
hε : 0 < ε
x : F
hx : ‖x‖ = 1
y : F
hy : ‖y‖ = 1
hxy : ε ≤ ‖x - y‖
⊢ ‖x + y‖ ≤ sqrt (4 - ε ^ 2)
[PROOFSTEP]
refine' le_sqrt_of_sq_le _
[GOAL]
case refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ε : ℝ
hε : 0 < ε
x : F
hx : ‖x‖ = 1
y : F
hy : ‖y‖ = 1
hxy : ε ≤ ‖x - y‖
⊢ ‖x + y‖ ^ 2 ≤ 4 - ε ^ 2
[PROOFSTEP]
rw [sq, eq_sub_iff_add_eq.2 (parallelogram_law_with_norm ℝ x y), ← sq ‖x - y‖, hx, hy]
[GOAL]
case refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ε : ℝ
hε : 0 < ε
x : F
hx : ‖x‖ = 1
y : F
hy : ‖y‖ = 1
hxy : ε ≤ ‖x - y‖
⊢ 2 * (1 * 1 + 1 * 1) - ‖x - y‖ ^ 2 ≤ 4 - ε ^ 2
[PROOFSTEP]
ring_nf
[GOAL]
case refine'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ε : ℝ
hε : 0 < ε
x : F
hx : ‖x‖ = 1
y : F
hy : ‖y‖ = 1
hxy : ε ≤ ‖x - y‖
⊢ 4 - ‖x - y‖ ^ 2 ≤ 4 - ε ^ 2
[PROOFSTEP]
exact sub_le_sub_left (pow_le_pow_of_le_left hε.le hxy _) 4
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
V : Type u_4
inst✝¹ : NormedAddCommGroup V
inst✝ : InnerProductSpace ℂ V
T : V →ₗ[ℂ] V
x y : V
⊢ inner (↑T y) x =
(inner (↑T (x + y)) (x + y) - inner (↑T (x - y)) (x - y) +
Complex.I * inner (↑T (x + Complex.I • y)) (x + Complex.I • y) -
Complex.I * inner (↑T (x - Complex.I • y)) (x - Complex.I • y)) /
4
[PROOFSTEP]
simp only [map_add, map_sub, inner_add_left, inner_add_right, LinearMap.map_smul, inner_smul_left, inner_smul_right,
Complex.conj_I, ← pow_two, Complex.I_sq, inner_sub_left, inner_sub_right, mul_add, ← mul_assoc, mul_neg, neg_neg,
sub_neg_eq_add, one_mul, neg_one_mul, mul_sub, sub_sub]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
V : Type u_4
inst✝¹ : NormedAddCommGroup V
inst✝ : InnerProductSpace ℂ V
T : V →ₗ[ℂ] V
x y : V
⊢ inner (↑T y) x =
(inner (↑T x) x + inner (↑T y) x + (inner (↑T x) y + inner (↑T y) y) -
(inner (↑T x) x - (inner (↑T y) x + (inner (↑T x) y - inner (↑T y) y))) +
(Complex.I * inner (↑T x) x + inner (↑T y) x + (-inner (↑T x) y + Complex.I * inner (↑T y) y)) -
(Complex.I * inner (↑T x) x - (inner (↑T y) x + (-inner (↑T x) y - Complex.I * inner (↑T y) y)))) /
4
[PROOFSTEP]
ring
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
V : Type u_4
inst✝¹ : NormedAddCommGroup V
inst✝ : InnerProductSpace ℂ V
T : V →ₗ[ℂ] V
x y : V
⊢ inner (↑T x) y =
(inner (↑T (x + y)) (x + y) - inner (↑T (x - y)) (x - y) -
Complex.I * inner (↑T (x + Complex.I • y)) (x + Complex.I • y) +
Complex.I * inner (↑T (x - Complex.I • y)) (x - Complex.I • y)) /
4
[PROOFSTEP]
simp only [map_add, map_sub, inner_add_left, inner_add_right, LinearMap.map_smul, inner_smul_left, inner_smul_right,
Complex.conj_I, ← pow_two, Complex.I_sq, inner_sub_left, inner_sub_right, mul_add, ← mul_assoc, mul_neg, neg_neg,
sub_neg_eq_add, one_mul, neg_one_mul, mul_sub, sub_sub]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
V : Type u_4
inst✝¹ : NormedAddCommGroup V
inst✝ : InnerProductSpace ℂ V
T : V →ₗ[ℂ] V
x y : V
⊢ inner (↑T x) y =
(inner (↑T x) x + inner (↑T y) x + (inner (↑T x) y + inner (↑T y) y) -
(inner (↑T x) x - (inner (↑T y) x + (inner (↑T x) y - inner (↑T y) y)) +
(Complex.I * inner (↑T x) x + inner (↑T y) x + (-inner (↑T x) y + Complex.I * inner (↑T y) y))) +
(Complex.I * inner (↑T x) x - (inner (↑T y) x + (-inner (↑T x) y - Complex.I * inner (↑T y) y)))) /
4
[PROOFSTEP]
ring
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
V : Type u_4
inst✝¹ : NormedAddCommGroup V
inst✝ : InnerProductSpace ℂ V
T : V →ₗ[ℂ] V
⊢ (∀ (x : V), inner (↑T x) x = 0) ↔ T = 0
[PROOFSTEP]
constructor
[GOAL]
case mp
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
V : Type u_4
inst✝¹ : NormedAddCommGroup V
inst✝ : InnerProductSpace ℂ V
T : V →ₗ[ℂ] V
⊢ (∀ (x : V), inner (↑T x) x = 0) → T = 0
[PROOFSTEP]
intro hT
[GOAL]
case mp
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
V : Type u_4
inst✝¹ : NormedAddCommGroup V
inst✝ : InnerProductSpace ℂ V
T : V →ₗ[ℂ] V
hT : ∀ (x : V), inner (↑T x) x = 0
⊢ T = 0
[PROOFSTEP]
ext x
[GOAL]
case mp.h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
V : Type u_4
inst✝¹ : NormedAddCommGroup V
inst✝ : InnerProductSpace ℂ V
T : V →ₗ[ℂ] V
hT : ∀ (x : V), inner (↑T x) x = 0
x : V
⊢ ↑T x = ↑0 x
[PROOFSTEP]
simp only [LinearMap.zero_apply, ← @inner_self_eq_zero ℂ V]
[GOAL]
case mp.h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
V : Type u_4
inst✝¹ : NormedAddCommGroup V
inst✝ : InnerProductSpace ℂ V
T : V →ₗ[ℂ] V
hT : ∀ (x : V), inner (↑T x) x = 0
x : V
⊢ inner (↑T x) (↑T x) = 0
[PROOFSTEP]
simp (config := { singlePass := true }) only [inner_map_polarization]
[GOAL]
case mp.h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
V : Type u_4
inst✝¹ : NormedAddCommGroup V
inst✝ : InnerProductSpace ℂ V
T : V →ₗ[ℂ] V
hT : ∀ (x : V), inner (↑T x) x = 0
x : V
⊢ (inner (↑T (↑T x + x)) (↑T x + x) - inner (↑T (↑T x - x)) (↑T x - x) +
Complex.I * inner (↑T (↑T x + Complex.I • x)) (↑T x + Complex.I • x) -
Complex.I * inner (↑T (↑T x - Complex.I • x)) (↑T x - Complex.I • x)) /
4 =
0
[PROOFSTEP]
simp only [hT]
[GOAL]
case mp.h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
V : Type u_4
inst✝¹ : NormedAddCommGroup V
inst✝ : InnerProductSpace ℂ V
T : V →ₗ[ℂ] V
hT : ∀ (x : V), inner (↑T x) x = 0
x : V
⊢ (0 - 0 + Complex.I * 0 - Complex.I * 0) / 4 = 0
[PROOFSTEP]
norm_num
[GOAL]
case mpr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
V : Type u_4
inst✝¹ : NormedAddCommGroup V
inst✝ : InnerProductSpace ℂ V
T : V →ₗ[ℂ] V
⊢ T = 0 → ∀ (x : V), inner (↑T x) x = 0
[PROOFSTEP]
rintro rfl x
[GOAL]
case mpr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
V : Type u_4
inst✝¹ : NormedAddCommGroup V
inst✝ : InnerProductSpace ℂ V
x : V
⊢ inner (↑0 x) x = 0
[PROOFSTEP]
simp only [LinearMap.zero_apply, inner_zero_left]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
V : Type u_4
inst✝¹ : NormedAddCommGroup V
inst✝ : InnerProductSpace ℂ V
S T : V →ₗ[ℂ] V
⊢ (∀ (x : V), inner (↑S x) x = inner (↑T x) x) ↔ S = T
[PROOFSTEP]
rw [← sub_eq_zero, ← inner_map_self_eq_zero]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
V : Type u_4
inst✝¹ : NormedAddCommGroup V
inst✝ : InnerProductSpace ℂ V
S T : V →ₗ[ℂ] V
⊢ (∀ (x : V), inner (↑S x) x = inner (↑T x) x) ↔ ∀ (x : V), inner (↑(S - T) x) x = 0
[PROOFSTEP]
refine' forall_congr' fun x => _
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
V : Type u_4
inst✝¹ : NormedAddCommGroup V
inst✝ : InnerProductSpace ℂ V
S T : V →ₗ[ℂ] V
x : V
⊢ inner (↑S x) x = inner (↑T x) x ↔ inner (↑(S - T) x) x = 0
[PROOFSTEP]
rw [LinearMap.sub_apply, inner_sub_left, sub_eq_zero]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁸ : IsROrC 𝕜
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace 𝕜 E
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
ι' : Type u_5
ι'' : Type u_6
E' : Type u_7
inst✝³ : NormedAddCommGroup E'
inst✝² : InnerProductSpace 𝕜 E'
E'' : Type u_8
inst✝¹ : NormedAddCommGroup E''
inst✝ : InnerProductSpace 𝕜 E''
f : E →ₗᵢ[𝕜] E'
x y : E
⊢ inner (↑f x) (↑f y) = inner x y
[PROOFSTEP]
simp [inner_eq_sum_norm_sq_div_four, ← f.norm_map]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁸ : IsROrC 𝕜
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace 𝕜 E
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
ι' : Type u_5
ι'' : Type u_6
E' : Type u_7
inst✝³ : NormedAddCommGroup E'
inst✝² : InnerProductSpace 𝕜 E'
E'' : Type u_8
inst✝¹ : NormedAddCommGroup E''
inst✝ : InnerProductSpace 𝕜 E''
f : E →ₗ[𝕜] E'
h : ∀ (x y : E), inner (↑f x) (↑f y) = inner x y
x : E
⊢ ‖↑f x‖ = ‖x‖
[PROOFSTEP]
simp only [@norm_eq_sqrt_inner 𝕜, h]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁸ : IsROrC 𝕜
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace 𝕜 E
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
ι' : Type u_5
ι'' : Type u_6
E' : Type u_7
inst✝³ : NormedAddCommGroup E'
inst✝² : InnerProductSpace 𝕜 E'
E'' : Type u_8
inst✝¹ : NormedAddCommGroup E''
inst✝ : InnerProductSpace 𝕜 E''
v : ι → E
f : E →ₗᵢ[𝕜] E'
⊢ Orthonormal 𝕜 (↑f ∘ v) ↔ Orthonormal 𝕜 v
[PROOFSTEP]
classical simp_rw [orthonormal_iff_ite, Function.comp_apply, LinearIsometry.inner_map_map]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁸ : IsROrC 𝕜
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace 𝕜 E
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
ι' : Type u_5
ι'' : Type u_6
E' : Type u_7
inst✝³ : NormedAddCommGroup E'
inst✝² : InnerProductSpace 𝕜 E'
E'' : Type u_8
inst✝¹ : NormedAddCommGroup E''
inst✝ : InnerProductSpace 𝕜 E''
v : ι → E
f : E →ₗᵢ[𝕜] E'
⊢ Orthonormal 𝕜 (↑f ∘ v) ↔ Orthonormal 𝕜 v
[PROOFSTEP]
simp_rw [orthonormal_iff_ite, Function.comp_apply, LinearIsometry.inner_map_map]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁸ : IsROrC 𝕜
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace 𝕜 E
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
ι' : Type u_5
ι'' : Type u_6
E' : Type u_7
inst✝³ : NormedAddCommGroup E'
inst✝² : InnerProductSpace 𝕜 E'
E'' : Type u_8
inst✝¹ : NormedAddCommGroup E''
inst✝ : InnerProductSpace 𝕜 E''
v : ι → E
hv : Orthonormal 𝕜 v
f : E →ₗᵢ[𝕜] E'
⊢ Orthonormal 𝕜 (↑f ∘ v)
[PROOFSTEP]
rwa [f.orthonormal_comp_iff]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁸ : IsROrC 𝕜
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace 𝕜 E
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
ι' : Type u_5
ι'' : Type u_6
E' : Type u_7
inst✝³ : NormedAddCommGroup E'
inst✝² : InnerProductSpace 𝕜 E'
E'' : Type u_8
inst✝¹ : NormedAddCommGroup E''
inst✝ : InnerProductSpace 𝕜 E''
f : E →ₗ[𝕜] E'
v : Basis ι 𝕜 E
hv : Orthonormal 𝕜 ↑v
hf : Orthonormal 𝕜 (↑f ∘ ↑v)
x y : E
⊢ inner (↑f x) (↑f y) = inner x y
[PROOFSTEP]
classical rw [← v.total_repr x, ← v.total_repr y, Finsupp.apply_total, Finsupp.apply_total,
hv.inner_finsupp_eq_sum_left, hf.inner_finsupp_eq_sum_left]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁸ : IsROrC 𝕜
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace 𝕜 E
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
ι' : Type u_5
ι'' : Type u_6
E' : Type u_7
inst✝³ : NormedAddCommGroup E'
inst✝² : InnerProductSpace 𝕜 E'
E'' : Type u_8
inst✝¹ : NormedAddCommGroup E''
inst✝ : InnerProductSpace 𝕜 E''
f : E →ₗ[𝕜] E'
v : Basis ι 𝕜 E
hv : Orthonormal 𝕜 ↑v
hf : Orthonormal 𝕜 (↑f ∘ ↑v)
x y : E
⊢ inner (↑f x) (↑f y) = inner x y
[PROOFSTEP]
rw [← v.total_repr x, ← v.total_repr y, Finsupp.apply_total, Finsupp.apply_total, hv.inner_finsupp_eq_sum_left,
hf.inner_finsupp_eq_sum_left]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁸ : IsROrC 𝕜
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace 𝕜 E
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
ι' : Type u_5
ι'' : Type u_6
E' : Type u_7
inst✝³ : NormedAddCommGroup E'
inst✝² : InnerProductSpace 𝕜 E'
E'' : Type u_8
inst✝¹ : NormedAddCommGroup E''
inst✝ : InnerProductSpace 𝕜 E''
f : E ≃ₗ[𝕜] E'
v : Basis ι 𝕜 E
hv : Orthonormal 𝕜 ↑v
hf : Orthonormal 𝕜 (↑f ∘ ↑v)
x y : E
⊢ inner (↑f x) (↑f y) = inner x y
[PROOFSTEP]
rw [← LinearEquiv.coe_coe] at hf
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁸ : IsROrC 𝕜
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace 𝕜 E
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
ι' : Type u_5
ι'' : Type u_6
E' : Type u_7
inst✝³ : NormedAddCommGroup E'
inst✝² : InnerProductSpace 𝕜 E'
E'' : Type u_8
inst✝¹ : NormedAddCommGroup E''
inst✝ : InnerProductSpace 𝕜 E''
f : E ≃ₗ[𝕜] E'
v : Basis ι 𝕜 E
hv : Orthonormal 𝕜 ↑v
hf : Orthonormal 𝕜 (↑↑f ∘ ↑v)
x y : E
⊢ inner (↑f x) (↑f y) = inner x y
[PROOFSTEP]
classical rw [← v.total_repr x, ← v.total_repr y, ← LinearEquiv.coe_coe f, Finsupp.apply_total, Finsupp.apply_total,
hv.inner_finsupp_eq_sum_left, hf.inner_finsupp_eq_sum_left]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁸ : IsROrC 𝕜
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace 𝕜 E
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
ι' : Type u_5
ι'' : Type u_6
E' : Type u_7
inst✝³ : NormedAddCommGroup E'
inst✝² : InnerProductSpace 𝕜 E'
E'' : Type u_8
inst✝¹ : NormedAddCommGroup E''
inst✝ : InnerProductSpace 𝕜 E''
f : E ≃ₗ[𝕜] E'
v : Basis ι 𝕜 E
hv : Orthonormal 𝕜 ↑v
hf : Orthonormal 𝕜 (↑↑f ∘ ↑v)
x y : E
⊢ inner (↑f x) (↑f y) = inner x y
[PROOFSTEP]
rw [← v.total_repr x, ← v.total_repr y, ← LinearEquiv.coe_coe f, Finsupp.apply_total, Finsupp.apply_total,
hv.inner_finsupp_eq_sum_left, hf.inner_finsupp_eq_sum_left]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁸ : IsROrC 𝕜
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace 𝕜 E
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
ι' : Type u_5
ι'' : Type u_6
E' : Type u_7
inst✝³ : NormedAddCommGroup E'
inst✝² : InnerProductSpace 𝕜 E'
E'' : Type u_8
inst✝¹ : NormedAddCommGroup E''
inst✝ : InnerProductSpace 𝕜 E''
v : Basis ι 𝕜 E
hv : Orthonormal 𝕜 ↑v
v' : Basis ι' 𝕜 E'
hv' : Orthonormal 𝕜 ↑v'
e : ι ≃ ι'
⊢ Orthonormal 𝕜 (↑(Basis.equiv v v' e) ∘ ↑v)
[PROOFSTEP]
have h : v.equiv v' e ∘ v = v' ∘ e := by
ext i
simp
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁸ : IsROrC 𝕜
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace 𝕜 E
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
ι' : Type u_5
ι'' : Type u_6
E' : Type u_7
inst✝³ : NormedAddCommGroup E'
inst✝² : InnerProductSpace 𝕜 E'
E'' : Type u_8
inst✝¹ : NormedAddCommGroup E''
inst✝ : InnerProductSpace 𝕜 E''
v : Basis ι 𝕜 E
hv : Orthonormal 𝕜 ↑v
v' : Basis ι' 𝕜 E'
hv' : Orthonormal 𝕜 ↑v'
e : ι ≃ ι'
⊢ ↑(Basis.equiv v v' e) ∘ ↑v = ↑v' ∘ ↑e
[PROOFSTEP]
ext i
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁸ : IsROrC 𝕜
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace 𝕜 E
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
ι' : Type u_5
ι'' : Type u_6
E' : Type u_7
inst✝³ : NormedAddCommGroup E'
inst✝² : InnerProductSpace 𝕜 E'
E'' : Type u_8
inst✝¹ : NormedAddCommGroup E''
inst✝ : InnerProductSpace 𝕜 E''
v : Basis ι 𝕜 E
hv : Orthonormal 𝕜 ↑v
v' : Basis ι' 𝕜 E'
hv' : Orthonormal 𝕜 ↑v'
e : ι ≃ ι'
i : ι
⊢ (↑(Basis.equiv v v' e) ∘ ↑v) i = (↑v' ∘ ↑e) i
[PROOFSTEP]
simp
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁸ : IsROrC 𝕜
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace 𝕜 E
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
ι' : Type u_5
ι'' : Type u_6
E' : Type u_7
inst✝³ : NormedAddCommGroup E'
inst✝² : InnerProductSpace 𝕜 E'
E'' : Type u_8
inst✝¹ : NormedAddCommGroup E''
inst✝ : InnerProductSpace 𝕜 E''
v : Basis ι 𝕜 E
hv : Orthonormal 𝕜 ↑v
v' : Basis ι' 𝕜 E'
hv' : Orthonormal 𝕜 ↑v'
e : ι ≃ ι'
h : ↑(Basis.equiv v v' e) ∘ ↑v = ↑v' ∘ ↑e
⊢ Orthonormal 𝕜 (↑(Basis.equiv v v' e) ∘ ↑v)
[PROOFSTEP]
rw [h]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁸ : IsROrC 𝕜
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace 𝕜 E
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
ι' : Type u_5
ι'' : Type u_6
E' : Type u_7
inst✝³ : NormedAddCommGroup E'
inst✝² : InnerProductSpace 𝕜 E'
E'' : Type u_8
inst✝¹ : NormedAddCommGroup E''
inst✝ : InnerProductSpace 𝕜 E''
v : Basis ι 𝕜 E
hv : Orthonormal 𝕜 ↑v
v' : Basis ι' 𝕜 E'
hv' : Orthonormal 𝕜 ↑v'
e : ι ≃ ι'
h : ↑(Basis.equiv v v' e) ∘ ↑v = ↑v' ∘ ↑e
⊢ Orthonormal 𝕜 (↑v' ∘ ↑e)
[PROOFSTEP]
classical exact hv'.comp _ e.injective
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁸ : IsROrC 𝕜
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace 𝕜 E
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
ι' : Type u_5
ι'' : Type u_6
E' : Type u_7
inst✝³ : NormedAddCommGroup E'
inst✝² : InnerProductSpace 𝕜 E'
E'' : Type u_8
inst✝¹ : NormedAddCommGroup E''
inst✝ : InnerProductSpace 𝕜 E''
v : Basis ι 𝕜 E
hv : Orthonormal 𝕜 ↑v
v' : Basis ι' 𝕜 E'
hv' : Orthonormal 𝕜 ↑v'
e : ι ≃ ι'
h : ↑(Basis.equiv v v' e) ∘ ↑v = ↑v' ∘ ↑e
⊢ Orthonormal 𝕜 (↑v' ∘ ↑e)
[PROOFSTEP]
exact hv'.comp _ e.injective
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁸ : IsROrC 𝕜
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace 𝕜 E
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
ι' : Type u_5
ι'' : Type u_6
E' : Type u_7
inst✝³ : NormedAddCommGroup E'
inst✝² : InnerProductSpace 𝕜 E'
E'' : Type u_8
inst✝¹ : NormedAddCommGroup E''
inst✝ : InnerProductSpace 𝕜 E''
v : Basis ι 𝕜 E
hv : Orthonormal 𝕜 ↑v
i : ι
⊢ ↑(equiv hv hv (Equiv.refl ι)) (↑v i) = ↑(LinearIsometryEquiv.refl 𝕜 E) (↑v i)
[PROOFSTEP]
simp only [Orthonormal.equiv_apply, Equiv.coe_refl, id.def, LinearIsometryEquiv.coe_refl]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁸ : IsROrC 𝕜
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace 𝕜 E
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
ι' : Type u_5
ι'' : Type u_6
E' : Type u_7
inst✝³ : NormedAddCommGroup E'
inst✝² : InnerProductSpace 𝕜 E'
E'' : Type u_8
inst✝¹ : NormedAddCommGroup E''
inst✝ : InnerProductSpace 𝕜 E''
v : Basis ι 𝕜 E
hv : Orthonormal 𝕜 ↑v
v' : Basis ι' 𝕜 E'
hv' : Orthonormal 𝕜 ↑v'
e : ι ≃ ι'
i : ι'
⊢ ↑(equiv hv hv' e) (↑(LinearIsometryEquiv.symm (equiv hv hv' e)) (↑v' i)) =
↑(equiv hv hv' e) (↑(equiv hv' hv e.symm) (↑v' i))
[PROOFSTEP]
simp only [LinearIsometryEquiv.apply_symm_apply, Orthonormal.equiv_apply, e.apply_symm_apply]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁸ : IsROrC 𝕜
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace 𝕜 E
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
ι' : Type u_5
ι'' : Type u_6
E' : Type u_7
inst✝³ : NormedAddCommGroup E'
inst✝² : InnerProductSpace 𝕜 E'
E'' : Type u_8
inst✝¹ : NormedAddCommGroup E''
inst✝ : InnerProductSpace 𝕜 E''
v : Basis ι 𝕜 E
hv : Orthonormal 𝕜 ↑v
v' : Basis ι' 𝕜 E'
hv' : Orthonormal 𝕜 ↑v'
e : ι ≃ ι'
v'' : Basis ι'' 𝕜 E''
hv'' : Orthonormal 𝕜 ↑v''
e' : ι' ≃ ι''
i : ι
⊢ ↑(LinearIsometryEquiv.trans (equiv hv hv' e) (equiv hv' hv'' e')) (↑v i) = ↑(equiv hv hv'' (e.trans e')) (↑v i)
[PROOFSTEP]
simp only [LinearIsometryEquiv.trans_apply, Orthonormal.equiv_apply, e.coe_trans, Function.comp_apply]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
⊢ ‖x + y‖ * ‖x + y‖ = ‖x‖ * ‖x‖ + ‖y‖ * ‖y‖ ↔ inner x y = 0
[PROOFSTEP]
rw [@norm_add_mul_self ℝ, add_right_cancel_iff, add_right_eq_self, mul_eq_zero]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
⊢ 2 = 0 ∨ ↑re (inner x y) = 0 ↔ inner x y = 0
[PROOFSTEP]
norm_num
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
⊢ ‖x + y‖ = sqrt (‖x‖ * ‖x‖ + ‖y‖ * ‖y‖) ↔ inner x y = 0
[PROOFSTEP]
rw [← norm_add_sq_eq_norm_sq_add_norm_sq_iff_real_inner_eq_zero, eq_comm,
sqrt_eq_iff_mul_self_eq (add_nonneg (mul_self_nonneg _) (mul_self_nonneg _)) (norm_nonneg _)]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
h : inner x y = 0
⊢ ‖x + y‖ * ‖x + y‖ = ‖x‖ * ‖x‖ + ‖y‖ * ‖y‖
[PROOFSTEP]
rw [@norm_add_mul_self 𝕜, add_right_cancel_iff, add_right_eq_self, mul_eq_zero]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
h : inner x y = 0
⊢ 2 = 0 ∨ ↑re (inner x y) = 0
[PROOFSTEP]
apply Or.inr
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
h : inner x y = 0
⊢ ↑re (inner x y) = 0
[PROOFSTEP]
simp only [h, zero_re']
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
⊢ ‖x - y‖ * ‖x - y‖ = ‖x‖ * ‖x‖ + ‖y‖ * ‖y‖ ↔ inner x y = 0
[PROOFSTEP]
rw [@norm_sub_mul_self ℝ, add_right_cancel_iff, sub_eq_add_neg, add_right_eq_self, neg_eq_zero, mul_eq_zero]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
⊢ 2 = 0 ∨ ↑re (inner x y) = 0 ↔ inner x y = 0
[PROOFSTEP]
norm_num
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
⊢ ‖x - y‖ = sqrt (‖x‖ * ‖x‖ + ‖y‖ * ‖y‖) ↔ inner x y = 0
[PROOFSTEP]
rw [← norm_sub_sq_eq_norm_sq_add_norm_sq_iff_real_inner_eq_zero, eq_comm,
sqrt_eq_iff_mul_self_eq (add_nonneg (mul_self_nonneg _) (mul_self_nonneg _)) (norm_nonneg _)]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
⊢ inner (x + y) (x - y) = 0 ↔ ‖x‖ = ‖y‖
[PROOFSTEP]
conv_rhs => rw [← mul_self_inj_of_nonneg (norm_nonneg _) (norm_nonneg _)]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
| ‖x‖ = ‖y‖
[PROOFSTEP]
rw [← mul_self_inj_of_nonneg (norm_nonneg _) (norm_nonneg _)]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
| ‖x‖ = ‖y‖
[PROOFSTEP]
rw [← mul_self_inj_of_nonneg (norm_nonneg _) (norm_nonneg _)]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
| ‖x‖ = ‖y‖
[PROOFSTEP]
rw [← mul_self_inj_of_nonneg (norm_nonneg _) (norm_nonneg _)]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
⊢ inner (x + y) (x - y) = 0 ↔ ‖x‖ * ‖x‖ = ‖y‖ * ‖y‖
[PROOFSTEP]
simp only [← @inner_self_eq_norm_mul_norm ℝ, inner_add_left, inner_sub_right, real_inner_comm y x, sub_eq_zero,
re_to_real]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
⊢ inner x x + inner y x = inner y x + inner y y ↔ inner x x = inner y y
[PROOFSTEP]
constructor
[GOAL]
case mp
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
⊢ inner x x + inner y x = inner y x + inner y y → inner x x = inner y y
[PROOFSTEP]
intro h
[GOAL]
case mp
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
h : inner x x + inner y x = inner y x + inner y y
⊢ inner x x = inner y y
[PROOFSTEP]
rw [add_comm] at h
[GOAL]
case mp
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
h : inner y x + inner x x = inner y x + inner y y
⊢ inner x x = inner y y
[PROOFSTEP]
linarith
[GOAL]
case mpr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
⊢ inner x x = inner y y → inner x x + inner y x = inner y x + inner y y
[PROOFSTEP]
intro h
[GOAL]
case mpr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
h : inner x x = inner y y
⊢ inner x x + inner y x = inner y x + inner y y
[PROOFSTEP]
linarith
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
v w : E
h : inner v w = 0
⊢ ‖w - v‖ = ‖w + v‖
[PROOFSTEP]
rw [← mul_self_inj_of_nonneg (norm_nonneg _) (norm_nonneg _)]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
v w : E
h : inner v w = 0
⊢ ‖w - v‖ * ‖w - v‖ = ‖w + v‖ * ‖w + v‖
[PROOFSTEP]
simp only [h, ← @inner_self_eq_norm_mul_norm 𝕜, sub_neg_eq_add, sub_zero, map_sub, zero_re', zero_sub, add_zero,
map_add, inner_add_right, inner_sub_left, inner_sub_right, inner_re_symm, zero_add]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
⊢ |inner x y / (‖x‖ * ‖y‖)| ≤ 1
[PROOFSTEP]
rw [abs_div, abs_mul, abs_norm, abs_norm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
⊢ |inner x y| / (‖x‖ * ‖y‖) ≤ 1
[PROOFSTEP]
exact
div_le_one_of_le (abs_real_inner_le_norm x y)
(mul_nonneg (norm_nonneg _) (norm_nonneg _))
-- porting note: was `(by positivity)`
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x : F
r : ℝ
⊢ inner (r • x) x = r * (‖x‖ * ‖x‖)
[PROOFSTEP]
rw [real_inner_smul_left, ← real_inner_self_eq_norm_mul_norm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x : F
r : ℝ
⊢ inner x (r • x) = r * (‖x‖ * ‖x‖)
[PROOFSTEP]
rw [inner_smul_right, ← real_inner_self_eq_norm_mul_norm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x : E
r : 𝕜
hx : x ≠ 0
hr : r ≠ 0
⊢ ‖inner x (r • x)‖ / (‖x‖ * ‖r • x‖) = 1
[PROOFSTEP]
have hx' : ‖x‖ ≠ 0 := by simp [hx]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x : E
r : 𝕜
hx : x ≠ 0
hr : r ≠ 0
⊢ ‖x‖ ≠ 0
[PROOFSTEP]
simp [hx]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x : E
r : 𝕜
hx : x ≠ 0
hr : r ≠ 0
hx' : ‖x‖ ≠ 0
⊢ ‖inner x (r • x)‖ / (‖x‖ * ‖r • x‖) = 1
[PROOFSTEP]
have hr' : ‖r‖ ≠ 0 := by simp [hr]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x : E
r : 𝕜
hx : x ≠ 0
hr : r ≠ 0
hx' : ‖x‖ ≠ 0
⊢ ‖r‖ ≠ 0
[PROOFSTEP]
simp [hr]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x : E
r : 𝕜
hx : x ≠ 0
hr : r ≠ 0
hx' : ‖x‖ ≠ 0
hr' : ‖r‖ ≠ 0
⊢ ‖inner x (r • x)‖ / (‖x‖ * ‖r • x‖) = 1
[PROOFSTEP]
rw [inner_smul_right, norm_mul, ← inner_self_re_eq_norm, inner_self_eq_norm_mul_norm, norm_smul]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x : E
r : 𝕜
hx : x ≠ 0
hr : r ≠ 0
hx' : ‖x‖ ≠ 0
hr' : ‖r‖ ≠ 0
⊢ ‖r‖ * (‖x‖ * ‖x‖) / (‖x‖ * (‖r‖ * ‖x‖)) = 1
[PROOFSTEP]
rw [← mul_assoc, ← div_div, mul_div_cancel _ hx', ← div_div, mul_comm, mul_div_cancel _ hr', div_self hx']
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x : F
r : ℝ
hx : x ≠ 0
hr : 0 < r
⊢ inner x (r • x) / (‖x‖ * ‖r • x‖) = 1
[PROOFSTEP]
rw [real_inner_smul_self_right, norm_smul, Real.norm_eq_abs, ← mul_assoc ‖x‖, mul_comm _ |r|, mul_assoc,
abs_of_nonneg hr.le, div_self]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x : F
r : ℝ
hx : x ≠ 0
hr : 0 < r
⊢ r * (‖x‖ * ‖x‖) ≠ 0
[PROOFSTEP]
exact mul_ne_zero hr.ne' (mul_self_ne_zero.2 (norm_ne_zero_iff.2 hx))
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x : F
r : ℝ
hx : x ≠ 0
hr : r < 0
⊢ inner x (r • x) / (‖x‖ * ‖r • x‖) = -1
[PROOFSTEP]
rw [real_inner_smul_self_right, norm_smul, Real.norm_eq_abs, ← mul_assoc ‖x‖, mul_comm _ |r|, mul_assoc, abs_of_neg hr,
neg_mul, div_neg_eq_neg_div, div_self]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x : F
r : ℝ
hx : x ≠ 0
hr : r < 0
⊢ r * (‖x‖ * ‖x‖) ≠ 0
[PROOFSTEP]
exact mul_ne_zero hr.ne (mul_self_ne_zero.2 (norm_ne_zero_iff.2 hx))
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ List.TFAE
[‖inner x y‖ = ‖x‖ * ‖y‖, x = 0 ∨ y = (inner x y / inner x x) • x, x = 0 ∨ ∃ r, y = r • x,
x = 0 ∨ y ∈ Submodule.span 𝕜 {x}]
[PROOFSTEP]
tfae_have 1 → 2
[GOAL]
case tfae_1_to_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ ‖inner x y‖ = ‖x‖ * ‖y‖ → x = 0 ∨ y = (inner x y / inner x x) • x
[PROOFSTEP]
refine' fun h => or_iff_not_imp_left.2 fun hx₀ => _
[GOAL]
case tfae_1_to_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
h : ‖inner x y‖ = ‖x‖ * ‖y‖
hx₀ : ¬x = 0
⊢ y = (inner x y / inner x x) • x
[PROOFSTEP]
have : ‖x‖ ^ 2 ≠ 0 := pow_ne_zero _ (norm_ne_zero_iff.2 hx₀)
[GOAL]
case tfae_1_to_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
h : ‖inner x y‖ = ‖x‖ * ‖y‖
hx₀ : ¬x = 0
this : ‖x‖ ^ 2 ≠ 0
⊢ y = (inner x y / inner x x) • x
[PROOFSTEP]
rw [← sq_eq_sq (norm_nonneg _) (mul_nonneg (norm_nonneg _) (norm_nonneg _)), mul_pow, ← mul_right_inj' this, eq_comm, ←
sub_eq_zero, ← mul_sub] at h
[GOAL]
case tfae_1_to_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
h✝ : ‖x‖ ^ 2 * (‖x‖ ^ 2 * ‖y‖ ^ 2) = ‖x‖ ^ 2 * ‖inner x y‖ ^ 2
h : ‖x‖ ^ 2 * (‖x‖ ^ 2 * ‖y‖ ^ 2 - ‖inner x y‖ ^ 2) = 0
hx₀ : ¬x = 0
this : ‖x‖ ^ 2 ≠ 0
⊢ y = (inner x y / inner x x) • x
[PROOFSTEP]
simp only [@norm_sq_eq_inner 𝕜] at h
[GOAL]
case tfae_1_to_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
h✝ : ‖x‖ ^ 2 * (‖x‖ ^ 2 * ‖y‖ ^ 2) = ‖x‖ ^ 2 * ‖inner x y‖ ^ 2
hx₀ : ¬x = 0
this : ‖x‖ ^ 2 ≠ 0
h : ↑re (inner x x) * (↑re (inner x x) * ↑re (inner y y) - ‖inner x y‖ ^ 2) = 0
⊢ y = (inner x y / inner x x) • x
[PROOFSTEP]
letI : InnerProductSpace.Core 𝕜 E := InnerProductSpace.toCore
[GOAL]
case tfae_1_to_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
h✝ : ‖x‖ ^ 2 * (‖x‖ ^ 2 * ‖y‖ ^ 2) = ‖x‖ ^ 2 * ‖inner x y‖ ^ 2
hx₀ : ¬x = 0
this✝ : ‖x‖ ^ 2 ≠ 0
h : ↑re (inner x x) * (↑re (inner x x) * ↑re (inner y y) - ‖inner x y‖ ^ 2) = 0
this : InnerProductSpace.Core 𝕜 E := InnerProductSpace.toCore
⊢ y = (inner x y / inner x x) • x
[PROOFSTEP]
erw [← InnerProductSpace.Core.cauchy_schwarz_aux, InnerProductSpace.Core.normSq_eq_zero, sub_eq_zero] at h
[GOAL]
case tfae_1_to_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
h✝ : ‖x‖ ^ 2 * (‖x‖ ^ 2 * ‖y‖ ^ 2) = ‖x‖ ^ 2 * ‖inner x y‖ ^ 2
hx₀ : ¬x = 0
this✝ : ‖x‖ ^ 2 ≠ 0
this : InnerProductSpace.Core 𝕜 E := InnerProductSpace.toCore
h : inner x y • x = inner x x • y
⊢ y = (inner x y / inner x x) • x
[PROOFSTEP]
rw [div_eq_inv_mul, mul_smul, h, inv_smul_smul₀]
[GOAL]
case tfae_1_to_2.hc
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
h✝ : ‖x‖ ^ 2 * (‖x‖ ^ 2 * ‖y‖ ^ 2) = ‖x‖ ^ 2 * ‖inner x y‖ ^ 2
hx₀ : ¬x = 0
this✝ : ‖x‖ ^ 2 ≠ 0
this : InnerProductSpace.Core 𝕜 E := InnerProductSpace.toCore
h : inner x y • x = inner x x • y
⊢ inner x x ≠ 0
[PROOFSTEP]
rwa [inner_self_ne_zero]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
tfae_1_to_2 : ‖inner x y‖ = ‖x‖ * ‖y‖ → x = 0 ∨ y = (inner x y / inner x x) • x
⊢ List.TFAE
[‖inner x y‖ = ‖x‖ * ‖y‖, x = 0 ∨ y = (inner x y / inner x x) • x, x = 0 ∨ ∃ r, y = r • x,
x = 0 ∨ y ∈ Submodule.span 𝕜 {x}]
[PROOFSTEP]
tfae_have 2 → 3
[GOAL]
case tfae_2_to_3
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
tfae_1_to_2 : ‖inner x y‖ = ‖x‖ * ‖y‖ → x = 0 ∨ y = (inner x y / inner x x) • x
⊢ x = 0 ∨ y = (inner x y / inner x x) • x → x = 0 ∨ ∃ r, y = r • x
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
tfae_1_to_2 : ‖inner x y‖ = ‖x‖ * ‖y‖ → x = 0 ∨ y = (inner x y / inner x x) • x
tfae_2_to_3 : x = 0 ∨ y = (inner x y / inner x x) • x → x = 0 ∨ ∃ r, y = r • x
⊢ List.TFAE
[‖inner x y‖ = ‖x‖ * ‖y‖, x = 0 ∨ y = (inner x y / inner x x) • x, x = 0 ∨ ∃ r, y = r • x,
x = 0 ∨ y ∈ Submodule.span 𝕜 {x}]
[PROOFSTEP]
exact fun h => h.imp_right fun h' => ⟨_, h'⟩
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
tfae_1_to_2 : ‖inner x y‖ = ‖x‖ * ‖y‖ → x = 0 ∨ y = (inner x y / inner x x) • x
tfae_2_to_3 : x = 0 ∨ y = (inner x y / inner x x) • x → x = 0 ∨ ∃ r, y = r • x
⊢ List.TFAE
[‖inner x y‖ = ‖x‖ * ‖y‖, x = 0 ∨ y = (inner x y / inner x x) • x, x = 0 ∨ ∃ r, y = r • x,
x = 0 ∨ y ∈ Submodule.span 𝕜 {x}]
[PROOFSTEP]
tfae_have 3 → 1
[GOAL]
case tfae_3_to_1
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
tfae_1_to_2 : ‖inner x y‖ = ‖x‖ * ‖y‖ → x = 0 ∨ y = (inner x y / inner x x) • x
tfae_2_to_3 : x = 0 ∨ y = (inner x y / inner x x) • x → x = 0 ∨ ∃ r, y = r • x
⊢ (x = 0 ∨ ∃ r, y = r • x) → ‖inner x y‖ = ‖x‖ * ‖y‖
[PROOFSTEP]
rintro (rfl | ⟨r, rfl⟩)
[GOAL]
case tfae_3_to_1.inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
y : E
tfae_1_to_2 : ‖inner 0 y‖ = ‖0‖ * ‖y‖ → 0 = 0 ∨ y = (inner 0 y / inner 0 0) • 0
tfae_2_to_3 : 0 = 0 ∨ y = (inner 0 y / inner 0 0) • 0 → 0 = 0 ∨ ∃ r, y = r • 0
⊢ ‖inner 0 y‖ = ‖0‖ * ‖y‖
[PROOFSTEP]
simp [inner_smul_right, norm_smul, inner_self_eq_norm_sq_to_K, inner_self_eq_norm_mul_norm, sq, mul_left_comm]
[GOAL]
case tfae_3_to_1.inr.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x : E
r : 𝕜
tfae_1_to_2 : ‖inner x (r • x)‖ = ‖x‖ * ‖r • x‖ → x = 0 ∨ r • x = (inner x (r • x) / inner x x) • x
tfae_2_to_3 : x = 0 ∨ r • x = (inner x (r • x) / inner x x) • x → x = 0 ∨ ∃ r_1, r • x = r_1 • x
⊢ ‖inner x (r • x)‖ = ‖x‖ * ‖r • x‖
[PROOFSTEP]
simp [inner_smul_right, norm_smul, inner_self_eq_norm_sq_to_K, inner_self_eq_norm_mul_norm, sq, mul_left_comm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
tfae_1_to_2 : ‖inner x y‖ = ‖x‖ * ‖y‖ → x = 0 ∨ y = (inner x y / inner x x) • x
tfae_2_to_3 : x = 0 ∨ y = (inner x y / inner x x) • x → x = 0 ∨ ∃ r, y = r • x
tfae_3_to_1 : (x = 0 ∨ ∃ r, y = r • x) → ‖inner x y‖ = ‖x‖ * ‖y‖
⊢ List.TFAE
[‖inner x y‖ = ‖x‖ * ‖y‖, x = 0 ∨ y = (inner x y / inner x x) • x, x = 0 ∨ ∃ r, y = r • x,
x = 0 ∨ y ∈ Submodule.span 𝕜 {x}]
[PROOFSTEP]
tfae_have 3 ↔ 4
[GOAL]
case tfae_3_iff_4
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
tfae_1_to_2 : ‖inner x y‖ = ‖x‖ * ‖y‖ → x = 0 ∨ y = (inner x y / inner x x) • x
tfae_2_to_3 : x = 0 ∨ y = (inner x y / inner x x) • x → x = 0 ∨ ∃ r, y = r • x
tfae_3_to_1 : (x = 0 ∨ ∃ r, y = r • x) → ‖inner x y‖ = ‖x‖ * ‖y‖
⊢ (x = 0 ∨ ∃ r, y = r • x) ↔ x = 0 ∨ y ∈ Submodule.span 𝕜 {x}
[PROOFSTEP]
simp only [Submodule.mem_span_singleton, eq_comm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
tfae_1_to_2 : ‖inner x y‖ = ‖x‖ * ‖y‖ → x = 0 ∨ y = (inner x y / inner x x) • x
tfae_2_to_3 : x = 0 ∨ y = (inner x y / inner x x) • x → x = 0 ∨ ∃ r, y = r • x
tfae_3_to_1 : (x = 0 ∨ ∃ r, y = r • x) → ‖inner x y‖ = ‖x‖ * ‖y‖
tfae_3_iff_4 : (x = 0 ∨ ∃ r, y = r • x) ↔ x = 0 ∨ y ∈ Submodule.span 𝕜 {x}
⊢ List.TFAE
[‖inner x y‖ = ‖x‖ * ‖y‖, x = 0 ∨ y = (inner x y / inner x x) • x, x = 0 ∨ ∃ r, y = r • x,
x = 0 ∨ y ∈ Submodule.span 𝕜 {x}]
[PROOFSTEP]
tfae_finish
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ ‖inner x y / (↑‖x‖ * ↑‖y‖)‖ = 1 ↔ x ≠ 0 ∧ ∃ r, r ≠ 0 ∧ y = r • x
[PROOFSTEP]
constructor
[GOAL]
case mp
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ ‖inner x y / (↑‖x‖ * ↑‖y‖)‖ = 1 → x ≠ 0 ∧ ∃ r, r ≠ 0 ∧ y = r • x
[PROOFSTEP]
intro h
[GOAL]
case mp
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
h : ‖inner x y / (↑‖x‖ * ↑‖y‖)‖ = 1
⊢ x ≠ 0 ∧ ∃ r, r ≠ 0 ∧ y = r • x
[PROOFSTEP]
have hx₀ : x ≠ 0 := fun h₀ => by simp [h₀] at h
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
h : ‖inner x y / (↑‖x‖ * ↑‖y‖)‖ = 1
h₀ : x = 0
⊢ False
[PROOFSTEP]
simp [h₀] at h
[GOAL]
case mp
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
h : ‖inner x y / (↑‖x‖ * ↑‖y‖)‖ = 1
hx₀ : x ≠ 0
⊢ x ≠ 0 ∧ ∃ r, r ≠ 0 ∧ y = r • x
[PROOFSTEP]
have hy₀ : y ≠ 0 := fun h₀ => by simp [h₀] at h
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
h : ‖inner x y / (↑‖x‖ * ↑‖y‖)‖ = 1
hx₀ : x ≠ 0
h₀ : y = 0
⊢ False
[PROOFSTEP]
simp [h₀] at h
[GOAL]
case mp
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
h : ‖inner x y / (↑‖x‖ * ↑‖y‖)‖ = 1
hx₀ : x ≠ 0
hy₀ : y ≠ 0
⊢ x ≠ 0 ∧ ∃ r, r ≠ 0 ∧ y = r • x
[PROOFSTEP]
refine' ⟨hx₀, (norm_inner_eq_norm_iff hx₀ hy₀).1 <| eq_of_div_eq_one _⟩
[GOAL]
case mp
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
h : ‖inner x y / (↑‖x‖ * ↑‖y‖)‖ = 1
hx₀ : x ≠ 0
hy₀ : y ≠ 0
⊢ ‖inner x y‖ / (‖x‖ * ‖y‖) = 1
[PROOFSTEP]
simpa using h
[GOAL]
case mpr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ (x ≠ 0 ∧ ∃ r, r ≠ 0 ∧ y = r • x) → ‖inner x y / (↑‖x‖ * ↑‖y‖)‖ = 1
[PROOFSTEP]
rintro ⟨hx, ⟨r, ⟨hr, rfl⟩⟩⟩
[GOAL]
case mpr.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x : E
hx : x ≠ 0
r : 𝕜
hr : r ≠ 0
⊢ ‖inner x (r • x) / (↑‖x‖ * ↑‖r • x‖)‖ = 1
[PROOFSTEP]
simp only [norm_div, norm_mul, norm_ofReal, abs_norm]
[GOAL]
case mpr.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x : E
hx : x ≠ 0
r : 𝕜
hr : r ≠ 0
⊢ ‖inner x (r • x)‖ / (‖x‖ * ‖r • x‖) = 1
[PROOFSTEP]
exact norm_inner_div_norm_mul_norm_eq_one_of_ne_zero_of_ne_zero_mul hx hr
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
h₀ : x ≠ 0
⊢ inner x y = ↑‖x‖ * ↑‖y‖ ↔ (↑‖y‖ / ↑‖x‖) • x = y
[PROOFSTEP]
have h₀' := h₀
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
h₀ h₀' : x ≠ 0
⊢ inner x y = ↑‖x‖ * ↑‖y‖ ↔ (↑‖y‖ / ↑‖x‖) • x = y
[PROOFSTEP]
rw [← norm_ne_zero_iff, Ne.def, ← @ofReal_eq_zero 𝕜] at h₀'
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
h₀ : x ≠ 0
h₀' : ¬↑‖x‖ = 0
⊢ inner x y = ↑‖x‖ * ↑‖y‖ ↔ (↑‖y‖ / ↑‖x‖) • x = y
[PROOFSTEP]
constructor
[GOAL]
case mp
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
h₀ : x ≠ 0
h₀' : ¬↑‖x‖ = 0
⊢ inner x y = ↑‖x‖ * ↑‖y‖ → (↑‖y‖ / ↑‖x‖) • x = y
[PROOFSTEP]
intro h
[GOAL]
case mpr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
h₀ : x ≠ 0
h₀' : ¬↑‖x‖ = 0
⊢ (↑‖y‖ / ↑‖x‖) • x = y → inner x y = ↑‖x‖ * ↑‖y‖
[PROOFSTEP]
intro h
[GOAL]
case mp
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
h₀ : x ≠ 0
h₀' : ¬↑‖x‖ = 0
h : inner x y = ↑‖x‖ * ↑‖y‖
⊢ (↑‖y‖ / ↑‖x‖) • x = y
[PROOFSTEP]
have : x = 0 ∨ y = (⟪x, y⟫ / ⟪x, x⟫ : 𝕜) • x := ((@norm_inner_eq_norm_tfae 𝕜 _ _ _ _ x y).out 0 1).1 (by simp [h])
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
h₀ : x ≠ 0
h₀' : ¬↑‖x‖ = 0
h : inner x y = ↑‖x‖ * ↑‖y‖
⊢ ‖inner x y‖ = ‖x‖ * ‖y‖
[PROOFSTEP]
simp [h]
[GOAL]
case mp
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
h₀ : x ≠ 0
h₀' : ¬↑‖x‖ = 0
h : inner x y = ↑‖x‖ * ↑‖y‖
this : x = 0 ∨ y = (inner x y / inner x x) • x
⊢ (↑‖y‖ / ↑‖x‖) • x = y
[PROOFSTEP]
rw [this.resolve_left h₀, h]
[GOAL]
case mp
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
h₀ : x ≠ 0
h₀' : ¬↑‖x‖ = 0
h : inner x y = ↑‖x‖ * ↑‖y‖
this : x = 0 ∨ y = (inner x y / inner x x) • x
⊢ (↑‖(↑‖x‖ * ↑‖y‖ / inner x x) • x‖ / ↑‖x‖) • x = (↑‖x‖ * ↑‖y‖ / inner x x) • x
[PROOFSTEP]
simp [norm_smul, inner_self_ofReal_norm, mul_div_cancel _ h₀']
[GOAL]
case mpr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
h₀ : x ≠ 0
h₀' : ¬↑‖x‖ = 0
h : (↑‖y‖ / ↑‖x‖) • x = y
⊢ inner x y = ↑‖x‖ * ↑‖y‖
[PROOFSTEP]
conv_lhs => rw [← h, inner_smul_right, inner_self_eq_norm_sq_to_K]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
h₀ : x ≠ 0
h₀' : ¬↑‖x‖ = 0
h : (↑‖y‖ / ↑‖x‖) • x = y
| inner x y
[PROOFSTEP]
rw [← h, inner_smul_right, inner_self_eq_norm_sq_to_K]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
h₀ : x ≠ 0
h₀' : ¬↑‖x‖ = 0
h : (↑‖y‖ / ↑‖x‖) • x = y
| inner x y
[PROOFSTEP]
rw [← h, inner_smul_right, inner_self_eq_norm_sq_to_K]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
h₀ : x ≠ 0
h₀' : ¬↑‖x‖ = 0
h : (↑‖y‖ / ↑‖x‖) • x = y
| inner x y
[PROOFSTEP]
rw [← h, inner_smul_right, inner_self_eq_norm_sq_to_K]
[GOAL]
case mpr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
h₀ : x ≠ 0
h₀' : ¬↑‖x‖ = 0
h : (↑‖y‖ / ↑‖x‖) • x = y
⊢ ↑‖y‖ / ↑‖x‖ * ↑‖x‖ ^ 2 = ↑‖x‖ * ↑‖y‖
[PROOFSTEP]
field_simp [sq, mul_left_comm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ inner x y = ↑‖x‖ * ↑‖y‖ ↔ ↑‖y‖ • x = ↑‖x‖ • y
[PROOFSTEP]
rcases eq_or_ne x 0 with (rfl | h₀)
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
y : E
⊢ inner 0 y = ↑‖0‖ * ↑‖y‖ ↔ ↑‖y‖ • 0 = ↑‖0‖ • y
[PROOFSTEP]
simp
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
h₀ : x ≠ 0
⊢ inner x y = ↑‖x‖ * ↑‖y‖ ↔ ↑‖y‖ • x = ↑‖x‖ • y
[PROOFSTEP]
rw [inner_eq_norm_mul_iff_div h₀, div_eq_inv_mul, mul_smul, inv_smul_eq_iff₀]
[GOAL]
case inr.ha
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
h₀ : x ≠ 0
⊢ ↑‖x‖ ≠ 0
[PROOFSTEP]
rwa [Ne.def, ofReal_eq_zero, norm_eq_zero]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
⊢ inner x y / (‖x‖ * ‖y‖) = 1 ↔ x ≠ 0 ∧ ∃ r, 0 < r ∧ y = r • x
[PROOFSTEP]
constructor
[GOAL]
case mp
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
⊢ inner x y / (‖x‖ * ‖y‖) = 1 → x ≠ 0 ∧ ∃ r, 0 < r ∧ y = r • x
[PROOFSTEP]
intro h
[GOAL]
case mp
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
h : inner x y / (‖x‖ * ‖y‖) = 1
⊢ x ≠ 0 ∧ ∃ r, 0 < r ∧ y = r • x
[PROOFSTEP]
have hx₀ : x ≠ 0 := fun h₀ => by simp [h₀] at h
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
h : inner x y / (‖x‖ * ‖y‖) = 1
h₀ : x = 0
⊢ False
[PROOFSTEP]
simp [h₀] at h
[GOAL]
case mp
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
h : inner x y / (‖x‖ * ‖y‖) = 1
hx₀ : x ≠ 0
⊢ x ≠ 0 ∧ ∃ r, 0 < r ∧ y = r • x
[PROOFSTEP]
have hy₀ : y ≠ 0 := fun h₀ => by simp [h₀] at h
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
h : inner x y / (‖x‖ * ‖y‖) = 1
hx₀ : x ≠ 0
h₀ : y = 0
⊢ False
[PROOFSTEP]
simp [h₀] at h
[GOAL]
case mp
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
h : inner x y / (‖x‖ * ‖y‖) = 1
hx₀ : x ≠ 0
hy₀ : y ≠ 0
⊢ x ≠ 0 ∧ ∃ r, 0 < r ∧ y = r • x
[PROOFSTEP]
refine' ⟨hx₀, ‖y‖ / ‖x‖, div_pos (norm_pos_iff.2 hy₀) (norm_pos_iff.2 hx₀), _⟩
[GOAL]
case mp
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
h : inner x y / (‖x‖ * ‖y‖) = 1
hx₀ : x ≠ 0
hy₀ : y ≠ 0
⊢ y = (‖y‖ / ‖x‖) • x
[PROOFSTEP]
exact ((inner_eq_norm_mul_iff_div hx₀).1 (eq_of_div_eq_one h)).symm
[GOAL]
case mpr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
⊢ (x ≠ 0 ∧ ∃ r, 0 < r ∧ y = r • x) → inner x y / (‖x‖ * ‖y‖) = 1
[PROOFSTEP]
rintro ⟨hx, ⟨r, ⟨hr, rfl⟩⟩⟩
[GOAL]
case mpr.intro.intro.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x : F
hx : x ≠ 0
r : ℝ
hr : 0 < r
⊢ inner x (r • x) / (‖x‖ * ‖r • x‖) = 1
[PROOFSTEP]
exact real_inner_div_norm_mul_norm_eq_one_of_ne_zero_of_pos_mul hx hr
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
⊢ inner x y / (‖x‖ * ‖y‖) = -1 ↔ x ≠ 0 ∧ ∃ r, r < 0 ∧ y = r • x
[PROOFSTEP]
rw [← neg_eq_iff_eq_neg, ← neg_div, ← inner_neg_right, ← norm_neg y, real_inner_div_norm_mul_norm_eq_one_iff,
(@neg_surjective ℝ _).exists]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
⊢ (x ≠ 0 ∧ ∃ x_1, 0 < -x_1 ∧ -y = -x_1 • x) ↔ x ≠ 0 ∧ ∃ r, r < 0 ∧ y = r • x
[PROOFSTEP]
refine' Iff.rfl.and (exists_congr fun r => _)
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
r : ℝ
⊢ 0 < -r ∧ -y = -r • x ↔ r < 0 ∧ y = r • x
[PROOFSTEP]
rw [neg_pos, neg_smul, neg_inj]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
hx : ‖x‖ = 1
hy : ‖y‖ = 1
⊢ inner x y = 1 ↔ x = y
[PROOFSTEP]
convert inner_eq_norm_mul_iff (𝕜 := 𝕜) (E := E) using 2
[GOAL]
case h.e'_1.h.e'_3
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
hx : ‖x‖ = 1
hy : ‖y‖ = 1
⊢ 1 = ↑‖x‖ * ↑‖y‖
[PROOFSTEP]
simp [hx, hy]
[GOAL]
case h.e'_2.h.e'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
hx : ‖x‖ = 1
hy : ‖y‖ = 1
⊢ x = ↑‖y‖ • x
[PROOFSTEP]
simp [hx, hy]
[GOAL]
case h.e'_2.h.e'_3
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
hx : ‖x‖ = 1
hy : ‖y‖ = 1
⊢ y = ↑‖x‖ • y
[PROOFSTEP]
simp [hx, hy]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
hx : ‖x‖ = 1
hy : ‖y‖ = 1
⊢ inner x y < 1 ↔ x ≠ y
[PROOFSTEP]
convert inner_lt_norm_mul_iff_real (F := F)
[GOAL]
case h.e'_1.h.e'_4
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
hx : ‖x‖ = 1
hy : ‖y‖ = 1
⊢ 1 = ‖x‖ * ‖y‖
[PROOFSTEP]
simp [hx, hy]
[GOAL]
case h.e'_2.h.e'_2
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
hx : ‖x‖ = 1
hy : ‖y‖ = 1
⊢ x = ‖y‖ • x
[PROOFSTEP]
simp [hx, hy]
[GOAL]
case h.e'_2.h.e'_3
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : F
hx : ‖x‖ = 1
hy : ‖y‖ = 1
⊢ y = ‖x‖ • y
[PROOFSTEP]
simp [hx, hy]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι₁ : Type u_4
s₁ : Finset ι₁
w₁ : ι₁ → ℝ
v₁ : ι₁ → F
h₁ : ∑ i in s₁, w₁ i = 0
ι₂ : Type u_5
s₂ : Finset ι₂
w₂ : ι₂ → ℝ
v₂ : ι₂ → F
h₂ : ∑ i in s₂, w₂ i = 0
⊢ inner (∑ i₁ in s₁, w₁ i₁ • v₁ i₁) (∑ i₂ in s₂, w₂ i₂ • v₂ i₂) =
(-∑ i₁ in s₁, ∑ i₂ in s₂, w₁ i₁ * w₂ i₂ * (‖v₁ i₁ - v₂ i₂‖ * ‖v₁ i₁ - v₂ i₂‖)) / 2
[PROOFSTEP]
simp_rw [sum_inner, inner_sum, real_inner_smul_left, real_inner_smul_right,
real_inner_eq_norm_mul_self_add_norm_mul_self_sub_norm_sub_mul_self_div_two, ← div_sub_div_same, ← div_add_div_same,
mul_sub_left_distrib, left_distrib, Finset.sum_sub_distrib, Finset.sum_add_distrib, ← Finset.mul_sum, ←
Finset.sum_mul, h₁, h₂, zero_mul, mul_zero, Finset.sum_const_zero, zero_add, zero_sub, Finset.mul_sum, neg_div,
Finset.sum_div, mul_div_assoc, mul_assoc]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ ‖↑(↑(innerₛₗ 𝕜) x) y‖ ≤ 1 * ‖x‖ * ‖y‖
[PROOFSTEP]
simp only [norm_inner_le_norm, one_mul, innerₛₗ_apply]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x : E
⊢ ‖↑(innerSL 𝕜) x‖ = ‖x‖
[PROOFSTEP]
refine' le_antisymm ((innerSL 𝕜 x).op_norm_le_bound (norm_nonneg _) fun y => norm_inner_le_norm _ _) _
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x : E
⊢ ‖x‖ ≤ ‖↑(innerSL 𝕜) x‖
[PROOFSTEP]
rcases eq_or_ne x 0 with (rfl | h)
[GOAL]
case inl
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
⊢ ‖0‖ ≤ ‖↑(innerSL 𝕜) 0‖
[PROOFSTEP]
simp
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x : E
h : x ≠ 0
⊢ ‖x‖ ≤ ‖↑(innerSL 𝕜) x‖
[PROOFSTEP]
refine' (mul_le_mul_right (norm_pos_iff.2 h)).mp _
[GOAL]
case inr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x : E
h : x ≠ 0
⊢ ‖x‖ * ‖x‖ ≤ ‖↑(innerSL 𝕜) x‖ * ‖x‖
[PROOFSTEP]
calc
‖x‖ * ‖x‖ = ‖(⟪x, x⟫ : 𝕜)‖ := by rw [← sq, inner_self_eq_norm_sq_to_K, norm_pow, norm_ofReal, abs_norm]
_ ≤ ‖innerSL 𝕜 x‖ * ‖x‖ := (innerSL 𝕜 x).le_op_norm _
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x : E
h : x ≠ 0
⊢ ‖x‖ * ‖x‖ = ‖inner x x‖
[PROOFSTEP]
rw [← sq, inner_self_eq_norm_sq_to_K, norm_pow, norm_ofReal, abs_norm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
E' : Type u_4
inst✝¹ : NormedAddCommGroup E'
inst✝ : InnerProductSpace 𝕜 E'
f : E →L[𝕜] E'
v : E'
⊢ ‖↑(↑toSesqForm f) v‖ ≤ ‖f‖ * ‖v‖
[PROOFSTEP]
refine' op_norm_le_bound _ (mul_nonneg (norm_nonneg _) (norm_nonneg _)) _
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
E' : Type u_4
inst✝¹ : NormedAddCommGroup E'
inst✝ : InnerProductSpace 𝕜 E'
f : E →L[𝕜] E'
v : E'
⊢ ∀ (x : E), ‖↑(↑(↑toSesqForm f) v) x‖ ≤ ‖f‖ * ‖v‖ * ‖x‖
[PROOFSTEP]
intro x
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
E' : Type u_4
inst✝¹ : NormedAddCommGroup E'
inst✝ : InnerProductSpace 𝕜 E'
f : E →L[𝕜] E'
v : E'
x : E
⊢ ‖↑(↑(↑toSesqForm f) v) x‖ ≤ ‖f‖ * ‖v‖ * ‖x‖
[PROOFSTEP]
have h₁ : ‖f x‖ ≤ ‖f‖ * ‖x‖ := le_op_norm _ _
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
E' : Type u_4
inst✝¹ : NormedAddCommGroup E'
inst✝ : InnerProductSpace 𝕜 E'
f : E →L[𝕜] E'
v : E'
x : E
h₁ : ‖↑f x‖ ≤ ‖f‖ * ‖x‖
⊢ ‖↑(↑(↑toSesqForm f) v) x‖ ≤ ‖f‖ * ‖v‖ * ‖x‖
[PROOFSTEP]
have h₂ := @norm_inner_le_norm 𝕜 E' _ _ _ v (f x)
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
E' : Type u_4
inst✝¹ : NormedAddCommGroup E'
inst✝ : InnerProductSpace 𝕜 E'
f : E →L[𝕜] E'
v : E'
x : E
h₁ : ‖↑f x‖ ≤ ‖f‖ * ‖x‖
h₂ : ‖inner v (↑f x)‖ ≤ ‖v‖ * ‖↑f x‖
⊢ ‖↑(↑(↑toSesqForm f) v) x‖ ≤ ‖f‖ * ‖v‖ * ‖x‖
[PROOFSTEP]
calc
‖⟪v, f x⟫‖ ≤ ‖v‖ * ‖f x‖ := h₂
_ ≤ ‖v‖ * (‖f‖ * ‖x‖) := (mul_le_mul_of_nonneg_left h₁ (norm_nonneg v))
_ = ‖f‖ * ‖v‖ * ‖x‖ := by ring
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
E' : Type u_4
inst✝¹ : NormedAddCommGroup E'
inst✝ : InnerProductSpace 𝕜 E'
f : E →L[𝕜] E'
v : E'
x : E
h₁ : ‖↑f x‖ ≤ ‖f‖ * ‖x‖
h₂ : ‖inner v (↑f x)‖ ≤ ‖v‖ * ‖↑f x‖
⊢ ‖v‖ * (‖f‖ * ‖x‖) = ‖f‖ * ‖v‖ * ‖x‖
[PROOFSTEP]
ring
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : InnerProductSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : InnerProductSpace ℝ F
dec_E : DecidableEq E
inst✝ : NormedSpace ℝ E
r : ℝ
x y : E
⊢ inner (r • x, y).fst (r • x, y).snd = r • inner (x, y).fst (x, y).snd
[PROOFSTEP]
simp only [← algebraMap_smul 𝕜 r x, algebraMap_eq_ofReal, inner_smul_real_left]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : InnerProductSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : InnerProductSpace ℝ F
dec_E : DecidableEq E
inst✝ : NormedSpace ℝ E
r : ℝ
x y : E
⊢ inner (x, r • y).fst (x, r • y).snd = r • inner (x, y).fst (x, y).snd
[PROOFSTEP]
simp only [← algebraMap_smul 𝕜 r y, algebraMap_eq_ofReal, inner_smul_real_right]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : InnerProductSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : InnerProductSpace ℝ F
dec_E : DecidableEq E
inst✝ : NormedSpace ℝ E
x y : E
⊢ ‖inner (x, y).fst (x, y).snd‖ ≤ 1 * ‖x‖ * ‖y‖
[PROOFSTEP]
rw [one_mul]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁵ : IsROrC 𝕜
inst✝⁴ : NormedAddCommGroup E
inst✝³ : InnerProductSpace 𝕜 E
inst✝² : NormedAddCommGroup F
inst✝¹ : InnerProductSpace ℝ F
dec_E : DecidableEq E
inst✝ : NormedSpace ℝ E
x y : E
⊢ ‖inner (x, y).fst (x, y).snd‖ ≤ ‖x‖ * ‖y‖
[PROOFSTEP]
exact norm_inner_le_norm x y
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
x : E
v : ι → E
s : Finset ι
hv : Orthonormal 𝕜 v
⊢ ∑ i in s, ‖inner (v i) x‖ ^ 2 ≤ ‖x‖ ^ 2
[PROOFSTEP]
have h₂ : (∑ i in s, ∑ j in s, ⟪v i, x⟫ * ⟪x, v j⟫ * ⟪v j, v i⟫) = (∑ k in s, ⟪v k, x⟫ * ⟪x, v k⟫ : 𝕜) := by
classical exact hv.inner_left_right_finset
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
x : E
v : ι → E
s : Finset ι
hv : Orthonormal 𝕜 v
⊢ ∑ i in s, ∑ j in s, inner (v i) x * inner x (v j) * inner (v j) (v i) = ∑ k in s, inner (v k) x * inner x (v k)
[PROOFSTEP]
classical exact hv.inner_left_right_finset
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
x : E
v : ι → E
s : Finset ι
hv : Orthonormal 𝕜 v
⊢ ∑ i in s, ∑ j in s, inner (v i) x * inner x (v j) * inner (v j) (v i) = ∑ k in s, inner (v k) x * inner x (v k)
[PROOFSTEP]
exact hv.inner_left_right_finset
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
x : E
v : ι → E
s : Finset ι
hv : Orthonormal 𝕜 v
h₂ : ∑ i in s, ∑ j in s, inner (v i) x * inner x (v j) * inner (v j) (v i) = ∑ k in s, inner (v k) x * inner x (v k)
⊢ ∑ i in s, ‖inner (v i) x‖ ^ 2 ≤ ‖x‖ ^ 2
[PROOFSTEP]
have h₃ : ∀ z : 𝕜, re (z * conj z) = ‖z‖ ^ 2 := by
intro z
simp only [mul_conj, normSq_eq_def']
norm_cast
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
x : E
v : ι → E
s : Finset ι
hv : Orthonormal 𝕜 v
h₂ : ∑ i in s, ∑ j in s, inner (v i) x * inner x (v j) * inner (v j) (v i) = ∑ k in s, inner (v k) x * inner x (v k)
⊢ ∀ (z : 𝕜), ↑re (z * ↑(starRingEnd 𝕜) z) = ‖z‖ ^ 2
[PROOFSTEP]
intro z
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
x : E
v : ι → E
s : Finset ι
hv : Orthonormal 𝕜 v
h₂ : ∑ i in s, ∑ j in s, inner (v i) x * inner x (v j) * inner (v j) (v i) = ∑ k in s, inner (v k) x * inner x (v k)
z : 𝕜
⊢ ↑re (z * ↑(starRingEnd 𝕜) z) = ‖z‖ ^ 2
[PROOFSTEP]
simp only [mul_conj, normSq_eq_def']
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
x : E
v : ι → E
s : Finset ι
hv : Orthonormal 𝕜 v
h₂ : ∑ i in s, ∑ j in s, inner (v i) x * inner x (v j) * inner (v j) (v i) = ∑ k in s, inner (v k) x * inner x (v k)
z : 𝕜
⊢ ↑re ↑(‖z‖ ^ 2) = ‖z‖ ^ 2
[PROOFSTEP]
norm_cast
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
x : E
v : ι → E
s : Finset ι
hv : Orthonormal 𝕜 v
h₂ : ∑ i in s, ∑ j in s, inner (v i) x * inner x (v j) * inner (v j) (v i) = ∑ k in s, inner (v k) x * inner x (v k)
h₃ : ∀ (z : 𝕜), ↑re (z * ↑(starRingEnd 𝕜) z) = ‖z‖ ^ 2
⊢ ∑ i in s, ‖inner (v i) x‖ ^ 2 ≤ ‖x‖ ^ 2
[PROOFSTEP]
suffices hbf : ‖x - ∑ i in s, ⟪v i, x⟫ • v i‖ ^ 2 = ‖x‖ ^ 2 - ∑ i in s, ‖⟪v i, x⟫‖ ^ 2
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
x : E
v : ι → E
s : Finset ι
hv : Orthonormal 𝕜 v
h₂ : ∑ i in s, ∑ j in s, inner (v i) x * inner x (v j) * inner (v j) (v i) = ∑ k in s, inner (v k) x * inner x (v k)
h₃ : ∀ (z : 𝕜), ↑re (z * ↑(starRingEnd 𝕜) z) = ‖z‖ ^ 2
hbf : ‖x - ∑ i in s, inner (v i) x • v i‖ ^ 2 = ‖x‖ ^ 2 - ∑ i in s, ‖inner (v i) x‖ ^ 2
⊢ ∑ i in s, ‖inner (v i) x‖ ^ 2 ≤ ‖x‖ ^ 2
[PROOFSTEP]
rw [← sub_nonneg, ← hbf]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
x : E
v : ι → E
s : Finset ι
hv : Orthonormal 𝕜 v
h₂ : ∑ i in s, ∑ j in s, inner (v i) x * inner x (v j) * inner (v j) (v i) = ∑ k in s, inner (v k) x * inner x (v k)
h₃ : ∀ (z : 𝕜), ↑re (z * ↑(starRingEnd 𝕜) z) = ‖z‖ ^ 2
hbf : ‖x - ∑ i in s, inner (v i) x • v i‖ ^ 2 = ‖x‖ ^ 2 - ∑ i in s, ‖inner (v i) x‖ ^ 2
⊢ 0 ≤ ‖x - ∑ i in s, inner (v i) x • v i‖ ^ 2
[PROOFSTEP]
simp only [norm_nonneg, pow_nonneg]
[GOAL]
case hbf
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
x : E
v : ι → E
s : Finset ι
hv : Orthonormal 𝕜 v
h₂ : ∑ i in s, ∑ j in s, inner (v i) x * inner x (v j) * inner (v j) (v i) = ∑ k in s, inner (v k) x * inner x (v k)
h₃ : ∀ (z : 𝕜), ↑re (z * ↑(starRingEnd 𝕜) z) = ‖z‖ ^ 2
⊢ ‖x - ∑ i in s, inner (v i) x • v i‖ ^ 2 = ‖x‖ ^ 2 - ∑ i in s, ‖inner (v i) x‖ ^ 2
[PROOFSTEP]
rw [@norm_sub_sq 𝕜, sub_add]
[GOAL]
case hbf
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
x : E
v : ι → E
s : Finset ι
hv : Orthonormal 𝕜 v
h₂ : ∑ i in s, ∑ j in s, inner (v i) x * inner x (v j) * inner (v j) (v i) = ∑ k in s, inner (v k) x * inner x (v k)
h₃ : ∀ (z : 𝕜), ↑re (z * ↑(starRingEnd 𝕜) z) = ‖z‖ ^ 2
⊢ ‖x‖ ^ 2 - (2 * ↑re (inner x (∑ i in s, inner (v i) x • v i)) - ‖∑ i in s, inner (v i) x • v i‖ ^ 2) =
‖x‖ ^ 2 - ∑ i in s, ‖inner (v i) x‖ ^ 2
[PROOFSTEP]
classical
simp only [@InnerProductSpace.norm_sq_eq_inner 𝕜, _root_.inner_sum, _root_.sum_inner]
simp only [inner_smul_right, two_mul, inner_smul_left, inner_conj_symm, ← mul_assoc, h₂, add_sub_cancel, sub_right_inj]
simp only [map_sum, ← inner_conj_symm x, ← h₃]
[GOAL]
case hbf
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
x : E
v : ι → E
s : Finset ι
hv : Orthonormal 𝕜 v
h₂ : ∑ i in s, ∑ j in s, inner (v i) x * inner x (v j) * inner (v j) (v i) = ∑ k in s, inner (v k) x * inner x (v k)
h₃ : ∀ (z : 𝕜), ↑re (z * ↑(starRingEnd 𝕜) z) = ‖z‖ ^ 2
⊢ ‖x‖ ^ 2 - (2 * ↑re (inner x (∑ i in s, inner (v i) x • v i)) - ‖∑ i in s, inner (v i) x • v i‖ ^ 2) =
‖x‖ ^ 2 - ∑ i in s, ‖inner (v i) x‖ ^ 2
[PROOFSTEP]
simp only [@InnerProductSpace.norm_sq_eq_inner 𝕜, _root_.inner_sum, _root_.sum_inner]
[GOAL]
case hbf
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
x : E
v : ι → E
s : Finset ι
hv : Orthonormal 𝕜 v
h₂ : ∑ i in s, ∑ j in s, inner (v i) x * inner x (v j) * inner (v j) (v i) = ∑ k in s, inner (v k) x * inner x (v k)
h₃ : ∀ (z : 𝕜), ↑re (z * ↑(starRingEnd 𝕜) z) = ‖z‖ ^ 2
⊢ ↑re (inner x x) -
(2 * ↑re (∑ i in s, inner x (inner (v i) x • v i)) -
↑re (∑ x_1 in s, ∑ i in s, inner (inner (v i) x • v i) (inner (v x_1) x • v x_1))) =
↑re (inner x x) - ∑ i in s, ‖inner (v i) x‖ ^ 2
[PROOFSTEP]
simp only [inner_smul_right, two_mul, inner_smul_left, inner_conj_symm, ← mul_assoc, h₂, add_sub_cancel, sub_right_inj]
[GOAL]
case hbf
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
x : E
v : ι → E
s : Finset ι
hv : Orthonormal 𝕜 v
h₂ : ∑ i in s, ∑ j in s, inner (v i) x * inner x (v j) * inner (v j) (v i) = ∑ k in s, inner (v k) x * inner x (v k)
h₃ : ∀ (z : 𝕜), ↑re (z * ↑(starRingEnd 𝕜) z) = ‖z‖ ^ 2
⊢ ↑re (∑ x_1 in s, inner (v x_1) x * inner x (v x_1)) = ∑ i in s, ‖inner (v i) x‖ ^ 2
[PROOFSTEP]
simp only [map_sum, ← inner_conj_symm x, ← h₃]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
x : E
v : ι → E
hv : Orthonormal 𝕜 v
⊢ ∑' (i : ι), ‖inner (v i) x‖ ^ 2 ≤ ‖x‖ ^ 2
[PROOFSTEP]
refine' tsum_le_of_sum_le' _ fun s => hv.sum_inner_products_le x
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
x : E
v : ι → E
hv : Orthonormal 𝕜 v
⊢ 0 ≤ ‖x‖ ^ 2
[PROOFSTEP]
simp only [norm_nonneg, pow_nonneg]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
x : E
v : ι → E
hv : Orthonormal 𝕜 v
⊢ Summable fun i => ‖inner (v i) x‖ ^ 2
[PROOFSTEP]
use⨆ s : Finset ι, ∑ i in s, ‖⟪v i, x⟫‖ ^ 2
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
x : E
v : ι → E
hv : Orthonormal 𝕜 v
⊢ HasSum (fun i => ‖inner (v i) x‖ ^ 2) (⨆ (s : Finset ι), ∑ i in s, ‖inner (v i) x‖ ^ 2)
[PROOFSTEP]
apply hasSum_of_isLUB_of_nonneg
[GOAL]
case h.h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
x : E
v : ι → E
hv : Orthonormal 𝕜 v
⊢ ∀ (i : ι), 0 ≤ ‖inner (v i) x‖ ^ 2
[PROOFSTEP]
intro b
[GOAL]
case h.h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
x : E
v : ι → E
hv : Orthonormal 𝕜 v
b : ι
⊢ 0 ≤ ‖inner (v b) x‖ ^ 2
[PROOFSTEP]
simp only [norm_nonneg, pow_nonneg]
[GOAL]
case h.hf
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
x : E
v : ι → E
hv : Orthonormal 𝕜 v
⊢ IsLUB (Set.range fun s => ∑ i in s, ‖inner (v i) x‖ ^ 2) (⨆ (s : Finset ι), ∑ i in s, ‖inner (v i) x‖ ^ 2)
[PROOFSTEP]
refine' isLUB_ciSup _
[GOAL]
case h.hf
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
x : E
v : ι → E
hv : Orthonormal 𝕜 v
⊢ BddAbove (Set.range fun s => ∑ i in s, ‖inner (v i) x‖ ^ 2)
[PROOFSTEP]
use‖x‖ ^ 2
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
x : E
v : ι → E
hv : Orthonormal 𝕜 v
⊢ ‖x‖ ^ 2 ∈ upperBounds (Set.range fun s => ∑ i in s, ‖inner (v i) x‖ ^ 2)
[PROOFSTEP]
rintro y ⟨s, rfl⟩
[GOAL]
case h.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
x : E
v : ι → E
hv : Orthonormal 𝕜 v
s : Finset ι
⊢ (fun s => ∑ i in s, ‖inner (v i) x‖ ^ 2) s ≤ ‖x‖ ^ 2
[PROOFSTEP]
exact hv.sum_inner_products_le x
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x : 𝕜
⊢ ‖x‖ ^ 2 = ↑re (inner x x)
[PROOFSTEP]
simp only [inner]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x : 𝕜
⊢ ‖x‖ ^ 2 = ↑re (↑(starRingEnd 𝕜) x * x)
[PROOFSTEP]
rw [mul_comm, mul_conj, ofReal_re, normSq_eq_def']
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : 𝕜
⊢ ↑(starRingEnd 𝕜) (inner y x) = inner x y
[PROOFSTEP]
simp only [mul_comm, map_mul, starRingEnd_self_apply]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y z : 𝕜
⊢ inner (x + y) z = inner x z + inner y z
[PROOFSTEP]
simp only [add_mul, map_add]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y z : 𝕜
⊢ inner (z • x) y = ↑(starRingEnd 𝕜) z * inner x y
[PROOFSTEP]
simp only [mul_assoc, smul_eq_mul, map_mul]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
v : ι → E
hv : Orthonormal 𝕜 v
i j : ι
hij : i ≠ j
a : (fun _i => 𝕜) i
b : (fun _i => 𝕜) j
⊢ inner (↑((fun i => LinearIsometry.toSpanSingleton 𝕜 E (_ : ‖v i‖ = 1)) i) a)
(↑((fun i => LinearIsometry.toSpanSingleton 𝕜 E (_ : ‖v i‖ = 1)) j) b) =
0
[PROOFSTEP]
simp [inner_smul_left, inner_smul_right, hv.2 hij]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
i j : ι
v : G i
w : G j
⊢ inner (↑(V i) v) (↑(V j) w) = if i = j then inner (↑(V i) v) (↑(V j) w) else 0
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
i j : ι
v : G i
w : G j
h : i = j
⊢ inner (↑(V i) v) (↑(V j) w) = inner (↑(V i) v) (↑(V j) w)
[PROOFSTEP]
rfl
[GOAL]
case neg
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
i j : ι
v : G i
w : G j
h : ¬i = j
⊢ inner (↑(V i) v) (↑(V j) w) = 0
[PROOFSTEP]
exact hV h v w
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
l : ⨁ (i : ι), G i
i : ι
v : G i
⊢ (DFinsupp.sum l fun j w => if i = j then inner (↑(V i) v) (↑(V j) w) else 0) = inner v (↑l i)
[PROOFSTEP]
simp only [DFinsupp.sum, Submodule.coe_inner, Finset.sum_ite_eq, ite_eq_left_iff, DFinsupp.mem_support_toFun]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
l : ⨁ (i : ι), G i
i : ι
v : G i
⊢ (if ↑l i ≠ 0 then inner (↑(V i) v) (↑(V i) (↑l i)) else 0) = inner v (↑l i)
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
l : ⨁ (i : ι), G i
i : ι
v : G i
h : ↑l i ≠ 0
⊢ inner (↑(V i) v) (↑(V i) (↑l i)) = inner v (↑l i)
[PROOFSTEP]
simp only [LinearIsometry.inner_map_map]
[GOAL]
case neg
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
l : ⨁ (i : ι), G i
i : ι
v : G i
h : ¬↑l i ≠ 0
⊢ 0 = inner v (↑l i)
[PROOFSTEP]
simp only [of_not_not h, inner_zero_right]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
inst✝ : Fintype ι
l : (i : ι) → G i
i : ι
v : G i
⊢ inner (↑(V i) v) (∑ j : ι, ↑(V j) (l j)) = inner v (l i)
[PROOFSTEP]
classical!
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
inst✝ : Fintype ι
l : (i : ι) → G i
i : ι
v : G i
em✝ : (a : Prop) → Decidable a
⊢ inner (↑(V i) v) (∑ j : ι, ↑(V j) (l j)) = inner v (l i)
[PROOFSTEP]
calc
⟪V i v, ∑ j : ι, V j (l j)⟫ = ∑ j : ι, ⟪V i v, V j (l j)⟫ := by rw [inner_sum]
_ = ∑ j, ite (i = j) ⟪V i v, V j (l j)⟫ 0 := (congr_arg (Finset.sum Finset.univ) <| funext fun j => hV.eq_ite v (l j))
_ = ⟪v, l i⟫ := by simp only [Finset.sum_ite_eq, Finset.mem_univ, (V i).inner_map_map, if_true]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
inst✝ : Fintype ι
l : (i : ι) → G i
i : ι
v : G i
em✝ : (a : Prop) → Decidable a
⊢ inner (↑(V i) v) (∑ j : ι, ↑(V j) (l j)) = ∑ j : ι, inner (↑(V i) v) (↑(V j) (l j))
[PROOFSTEP]
rw [inner_sum]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
inst✝ : Fintype ι
l : (i : ι) → G i
i : ι
v : G i
em✝ : (a : Prop) → Decidable a
⊢ (∑ j : ι, if i = j then inner (↑(V i) v) (↑(V j) (l j)) else 0) = inner v (l i)
[PROOFSTEP]
simp only [Finset.sum_ite_eq, Finset.mem_univ, (V i).inner_map_map, if_true]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
l₁ l₂ : (i : ι) → G i
s : Finset ι
⊢ inner (∑ i in s, ↑(V i) (l₁ i)) (∑ j in s, ↑(V j) (l₂ j)) = ∑ i in s, inner (l₁ i) (l₂ i)
[PROOFSTEP]
classical!
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
l₁ l₂ : (i : ι) → G i
s : Finset ι
em✝ : (a : Prop) → Decidable a
⊢ inner (∑ i in s, ↑(V i) (l₁ i)) (∑ j in s, ↑(V j) (l₂ j)) = ∑ i in s, inner (l₁ i) (l₂ i)
[PROOFSTEP]
calc
⟪∑ i in s, V i (l₁ i), ∑ j in s, V j (l₂ j)⟫ = ∑ j in s, ∑ i in s, ⟪V i (l₁ i), V j (l₂ j)⟫ := by
simp only [_root_.sum_inner, _root_.inner_sum]
_ = ∑ j in s, ∑ i in s, ite (i = j) ⟪V i (l₁ i), V j (l₂ j)⟫ 0 :=
by
congr with i
congr with j
apply hV.eq_ite
_ = ∑ i in s, ⟪l₁ i, l₂ i⟫ := by
simp only [Finset.sum_ite_of_true, Finset.sum_ite_eq', LinearIsometry.inner_map_map, imp_self, imp_true_iff]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
l₁ l₂ : (i : ι) → G i
s : Finset ι
em✝ : (a : Prop) → Decidable a
⊢ inner (∑ i in s, ↑(V i) (l₁ i)) (∑ j in s, ↑(V j) (l₂ j)) = ∑ j in s, ∑ i in s, inner (↑(V i) (l₁ i)) (↑(V j) (l₂ j))
[PROOFSTEP]
simp only [_root_.sum_inner, _root_.inner_sum]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
l₁ l₂ : (i : ι) → G i
s : Finset ι
em✝ : (a : Prop) → Decidable a
⊢ ∑ j in s, ∑ i in s, inner (↑(V i) (l₁ i)) (↑(V j) (l₂ j)) =
∑ j in s, ∑ i in s, if i = j then inner (↑(V i) (l₁ i)) (↑(V j) (l₂ j)) else 0
[PROOFSTEP]
congr with i
[GOAL]
case e_f.h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
l₁ l₂ : (i : ι) → G i
s : Finset ι
em✝ : (a : Prop) → Decidable a
i : ι
⊢ ∑ i_1 in s, inner (↑(V i_1) (l₁ i_1)) (↑(V i) (l₂ i)) =
∑ i_1 in s, if i_1 = i then inner (↑(V i_1) (l₁ i_1)) (↑(V i) (l₂ i)) else 0
[PROOFSTEP]
congr with j
[GOAL]
case e_f.h.e_f.h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
l₁ l₂ : (i : ι) → G i
s : Finset ι
em✝ : (a : Prop) → Decidable a
i j : ι
⊢ inner (↑(V j) (l₁ j)) (↑(V i) (l₂ i)) = if j = i then inner (↑(V j) (l₁ j)) (↑(V i) (l₂ i)) else 0
[PROOFSTEP]
apply hV.eq_ite
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
l₁ l₂ : (i : ι) → G i
s : Finset ι
em✝ : (a : Prop) → Decidable a
⊢ (∑ j in s, ∑ i in s, if i = j then inner (↑(V i) (l₁ i)) (↑(V j) (l₂ j)) else 0) = ∑ i in s, inner (l₁ i) (l₂ i)
[PROOFSTEP]
simp only [Finset.sum_ite_of_true, Finset.sum_ite_eq', LinearIsometry.inner_map_map, imp_self, imp_true_iff]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
l : (i : ι) → G i
s : Finset ι
⊢ ‖∑ i in s, ↑(V i) (l i)‖ ^ 2 = ∑ i in s, ‖l i‖ ^ 2
[PROOFSTEP]
have : ((‖∑ i in s, V i (l i)‖ : ℝ) : 𝕜) ^ 2 = ∑ i in s, ((‖l i‖ : ℝ) : 𝕜) ^ 2 := by
simp only [← inner_self_eq_norm_sq_to_K, hV.inner_sum]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
l : (i : ι) → G i
s : Finset ι
⊢ ↑‖∑ i in s, ↑(V i) (l i)‖ ^ 2 = ∑ i in s, ↑‖l i‖ ^ 2
[PROOFSTEP]
simp only [← inner_self_eq_norm_sq_to_K, hV.inner_sum]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
l : (i : ι) → G i
s : Finset ι
this : ↑‖∑ i in s, ↑(V i) (l i)‖ ^ 2 = ∑ i in s, ↑‖l i‖ ^ 2
⊢ ‖∑ i in s, ↑(V i) (l i)‖ ^ 2 = ∑ i in s, ‖l i‖ ^ 2
[PROOFSTEP]
exact_mod_cast this
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
α : ι → Type u_6
v_family : (i : ι) → α i → G i
hv_family : ∀ (i : ι), Orthonormal 𝕜 (v_family i)
⊢ Orthonormal 𝕜 fun a => ↑(V a.fst) (v_family a.fst a.snd)
[PROOFSTEP]
constructor
[GOAL]
case left
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
α : ι → Type u_6
v_family : (i : ι) → α i → G i
hv_family : ∀ (i : ι), Orthonormal 𝕜 (v_family i)
⊢ ∀ (i : (i : ι) × α i), ‖(fun a => ↑(V a.fst) (v_family a.fst a.snd)) i‖ = 1
[PROOFSTEP]
rintro ⟨i, v⟩
[GOAL]
case left.mk
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
α : ι → Type u_6
v_family : (i : ι) → α i → G i
hv_family : ∀ (i : ι), Orthonormal 𝕜 (v_family i)
i : ι
v : α i
⊢ ‖(fun a => ↑(V a.fst) (v_family a.fst a.snd)) { fst := i, snd := v }‖ = 1
[PROOFSTEP]
simpa only [LinearIsometry.norm_map] using (hv_family i).left v
[GOAL]
case right
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
α : ι → Type u_6
v_family : (i : ι) → α i → G i
hv_family : ∀ (i : ι), Orthonormal 𝕜 (v_family i)
⊢ ∀ {i j : (i : ι) × α i},
i ≠ j → inner ((fun a => ↑(V a.fst) (v_family a.fst a.snd)) i) ((fun a => ↑(V a.fst) (v_family a.fst a.snd)) j) = 0
[PROOFSTEP]
rintro ⟨i, v⟩ ⟨j, w⟩ hvw
[GOAL]
case right.mk.mk
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
α : ι → Type u_6
v_family : (i : ι) → α i → G i
hv_family : ∀ (i : ι), Orthonormal 𝕜 (v_family i)
i : ι
v : α i
j : ι
w : α j
hvw : { fst := i, snd := v } ≠ { fst := j, snd := w }
⊢ inner ((fun a => ↑(V a.fst) (v_family a.fst a.snd)) { fst := i, snd := v })
((fun a => ↑(V a.fst) (v_family a.fst a.snd)) { fst := j, snd := w }) =
0
[PROOFSTEP]
by_cases hij : i = j
[GOAL]
case pos
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
α : ι → Type u_6
v_family : (i : ι) → α i → G i
hv_family : ∀ (i : ι), Orthonormal 𝕜 (v_family i)
i : ι
v : α i
j : ι
w : α j
hvw : { fst := i, snd := v } ≠ { fst := j, snd := w }
hij : i = j
⊢ inner ((fun a => ↑(V a.fst) (v_family a.fst a.snd)) { fst := i, snd := v })
((fun a => ↑(V a.fst) (v_family a.fst a.snd)) { fst := j, snd := w }) =
0
[PROOFSTEP]
subst hij
[GOAL]
case pos
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
α : ι → Type u_6
v_family : (i : ι) → α i → G i
hv_family : ∀ (i : ι), Orthonormal 𝕜 (v_family i)
i : ι
v w : α i
hvw : { fst := i, snd := v } ≠ { fst := i, snd := w }
⊢ inner ((fun a => ↑(V a.fst) (v_family a.fst a.snd)) { fst := i, snd := v })
((fun a => ↑(V a.fst) (v_family a.fst a.snd)) { fst := i, snd := w }) =
0
[PROOFSTEP]
have : v ≠ w := fun h => by
subst h
exact hvw rfl
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
α : ι → Type u_6
v_family : (i : ι) → α i → G i
hv_family : ∀ (i : ι), Orthonormal 𝕜 (v_family i)
i : ι
v w : α i
hvw : { fst := i, snd := v } ≠ { fst := i, snd := w }
h : v = w
⊢ False
[PROOFSTEP]
subst h
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
α : ι → Type u_6
v_family : (i : ι) → α i → G i
hv_family : ∀ (i : ι), Orthonormal 𝕜 (v_family i)
i : ι
v : α i
hvw : { fst := i, snd := v } ≠ { fst := i, snd := v }
⊢ False
[PROOFSTEP]
exact hvw rfl
[GOAL]
case pos
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
α : ι → Type u_6
v_family : (i : ι) → α i → G i
hv_family : ∀ (i : ι), Orthonormal 𝕜 (v_family i)
i : ι
v w : α i
hvw : { fst := i, snd := v } ≠ { fst := i, snd := w }
this : v ≠ w
⊢ inner ((fun a => ↑(V a.fst) (v_family a.fst a.snd)) { fst := i, snd := v })
((fun a => ↑(V a.fst) (v_family a.fst a.snd)) { fst := i, snd := w }) =
0
[PROOFSTEP]
simpa only [LinearIsometry.inner_map_map] using (hv_family i).2 this
[GOAL]
case neg
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
α : ι → Type u_6
v_family : (i : ι) → α i → G i
hv_family : ∀ (i : ι), Orthonormal 𝕜 (v_family i)
i : ι
v : α i
j : ι
w : α j
hvw : { fst := i, snd := v } ≠ { fst := j, snd := w }
hij : ¬i = j
⊢ inner ((fun a => ↑(V a.fst) (v_family a.fst a.snd)) { fst := i, snd := v })
((fun a => ↑(V a.fst) (v_family a.fst a.snd)) { fst := j, snd := w }) =
0
[PROOFSTEP]
exact hV hij (v_family i v) (v_family j w)
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
f : (i : ι) → G i
s₁ s₂ : Finset ι
⊢ ‖∑ i in s₁, ↑(V i) (f i) - ∑ i in s₂, ↑(V i) (f i)‖ ^ 2 = ∑ i in s₁ \ s₂, ‖f i‖ ^ 2 + ∑ i in s₂ \ s₁, ‖f i‖ ^ 2
[PROOFSTEP]
rw [← Finset.sum_sdiff_sub_sum_sdiff, sub_eq_add_neg, ← Finset.sum_neg_distrib]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
f : (i : ι) → G i
s₁ s₂ : Finset ι
⊢ ‖∑ x in s₁ \ s₂, ↑(V x) (f x) + ∑ x in s₂ \ s₁, -↑(V x) (f x)‖ ^ 2 =
∑ i in s₁ \ s₂, ‖f i‖ ^ 2 + ∑ i in s₂ \ s₁, ‖f i‖ ^ 2
[PROOFSTEP]
let F : ∀ i, G i := fun i => if i ∈ s₁ then f i else -f i
[GOAL]
𝕜 : Type u_1
E : Type u_2
F✝ : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F✝
inst✝² : InnerProductSpace ℝ F✝
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
f : (i : ι) → G i
s₁ s₂ : Finset ι
F : (i : ι) → G i := fun i => if i ∈ s₁ then f i else -f i
⊢ ‖∑ x in s₁ \ s₂, ↑(V x) (f x) + ∑ x in s₂ \ s₁, -↑(V x) (f x)‖ ^ 2 =
∑ i in s₁ \ s₂, ‖f i‖ ^ 2 + ∑ i in s₂ \ s₁, ‖f i‖ ^ 2
[PROOFSTEP]
have hF₁ : ∀ i ∈ s₁ \ s₂, F i = f i := fun i hi => if_pos (Finset.sdiff_subset _ _ hi)
[GOAL]
𝕜 : Type u_1
E : Type u_2
F✝ : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F✝
inst✝² : InnerProductSpace ℝ F✝
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
f : (i : ι) → G i
s₁ s₂ : Finset ι
F : (i : ι) → G i := fun i => if i ∈ s₁ then f i else -f i
hF₁ : ∀ (i : ι), i ∈ s₁ \ s₂ → F i = f i
⊢ ‖∑ x in s₁ \ s₂, ↑(V x) (f x) + ∑ x in s₂ \ s₁, -↑(V x) (f x)‖ ^ 2 =
∑ i in s₁ \ s₂, ‖f i‖ ^ 2 + ∑ i in s₂ \ s₁, ‖f i‖ ^ 2
[PROOFSTEP]
have hF₂ : ∀ i ∈ s₂ \ s₁, F i = -f i := fun i hi => if_neg (Finset.mem_sdiff.mp hi).2
[GOAL]
𝕜 : Type u_1
E : Type u_2
F✝ : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F✝
inst✝² : InnerProductSpace ℝ F✝
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
f : (i : ι) → G i
s₁ s₂ : Finset ι
F : (i : ι) → G i := fun i => if i ∈ s₁ then f i else -f i
hF₁ : ∀ (i : ι), i ∈ s₁ \ s₂ → F i = f i
hF₂ : ∀ (i : ι), i ∈ s₂ \ s₁ → F i = -f i
⊢ ‖∑ x in s₁ \ s₂, ↑(V x) (f x) + ∑ x in s₂ \ s₁, -↑(V x) (f x)‖ ^ 2 =
∑ i in s₁ \ s₂, ‖f i‖ ^ 2 + ∑ i in s₂ \ s₁, ‖f i‖ ^ 2
[PROOFSTEP]
have hF : ∀ i, ‖F i‖ = ‖f i‖ := by
intro i
dsimp only
split_ifs <;> simp only [eq_self_iff_true, norm_neg]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F✝ : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F✝
inst✝² : InnerProductSpace ℝ F✝
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
f : (i : ι) → G i
s₁ s₂ : Finset ι
F : (i : ι) → G i := fun i => if i ∈ s₁ then f i else -f i
hF₁ : ∀ (i : ι), i ∈ s₁ \ s₂ → F i = f i
hF₂ : ∀ (i : ι), i ∈ s₂ \ s₁ → F i = -f i
⊢ ∀ (i : ι), ‖F i‖ = ‖f i‖
[PROOFSTEP]
intro i
[GOAL]
𝕜 : Type u_1
E : Type u_2
F✝ : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F✝
inst✝² : InnerProductSpace ℝ F✝
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
f : (i : ι) → G i
s₁ s₂ : Finset ι
F : (i : ι) → G i := fun i => if i ∈ s₁ then f i else -f i
hF₁ : ∀ (i : ι), i ∈ s₁ \ s₂ → F i = f i
hF₂ : ∀ (i : ι), i ∈ s₂ \ s₁ → F i = -f i
i : ι
⊢ ‖F i‖ = ‖f i‖
[PROOFSTEP]
dsimp only
[GOAL]
𝕜 : Type u_1
E : Type u_2
F✝ : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F✝
inst✝² : InnerProductSpace ℝ F✝
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
f : (i : ι) → G i
s₁ s₂ : Finset ι
F : (i : ι) → G i := fun i => if i ∈ s₁ then f i else -f i
hF₁ : ∀ (i : ι), i ∈ s₁ \ s₂ → F i = f i
hF₂ : ∀ (i : ι), i ∈ s₂ \ s₁ → F i = -f i
i : ι
⊢ ‖if i ∈ s₁ then f i else -f i‖ = ‖f i‖
[PROOFSTEP]
split_ifs
[GOAL]
case pos
𝕜 : Type u_1
E : Type u_2
F✝ : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F✝
inst✝² : InnerProductSpace ℝ F✝
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
f : (i : ι) → G i
s₁ s₂ : Finset ι
F : (i : ι) → G i := fun i => if i ∈ s₁ then f i else -f i
hF₁ : ∀ (i : ι), i ∈ s₁ \ s₂ → F i = f i
hF₂ : ∀ (i : ι), i ∈ s₂ \ s₁ → F i = -f i
i : ι
h✝ : i ∈ s₁
⊢ ‖f i‖ = ‖f i‖
[PROOFSTEP]
simp only [eq_self_iff_true, norm_neg]
[GOAL]
case neg
𝕜 : Type u_1
E : Type u_2
F✝ : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F✝
inst✝² : InnerProductSpace ℝ F✝
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
f : (i : ι) → G i
s₁ s₂ : Finset ι
F : (i : ι) → G i := fun i => if i ∈ s₁ then f i else -f i
hF₁ : ∀ (i : ι), i ∈ s₁ \ s₂ → F i = f i
hF₂ : ∀ (i : ι), i ∈ s₂ \ s₁ → F i = -f i
i : ι
h✝ : ¬i ∈ s₁
⊢ ‖-f i‖ = ‖f i‖
[PROOFSTEP]
simp only [eq_self_iff_true, norm_neg]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F✝ : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F✝
inst✝² : InnerProductSpace ℝ F✝
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
f : (i : ι) → G i
s₁ s₂ : Finset ι
F : (i : ι) → G i := fun i => if i ∈ s₁ then f i else -f i
hF₁ : ∀ (i : ι), i ∈ s₁ \ s₂ → F i = f i
hF₂ : ∀ (i : ι), i ∈ s₂ \ s₁ → F i = -f i
hF : ∀ (i : ι), ‖F i‖ = ‖f i‖
⊢ ‖∑ x in s₁ \ s₂, ↑(V x) (f x) + ∑ x in s₂ \ s₁, -↑(V x) (f x)‖ ^ 2 =
∑ i in s₁ \ s₂, ‖f i‖ ^ 2 + ∑ i in s₂ \ s₁, ‖f i‖ ^ 2
[PROOFSTEP]
have :
‖(∑ i in s₁ \ s₂, V i (F i)) + ∑ i in s₂ \ s₁, V i (F i)‖ ^ 2 =
(∑ i in s₁ \ s₂, ‖F i‖ ^ 2) + ∑ i in s₂ \ s₁, ‖F i‖ ^ 2 :=
by
have hs : Disjoint (s₁ \ s₂) (s₂ \ s₁) := disjoint_sdiff_sdiff
simpa only [Finset.sum_union hs] using hV.norm_sum F (s₁ \ s₂ ∪ s₂ \ s₁)
[GOAL]
𝕜 : Type u_1
E : Type u_2
F✝ : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F✝
inst✝² : InnerProductSpace ℝ F✝
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
f : (i : ι) → G i
s₁ s₂ : Finset ι
F : (i : ι) → G i := fun i => if i ∈ s₁ then f i else -f i
hF₁ : ∀ (i : ι), i ∈ s₁ \ s₂ → F i = f i
hF₂ : ∀ (i : ι), i ∈ s₂ \ s₁ → F i = -f i
hF : ∀ (i : ι), ‖F i‖ = ‖f i‖
⊢ ‖∑ i in s₁ \ s₂, ↑(V i) (F i) + ∑ i in s₂ \ s₁, ↑(V i) (F i)‖ ^ 2 =
∑ i in s₁ \ s₂, ‖F i‖ ^ 2 + ∑ i in s₂ \ s₁, ‖F i‖ ^ 2
[PROOFSTEP]
have hs : Disjoint (s₁ \ s₂) (s₂ \ s₁) := disjoint_sdiff_sdiff
[GOAL]
𝕜 : Type u_1
E : Type u_2
F✝ : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F✝
inst✝² : InnerProductSpace ℝ F✝
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
f : (i : ι) → G i
s₁ s₂ : Finset ι
F : (i : ι) → G i := fun i => if i ∈ s₁ then f i else -f i
hF₁ : ∀ (i : ι), i ∈ s₁ \ s₂ → F i = f i
hF₂ : ∀ (i : ι), i ∈ s₂ \ s₁ → F i = -f i
hF : ∀ (i : ι), ‖F i‖ = ‖f i‖
hs : Disjoint (s₁ \ s₂) (s₂ \ s₁)
⊢ ‖∑ i in s₁ \ s₂, ↑(V i) (F i) + ∑ i in s₂ \ s₁, ↑(V i) (F i)‖ ^ 2 =
∑ i in s₁ \ s₂, ‖F i‖ ^ 2 + ∑ i in s₂ \ s₁, ‖F i‖ ^ 2
[PROOFSTEP]
simpa only [Finset.sum_union hs] using hV.norm_sum F (s₁ \ s₂ ∪ s₂ \ s₁)
[GOAL]
𝕜 : Type u_1
E : Type u_2
F✝ : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F✝
inst✝² : InnerProductSpace ℝ F✝
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
f : (i : ι) → G i
s₁ s₂ : Finset ι
F : (i : ι) → G i := fun i => if i ∈ s₁ then f i else -f i
hF₁ : ∀ (i : ι), i ∈ s₁ \ s₂ → F i = f i
hF₂ : ∀ (i : ι), i ∈ s₂ \ s₁ → F i = -f i
hF : ∀ (i : ι), ‖F i‖ = ‖f i‖
this :
‖∑ i in s₁ \ s₂, ↑(V i) (F i) + ∑ i in s₂ \ s₁, ↑(V i) (F i)‖ ^ 2 =
∑ i in s₁ \ s₂, ‖F i‖ ^ 2 + ∑ i in s₂ \ s₁, ‖F i‖ ^ 2
⊢ ‖∑ x in s₁ \ s₂, ↑(V x) (f x) + ∑ x in s₂ \ s₁, -↑(V x) (f x)‖ ^ 2 =
∑ i in s₁ \ s₂, ‖f i‖ ^ 2 + ∑ i in s₂ \ s₁, ‖f i‖ ^ 2
[PROOFSTEP]
convert this using 4
[GOAL]
case h.e'_2.h.e'_5.h.e'_3.h.e'_5
𝕜 : Type u_1
E : Type u_2
F✝ : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F✝
inst✝² : InnerProductSpace ℝ F✝
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
f : (i : ι) → G i
s₁ s₂ : Finset ι
F : (i : ι) → G i := fun i => if i ∈ s₁ then f i else -f i
hF₁ : ∀ (i : ι), i ∈ s₁ \ s₂ → F i = f i
hF₂ : ∀ (i : ι), i ∈ s₂ \ s₁ → F i = -f i
hF : ∀ (i : ι), ‖F i‖ = ‖f i‖
this :
‖∑ i in s₁ \ s₂, ↑(V i) (F i) + ∑ i in s₂ \ s₁, ↑(V i) (F i)‖ ^ 2 =
∑ i in s₁ \ s₂, ‖F i‖ ^ 2 + ∑ i in s₂ \ s₁, ‖F i‖ ^ 2
⊢ ∑ x in s₁ \ s₂, ↑(V x) (f x) = ∑ i in s₁ \ s₂, ↑(V i) (F i)
[PROOFSTEP]
refine' Finset.sum_congr rfl fun i hi => _
[GOAL]
case h.e'_2.h.e'_5.h.e'_3.h.e'_5
𝕜 : Type u_1
E : Type u_2
F✝ : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F✝
inst✝² : InnerProductSpace ℝ F✝
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
f : (i : ι) → G i
s₁ s₂ : Finset ι
F : (i : ι) → G i := fun i => if i ∈ s₁ then f i else -f i
hF₁ : ∀ (i : ι), i ∈ s₁ \ s₂ → F i = f i
hF₂ : ∀ (i : ι), i ∈ s₂ \ s₁ → F i = -f i
hF : ∀ (i : ι), ‖F i‖ = ‖f i‖
this :
‖∑ i in s₁ \ s₂, ↑(V i) (F i) + ∑ i in s₂ \ s₁, ↑(V i) (F i)‖ ^ 2 =
∑ i in s₁ \ s₂, ‖F i‖ ^ 2 + ∑ i in s₂ \ s₁, ‖F i‖ ^ 2
i : ι
hi : i ∈ s₁ \ s₂
⊢ ↑(V i) (f i) = ↑(V i) (F i)
[PROOFSTEP]
simp only [hF₁ i hi]
[GOAL]
case h.e'_2.h.e'_5.h.e'_3.h.e'_6
𝕜 : Type u_1
E : Type u_2
F✝ : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F✝
inst✝² : InnerProductSpace ℝ F✝
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
f : (i : ι) → G i
s₁ s₂ : Finset ι
F : (i : ι) → G i := fun i => if i ∈ s₁ then f i else -f i
hF₁ : ∀ (i : ι), i ∈ s₁ \ s₂ → F i = f i
hF₂ : ∀ (i : ι), i ∈ s₂ \ s₁ → F i = -f i
hF : ∀ (i : ι), ‖F i‖ = ‖f i‖
this :
‖∑ i in s₁ \ s₂, ↑(V i) (F i) + ∑ i in s₂ \ s₁, ↑(V i) (F i)‖ ^ 2 =
∑ i in s₁ \ s₂, ‖F i‖ ^ 2 + ∑ i in s₂ \ s₁, ‖F i‖ ^ 2
⊢ ∑ x in s₂ \ s₁, -↑(V x) (f x) = ∑ i in s₂ \ s₁, ↑(V i) (F i)
[PROOFSTEP]
refine' Finset.sum_congr rfl fun i hi => _
[GOAL]
case h.e'_2.h.e'_5.h.e'_3.h.e'_6
𝕜 : Type u_1
E : Type u_2
F✝ : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F✝
inst✝² : InnerProductSpace ℝ F✝
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
f : (i : ι) → G i
s₁ s₂ : Finset ι
F : (i : ι) → G i := fun i => if i ∈ s₁ then f i else -f i
hF₁ : ∀ (i : ι), i ∈ s₁ \ s₂ → F i = f i
hF₂ : ∀ (i : ι), i ∈ s₂ \ s₁ → F i = -f i
hF : ∀ (i : ι), ‖F i‖ = ‖f i‖
this :
‖∑ i in s₁ \ s₂, ↑(V i) (F i) + ∑ i in s₂ \ s₁, ↑(V i) (F i)‖ ^ 2 =
∑ i in s₁ \ s₂, ‖F i‖ ^ 2 + ∑ i in s₂ \ s₁, ‖F i‖ ^ 2
i : ι
hi : i ∈ s₂ \ s₁
⊢ -↑(V i) (f i) = ↑(V i) (F i)
[PROOFSTEP]
simp only [hF₂ i hi, LinearIsometry.map_neg]
[GOAL]
case h.e'_3.h.e'_5.a.h.e'_5
𝕜 : Type u_1
E : Type u_2
F✝ : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F✝
inst✝² : InnerProductSpace ℝ F✝
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
f : (i : ι) → G i
s₁ s₂ : Finset ι
F : (i : ι) → G i := fun i => if i ∈ s₁ then f i else -f i
hF₁ : ∀ (i : ι), i ∈ s₁ \ s₂ → F i = f i
hF₂ : ∀ (i : ι), i ∈ s₂ \ s₁ → F i = -f i
hF : ∀ (i : ι), ‖F i‖ = ‖f i‖
this :
‖∑ i in s₁ \ s₂, ↑(V i) (F i) + ∑ i in s₂ \ s₁, ↑(V i) (F i)‖ ^ 2 =
∑ i in s₁ \ s₂, ‖F i‖ ^ 2 + ∑ i in s₂ \ s₁, ‖F i‖ ^ 2
x✝ : ι
a✝ : x✝ ∈ s₁ \ s₂
⊢ ‖f x✝‖ = ‖F x✝‖
[PROOFSTEP]
simp only [hF]
[GOAL]
case h.e'_3.h.e'_6.a.h.e'_5
𝕜 : Type u_1
E : Type u_2
F✝ : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F✝
inst✝² : InnerProductSpace ℝ F✝
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
f : (i : ι) → G i
s₁ s₂ : Finset ι
F : (i : ι) → G i := fun i => if i ∈ s₁ then f i else -f i
hF₁ : ∀ (i : ι), i ∈ s₁ \ s₂ → F i = f i
hF₂ : ∀ (i : ι), i ∈ s₂ \ s₁ → F i = -f i
hF : ∀ (i : ι), ‖F i‖ = ‖f i‖
this :
‖∑ i in s₁ \ s₂, ↑(V i) (F i) + ∑ i in s₂ \ s₁, ↑(V i) (F i)‖ ^ 2 =
∑ i in s₁ \ s₂, ‖F i‖ ^ 2 + ∑ i in s₂ \ s₁, ‖F i‖ ^ 2
x✝ : ι
a✝ : x✝ ∈ s₂ \ s₁
⊢ ‖f x✝‖ = ‖F x✝‖
[PROOFSTEP]
simp only [hF]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
inst✝ : CompleteSpace E
f : (i : ι) → G i
⊢ (Summable fun i => ↑(V i) (f i)) ↔ Summable fun i => ‖f i‖ ^ 2
[PROOFSTEP]
classical
clear dec_ι
simp only [summable_iff_cauchySeq_finset, NormedAddCommGroup.cauchySeq_iff, Real.norm_eq_abs]
constructor
· intro hf ε hε
obtain ⟨a, H⟩ := hf _ (sqrt_pos.mpr hε)
use a
intro s₁ hs₁ s₂ hs₂
rw [← Finset.sum_sdiff_sub_sum_sdiff]
refine' (abs_sub _ _).trans_lt _
have : ∀ i, 0 ≤ ‖f i‖ ^ 2 := fun i : ι => sq_nonneg _
simp only [Finset.abs_sum_of_nonneg' this]
have : ((∑ i in s₁ \ s₂, ‖f i‖ ^ 2) + ∑ i in s₂ \ s₁, ‖f i‖ ^ 2) < sqrt ε ^ 2 :=
by
rw [← hV.norm_sq_diff_sum, sq_lt_sq, abs_of_nonneg (sqrt_nonneg _), abs_of_nonneg (norm_nonneg _)]
exact H s₁ hs₁ s₂ hs₂
have hη := sq_sqrt (le_of_lt hε)
linarith
· intro hf ε hε
have hε' : 0 < ε ^ 2 / 2 := half_pos (sq_pos_of_pos hε)
obtain ⟨a, H⟩ := hf _ hε'
use a
intro s₁ hs₁ s₂ hs₂
refine' (abs_lt_of_sq_lt_sq' _ (le_of_lt hε)).2
have has : a ≤ s₁ ⊓ s₂ := le_inf hs₁ hs₂
rw [hV.norm_sq_diff_sum]
have Hs₁ : ∑ x : ι in s₁ \ s₂, ‖f x‖ ^ 2 < ε ^ 2 / 2 :=
by
convert H _ hs₁ _ has
have : s₁ ⊓ s₂ ⊆ s₁ := Finset.inter_subset_left _ _
rw [← Finset.sum_sdiff this, add_tsub_cancel_right, Finset.abs_sum_of_nonneg']
· simp
· exact fun i => sq_nonneg _
have Hs₂ : ∑ x : ι in s₂ \ s₁, ‖f x‖ ^ 2 < ε ^ 2 / 2 :=
by
convert H _ hs₂ _ has
have : s₁ ⊓ s₂ ⊆ s₂ := Finset.inter_subset_right _ _
rw [← Finset.sum_sdiff this, add_tsub_cancel_right, Finset.abs_sum_of_nonneg']
· simp
· exact fun i => sq_nonneg _
linarith
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
inst✝ : CompleteSpace E
f : (i : ι) → G i
⊢ (Summable fun i => ↑(V i) (f i)) ↔ Summable fun i => ‖f i‖ ^ 2
[PROOFSTEP]
clear dec_ι
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
G : ι → Type u_5
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
inst✝ : CompleteSpace E
f : (i : ι) → G i
⊢ (Summable fun i => ↑(V i) (f i)) ↔ Summable fun i => ‖f i‖ ^ 2
[PROOFSTEP]
simp only [summable_iff_cauchySeq_finset, NormedAddCommGroup.cauchySeq_iff, Real.norm_eq_abs]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
G : ι → Type u_5
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
inst✝ : CompleteSpace E
f : (i : ι) → G i
⊢ (∀ (ε : ℝ),
ε > 0 →
∃ N,
∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < ε) ↔
∀ (ε : ℝ),
ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε
[PROOFSTEP]
constructor
[GOAL]
case mp
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
G : ι → Type u_5
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
inst✝ : CompleteSpace E
f : (i : ι) → G i
⊢ (∀ (ε : ℝ),
ε > 0 →
∃ N,
∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < ε) →
∀ (ε : ℝ),
ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε
[PROOFSTEP]
intro hf ε hε
[GOAL]
case mp
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
G : ι → Type u_5
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
inst✝ : CompleteSpace E
f : (i : ι) → G i
hf :
∀ (ε : ℝ),
ε > 0 →
∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < ε
ε : ℝ
hε : ε > 0
⊢ ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε
[PROOFSTEP]
obtain ⟨a, H⟩ := hf _ (sqrt_pos.mpr hε)
[GOAL]
case mp.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
G : ι → Type u_5
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
inst✝ : CompleteSpace E
f : (i : ι) → G i
hf :
∀ (ε : ℝ),
ε > 0 →
∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < ε
ε : ℝ
hε : ε > 0
a : Finset ι
H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < sqrt ε
⊢ ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε
[PROOFSTEP]
use a
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
G : ι → Type u_5
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
inst✝ : CompleteSpace E
f : (i : ι) → G i
hf :
∀ (ε : ℝ),
ε > 0 →
∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < ε
ε : ℝ
hε : ε > 0
a : Finset ι
H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < sqrt ε
⊢ ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε
[PROOFSTEP]
intro s₁ hs₁ s₂ hs₂
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
G : ι → Type u_5
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
inst✝ : CompleteSpace E
f : (i : ι) → G i
hf :
∀ (ε : ℝ),
ε > 0 →
∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < ε
ε : ℝ
hε : ε > 0
a : Finset ι
H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < sqrt ε
s₁ : Finset ι
hs₁ : a ≤ s₁
s₂ : Finset ι
hs₂ : a ≤ s₂
⊢ |∑ i in s₁, ‖f i‖ ^ 2 - ∑ i in s₂, ‖f i‖ ^ 2| < ε
[PROOFSTEP]
rw [← Finset.sum_sdiff_sub_sum_sdiff]
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
G : ι → Type u_5
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
inst✝ : CompleteSpace E
f : (i : ι) → G i
hf :
∀ (ε : ℝ),
ε > 0 →
∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < ε
ε : ℝ
hε : ε > 0
a : Finset ι
H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < sqrt ε
s₁ : Finset ι
hs₁ : a ≤ s₁
s₂ : Finset ι
hs₂ : a ≤ s₂
⊢ |∑ x in s₁ \ s₂, ‖f x‖ ^ 2 - ∑ x in s₂ \ s₁, ‖f x‖ ^ 2| < ε
[PROOFSTEP]
refine' (abs_sub _ _).trans_lt _
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
G : ι → Type u_5
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
inst✝ : CompleteSpace E
f : (i : ι) → G i
hf :
∀ (ε : ℝ),
ε > 0 →
∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < ε
ε : ℝ
hε : ε > 0
a : Finset ι
H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < sqrt ε
s₁ : Finset ι
hs₁ : a ≤ s₁
s₂ : Finset ι
hs₂ : a ≤ s₂
⊢ |∑ x in s₁ \ s₂, ‖f x‖ ^ 2| + |∑ x in s₂ \ s₁, ‖f x‖ ^ 2| < ε
[PROOFSTEP]
have : ∀ i, 0 ≤ ‖f i‖ ^ 2 := fun i : ι => sq_nonneg _
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
G : ι → Type u_5
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
inst✝ : CompleteSpace E
f : (i : ι) → G i
hf :
∀ (ε : ℝ),
ε > 0 →
∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < ε
ε : ℝ
hε : ε > 0
a : Finset ι
H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < sqrt ε
s₁ : Finset ι
hs₁ : a ≤ s₁
s₂ : Finset ι
hs₂ : a ≤ s₂
this : ∀ (i : ι), 0 ≤ ‖f i‖ ^ 2
⊢ |∑ x in s₁ \ s₂, ‖f x‖ ^ 2| + |∑ x in s₂ \ s₁, ‖f x‖ ^ 2| < ε
[PROOFSTEP]
simp only [Finset.abs_sum_of_nonneg' this]
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
G : ι → Type u_5
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
inst✝ : CompleteSpace E
f : (i : ι) → G i
hf :
∀ (ε : ℝ),
ε > 0 →
∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < ε
ε : ℝ
hε : ε > 0
a : Finset ι
H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < sqrt ε
s₁ : Finset ι
hs₁ : a ≤ s₁
s₂ : Finset ι
hs₂ : a ≤ s₂
this : ∀ (i : ι), 0 ≤ ‖f i‖ ^ 2
⊢ ∑ x in s₁ \ s₂, ‖f x‖ ^ 2 + ∑ x in s₂ \ s₁, ‖f x‖ ^ 2 < ε
[PROOFSTEP]
have : ((∑ i in s₁ \ s₂, ‖f i‖ ^ 2) + ∑ i in s₂ \ s₁, ‖f i‖ ^ 2) < sqrt ε ^ 2 :=
by
rw [← hV.norm_sq_diff_sum, sq_lt_sq, abs_of_nonneg (sqrt_nonneg _), abs_of_nonneg (norm_nonneg _)]
exact H s₁ hs₁ s₂ hs₂
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
G : ι → Type u_5
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
inst✝ : CompleteSpace E
f : (i : ι) → G i
hf :
∀ (ε : ℝ),
ε > 0 →
∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < ε
ε : ℝ
hε : ε > 0
a : Finset ι
H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < sqrt ε
s₁ : Finset ι
hs₁ : a ≤ s₁
s₂ : Finset ι
hs₂ : a ≤ s₂
this : ∀ (i : ι), 0 ≤ ‖f i‖ ^ 2
⊢ ∑ i in s₁ \ s₂, ‖f i‖ ^ 2 + ∑ i in s₂ \ s₁, ‖f i‖ ^ 2 < sqrt ε ^ 2
[PROOFSTEP]
rw [← hV.norm_sq_diff_sum, sq_lt_sq, abs_of_nonneg (sqrt_nonneg _), abs_of_nonneg (norm_nonneg _)]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
G : ι → Type u_5
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
inst✝ : CompleteSpace E
f : (i : ι) → G i
hf :
∀ (ε : ℝ),
ε > 0 →
∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < ε
ε : ℝ
hε : ε > 0
a : Finset ι
H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < sqrt ε
s₁ : Finset ι
hs₁ : a ≤ s₁
s₂ : Finset ι
hs₂ : a ≤ s₂
this : ∀ (i : ι), 0 ≤ ‖f i‖ ^ 2
⊢ ‖∑ i in s₁, ↑(V i) (f i) - ∑ i in s₂, ↑(V i) (f i)‖ < sqrt ε
[PROOFSTEP]
exact H s₁ hs₁ s₂ hs₂
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
G : ι → Type u_5
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
inst✝ : CompleteSpace E
f : (i : ι) → G i
hf :
∀ (ε : ℝ),
ε > 0 →
∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < ε
ε : ℝ
hε : ε > 0
a : Finset ι
H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < sqrt ε
s₁ : Finset ι
hs₁ : a ≤ s₁
s₂ : Finset ι
hs₂ : a ≤ s₂
this✝ : ∀ (i : ι), 0 ≤ ‖f i‖ ^ 2
this : ∑ i in s₁ \ s₂, ‖f i‖ ^ 2 + ∑ i in s₂ \ s₁, ‖f i‖ ^ 2 < sqrt ε ^ 2
⊢ ∑ x in s₁ \ s₂, ‖f x‖ ^ 2 + ∑ x in s₂ \ s₁, ‖f x‖ ^ 2 < ε
[PROOFSTEP]
have hη := sq_sqrt (le_of_lt hε)
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
G : ι → Type u_5
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
inst✝ : CompleteSpace E
f : (i : ι) → G i
hf :
∀ (ε : ℝ),
ε > 0 →
∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < ε
ε : ℝ
hε : ε > 0
a : Finset ι
H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < sqrt ε
s₁ : Finset ι
hs₁ : a ≤ s₁
s₂ : Finset ι
hs₂ : a ≤ s₂
this✝ : ∀ (i : ι), 0 ≤ ‖f i‖ ^ 2
this : ∑ i in s₁ \ s₂, ‖f i‖ ^ 2 + ∑ i in s₂ \ s₁, ‖f i‖ ^ 2 < sqrt ε ^ 2
hη : sqrt ε ^ 2 = ε
⊢ ∑ x in s₁ \ s₂, ‖f x‖ ^ 2 + ∑ x in s₂ \ s₁, ‖f x‖ ^ 2 < ε
[PROOFSTEP]
linarith
[GOAL]
case mpr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
G : ι → Type u_5
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
inst✝ : CompleteSpace E
f : (i : ι) → G i
⊢ (∀ (ε : ℝ),
ε > 0 →
∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε) →
∀ (ε : ℝ),
ε > 0 →
∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < ε
[PROOFSTEP]
intro hf ε hε
[GOAL]
case mpr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
G : ι → Type u_5
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
inst✝ : CompleteSpace E
f : (i : ι) → G i
hf :
∀ (ε : ℝ),
ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε
ε : ℝ
hε : ε > 0
⊢ ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < ε
[PROOFSTEP]
have hε' : 0 < ε ^ 2 / 2 := half_pos (sq_pos_of_pos hε)
[GOAL]
case mpr
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
G : ι → Type u_5
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
inst✝ : CompleteSpace E
f : (i : ι) → G i
hf :
∀ (ε : ℝ),
ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε
ε : ℝ
hε : ε > 0
hε' : 0 < ε ^ 2 / 2
⊢ ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < ε
[PROOFSTEP]
obtain ⟨a, H⟩ := hf _ hε'
[GOAL]
case mpr.intro
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
G : ι → Type u_5
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
inst✝ : CompleteSpace E
f : (i : ι) → G i
hf :
∀ (ε : ℝ),
ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε
ε : ℝ
hε : ε > 0
hε' : 0 < ε ^ 2 / 2
a : Finset ι
H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ^ 2 / 2
⊢ ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < ε
[PROOFSTEP]
use a
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
G : ι → Type u_5
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
inst✝ : CompleteSpace E
f : (i : ι) → G i
hf :
∀ (ε : ℝ),
ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε
ε : ℝ
hε : ε > 0
hε' : 0 < ε ^ 2 / 2
a : Finset ι
H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ^ 2 / 2
⊢ ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < ε
[PROOFSTEP]
intro s₁ hs₁ s₂ hs₂
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
G : ι → Type u_5
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
inst✝ : CompleteSpace E
f : (i : ι) → G i
hf :
∀ (ε : ℝ),
ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε
ε : ℝ
hε : ε > 0
hε' : 0 < ε ^ 2 / 2
a : Finset ι
H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ^ 2 / 2
s₁ : Finset ι
hs₁ : a ≤ s₁
s₂ : Finset ι
hs₂ : a ≤ s₂
⊢ ‖∑ b in s₁, ↑(V b) (f b) - ∑ b in s₂, ↑(V b) (f b)‖ < ε
[PROOFSTEP]
refine' (abs_lt_of_sq_lt_sq' _ (le_of_lt hε)).2
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
G : ι → Type u_5
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
inst✝ : CompleteSpace E
f : (i : ι) → G i
hf :
∀ (ε : ℝ),
ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε
ε : ℝ
hε : ε > 0
hε' : 0 < ε ^ 2 / 2
a : Finset ι
H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ^ 2 / 2
s₁ : Finset ι
hs₁ : a ≤ s₁
s₂ : Finset ι
hs₂ : a ≤ s₂
⊢ ‖∑ b in s₁, ↑(V b) (f b) - ∑ b in s₂, ↑(V b) (f b)‖ ^ 2 < ε ^ 2
[PROOFSTEP]
have has : a ≤ s₁ ⊓ s₂ := le_inf hs₁ hs₂
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
G : ι → Type u_5
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
inst✝ : CompleteSpace E
f : (i : ι) → G i
hf :
∀ (ε : ℝ),
ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε
ε : ℝ
hε : ε > 0
hε' : 0 < ε ^ 2 / 2
a : Finset ι
H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ^ 2 / 2
s₁ : Finset ι
hs₁ : a ≤ s₁
s₂ : Finset ι
hs₂ : a ≤ s₂
has : a ≤ s₁ ⊓ s₂
⊢ ‖∑ b in s₁, ↑(V b) (f b) - ∑ b in s₂, ↑(V b) (f b)‖ ^ 2 < ε ^ 2
[PROOFSTEP]
rw [hV.norm_sq_diff_sum]
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
G : ι → Type u_5
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
inst✝ : CompleteSpace E
f : (i : ι) → G i
hf :
∀ (ε : ℝ),
ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε
ε : ℝ
hε : ε > 0
hε' : 0 < ε ^ 2 / 2
a : Finset ι
H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ^ 2 / 2
s₁ : Finset ι
hs₁ : a ≤ s₁
s₂ : Finset ι
hs₂ : a ≤ s₂
has : a ≤ s₁ ⊓ s₂
⊢ ∑ i in s₁ \ s₂, ‖f i‖ ^ 2 + ∑ i in s₂ \ s₁, ‖f i‖ ^ 2 < ε ^ 2
[PROOFSTEP]
have Hs₁ : ∑ x : ι in s₁ \ s₂, ‖f x‖ ^ 2 < ε ^ 2 / 2 :=
by
convert H _ hs₁ _ has
have : s₁ ⊓ s₂ ⊆ s₁ := Finset.inter_subset_left _ _
rw [← Finset.sum_sdiff this, add_tsub_cancel_right, Finset.abs_sum_of_nonneg']
· simp
· exact fun i => sq_nonneg _
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
G : ι → Type u_5
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
inst✝ : CompleteSpace E
f : (i : ι) → G i
hf :
∀ (ε : ℝ),
ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε
ε : ℝ
hε : ε > 0
hε' : 0 < ε ^ 2 / 2
a : Finset ι
H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ^ 2 / 2
s₁ : Finset ι
hs₁ : a ≤ s₁
s₂ : Finset ι
hs₂ : a ≤ s₂
has : a ≤ s₁ ⊓ s₂
⊢ ∑ x in s₁ \ s₂, ‖f x‖ ^ 2 < ε ^ 2 / 2
[PROOFSTEP]
convert H _ hs₁ _ has
[GOAL]
case h.e'_3
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
G : ι → Type u_5
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
inst✝ : CompleteSpace E
f : (i : ι) → G i
hf :
∀ (ε : ℝ),
ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε
ε : ℝ
hε : ε > 0
hε' : 0 < ε ^ 2 / 2
a : Finset ι
H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ^ 2 / 2
s₁ : Finset ι
hs₁ : a ≤ s₁
s₂ : Finset ι
hs₂ : a ≤ s₂
has : a ≤ s₁ ⊓ s₂
⊢ ∑ x in s₁ \ s₂, ‖f x‖ ^ 2 = |∑ i in s₁, ‖f i‖ ^ 2 - ∑ i in s₁ ⊓ s₂, ‖f i‖ ^ 2|
[PROOFSTEP]
have : s₁ ⊓ s₂ ⊆ s₁ := Finset.inter_subset_left _ _
[GOAL]
case h.e'_3
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
G : ι → Type u_5
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
inst✝ : CompleteSpace E
f : (i : ι) → G i
hf :
∀ (ε : ℝ),
ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε
ε : ℝ
hε : ε > 0
hε' : 0 < ε ^ 2 / 2
a : Finset ι
H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ^ 2 / 2
s₁ : Finset ι
hs₁ : a ≤ s₁
s₂ : Finset ι
hs₂ : a ≤ s₂
has : a ≤ s₁ ⊓ s₂
this : s₁ ⊓ s₂ ⊆ s₁
⊢ ∑ x in s₁ \ s₂, ‖f x‖ ^ 2 = |∑ i in s₁, ‖f i‖ ^ 2 - ∑ i in s₁ ⊓ s₂, ‖f i‖ ^ 2|
[PROOFSTEP]
rw [← Finset.sum_sdiff this, add_tsub_cancel_right, Finset.abs_sum_of_nonneg']
[GOAL]
case h.e'_3
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
G : ι → Type u_5
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
inst✝ : CompleteSpace E
f : (i : ι) → G i
hf :
∀ (ε : ℝ),
ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε
ε : ℝ
hε : ε > 0
hε' : 0 < ε ^ 2 / 2
a : Finset ι
H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ^ 2 / 2
s₁ : Finset ι
hs₁ : a ≤ s₁
s₂ : Finset ι
hs₂ : a ≤ s₂
has : a ≤ s₁ ⊓ s₂
this : s₁ ⊓ s₂ ⊆ s₁
⊢ ∑ x in s₁ \ s₂, ‖f x‖ ^ 2 = ∑ i in s₁ \ (s₁ ⊓ s₂), ‖f i‖ ^ 2
[PROOFSTEP]
simp
[GOAL]
case h.e'_3
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
G : ι → Type u_5
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
inst✝ : CompleteSpace E
f : (i : ι) → G i
hf :
∀ (ε : ℝ),
ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε
ε : ℝ
hε : ε > 0
hε' : 0 < ε ^ 2 / 2
a : Finset ι
H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ^ 2 / 2
s₁ : Finset ι
hs₁ : a ≤ s₁
s₂ : Finset ι
hs₂ : a ≤ s₂
has : a ≤ s₁ ⊓ s₂
this : s₁ ⊓ s₂ ⊆ s₁
⊢ ∀ (i : ι), 0 ≤ ‖f i‖ ^ 2
[PROOFSTEP]
exact fun i => sq_nonneg _
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
G : ι → Type u_5
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
inst✝ : CompleteSpace E
f : (i : ι) → G i
hf :
∀ (ε : ℝ),
ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε
ε : ℝ
hε : ε > 0
hε' : 0 < ε ^ 2 / 2
a : Finset ι
H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ^ 2 / 2
s₁ : Finset ι
hs₁ : a ≤ s₁
s₂ : Finset ι
hs₂ : a ≤ s₂
has : a ≤ s₁ ⊓ s₂
Hs₁ : ∑ x in s₁ \ s₂, ‖f x‖ ^ 2 < ε ^ 2 / 2
⊢ ∑ i in s₁ \ s₂, ‖f i‖ ^ 2 + ∑ i in s₂ \ s₁, ‖f i‖ ^ 2 < ε ^ 2
[PROOFSTEP]
have Hs₂ : ∑ x : ι in s₂ \ s₁, ‖f x‖ ^ 2 < ε ^ 2 / 2 :=
by
convert H _ hs₂ _ has
have : s₁ ⊓ s₂ ⊆ s₂ := Finset.inter_subset_right _ _
rw [← Finset.sum_sdiff this, add_tsub_cancel_right, Finset.abs_sum_of_nonneg']
· simp
· exact fun i => sq_nonneg _
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
G : ι → Type u_5
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
inst✝ : CompleteSpace E
f : (i : ι) → G i
hf :
∀ (ε : ℝ),
ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε
ε : ℝ
hε : ε > 0
hε' : 0 < ε ^ 2 / 2
a : Finset ι
H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ^ 2 / 2
s₁ : Finset ι
hs₁ : a ≤ s₁
s₂ : Finset ι
hs₂ : a ≤ s₂
has : a ≤ s₁ ⊓ s₂
Hs₁ : ∑ x in s₁ \ s₂, ‖f x‖ ^ 2 < ε ^ 2 / 2
⊢ ∑ x in s₂ \ s₁, ‖f x‖ ^ 2 < ε ^ 2 / 2
[PROOFSTEP]
convert H _ hs₂ _ has
[GOAL]
case h.e'_3
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
G : ι → Type u_5
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
inst✝ : CompleteSpace E
f : (i : ι) → G i
hf :
∀ (ε : ℝ),
ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε
ε : ℝ
hε : ε > 0
hε' : 0 < ε ^ 2 / 2
a : Finset ι
H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ^ 2 / 2
s₁ : Finset ι
hs₁ : a ≤ s₁
s₂ : Finset ι
hs₂ : a ≤ s₂
has : a ≤ s₁ ⊓ s₂
Hs₁ : ∑ x in s₁ \ s₂, ‖f x‖ ^ 2 < ε ^ 2 / 2
⊢ ∑ x in s₂ \ s₁, ‖f x‖ ^ 2 = |∑ i in s₂, ‖f i‖ ^ 2 - ∑ i in s₁ ⊓ s₂, ‖f i‖ ^ 2|
[PROOFSTEP]
have : s₁ ⊓ s₂ ⊆ s₂ := Finset.inter_subset_right _ _
[GOAL]
case h.e'_3
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
G : ι → Type u_5
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
inst✝ : CompleteSpace E
f : (i : ι) → G i
hf :
∀ (ε : ℝ),
ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε
ε : ℝ
hε : ε > 0
hε' : 0 < ε ^ 2 / 2
a : Finset ι
H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ^ 2 / 2
s₁ : Finset ι
hs₁ : a ≤ s₁
s₂ : Finset ι
hs₂ : a ≤ s₂
has : a ≤ s₁ ⊓ s₂
Hs₁ : ∑ x in s₁ \ s₂, ‖f x‖ ^ 2 < ε ^ 2 / 2
this : s₁ ⊓ s₂ ⊆ s₂
⊢ ∑ x in s₂ \ s₁, ‖f x‖ ^ 2 = |∑ i in s₂, ‖f i‖ ^ 2 - ∑ i in s₁ ⊓ s₂, ‖f i‖ ^ 2|
[PROOFSTEP]
rw [← Finset.sum_sdiff this, add_tsub_cancel_right, Finset.abs_sum_of_nonneg']
[GOAL]
case h.e'_3
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
G : ι → Type u_5
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
inst✝ : CompleteSpace E
f : (i : ι) → G i
hf :
∀ (ε : ℝ),
ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε
ε : ℝ
hε : ε > 0
hε' : 0 < ε ^ 2 / 2
a : Finset ι
H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ^ 2 / 2
s₁ : Finset ι
hs₁ : a ≤ s₁
s₂ : Finset ι
hs₂ : a ≤ s₂
has : a ≤ s₁ ⊓ s₂
Hs₁ : ∑ x in s₁ \ s₂, ‖f x‖ ^ 2 < ε ^ 2 / 2
this : s₁ ⊓ s₂ ⊆ s₂
⊢ ∑ x in s₂ \ s₁, ‖f x‖ ^ 2 = ∑ i in s₂ \ (s₁ ⊓ s₂), ‖f i‖ ^ 2
[PROOFSTEP]
simp
[GOAL]
case h.e'_3
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
G : ι → Type u_5
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
inst✝ : CompleteSpace E
f : (i : ι) → G i
hf :
∀ (ε : ℝ),
ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε
ε : ℝ
hε : ε > 0
hε' : 0 < ε ^ 2 / 2
a : Finset ι
H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ^ 2 / 2
s₁ : Finset ι
hs₁ : a ≤ s₁
s₂ : Finset ι
hs₂ : a ≤ s₂
has : a ≤ s₁ ⊓ s₂
Hs₁ : ∑ x in s₁ \ s₂, ‖f x‖ ^ 2 < ε ^ 2 / 2
this : s₁ ⊓ s₂ ⊆ s₂
⊢ ∀ (i : ι), 0 ≤ ‖f i‖ ^ 2
[PROOFSTEP]
exact fun i => sq_nonneg _
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
G : ι → Type u_5
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
inst✝ : CompleteSpace E
f : (i : ι) → G i
hf :
∀ (ε : ℝ),
ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε
ε : ℝ
hε : ε > 0
hε' : 0 < ε ^ 2 / 2
a : Finset ι
H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ^ 2 / 2
s₁ : Finset ι
hs₁ : a ≤ s₁
s₂ : Finset ι
hs₂ : a ≤ s₂
has : a ≤ s₁ ⊓ s₂
Hs₁ : ∑ x in s₁ \ s₂, ‖f x‖ ^ 2 < ε ^ 2 / 2
Hs₂ : ∑ x in s₂ \ s₁, ‖f x‖ ^ 2 < ε ^ 2 / 2
⊢ ∑ i in s₁ \ s₂, ‖f i‖ ^ 2 + ∑ i in s₂ \ s₁, ‖f i‖ ^ 2 < ε ^ 2
[PROOFSTEP]
linarith
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V✝ : (i : ι) → G i →ₗᵢ[𝕜] E
hV✝ : OrthogonalFamily 𝕜 G V✝
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
V : ι → Submodule 𝕜 E
hV : OrthogonalFamily 𝕜 (fun i => { x // x ∈ V i }) fun i => Submodule.subtypeₗᵢ (V i)
⊢ CompleteLattice.Independent V
[PROOFSTEP]
classical!
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V✝ : (i : ι) → G i →ₗᵢ[𝕜] E
hV✝ : OrthogonalFamily 𝕜 G V✝
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
V : ι → Submodule 𝕜 E
hV : OrthogonalFamily 𝕜 (fun i => { x // x ∈ V i }) fun i => Submodule.subtypeₗᵢ (V i)
em✝ : (a : Prop) → Decidable a
⊢ CompleteLattice.Independent V
[PROOFSTEP]
apply CompleteLattice.independent_of_dfinsupp_lsum_injective
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V✝ : (i : ι) → G i →ₗᵢ[𝕜] E
hV✝ : OrthogonalFamily 𝕜 G V✝
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
V : ι → Submodule 𝕜 E
hV : OrthogonalFamily 𝕜 (fun i => { x // x ∈ V i }) fun i => Submodule.subtypeₗᵢ (V i)
em✝ : (a : Prop) → Decidable a
⊢ Function.Injective ↑(↑(DFinsupp.lsum ℕ) fun i => Submodule.subtype (V i))
[PROOFSTEP]
refine LinearMap.ker_eq_bot.mp ?_
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V✝ : (i : ι) → G i →ₗᵢ[𝕜] E
hV✝ : OrthogonalFamily 𝕜 G V✝
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
V : ι → Submodule 𝕜 E
hV : OrthogonalFamily 𝕜 (fun i => { x // x ∈ V i }) fun i => Submodule.subtypeₗᵢ (V i)
em✝ : (a : Prop) → Decidable a
⊢ LinearMap.ker (↑(DFinsupp.lsum ℕ) fun i => Submodule.subtype (V i)) = ⊥
[PROOFSTEP]
rw [Submodule.eq_bot_iff]
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V✝ : (i : ι) → G i →ₗᵢ[𝕜] E
hV✝ : OrthogonalFamily 𝕜 G V✝
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
V : ι → Submodule 𝕜 E
hV : OrthogonalFamily 𝕜 (fun i => { x // x ∈ V i }) fun i => Submodule.subtypeₗᵢ (V i)
em✝ : (a : Prop) → Decidable a
⊢ ∀ (x : Π₀ (i : ι), { x // x ∈ V i }), x ∈ LinearMap.ker (↑(DFinsupp.lsum ℕ) fun i => Submodule.subtype (V i)) → x = 0
[PROOFSTEP]
intro v hv
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V✝ : (i : ι) → G i →ₗᵢ[𝕜] E
hV✝ : OrthogonalFamily 𝕜 G V✝
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
V : ι → Submodule 𝕜 E
hV : OrthogonalFamily 𝕜 (fun i => { x // x ∈ V i }) fun i => Submodule.subtypeₗᵢ (V i)
em✝ : (a : Prop) → Decidable a
v : Π₀ (i : ι), { x // x ∈ V i }
hv : v ∈ LinearMap.ker (↑(DFinsupp.lsum ℕ) fun i => Submodule.subtype (V i))
⊢ v = 0
[PROOFSTEP]
rw [LinearMap.mem_ker] at hv
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V✝ : (i : ι) → G i →ₗᵢ[𝕜] E
hV✝ : OrthogonalFamily 𝕜 G V✝
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
V : ι → Submodule 𝕜 E
hV : OrthogonalFamily 𝕜 (fun i => { x // x ∈ V i }) fun i => Submodule.subtypeₗᵢ (V i)
em✝ : (a : Prop) → Decidable a
v : Π₀ (i : ι), { x // x ∈ V i }
hv : ↑(↑(DFinsupp.lsum ℕ) fun i => Submodule.subtype (V i)) v = 0
⊢ v = 0
[PROOFSTEP]
ext i
[GOAL]
case h.h.a
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V✝ : (i : ι) → G i →ₗᵢ[𝕜] E
hV✝ : OrthogonalFamily 𝕜 G V✝
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
V : ι → Submodule 𝕜 E
hV : OrthogonalFamily 𝕜 (fun i => { x // x ∈ V i }) fun i => Submodule.subtypeₗᵢ (V i)
em✝ : (a : Prop) → Decidable a
v : Π₀ (i : ι), { x // x ∈ V i }
hv : ↑(↑(DFinsupp.lsum ℕ) fun i => Submodule.subtype (V i)) v = 0
i : ι
⊢ ↑(↑v i) = ↑(↑0 i)
[PROOFSTEP]
suffices ⟪(v i : E), v i⟫ = 0 by simpa only [inner_self_eq_zero] using this
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V✝ : (i : ι) → G i →ₗᵢ[𝕜] E
hV✝ : OrthogonalFamily 𝕜 G V✝
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
V : ι → Submodule 𝕜 E
hV : OrthogonalFamily 𝕜 (fun i => { x // x ∈ V i }) fun i => Submodule.subtypeₗᵢ (V i)
em✝ : (a : Prop) → Decidable a
v : Π₀ (i : ι), { x // x ∈ V i }
hv : ↑(↑(DFinsupp.lsum ℕ) fun i => Submodule.subtype (V i)) v = 0
i : ι
this : inner ↑(↑v i) ↑(↑v i) = 0
⊢ ↑(↑v i) = ↑(↑0 i)
[PROOFSTEP]
simpa only [inner_self_eq_zero] using this
[GOAL]
case h.h.a
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V✝ : (i : ι) → G i →ₗᵢ[𝕜] E
hV✝ : OrthogonalFamily 𝕜 G V✝
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
V : ι → Submodule 𝕜 E
hV : OrthogonalFamily 𝕜 (fun i => { x // x ∈ V i }) fun i => Submodule.subtypeₗᵢ (V i)
em✝ : (a : Prop) → Decidable a
v : Π₀ (i : ι), { x // x ∈ V i }
hv : ↑(↑(DFinsupp.lsum ℕ) fun i => Submodule.subtype (V i)) v = 0
i : ι
⊢ inner ↑(↑v i) ↑(↑v i) = 0
[PROOFSTEP]
calc
⟪(v i : E), v i⟫ = ⟪(v i : E), DFinsupp.lsum ℕ (fun i => (V i).subtype) v⟫ := by
simpa only [DFinsupp.sumAddHom_apply, DFinsupp.lsum_apply_apply] using (hV.inner_right_dfinsupp v i (v i)).symm
_ = 0 := by simp only [hv, inner_zero_right]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V✝ : (i : ι) → G i →ₗᵢ[𝕜] E
hV✝ : OrthogonalFamily 𝕜 G V✝
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
V : ι → Submodule 𝕜 E
hV : OrthogonalFamily 𝕜 (fun i => { x // x ∈ V i }) fun i => Submodule.subtypeₗᵢ (V i)
em✝ : (a : Prop) → Decidable a
v : Π₀ (i : ι), { x // x ∈ V i }
hv : ↑(↑(DFinsupp.lsum ℕ) fun i => Submodule.subtype (V i)) v = 0
i : ι
⊢ inner ↑(↑v i) ↑(↑v i) = inner (↑(↑v i)) (↑(↑(DFinsupp.lsum ℕ) fun i => Submodule.subtype (V i)) v)
[PROOFSTEP]
simpa only [DFinsupp.sumAddHom_apply, DFinsupp.lsum_apply_apply] using (hV.inner_right_dfinsupp v i (v i)).symm
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V✝ : (i : ι) → G i →ₗᵢ[𝕜] E
hV✝ : OrthogonalFamily 𝕜 G V✝
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
V : ι → Submodule 𝕜 E
hV : OrthogonalFamily 𝕜 (fun i => { x // x ∈ V i }) fun i => Submodule.subtypeₗᵢ (V i)
em✝ : (a : Prop) → Decidable a
v : Π₀ (i : ι), { x // x ∈ V i }
hv : ↑(↑(DFinsupp.lsum ℕ) fun i => Submodule.subtype (V i)) v = 0
i : ι
⊢ inner (↑(↑v i)) (↑(↑(DFinsupp.lsum ℕ) fun i => Submodule.subtype (V i)) v) = 0
[PROOFSTEP]
simp only [hv, inner_zero_right]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
ι : Type u_4
dec_ι : DecidableEq ι
G : ι → Type u_5
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V✝ : (i : ι) → G i →ₗᵢ[𝕜] E
hV✝ : OrthogonalFamily 𝕜 G V✝
dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)
V : ι → Submodule 𝕜 E
hV : OrthogonalFamily 𝕜 (fun i => { x // x ∈ V i }) fun i => Submodule.subtypeₗᵢ (V i)
hV_sum : IsInternal fun i => V i
α : ι → Type u_6
v_family : (i : ι) → Basis (α i) 𝕜 { x // x ∈ V i }
hv_family : ∀ (i : ι), Orthonormal 𝕜 ↑(v_family i)
⊢ Orthonormal 𝕜 ↑(collectedBasis hV_sum v_family)
[PROOFSTEP]
simpa only [hV_sum.collectedBasis_coe] using hV.orthonormal_sigma_orthonormal hv_family
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
G : Type u_4
src✝¹ : Inner ℝ E := Inner.isROrCToReal 𝕜 E
src✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
x y z : E
⊢ inner (x + y) z = inner x z + inner y z
[PROOFSTEP]
change re ⟪x + y, z⟫ = re ⟪x, z⟫ + re ⟪y, z⟫
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
G : Type u_4
src✝¹ : Inner ℝ E := Inner.isROrCToReal 𝕜 E
src✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
x y z : E
⊢ ↑re (inner (x + y) z) = ↑re (inner x z) + ↑re (inner y z)
[PROOFSTEP]
simp only [inner_add_left, map_add]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
G : Type u_4
src✝¹ : Inner ℝ E := Inner.isROrCToReal 𝕜 E
src✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
x y : E
r : ℝ
⊢ inner (r • x) y = ↑(starRingEnd ℝ) r * inner x y
[PROOFSTEP]
change re ⟪(r : 𝕜) • x, y⟫ = r * re ⟪x, y⟫
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
G : Type u_4
src✝¹ : Inner ℝ E := Inner.isROrCToReal 𝕜 E
src✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E
x y : E
r : ℝ
⊢ ↑re (inner (↑r • x) y) = r * ↑re (inner x y)
[PROOFSTEP]
simp only [inner_smul_left, conj_ofReal, ofReal_mul_re]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
G : Type u_4
x : E
⊢ inner x (I • x) = 0
[PROOFSTEP]
simp [real_inner_eq_re_inner 𝕜, inner_smul_right]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : InnerProductSpace 𝕜 E
inst✝³ : NormedAddCommGroup F
inst✝² : InnerProductSpace ℝ F
dec_E : DecidableEq E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : InnerProductSpace ℝ G
f : G ≃ₗᵢ[ℝ] ℂ
x y : G
⊢ inner x y = (↑(starRingEnd ℂ) (↑f x) * ↑f y).re
[PROOFSTEP]
rw [← Complex.inner, f.inner_map_map]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
T : E →L[𝕜] E
x : E
c : 𝕜
⊢ reApplyInnerSelf T (c • x) = ‖c‖ ^ 2 * reApplyInnerSelf T x
[PROOFSTEP]
simp only [ContinuousLinearMap.map_smul, ContinuousLinearMap.reApplyInnerSelf_apply, inner_smul_left, inner_smul_right,
← mul_assoc, mul_conj, normSq_eq_def', ← smul_re, Algebra.smul_def (‖c‖ ^ 2) ⟪T x, x⟫, algebraMap_eq_ofReal]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
⊢ Continuous (uncurry inner)
[PROOFSTEP]
let inner' : E →+ E →+ 𝕜 :=
{ toFun := fun x => (innerₛₗ 𝕜 x).toAddMonoidHom
map_zero' := by ext x; exact inner_zero_left _
map_add' := fun x y => by ext z; exact inner_add_left _ _ _ }
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
⊢ (fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x)) 0 = 0
[PROOFSTEP]
ext x
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x : E
⊢ ↑((fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x)) 0) x = ↑0 x
[PROOFSTEP]
exact inner_zero_left _
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : E
⊢ ZeroHom.toFun
{ toFun := fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x),
map_zero' := (_ : (fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x)) 0 = 0) }
(x + y) =
ZeroHom.toFun
{ toFun := fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x),
map_zero' := (_ : (fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x)) 0 = 0) }
x +
ZeroHom.toFun
{ toFun := fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x),
map_zero' := (_ : (fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x)) 0 = 0) }
y
[PROOFSTEP]
ext z
[GOAL]
case h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y z : E
⊢ ↑(ZeroHom.toFun
{ toFun := fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x),
map_zero' := (_ : (fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x)) 0 = 0) }
(x + y))
z =
↑(ZeroHom.toFun
{ toFun := fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x),
map_zero' := (_ : (fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x)) 0 = 0) }
x +
ZeroHom.toFun
{ toFun := fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x),
map_zero' := (_ : (fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x)) 0 = 0) }
y)
z
[PROOFSTEP]
exact inner_add_left _ _ _
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
inner' : E →+ E →+ 𝕜 :=
{
toZeroHom :=
{ toFun := fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x),
map_zero' := (_ : (fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x)) 0 = 0) },
map_add' :=
(_ :
∀ (x y : E),
ZeroHom.toFun
{ toFun := fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x),
map_zero' := (_ : (fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x)) 0 = 0) }
(x + y) =
ZeroHom.toFun
{ toFun := fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x),
map_zero' := (_ : (fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x)) 0 = 0) }
x +
ZeroHom.toFun
{ toFun := fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x),
map_zero' := (_ : (fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x)) 0 = 0) }
y) }
⊢ Continuous (uncurry inner)
[PROOFSTEP]
have : Continuous fun p : E × E => inner' p.1 p.2 := continuous_inner
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
inner' : E →+ E →+ 𝕜 :=
{
toZeroHom :=
{ toFun := fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x),
map_zero' := (_ : (fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x)) 0 = 0) },
map_add' :=
(_ :
∀ (x y : E),
ZeroHom.toFun
{ toFun := fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x),
map_zero' := (_ : (fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x)) 0 = 0) }
(x + y) =
ZeroHom.toFun
{ toFun := fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x),
map_zero' := (_ : (fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x)) 0 = 0) }
x +
ZeroHom.toFun
{ toFun := fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x),
map_zero' := (_ : (fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x)) 0 = 0) }
y) }
this : Continuous fun p => ↑(↑inner' p.fst) p.snd
⊢ Continuous (uncurry inner)
[PROOFSTEP]
rw [Completion.toInner, inner, uncurry_curry _]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
inner' : E →+ E →+ 𝕜 :=
{
toZeroHom :=
{ toFun := fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x),
map_zero' := (_ : (fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x)) 0 = 0) },
map_add' :=
(_ :
∀ (x y : E),
ZeroHom.toFun
{ toFun := fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x),
map_zero' := (_ : (fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x)) 0 = 0) }
(x + y) =
ZeroHom.toFun
{ toFun := fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x),
map_zero' := (_ : (fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x)) 0 = 0) }
x +
ZeroHom.toFun
{ toFun := fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x),
map_zero' := (_ : (fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x)) 0 = 0) }
y) }
this : Continuous fun p => ↑(↑inner' p.fst) p.snd
⊢ Continuous (DenseInducing.extend (_ : DenseInducing fun p => (↑E p.fst, ↑E p.snd)) (uncurry inner))
[PROOFSTEP]
change Continuous (((denseInducing_toCompl E).prod (denseInducing_toCompl E)).extend fun p : E × E => inner' p.1 p.2)
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
inner' : E →+ E →+ 𝕜 :=
{
toZeroHom :=
{ toFun := fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x),
map_zero' := (_ : (fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x)) 0 = 0) },
map_add' :=
(_ :
∀ (x y : E),
ZeroHom.toFun
{ toFun := fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x),
map_zero' := (_ : (fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x)) 0 = 0) }
(x + y) =
ZeroHom.toFun
{ toFun := fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x),
map_zero' := (_ : (fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x)) 0 = 0) }
x +
ZeroHom.toFun
{ toFun := fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x),
map_zero' := (_ : (fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x)) 0 = 0) }
y) }
this : Continuous fun p => ↑(↑inner' p.fst) p.snd
⊢ Continuous
(DenseInducing.extend (_ : DenseInducing fun p => (↑toCompl p.fst, ↑toCompl p.snd)) fun p => ↑(↑inner' p.fst) p.snd)
[PROOFSTEP]
exact (denseInducing_toCompl E).extend_Z_bilin (denseInducing_toCompl E) this
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x : Completion E
a : E
⊢ ‖↑E a‖ ^ 2 = ↑re (inner (↑E a) (↑E a))
[PROOFSTEP]
simp only [norm_coe, inner_coe, inner_self_eq_norm_sq]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : Completion E
a b : E
⊢ ↑(starRingEnd 𝕜) (inner (↑E b) (↑E a)) = inner (↑E a) (↑E b)
[PROOFSTEP]
simp only [inner_coe, inner_conj_symm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y z : Completion E
a b c : E
⊢ inner (↑E a + ↑E b) (↑E c) = inner (↑E a) (↑E c) + inner (↑E b) (↑E c)
[PROOFSTEP]
simp only [← coe_add, inner_coe, inner_add_left]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
dec_E : DecidableEq E
x y : Completion E
c : 𝕜
a b : E
⊢ inner (c • ↑E a) (↑E b) = ↑(starRingEnd 𝕜) c * inner (↑E a) (↑E b)
[PROOFSTEP]
simp only [← coe_smul c a, inner_coe, inner_smul_left]
| {"mathlib_filename": "Mathlib.Analysis.InnerProductSpace.Basic", "llama_tokens": 154274} |
{"mathlib_filename": "Mathlib.GroupTheory.Perm.Subgroup", "llama_tokens": 0} |
|
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
x y : α
⊢ optionCongr (swap x y) = swap (some x) (some y)
[PROOFSTEP]
ext (_ | i)
[GOAL]
case H.none.a
α : Type u_1
inst✝ : DecidableEq α
x y a✝ : α
⊢ a✝ ∈ ↑(optionCongr (swap x y)) none ↔ a✝ ∈ ↑(swap (some x) (some y)) none
[PROOFSTEP]
simp [swap_apply_of_ne_of_ne]
[GOAL]
case H.some.a
α : Type u_1
inst✝ : DecidableEq α
x y i a✝ : α
⊢ a✝ ∈ ↑(optionCongr (swap x y)) (some i) ↔ a✝ ∈ ↑(swap (some x) (some y)) (some i)
[PROOFSTEP]
by_cases hx : i = x
[GOAL]
case pos
α : Type u_1
inst✝ : DecidableEq α
x y i a✝ : α
hx : i = x
⊢ a✝ ∈ ↑(optionCongr (swap x y)) (some i) ↔ a✝ ∈ ↑(swap (some x) (some y)) (some i)
case neg
α : Type u_1
inst✝ : DecidableEq α
x y i a✝ : α
hx : ¬i = x
⊢ a✝ ∈ ↑(optionCongr (swap x y)) (some i) ↔ a✝ ∈ ↑(swap (some x) (some y)) (some i)
[PROOFSTEP]
simp [hx, swap_apply_of_ne_of_ne]
[GOAL]
case neg
α : Type u_1
inst✝ : DecidableEq α
x y i a✝ : α
hx : ¬i = x
⊢ a✝ ∈ ↑(optionCongr (swap x y)) (some i) ↔ a✝ ∈ ↑(swap (some x) (some y)) (some i)
[PROOFSTEP]
by_cases hy : i = y
[GOAL]
case pos
α : Type u_1
inst✝ : DecidableEq α
x y i a✝ : α
hx : ¬i = x
hy : i = y
⊢ a✝ ∈ ↑(optionCongr (swap x y)) (some i) ↔ a✝ ∈ ↑(swap (some x) (some y)) (some i)
[PROOFSTEP]
simp [hx, hy, swap_apply_of_ne_of_ne]
[GOAL]
case neg
α : Type u_1
inst✝ : DecidableEq α
x y i a✝ : α
hx : ¬i = x
hy : ¬i = y
⊢ a✝ ∈ ↑(optionCongr (swap x y)) (some i) ↔ a✝ ∈ ↑(swap (some x) (some y)) (some i)
[PROOFSTEP]
simp [hx, hy, swap_apply_of_ne_of_ne]
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
e : Perm α
⊢ ↑Perm.sign (optionCongr e) = ↑Perm.sign e
[PROOFSTEP]
refine Perm.swap_induction_on e ?_ ?_
[GOAL]
case refine_1
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
e : Perm α
⊢ ↑Perm.sign (optionCongr 1) = ↑Perm.sign 1
[PROOFSTEP]
simp [Perm.one_def]
[GOAL]
case refine_2
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
e : Perm α
⊢ ∀ (f : Perm α) (x y : α),
x ≠ y →
↑Perm.sign (optionCongr f) = ↑Perm.sign f → ↑Perm.sign (optionCongr (swap x y * f)) = ↑Perm.sign (swap x y * f)
[PROOFSTEP]
intro f x y hne h
[GOAL]
case refine_2
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
e f : Perm α
x y : α
hne : x ≠ y
h : ↑Perm.sign (optionCongr f) = ↑Perm.sign f
⊢ ↑Perm.sign (optionCongr (swap x y * f)) = ↑Perm.sign (swap x y * f)
[PROOFSTEP]
simp [h, hne, Perm.mul_def, ← Equiv.optionCongr_trans]
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
σ : Perm (Option α)
⊢ optionCongr (removeNone σ) = swap none (↑σ none) * σ
[PROOFSTEP]
ext1 x
[GOAL]
case H
α : Type u_1
inst✝ : DecidableEq α
σ : Perm (Option α)
x : Option α
⊢ ↑(optionCongr (removeNone σ)) x = ↑(swap none (↑σ none) * σ) x
[PROOFSTEP]
have : Option.map (⇑(removeNone σ)) x = (swap none (σ none)) (σ x) :=
by
cases' x with x
· simp
· cases h : σ (some _)
· simp [removeNone_none _ h]
· have hn : σ (some x) ≠ none := by simp [h]
have hσn : σ (some x) ≠ σ none := σ.injective.ne (by simp)
simp [removeNone_some _ ⟨_, h⟩, ← h, swap_apply_of_ne_of_ne hn hσn]
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
σ : Perm (Option α)
x : Option α
⊢ Option.map (↑(removeNone σ)) x = ↑(swap none (↑σ none)) (↑σ x)
[PROOFSTEP]
cases' x with x
[GOAL]
case none
α : Type u_1
inst✝ : DecidableEq α
σ : Perm (Option α)
⊢ Option.map (↑(removeNone σ)) none = ↑(swap none (↑σ none)) (↑σ none)
[PROOFSTEP]
simp
[GOAL]
case some
α : Type u_1
inst✝ : DecidableEq α
σ : Perm (Option α)
x : α
⊢ Option.map (↑(removeNone σ)) (some x) = ↑(swap none (↑σ none)) (↑σ (some x))
[PROOFSTEP]
cases h : σ (some _)
[GOAL]
case some.none
α : Type u_1
inst✝ : DecidableEq α
σ : Perm (Option α)
x : α
h : ↑σ (some x) = none
⊢ Option.map (↑(removeNone σ)) (some x) = ↑(swap none (↑σ none)) none
[PROOFSTEP]
simp [removeNone_none _ h]
[GOAL]
case some.some
α : Type u_1
inst✝ : DecidableEq α
σ : Perm (Option α)
x val✝ : α
h : ↑σ (some x) = some val✝
⊢ Option.map (↑(removeNone σ)) (some x) = ↑(swap none (↑σ none)) (some val✝)
[PROOFSTEP]
have hn : σ (some x) ≠ none := by simp [h]
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
σ : Perm (Option α)
x val✝ : α
h : ↑σ (some x) = some val✝
⊢ ↑σ (some x) ≠ none
[PROOFSTEP]
simp [h]
[GOAL]
case some.some
α : Type u_1
inst✝ : DecidableEq α
σ : Perm (Option α)
x val✝ : α
h : ↑σ (some x) = some val✝
hn : ↑σ (some x) ≠ none
⊢ Option.map (↑(removeNone σ)) (some x) = ↑(swap none (↑σ none)) (some val✝)
[PROOFSTEP]
have hσn : σ (some x) ≠ σ none := σ.injective.ne (by simp)
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
σ : Perm (Option α)
x val✝ : α
h : ↑σ (some x) = some val✝
hn : ↑σ (some x) ≠ none
⊢ some x ≠ none
[PROOFSTEP]
simp
[GOAL]
case some.some
α : Type u_1
inst✝ : DecidableEq α
σ : Perm (Option α)
x val✝ : α
h : ↑σ (some x) = some val✝
hn : ↑σ (some x) ≠ none
hσn : ↑σ (some x) ≠ ↑σ none
⊢ Option.map (↑(removeNone σ)) (some x) = ↑(swap none (↑σ none)) (some val✝)
[PROOFSTEP]
simp [removeNone_some _ ⟨_, h⟩, ← h, swap_apply_of_ne_of_ne hn hσn]
[GOAL]
case H
α : Type u_1
inst✝ : DecidableEq α
σ : Perm (Option α)
x : Option α
this : Option.map (↑(removeNone σ)) x = ↑(swap none (↑σ none)) (↑σ x)
⊢ ↑(optionCongr (removeNone σ)) x = ↑(swap none (↑σ none) * σ) x
[PROOFSTEP]
simpa using this
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
σ : Perm (Option α)
⊢ (fun i => swap none i.fst * optionCongr i.snd) ((fun σ => (↑σ none, removeNone σ)) σ) = σ
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
x✝ : Option α × Perm α
x : Option α
σ : Perm α
⊢ (fun σ => (↑σ none, removeNone σ)) ((fun i => swap none i.fst * optionCongr i.snd) (x, σ)) = (x, σ)
[PROOFSTEP]
have : removeNone (swap none x * σ.optionCongr) = σ := Equiv.optionCongr_injective (by simp [← mul_assoc])
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
x✝ : Option α × Perm α
x : Option α
σ : Perm α
⊢ optionCongr (removeNone (swap none x * optionCongr σ)) = optionCongr σ
[PROOFSTEP]
simp [← mul_assoc]
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
x✝ : Option α × Perm α
x : Option α
σ : Perm α
this : removeNone (swap none x * optionCongr σ) = σ
⊢ (fun σ => (↑σ none, removeNone σ)) ((fun i => swap none i.fst * optionCongr i.snd) (x, σ)) = (x, σ)
[PROOFSTEP]
simp [← Perm.eq_inv_iff_eq, this]
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
e : Perm α
i : Option α
⊢ ↑(↑decomposeOption.symm (none, e)) i = Option.map (↑e) i
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
e : Perm α
⊢ ↑sign (↑decomposeOption.symm (none, e)) = ↑sign e
[PROOFSTEP]
simp
| {"mathlib_filename": "Mathlib.GroupTheory.Perm.Option", "llama_tokens": 3221} |
[GOAL]
α : Type u_1
inst✝ : Semigroup α
s : Set α
a b : α
⊢ a *l (b *l s) = a * b *l s
[PROOFSTEP]
simp [leftCoset, rightCoset, (image_comp _ _ _).symm, Function.comp, mul_assoc]
[GOAL]
α : Type u_1
inst✝ : Semigroup α
s : Set α
a b : α
⊢ s *r a *r b = s *r (a * b)
[PROOFSTEP]
simp [leftCoset, rightCoset, (image_comp _ _ _).symm, Function.comp, mul_assoc]
[GOAL]
α : Type u_1
inst✝ : Semigroup α
s : Set α
a b : α
⊢ a *l s *r b = a *l (s *r b)
[PROOFSTEP]
simp [leftCoset, rightCoset, (image_comp _ _ _).symm, Function.comp, mul_assoc]
[GOAL]
α : Type u_1
inst✝ : Monoid α
s : Set α
⊢ ∀ (x : α), x ∈ 1 *l s ↔ x ∈ s
[PROOFSTEP]
simp [leftCoset]
[GOAL]
α : Type u_1
inst✝ : Monoid α
s : Set α
⊢ ∀ (x : α), x ∈ s *r 1 ↔ x ∈ s
[PROOFSTEP]
simp [rightCoset]
[GOAL]
α : Type u_1
inst✝ : Monoid α
s : Submonoid α
a : α
this : a * 1 ∈ a *l ↑s
⊢ a ∈ a *l ↑s
[PROOFSTEP]
simpa
[GOAL]
α : Type u_1
inst✝ : Monoid α
s : Submonoid α
a : α
this : 1 * a ∈ ↑s *r a
⊢ a ∈ ↑s *r a
[PROOFSTEP]
simpa
[GOAL]
α : Type u_1
inst✝ : Monoid α
s : Submonoid α
a : α
ha : a *l ↑s = ↑s
⊢ a ∈ s
[PROOFSTEP]
rw [← SetLike.mem_coe, ← ha]
[GOAL]
α : Type u_1
inst✝ : Monoid α
s : Submonoid α
a : α
ha : a *l ↑s = ↑s
⊢ a ∈ a *l ↑s
[PROOFSTEP]
exact mem_own_leftCoset s a
[GOAL]
α : Type u_1
inst✝ : Monoid α
s : Submonoid α
a : α
ha : ↑s *r a = ↑s
⊢ a ∈ s
[PROOFSTEP]
rw [← SetLike.mem_coe, ← ha]
[GOAL]
α : Type u_1
inst✝ : Monoid α
s : Submonoid α
a : α
ha : ↑s *r a = ↑s
⊢ a ∈ ↑s *r a
[PROOFSTEP]
exact mem_own_rightCoset s a
[GOAL]
α : Type u_1
inst✝ : Group α
s : Set α
x a : α
x✝ : x ∈ a *l s
b : α
hb : b ∈ s
Eq : (fun x => a * x) b = x
⊢ a⁻¹ * x ∈ s
[PROOFSTEP]
simp [Eq.symm, hb]
[GOAL]
α : Type u_1
inst✝ : Group α
s : Set α
x a : α
h : a⁻¹ * x ∈ s
⊢ (fun x => a * x) (a⁻¹ * x) = x
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝ : Group α
s : Set α
x a : α
x✝ : x ∈ s *r a
b : α
hb : b ∈ s
Eq : (fun x => x * a) b = x
⊢ x * a⁻¹ ∈ s
[PROOFSTEP]
simp [Eq.symm, hb]
[GOAL]
α : Type u_1
inst✝ : Group α
s : Set α
x a : α
h : x * a⁻¹ ∈ s
⊢ (fun x => x * a) (x * a⁻¹) = x
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝ : Group α
s : Subgroup α
a : α
ha : a ∈ s
⊢ ∀ (x : α), x ∈ a *l ↑s ↔ x ∈ ↑s
[PROOFSTEP]
simp [mem_leftCoset_iff, mul_mem_cancel_left (s.inv_mem ha)]
[GOAL]
α : Type u_1
inst✝ : Group α
s : Subgroup α
a : α
ha : a ∈ s
b : α
⊢ b ∈ ↑s *r a ↔ b ∈ ↑s
[PROOFSTEP]
simp [mem_rightCoset_iff, mul_mem_cancel_right (s.inv_mem ha)]
[GOAL]
α : Type u_1
inst✝ : Group α
s : Subgroup α
N : Normal s
g a : α
⊢ a ∈ g *l ↑s ↔ a ∈ ↑s *r g
[PROOFSTEP]
simp [mem_leftCoset_iff, mem_rightCoset_iff]
[GOAL]
α : Type u_1
inst✝ : Group α
s : Subgroup α
N : Normal s
g a : α
⊢ g⁻¹ * a ∈ s ↔ a * g⁻¹ ∈ s
[PROOFSTEP]
rw [N.mem_comm_iff]
[GOAL]
α : Type u_1
inst✝ : Group α
s : Subgroup α
h : ∀ (g : α), g *l ↑s = ↑s *r g
a : α
ha : a ∈ s
g : α
⊢ g * a * g⁻¹ ∈ ↑s
[PROOFSTEP]
rw [← mem_rightCoset_iff, ← h]
[GOAL]
α : Type u_1
inst✝ : Group α
s : Subgroup α
h : ∀ (g : α), g *l ↑s = ↑s *r g
a : α
ha : a ∈ s
g : α
⊢ g * a ∈ g *l ↑s
[PROOFSTEP]
exact mem_leftCoset g ha
[GOAL]
α : Type u_1
inst✝ : Group α
s : Subgroup α
x y : α
⊢ x *l ↑s = y *l ↑s ↔ x⁻¹ * y ∈ s
[PROOFSTEP]
rw [Set.ext_iff]
[GOAL]
α : Type u_1
inst✝ : Group α
s : Subgroup α
x y : α
⊢ (∀ (x_1 : α), x_1 ∈ x *l ↑s ↔ x_1 ∈ y *l ↑s) ↔ x⁻¹ * y ∈ s
[PROOFSTEP]
simp_rw [mem_leftCoset_iff, SetLike.mem_coe]
[GOAL]
α : Type u_1
inst✝ : Group α
s : Subgroup α
x y : α
⊢ (∀ (x_1 : α), x⁻¹ * x_1 ∈ s ↔ y⁻¹ * x_1 ∈ s) ↔ x⁻¹ * y ∈ s
[PROOFSTEP]
constructor
[GOAL]
case mp
α : Type u_1
inst✝ : Group α
s : Subgroup α
x y : α
⊢ (∀ (x_1 : α), x⁻¹ * x_1 ∈ s ↔ y⁻¹ * x_1 ∈ s) → x⁻¹ * y ∈ s
[PROOFSTEP]
intro h
[GOAL]
case mp
α : Type u_1
inst✝ : Group α
s : Subgroup α
x y : α
h : ∀ (x_1 : α), x⁻¹ * x_1 ∈ s ↔ y⁻¹ * x_1 ∈ s
⊢ x⁻¹ * y ∈ s
[PROOFSTEP]
apply (h y).mpr
[GOAL]
case mp
α : Type u_1
inst✝ : Group α
s : Subgroup α
x y : α
h : ∀ (x_1 : α), x⁻¹ * x_1 ∈ s ↔ y⁻¹ * x_1 ∈ s
⊢ y⁻¹ * y ∈ s
[PROOFSTEP]
rw [mul_left_inv]
[GOAL]
case mp
α : Type u_1
inst✝ : Group α
s : Subgroup α
x y : α
h : ∀ (x_1 : α), x⁻¹ * x_1 ∈ s ↔ y⁻¹ * x_1 ∈ s
⊢ 1 ∈ s
[PROOFSTEP]
exact s.one_mem
[GOAL]
case mpr
α : Type u_1
inst✝ : Group α
s : Subgroup α
x y : α
⊢ x⁻¹ * y ∈ s → ∀ (x_1 : α), x⁻¹ * x_1 ∈ s ↔ y⁻¹ * x_1 ∈ s
[PROOFSTEP]
intro h z
[GOAL]
case mpr
α : Type u_1
inst✝ : Group α
s : Subgroup α
x y : α
h : x⁻¹ * y ∈ s
z : α
⊢ x⁻¹ * z ∈ s ↔ y⁻¹ * z ∈ s
[PROOFSTEP]
rw [← mul_inv_cancel_right x⁻¹ y]
[GOAL]
case mpr
α : Type u_1
inst✝ : Group α
s : Subgroup α
x y : α
h : x⁻¹ * y ∈ s
z : α
⊢ x⁻¹ * y * y⁻¹ * z ∈ s ↔ y⁻¹ * z ∈ s
[PROOFSTEP]
rw [mul_assoc]
[GOAL]
case mpr
α : Type u_1
inst✝ : Group α
s : Subgroup α
x y : α
h : x⁻¹ * y ∈ s
z : α
⊢ x⁻¹ * y * (y⁻¹ * z) ∈ s ↔ y⁻¹ * z ∈ s
[PROOFSTEP]
exact s.mul_mem_cancel_left h
[GOAL]
α : Type u_1
inst✝ : Group α
s : Subgroup α
x y : α
⊢ ↑s *r x = ↑s *r y ↔ y * x⁻¹ ∈ s
[PROOFSTEP]
rw [Set.ext_iff]
[GOAL]
α : Type u_1
inst✝ : Group α
s : Subgroup α
x y : α
⊢ (∀ (x_1 : α), x_1 ∈ ↑s *r x ↔ x_1 ∈ ↑s *r y) ↔ y * x⁻¹ ∈ s
[PROOFSTEP]
simp_rw [mem_rightCoset_iff, SetLike.mem_coe]
[GOAL]
α : Type u_1
inst✝ : Group α
s : Subgroup α
x y : α
⊢ (∀ (x_1 : α), x_1 * x⁻¹ ∈ s ↔ x_1 * y⁻¹ ∈ s) ↔ y * x⁻¹ ∈ s
[PROOFSTEP]
constructor
[GOAL]
case mp
α : Type u_1
inst✝ : Group α
s : Subgroup α
x y : α
⊢ (∀ (x_1 : α), x_1 * x⁻¹ ∈ s ↔ x_1 * y⁻¹ ∈ s) → y * x⁻¹ ∈ s
[PROOFSTEP]
intro h
[GOAL]
case mp
α : Type u_1
inst✝ : Group α
s : Subgroup α
x y : α
h : ∀ (x_1 : α), x_1 * x⁻¹ ∈ s ↔ x_1 * y⁻¹ ∈ s
⊢ y * x⁻¹ ∈ s
[PROOFSTEP]
apply (h y).mpr
[GOAL]
case mp
α : Type u_1
inst✝ : Group α
s : Subgroup α
x y : α
h : ∀ (x_1 : α), x_1 * x⁻¹ ∈ s ↔ x_1 * y⁻¹ ∈ s
⊢ y * y⁻¹ ∈ s
[PROOFSTEP]
rw [mul_right_inv]
[GOAL]
case mp
α : Type u_1
inst✝ : Group α
s : Subgroup α
x y : α
h : ∀ (x_1 : α), x_1 * x⁻¹ ∈ s ↔ x_1 * y⁻¹ ∈ s
⊢ 1 ∈ s
[PROOFSTEP]
exact s.one_mem
[GOAL]
case mpr
α : Type u_1
inst✝ : Group α
s : Subgroup α
x y : α
⊢ y * x⁻¹ ∈ s → ∀ (x_1 : α), x_1 * x⁻¹ ∈ s ↔ x_1 * y⁻¹ ∈ s
[PROOFSTEP]
intro h z
[GOAL]
case mpr
α : Type u_1
inst✝ : Group α
s : Subgroup α
x y : α
h : y * x⁻¹ ∈ s
z : α
⊢ z * x⁻¹ ∈ s ↔ z * y⁻¹ ∈ s
[PROOFSTEP]
rw [← inv_mul_cancel_left y x⁻¹]
[GOAL]
case mpr
α : Type u_1
inst✝ : Group α
s : Subgroup α
x y : α
h : y * x⁻¹ ∈ s
z : α
⊢ z * (y⁻¹ * (y * x⁻¹)) ∈ s ↔ z * y⁻¹ ∈ s
[PROOFSTEP]
rw [← mul_assoc]
[GOAL]
case mpr
α : Type u_1
inst✝ : Group α
s : Subgroup α
x y : α
h : y * x⁻¹ ∈ s
z : α
⊢ z * y⁻¹ * (y * x⁻¹) ∈ s ↔ z * y⁻¹ ∈ s
[PROOFSTEP]
exact s.mul_mem_cancel_right h
[GOAL]
α : Type u_1
inst✝ : Group α
s : Subgroup α
x y : α
⊢ (∃ a, y * ↑a = x) ↔ ∃ a, x⁻¹ * y = ↑a⁻¹
[PROOFSTEP]
simp only [inv_mul_eq_iff_eq_mul, Subgroup.coe_inv, eq_mul_inv_iff_mul_eq]
[GOAL]
α : Type u_1
inst✝ : Group α
s : Subgroup α
x y : α
⊢ (∃ a, x⁻¹ * y = ↑a⁻¹) ↔ x⁻¹ * y ∈ s
[PROOFSTEP]
simp [exists_inv_mem_iff_exists_mem]
[GOAL]
α : Type u_1
inst✝ : Group α
s : Subgroup α
⊢ ∀ (a b : α), Setoid.r a b = (a⁻¹ * b ∈ s)
[PROOFSTEP]
simp only [eq_iff_iff]
[GOAL]
α : Type u_1
inst✝ : Group α
s : Subgroup α
⊢ ∀ (a b : α), Setoid.r a b ↔ a⁻¹ * b ∈ s
[PROOFSTEP]
apply leftRel_apply
[GOAL]
α : Type u_1
inst✝ : Group α
s : Subgroup α
⊢ Setoid.r = LeftCosetEquivalence ↑s
[PROOFSTEP]
ext
[GOAL]
case h.h.a
α : Type u_1
inst✝ : Group α
s : Subgroup α
x✝¹ x✝ : α
⊢ Setoid.r x✝¹ x✝ ↔ LeftCosetEquivalence (↑s) x✝¹ x✝
[PROOFSTEP]
rw [leftRel_eq]
[GOAL]
case h.h.a
α : Type u_1
inst✝ : Group α
s : Subgroup α
x✝¹ x✝ : α
⊢ (fun x y => x⁻¹ * y ∈ s) x✝¹ x✝ ↔ LeftCosetEquivalence (↑s) x✝¹ x✝
[PROOFSTEP]
exact (leftCoset_eq_iff s).symm
[GOAL]
α : Type u_1
inst✝¹ : Group α
s : Subgroup α
inst✝ : DecidablePred fun x => x ∈ s
x y : α
⊢ Decidable (Setoid.r x y)
[PROOFSTEP]
rw [leftRel_eq]
[GOAL]
α : Type u_1
inst✝¹ : Group α
s : Subgroup α
inst✝ : DecidablePred fun x => x ∈ s
x y : α
⊢ Decidable ((fun x y => x⁻¹ * y ∈ s) x y)
[PROOFSTEP]
exact ‹DecidablePred (· ∈ s)› _
[GOAL]
α : Type u_1
inst✝ : Group α
s : Subgroup α
x y : α
⊢ (∃ a, ↑a * y = x) ↔ ∃ a, y * x⁻¹ = ↑a⁻¹
[PROOFSTEP]
simp only [mul_inv_eq_iff_eq_mul, Subgroup.coe_inv, eq_inv_mul_iff_mul_eq]
[GOAL]
α : Type u_1
inst✝ : Group α
s : Subgroup α
x y : α
⊢ (∃ a, y * x⁻¹ = ↑a⁻¹) ↔ y * x⁻¹ ∈ s
[PROOFSTEP]
simp [exists_inv_mem_iff_exists_mem]
[GOAL]
α : Type u_1
inst✝ : Group α
s : Subgroup α
⊢ ∀ (a b : α), Setoid.r a b = (b * a⁻¹ ∈ s)
[PROOFSTEP]
simp only [eq_iff_iff]
[GOAL]
α : Type u_1
inst✝ : Group α
s : Subgroup α
⊢ ∀ (a b : α), Setoid.r a b ↔ b * a⁻¹ ∈ s
[PROOFSTEP]
apply rightRel_apply
[GOAL]
α : Type u_1
inst✝ : Group α
s : Subgroup α
⊢ Setoid.r = RightCosetEquivalence ↑s
[PROOFSTEP]
ext
[GOAL]
case h.h.a
α : Type u_1
inst✝ : Group α
s : Subgroup α
x✝¹ x✝ : α
⊢ Setoid.r x✝¹ x✝ ↔ RightCosetEquivalence (↑s) x✝¹ x✝
[PROOFSTEP]
rw [rightRel_eq]
[GOAL]
case h.h.a
α : Type u_1
inst✝ : Group α
s : Subgroup α
x✝¹ x✝ : α
⊢ (fun x y => y * x⁻¹ ∈ s) x✝¹ x✝ ↔ RightCosetEquivalence (↑s) x✝¹ x✝
[PROOFSTEP]
exact (rightCoset_eq_iff s).symm
[GOAL]
α : Type u_1
inst✝¹ : Group α
s : Subgroup α
inst✝ : DecidablePred fun x => x ∈ s
x y : α
⊢ Decidable (Setoid.r x y)
[PROOFSTEP]
rw [rightRel_eq]
[GOAL]
α : Type u_1
inst✝¹ : Group α
s : Subgroup α
inst✝ : DecidablePred fun x => x ∈ s
x y : α
⊢ Decidable ((fun x y => y * x⁻¹ ∈ s) x y)
[PROOFSTEP]
exact ‹DecidablePred (· ∈ s)› _
[GOAL]
α : Type u_1
inst✝ : Group α
s : Subgroup α
a b : α
⊢ Setoid.r a b → Setoid.r ((fun g => g⁻¹) a) ((fun g => g⁻¹) b)
[PROOFSTEP]
rw [leftRel_apply, rightRel_apply]
[GOAL]
α : Type u_1
inst✝ : Group α
s : Subgroup α
a b : α
⊢ b * a⁻¹ ∈ s → ((fun g => g⁻¹) a)⁻¹ * (fun g => g⁻¹) b ∈ s
[PROOFSTEP]
exact fun h =>
(congr_arg (· ∈ s) (by simp [mul_assoc])).mp
(s.inv_mem h)
-- porting note: replace with `by group`
[GOAL]
α : Type u_1
inst✝ : Group α
s : Subgroup α
a b : α
h : b * a⁻¹ ∈ s
⊢ (b * a⁻¹)⁻¹ = ((fun g => g⁻¹) a)⁻¹ * (fun g => g⁻¹) b
[PROOFSTEP]
simp [mul_assoc]
[GOAL]
α : Type u_1
inst✝ : Group α
s : Subgroup α
a b : α
⊢ Setoid.r a b → Setoid.r ((fun g => g⁻¹) a) ((fun g => g⁻¹) b)
[PROOFSTEP]
rw [leftRel_apply, rightRel_apply]
[GOAL]
α : Type u_1
inst✝ : Group α
s : Subgroup α
a b : α
⊢ a⁻¹ * b ∈ s → (fun g => g⁻¹) b * ((fun g => g⁻¹) a)⁻¹ ∈ s
[PROOFSTEP]
exact fun h =>
(congr_arg (· ∈ s) (by simp [mul_assoc])).mp
(s.inv_mem h)
-- porting note: replace with `by group`
[GOAL]
α : Type u_1
inst✝ : Group α
s : Subgroup α
a b : α
h : a⁻¹ * b ∈ s
⊢ (a⁻¹ * b)⁻¹ = (fun g => g⁻¹) b * ((fun g => g⁻¹) a)⁻¹
[PROOFSTEP]
simp [mul_assoc]
[GOAL]
α : Type u_1
inst✝ : Group α
s : Subgroup α
g✝ : Quotient (rightRel s)
g : α
⊢ Setoid.r ((fun g => g⁻¹) ((fun g => g⁻¹) g)) g
[PROOFSTEP]
simp only [inv_inv]
[GOAL]
α : Type u_1
inst✝ : Group α
s : Subgroup α
g✝ : Quotient (rightRel s)
g : α
⊢ Setoid.r g g
[PROOFSTEP]
exact Quotient.exact' rfl
[GOAL]
α : Type u_1
inst✝ : Group α
s : Subgroup α
g✝ : α ⧸ s
g : α
⊢ Setoid.r ((fun g => g⁻¹) ((fun g => g⁻¹) g)) g
[PROOFSTEP]
simp only [inv_inv]
[GOAL]
α : Type u_1
inst✝ : Group α
s : Subgroup α
g✝ : α ⧸ s
g : α
⊢ Setoid.r g g
[PROOFSTEP]
exact Quotient.exact' rfl
[GOAL]
α : Type u_1
inst✝ : Group α
s : Subgroup α
a b : α
⊢ Setoid.r a b ↔ a⁻¹ * b ∈ s
[PROOFSTEP]
rw [leftRel_apply]
[GOAL]
α : Type u_1
inst✝ : Group α
s : Subgroup α
g : α
⊢ Quotient.out' ↑g = g * ↑{ val := g⁻¹ * Quotient.out' ↑g, property := (_ : g⁻¹ * Quotient.out' ↑g ∈ s) }
[PROOFSTEP]
rw [mul_inv_cancel_left]
[GOAL]
α : Type u_1
inst✝ : Group α
s : Subgroup α
a✝ b a : α
hb : b ∈ s
⊢ ↑(a * b) = ↑a
[PROOFSTEP]
rwa [eq', mul_inv_rev, inv_mul_cancel_right, s.inv_mem_iff]
[GOAL]
α : Type u_1
inst✝ : Group α
s✝ : Subgroup α
a b : α
s : Subgroup α
g z : α
⊢ z ∈ {x | ↑x = ↑g} ↔ z ∈ g *l ↑s
[PROOFSTEP]
rw [mem_leftCoset_iff, Set.mem_setOf_eq, eq_comm, QuotientGroup.eq, SetLike.mem_coe]
[GOAL]
α : Type u_1
inst✝ : Group α
s✝ : Subgroup α
a b : α
N : Subgroup α
s : Set α
⊢ mk ⁻¹' (mk '' s) = ⋃ (x : { x // x ∈ N }), (fun x_1 => x_1 * ↑x) ⁻¹' s
[PROOFSTEP]
ext x
[GOAL]
case h
α : Type u_1
inst✝ : Group α
s✝ : Subgroup α
a b : α
N : Subgroup α
s : Set α
x : α
⊢ x ∈ mk ⁻¹' (mk '' s) ↔ x ∈ ⋃ (x : { x // x ∈ N }), (fun x_1 => x_1 * ↑x) ⁻¹' s
[PROOFSTEP]
simp only [QuotientGroup.eq, SetLike.exists, exists_prop, Set.mem_preimage, Set.mem_iUnion, Set.mem_image, ←
eq_inv_mul_iff_mul_eq]
[GOAL]
case h
α : Type u_1
inst✝ : Group α
s✝ : Subgroup α
a b : α
N : Subgroup α
s : Set α
x : α
⊢ (∃ x_1, x_1 ∈ s ∧ x_1⁻¹ * x ∈ N) ↔ ∃ x_1, x_1 ∈ N ∧ x * x_1 ∈ s
[PROOFSTEP]
exact ⟨fun ⟨y, hs, hN⟩ => ⟨_, N.inv_mem hN, by simpa using hs⟩, fun ⟨z, hz, hxz⟩ => ⟨x * z, hxz, by simpa using hz⟩⟩
[GOAL]
α : Type u_1
inst✝ : Group α
s✝ : Subgroup α
a b : α
N : Subgroup α
s : Set α
x : α
x✝ : ∃ x_1, x_1 ∈ s ∧ x_1⁻¹ * x ∈ N
y : α
hs : y ∈ s
hN : y⁻¹ * x ∈ N
⊢ x * (y⁻¹ * x)⁻¹ ∈ s
[PROOFSTEP]
simpa using hs
[GOAL]
α : Type u_1
inst✝ : Group α
s✝ : Subgroup α
a b : α
N : Subgroup α
s : Set α
x : α
x✝ : ∃ x_1, x_1 ∈ N ∧ x * x_1 ∈ s
z : α
hz : z ∈ N
hxz : x * z ∈ s
⊢ (x * z)⁻¹ * x ∈ N
[PROOFSTEP]
simpa using hz
[GOAL]
α : Type u_1
inst✝ : Group α
s✝ : Subgroup α
a b : α
N : Subgroup α
s : Set α
⊢ mk ⁻¹' (mk '' s) = ⋃ (x : { x // x ∈ N }), (fun x_1 => x_1 * ↑x) '' s
[PROOFSTEP]
rw [preimage_image_mk, iUnion_congr_of_surjective (·⁻¹) inv_surjective]
[GOAL]
α : Type u_1
inst✝ : Group α
s✝ : Subgroup α
a b : α
N : Subgroup α
s : Set α
⊢ ∀ (x : { x // x ∈ N }), (fun x_1 => x_1 * ↑x⁻¹) '' s = (fun x_1 => x_1 * ↑x) ⁻¹' s
[PROOFSTEP]
exact fun x ↦ image_mul_right'
[GOAL]
α : Type u_1
inst✝ : Group α
s : Subgroup α
g : α
x✝ : ↑(g *l ↑s)
x : α
hx : x ∈ g *l ↑s
⊢ ↑((fun x => { val := g * ↑x, property := (_ : ∃ a, a ∈ ↑s ∧ (fun x => g * x) a = g * ↑x) })
((fun x => { val := g⁻¹ * ↑x, property := (_ : g⁻¹ * ↑x ∈ ↑s) }) { val := x, property := hx })) =
↑{ val := x, property := hx }
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝ : Group α
s : Subgroup α
g✝ : α
x✝ : { x // x ∈ s }
g : α
hg : g ∈ s
⊢ ↑((fun x => { val := g✝⁻¹ * ↑x, property := (_ : g✝⁻¹ * ↑x ∈ ↑s) })
((fun x => { val := g✝ * ↑x, property := (_ : ∃ a, a ∈ ↑s ∧ (fun x => g✝ * x) a = g✝ * ↑x) })
{ val := g, property := hg })) =
↑{ val := g, property := hg }
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝ : Group α
s : Subgroup α
g : α
x✝ : ↑(↑s *r g)
x : α
hx : x ∈ ↑s *r g
⊢ ↑((fun x => { val := ↑x * g, property := (_ : ∃ a, a ∈ ↑s ∧ (fun x => x * g) a = ↑x * g) })
((fun x => { val := ↑x * g⁻¹, property := (_ : ↑x * g⁻¹ ∈ ↑s) }) { val := x, property := hx })) =
↑{ val := x, property := hx }
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝ : Group α
s : Subgroup α
g✝ : α
x✝ : { x // x ∈ s }
g : α
hg : g ∈ s
⊢ ↑((fun x => { val := ↑x * g✝⁻¹, property := (_ : ↑x * g✝⁻¹ ∈ ↑s) })
((fun x => { val := ↑x * g✝, property := (_ : ∃ a, a ∈ ↑s ∧ (fun x => x * g✝) a = ↑x * g✝) })
{ val := g, property := hg })) =
↑{ val := g, property := hg }
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝ : Group α
s : Subgroup α
L : α ⧸ s
⊢ { x // ↑x = L } ≃ ↑(Quotient.out' L *l ↑s)
[PROOFSTEP]
rw [← eq_class_eq_leftCoset]
[GOAL]
α : Type u_1
inst✝ : Group α
s : Subgroup α
L : α ⧸ s
⊢ { x // ↑x = L } ≃ ↑{x | ↑x = ↑(Quotient.out' L)}
[PROOFSTEP]
show (_root_.Subtype fun x : α => Quotient.mk'' x = L) ≃ _root_.Subtype fun x : α => Quotient.mk'' x = Quotient.mk'' _
[GOAL]
α : Type u_1
inst✝ : Group α
s : Subgroup α
L : α ⧸ s
⊢ { x // Quotient.mk'' x = L } ≃ { x // Quotient.mk'' x = Quotient.mk'' (Quotient.out' L) }
[PROOFSTEP]
simp [-Quotient.eq'']
[GOAL]
α : Type u_1
inst✝ : Group α
s : Subgroup α
L : α ⧸ s
⊢ { x // Quotient.mk'' x = L } ≃ { x // Quotient.mk'' x = L }
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
inst✝ : Group α
s t : Subgroup α
h_le : s ≤ t
f : α ⧸ t → α
hf : Function.RightInverse f QuotientGroup.mk
a : α ⧸ s
b c : α
h : Setoid.r b c
⊢ Setoid.r ((fun g => { val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g ∈ t) }) b)
((fun g => { val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g ∈ t) }) c)
[PROOFSTEP]
rw [leftRel_apply]
[GOAL]
α : Type u_1
inst✝ : Group α
s t : Subgroup α
h_le : s ≤ t
f : α ⧸ t → α
hf : Function.RightInverse f QuotientGroup.mk
a : α ⧸ s
b c : α
h : Setoid.r b c
⊢ ((fun g => { val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g ∈ t) }) b)⁻¹ *
(fun g => { val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g ∈ t) }) c ∈
subgroupOf s t
[PROOFSTEP]
change ((f b)⁻¹ * b)⁻¹ * ((f c)⁻¹ * c) ∈ s
[GOAL]
α : Type u_1
inst✝ : Group α
s t : Subgroup α
h_le : s ≤ t
f : α ⧸ t → α
hf : Function.RightInverse f QuotientGroup.mk
a : α ⧸ s
b c : α
h : Setoid.r b c
⊢ ((f ↑b)⁻¹ * b)⁻¹ * ((f ↑c)⁻¹ * c) ∈ s
[PROOFSTEP]
have key : f b = f c := congr_arg f (Quotient.sound' (leftRel_apply.mpr (h_le (leftRel_apply.mp h))))
[GOAL]
α : Type u_1
inst✝ : Group α
s t : Subgroup α
h_le : s ≤ t
f : α ⧸ t → α
hf : Function.RightInverse f QuotientGroup.mk
a : α ⧸ s
b c : α
h : Setoid.r b c
key : f ↑b = f ↑c
⊢ ((f ↑b)⁻¹ * b)⁻¹ * ((f ↑c)⁻¹ * c) ∈ s
[PROOFSTEP]
rwa [key, mul_inv_rev, inv_inv, mul_assoc, mul_inv_cancel_left, ← leftRel_apply]
[GOAL]
α : Type u_1
inst✝ : Group α
s t : Subgroup α
h_le : s ≤ t
f : α ⧸ t → α
hf : Function.RightInverse f QuotientGroup.mk
a : (α ⧸ t) × { x // x ∈ t } ⧸ subgroupOf s t
⊢ α ⧸ s
[PROOFSTEP]
refine
a.2.map' (fun (b : { x // x ∈ t }) => f a.1 * b) fun b c h =>
by
rw [leftRel_apply] at h ⊢
change (f a.1 * b)⁻¹ * (f a.1 * c) ∈ s
rwa [mul_inv_rev, mul_assoc, inv_mul_cancel_left]
[GOAL]
α : Type u_1
inst✝ : Group α
s t : Subgroup α
h_le : s ≤ t
f : α ⧸ t → α
hf : Function.RightInverse f QuotientGroup.mk
a : (α ⧸ t) × { x // x ∈ t } ⧸ subgroupOf s t
b c : { x // x ∈ t }
h : Setoid.r b c
⊢ Setoid.r ((fun b => f a.fst * ↑b) b) ((fun b => f a.fst * ↑b) c)
[PROOFSTEP]
rw [leftRel_apply] at h ⊢
[GOAL]
α : Type u_1
inst✝ : Group α
s t : Subgroup α
h_le : s ≤ t
f : α ⧸ t → α
hf : Function.RightInverse f QuotientGroup.mk
a : (α ⧸ t) × { x // x ∈ t } ⧸ subgroupOf s t
b c : { x // x ∈ t }
h : b⁻¹ * c ∈ subgroupOf s t
⊢ ((fun b => f a.fst * ↑b) b)⁻¹ * (fun b => f a.fst * ↑b) c ∈ s
[PROOFSTEP]
change (f a.1 * b)⁻¹ * (f a.1 * c) ∈ s
[GOAL]
α : Type u_1
inst✝ : Group α
s t : Subgroup α
h_le : s ≤ t
f : α ⧸ t → α
hf : Function.RightInverse f QuotientGroup.mk
a : (α ⧸ t) × { x // x ∈ t } ⧸ subgroupOf s t
b c : { x // x ∈ t }
h : b⁻¹ * c ∈ subgroupOf s t
⊢ (f a.fst * ↑b)⁻¹ * (f a.fst * ↑c) ∈ s
[PROOFSTEP]
rwa [mul_inv_rev, mul_assoc, inv_mul_cancel_left]
[GOAL]
α : Type u_1
inst✝ : Group α
s t : Subgroup α
h_le : s ≤ t
f : α ⧸ t → α
hf : Function.RightInverse f QuotientGroup.mk
⊢ LeftInverse
(fun a =>
Quotient.map' (fun b => f a.fst * ↑b)
(_ : ∀ (b c : { x // x ∈ t }), Setoid.r b c → Setoid.r ((fun b => f a.fst * ↑b) b) ((fun b => f a.fst * ↑b) c))
a.snd)
fun a =>
(Quotient.map' id (_ : ∀ (b c : α), Setoid.r b c → Setoid.r (id b) (id c)) a,
Quotient.map' (fun g => { val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g ∈ t) })
(_ :
∀ (b c : α),
Setoid.r b c →
Setoid.r
((fun g => { val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g ∈ t) }) b)
((fun g => { val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g ∈ t) })
c))
a)
[PROOFSTEP]
refine' Quotient.ind' fun a => _
[GOAL]
α : Type u_1
inst✝ : Group α
s t : Subgroup α
h_le : s ≤ t
f : α ⧸ t → α
hf : Function.RightInverse f QuotientGroup.mk
a : α
⊢ (fun a =>
Quotient.map' (fun b => f a.fst * ↑b)
(_ :
∀ (b c : { x // x ∈ t }), Setoid.r b c → Setoid.r ((fun b => f a.fst * ↑b) b) ((fun b => f a.fst * ↑b) c))
a.snd)
((fun a =>
(Quotient.map' id (_ : ∀ (b c : α), Setoid.r b c → Setoid.r (id b) (id c)) a,
Quotient.map'
(fun g => { val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g ∈ t) })
(_ :
∀ (b c : α),
Setoid.r b c →
Setoid.r
((fun g =>
{ val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g ∈ t) })
b)
((fun g =>
{ val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g ∈ t) })
c))
a))
(Quotient.mk'' a)) =
Quotient.mk'' a
[PROOFSTEP]
simp_rw [Quotient.map'_mk'', id.def, mul_inv_cancel_left]
[GOAL]
α : Type u_1
inst✝ : Group α
s t : Subgroup α
h_le : s ≤ t
f : α ⧸ t → α
hf : Function.RightInverse f QuotientGroup.mk
⊢ Function.RightInverse
(fun a =>
Quotient.map' (fun b => f a.fst * ↑b)
(_ : ∀ (b c : { x // x ∈ t }), Setoid.r b c → Setoid.r ((fun b => f a.fst * ↑b) b) ((fun b => f a.fst * ↑b) c))
a.snd)
fun a =>
(Quotient.map' id (_ : ∀ (b c : α), Setoid.r b c → Setoid.r (id b) (id c)) a,
Quotient.map' (fun g => { val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g ∈ t) })
(_ :
∀ (b c : α),
Setoid.r b c →
Setoid.r
((fun g => { val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g ∈ t) }) b)
((fun g => { val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g ∈ t) })
c))
a)
[PROOFSTEP]
refine' Prod.rec _
[GOAL]
α : Type u_1
inst✝ : Group α
s t : Subgroup α
h_le : s ≤ t
f : α ⧸ t → α
hf : Function.RightInverse f QuotientGroup.mk
⊢ ∀ (fst : α ⧸ t) (snd : { x // x ∈ t } ⧸ subgroupOf s t),
(fun a =>
(Quotient.map' id (_ : ∀ (b c : α), Setoid.r b c → Setoid.r (id b) (id c)) a,
Quotient.map'
(fun g => { val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g ∈ t) })
(_ :
∀ (b c : α),
Setoid.r b c →
Setoid.r
((fun g =>
{ val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g ∈ t) })
b)
((fun g =>
{ val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g ∈ t) })
c))
a))
((fun a =>
Quotient.map' (fun b => f a.fst * ↑b)
(_ :
∀ (b c : { x // x ∈ t }),
Setoid.r b c → Setoid.r ((fun b => f a.fst * ↑b) b) ((fun b => f a.fst * ↑b) c))
a.snd)
(fst, snd)) =
(fst, snd)
[PROOFSTEP]
refine' Quotient.ind' fun a => _
[GOAL]
α : Type u_1
inst✝ : Group α
s t : Subgroup α
h_le : s ≤ t
f : α ⧸ t → α
hf : Function.RightInverse f QuotientGroup.mk
a : α
⊢ ∀ (snd : { x // x ∈ t } ⧸ subgroupOf s t),
(fun a =>
(Quotient.map' id (_ : ∀ (b c : α), Setoid.r b c → Setoid.r (id b) (id c)) a,
Quotient.map'
(fun g => { val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g ∈ t) })
(_ :
∀ (b c : α),
Setoid.r b c →
Setoid.r
((fun g =>
{ val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g ∈ t) })
b)
((fun g =>
{ val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g ∈ t) })
c))
a))
((fun a =>
Quotient.map' (fun b => f a.fst * ↑b)
(_ :
∀ (b c : { x // x ∈ t }),
Setoid.r b c → Setoid.r ((fun b => f a.fst * ↑b) b) ((fun b => f a.fst * ↑b) c))
a.snd)
(Quotient.mk'' a, snd)) =
(Quotient.mk'' a, snd)
[PROOFSTEP]
refine' Quotient.ind' fun b => _
[GOAL]
α : Type u_1
inst✝ : Group α
s t : Subgroup α
h_le : s ≤ t
f : α ⧸ t → α
hf : Function.RightInverse f QuotientGroup.mk
a : α
b : { x // x ∈ t }
⊢ (fun a =>
(Quotient.map' id (_ : ∀ (b c : α), Setoid.r b c → Setoid.r (id b) (id c)) a,
Quotient.map'
(fun g => { val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g ∈ t) })
(_ :
∀ (b c : α),
Setoid.r b c →
Setoid.r
((fun g =>
{ val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g ∈ t) })
b)
((fun g =>
{ val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g ∈ t) })
c))
a))
((fun a =>
Quotient.map' (fun b => f a.fst * ↑b)
(_ :
∀ (b c : { x // x ∈ t }), Setoid.r b c → Setoid.r ((fun b => f a.fst * ↑b) b) ((fun b => f a.fst * ↑b) c))
a.snd)
(Quotient.mk'' a, Quotient.mk'' b)) =
(Quotient.mk'' a, Quotient.mk'' b)
[PROOFSTEP]
have key : Quotient.mk'' (f (Quotient.mk'' a) * b) = Quotient.mk'' a :=
(QuotientGroup.mk_mul_of_mem (f a) b.2).trans (hf a)
[GOAL]
α : Type u_1
inst✝ : Group α
s t : Subgroup α
h_le : s ≤ t
f : α ⧸ t → α
hf : Function.RightInverse f QuotientGroup.mk
a : α
b : { x // x ∈ t }
key : Quotient.mk'' (f (Quotient.mk'' a) * ↑b) = Quotient.mk'' a
⊢ (fun a =>
(Quotient.map' id (_ : ∀ (b c : α), Setoid.r b c → Setoid.r (id b) (id c)) a,
Quotient.map'
(fun g => { val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g ∈ t) })
(_ :
∀ (b c : α),
Setoid.r b c →
Setoid.r
((fun g =>
{ val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g ∈ t) })
b)
((fun g =>
{ val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g ∈ t) })
c))
a))
((fun a =>
Quotient.map' (fun b => f a.fst * ↑b)
(_ :
∀ (b c : { x // x ∈ t }), Setoid.r b c → Setoid.r ((fun b => f a.fst * ↑b) b) ((fun b => f a.fst * ↑b) c))
a.snd)
(Quotient.mk'' a, Quotient.mk'' b)) =
(Quotient.mk'' a, Quotient.mk'' b)
[PROOFSTEP]
simp_rw [Quotient.map'_mk'', id.def, key, inv_mul_cancel_left]
[GOAL]
α : Type u_1
inst✝ : Group α
s t H : Subgroup α
h : s ≤ t
a b : { x // x ∈ s }
⊢ Setoid.r a b → Setoid.r (↑(inclusion h) a) (↑(inclusion h) b)
[PROOFSTEP]
simp_rw [leftRel_eq]
[GOAL]
α : Type u_1
inst✝ : Group α
s t H : Subgroup α
h : s ≤ t
a b : { x // x ∈ s }
⊢ a⁻¹ * b ∈ subgroupOf H s → (↑(inclusion h) a)⁻¹ * ↑(inclusion h) b ∈ subgroupOf H t
[PROOFSTEP]
exact id
[GOAL]
α : Type u_1
inst✝ : Group α
s t H : Subgroup α
h : s ≤ t
⊢ ∀ (a₁ a₂ : { x // x ∈ s }),
Quotient.map' ↑(inclusion h)
(_ : ∀ (a b : { x // x ∈ s }), Setoid.r a b → Setoid.r (↑(inclusion h) a) (↑(inclusion h) b))
(Quotient.mk'' a₁) =
Quotient.map' ↑(inclusion h)
(_ : ∀ (a b : { x // x ∈ s }), Setoid.r a b → Setoid.r (↑(inclusion h) a) (↑(inclusion h) b))
(Quotient.mk'' a₂) →
Quotient.mk'' a₁ = Quotient.mk'' a₂
[PROOFSTEP]
intro a b h
[GOAL]
α : Type u_1
inst✝ : Group α
s t H : Subgroup α
h✝ : s ≤ t
a b : { x // x ∈ s }
h :
Quotient.map' ↑(inclusion h✝)
(_ : ∀ (a b : { x // x ∈ s }), Setoid.r a b → Setoid.r (↑(inclusion h✝) a) (↑(inclusion h✝) b))
(Quotient.mk'' a) =
Quotient.map' ↑(inclusion h✝)
(_ : ∀ (a b : { x // x ∈ s }), Setoid.r a b → Setoid.r (↑(inclusion h✝) a) (↑(inclusion h✝) b)) (Quotient.mk'' b)
⊢ Quotient.mk'' a = Quotient.mk'' b
[PROOFSTEP]
simpa only [Quotient.map'_mk'', eq'] using h
[GOAL]
α : Type u_1
inst✝ : Group α
s t H : Subgroup α
h : s ≤ t
a b : { x // x ∈ H }
⊢ Setoid.r a b → Setoid.r (id a) (id b)
[PROOFSTEP]
simp_rw [leftRel_eq]
[GOAL]
α : Type u_1
inst✝ : Group α
s t H : Subgroup α
h : s ≤ t
a b : { x // x ∈ H }
⊢ a⁻¹ * b ∈ subgroupOf s H → (id a)⁻¹ * id b ∈ subgroupOf t H
[PROOFSTEP]
apply h
[GOAL]
α : Type u_1
inst✝ : Group α
s t : Subgroup α
h : s ≤ t
a b : α
⊢ Setoid.r a b → Setoid.r (id a) (id b)
[PROOFSTEP]
simp_rw [leftRel_eq]
[GOAL]
α : Type u_1
inst✝ : Group α
s t : Subgroup α
h : s ≤ t
a b : α
⊢ a⁻¹ * b ∈ s → (id a)⁻¹ * id b ∈ t
[PROOFSTEP]
apply h
[GOAL]
α : Type u_1
inst✝ : Group α
s t : Subgroup α
ι : Type u_2
f : ι → Subgroup α
H : Subgroup α
⊢ ∀ (a₁ a₂ : { x // x ∈ H }),
(fun q i => quotientSubgroupOfMapOfLE H (_ : iInf f ≤ f i) q) (Quotient.mk'' a₁) =
(fun q i => quotientSubgroupOfMapOfLE H (_ : iInf f ≤ f i) q) (Quotient.mk'' a₂) →
Quotient.mk'' a₁ = Quotient.mk'' a₂
[PROOFSTEP]
simp_rw [funext_iff, quotientSubgroupOfMapOfLE_apply_mk, eq', mem_subgroupOf, mem_iInf, imp_self, forall_const]
[GOAL]
α : Type u_1
inst✝ : Group α
s t : Subgroup α
ι : Type u_2
f : ι → Subgroup α
⊢ ∀ (a₁ a₂ : α),
(fun q i => quotientMapOfLE (_ : iInf f ≤ f i) q) (Quotient.mk'' a₁) =
(fun q i => quotientMapOfLE (_ : iInf f ≤ f i) q) (Quotient.mk'' a₂) →
Quotient.mk'' a₁ = Quotient.mk'' a₂
[PROOFSTEP]
simp_rw [funext_iff, quotientMapOfLE_apply_mk, eq', mem_iInf, imp_self, forall_const]
[GOAL]
α : Type u_1
inst✝³ : Group α
s✝ t : Subgroup α
inst✝² : Fintype α
s : Subgroup α
inst✝¹ : Fintype { x // x ∈ s }
inst✝ : DecidablePred fun a => a ∈ s
⊢ Fintype.card α = Fintype.card (α ⧸ s) * Fintype.card { x // x ∈ s }
[PROOFSTEP]
rw [← Fintype.card_prod]
[GOAL]
α : Type u_1
inst✝³ : Group α
s✝ t : Subgroup α
inst✝² : Fintype α
s : Subgroup α
inst✝¹ : Fintype { x // x ∈ s }
inst✝ : DecidablePred fun a => a ∈ s
⊢ Fintype.card α = Fintype.card ((α ⧸ s) × { x // x ∈ s })
[PROOFSTEP]
exact Fintype.card_congr Subgroup.groupEquivQuotientProdSubgroup
[GOAL]
α : Type u_1
inst✝² : Group α
s✝ t : Subgroup α
inst✝¹ : Fintype α
s : Subgroup α
inst✝ : Fintype { x // x ∈ s }
⊢ Fintype.card { x // x ∈ s } ∣ Fintype.card α
[PROOFSTEP]
classical simp [card_eq_card_quotient_mul_card_subgroup s, @dvd_mul_left ℕ]
[GOAL]
α : Type u_1
inst✝² : Group α
s✝ t : Subgroup α
inst✝¹ : Fintype α
s : Subgroup α
inst✝ : Fintype { x // x ∈ s }
⊢ Fintype.card { x // x ∈ s } ∣ Fintype.card α
[PROOFSTEP]
simp [card_eq_card_quotient_mul_card_subgroup s, @dvd_mul_left ℕ]
[GOAL]
α : Type u_1
inst✝² : Group α
s✝ t : Subgroup α
inst✝¹ : Fintype α
s : Subgroup α
inst✝ : DecidablePred fun x => x ∈ s
⊢ Fintype.card (α ⧸ s) ∣ Fintype.card α
[PROOFSTEP]
simp [card_eq_card_quotient_mul_card_subgroup s, @dvd_mul_right ℕ]
[GOAL]
α : Type u_1
inst✝³ : Group α
s t : Subgroup α
H : Type u_2
inst✝² : Group H
inst✝¹ : Fintype α
inst✝ : Fintype H
f : α →* H
hf : Injective ↑f
⊢ card α ∣ card H
[PROOFSTEP]
classical calc
card α = card (f.range : Subgroup H) := card_congr (Equiv.ofInjective f hf)
_ ∣ card H := card_subgroup_dvd_card _
[GOAL]
α : Type u_1
inst✝³ : Group α
s t : Subgroup α
H : Type u_2
inst✝² : Group H
inst✝¹ : Fintype α
inst✝ : Fintype H
f : α →* H
hf : Injective ↑f
⊢ card α ∣ card H
[PROOFSTEP]
calc
card α = card (f.range : Subgroup H) := card_congr (Equiv.ofInjective f hf)
_ ∣ card H := card_subgroup_dvd_card _
[GOAL]
α : Type u_1
inst✝³ : Group α
s t : Subgroup α
H : Type u_2
inst✝² : Group H
K : Subgroup H
inst✝¹ : Fintype { x // x ∈ K }
f : α →* H
inst✝ : Fintype { x // x ∈ comap f K }
hf : Injective ↑f
⊢ card { x // x ∈ comap f K } ∣ card { x // x ∈ K }
[PROOFSTEP]
haveI : Fintype ((K.comap f).map f) := Fintype.ofEquiv _ (equivMapOfInjective _ _ hf).toEquiv
[GOAL]
α : Type u_1
inst✝³ : Group α
s t : Subgroup α
H : Type u_2
inst✝² : Group H
K : Subgroup H
inst✝¹ : Fintype { x // x ∈ K }
f : α →* H
inst✝ : Fintype { x // x ∈ comap f K }
hf : Injective ↑f
this : Fintype { x // x ∈ map f (comap f K) }
⊢ card { x // x ∈ comap f K } ∣ card { x // x ∈ K }
[PROOFSTEP]
calc
Fintype.card (K.comap f) = Fintype.card ((K.comap f).map f) := Fintype.card_congr (equivMapOfInjective _ _ hf).toEquiv
_ ∣ Fintype.card K := card_dvd_of_le (map_comap_le _ _)
[GOAL]
α : Type u_1
inst✝ : Group α
s : Subgroup α
t : Set (α ⧸ s)
a : { x // x ∈ s } × ↑t
⊢ ↑(Quotient.out' ↑a.snd * ↑a.fst) ∈ t
[PROOFSTEP]
rw [mk_mul_of_mem _ a.1.2, out_eq']
[GOAL]
α : Type u_1
inst✝ : Group α
s : Subgroup α
t : Set (α ⧸ s)
a : { x // x ∈ s } × ↑t
⊢ ↑a.snd ∈ t
[PROOFSTEP]
exact a.2.2
[GOAL]
α : Type u_1
inst✝ : Group α
s : Subgroup α
t : Set (α ⧸ s)
x✝ : ↑(mk ⁻¹' t)
a : α
ha : a ∈ mk ⁻¹' t
⊢ Quotient.out'
↑((fun a =>
({ val := (Quotient.out' ↑↑a)⁻¹ * ↑a, property := (_ : (Quotient.out' ↑↑a)⁻¹ * ↑a ∈ s) },
{ val := ↑↑a, property := (_ : ↑a ∈ mk ⁻¹' t) }))
{ val := a, property := ha }).snd *
↑((fun a =>
({ val := (Quotient.out' ↑↑a)⁻¹ * ↑a, property := (_ : (Quotient.out' ↑↑a)⁻¹ * ↑a ∈ s) },
{ val := ↑↑a, property := (_ : ↑a ∈ mk ⁻¹' t) }))
{ val := a, property := ha }).fst =
a
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝ : Group α
s : Subgroup α
t : Set (α ⧸ s)
x✝ : { x // x ∈ s } × ↑t
a : α
ha : a ∈ s
x : α ⧸ s
hx : x ∈ t
⊢ (fun a =>
({ val := (Quotient.out' ↑↑a)⁻¹ * ↑a, property := (_ : (Quotient.out' ↑↑a)⁻¹ * ↑a ∈ s) },
{ val := ↑↑a, property := (_ : ↑a ∈ mk ⁻¹' t) }))
((fun a => { val := Quotient.out' ↑a.snd * ↑a.fst, property := (_ : ↑(Quotient.out' ↑a.snd * ↑a.fst) ∈ t) })
({ val := a, property := ha }, { val := x, property := hx })) =
({ val := a, property := ha }, { val := x, property := hx })
[PROOFSTEP]
ext
[GOAL]
case h₁.a
α : Type u_1
inst✝ : Group α
s : Subgroup α
t : Set (α ⧸ s)
x✝ : { x // x ∈ s } × ↑t
a : α
ha : a ∈ s
x : α ⧸ s
hx : x ∈ t
⊢ ↑((fun a =>
({ val := (Quotient.out' ↑↑a)⁻¹ * ↑a, property := (_ : (Quotient.out' ↑↑a)⁻¹ * ↑a ∈ s) },
{ val := ↑↑a, property := (_ : ↑a ∈ mk ⁻¹' t) }))
((fun a => { val := Quotient.out' ↑a.snd * ↑a.fst, property := (_ : ↑(Quotient.out' ↑a.snd * ↑a.fst) ∈ t) })
({ val := a, property := ha }, { val := x, property := hx }))).fst =
↑({ val := a, property := ha }, { val := x, property := hx }).fst
[PROOFSTEP]
simp [ha]
[GOAL]
case h₂.a
α : Type u_1
inst✝ : Group α
s : Subgroup α
t : Set (α ⧸ s)
x✝ : { x // x ∈ s } × ↑t
a : α
ha : a ∈ s
x : α ⧸ s
hx : x ∈ t
⊢ ↑((fun a =>
({ val := (Quotient.out' ↑↑a)⁻¹ * ↑a, property := (_ : (Quotient.out' ↑↑a)⁻¹ * ↑a ∈ s) },
{ val := ↑↑a, property := (_ : ↑a ∈ mk ⁻¹' t) }))
((fun a => { val := Quotient.out' ↑a.snd * ↑a.fst, property := (_ : ↑(Quotient.out' ↑a.snd * ↑a.fst) ∈ t) })
({ val := a, property := ha }, { val := x, property := hx }))).snd =
↑({ val := a, property := ha }, { val := x, property := hx }).snd
[PROOFSTEP]
simp [ha]
| {"mathlib_filename": "Mathlib.GroupTheory.Coset", "llama_tokens": 17642} |
[GOAL]
G : Type u
inst✝¹ : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝ : Group H
a b c d : G
hab : Setoid.r a b
hcd : Setoid.r c d
⊢ Setoid.r (a * c) (b * d)
[PROOFSTEP]
rw [leftRel_eq] at hab hcd ⊢
[GOAL]
G : Type u
inst✝¹ : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝ : Group H
a b c d : G
hab : a⁻¹ * b ∈ N
hcd : c⁻¹ * d ∈ N
⊢ (fun x y => x⁻¹ * y ∈ N) (a * c) (b * d)
[PROOFSTEP]
dsimp only
[GOAL]
G : Type u
inst✝¹ : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝ : Group H
a b c d : G
hab : a⁻¹ * b ∈ N
hcd : c⁻¹ * d ∈ N
⊢ (a * c)⁻¹ * (b * d) ∈ N
[PROOFSTEP]
calc
(a * c)⁻¹ * (b * d) = c⁻¹ * (a⁻¹ * b) * c⁻¹⁻¹ * (c⁻¹ * d) := by
simp only [mul_inv_rev, mul_assoc, inv_mul_cancel_left]
_ ∈ N := N.mul_mem (nN.conj_mem _ hab _) hcd
[GOAL]
G : Type u
inst✝¹ : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝ : Group H
a b c d : G
hab : a⁻¹ * b ∈ N
hcd : c⁻¹ * d ∈ N
⊢ (a * c)⁻¹ * (b * d) = c⁻¹ * (a⁻¹ * b) * c⁻¹⁻¹ * (c⁻¹ * d)
[PROOFSTEP]
simp only [mul_inv_rev, mul_assoc, inv_mul_cancel_left]
[GOAL]
G : Type u
inst✝¹ : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝ : Group H
x y : G
⊢ x⁻¹ * y ∈ N ↔ ∃ z, z ∈ N ∧ x * z = y
[PROOFSTEP]
simp only [← _root_.eq_inv_mul_iff_mul_eq, exists_prop, exists_eq_right]
[GOAL]
G : Type u
inst✝¹ : Group G
N✝ : Subgroup G
nN✝ : Subgroup.Normal N✝
H : Type v
inst✝ : Group H
N : Subgroup G
nN : Subgroup.Normal N
x : G
⊢ ↑x = 1 ↔ x ∈ N
[PROOFSTEP]
refine' QuotientGroup.eq.trans _
[GOAL]
G : Type u
inst✝¹ : Group G
N✝ : Subgroup G
nN✝ : Subgroup.Normal N✝
H : Type v
inst✝ : Group H
N : Subgroup G
nN : Subgroup.Normal N
x : G
⊢ x⁻¹ * 1 ∈ N ↔ x ∈ N
[PROOFSTEP]
rw [mul_one, Subgroup.inv_mem_iff]
[GOAL]
G : Type u
inst✝³ : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝² : Group H
I : Type w
inst✝¹ : Group I
f : G →* H
inst✝ : Subgroup.Normal (MonoidHom.range f)
g : H →* I
h : MonoidHom.comp (mk' (MonoidHom.range f)) (Subgroup.subtype (MonoidHom.ker g)) = 1
x : H
hx : x ∈ MonoidHom.ker g
⊢ ↑x = 1
[PROOFSTEP]
exact FunLike.congr_fun h ⟨x, hx⟩
[GOAL]
G : Type u
inst✝¹ : Group G
N✝ : Subgroup G
nN✝ : Subgroup.Normal N✝
H : Type v
inst✝ : Group H
N : Subgroup G
nN : Subgroup.Normal N
x y : G
⊢ ↑x = ↑y ↔ x / y ∈ N
[PROOFSTEP]
refine' eq_comm.trans (QuotientGroup.eq.trans _)
[GOAL]
G : Type u
inst✝¹ : Group G
N✝ : Subgroup G
nN✝ : Subgroup.Normal N✝
H : Type v
inst✝ : Group H
N : Subgroup G
nN : Subgroup.Normal N
x y : G
⊢ y⁻¹ * x ∈ N ↔ x / y ∈ N
[PROOFSTEP]
rw [nN.mem_comm_iff, div_eq_mul_inv]
[GOAL]
G : Type u
inst✝¹ : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝ : Group H
φ : G →* H
HN : ∀ (x : G), x ∈ N → ↑φ x = 1
x y : G
h : ↑(QuotientGroup.con N) x y
⊢ ↑(Con.ker φ) x y
[PROOFSTEP]
simp only [QuotientGroup.con, leftRel_apply, Con.rel_mk] at h
[GOAL]
G : Type u
inst✝¹ : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝ : Group H
φ : G →* H
HN : ∀ (x : G), x ∈ N → ↑φ x = 1
x y : G
h : x⁻¹ * y ∈ N
⊢ ↑(Con.ker φ) x y
[PROOFSTEP]
rw [Con.ker_rel]
[GOAL]
G : Type u
inst✝¹ : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝ : Group H
φ : G →* H
HN : ∀ (x : G), x ∈ N → ↑φ x = 1
x y : G
h : x⁻¹ * y ∈ N
⊢ ↑φ x = ↑φ y
[PROOFSTEP]
calc
φ x = φ (y * (x⁻¹ * y)⁻¹) := by rw [mul_inv_rev, inv_inv, mul_inv_cancel_left]
_ = φ y := by rw [φ.map_mul, HN _ (N.inv_mem h), mul_one]
[GOAL]
G : Type u
inst✝¹ : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝ : Group H
φ : G →* H
HN : ∀ (x : G), x ∈ N → ↑φ x = 1
x y : G
h : x⁻¹ * y ∈ N
⊢ ↑φ x = ↑φ (y * (x⁻¹ * y)⁻¹)
[PROOFSTEP]
rw [mul_inv_rev, inv_inv, mul_inv_cancel_left]
[GOAL]
G : Type u
inst✝¹ : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝ : Group H
φ : G →* H
HN : ∀ (x : G), x ∈ N → ↑φ x = 1
x y : G
h : x⁻¹ * y ∈ N
⊢ ↑φ (y * (x⁻¹ * y)⁻¹) = ↑φ y
[PROOFSTEP]
rw [φ.map_mul, HN _ (N.inv_mem h), mul_one]
[GOAL]
G : Type u
inst✝² : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝¹ : Group H
M : Subgroup H
inst✝ : Subgroup.Normal M
f : G →* H
h : N ≤ Subgroup.comap f M
⊢ G ⧸ N →* H ⧸ M
[PROOFSTEP]
refine' QuotientGroup.lift N ((mk' M).comp f) _
[GOAL]
G : Type u
inst✝² : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝¹ : Group H
M : Subgroup H
inst✝ : Subgroup.Normal M
f : G →* H
h : N ≤ Subgroup.comap f M
⊢ ∀ (x : G), x ∈ N → ↑(MonoidHom.comp (mk' M) f) x = 1
[PROOFSTEP]
intro x hx
[GOAL]
G : Type u
inst✝² : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝¹ : Group H
M : Subgroup H
inst✝ : Subgroup.Normal M
f : G →* H
h : N ≤ Subgroup.comap f M
x : G
hx : x ∈ N
⊢ ↑(MonoidHom.comp (mk' M) f) x = 1
[PROOFSTEP]
refine' QuotientGroup.eq.2 _
[GOAL]
G : Type u
inst✝² : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝¹ : Group H
M : Subgroup H
inst✝ : Subgroup.Normal M
f : G →* H
h : N ≤ Subgroup.comap f M
x : G
hx : x ∈ N
⊢ (↑f x)⁻¹ * 1 ∈ M
[PROOFSTEP]
rw [mul_one, Subgroup.inv_mem_iff]
[GOAL]
G : Type u
inst✝² : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝¹ : Group H
M : Subgroup H
inst✝ : Subgroup.Normal M
f : G →* H
h : N ≤ Subgroup.comap f M
x : G
hx : x ∈ N
⊢ ↑f x ∈ M
[PROOFSTEP]
exact h hx
[GOAL]
G : Type u
inst✝⁴ : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝³ : Group H
I : Type u_1
inst✝² : Group I
M : Subgroup H
O : Subgroup I
inst✝¹ : Subgroup.Normal M
inst✝ : Subgroup.Normal O
f : G →* H
g : H →* I
hf : N ≤ Subgroup.comap f M
hg : M ≤ Subgroup.comap g O
hgf : optParam (N ≤ Subgroup.comap (MonoidHom.comp g f) O) (_ : N ≤ Subgroup.comap (MonoidHom.comp g f) O)
x : G ⧸ N
⊢ ↑(map M O g hg) (↑(map N M f hf) x) = ↑(map N O (MonoidHom.comp g f) hgf) x
[PROOFSTEP]
refine' induction_on' x fun x => _
[GOAL]
G : Type u
inst✝⁴ : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝³ : Group H
I : Type u_1
inst✝² : Group I
M : Subgroup H
O : Subgroup I
inst✝¹ : Subgroup.Normal M
inst✝ : Subgroup.Normal O
f : G →* H
g : H →* I
hf : N ≤ Subgroup.comap f M
hg : M ≤ Subgroup.comap g O
hgf : optParam (N ≤ Subgroup.comap (MonoidHom.comp g f) O) (_ : N ≤ Subgroup.comap (MonoidHom.comp g f) O)
x✝ : G ⧸ N
x : G
⊢ ↑(map M O g hg) (↑(map N M f hf) ↑x) = ↑(map N O (MonoidHom.comp g f) hgf) ↑x
[PROOFSTEP]
simp only [map_mk, MonoidHom.comp_apply]
[GOAL]
G : Type u
inst✝³ : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝² : Group H
G' : Subgroup G
H' : Subgroup H
inst✝¹ : Subgroup.Normal G'
inst✝ : Subgroup.Normal H'
e : G ≃* H
he : Subgroup.map (↑e) G' = H'
src✝ : G ⧸ G' →* H ⧸ H' := map G' H' ↑e (_ : G' ≤ Subgroup.comap (↑e) H')
x : G ⧸ G'
⊢ ↑(map H' G' ↑(MulEquiv.symm e) (_ : H' ≤ Subgroup.comap (↑(MulEquiv.symm e)) G'))
(↑(map G' H' ↑e (_ : G' ≤ Subgroup.comap (↑e) H')) x) =
x
[PROOFSTEP]
rw [map_map G' H' G' e e.symm (he ▸ G'.le_comap_map (e : G →* H)) (he ▸ (G'.map_equiv_eq_comap_symm e).le)]
[GOAL]
G : Type u
inst✝³ : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝² : Group H
G' : Subgroup G
H' : Subgroup H
inst✝¹ : Subgroup.Normal G'
inst✝ : Subgroup.Normal H'
e : G ≃* H
he : Subgroup.map (↑e) G' = H'
src✝ : G ⧸ G' →* H ⧸ H' := map G' H' ↑e (_ : G' ≤ Subgroup.comap (↑e) H')
x : G ⧸ G'
⊢ ↑(map G' G' (MonoidHom.comp ↑(MulEquiv.symm e) ↑e)
(_ : G' ≤ Subgroup.comap (MonoidHom.comp ↑(MulEquiv.symm e) ↑e) G'))
x =
x
[PROOFSTEP]
simp only [map_map, ← MulEquiv.coe_monoidHom_trans, MulEquiv.self_trans_symm, MulEquiv.coe_monoidHom_refl, map_id_apply]
[GOAL]
G : Type u
inst✝³ : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝² : Group H
G' : Subgroup G
H' : Subgroup H
inst✝¹ : Subgroup.Normal G'
inst✝ : Subgroup.Normal H'
e : G ≃* H
he : Subgroup.map (↑e) G' = H'
src✝ : G ⧸ G' →* H ⧸ H' := map G' H' ↑e (_ : G' ≤ Subgroup.comap (↑e) H')
x : H ⧸ H'
⊢ ↑(map G' H' ↑e (_ : G' ≤ Subgroup.comap (↑e) H'))
(↑(map H' G' ↑(MulEquiv.symm e) (_ : H' ≤ Subgroup.comap (↑(MulEquiv.symm e)) G')) x) =
x
[PROOFSTEP]
rw [map_map H' G' H' e.symm e (he ▸ (G'.map_equiv_eq_comap_symm e).le) (he ▸ G'.le_comap_map (e : G →* H))]
[GOAL]
G : Type u
inst✝³ : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝² : Group H
G' : Subgroup G
H' : Subgroup H
inst✝¹ : Subgroup.Normal G'
inst✝ : Subgroup.Normal H'
e : G ≃* H
he : Subgroup.map (↑e) G' = H'
src✝ : G ⧸ G' →* H ⧸ H' := map G' H' ↑e (_ : G' ≤ Subgroup.comap (↑e) H')
x : H ⧸ H'
⊢ ↑(map H' H' (MonoidHom.comp ↑e ↑(MulEquiv.symm e))
(_ : H' ≤ Subgroup.comap (MonoidHom.comp ↑e ↑(MulEquiv.symm e)) H'))
x =
x
[PROOFSTEP]
simp only [← MulEquiv.coe_monoidHom_trans, MulEquiv.symm_trans_self, MulEquiv.coe_monoidHom_refl, map_id_apply]
[GOAL]
G : Type u
inst✝³ : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝² : Group H
G' : Subgroup G
H' : Subgroup H
inst✝¹ : Subgroup.Normal G'
inst✝ : Subgroup.Normal H'
he : optParam (Subgroup.map (↑(MulEquiv.refl G)) G' = G') (_ : Subgroup.map (MonoidHom.id G) G' = G')
⊢ congr G' G' (MulEquiv.refl G) he = MulEquiv.refl (G ⧸ G')
[PROOFSTEP]
ext ⟨x⟩
[GOAL]
case h.mk
G : Type u
inst✝³ : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝² : Group H
G' : Subgroup G
H' : Subgroup H
inst✝¹ : Subgroup.Normal G'
inst✝ : Subgroup.Normal H'
he : optParam (Subgroup.map (↑(MulEquiv.refl G)) G' = G') (_ : Subgroup.map (MonoidHom.id G) G' = G')
x✝ : G ⧸ G'
x : G
⊢ ↑(congr G' G' (MulEquiv.refl G) he) (Quot.mk Setoid.r x) = ↑(MulEquiv.refl (G ⧸ G')) (Quot.mk Setoid.r x)
[PROOFSTEP]
rfl
[GOAL]
G : Type u
inst✝¹ : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝ : Group H
φ : G →* H
a✝ b✝ : G ⧸ ker φ
a b : G
h : ↑φ a = ↑φ b
⊢ Setoid.r a b
[PROOFSTEP]
rw [leftRel_apply, mem_ker, φ.map_mul, ← h, φ.map_inv, inv_mul_self]
[GOAL]
G : Type u
inst✝¹ : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝ : Group H
φ : G →* H
g : G
hg : g ∈ ker φ
⊢ g ∈ ker (rangeRestrict φ)
[PROOFSTEP]
rwa [ker_rangeRestrict]
[GOAL]
G : Type u
inst✝¹ : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝ : Group H
φ : G →* H
a✝ b✝ : G ⧸ ker φ
a b : G
h : ↑(rangeRestrict φ) a = ↑(rangeRestrict φ) b
⊢ Setoid.r a b
[PROOFSTEP]
rw [leftRel_apply, ← ker_rangeRestrict, mem_ker, φ.rangeRestrict.map_mul, ← h, φ.rangeRestrict.map_inv, inv_mul_self]
[GOAL]
G : Type u
inst✝¹ : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝ : Group H
φ : G →* H
⊢ Surjective ↑(rangeKerLift φ)
[PROOFSTEP]
rintro ⟨_, g, rfl⟩
[GOAL]
case mk.intro
G : Type u
inst✝¹ : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝ : Group H
φ : G →* H
g : G
⊢ ∃ a, ↑(rangeKerLift φ) a = { val := ↑φ g, property := (_ : ∃ y, ↑φ y = ↑φ g) }
[PROOFSTEP]
use mk g
[GOAL]
case h
G : Type u
inst✝¹ : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝ : Group H
φ : G →* H
g : G
⊢ ↑(rangeKerLift φ) ↑g = { val := ↑φ g, property := (_ : ∃ y, ↑φ y = ↑φ g) }
[PROOFSTEP]
rfl
[GOAL]
G : Type u
inst✝¹ : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝ : Group H
φ : G →* H
ψ : H → G
hφ : Function.RightInverse ψ ↑φ
src✝ : G ⧸ ker φ →* H := kerLift φ
x : G ⧸ ker φ
⊢ ↑(kerLift φ) ((mk ∘ ψ) (↑(kerLift φ) x)) = ↑(kerLift φ) x
[PROOFSTEP]
rw [Function.comp_apply, kerLift_mk', hφ]
[GOAL]
G : Type u
inst✝¹ : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝ : Group H
φ : G →* H
A' A B' B : Subgroup G
hAN : Subgroup.Normal (Subgroup.subgroupOf A' A)
hBN : Subgroup.Normal (Subgroup.subgroupOf B' B)
h' : A' = B'
h : A = B
⊢ MonoidHom.comp (quotientMapSubgroupOfOfLe (_ : B' ≤ A') (_ : B ≤ A))
(quotientMapSubgroupOfOfLe (_ : A' ≤ B') (_ : A ≤ B)) =
MonoidHom.id ({ x // x ∈ A } ⧸ Subgroup.subgroupOf A' A)
[PROOFSTEP]
ext ⟨x, hx⟩
[GOAL]
case h.h.mk
G : Type u
inst✝¹ : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝ : Group H
φ : G →* H
A' A B' B : Subgroup G
hAN : Subgroup.Normal (Subgroup.subgroupOf A' A)
hBN : Subgroup.Normal (Subgroup.subgroupOf B' B)
h' : A' = B'
h : A = B
x : G
hx : x ∈ A
⊢ ↑(MonoidHom.comp
(MonoidHom.comp (quotientMapSubgroupOfOfLe (_ : B' ≤ A') (_ : B ≤ A))
(quotientMapSubgroupOfOfLe (_ : A' ≤ B') (_ : A ≤ B)))
(mk' (Subgroup.subgroupOf A' A)))
{ val := x, property := hx } =
↑(MonoidHom.comp (MonoidHom.id ({ x // x ∈ A } ⧸ Subgroup.subgroupOf A' A)) (mk' (Subgroup.subgroupOf A' A)))
{ val := x, property := hx }
[PROOFSTEP]
rfl
[GOAL]
G : Type u
inst✝¹ : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝ : Group H
φ : G →* H
A' A B' B : Subgroup G
hAN : Subgroup.Normal (Subgroup.subgroupOf A' A)
hBN : Subgroup.Normal (Subgroup.subgroupOf B' B)
h' : A' = B'
h : A = B
⊢ MonoidHom.comp (quotientMapSubgroupOfOfLe (_ : A' ≤ B') (_ : A ≤ B))
(quotientMapSubgroupOfOfLe (_ : B' ≤ A') (_ : B ≤ A)) =
MonoidHom.id ({ x // x ∈ B } ⧸ Subgroup.subgroupOf B' B)
[PROOFSTEP]
ext ⟨x, hx⟩
[GOAL]
case h.h.mk
G : Type u
inst✝¹ : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝ : Group H
φ : G →* H
A' A B' B : Subgroup G
hAN : Subgroup.Normal (Subgroup.subgroupOf A' A)
hBN : Subgroup.Normal (Subgroup.subgroupOf B' B)
h' : A' = B'
h : A = B
x : G
hx : x ∈ B
⊢ ↑(MonoidHom.comp
(MonoidHom.comp (quotientMapSubgroupOfOfLe (_ : A' ≤ B') (_ : A ≤ B))
(quotientMapSubgroupOfOfLe (_ : B' ≤ A') (_ : B ≤ A)))
(mk' (Subgroup.subgroupOf B' B)))
{ val := x, property := hx } =
↑(MonoidHom.comp (MonoidHom.id ({ x // x ∈ B } ⧸ Subgroup.subgroupOf B' B)) (mk' (Subgroup.subgroupOf B' B)))
{ val := x, property := hx }
[PROOFSTEP]
rfl
[GOAL]
G : Type u
inst✝⁴ : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝³ : Group H
φ : G →* H
A B C : Type u
inst✝² : CommGroup A
inst✝¹ : CommGroup B
inst✝ : CommGroup C
f : A →* B
g✝ : B →* A
e : A ≃* B
d : B ≃* C
n : ℤ
g : A
x✝ : g ∈ range (zpowGroupHom n)
h : A
hg : h ^ n = g
⊢ ↑(zpowGroupHom n) (↑f h) = ↑f g
[PROOFSTEP]
simp only [← hg, map_zpow, zpowGroupHom_apply]
[GOAL]
G : Type u
inst✝⁴ : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝³ : Group H
φ : G →* H
A B C : Type u
inst✝² : CommGroup A
inst✝¹ : CommGroup B
inst✝ : CommGroup C
f : A →* B
g : B →* A
e : A ≃* B
d : B ≃* C
n : ℤ
⊢ MulEquiv.refl (A ⧸ range (zpowGroupHom n)) = equivQuotientZPowOfEquiv (MulEquiv.refl A) n
[PROOFSTEP]
ext x
[GOAL]
case h
G : Type u
inst✝⁴ : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝³ : Group H
φ : G →* H
A B C : Type u
inst✝² : CommGroup A
inst✝¹ : CommGroup B
inst✝ : CommGroup C
f : A →* B
g : B →* A
e : A ≃* B
d : B ≃* C
n : ℤ
x : A ⧸ range (zpowGroupHom n)
⊢ ↑(MulEquiv.refl (A ⧸ range (zpowGroupHom n))) x = ↑(equivQuotientZPowOfEquiv (MulEquiv.refl A) n) x
[PROOFSTEP]
rw [← Quotient.out_eq' x]
[GOAL]
case h
G : Type u
inst✝⁴ : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝³ : Group H
φ : G →* H
A B C : Type u
inst✝² : CommGroup A
inst✝¹ : CommGroup B
inst✝ : CommGroup C
f : A →* B
g : B →* A
e : A ≃* B
d : B ≃* C
n : ℤ
x : A ⧸ range (zpowGroupHom n)
⊢ ↑(MulEquiv.refl (A ⧸ range (zpowGroupHom n))) (Quotient.mk'' (Quotient.out' x)) =
↑(equivQuotientZPowOfEquiv (MulEquiv.refl A) n) (Quotient.mk'' (Quotient.out' x))
[PROOFSTEP]
rfl
[GOAL]
G : Type u
inst✝⁴ : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝³ : Group H
φ : G →* H
A B C : Type u
inst✝² : CommGroup A
inst✝¹ : CommGroup B
inst✝ : CommGroup C
f : A →* B
g : B →* A
e : A ≃* B
d : B ≃* C
n : ℤ
⊢ MulEquiv.trans (equivQuotientZPowOfEquiv e n) (equivQuotientZPowOfEquiv d n) =
equivQuotientZPowOfEquiv (MulEquiv.trans e d) n
[PROOFSTEP]
ext x
[GOAL]
case h
G : Type u
inst✝⁴ : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝³ : Group H
φ : G →* H
A B C : Type u
inst✝² : CommGroup A
inst✝¹ : CommGroup B
inst✝ : CommGroup C
f : A →* B
g : B →* A
e : A ≃* B
d : B ≃* C
n : ℤ
x : A ⧸ range (zpowGroupHom n)
⊢ ↑(MulEquiv.trans (equivQuotientZPowOfEquiv e n) (equivQuotientZPowOfEquiv d n)) x =
↑(equivQuotientZPowOfEquiv (MulEquiv.trans e d) n) x
[PROOFSTEP]
rw [← Quotient.out_eq' x]
[GOAL]
case h
G : Type u
inst✝⁴ : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝³ : Group H
φ : G →* H
A B C : Type u
inst✝² : CommGroup A
inst✝¹ : CommGroup B
inst✝ : CommGroup C
f : A →* B
g : B →* A
e : A ≃* B
d : B ≃* C
n : ℤ
x : A ⧸ range (zpowGroupHom n)
⊢ ↑(MulEquiv.trans (equivQuotientZPowOfEquiv e n) (equivQuotientZPowOfEquiv d n)) (Quotient.mk'' (Quotient.out' x)) =
↑(equivQuotientZPowOfEquiv (MulEquiv.trans e d) n) (Quotient.mk'' (Quotient.out' x))
[PROOFSTEP]
rfl
[GOAL]
G : Type u
inst✝² : Group G
N✝ : Subgroup G
nN : Normal N✝
H✝ : Type v
inst✝¹ : Group H✝
φ✝ : G →* H✝
H N : Subgroup G
inst✝ : Normal N
φ : { x // x ∈ H } →* { x // x ∈ H ⊔ N } ⧸ subgroupOf N (H ⊔ N) :=
MonoidHom.comp (mk' (subgroupOf N (H ⊔ N))) (inclusion (_ : H ≤ H ⊔ N))
x : { x // x ∈ H ⊔ N } ⧸ subgroupOf N (H ⊔ N)
⊢ ∀ (a : { x // x ∈ H ⊔ N }), ∃ a_1, ↑φ a_1 = Quotient.mk'' a
[PROOFSTEP]
rintro ⟨y, hy : y ∈ (H ⊔ N)⟩
[GOAL]
case mk
G : Type u
inst✝² : Group G
N✝ : Subgroup G
nN : Normal N✝
H✝ : Type v
inst✝¹ : Group H✝
φ✝ : G →* H✝
H N : Subgroup G
inst✝ : Normal N
φ : { x // x ∈ H } →* { x // x ∈ H ⊔ N } ⧸ subgroupOf N (H ⊔ N) :=
MonoidHom.comp (mk' (subgroupOf N (H ⊔ N))) (inclusion (_ : H ≤ H ⊔ N))
x : { x // x ∈ H ⊔ N } ⧸ subgroupOf N (H ⊔ N)
y : G
hy : y ∈ H ⊔ N
⊢ ∃ a, ↑φ a = Quotient.mk'' { val := y, property := hy }
[PROOFSTEP]
rw [← SetLike.mem_coe] at hy
[GOAL]
case mk
G : Type u
inst✝² : Group G
N✝ : Subgroup G
nN : Normal N✝
H✝ : Type v
inst✝¹ : Group H✝
φ✝ : G →* H✝
H N : Subgroup G
inst✝ : Normal N
φ : { x // x ∈ H } →* { x // x ∈ H ⊔ N } ⧸ subgroupOf N (H ⊔ N) :=
MonoidHom.comp (mk' (subgroupOf N (H ⊔ N))) (inclusion (_ : H ≤ H ⊔ N))
x : { x // x ∈ H ⊔ N } ⧸ subgroupOf N (H ⊔ N)
y : G
hy✝ : y ∈ H ⊔ N
hy : y ∈ ↑(H ⊔ N)
⊢ ∃ a, ↑φ a = Quotient.mk'' { val := y, property := hy✝ }
[PROOFSTEP]
rw [mul_normal H N] at hy
[GOAL]
case mk
G : Type u
inst✝² : Group G
N✝ : Subgroup G
nN : Normal N✝
H✝ : Type v
inst✝¹ : Group H✝
φ✝ : G →* H✝
H N : Subgroup G
inst✝ : Normal N
φ : { x // x ∈ H } →* { x // x ∈ H ⊔ N } ⧸ subgroupOf N (H ⊔ N) :=
MonoidHom.comp (mk' (subgroupOf N (H ⊔ N))) (inclusion (_ : H ≤ H ⊔ N))
x : { x // x ∈ H ⊔ N } ⧸ subgroupOf N (H ⊔ N)
y : G
hy✝ : y ∈ H ⊔ N
hy : y ∈ ↑H * ↑N
⊢ ∃ a, ↑φ a = Quotient.mk'' { val := y, property := hy✝ }
[PROOFSTEP]
rcases hy with ⟨h, n, hh, hn, rfl⟩
[GOAL]
case mk.intro.intro.intro.intro
G : Type u
inst✝² : Group G
N✝ : Subgroup G
nN : Normal N✝
H✝ : Type v
inst✝¹ : Group H✝
φ✝ : G →* H✝
H N : Subgroup G
inst✝ : Normal N
φ : { x // x ∈ H } →* { x // x ∈ H ⊔ N } ⧸ subgroupOf N (H ⊔ N) :=
MonoidHom.comp (mk' (subgroupOf N (H ⊔ N))) (inclusion (_ : H ≤ H ⊔ N))
x : { x // x ∈ H ⊔ N } ⧸ subgroupOf N (H ⊔ N)
h n : G
hh : h ∈ ↑H
hn : n ∈ ↑N
hy : (fun x x_1 => x * x_1) h n ∈ H ⊔ N
⊢ ∃ a, ↑φ a = Quotient.mk'' { val := (fun x x_1 => x * x_1) h n, property := hy }
[PROOFSTEP]
use⟨h, hh⟩
[GOAL]
case h
G : Type u
inst✝² : Group G
N✝ : Subgroup G
nN : Normal N✝
H✝ : Type v
inst✝¹ : Group H✝
φ✝ : G →* H✝
H N : Subgroup G
inst✝ : Normal N
φ : { x // x ∈ H } →* { x // x ∈ H ⊔ N } ⧸ subgroupOf N (H ⊔ N) :=
MonoidHom.comp (mk' (subgroupOf N (H ⊔ N))) (inclusion (_ : H ≤ H ⊔ N))
x : { x // x ∈ H ⊔ N } ⧸ subgroupOf N (H ⊔ N)
h n : G
hh : h ∈ ↑H
hn : n ∈ ↑N
hy : (fun x x_1 => x * x_1) h n ∈ H ⊔ N
⊢ ↑φ { val := h, property := hh } = Quotient.mk'' { val := (fun x x_1 => x * x_1) h n, property := hy }
[PROOFSTEP]
let _ : Setoid ↑(H ⊔ N) :=
(@leftRel ↑(H ⊔ N) (H ⊔ N : Subgroup G).toGroup (N.subgroupOf (H ⊔ N)))
-- porting note: Lean couldn't find this automatically
[GOAL]
case h
G : Type u
inst✝² : Group G
N✝ : Subgroup G
nN : Normal N✝
H✝ : Type v
inst✝¹ : Group H✝
φ✝ : G →* H✝
H N : Subgroup G
inst✝ : Normal N
φ : { x // x ∈ H } →* { x // x ∈ H ⊔ N } ⧸ subgroupOf N (H ⊔ N) :=
MonoidHom.comp (mk' (subgroupOf N (H ⊔ N))) (inclusion (_ : H ≤ H ⊔ N))
x : { x // x ∈ H ⊔ N } ⧸ subgroupOf N (H ⊔ N)
h n : G
hh : h ∈ ↑H
hn : n ∈ ↑N
hy : (fun x x_1 => x * x_1) h n ∈ H ⊔ N
x✝ : Setoid { x // x ∈ H ⊔ N } := leftRel (subgroupOf N (H ⊔ N))
⊢ ↑φ { val := h, property := hh } = Quotient.mk'' { val := (fun x x_1 => x * x_1) h n, property := hy }
[PROOFSTEP]
refine Quotient.eq.mpr ?_
[GOAL]
case h
G : Type u
inst✝² : Group G
N✝ : Subgroup G
nN : Normal N✝
H✝ : Type v
inst✝¹ : Group H✝
φ✝ : G →* H✝
H N : Subgroup G
inst✝ : Normal N
φ : { x // x ∈ H } →* { x // x ∈ H ⊔ N } ⧸ subgroupOf N (H ⊔ N) :=
MonoidHom.comp (mk' (subgroupOf N (H ⊔ N))) (inclusion (_ : H ≤ H ⊔ N))
x : { x // x ∈ H ⊔ N } ⧸ subgroupOf N (H ⊔ N)
h n : G
hh : h ∈ ↑H
hn : n ∈ ↑N
hy : (fun x x_1 => x * x_1) h n ∈ H ⊔ N
x✝ : Setoid { x // x ∈ H ⊔ N } := leftRel (subgroupOf N (H ⊔ N))
⊢ ↑(inclusion (_ : H ≤ H ⊔ N)) { val := h, property := hh } ≈ { val := (fun x x_1 => x * x_1) h n, property := hy }
[PROOFSTEP]
change Setoid.r _ _
[GOAL]
case h
G : Type u
inst✝² : Group G
N✝ : Subgroup G
nN : Normal N✝
H✝ : Type v
inst✝¹ : Group H✝
φ✝ : G →* H✝
H N : Subgroup G
inst✝ : Normal N
φ : { x // x ∈ H } →* { x // x ∈ H ⊔ N } ⧸ subgroupOf N (H ⊔ N) :=
MonoidHom.comp (mk' (subgroupOf N (H ⊔ N))) (inclusion (_ : H ≤ H ⊔ N))
x : { x // x ∈ H ⊔ N } ⧸ subgroupOf N (H ⊔ N)
h n : G
hh : h ∈ ↑H
hn : n ∈ ↑N
hy : (fun x x_1 => x * x_1) h n ∈ H ⊔ N
x✝ : Setoid { x // x ∈ H ⊔ N } := leftRel (subgroupOf N (H ⊔ N))
⊢ Setoid.r (↑(inclusion (_ : H ≤ H ⊔ N)) { val := h, property := hh })
{ val := (fun x x_1 => x * x_1) h n, property := hy }
[PROOFSTEP]
rw [leftRel_apply]
[GOAL]
case h
G : Type u
inst✝² : Group G
N✝ : Subgroup G
nN : Normal N✝
H✝ : Type v
inst✝¹ : Group H✝
φ✝ : G →* H✝
H N : Subgroup G
inst✝ : Normal N
φ : { x // x ∈ H } →* { x // x ∈ H ⊔ N } ⧸ subgroupOf N (H ⊔ N) :=
MonoidHom.comp (mk' (subgroupOf N (H ⊔ N))) (inclusion (_ : H ≤ H ⊔ N))
x : { x // x ∈ H ⊔ N } ⧸ subgroupOf N (H ⊔ N)
h n : G
hh : h ∈ ↑H
hn : n ∈ ↑N
hy : (fun x x_1 => x * x_1) h n ∈ H ⊔ N
x✝ : Setoid { x // x ∈ H ⊔ N } := leftRel (subgroupOf N (H ⊔ N))
⊢ (↑(inclusion (_ : H ≤ H ⊔ N)) { val := h, property := hh })⁻¹ *
{ val := (fun x x_1 => x * x_1) h n, property := hy } ∈
subgroupOf N (H ⊔ N)
[PROOFSTEP]
change h⁻¹ * (h * n) ∈ N
[GOAL]
case h
G : Type u
inst✝² : Group G
N✝ : Subgroup G
nN : Normal N✝
H✝ : Type v
inst✝¹ : Group H✝
φ✝ : G →* H✝
H N : Subgroup G
inst✝ : Normal N
φ : { x // x ∈ H } →* { x // x ∈ H ⊔ N } ⧸ subgroupOf N (H ⊔ N) :=
MonoidHom.comp (mk' (subgroupOf N (H ⊔ N))) (inclusion (_ : H ≤ H ⊔ N))
x : { x // x ∈ H ⊔ N } ⧸ subgroupOf N (H ⊔ N)
h n : G
hh : h ∈ ↑H
hn : n ∈ ↑N
hy : (fun x x_1 => x * x_1) h n ∈ H ⊔ N
x✝ : Setoid { x // x ∈ H ⊔ N } := leftRel (subgroupOf N (H ⊔ N))
⊢ h⁻¹ * (h * n) ∈ N
[PROOFSTEP]
rwa [← mul_assoc, inv_mul_self, one_mul]
[GOAL]
G : Type u
inst✝² : Group G
N✝ : Subgroup G
nN : Normal N✝
H✝ : Type v
inst✝¹ : Group H✝
φ✝ : G →* H✝
H N : Subgroup G
inst✝ : Normal N
φ : { x // x ∈ H } →* { x // x ∈ H ⊔ N } ⧸ subgroupOf N (H ⊔ N) :=
MonoidHom.comp (mk' (subgroupOf N (H ⊔ N))) (inclusion (_ : H ≤ H ⊔ N))
φ_surjective : Surjective ↑φ
⊢ subgroupOf N H = ker φ
[PROOFSTEP]
simp [← comap_ker]
[GOAL]
G : Type u
inst✝¹ : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝ : Group H
φ : G →* H
M : Subgroup G
nM : Subgroup.Normal M
h : N ≤ M
⊢ ∀ (x : G ⧸ N), x ∈ Subgroup.map (mk' N) M → ↑(map N M (MonoidHom.id G) h) x = 1
[PROOFSTEP]
rintro _ ⟨x, hx, rfl⟩
[GOAL]
case intro.intro
G : Type u
inst✝¹ : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝ : Group H
φ : G →* H
M : Subgroup G
nM : Subgroup.Normal M
h : N ≤ M
x : G
hx : x ∈ ↑M
⊢ ↑(map N M (MonoidHom.id G) h) (↑(mk' N) x) = 1
[PROOFSTEP]
rw [map_mk' N M _ _ x]
[GOAL]
case intro.intro
G : Type u
inst✝¹ : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝ : Group H
φ : G →* H
M : Subgroup G
nM : Subgroup.Normal M
h : N ≤ M
x : G
hx : x ∈ ↑M
⊢ ↑(↑(MonoidHom.id G) x) = 1
[PROOFSTEP]
exact (QuotientGroup.eq_one_iff _).mpr hx
[GOAL]
G : Type u
inst✝¹ : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝ : Group H
φ : G →* H
M : Subgroup G
nM : Subgroup.Normal M
h : N ≤ M
⊢ MonoidHom.comp (map M (Subgroup.map (mk' N) M) (mk' N) (_ : M ≤ Subgroup.comap (mk' N) (Subgroup.map (mk' N) M)))
(quotientQuotientEquivQuotientAux N M h) =
MonoidHom.id ((G ⧸ N) ⧸ Subgroup.map (mk' N) M)
[PROOFSTEP]
ext
[GOAL]
case h.h.h
G : Type u
inst✝¹ : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝ : Group H
φ : G →* H
M : Subgroup G
nM : Subgroup.Normal M
h : N ≤ M
x✝ : G
⊢ ↑(MonoidHom.comp
(MonoidHom.comp
(MonoidHom.comp
(map M (Subgroup.map (mk' N) M) (mk' N) (_ : M ≤ Subgroup.comap (mk' N) (Subgroup.map (mk' N) M)))
(quotientQuotientEquivQuotientAux N M h))
(mk' (Subgroup.map (mk' N) M)))
(mk' N))
x✝ =
↑(MonoidHom.comp (MonoidHom.comp (MonoidHom.id ((G ⧸ N) ⧸ Subgroup.map (mk' N) M)) (mk' (Subgroup.map (mk' N) M)))
(mk' N))
x✝
[PROOFSTEP]
simp
[GOAL]
G : Type u
inst✝¹ : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝ : Group H
φ : G →* H
M : Subgroup G
nM : Subgroup.Normal M
h : N ≤ M
⊢ MonoidHom.comp (quotientQuotientEquivQuotientAux N M h)
(map M (Subgroup.map (mk' N) M) (mk' N) (_ : M ≤ Subgroup.comap (mk' N) (Subgroup.map (mk' N) M))) =
MonoidHom.id (G ⧸ M)
[PROOFSTEP]
ext
[GOAL]
case h.h
G : Type u
inst✝¹ : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝ : Group H
φ : G →* H
M : Subgroup G
nM : Subgroup.Normal M
h : N ≤ M
x✝ : G
⊢ ↑(MonoidHom.comp
(MonoidHom.comp (quotientQuotientEquivQuotientAux N M h)
(map M (Subgroup.map (mk' N) M) (mk' N) (_ : M ≤ Subgroup.comap (mk' N) (Subgroup.map (mk' N) M))))
(mk' M))
x✝ =
↑(MonoidHom.comp (MonoidHom.id (G ⧸ M)) (mk' M)) x✝
[PROOFSTEP]
simp
[GOAL]
G : Type u
inst✝¹ : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝ : Group H
φ : G →* H
⊢ Subsingleton (G ⧸ ⊤)
[PROOFSTEP]
dsimp [HasQuotient.Quotient, QuotientGroup.instHasQuotientSubgroup, Quotient]
[GOAL]
G : Type u
inst✝¹ : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝ : Group H
φ : G →* H
⊢ Subsingleton (Quot Setoid.r)
[PROOFSTEP]
rw [leftRel_eq]
[GOAL]
G : Type u
inst✝¹ : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝ : Group H
φ : G →* H
⊢ Subsingleton (Quot fun x y => x⁻¹ * y ∈ ⊤)
[PROOFSTEP]
exact Trunc.instSubsingletonTrunc
[GOAL]
G : Type u
inst✝¹ : Group G
N : Subgroup G
nN : Subgroup.Normal N
H✝ : Type v
inst✝ : Group H✝
φ : G →* H✝
H : Subgroup G
h : Subsingleton (G ⧸ H)
x : G
x✝ : x ∈ ⊤
⊢ x ∈ H
[PROOFSTEP]
have this : 1⁻¹ * x ∈ H := QuotientGroup.eq.1 (Subsingleton.elim _ _)
[GOAL]
G : Type u
inst✝¹ : Group G
N : Subgroup G
nN : Subgroup.Normal N
H✝ : Type v
inst✝ : Group H✝
φ : G →* H✝
H : Subgroup G
h : Subsingleton (G ⧸ H)
x : G
x✝ : x ∈ ⊤
this : 1⁻¹ * x ∈ H
⊢ x ∈ H
[PROOFSTEP]
rwa [inv_one, one_mul] at this
[GOAL]
G : Type u
inst✝³ : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝² : Group H
φ : G →* H
H₁ : Subgroup G
inst✝¹ : Subgroup.Normal H₁
H₂ : Subgroup (G ⧸ H₁)
inst✝ : Subgroup.Normal H₂
⊢ Subgroup.comap (mk' H₁) (Subgroup.comap (mk' H₂) (Subgroup.center ((G ⧸ H₁) ⧸ H₂))) =
Subgroup.comap (mk' (Subgroup.comap (mk' H₁) H₂)) (Subgroup.center (G ⧸ Subgroup.comap (mk' H₁) H₂))
[PROOFSTEP]
ext x
[GOAL]
case h
G : Type u
inst✝³ : Group G
N : Subgroup G
nN : Subgroup.Normal N
H : Type v
inst✝² : Group H
φ : G →* H
H₁ : Subgroup G
inst✝¹ : Subgroup.Normal H₁
H₂ : Subgroup (G ⧸ H₁)
inst✝ : Subgroup.Normal H₂
x : G
⊢ x ∈ Subgroup.comap (mk' H₁) (Subgroup.comap (mk' H₂) (Subgroup.center ((G ⧸ H₁) ⧸ H₂))) ↔
x ∈ Subgroup.comap (mk' (Subgroup.comap (mk' H₁) H₂)) (Subgroup.center (G ⧸ Subgroup.comap (mk' H₁) H₂))
[PROOFSTEP]
simp only [mk'_apply, Subgroup.mem_comap, Subgroup.mem_center_iff, forall_mk, ← mk_mul, eq_iff_div_mem, mk_div]
| {"mathlib_filename": "Mathlib.GroupTheory.QuotientGroup", "llama_tokens": 14555} |
{"mathlib_filename": "Mathlib.GroupTheory.Perm.ViaEmbedding", "llama_tokens": 0} |
|
[GOAL]
ι : Sort u_1
M : Type u_2
A : Type u_3
B : Type u_4
inst✝ : Mul M
S : ι → Subsemigroup M
hS : Directed (fun x x_1 => x ≤ x_1) S
x : M
⊢ x ∈ ⨆ (i : ι), S i ↔ ∃ i, x ∈ S i
[PROOFSTEP]
refine' ⟨_, fun ⟨i, hi⟩ => (SetLike.le_def.1 <| le_iSup S i) hi⟩
[GOAL]
ι : Sort u_1
M : Type u_2
A : Type u_3
B : Type u_4
inst✝ : Mul M
S : ι → Subsemigroup M
hS : Directed (fun x x_1 => x ≤ x_1) S
x : M
⊢ x ∈ ⨆ (i : ι), S i → ∃ i, x ∈ S i
[PROOFSTEP]
suffices x ∈ closure (⋃ i, (S i : Set M)) → ∃ i, x ∈ S i by simpa only [closure_iUnion, closure_eq (S _)] using this
[GOAL]
ι : Sort u_1
M : Type u_2
A : Type u_3
B : Type u_4
inst✝ : Mul M
S : ι → Subsemigroup M
hS : Directed (fun x x_1 => x ≤ x_1) S
x : M
this : x ∈ closure (⋃ (i : ι), ↑(S i)) → ∃ i, x ∈ S i
⊢ x ∈ ⨆ (i : ι), S i → ∃ i, x ∈ S i
[PROOFSTEP]
simpa only [closure_iUnion, closure_eq (S _)] using this
[GOAL]
ι : Sort u_1
M : Type u_2
A : Type u_3
B : Type u_4
inst✝ : Mul M
S : ι → Subsemigroup M
hS : Directed (fun x x_1 => x ≤ x_1) S
x : M
⊢ x ∈ closure (⋃ (i : ι), ↑(S i)) → ∃ i, x ∈ S i
[PROOFSTEP]
refine' fun hx => closure_induction hx (fun y hy => mem_iUnion.mp hy) _
[GOAL]
ι : Sort u_1
M : Type u_2
A : Type u_3
B : Type u_4
inst✝ : Mul M
S : ι → Subsemigroup M
hS : Directed (fun x x_1 => x ≤ x_1) S
x : M
hx : x ∈ closure (⋃ (i : ι), ↑(S i))
⊢ ∀ (x y : M), (∃ i, x ∈ S i) → (∃ i, y ∈ S i) → ∃ i, x * y ∈ S i
[PROOFSTEP]
rintro x y ⟨i, hi⟩ ⟨j, hj⟩
[GOAL]
case intro.intro
ι : Sort u_1
M : Type u_2
A : Type u_3
B : Type u_4
inst✝ : Mul M
S : ι → Subsemigroup M
hS : Directed (fun x x_1 => x ≤ x_1) S
x✝ : M
hx : x✝ ∈ closure (⋃ (i : ι), ↑(S i))
x y : M
i : ι
hi : x ∈ S i
j : ι
hj : y ∈ S j
⊢ ∃ i, x * y ∈ S i
[PROOFSTEP]
rcases hS i j with ⟨k, hki, hkj⟩
[GOAL]
case intro.intro.intro.intro
ι : Sort u_1
M : Type u_2
A : Type u_3
B : Type u_4
inst✝ : Mul M
S : ι → Subsemigroup M
hS : Directed (fun x x_1 => x ≤ x_1) S
x✝ : M
hx : x✝ ∈ closure (⋃ (i : ι), ↑(S i))
x y : M
i : ι
hi : x ∈ S i
j : ι
hj : y ∈ S j
k : ι
hki : S i ≤ S k
hkj : S j ≤ S k
⊢ ∃ i, x * y ∈ S i
[PROOFSTEP]
exact ⟨k, (S k).mul_mem (hki hi) (hkj hj)⟩
[GOAL]
ι : Sort u_1
M : Type u_2
A : Type u_3
B : Type u_4
inst✝ : Mul M
S : ι → Subsemigroup M
hS : Directed (fun x x_1 => x ≤ x_1) S
x : M
⊢ x ∈ ↑(⨆ (i : ι), S i) ↔ x ∈ ⋃ (i : ι), ↑(S i)
[PROOFSTEP]
simp [mem_iSup_of_directed hS]
[GOAL]
ι : Sort u_1
M : Type u_2
A : Type u_3
B : Type u_4
inst✝ : Mul M
S : Set (Subsemigroup M)
hS : DirectedOn (fun x x_1 => x ≤ x_1) S
x : M
⊢ x ∈ sSup S ↔ ∃ s, s ∈ S ∧ x ∈ s
[PROOFSTEP]
simp only [sSup_eq_iSup', mem_iSup_of_directed hS.directed_val, SetCoe.exists, Subtype.coe_mk, exists_prop]
[GOAL]
ι : Sort u_1
M : Type u_2
A : Type u_3
B : Type u_4
inst✝ : Mul M
S : Set (Subsemigroup M)
hS : DirectedOn (fun x x_1 => x ≤ x_1) S
x : M
⊢ x ∈ ↑(sSup S) ↔ x ∈ ⋃ (s : Subsemigroup M) (_ : s ∈ S), ↑s
[PROOFSTEP]
simp [mem_sSup_of_directed_on hS]
[GOAL]
ι : Sort u_1
M : Type u_2
A : Type u_3
B : Type u_4
inst✝ : Mul M
S T : Subsemigroup M
⊢ ∀ {x : M}, x ∈ S → x ∈ S ⊔ T
[PROOFSTEP]
have : S ≤ S ⊔ T := le_sup_left
[GOAL]
ι : Sort u_1
M : Type u_2
A : Type u_3
B : Type u_4
inst✝ : Mul M
S T : Subsemigroup M
this : S ≤ S ⊔ T
⊢ ∀ {x : M}, x ∈ S → x ∈ S ⊔ T
[PROOFSTEP]
tauto
[GOAL]
ι : Sort u_1
M : Type u_2
A : Type u_3
B : Type u_4
inst✝ : Mul M
S T : Subsemigroup M
⊢ ∀ {x : M}, x ∈ T → x ∈ S ⊔ T
[PROOFSTEP]
have : T ≤ S ⊔ T := le_sup_right
[GOAL]
ι : Sort u_1
M : Type u_2
A : Type u_3
B : Type u_4
inst✝ : Mul M
S T : Subsemigroup M
this : T ≤ S ⊔ T
⊢ ∀ {x : M}, x ∈ T → x ∈ S ⊔ T
[PROOFSTEP]
tauto
[GOAL]
ι : Sort u_1
M : Type u_2
A : Type u_3
B : Type u_4
inst✝ : Mul M
S : ι → Subsemigroup M
i : ι
⊢ ∀ {x : M}, x ∈ S i → x ∈ iSup S
[PROOFSTEP]
have : S i ≤ iSup S := le_iSup _ _
[GOAL]
ι : Sort u_1
M : Type u_2
A : Type u_3
B : Type u_4
inst✝ : Mul M
S : ι → Subsemigroup M
i : ι
this : S i ≤ iSup S
⊢ ∀ {x : M}, x ∈ S i → x ∈ iSup S
[PROOFSTEP]
tauto
[GOAL]
ι : Sort u_1
M : Type u_2
A : Type u_3
B : Type u_4
inst✝ : Mul M
S : Set (Subsemigroup M)
s : Subsemigroup M
hs : s ∈ S
⊢ ∀ {x : M}, x ∈ s → x ∈ sSup S
[PROOFSTEP]
have : s ≤ sSup S := le_sSup hs
[GOAL]
ι : Sort u_1
M : Type u_2
A : Type u_3
B : Type u_4
inst✝ : Mul M
S : Set (Subsemigroup M)
s : Subsemigroup M
hs : s ∈ S
this : s ≤ sSup S
⊢ ∀ {x : M}, x ∈ s → x ∈ sSup S
[PROOFSTEP]
tauto
[GOAL]
ι : Sort u_1
M : Type u_2
A : Type u_3
B : Type u_4
inst✝ : Mul M
S : ι → Subsemigroup M
C : M → Prop
x₁ : M
hx₁ : x₁ ∈ ⨆ (i : ι), S i
hp : ∀ (i : ι) (x₂ : M), x₂ ∈ S i → C x₂
hmul : ∀ (x y : M), C x → C y → C (x * y)
⊢ C x₁
[PROOFSTEP]
rw [iSup_eq_closure] at hx₁
[GOAL]
ι : Sort u_1
M : Type u_2
A : Type u_3
B : Type u_4
inst✝ : Mul M
S : ι → Subsemigroup M
C : M → Prop
x₁ : M
hx₁ : x₁ ∈ closure (⋃ (i : ι), ↑(S i))
hp : ∀ (i : ι) (x₂ : M), x₂ ∈ S i → C x₂
hmul : ∀ (x y : M), C x → C y → C (x * y)
⊢ C x₁
[PROOFSTEP]
refine' closure_induction hx₁ (fun x₂ hx₂ => _) hmul
[GOAL]
ι : Sort u_1
M : Type u_2
A : Type u_3
B : Type u_4
inst✝ : Mul M
S : ι → Subsemigroup M
C : M → Prop
x₁ : M
hx₁ : x₁ ∈ closure (⋃ (i : ι), ↑(S i))
hp : ∀ (i : ι) (x₂ : M), x₂ ∈ S i → C x₂
hmul : ∀ (x y : M), C x → C y → C (x * y)
x₂ : M
hx₂ : x₂ ∈ ⋃ (i : ι), ↑(S i)
⊢ C x₂
[PROOFSTEP]
obtain ⟨i, hi⟩ := Set.mem_iUnion.mp hx₂
[GOAL]
case intro
ι : Sort u_1
M : Type u_2
A : Type u_3
B : Type u_4
inst✝ : Mul M
S : ι → Subsemigroup M
C : M → Prop
x₁ : M
hx₁ : x₁ ∈ closure (⋃ (i : ι), ↑(S i))
hp : ∀ (i : ι) (x₂ : M), x₂ ∈ S i → C x₂
hmul : ∀ (x y : M), C x → C y → C (x * y)
x₂ : M
hx₂ : x₂ ∈ ⋃ (i : ι), ↑(S i)
i : ι
hi : x₂ ∈ ↑(S i)
⊢ C x₂
[PROOFSTEP]
exact hp _ _ hi
[GOAL]
ι : Sort u_1
M : Type u_2
A : Type u_3
B : Type u_4
inst✝ : Mul M
S : ι → Subsemigroup M
C : (x : M) → x ∈ ⨆ (i : ι), S i → Prop
hp : ∀ (i : ι) (x : M) (hxS : x ∈ S i), C x (_ : x ∈ ⨆ (i : ι), S i)
hmul :
∀ (x y : M) (hx : x ∈ ⨆ (i : ι), S i) (hy : y ∈ ⨆ (i : ι), S i),
C x hx → C y hy → C (x * y) (_ : x * y ∈ ⨆ (i : ι), S i)
x₁ : M
hx₁ : x₁ ∈ ⨆ (i : ι), S i
⊢ C x₁ hx₁
[PROOFSTEP]
refine Exists.elim ?_ fun (hx₁' : x₁ ∈ ⨆ i, S i) (hc : C x₁ hx₁') => hc
[GOAL]
ι : Sort u_1
M : Type u_2
A : Type u_3
B : Type u_4
inst✝ : Mul M
S : ι → Subsemigroup M
C : (x : M) → x ∈ ⨆ (i : ι), S i → Prop
hp : ∀ (i : ι) (x : M) (hxS : x ∈ S i), C x (_ : x ∈ ⨆ (i : ι), S i)
hmul :
∀ (x y : M) (hx : x ∈ ⨆ (i : ι), S i) (hy : y ∈ ⨆ (i : ι), S i),
C x hx → C y hy → C (x * y) (_ : x * y ∈ ⨆ (i : ι), S i)
x₁ : M
hx₁ : x₁ ∈ ⨆ (i : ι), S i
⊢ ∃ x, C x₁ x
[PROOFSTEP]
refine @iSup_induction _ _ _ S (fun x' => ∃ hx'', C x' hx'') _ hx₁ (fun i x₂ hx₂ => ?_) fun x₃ y => ?_
[GOAL]
case refine_1
ι : Sort u_1
M : Type u_2
A : Type u_3
B : Type u_4
inst✝ : Mul M
S : ι → Subsemigroup M
C : (x : M) → x ∈ ⨆ (i : ι), S i → Prop
hp : ∀ (i : ι) (x : M) (hxS : x ∈ S i), C x (_ : x ∈ ⨆ (i : ι), S i)
hmul :
∀ (x y : M) (hx : x ∈ ⨆ (i : ι), S i) (hy : y ∈ ⨆ (i : ι), S i),
C x hx → C y hy → C (x * y) (_ : x * y ∈ ⨆ (i : ι), S i)
x₁ : M
hx₁ : x₁ ∈ ⨆ (i : ι), S i
i : ι
x₂ : M
hx₂ : x₂ ∈ S i
⊢ (fun x' => ∃ hx'', C x' hx'') x₂
[PROOFSTEP]
exact ⟨_, hp _ _ hx₂⟩
[GOAL]
case refine_2
ι : Sort u_1
M : Type u_2
A : Type u_3
B : Type u_4
inst✝ : Mul M
S : ι → Subsemigroup M
C : (x : M) → x ∈ ⨆ (i : ι), S i → Prop
hp : ∀ (i : ι) (x : M) (hxS : x ∈ S i), C x (_ : x ∈ ⨆ (i : ι), S i)
hmul :
∀ (x y : M) (hx : x ∈ ⨆ (i : ι), S i) (hy : y ∈ ⨆ (i : ι), S i),
C x hx → C y hy → C (x * y) (_ : x * y ∈ ⨆ (i : ι), S i)
x₁ : M
hx₁ : x₁ ∈ ⨆ (i : ι), S i
x₃ y : M
⊢ (fun x' => ∃ hx'', C x' hx'') x₃ → (fun x' => ∃ hx'', C x' hx'') y → (fun x' => ∃ hx'', C x' hx'') (x₃ * y)
[PROOFSTEP]
rintro ⟨_, Cx⟩ ⟨_, Cy⟩
[GOAL]
case refine_2.intro.intro
ι : Sort u_1
M : Type u_2
A : Type u_3
B : Type u_4
inst✝ : Mul M
S : ι → Subsemigroup M
C : (x : M) → x ∈ ⨆ (i : ι), S i → Prop
hp : ∀ (i : ι) (x : M) (hxS : x ∈ S i), C x (_ : x ∈ ⨆ (i : ι), S i)
hmul :
∀ (x y : M) (hx : x ∈ ⨆ (i : ι), S i) (hy : y ∈ ⨆ (i : ι), S i),
C x hx → C y hy → C (x * y) (_ : x * y ∈ ⨆ (i : ι), S i)
x₁ : M
hx₁ : x₁ ∈ ⨆ (i : ι), S i
x₃ y : M
w✝¹ : x₃ ∈ ⨆ (i : ι), S i
Cx : C x₃ w✝¹
w✝ : y ∈ ⨆ (i : ι), S i
Cy : C y w✝
⊢ ∃ hx'', C (x₃ * y) hx''
[PROOFSTEP]
exact ⟨_, hmul _ _ _ _ Cx Cy⟩
| {"mathlib_filename": "Mathlib.GroupTheory.Subsemigroup.Membership", "llama_tokens": 4819} |
[GOAL]
M : Type u_1
S T : Set M
inst✝ : MulOneClass M
⊢ 1 ∈ centralizer S
[PROOFSTEP]
simp [mem_centralizer_iff]
[GOAL]
M : Type u_1
S T : Set M
inst✝ : MulZeroClass M
⊢ 0 ∈ centralizer S
[PROOFSTEP]
simp [mem_centralizer_iff]
[GOAL]
M : Type u_1
S T : Set M
a b : M
inst✝ : Semigroup M
ha : a ∈ centralizer S
hb : b ∈ centralizer S
g : M
hg : g ∈ S
⊢ g * (a * b) = a * b * g
[PROOFSTEP]
rw [mul_assoc, ← hb g hg, ← mul_assoc, ha g hg, mul_assoc]
[GOAL]
M : Type u_1
S T : Set M
a b : M
inst✝ : Group M
ha : a ∈ centralizer S
g : M
hg : g ∈ S
⊢ g * a⁻¹ = a⁻¹ * g
[PROOFSTEP]
rw [mul_inv_eq_iff_eq_mul, mul_assoc, eq_inv_mul_iff_mul_eq, ha g hg]
[GOAL]
M : Type u_1
S T : Set M
a b : M
inst✝ : Distrib M
ha : a ∈ centralizer S
hb : b ∈ centralizer S
c : M
hc : c ∈ S
⊢ c * (a + b) = (a + b) * c
[PROOFSTEP]
rw [add_mul, mul_add, ha c hc, hb c hc]
[GOAL]
M : Type u_1
S T : Set M
a b : M
inst✝¹ : Mul M
inst✝ : HasDistribNeg M
ha : a ∈ centralizer S
c : M
hc : c ∈ S
⊢ c * -a = -a * c
[PROOFSTEP]
rw [mul_neg, ha c hc, neg_mul]
[GOAL]
M : Type u_1
S T : Set M
a b : M
inst✝ : GroupWithZero M
ha : a ∈ centralizer S
h : a = 0
⊢ a⁻¹ ∈ centralizer S
[PROOFSTEP]
rw [h, inv_zero]
[GOAL]
M : Type u_1
S T : Set M
a b : M
inst✝ : GroupWithZero M
ha : a ∈ centralizer S
h : a = 0
⊢ 0 ∈ centralizer S
[PROOFSTEP]
exact zero_mem_centralizer S
[GOAL]
M : Type u_1
S T : Set M
a b : M
inst✝ : GroupWithZero M
ha : a ∈ centralizer S
ha0 : a ≠ 0
c : M
hc : c ∈ S
⊢ c * a⁻¹ = a⁻¹ * c
[PROOFSTEP]
rw [mul_inv_eq_iff_eq_mul₀ ha0, mul_assoc, eq_inv_mul_iff_mul_eq₀ ha0, ha c hc]
[GOAL]
M : Type u_1
S T : Set M
a b : M
inst✝ : Group M
ha : a ∈ centralizer S
hb : b ∈ centralizer S
⊢ a / b ∈ centralizer S
[PROOFSTEP]
rw [div_eq_mul_inv]
[GOAL]
M : Type u_1
S T : Set M
a b : M
inst✝ : Group M
ha : a ∈ centralizer S
hb : b ∈ centralizer S
⊢ a * b⁻¹ ∈ centralizer S
[PROOFSTEP]
exact mul_mem_centralizer ha (inv_mem_centralizer hb)
[GOAL]
M : Type u_1
S T : Set M
a b : M
inst✝ : GroupWithZero M
ha : a ∈ centralizer S
hb : b ∈ centralizer S
⊢ a / b ∈ centralizer S
[PROOFSTEP]
rw [div_eq_mul_inv]
[GOAL]
M : Type u_1
S T : Set M
a b : M
inst✝ : GroupWithZero M
ha : a ∈ centralizer S
hb : b ∈ centralizer S
⊢ a * b⁻¹ ∈ centralizer S
[PROOFSTEP]
exact mul_mem_centralizer ha (inv_mem_centralizer₀ hb)
| {"mathlib_filename": "Mathlib.GroupTheory.Subsemigroup.Centralizer", "llama_tokens": 1154} |
[GOAL]
M : Type u_1
inst✝ : MulOneClass M
⊢ 1 ∈ center M
[PROOFSTEP]
simp [mem_center_iff]
[GOAL]
M : Type u_1
inst✝ : MulZeroClass M
⊢ 0 ∈ center M
[PROOFSTEP]
simp [mem_center_iff]
[GOAL]
M : Type u_1
inst✝ : Semigroup M
a b : M
ha : a ∈ center M
hb : b ∈ center M
g : M
⊢ g * (a * b) = a * b * g
[PROOFSTEP]
rw [mul_assoc, ← hb g, ← mul_assoc, ha g, mul_assoc]
[GOAL]
M : Type u_1
inst✝ : Group M
a : M
ha : a ∈ center M
g : M
⊢ g * a⁻¹ = a⁻¹ * g
[PROOFSTEP]
rw [← inv_inj, mul_inv_rev, inv_inv, ← ha, mul_inv_rev, inv_inv]
[GOAL]
M : Type u_1
inst✝ : Distrib M
a b : M
ha : a ∈ center M
hb : b ∈ center M
c : M
⊢ c * (a + b) = (a + b) * c
[PROOFSTEP]
rw [add_mul, mul_add, ha c, hb c]
[GOAL]
M : Type u_1
inst✝ : NonUnitalNonAssocRing M
a : M
ha : a ∈ center M
c : M
⊢ c * -a = -a * c
[PROOFSTEP]
rw [← neg_mul_comm, ha (-c), neg_mul_comm]
[GOAL]
M : Type u_1
inst✝ : GroupWithZero M
a : Mˣ
ha : a ∈ center Mˣ
b : M
⊢ b * ↑a = ↑a * b
[PROOFSTEP]
obtain rfl | hb := eq_or_ne b 0
[GOAL]
case inl
M : Type u_1
inst✝ : GroupWithZero M
a : Mˣ
ha : a ∈ center Mˣ
⊢ 0 * ↑a = ↑a * 0
[PROOFSTEP]
rw [zero_mul, mul_zero]
[GOAL]
case inr
M : Type u_1
inst✝ : GroupWithZero M
a : Mˣ
ha : a ∈ center Mˣ
b : M
hb : b ≠ 0
⊢ b * ↑a = ↑a * b
[PROOFSTEP]
exact Units.ext_iff.mp (ha (Units.mk0 _ hb))
[GOAL]
M : Type u_1
inst✝ : GroupWithZero M
a : M
ha : a ∈ center M
⊢ a⁻¹ ∈ center M
[PROOFSTEP]
obtain rfl | ha0 := eq_or_ne a 0
[GOAL]
case inl
M : Type u_1
inst✝ : GroupWithZero M
ha : 0 ∈ center M
⊢ 0⁻¹ ∈ center M
[PROOFSTEP]
rw [inv_zero]
[GOAL]
case inl
M : Type u_1
inst✝ : GroupWithZero M
ha : 0 ∈ center M
⊢ 0 ∈ center M
[PROOFSTEP]
exact zero_mem_center M
[GOAL]
case inr
M : Type u_1
inst✝ : GroupWithZero M
a : M
ha : a ∈ center M
ha0 : a ≠ 0
⊢ a⁻¹ ∈ center M
[PROOFSTEP]
rcases IsUnit.mk0 _ ha0 with ⟨a, rfl⟩
[GOAL]
case inr.intro
M : Type u_1
inst✝ : GroupWithZero M
a : Mˣ
ha : ↑a ∈ center M
ha0 : ↑a ≠ 0
⊢ (↑a)⁻¹ ∈ center M
[PROOFSTEP]
rw [← Units.val_inv_eq_inv_val]
[GOAL]
case inr.intro
M : Type u_1
inst✝ : GroupWithZero M
a : Mˣ
ha : ↑a ∈ center M
ha0 : ↑a ≠ 0
⊢ ↑a⁻¹ ∈ center M
[PROOFSTEP]
exact center_units_subset (inv_mem_center (subset_center_units ha))
[GOAL]
M : Type u_1
inst✝ : Group M
a b : M
ha : a ∈ center M
hb : b ∈ center M
⊢ a / b ∈ center M
[PROOFSTEP]
rw [div_eq_mul_inv]
[GOAL]
M : Type u_1
inst✝ : Group M
a b : M
ha : a ∈ center M
hb : b ∈ center M
⊢ a * b⁻¹ ∈ center M
[PROOFSTEP]
exact mul_mem_center ha (inv_mem_center hb)
[GOAL]
M : Type u_1
inst✝ : GroupWithZero M
a b : M
ha : a ∈ center M
hb : b ∈ center M
⊢ a / b ∈ center M
[PROOFSTEP]
rw [div_eq_mul_inv]
[GOAL]
M : Type u_1
inst✝ : GroupWithZero M
a b : M
ha : a ∈ center M
hb : b ∈ center M
⊢ a * b⁻¹ ∈ center M
[PROOFSTEP]
exact mul_mem_center ha (inv_mem_center₀ hb)
| {"mathlib_filename": "Mathlib.GroupTheory.Subsemigroup.Center", "llama_tokens": 1451} |
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝² : Monoid M
inst✝¹ : SetLike B M
inst✝ : SubmonoidClass B M
S : B
l : List M
hl : ∀ (x : M), x ∈ l → x ∈ S
⊢ List.prod l ∈ S
[PROOFSTEP]
lift l to List S using hl
[GOAL]
case intro
M : Type u_1
A : Type u_2
B : Type u_3
inst✝² : Monoid M
inst✝¹ : SetLike B M
inst✝ : SubmonoidClass B M
S : B
l : List { x // x ∈ S }
⊢ List.prod (List.map Subtype.val l) ∈ S
[PROOFSTEP]
rw [← coe_list_prod]
[GOAL]
case intro
M : Type u_1
A : Type u_2
B : Type u_3
inst✝² : Monoid M
inst✝¹ : SetLike B M
inst✝ : SubmonoidClass B M
S : B
l : List { x // x ∈ S }
⊢ ↑(List.prod l) ∈ S
[PROOFSTEP]
exact l.prod.coe_prop
[GOAL]
M✝ : Type u_1
A : Type u_2
B : Type u_3
inst✝⁵ : Monoid M✝
inst✝⁴ : SetLike B M✝
inst✝³ : SubmonoidClass B M✝
S : B
M : Type u_4
inst✝² : CommMonoid M
inst✝¹ : SetLike B M
inst✝ : SubmonoidClass B M
m : Multiset M
hm : ∀ (a : M), a ∈ m → a ∈ S
⊢ Multiset.prod m ∈ S
[PROOFSTEP]
lift m to Multiset S using hm
[GOAL]
case intro
M✝ : Type u_1
A : Type u_2
B : Type u_3
inst✝⁵ : Monoid M✝
inst✝⁴ : SetLike B M✝
inst✝³ : SubmonoidClass B M✝
S : B
M : Type u_4
inst✝² : CommMonoid M
inst✝¹ : SetLike B M
inst✝ : SubmonoidClass B M
m : Multiset { x // x ∈ S }
⊢ Multiset.prod (Multiset.map Subtype.val m) ∈ S
[PROOFSTEP]
rw [← coe_multiset_prod]
[GOAL]
case intro
M✝ : Type u_1
A : Type u_2
B : Type u_3
inst✝⁵ : Monoid M✝
inst✝⁴ : SetLike B M✝
inst✝³ : SubmonoidClass B M✝
S : B
M : Type u_4
inst✝² : CommMonoid M
inst✝¹ : SetLike B M
inst✝ : SubmonoidClass B M
m : Multiset { x // x ∈ S }
⊢ ↑(Multiset.prod m) ∈ S
[PROOFSTEP]
exact m.prod.coe_prop
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝² : Monoid M
inst✝¹ : SetLike B M
inst✝ : SubmonoidClass B M
S : B
s : Submonoid M
l : List M
hl : ∀ (x : M), x ∈ l → x ∈ s
⊢ List.prod l ∈ s
[PROOFSTEP]
lift l to List s using hl
[GOAL]
case intro
M : Type u_1
A : Type u_2
B : Type u_3
inst✝² : Monoid M
inst✝¹ : SetLike B M
inst✝ : SubmonoidClass B M
S : B
s : Submonoid M
l : List { x // x ∈ s }
⊢ List.prod (List.map Subtype.val l) ∈ s
[PROOFSTEP]
rw [← coe_list_prod]
[GOAL]
case intro
M : Type u_1
A : Type u_2
B : Type u_3
inst✝² : Monoid M
inst✝¹ : SetLike B M
inst✝ : SubmonoidClass B M
S : B
s : Submonoid M
l : List { x // x ∈ s }
⊢ ↑(List.prod l) ∈ s
[PROOFSTEP]
exact l.prod.coe_prop
[GOAL]
M✝ : Type u_1
A : Type u_2
B : Type u_3
inst✝³ : Monoid M✝
inst✝² : SetLike B M✝
inst✝¹ : SubmonoidClass B M✝
S✝ : B
s : Submonoid M✝
M : Type u_4
inst✝ : CommMonoid M
S : Submonoid M
m : Multiset M
hm : ∀ (a : M), a ∈ m → a ∈ S
⊢ Multiset.prod m ∈ S
[PROOFSTEP]
lift m to Multiset S using hm
[GOAL]
case intro
M✝ : Type u_1
A : Type u_2
B : Type u_3
inst✝³ : Monoid M✝
inst✝² : SetLike B M✝
inst✝¹ : SubmonoidClass B M✝
S✝ : B
s : Submonoid M✝
M : Type u_4
inst✝ : CommMonoid M
S : Submonoid M
m : Multiset { x // x ∈ S }
⊢ Multiset.prod (Multiset.map Subtype.val m) ∈ S
[PROOFSTEP]
rw [← coe_multiset_prod]
[GOAL]
case intro
M✝ : Type u_1
A : Type u_2
B : Type u_3
inst✝³ : Monoid M✝
inst✝² : SetLike B M✝
inst✝¹ : SubmonoidClass B M✝
S✝ : B
s : Submonoid M✝
M : Type u_4
inst✝ : CommMonoid M
S : Submonoid M
m : Multiset { x // x ∈ S }
⊢ ↑(Multiset.prod m) ∈ S
[PROOFSTEP]
exact m.prod.coe_prop
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝² : Monoid M
inst✝¹ : SetLike B M
inst✝ : SubmonoidClass B M
S✝ : B
s S : Submonoid M
m : Multiset M
comm : Set.Pairwise {x | x ∈ m} Commute
h : ∀ (x : M), x ∈ m → x ∈ S
⊢ Multiset.noncommProd m comm ∈ S
[PROOFSTEP]
induction' m using Quotient.inductionOn with l
[GOAL]
case h
M : Type u_1
A : Type u_2
B : Type u_3
inst✝² : Monoid M
inst✝¹ : SetLike B M
inst✝ : SubmonoidClass B M
S✝ : B
s S : Submonoid M
m : Multiset M
comm✝ : Set.Pairwise {x | x ∈ m} Commute
h✝ : ∀ (x : M), x ∈ m → x ∈ S
l : List M
comm : Set.Pairwise {x | x ∈ Quotient.mk (List.isSetoid M) l} Commute
h : ∀ (x : M), x ∈ Quotient.mk (List.isSetoid M) l → x ∈ S
⊢ Multiset.noncommProd (Quotient.mk (List.isSetoid M) l) comm ∈ S
[PROOFSTEP]
simp only [Multiset.quot_mk_to_coe, Multiset.noncommProd_coe]
[GOAL]
case h
M : Type u_1
A : Type u_2
B : Type u_3
inst✝² : Monoid M
inst✝¹ : SetLike B M
inst✝ : SubmonoidClass B M
S✝ : B
s S : Submonoid M
m : Multiset M
comm✝ : Set.Pairwise {x | x ∈ m} Commute
h✝ : ∀ (x : M), x ∈ m → x ∈ S
l : List M
comm : Set.Pairwise {x | x ∈ Quotient.mk (List.isSetoid M) l} Commute
h : ∀ (x : M), x ∈ Quotient.mk (List.isSetoid M) l → x ∈ S
⊢ List.prod l ∈ S
[PROOFSTEP]
exact Submonoid.list_prod_mem _ h
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝² : Monoid M
inst✝¹ : SetLike B M
inst✝ : SubmonoidClass B M
S✝ : B
s S : Submonoid M
ι : Type u_4
t : Finset ι
f : ι → M
comm : Set.Pairwise ↑t fun a b => Commute (f a) (f b)
h : ∀ (c : ι), c ∈ t → f c ∈ S
⊢ Finset.noncommProd t f comm ∈ S
[PROOFSTEP]
apply multiset_noncommProd_mem
[GOAL]
case h
M : Type u_1
A : Type u_2
B : Type u_3
inst✝² : Monoid M
inst✝¹ : SetLike B M
inst✝ : SubmonoidClass B M
S✝ : B
s S : Submonoid M
ι : Type u_4
t : Finset ι
f : ι → M
comm : Set.Pairwise ↑t fun a b => Commute (f a) (f b)
h : ∀ (c : ι), c ∈ t → f c ∈ S
⊢ ∀ (x : M), x ∈ Multiset.map f t.val → x ∈ S
[PROOFSTEP]
intro y
[GOAL]
case h
M : Type u_1
A : Type u_2
B : Type u_3
inst✝² : Monoid M
inst✝¹ : SetLike B M
inst✝ : SubmonoidClass B M
S✝ : B
s S : Submonoid M
ι : Type u_4
t : Finset ι
f : ι → M
comm : Set.Pairwise ↑t fun a b => Commute (f a) (f b)
h : ∀ (c : ι), c ∈ t → f c ∈ S
y : M
⊢ y ∈ Multiset.map f t.val → y ∈ S
[PROOFSTEP]
rw [Multiset.mem_map]
[GOAL]
case h
M : Type u_1
A : Type u_2
B : Type u_3
inst✝² : Monoid M
inst✝¹ : SetLike B M
inst✝ : SubmonoidClass B M
S✝ : B
s S : Submonoid M
ι : Type u_4
t : Finset ι
f : ι → M
comm : Set.Pairwise ↑t fun a b => Commute (f a) (f b)
h : ∀ (c : ι), c ∈ t → f c ∈ S
y : M
⊢ (∃ a, a ∈ t.val ∧ f a = y) → y ∈ S
[PROOFSTEP]
rintro ⟨x, ⟨hx, rfl⟩⟩
[GOAL]
case h.intro.intro
M : Type u_1
A : Type u_2
B : Type u_3
inst✝² : Monoid M
inst✝¹ : SetLike B M
inst✝ : SubmonoidClass B M
S✝ : B
s S : Submonoid M
ι : Type u_4
t : Finset ι
f : ι → M
comm : Set.Pairwise ↑t fun a b => Commute (f a) (f b)
h : ∀ (c : ι), c ∈ t → f c ∈ S
x : ι
hx : x ∈ t.val
⊢ f x ∈ S
[PROOFSTEP]
exact h x hx
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : MulOneClass M
ι : Sort u_4
hι : Nonempty ι
S : ι → Submonoid M
hS : Directed (fun x x_1 => x ≤ x_1) S
x : M
⊢ x ∈ ⨆ (i : ι), S i ↔ ∃ i, x ∈ S i
[PROOFSTEP]
refine' ⟨_, fun ⟨i, hi⟩ => (SetLike.le_def.1 <| le_iSup S i) hi⟩
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : MulOneClass M
ι : Sort u_4
hι : Nonempty ι
S : ι → Submonoid M
hS : Directed (fun x x_1 => x ≤ x_1) S
x : M
⊢ x ∈ ⨆ (i : ι), S i → ∃ i, x ∈ S i
[PROOFSTEP]
suffices x ∈ closure (⋃ i, (S i : Set M)) → ∃ i, x ∈ S i by simpa only [closure_iUnion, closure_eq (S _)] using this
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : MulOneClass M
ι : Sort u_4
hι : Nonempty ι
S : ι → Submonoid M
hS : Directed (fun x x_1 => x ≤ x_1) S
x : M
this : x ∈ closure (⋃ (i : ι), ↑(S i)) → ∃ i, x ∈ S i
⊢ x ∈ ⨆ (i : ι), S i → ∃ i, x ∈ S i
[PROOFSTEP]
simpa only [closure_iUnion, closure_eq (S _)] using this
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : MulOneClass M
ι : Sort u_4
hι : Nonempty ι
S : ι → Submonoid M
hS : Directed (fun x x_1 => x ≤ x_1) S
x : M
⊢ x ∈ closure (⋃ (i : ι), ↑(S i)) → ∃ i, x ∈ S i
[PROOFSTEP]
refine' fun hx => closure_induction hx (fun _ => mem_iUnion.1) _ _
[GOAL]
case refine'_1
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : MulOneClass M
ι : Sort u_4
hι : Nonempty ι
S : ι → Submonoid M
hS : Directed (fun x x_1 => x ≤ x_1) S
x : M
hx : x ∈ closure (⋃ (i : ι), ↑(S i))
⊢ ∃ i, 1 ∈ S i
[PROOFSTEP]
exact hι.elim fun i => ⟨i, (S i).one_mem⟩
[GOAL]
case refine'_2
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : MulOneClass M
ι : Sort u_4
hι : Nonempty ι
S : ι → Submonoid M
hS : Directed (fun x x_1 => x ≤ x_1) S
x : M
hx : x ∈ closure (⋃ (i : ι), ↑(S i))
⊢ ∀ (x y : M), (∃ i, x ∈ S i) → (∃ i, y ∈ S i) → ∃ i, x * y ∈ S i
[PROOFSTEP]
rintro x y ⟨i, hi⟩ ⟨j, hj⟩
[GOAL]
case refine'_2.intro.intro
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : MulOneClass M
ι : Sort u_4
hι : Nonempty ι
S : ι → Submonoid M
hS : Directed (fun x x_1 => x ≤ x_1) S
x✝ : M
hx : x✝ ∈ closure (⋃ (i : ι), ↑(S i))
x y : M
i : ι
hi : x ∈ S i
j : ι
hj : y ∈ S j
⊢ ∃ i, x * y ∈ S i
[PROOFSTEP]
rcases hS i j with ⟨k, hki, hkj⟩
[GOAL]
case refine'_2.intro.intro.intro.intro
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : MulOneClass M
ι : Sort u_4
hι : Nonempty ι
S : ι → Submonoid M
hS : Directed (fun x x_1 => x ≤ x_1) S
x✝ : M
hx : x✝ ∈ closure (⋃ (i : ι), ↑(S i))
x y : M
i : ι
hi : x ∈ S i
j : ι
hj : y ∈ S j
k : ι
hki : S i ≤ S k
hkj : S j ≤ S k
⊢ ∃ i, x * y ∈ S i
[PROOFSTEP]
exact ⟨k, (S k).mul_mem (hki hi) (hkj hj)⟩
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝¹ : MulOneClass M
ι : Sort u_4
inst✝ : Nonempty ι
S : ι → Submonoid M
hS : Directed (fun x x_1 => x ≤ x_1) S
x : M
⊢ x ∈ ↑(⨆ (i : ι), S i) ↔ x ∈ ⋃ (i : ι), ↑(S i)
[PROOFSTEP]
simp [mem_iSup_of_directed hS]
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : MulOneClass M
S : Set (Submonoid M)
Sne : Set.Nonempty S
hS : DirectedOn (fun x x_1 => x ≤ x_1) S
x : M
⊢ x ∈ sSup S ↔ ∃ s, s ∈ S ∧ x ∈ s
[PROOFSTEP]
haveI : Nonempty S := Sne.to_subtype
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : MulOneClass M
S : Set (Submonoid M)
Sne : Set.Nonempty S
hS : DirectedOn (fun x x_1 => x ≤ x_1) S
x : M
this : Nonempty ↑S
⊢ x ∈ sSup S ↔ ∃ s, s ∈ S ∧ x ∈ s
[PROOFSTEP]
simp [sSup_eq_iSup', mem_iSup_of_directed hS.directed_val, SetCoe.exists, Subtype.coe_mk]
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : MulOneClass M
S : Set (Submonoid M)
Sne : Set.Nonempty S
hS : DirectedOn (fun x x_1 => x ≤ x_1) S
x : M
⊢ x ∈ ↑(sSup S) ↔ x ∈ ⋃ (s : Submonoid M) (_ : s ∈ S), ↑s
[PROOFSTEP]
simp [mem_sSup_of_directedOn Sne hS]
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : MulOneClass M
S T : Submonoid M
⊢ ∀ {x : M}, x ∈ S → x ∈ S ⊔ T
[PROOFSTEP]
rw [← SetLike.le_def]
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : MulOneClass M
S T : Submonoid M
⊢ S ≤ S ⊔ T
[PROOFSTEP]
exact le_sup_left
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : MulOneClass M
S T : Submonoid M
⊢ ∀ {x : M}, x ∈ T → x ∈ S ⊔ T
[PROOFSTEP]
rw [← SetLike.le_def]
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : MulOneClass M
S T : Submonoid M
⊢ T ≤ S ⊔ T
[PROOFSTEP]
exact le_sup_right
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : MulOneClass M
ι : Sort u_4
S : ι → Submonoid M
i : ι
⊢ ∀ {x : M}, x ∈ S i → x ∈ iSup S
[PROOFSTEP]
rw [← SetLike.le_def]
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : MulOneClass M
ι : Sort u_4
S : ι → Submonoid M
i : ι
⊢ S i ≤ iSup S
[PROOFSTEP]
exact le_iSup _ _
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : MulOneClass M
S : Set (Submonoid M)
s : Submonoid M
hs : s ∈ S
⊢ ∀ {x : M}, x ∈ s → x ∈ sSup S
[PROOFSTEP]
rw [← SetLike.le_def]
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : MulOneClass M
S : Set (Submonoid M)
s : Submonoid M
hs : s ∈ S
⊢ s ≤ sSup S
[PROOFSTEP]
exact le_sSup hs
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : MulOneClass M
ι : Sort u_4
S : ι → Submonoid M
C : M → Prop
x : M
hx : x ∈ ⨆ (i : ι), S i
hp : ∀ (i : ι) (x : M), x ∈ S i → C x
h1 : C 1
hmul : ∀ (x y : M), C x → C y → C (x * y)
⊢ C x
[PROOFSTEP]
rw [iSup_eq_closure] at hx
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : MulOneClass M
ι : Sort u_4
S : ι → Submonoid M
C : M → Prop
x : M
hx : x ∈ closure (⋃ (i : ι), ↑(S i))
hp : ∀ (i : ι) (x : M), x ∈ S i → C x
h1 : C 1
hmul : ∀ (x y : M), C x → C y → C (x * y)
⊢ C x
[PROOFSTEP]
refine closure_induction hx (fun x hx => ?_) h1 hmul
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : MulOneClass M
ι : Sort u_4
S : ι → Submonoid M
C : M → Prop
x✝ : M
hx✝ : x✝ ∈ closure (⋃ (i : ι), ↑(S i))
hp : ∀ (i : ι) (x : M), x ∈ S i → C x
h1 : C 1
hmul : ∀ (x y : M), C x → C y → C (x * y)
x : M
hx : x ∈ ⋃ (i : ι), ↑(S i)
⊢ C x
[PROOFSTEP]
obtain ⟨i, hi⟩ := Set.mem_iUnion.mp hx
[GOAL]
case intro
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : MulOneClass M
ι : Sort u_4
S : ι → Submonoid M
C : M → Prop
x✝ : M
hx✝ : x✝ ∈ closure (⋃ (i : ι), ↑(S i))
hp : ∀ (i : ι) (x : M), x ∈ S i → C x
h1 : C 1
hmul : ∀ (x y : M), C x → C y → C (x * y)
x : M
hx : x ∈ ⋃ (i : ι), ↑(S i)
i : ι
hi : x ∈ ↑(S i)
⊢ C x
[PROOFSTEP]
exact hp _ _ hi
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : MulOneClass M
ι : Sort u_4
S : ι → Submonoid M
C : (x : M) → x ∈ ⨆ (i : ι), S i → Prop
hp : ∀ (i : ι) (x : M) (hxS : x ∈ S i), C x (_ : x ∈ ⨆ (i : ι), S i)
h1 : C 1 (_ : 1 ∈ ⨆ (i : ι), S i)
hmul :
∀ (x y : M) (hx : x ∈ ⨆ (i : ι), S i) (hy : y ∈ ⨆ (i : ι), S i),
C x hx → C y hy → C (x * y) (_ : x * y ∈ ⨆ (i : ι), S i)
x : M
hx : x ∈ ⨆ (i : ι), S i
⊢ C x hx
[PROOFSTEP]
refine' Exists.elim (_ : ∃ Hx, C x Hx) fun (hx : x ∈ ⨆ i, S i) (hc : C x hx) => hc
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : MulOneClass M
ι : Sort u_4
S : ι → Submonoid M
C : (x : M) → x ∈ ⨆ (i : ι), S i → Prop
hp : ∀ (i : ι) (x : M) (hxS : x ∈ S i), C x (_ : x ∈ ⨆ (i : ι), S i)
h1 : C 1 (_ : 1 ∈ ⨆ (i : ι), S i)
hmul :
∀ (x y : M) (hx : x ∈ ⨆ (i : ι), S i) (hy : y ∈ ⨆ (i : ι), S i),
C x hx → C y hy → C (x * y) (_ : x * y ∈ ⨆ (i : ι), S i)
x : M
hx : x ∈ ⨆ (i : ι), S i
⊢ ∃ Hx, C x Hx
[PROOFSTEP]
refine' @iSup_induction _ _ ι S (fun m => ∃ hm, C m hm) _ hx (fun i x hx => _) _ fun x y => _
[GOAL]
case refine'_1
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : MulOneClass M
ι : Sort u_4
S : ι → Submonoid M
C : (x : M) → x ∈ ⨆ (i : ι), S i → Prop
hp : ∀ (i : ι) (x : M) (hxS : x ∈ S i), C x (_ : x ∈ ⨆ (i : ι), S i)
h1 : C 1 (_ : 1 ∈ ⨆ (i : ι), S i)
hmul :
∀ (x y : M) (hx : x ∈ ⨆ (i : ι), S i) (hy : y ∈ ⨆ (i : ι), S i),
C x hx → C y hy → C (x * y) (_ : x * y ∈ ⨆ (i : ι), S i)
x✝ : M
hx✝ : x✝ ∈ ⨆ (i : ι), S i
i : ι
x : M
hx : x ∈ S i
⊢ (fun m => ∃ hm, C m hm) x
[PROOFSTEP]
exact ⟨_, hp _ _ hx⟩
[GOAL]
case refine'_2
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : MulOneClass M
ι : Sort u_4
S : ι → Submonoid M
C : (x : M) → x ∈ ⨆ (i : ι), S i → Prop
hp : ∀ (i : ι) (x : M) (hxS : x ∈ S i), C x (_ : x ∈ ⨆ (i : ι), S i)
h1 : C 1 (_ : 1 ∈ ⨆ (i : ι), S i)
hmul :
∀ (x y : M) (hx : x ∈ ⨆ (i : ι), S i) (hy : y ∈ ⨆ (i : ι), S i),
C x hx → C y hy → C (x * y) (_ : x * y ∈ ⨆ (i : ι), S i)
x : M
hx : x ∈ ⨆ (i : ι), S i
⊢ (fun m => ∃ hm, C m hm) 1
[PROOFSTEP]
exact ⟨_, h1⟩
[GOAL]
case refine'_3
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : MulOneClass M
ι : Sort u_4
S : ι → Submonoid M
C : (x : M) → x ∈ ⨆ (i : ι), S i → Prop
hp : ∀ (i : ι) (x : M) (hxS : x ∈ S i), C x (_ : x ∈ ⨆ (i : ι), S i)
h1 : C 1 (_ : 1 ∈ ⨆ (i : ι), S i)
hmul :
∀ (x y : M) (hx : x ∈ ⨆ (i : ι), S i) (hy : y ∈ ⨆ (i : ι), S i),
C x hx → C y hy → C (x * y) (_ : x * y ∈ ⨆ (i : ι), S i)
x✝ : M
hx : x✝ ∈ ⨆ (i : ι), S i
x y : M
⊢ (fun m => ∃ hm, C m hm) x → (fun m => ∃ hm, C m hm) y → (fun m => ∃ hm, C m hm) (x * y)
[PROOFSTEP]
rintro ⟨_, Cx⟩ ⟨_, Cy⟩
[GOAL]
case refine'_3.intro.intro
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : MulOneClass M
ι : Sort u_4
S : ι → Submonoid M
C : (x : M) → x ∈ ⨆ (i : ι), S i → Prop
hp : ∀ (i : ι) (x : M) (hxS : x ∈ S i), C x (_ : x ∈ ⨆ (i : ι), S i)
h1 : C 1 (_ : 1 ∈ ⨆ (i : ι), S i)
hmul :
∀ (x y : M) (hx : x ∈ ⨆ (i : ι), S i) (hy : y ∈ ⨆ (i : ι), S i),
C x hx → C y hy → C (x * y) (_ : x * y ∈ ⨆ (i : ι), S i)
x✝ : M
hx : x✝ ∈ ⨆ (i : ι), S i
x y : M
w✝¹ : x ∈ ⨆ (i : ι), S i
Cx : C x w✝¹
w✝ : y ∈ ⨆ (i : ι), S i
Cy : C y w✝
⊢ ∃ hm, C (x * y) hm
[PROOFSTEP]
refine' ⟨_, hmul _ _ _ _ Cx Cy⟩
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : Monoid M
x y : M
⊢ y ∈ closure {x} ↔ ∃ n, x ^ n = y
[PROOFSTEP]
rw [closure_singleton_eq, mem_mrange]
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : Monoid M
x y : M
⊢ (∃ x_1, ↑(↑(powersHom M) x) x_1 = y) ↔ ∃ n, x ^ n = y
[PROOFSTEP]
rfl
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : Monoid M
⊢ closure {1} = ⊥
[PROOFSTEP]
simp [eq_bot_iff_forall, mem_closure_singleton]
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : Monoid M
α : Type u_4
f : α → M
⊢ mrange (↑FreeMonoid.lift f) = closure (Set.range f)
[PROOFSTEP]
rw [mrange_eq_map, ← FreeMonoid.closure_range_of, map_mclosure, ← Set.range_comp, FreeMonoid.lift_comp_of]
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : Monoid M
s : Set M
⊢ closure s = mrange (↑FreeMonoid.lift Subtype.val)
[PROOFSTEP]
rw [FreeMonoid.mrange_lift, Subtype.range_coe]
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : Monoid M
s : Set M
⊢ ↑(closure s) = List.prod '' {l | ∀ (x : M), x ∈ l → x ∈ s}
[PROOFSTEP]
rw [closure_eq_mrange, coe_mrange, ← Set.range_list_map_coe, ← Set.range_comp]
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : Monoid M
s : Set M
⊢ Set.range ↑(↑FreeMonoid.lift Subtype.val) = Set.range (List.prod ∘ List.map Subtype.val)
[PROOFSTEP]
exact congrArg _ (funext <| FreeMonoid.lift_apply _)
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : Monoid M
s : Set M
x : M
hx : x ∈ closure s
⊢ ∃ l x_1, List.prod l = x
[PROOFSTEP]
rwa [← SetLike.mem_coe, closure_eq_image_prod, Set.mem_image_iff_bex] at hx
[GOAL]
M✝ : Type u_1
A : Type u_2
B : Type u_3
inst✝¹ : Monoid M✝
M : Type u_4
inst✝ : CommMonoid M
s : Set M
x : M
hx : x ∈ closure s
⊢ ∃ l x_1, Multiset.prod l = x
[PROOFSTEP]
obtain ⟨l, h1, h2⟩ := exists_list_of_mem_closure hx
[GOAL]
case intro.intro
M✝ : Type u_1
A : Type u_2
B : Type u_3
inst✝¹ : Monoid M✝
M : Type u_4
inst✝ : CommMonoid M
s : Set M
x : M
hx : x ∈ closure s
l : List M
h1 : ∀ (y : M), y ∈ l → y ∈ s
h2 : List.prod l = x
⊢ ∃ l x_1, Multiset.prod l = x
[PROOFSTEP]
exact ⟨l, h1, (Multiset.coe_prod l).trans h2⟩
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : Monoid M
s : Set M
p : M → Prop
x : M
h : x ∈ closure s
H1 : p 1
Hmul : ∀ (x : M), x ∈ s → ∀ (y : M), p y → p (x * y)
⊢ p x
[PROOFSTEP]
rw [closure_eq_mrange] at h
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : Monoid M
s : Set M
p : M → Prop
x : M
h : x ∈ mrange (↑FreeMonoid.lift Subtype.val)
H1 : p 1
Hmul : ∀ (x : M), x ∈ s → ∀ (y : M), p y → p (x * y)
⊢ p x
[PROOFSTEP]
obtain ⟨l, rfl⟩ := h
[GOAL]
case intro
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : Monoid M
s : Set M
p : M → Prop
H1 : p 1
Hmul : ∀ (x : M), x ∈ s → ∀ (y : M), p y → p (x * y)
l : FreeMonoid { x // x ∈ s }
⊢ p (↑(↑FreeMonoid.lift Subtype.val) l)
[PROOFSTEP]
induction' l using FreeMonoid.recOn with x y ih
[GOAL]
case intro.h0
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : Monoid M
s : Set M
p : M → Prop
H1 : p 1
Hmul : ∀ (x : M), x ∈ s → ∀ (y : M), p y → p (x * y)
⊢ p (↑(↑FreeMonoid.lift Subtype.val) 1)
[PROOFSTEP]
exact H1
[GOAL]
case intro.ih
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : Monoid M
s : Set M
p : M → Prop
H1 : p 1
Hmul : ∀ (x : M), x ∈ s → ∀ (y : M), p y → p (x * y)
x : { x // x ∈ s }
y : FreeMonoid { x // x ∈ s }
ih : p (↑(↑FreeMonoid.lift Subtype.val) y)
⊢ p (↑(↑FreeMonoid.lift Subtype.val) (FreeMonoid.of x * y))
[PROOFSTEP]
simpa only [map_mul, FreeMonoid.lift_eval_of] using Hmul _ x.prop _ ih
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : Monoid M
s : Set M
p : M → Prop
hs : closure s = ⊤
x : M
H1 : p 1
Hmul : ∀ (x : M), x ∈ s → ∀ (y : M), p y → p (x * y)
⊢ x ∈ closure s
[PROOFSTEP]
rw [hs]
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : Monoid M
s : Set M
p : M → Prop
hs : closure s = ⊤
x : M
H1 : p 1
Hmul : ∀ (x : M), x ∈ s → ∀ (y : M), p y → p (x * y)
⊢ x ∈ ⊤
[PROOFSTEP]
exact mem_top _
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : Monoid M
s : Set M
p : M → Prop
hs : closure s = ⊤
x : M
H1 : p 1
Hmul : ∀ (x y : M), y ∈ s → p x → p (x * y)
⊢ x ∈ closure s
[PROOFSTEP]
rw [hs]
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : Monoid M
s : Set M
p : M → Prop
hs : closure s = ⊤
x : M
H1 : p 1
Hmul : ∀ (x y : M), y ∈ s → p x → p (x * y)
⊢ x ∈ ⊤
[PROOFSTEP]
exact mem_top _
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : Monoid M
n✝ n : M
i : ℕ
⊢ (fun x x_1 => x ^ x_1) n✝ i = n ↔ ↑(↑(powersHom M) n✝) i = n
[PROOFSTEP]
simp
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : Monoid M
n✝ n : M
i : ℕ
⊢ n✝ ^ i = n ↔ n✝ ^ ↑Multiplicative.toAdd i = n
[PROOFSTEP]
rfl
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : Monoid M
n : M
⊢ powers n = closure {n}
[PROOFSTEP]
ext
[GOAL]
case h
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : Monoid M
n x✝ : M
⊢ x✝ ∈ powers n ↔ x✝ ∈ closure {n}
[PROOFSTEP]
exact mem_closure_singleton.symm
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝¹ : Monoid M
inst✝ : DecidableEq M
n : M
h : Function.Injective fun m => n ^ m
x✝¹ x✝ : Multiplicative ℕ
⊢ Equiv.toFun
{ toFun := fun m => pow n (↑Multiplicative.toAdd m), invFun := fun m => ↑Multiplicative.ofAdd (log m),
left_inv := (_ : ∀ (m : ℕ), log (pow n m) = m),
right_inv := (_ : ∀ (p : { x // x ∈ powers n }), pow n (log p) = p) }
(x✝¹ * x✝) =
Equiv.toFun
{ toFun := fun m => pow n (↑Multiplicative.toAdd m), invFun := fun m => ↑Multiplicative.ofAdd (log m),
left_inv := (_ : ∀ (m : ℕ), log (pow n m) = m),
right_inv := (_ : ∀ (p : { x // x ∈ powers n }), pow n (log p) = p) }
x✝¹ *
Equiv.toFun
{ toFun := fun m => pow n (↑Multiplicative.toAdd m), invFun := fun m => ↑Multiplicative.ofAdd (log m),
left_inv := (_ : ∀ (m : ℕ), log (pow n m) = m),
right_inv := (_ : ∀ (p : { x // x ∈ powers n }), pow n (log p) = p) }
x✝
[PROOFSTEP]
simp only [pow, map_mul, ofAdd_add, toAdd_mul]
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝² : Monoid M
N : Type u_4
F : Type u_5
inst✝¹ : Monoid N
inst✝ : MonoidHomClass F M N
f : F
m : M
⊢ map f (powers m) = powers (↑f m)
[PROOFSTEP]
simp only [powers_eq_closure, map_mclosure f, Set.image_singleton]
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : Monoid M
s : Set M
hcomm : ∀ (a : M), a ∈ s → ∀ (b : M), b ∈ s → a * b = b * a
src✝ : Monoid { x // x ∈ closure s } := toMonoid (closure s)
x y : { x // x ∈ closure s }
⊢ x * y = y * x
[PROOFSTEP]
ext
[GOAL]
case a
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : Monoid M
s : Set M
hcomm : ∀ (a : M), a ∈ s → ∀ (b : M), b ∈ s → a * b = b * a
src✝ : Monoid { x // x ∈ closure s } := toMonoid (closure s)
x y : { x // x ∈ closure s }
⊢ ↑(x * y) = ↑(y * x)
[PROOFSTEP]
simp only [Submonoid.coe_mul]
[GOAL]
case a
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : Monoid M
s : Set M
hcomm : ∀ (a : M), a ∈ s → ∀ (b : M), b ∈ s → a * b = b * a
src✝ : Monoid { x // x ∈ closure s } := toMonoid (closure s)
x y : { x // x ∈ closure s }
⊢ ↑x * ↑y = ↑y * ↑x
[PROOFSTEP]
exact
closure_induction₂ x.prop y.prop hcomm Commute.one_left Commute.one_right (fun x y z => Commute.mul_left) fun x y z =>
Commute.mul_right
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
N : Type u_4
α : Type u_5
inst✝³ : Monoid M
inst✝² : MulAction M N
inst✝¹ : SMul N α
inst✝ : MulAction M α
s : Set M
htop : Submonoid.closure s = ⊤
hs : ∀ (x : M), x ∈ s → ∀ (y : N) (z : α), (x • y) • z = x • y • z
⊢ IsScalarTower M N α
[PROOFSTEP]
refine' ⟨fun x => Submonoid.induction_of_closure_eq_top_left htop x _ _⟩
[GOAL]
case refine'_1
M : Type u_1
A : Type u_2
B : Type u_3
N : Type u_4
α : Type u_5
inst✝³ : Monoid M
inst✝² : MulAction M N
inst✝¹ : SMul N α
inst✝ : MulAction M α
s : Set M
htop : Submonoid.closure s = ⊤
hs : ∀ (x : M), x ∈ s → ∀ (y : N) (z : α), (x • y) • z = x • y • z
x : M
⊢ ∀ (y : N) (z : α), (1 • y) • z = 1 • y • z
[PROOFSTEP]
intro y z
[GOAL]
case refine'_1
M : Type u_1
A : Type u_2
B : Type u_3
N : Type u_4
α : Type u_5
inst✝³ : Monoid M
inst✝² : MulAction M N
inst✝¹ : SMul N α
inst✝ : MulAction M α
s : Set M
htop : Submonoid.closure s = ⊤
hs : ∀ (x : M), x ∈ s → ∀ (y : N) (z : α), (x • y) • z = x • y • z
x : M
y : N
z : α
⊢ (1 • y) • z = 1 • y • z
[PROOFSTEP]
rw [one_smul, one_smul]
[GOAL]
case refine'_2
M : Type u_1
A : Type u_2
B : Type u_3
N : Type u_4
α : Type u_5
inst✝³ : Monoid M
inst✝² : MulAction M N
inst✝¹ : SMul N α
inst✝ : MulAction M α
s : Set M
htop : Submonoid.closure s = ⊤
hs : ∀ (x : M), x ∈ s → ∀ (y : N) (z : α), (x • y) • z = x • y • z
x : M
⊢ ∀ (x : M),
x ∈ s →
∀ (y : M),
(∀ (y_1 : N) (z : α), (y • y_1) • z = y • y_1 • z) →
∀ (y_1 : N) (z : α), ((x * y) • y_1) • z = (x * y) • y_1 • z
[PROOFSTEP]
clear x
[GOAL]
case refine'_2
M : Type u_1
A : Type u_2
B : Type u_3
N : Type u_4
α : Type u_5
inst✝³ : Monoid M
inst✝² : MulAction M N
inst✝¹ : SMul N α
inst✝ : MulAction M α
s : Set M
htop : Submonoid.closure s = ⊤
hs : ∀ (x : M), x ∈ s → ∀ (y : N) (z : α), (x • y) • z = x • y • z
⊢ ∀ (x : M),
x ∈ s →
∀ (y : M),
(∀ (y_1 : N) (z : α), (y • y_1) • z = y • y_1 • z) →
∀ (y_1 : N) (z : α), ((x * y) • y_1) • z = (x * y) • y_1 • z
[PROOFSTEP]
intro x hx x' hx' y z
[GOAL]
case refine'_2
M : Type u_1
A : Type u_2
B : Type u_3
N : Type u_4
α : Type u_5
inst✝³ : Monoid M
inst✝² : MulAction M N
inst✝¹ : SMul N α
inst✝ : MulAction M α
s : Set M
htop : Submonoid.closure s = ⊤
hs : ∀ (x : M), x ∈ s → ∀ (y : N) (z : α), (x • y) • z = x • y • z
x : M
hx : x ∈ s
x' : M
hx' : ∀ (y : N) (z : α), (x' • y) • z = x' • y • z
y : N
z : α
⊢ ((x * x') • y) • z = (x * x') • y • z
[PROOFSTEP]
rw [mul_smul, mul_smul, hs x hx, hx']
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
N : Type u_4
α : Type u_5
inst✝² : Monoid M
inst✝¹ : SMul N α
inst✝ : MulAction M α
s : Set M
htop : Submonoid.closure s = ⊤
hs : ∀ (x : M), x ∈ s → ∀ (y : N) (z : α), x • y • z = y • x • z
⊢ SMulCommClass M N α
[PROOFSTEP]
refine' ⟨fun x => Submonoid.induction_of_closure_eq_top_left htop x _ _⟩
[GOAL]
case refine'_1
M : Type u_1
A : Type u_2
B : Type u_3
N : Type u_4
α : Type u_5
inst✝² : Monoid M
inst✝¹ : SMul N α
inst✝ : MulAction M α
s : Set M
htop : Submonoid.closure s = ⊤
hs : ∀ (x : M), x ∈ s → ∀ (y : N) (z : α), x • y • z = y • x • z
x : M
⊢ ∀ (n : N) (a : α), 1 • n • a = n • 1 • a
[PROOFSTEP]
intro y z
[GOAL]
case refine'_1
M : Type u_1
A : Type u_2
B : Type u_3
N : Type u_4
α : Type u_5
inst✝² : Monoid M
inst✝¹ : SMul N α
inst✝ : MulAction M α
s : Set M
htop : Submonoid.closure s = ⊤
hs : ∀ (x : M), x ∈ s → ∀ (y : N) (z : α), x • y • z = y • x • z
x : M
y : N
z : α
⊢ 1 • y • z = y • 1 • z
[PROOFSTEP]
rw [one_smul, one_smul]
[GOAL]
case refine'_2
M : Type u_1
A : Type u_2
B : Type u_3
N : Type u_4
α : Type u_5
inst✝² : Monoid M
inst✝¹ : SMul N α
inst✝ : MulAction M α
s : Set M
htop : Submonoid.closure s = ⊤
hs : ∀ (x : M), x ∈ s → ∀ (y : N) (z : α), x • y • z = y • x • z
x : M
⊢ ∀ (x : M),
x ∈ s → ∀ (y : M), (∀ (n : N) (a : α), y • n • a = n • y • a) → ∀ (n : N) (a : α), (x * y) • n • a = n • (x * y) • a
[PROOFSTEP]
clear x
[GOAL]
case refine'_2
M : Type u_1
A : Type u_2
B : Type u_3
N : Type u_4
α : Type u_5
inst✝² : Monoid M
inst✝¹ : SMul N α
inst✝ : MulAction M α
s : Set M
htop : Submonoid.closure s = ⊤
hs : ∀ (x : M), x ∈ s → ∀ (y : N) (z : α), x • y • z = y • x • z
⊢ ∀ (x : M),
x ∈ s → ∀ (y : M), (∀ (n : N) (a : α), y • n • a = n • y • a) → ∀ (n : N) (a : α), (x * y) • n • a = n • (x * y) • a
[PROOFSTEP]
intro x hx x' hx' y z
[GOAL]
case refine'_2
M : Type u_1
A : Type u_2
B : Type u_3
N : Type u_4
α : Type u_5
inst✝² : Monoid M
inst✝¹ : SMul N α
inst✝ : MulAction M α
s : Set M
htop : Submonoid.closure s = ⊤
hs : ∀ (x : M), x ∈ s → ∀ (y : N) (z : α), x • y • z = y • x • z
x : M
hx : x ∈ s
x' : M
hx' : ∀ (n : N) (a : α), x' • n • a = n • x' • a
y : N
z : α
⊢ (x * x') • y • z = y • (x * x') • z
[PROOFSTEP]
rw [mul_smul, mul_smul, hx', hs x hx]
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
N : Type u_4
inst✝ : CommMonoid N
s t : Submonoid N
⊢ s ⊔ t = mrange (coprod (subtype s) (subtype t))
[PROOFSTEP]
rw [mrange_eq_map, ← mrange_inl_sup_mrange_inr, map_sup, map_mrange, coprod_comp_inl, map_mrange, coprod_comp_inr,
range_subtype, range_subtype]
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
N : Type u_4
inst✝ : CommMonoid N
s t : Submonoid N
x : N
⊢ x ∈ s ⊔ t ↔ ∃ y, y ∈ s ∧ ∃ z, z ∈ t ∧ y * z = x
[PROOFSTEP]
simp only [ge_iff_le, sup_eq_range, mem_mrange, coprod_apply, coe_subtype, Prod.exists, Subtype.exists, exists_prop]
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : AddMonoid A
x y : A
⊢ y ∈ closure {x} ↔ ∃ n, n • x = y
[PROOFSTEP]
rw [closure_singleton_eq, AddMonoidHom.mem_mrange]
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : AddMonoid A
x y : A
⊢ (∃ x_1, ↑(↑(multiplesHom A) x) x_1 = y) ↔ ∃ n, n • x = y
[PROOFSTEP]
rfl
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : AddMonoid A
⊢ closure {0} = ⊥
[PROOFSTEP]
simp [eq_bot_iff_forall, mem_closure_singleton, nsmul_zero]
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : AddMonoid A
x n : A
i : ℕ
⊢ (fun i => i • x) i = n ↔ ↑(↑(multiplesHom A) x) i = n
[PROOFSTEP]
simp
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
R : Type u_4
inst✝² : NonUnitalNonAssocSemiring R
inst✝¹ : SetLike M R
inst✝ : MulMemClass M R
S : M
a b : R
ha : a ∈ AddSubmonoid.closure ↑S
hb : b ∈ S
⊢ a * b ∈ AddSubmonoid.closure ↑S
[PROOFSTEP]
revert b
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
R : Type u_4
inst✝² : NonUnitalNonAssocSemiring R
inst✝¹ : SetLike M R
inst✝ : MulMemClass M R
S : M
a : R
ha : a ∈ AddSubmonoid.closure ↑S
⊢ ∀ {b : R}, b ∈ S → a * b ∈ AddSubmonoid.closure ↑S
[PROOFSTEP]
refine' @AddSubmonoid.closure_induction _ _ _ (fun z => ∀ (b : R), b ∈ S → z * b ∈ AddSubmonoid.closure S) _ ha _ _ _
[GOAL]
case refine'_1
M : Type u_1
A : Type u_2
B : Type u_3
R : Type u_4
inst✝² : NonUnitalNonAssocSemiring R
inst✝¹ : SetLike M R
inst✝ : MulMemClass M R
S : M
a : R
ha : a ∈ AddSubmonoid.closure ↑S
⊢ ∀ (x : R), x ∈ ↑S → (fun z => ∀ (b : R), b ∈ S → z * b ∈ AddSubmonoid.closure ↑S) x
[PROOFSTEP]
clear ha a
[GOAL]
case refine'_2
M : Type u_1
A : Type u_2
B : Type u_3
R : Type u_4
inst✝² : NonUnitalNonAssocSemiring R
inst✝¹ : SetLike M R
inst✝ : MulMemClass M R
S : M
a : R
ha : a ∈ AddSubmonoid.closure ↑S
⊢ (fun z => ∀ (b : R), b ∈ S → z * b ∈ AddSubmonoid.closure ↑S) 0
[PROOFSTEP]
clear ha a
[GOAL]
case refine'_3
M : Type u_1
A : Type u_2
B : Type u_3
R : Type u_4
inst✝² : NonUnitalNonAssocSemiring R
inst✝¹ : SetLike M R
inst✝ : MulMemClass M R
S : M
a : R
ha : a ∈ AddSubmonoid.closure ↑S
⊢ ∀ (x y : R),
(fun z => ∀ (b : R), b ∈ S → z * b ∈ AddSubmonoid.closure ↑S) x →
(fun z => ∀ (b : R), b ∈ S → z * b ∈ AddSubmonoid.closure ↑S) y →
(fun z => ∀ (b : R), b ∈ S → z * b ∈ AddSubmonoid.closure ↑S) (x + y)
[PROOFSTEP]
clear ha a
[GOAL]
case refine'_1
M : Type u_1
A : Type u_2
B : Type u_3
R : Type u_4
inst✝² : NonUnitalNonAssocSemiring R
inst✝¹ : SetLike M R
inst✝ : MulMemClass M R
S : M
⊢ ∀ (x : R), x ∈ ↑S → (fun z => ∀ (b : R), b ∈ S → z * b ∈ AddSubmonoid.closure ↑S) x
[PROOFSTEP]
exact fun r hr b hb => AddSubmonoid.mem_closure.mpr fun y hy => hy (mul_mem hr hb)
[GOAL]
case refine'_2
M : Type u_1
A : Type u_2
B : Type u_3
R : Type u_4
inst✝² : NonUnitalNonAssocSemiring R
inst✝¹ : SetLike M R
inst✝ : MulMemClass M R
S : M
⊢ (fun z => ∀ (b : R), b ∈ S → z * b ∈ AddSubmonoid.closure ↑S) 0
[PROOFSTEP]
exact fun b _ => by simp only [zero_mul, (AddSubmonoid.closure (S : Set R)).zero_mem]
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
R : Type u_4
inst✝² : NonUnitalNonAssocSemiring R
inst✝¹ : SetLike M R
inst✝ : MulMemClass M R
S : M
b : R
x✝ : b ∈ S
⊢ 0 * b ∈ AddSubmonoid.closure ↑S
[PROOFSTEP]
simp only [zero_mul, (AddSubmonoid.closure (S : Set R)).zero_mem]
[GOAL]
case refine'_3
M : Type u_1
A : Type u_2
B : Type u_3
R : Type u_4
inst✝² : NonUnitalNonAssocSemiring R
inst✝¹ : SetLike M R
inst✝ : MulMemClass M R
S : M
⊢ ∀ (x y : R),
(fun z => ∀ (b : R), b ∈ S → z * b ∈ AddSubmonoid.closure ↑S) x →
(fun z => ∀ (b : R), b ∈ S → z * b ∈ AddSubmonoid.closure ↑S) y →
(fun z => ∀ (b : R), b ∈ S → z * b ∈ AddSubmonoid.closure ↑S) (x + y)
[PROOFSTEP]
simp_rw [add_mul]
[GOAL]
case refine'_3
M : Type u_1
A : Type u_2
B : Type u_3
R : Type u_4
inst✝² : NonUnitalNonAssocSemiring R
inst✝¹ : SetLike M R
inst✝ : MulMemClass M R
S : M
⊢ ∀ (x y : R),
(∀ (b : R), b ∈ S → x * b ∈ AddSubmonoid.closure ↑S) →
(∀ (b : R), b ∈ S → y * b ∈ AddSubmonoid.closure ↑S) → ∀ (b : R), b ∈ S → x * b + y * b ∈ AddSubmonoid.closure ↑S
[PROOFSTEP]
exact fun r s hr hs b hb => (AddSubmonoid.closure (S : Set R)).add_mem (hr _ hb) (hs _ hb)
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
R : Type u_4
inst✝² : NonUnitalNonAssocSemiring R
inst✝¹ : SetLike M R
inst✝ : MulMemClass M R
S : M
a b : R
ha : a ∈ AddSubmonoid.closure ↑S
hb : b ∈ AddSubmonoid.closure ↑S
⊢ a * b ∈ AddSubmonoid.closure ↑S
[PROOFSTEP]
revert a
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
R : Type u_4
inst✝² : NonUnitalNonAssocSemiring R
inst✝¹ : SetLike M R
inst✝ : MulMemClass M R
S : M
b : R
hb : b ∈ AddSubmonoid.closure ↑S
⊢ ∀ {a : R}, a ∈ AddSubmonoid.closure ↑S → a * b ∈ AddSubmonoid.closure ↑S
[PROOFSTEP]
refine'
@AddSubmonoid.closure_induction _ _ _
(fun z => ∀ {a : R}, a ∈ AddSubmonoid.closure ↑S → a * z ∈ AddSubmonoid.closure ↑S) _ hb _ _ _
[GOAL]
case refine'_1
M : Type u_1
A : Type u_2
B : Type u_3
R : Type u_4
inst✝² : NonUnitalNonAssocSemiring R
inst✝¹ : SetLike M R
inst✝ : MulMemClass M R
S : M
b : R
hb : b ∈ AddSubmonoid.closure ↑S
⊢ ∀ (x : R), x ∈ ↑S → (fun z => ∀ {a : R}, a ∈ AddSubmonoid.closure ↑S → a * z ∈ AddSubmonoid.closure ↑S) x
[PROOFSTEP]
clear hb b
[GOAL]
case refine'_2
M : Type u_1
A : Type u_2
B : Type u_3
R : Type u_4
inst✝² : NonUnitalNonAssocSemiring R
inst✝¹ : SetLike M R
inst✝ : MulMemClass M R
S : M
b : R
hb : b ∈ AddSubmonoid.closure ↑S
⊢ (fun z => ∀ {a : R}, a ∈ AddSubmonoid.closure ↑S → a * z ∈ AddSubmonoid.closure ↑S) 0
[PROOFSTEP]
clear hb b
[GOAL]
case refine'_3
M : Type u_1
A : Type u_2
B : Type u_3
R : Type u_4
inst✝² : NonUnitalNonAssocSemiring R
inst✝¹ : SetLike M R
inst✝ : MulMemClass M R
S : M
b : R
hb : b ∈ AddSubmonoid.closure ↑S
⊢ ∀ (x y : R),
(fun z => ∀ {a : R}, a ∈ AddSubmonoid.closure ↑S → a * z ∈ AddSubmonoid.closure ↑S) x →
(fun z => ∀ {a : R}, a ∈ AddSubmonoid.closure ↑S → a * z ∈ AddSubmonoid.closure ↑S) y →
(fun z => ∀ {a : R}, a ∈ AddSubmonoid.closure ↑S → a * z ∈ AddSubmonoid.closure ↑S) (x + y)
[PROOFSTEP]
clear hb b
[GOAL]
case refine'_1
M : Type u_1
A : Type u_2
B : Type u_3
R : Type u_4
inst✝² : NonUnitalNonAssocSemiring R
inst✝¹ : SetLike M R
inst✝ : MulMemClass M R
S : M
⊢ ∀ (x : R), x ∈ ↑S → (fun z => ∀ {a : R}, a ∈ AddSubmonoid.closure ↑S → a * z ∈ AddSubmonoid.closure ↑S) x
[PROOFSTEP]
exact fun r hr b hb => MulMemClass.mul_right_mem_add_closure hb hr
[GOAL]
case refine'_2
M : Type u_1
A : Type u_2
B : Type u_3
R : Type u_4
inst✝² : NonUnitalNonAssocSemiring R
inst✝¹ : SetLike M R
inst✝ : MulMemClass M R
S : M
⊢ (fun z => ∀ {a : R}, a ∈ AddSubmonoid.closure ↑S → a * z ∈ AddSubmonoid.closure ↑S) 0
[PROOFSTEP]
exact fun _ => by simp only [mul_zero, (AddSubmonoid.closure (S : Set R)).zero_mem]
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
R : Type u_4
inst✝² : NonUnitalNonAssocSemiring R
inst✝¹ : SetLike M R
inst✝ : MulMemClass M R
S : M
a✝ : R
x✝ : a✝ ∈ AddSubmonoid.closure ↑S
⊢ a✝ * 0 ∈ AddSubmonoid.closure ↑S
[PROOFSTEP]
simp only [mul_zero, (AddSubmonoid.closure (S : Set R)).zero_mem]
[GOAL]
case refine'_3
M : Type u_1
A : Type u_2
B : Type u_3
R : Type u_4
inst✝² : NonUnitalNonAssocSemiring R
inst✝¹ : SetLike M R
inst✝ : MulMemClass M R
S : M
⊢ ∀ (x y : R),
(fun z => ∀ {a : R}, a ∈ AddSubmonoid.closure ↑S → a * z ∈ AddSubmonoid.closure ↑S) x →
(fun z => ∀ {a : R}, a ∈ AddSubmonoid.closure ↑S → a * z ∈ AddSubmonoid.closure ↑S) y →
(fun z => ∀ {a : R}, a ∈ AddSubmonoid.closure ↑S → a * z ∈ AddSubmonoid.closure ↑S) (x + y)
[PROOFSTEP]
simp_rw [mul_add]
[GOAL]
case refine'_3
M : Type u_1
A : Type u_2
B : Type u_3
R : Type u_4
inst✝² : NonUnitalNonAssocSemiring R
inst✝¹ : SetLike M R
inst✝ : MulMemClass M R
S : M
⊢ ∀ (x y : R),
(∀ {a : R}, a ∈ AddSubmonoid.closure ↑S → a * x ∈ AddSubmonoid.closure ↑S) →
(∀ {a : R}, a ∈ AddSubmonoid.closure ↑S → a * y ∈ AddSubmonoid.closure ↑S) →
∀ {a : R}, a ∈ AddSubmonoid.closure ↑S → a * x + a * y ∈ AddSubmonoid.closure ↑S
[PROOFSTEP]
exact fun r s hr hs b hb => (AddSubmonoid.closure (S : Set R)).add_mem (hr hb) (hs hb)
[GOAL]
M : Type u_1
A✝ : Type u_2
B : Type u_3
A : Type u_4
inst✝ : CommMonoid A
a b c : A
⊢ c ∈ closure {a, b} ↔ ∃ m n, a ^ m * b ^ n = c
[PROOFSTEP]
rw [← Set.singleton_union, Submonoid.closure_union, mem_sup]
[GOAL]
M : Type u_1
A✝ : Type u_2
B : Type u_3
A : Type u_4
inst✝ : CommMonoid A
a b c : A
⊢ (∃ y, y ∈ closure {a} ∧ ∃ z, z ∈ closure {b} ∧ y * z = c) ↔ ∃ m n, a ^ m * b ^ n = c
[PROOFSTEP]
simp_rw [mem_closure_singleton, exists_exists_eq_and]
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : Monoid M
x : M
⊢ ↑Additive.ofMul '' ↑(Submonoid.powers x) = ↑(AddSubmonoid.multiples (↑Additive.ofMul x))
[PROOFSTEP]
ext
[GOAL]
case h
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : Monoid M
x : M
x✝ : Additive M
⊢ x✝ ∈ ↑Additive.ofMul '' ↑(Submonoid.powers x) ↔ x✝ ∈ ↑(AddSubmonoid.multiples (↑Additive.ofMul x))
[PROOFSTEP]
constructor
[GOAL]
case h.mp
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : Monoid M
x : M
x✝ : Additive M
⊢ x✝ ∈ ↑Additive.ofMul '' ↑(Submonoid.powers x) → x✝ ∈ ↑(AddSubmonoid.multiples (↑Additive.ofMul x))
[PROOFSTEP]
rintro ⟨y, ⟨n, hy1⟩, hy2⟩
[GOAL]
case h.mp.intro.intro.intro
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : Monoid M
x : M
x✝ : Additive M
y : M
hy2 : ↑Additive.ofMul y = x✝
n : ℕ
hy1 : (fun x x_1 => x ^ x_1) x n = y
⊢ x✝ ∈ ↑(AddSubmonoid.multiples (↑Additive.ofMul x))
[PROOFSTEP]
use n
[GOAL]
case h
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : Monoid M
x : M
x✝ : Additive M
y : M
hy2 : ↑Additive.ofMul y = x✝
n : ℕ
hy1 : (fun x x_1 => x ^ x_1) x n = y
⊢ (fun i => i • ↑Additive.ofMul x) n = x✝
[PROOFSTEP]
simpa [← ofMul_pow, hy1]
[GOAL]
case h.mpr
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : Monoid M
x : M
x✝ : Additive M
⊢ x✝ ∈ ↑(AddSubmonoid.multiples (↑Additive.ofMul x)) → x✝ ∈ ↑Additive.ofMul '' ↑(Submonoid.powers x)
[PROOFSTEP]
rintro ⟨n, hn⟩
[GOAL]
case h.mpr.intro
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : Monoid M
x : M
x✝ : Additive M
n : ℕ
hn : (fun i => i • ↑Additive.ofMul x) n = x✝
⊢ x✝ ∈ ↑Additive.ofMul '' ↑(Submonoid.powers x)
[PROOFSTEP]
refine' ⟨x ^ n, ⟨n, rfl⟩, _⟩
[GOAL]
case h.mpr.intro
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : Monoid M
x : M
x✝ : Additive M
n : ℕ
hn : (fun i => i • ↑Additive.ofMul x) n = x✝
⊢ ↑Additive.ofMul (x ^ n) = x✝
[PROOFSTEP]
rwa [ofMul_pow]
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : AddMonoid A
x : A
⊢ ↑Multiplicative.ofAdd '' ↑(AddSubmonoid.multiples x) = ↑(Submonoid.powers (↑Multiplicative.ofAdd x))
[PROOFSTEP]
symm
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : AddMonoid A
x : A
⊢ ↑(Submonoid.powers (↑Multiplicative.ofAdd x)) = ↑Multiplicative.ofAdd '' ↑(AddSubmonoid.multiples x)
[PROOFSTEP]
rw [Equiv.eq_image_iff_symm_image_eq]
[GOAL]
M : Type u_1
A : Type u_2
B : Type u_3
inst✝ : AddMonoid A
x : A
⊢ ↑Multiplicative.ofAdd.symm '' ↑(Submonoid.powers (↑Multiplicative.ofAdd x)) = ↑(AddSubmonoid.multiples x)
[PROOFSTEP]
exact ofMul_image_powers_eq_multiples_ofMul
| {"mathlib_filename": "Mathlib.GroupTheory.Submonoid.Membership", "llama_tokens": 21056} |
[GOAL]
n : ℕ
⊢ ∀ (a b c : DihedralGroup n), a * b * c = a * (b * c)
[PROOFSTEP]
rintro (a | a) (b | b) (c | c)
[GOAL]
case r.r.r
n : ℕ
a b c : ZMod n
⊢ r a * r b * r c = r a * (r b * r c)
[PROOFSTEP]
simp only [(· * ·), mul]
[GOAL]
case r.r.sr
n : ℕ
a b c : ZMod n
⊢ r a * r b * sr c = r a * (r b * sr c)
[PROOFSTEP]
simp only [(· * ·), mul]
[GOAL]
case r.sr.r
n : ℕ
a b c : ZMod n
⊢ r a * sr b * r c = r a * (sr b * r c)
[PROOFSTEP]
simp only [(· * ·), mul]
[GOAL]
case r.sr.sr
n : ℕ
a b c : ZMod n
⊢ r a * sr b * sr c = r a * (sr b * sr c)
[PROOFSTEP]
simp only [(· * ·), mul]
[GOAL]
case sr.r.r
n : ℕ
a b c : ZMod n
⊢ sr a * r b * r c = sr a * (r b * r c)
[PROOFSTEP]
simp only [(· * ·), mul]
[GOAL]
case sr.r.sr
n : ℕ
a b c : ZMod n
⊢ sr a * r b * sr c = sr a * (r b * sr c)
[PROOFSTEP]
simp only [(· * ·), mul]
[GOAL]
case sr.sr.r
n : ℕ
a b c : ZMod n
⊢ sr a * sr b * r c = sr a * (sr b * r c)
[PROOFSTEP]
simp only [(· * ·), mul]
[GOAL]
case sr.sr.sr
n : ℕ
a b c : ZMod n
⊢ sr a * sr b * sr c = sr a * (sr b * sr c)
[PROOFSTEP]
simp only [(· * ·), mul]
[GOAL]
case r.r.r
n : ℕ
a b c : ZMod n
⊢ r (a + b + c) = r (a + (b + c))
[PROOFSTEP]
ring_nf
[GOAL]
case r.r.sr
n : ℕ
a b c : ZMod n
⊢ sr (c - (a + b)) = sr (c - b - a)
[PROOFSTEP]
ring_nf
[GOAL]
case r.sr.r
n : ℕ
a b c : ZMod n
⊢ sr (b - a + c) = sr (b + c - a)
[PROOFSTEP]
ring_nf
[GOAL]
case r.sr.sr
n : ℕ
a b c : ZMod n
⊢ r (c - (b - a)) = r (a + (c - b))
[PROOFSTEP]
ring_nf
[GOAL]
case sr.r.r
n : ℕ
a b c : ZMod n
⊢ sr (a + b + c) = sr (a + (b + c))
[PROOFSTEP]
ring_nf
[GOAL]
case sr.r.sr
n : ℕ
a b c : ZMod n
⊢ r (c - (a + b)) = r (c - b - a)
[PROOFSTEP]
ring_nf
[GOAL]
case sr.sr.r
n : ℕ
a b c : ZMod n
⊢ r (b - a + c) = r (b + c - a)
[PROOFSTEP]
ring_nf
[GOAL]
case sr.sr.sr
n : ℕ
a b c : ZMod n
⊢ sr (c - (b - a)) = sr (a + (c - b))
[PROOFSTEP]
ring_nf
[GOAL]
n : ℕ
⊢ ∀ (a : DihedralGroup n), 1 * a = a
[PROOFSTEP]
rintro (a | a)
[GOAL]
case r
n : ℕ
a : ZMod n
⊢ 1 * r a = r a
case sr n : ℕ a : ZMod n ⊢ 1 * sr a = sr a
[PROOFSTEP]
exact congr_arg r (zero_add a)
[GOAL]
case sr
n : ℕ
a : ZMod n
⊢ 1 * sr a = sr a
[PROOFSTEP]
exact congr_arg sr (sub_zero a)
[GOAL]
n : ℕ
⊢ ∀ (a : DihedralGroup n), a * 1 = a
[PROOFSTEP]
rintro (a | a)
[GOAL]
case r
n : ℕ
a : ZMod n
⊢ r a * 1 = r a
case sr n : ℕ a : ZMod n ⊢ sr a * 1 = sr a
[PROOFSTEP]
exact congr_arg r (add_zero a)
[GOAL]
case sr
n : ℕ
a : ZMod n
⊢ sr a * 1 = sr a
[PROOFSTEP]
exact congr_arg sr (add_zero a)
[GOAL]
n : ℕ
⊢ ∀ (a : DihedralGroup n), a⁻¹ * a = 1
[PROOFSTEP]
rintro (a | a)
[GOAL]
case r
n : ℕ
a : ZMod n
⊢ (r a)⁻¹ * r a = 1
case sr n : ℕ a : ZMod n ⊢ (sr a)⁻¹ * sr a = 1
[PROOFSTEP]
exact congr_arg r (neg_add_self a)
[GOAL]
case sr
n : ℕ
a : ZMod n
⊢ (sr a)⁻¹ * sr a = 1
[PROOFSTEP]
exact congr_arg r (sub_self a)
[GOAL]
n : ℕ
⊢ Function.LeftInverse
(fun i =>
match i with
| r j => Sum.inl j
| sr j => Sum.inr j)
fun i =>
match i with
| Sum.inl j => r j
| Sum.inr j => sr j
[PROOFSTEP]
rintro (x | x)
[GOAL]
case inl
n : ℕ
x : ZMod n
⊢ (fun i =>
match i with
| r j => Sum.inl j
| sr j => Sum.inr j)
((fun i =>
match i with
| Sum.inl j => r j
| Sum.inr j => sr j)
(Sum.inl x)) =
Sum.inl x
[PROOFSTEP]
rfl
[GOAL]
case inr
n : ℕ
x : ZMod n
⊢ (fun i =>
match i with
| r j => Sum.inl j
| sr j => Sum.inr j)
((fun i =>
match i with
| Sum.inl j => r j
| Sum.inr j => sr j)
(Sum.inr x)) =
Sum.inr x
[PROOFSTEP]
rfl
[GOAL]
n : ℕ
⊢ Function.RightInverse
(fun i =>
match i with
| r j => Sum.inl j
| sr j => Sum.inr j)
fun i =>
match i with
| Sum.inl j => r j
| Sum.inr j => sr j
[PROOFSTEP]
rintro (x | x)
[GOAL]
case r
n : ℕ
x : ZMod n
⊢ (fun i =>
match i with
| Sum.inl j => r j
| Sum.inr j => sr j)
((fun i =>
match i with
| r j => Sum.inl j
| sr j => Sum.inr j)
(r x)) =
r x
[PROOFSTEP]
rfl
[GOAL]
case sr
n : ℕ
x : ZMod n
⊢ (fun i =>
match i with
| Sum.inl j => r j
| Sum.inr j => sr j)
((fun i =>
match i with
| r j => Sum.inl j
| sr j => Sum.inr j)
(sr x)) =
sr x
[PROOFSTEP]
rfl
[GOAL]
n : ℕ
⊢ r 0 ≠ sr 0
[PROOFSTEP]
simp_rw [ne_eq]
[GOAL]
n : ℕ
inst✝ : NeZero n
⊢ Fintype.card (DihedralGroup n) = 2 * n
[PROOFSTEP]
rw [← Fintype.card_eq.mpr ⟨fintypeHelper⟩, Fintype.card_sum, ZMod.card, two_mul]
[GOAL]
n : ℕ
⊢ Nat.card (DihedralGroup n) = 2 * n
[PROOFSTEP]
cases n
[GOAL]
case zero
⊢ Nat.card (DihedralGroup Nat.zero) = 2 * Nat.zero
[PROOFSTEP]
rw [Nat.card_eq_zero_of_infinite]
[GOAL]
case succ
n✝ : ℕ
⊢ Nat.card (DihedralGroup (Nat.succ n✝)) = 2 * Nat.succ n✝
[PROOFSTEP]
rw [Nat.card_eq_fintype_card, card]
[GOAL]
n k : ℕ
⊢ r 1 ^ k = r ↑k
[PROOFSTEP]
induction' k with k IH
[GOAL]
case zero
n : ℕ
⊢ r 1 ^ Nat.zero = r ↑Nat.zero
[PROOFSTEP]
rw [Nat.cast_zero]
[GOAL]
case zero
n : ℕ
⊢ r 1 ^ Nat.zero = r 0
[PROOFSTEP]
rfl
[GOAL]
case succ
n k : ℕ
IH : r 1 ^ k = r ↑k
⊢ r 1 ^ Nat.succ k = r ↑(Nat.succ k)
[PROOFSTEP]
rw [pow_succ, IH, r_mul_r]
[GOAL]
case succ
n k : ℕ
IH : r 1 ^ k = r ↑k
⊢ r (1 + ↑k) = r ↑(Nat.succ k)
[PROOFSTEP]
congr 1
[GOAL]
case succ.e_a
n k : ℕ
IH : r 1 ^ k = r ↑k
⊢ 1 + ↑k = ↑(Nat.succ k)
[PROOFSTEP]
norm_cast
[GOAL]
case succ.e_a
n k : ℕ
IH : r 1 ^ k = r ↑k
⊢ ↑(1 + k) = ↑(Nat.succ k)
[PROOFSTEP]
rw [Nat.one_add]
[GOAL]
n : ℕ
⊢ r 1 ^ n = 1
[PROOFSTEP]
rw [r_one_pow, one_def]
[GOAL]
n : ℕ
⊢ r ↑n = r 0
[PROOFSTEP]
congr 1
[GOAL]
case e_a
n : ℕ
⊢ ↑n = 0
[PROOFSTEP]
exact ZMod.nat_cast_self _
[GOAL]
n : ℕ
i : ZMod n
⊢ sr i * sr i = 1
[PROOFSTEP]
rw [sr_mul_sr, sub_self, one_def]
[GOAL]
n : ℕ
i : ZMod n
⊢ orderOf (sr i) = 2
[PROOFSTEP]
apply orderOf_eq_prime
[GOAL]
case hg
n : ℕ
i : ZMod n
⊢ sr i ^ 2 = 1
[PROOFSTEP]
rw [sq, sr_mul_self]
[GOAL]
case hg1
n : ℕ
i : ZMod n
⊢ sr i ≠ 1
[PROOFSTEP]
revert n
[GOAL]
case hg1
⊢ ∀ {n : ℕ} (i : ZMod n), sr i ≠ 1
[PROOFSTEP]
simp_rw [one_def, ne_eq, forall_const]
[GOAL]
n : ℕ
⊢ orderOf (r 1) = n
[PROOFSTEP]
rcases eq_zero_or_neZero n with (rfl | hn)
[GOAL]
case inl
⊢ orderOf (r 1) = 0
[PROOFSTEP]
rw [orderOf_eq_zero_iff']
[GOAL]
case inl
⊢ ∀ (n : ℕ), 0 < n → r 1 ^ n ≠ 1
[PROOFSTEP]
intro n hn
[GOAL]
case inl
n : ℕ
hn : 0 < n
⊢ r 1 ^ n ≠ 1
[PROOFSTEP]
rw [r_one_pow, one_def]
[GOAL]
case inl
n : ℕ
hn : 0 < n
⊢ r ↑n ≠ r 0
[PROOFSTEP]
apply mt r.inj
[GOAL]
case inl
n : ℕ
hn : 0 < n
⊢ ¬↑n = 0
[PROOFSTEP]
simpa using hn.ne'
[GOAL]
case inr
n : ℕ
hn : NeZero n
⊢ orderOf (r 1) = n
[PROOFSTEP]
apply (Nat.le_of_dvd (NeZero.pos n) <| orderOf_dvd_of_pow_eq_one <| @r_one_pow_n n).lt_or_eq.resolve_left
[GOAL]
case inr
n : ℕ
hn : NeZero n
⊢ ¬orderOf (r 1) < n
[PROOFSTEP]
intro h
[GOAL]
case inr
n : ℕ
hn : NeZero n
h : orderOf (r 1) < n
⊢ False
[PROOFSTEP]
have h1 : (r 1 : DihedralGroup n) ^ orderOf (r 1) = 1 := pow_orderOf_eq_one _
[GOAL]
case inr
n : ℕ
hn : NeZero n
h : orderOf (r 1) < n
h1 : r 1 ^ orderOf (r 1) = 1
⊢ False
[PROOFSTEP]
rw [r_one_pow] at h1
[GOAL]
case inr
n : ℕ
hn : NeZero n
h : orderOf (r 1) < n
h1 : r ↑(orderOf (r 1)) = 1
⊢ False
[PROOFSTEP]
injection h1 with h2
[GOAL]
case inr
n : ℕ
hn : NeZero n
h : orderOf (r 1) < n
h2 : ↑(orderOf (r 1)) = 0
⊢ False
[PROOFSTEP]
rw [← ZMod.val_eq_zero, ZMod.val_nat_cast, Nat.mod_eq_of_lt h] at h2
[GOAL]
case inr
n : ℕ
hn : NeZero n
h : orderOf (r 1) < n
h2 : orderOf (r 1) = 0
⊢ False
[PROOFSTEP]
exact absurd h2.symm (orderOf_pos _).ne
[GOAL]
n : ℕ
inst✝ : NeZero n
i : ZMod n
⊢ orderOf (r i) = n / Nat.gcd n (ZMod.val i)
[PROOFSTEP]
conv_lhs => rw [← ZMod.nat_cast_zmod_val i]
[GOAL]
n : ℕ
inst✝ : NeZero n
i : ZMod n
| orderOf (r i)
[PROOFSTEP]
rw [← ZMod.nat_cast_zmod_val i]
[GOAL]
n : ℕ
inst✝ : NeZero n
i : ZMod n
| orderOf (r i)
[PROOFSTEP]
rw [← ZMod.nat_cast_zmod_val i]
[GOAL]
n : ℕ
inst✝ : NeZero n
i : ZMod n
| orderOf (r i)
[PROOFSTEP]
rw [← ZMod.nat_cast_zmod_val i]
[GOAL]
n : ℕ
inst✝ : NeZero n
i : ZMod n
⊢ orderOf (r ↑(ZMod.val i)) = n / Nat.gcd n (ZMod.val i)
[PROOFSTEP]
rw [← r_one_pow, orderOf_pow, orderOf_r_one]
[GOAL]
n : ℕ
⊢ Monoid.exponent (DihedralGroup n) = lcm n 2
[PROOFSTEP]
rcases eq_zero_or_neZero n with (rfl | hn)
[GOAL]
case inl
⊢ Monoid.exponent (DihedralGroup 0) = lcm 0 2
[PROOFSTEP]
exact Monoid.exponent_eq_zero_of_order_zero orderOf_r_one
[GOAL]
case inr
n : ℕ
hn : NeZero n
⊢ Monoid.exponent (DihedralGroup n) = lcm n 2
[PROOFSTEP]
apply Nat.dvd_antisymm
[GOAL]
case inr.a
n : ℕ
hn : NeZero n
⊢ Monoid.exponent (DihedralGroup n) ∣ lcm n 2
[PROOFSTEP]
apply Monoid.exponent_dvd_of_forall_pow_eq_one
[GOAL]
case inr.a.hG
n : ℕ
hn : NeZero n
⊢ ∀ (g : DihedralGroup n), g ^ lcm n 2 = 1
[PROOFSTEP]
rintro (m | m)
[GOAL]
case inr.a.hG.r
n : ℕ
hn : NeZero n
m : ZMod n
⊢ r m ^ lcm n 2 = 1
[PROOFSTEP]
rw [← orderOf_dvd_iff_pow_eq_one, orderOf_r]
[GOAL]
case inr.a.hG.r
n : ℕ
hn : NeZero n
m : ZMod n
⊢ n / Nat.gcd n (ZMod.val m) ∣ lcm n 2
[PROOFSTEP]
refine' Nat.dvd_trans ⟨gcd n m.val, _⟩ (dvd_lcm_left n 2)
[GOAL]
case inr.a.hG.r
n : ℕ
hn : NeZero n
m : ZMod n
⊢ n = n / Nat.gcd n (ZMod.val m) * gcd n (ZMod.val m)
[PROOFSTEP]
exact (Nat.div_mul_cancel (Nat.gcd_dvd_left n m.val)).symm
[GOAL]
case inr.a.hG.sr
n : ℕ
hn : NeZero n
m : ZMod n
⊢ sr m ^ lcm n 2 = 1
[PROOFSTEP]
rw [← orderOf_dvd_iff_pow_eq_one, orderOf_sr]
[GOAL]
case inr.a.hG.sr
n : ℕ
hn : NeZero n
m : ZMod n
⊢ 2 ∣ lcm n 2
[PROOFSTEP]
exact dvd_lcm_right n 2
[GOAL]
case inr.a
n : ℕ
hn : NeZero n
⊢ lcm n 2 ∣ Monoid.exponent (DihedralGroup n)
[PROOFSTEP]
apply lcm_dvd
[GOAL]
case inr.a.hab
n : ℕ
hn : NeZero n
⊢ n ∣ Monoid.exponent (DihedralGroup n)
[PROOFSTEP]
convert Monoid.order_dvd_exponent (r (1 : ZMod n))
[GOAL]
case h.e'_3
n : ℕ
hn : NeZero n
⊢ n = orderOf (r 1)
[PROOFSTEP]
exact orderOf_r_one.symm
[GOAL]
case inr.a.hcb
n : ℕ
hn : NeZero n
⊢ 2 ∣ Monoid.exponent (DihedralGroup n)
[PROOFSTEP]
convert Monoid.order_dvd_exponent (sr (0 : ZMod n))
[GOAL]
case h.e'_3
n : ℕ
hn : NeZero n
⊢ 2 = orderOf (sr 0)
[PROOFSTEP]
exact (orderOf_sr 0).symm
[GOAL]
n : ℕ
hn : Odd n
u : (ZMod n)ˣ := ZMod.unitOfCoprime 2 (_ : Nat.coprime 2 n)
hu : ∀ (a : ZMod n), a + a = 0 ↔ a = 0
i j : ZMod n
h : Commute (r i, sr j).fst (r i, sr j).snd
⊢ (fun x =>
match x with
| Sum.inl i => { val := (sr i, r 0), property := (_ : sr (i + 0) = sr (i - 0)) }
| Sum.inr (Sum.inl j) => { val := (r 0, sr j), property := (_ : sr (j - 0) = sr (j + 0)) }
| Sum.inr (Sum.inr (Sum.inl k)) =>
{ val := (sr (↑u⁻¹ * k), sr (↑u⁻¹ * k)),
property :=
(_ :
(sr (↑u⁻¹ * k), sr (↑u⁻¹ * k)).fst * (sr (↑u⁻¹ * k), sr (↑u⁻¹ * k)).snd =
(sr (↑u⁻¹ * k), sr (↑u⁻¹ * k)).fst * (sr (↑u⁻¹ * k), sr (↑u⁻¹ * k)).snd) }
| Sum.inr (Sum.inr (Sum.inr (i, j))) => { val := (r i, r j), property := (_ : r (i + j) = r (j + i)) })
((fun x =>
match x with
| { val := (sr i, r a), property := property } => Sum.inl i
| { val := (r a, sr j), property := property } => Sum.inr (Sum.inl j)
| { val := (sr i, sr j), property := property } => Sum.inr (Sum.inr (Sum.inl (i + j)))
| { val := (r i, r j), property := property } => Sum.inr (Sum.inr (Sum.inr (i, j))))
{ val := (r i, sr j), property := h }) =
{ val := (r i, sr j), property := h }
[PROOFSTEP]
simpa [sub_eq_add_neg, neg_eq_iff_add_eq_zero, hu, eq_comm (a := i) (b := 0)] using h.eq
[GOAL]
n : ℕ
hn : Odd n
u : (ZMod n)ˣ := ZMod.unitOfCoprime 2 (_ : Nat.coprime 2 n)
hu : ∀ (a : ZMod n), a + a = 0 ↔ a = 0
i j : ZMod n
h : Commute (sr i, r j).fst (sr i, r j).snd
⊢ (fun x =>
match x with
| Sum.inl i => { val := (sr i, r 0), property := (_ : sr (i + 0) = sr (i - 0)) }
| Sum.inr (Sum.inl j) => { val := (r 0, sr j), property := (_ : sr (j - 0) = sr (j + 0)) }
| Sum.inr (Sum.inr (Sum.inl k)) =>
{ val := (sr (↑u⁻¹ * k), sr (↑u⁻¹ * k)),
property :=
(_ :
(sr (↑u⁻¹ * k), sr (↑u⁻¹ * k)).fst * (sr (↑u⁻¹ * k), sr (↑u⁻¹ * k)).snd =
(sr (↑u⁻¹ * k), sr (↑u⁻¹ * k)).fst * (sr (↑u⁻¹ * k), sr (↑u⁻¹ * k)).snd) }
| Sum.inr (Sum.inr (Sum.inr (i, j))) => { val := (r i, r j), property := (_ : r (i + j) = r (j + i)) })
((fun x =>
match x with
| { val := (sr i, r a), property := property } => Sum.inl i
| { val := (r a, sr j), property := property } => Sum.inr (Sum.inl j)
| { val := (sr i, sr j), property := property } => Sum.inr (Sum.inr (Sum.inl (i + j)))
| { val := (r i, r j), property := property } => Sum.inr (Sum.inr (Sum.inr (i, j))))
{ val := (sr i, r j), property := h }) =
{ val := (sr i, r j), property := h }
[PROOFSTEP]
simpa [sub_eq_add_neg, eq_neg_iff_add_eq_zero, hu, eq_comm (a := j) (b := 0)] using h.eq
[GOAL]
n : ℕ
hn : Odd n
u : (ZMod n)ˣ := ZMod.unitOfCoprime 2 (_ : Nat.coprime 2 n)
hu : ∀ (a : ZMod n), a + a = 0 ↔ a = 0
i j : ZMod n
h : Commute (sr i, sr j).fst (sr i, sr j).snd
⊢ (fun x =>
match x with
| Sum.inl i => { val := (sr i, r 0), property := (_ : sr (i + 0) = sr (i - 0)) }
| Sum.inr (Sum.inl j) => { val := (r 0, sr j), property := (_ : sr (j - 0) = sr (j + 0)) }
| Sum.inr (Sum.inr (Sum.inl k)) =>
{ val := (sr (↑u⁻¹ * k), sr (↑u⁻¹ * k)),
property :=
(_ :
(sr (↑u⁻¹ * k), sr (↑u⁻¹ * k)).fst * (sr (↑u⁻¹ * k), sr (↑u⁻¹ * k)).snd =
(sr (↑u⁻¹ * k), sr (↑u⁻¹ * k)).fst * (sr (↑u⁻¹ * k), sr (↑u⁻¹ * k)).snd) }
| Sum.inr (Sum.inr (Sum.inr (i, j))) => { val := (r i, r j), property := (_ : r (i + j) = r (j + i)) })
((fun x =>
match x with
| { val := (sr i, r a), property := property } => Sum.inl i
| { val := (r a, sr j), property := property } => Sum.inr (Sum.inl j)
| { val := (sr i, sr j), property := property } => Sum.inr (Sum.inr (Sum.inl (i + j)))
| { val := (r i, r j), property := property } => Sum.inr (Sum.inr (Sum.inr (i, j))))
{ val := (sr i, sr j), property := h }) =
{ val := (sr i, sr j), property := h }
[PROOFSTEP]
replace h := r.inj h
[GOAL]
n : ℕ
hn : Odd n
u : (ZMod n)ˣ := ZMod.unitOfCoprime 2 (_ : Nat.coprime 2 n)
hu : ∀ (a : ZMod n), a + a = 0 ↔ a = 0
i j : ZMod n
h✝ : Commute (sr i, sr j).fst (sr i, sr j).snd
h : j - i = i - j
⊢ (fun x =>
match x with
| Sum.inl i => { val := (sr i, r 0), property := (_ : sr (i + 0) = sr (i - 0)) }
| Sum.inr (Sum.inl j) => { val := (r 0, sr j), property := (_ : sr (j - 0) = sr (j + 0)) }
| Sum.inr (Sum.inr (Sum.inl k)) =>
{ val := (sr (↑u⁻¹ * k), sr (↑u⁻¹ * k)),
property :=
(_ :
(sr (↑u⁻¹ * k), sr (↑u⁻¹ * k)).fst * (sr (↑u⁻¹ * k), sr (↑u⁻¹ * k)).snd =
(sr (↑u⁻¹ * k), sr (↑u⁻¹ * k)).fst * (sr (↑u⁻¹ * k), sr (↑u⁻¹ * k)).snd) }
| Sum.inr (Sum.inr (Sum.inr (i, j))) => { val := (r i, r j), property := (_ : r (i + j) = r (j + i)) })
((fun x =>
match x with
| { val := (sr i, r a), property := property } => Sum.inl i
| { val := (r a, sr j), property := property } => Sum.inr (Sum.inl j)
| { val := (sr i, sr j), property := property } => Sum.inr (Sum.inr (Sum.inl (i + j)))
| { val := (r i, r j), property := property } => Sum.inr (Sum.inr (Sum.inr (i, j))))
{ val := (sr i, sr j), property := h✝ }) =
{ val := (sr i, sr j), property := h✝ }
[PROOFSTEP]
rw [← neg_sub, neg_eq_iff_add_eq_zero, hu, sub_eq_zero] at h
[GOAL]
n : ℕ
hn : Odd n
u : (ZMod n)ˣ := ZMod.unitOfCoprime 2 (_ : Nat.coprime 2 n)
hu : ∀ (a : ZMod n), a + a = 0 ↔ a = 0
i j : ZMod n
h✝ : Commute (sr i, sr j).fst (sr i, sr j).snd
h : i = j
⊢ (fun x =>
match x with
| Sum.inl i => { val := (sr i, r 0), property := (_ : sr (i + 0) = sr (i - 0)) }
| Sum.inr (Sum.inl j) => { val := (r 0, sr j), property := (_ : sr (j - 0) = sr (j + 0)) }
| Sum.inr (Sum.inr (Sum.inl k)) =>
{ val := (sr (↑u⁻¹ * k), sr (↑u⁻¹ * k)),
property :=
(_ :
(sr (↑u⁻¹ * k), sr (↑u⁻¹ * k)).fst * (sr (↑u⁻¹ * k), sr (↑u⁻¹ * k)).snd =
(sr (↑u⁻¹ * k), sr (↑u⁻¹ * k)).fst * (sr (↑u⁻¹ * k), sr (↑u⁻¹ * k)).snd) }
| Sum.inr (Sum.inr (Sum.inr (i, j))) => { val := (r i, r j), property := (_ : r (i + j) = r (j + i)) })
((fun x =>
match x with
| { val := (sr i, r a), property := property } => Sum.inl i
| { val := (r a, sr j), property := property } => Sum.inr (Sum.inl j)
| { val := (sr i, sr j), property := property } => Sum.inr (Sum.inr (Sum.inl (i + j)))
| { val := (r i, r j), property := property } => Sum.inr (Sum.inr (Sum.inr (i, j))))
{ val := (sr i, sr j), property := h✝ }) =
{ val := (sr i, sr j), property := h✝ }
[PROOFSTEP]
rw [Subtype.ext_iff, Prod.ext_iff, sr.injEq, sr.injEq, h, and_self, ← two_mul]
[GOAL]
n : ℕ
hn : Odd n
u : (ZMod n)ˣ := ZMod.unitOfCoprime 2 (_ : Nat.coprime 2 n)
hu : ∀ (a : ZMod n), a + a = 0 ↔ a = 0
i j : ZMod n
h✝ : Commute (sr i, sr j).fst (sr i, sr j).snd
h : i = j
⊢ ↑u⁻¹ * (2 * j) = j
[PROOFSTEP]
exact u.inv_mul_cancel_left j
[GOAL]
n : ℕ
hn : Odd n
⊢ Nat.card { p // Commute p.fst p.snd } = n * (n + 3)
[PROOFSTEP]
have hn' : NeZero n := ⟨hn.pos.ne'⟩
[GOAL]
n : ℕ
hn : Odd n
hn' : NeZero n
⊢ Nat.card { p // Commute p.fst p.snd } = n * (n + 3)
[PROOFSTEP]
simp_rw [Nat.card_congr (OddCommuteEquiv hn), Nat.card_sum, Nat.card_prod, Nat.card_zmod]
[GOAL]
n : ℕ
hn : Odd n
hn' : NeZero n
⊢ n + (n + (n + n * n)) = n * (n + 3)
[PROOFSTEP]
ring
[GOAL]
n : ℕ
hn : Odd n
⊢ Nat.card (ConjClasses (DihedralGroup n)) = (n + 3) / 2
[PROOFSTEP]
rw [← Nat.mul_div_mul_left _ 2 hn.pos, ← card_commute_odd hn, mul_comm, card_comm_eq_card_conjClasses_mul_card,
nat_card, Nat.mul_div_left _ (mul_pos two_pos hn.pos)]
| {"mathlib_filename": "Mathlib.GroupTheory.SpecificGroups.Dihedral", "llama_tokens": 8950} |
{"mathlib_filename": "Mathlib.GroupTheory.Subgroup.MulOpposite", "llama_tokens": 0} |
|
[GOAL]
α : Type u_1
f g h : Perm α
⊢ Disjoint f g → Disjoint g f
[PROOFSTEP]
simp only [Disjoint, or_comm, imp_self]
[GOAL]
α : Type u_1
f g h✝ : Perm α
h : Disjoint f g
x : α
hf : ↑f x = x
hg : ↑f (↑g x) = ↑g x
⊢ ↑(f * g) x = ↑(g * f) x
[PROOFSTEP]
simp [mul_apply, hf, hg]
[GOAL]
α : Type u_1
f g h✝ : Perm α
h : Disjoint f g
x : α
hf : ↑f x = x
hg : ↑g (↑g x) = ↑g x
⊢ ↑(f * g) x = ↑(g * f) x
[PROOFSTEP]
simp [mul_apply, hf, g.injective hg]
[GOAL]
α : Type u_1
f g h✝ : Perm α
h : Disjoint f g
x : α
hg : ↑g x = x
hf : ↑f (↑f x) = ↑f x
⊢ ↑(f * g) x = ↑(g * f) x
[PROOFSTEP]
simp [mul_apply, f.injective hf, hg]
[GOAL]
α : Type u_1
f g h✝ : Perm α
h : Disjoint f g
x : α
hg : ↑g x = x
hf : ↑g (↑f x) = ↑f x
⊢ ↑(f * g) x = ↑(g * f) x
[PROOFSTEP]
simp [mul_apply, hf, hg]
[GOAL]
α : Type u_1
f g h : Perm α
⊢ Disjoint f f ↔ f = 1
[PROOFSTEP]
refine' ⟨fun h => _, fun h => h.symm ▸ disjoint_one_left 1⟩
[GOAL]
α : Type u_1
f g h✝ : Perm α
h : Disjoint f f
⊢ f = 1
[PROOFSTEP]
ext x
[GOAL]
case H
α : Type u_1
f g h✝ : Perm α
h : Disjoint f f
x : α
⊢ ↑f x = ↑1 x
[PROOFSTEP]
cases' h x with hx hx
[GOAL]
case H.inl
α : Type u_1
f g h✝ : Perm α
h : Disjoint f f
x : α
hx : ↑f x = x
⊢ ↑f x = ↑1 x
[PROOFSTEP]
simp [hx]
[GOAL]
case H.inr
α : Type u_1
f g h✝ : Perm α
h : Disjoint f f
x : α
hx : ↑f x = x
⊢ ↑f x = ↑1 x
[PROOFSTEP]
simp [hx]
[GOAL]
α : Type u_1
f g h✝ : Perm α
h : Disjoint f g
⊢ Disjoint f⁻¹ g
[PROOFSTEP]
intro x
[GOAL]
α : Type u_1
f g h✝ : Perm α
h : Disjoint f g
x : α
⊢ ↑f⁻¹ x = x ∨ ↑g x = x
[PROOFSTEP]
rw [inv_eq_iff_eq, eq_comm]
[GOAL]
α : Type u_1
f g h✝ : Perm α
h : Disjoint f g
x : α
⊢ ↑f x = x ∨ ↑g x = x
[PROOFSTEP]
exact h x
[GOAL]
α : Type u_1
f g h : Perm α
⊢ Disjoint f⁻¹ g ↔ Disjoint f g
[PROOFSTEP]
refine' ⟨fun h => _, Disjoint.inv_left⟩
[GOAL]
α : Type u_1
f g h✝ : Perm α
h : Disjoint f⁻¹ g
⊢ Disjoint f g
[PROOFSTEP]
convert h.inv_left
[GOAL]
α : Type u_1
f g h : Perm α
⊢ Disjoint f g⁻¹ ↔ Disjoint f g
[PROOFSTEP]
rw [disjoint_comm, disjoint_inv_left_iff, disjoint_comm]
[GOAL]
α : Type u_1
f g h : Perm α
H1 : Disjoint f h
H2 : Disjoint g h
x : α
⊢ ↑(f * g) x = x ∨ ↑h x = x
[PROOFSTEP]
cases H1 x
[GOAL]
case inl
α : Type u_1
f g h : Perm α
H1 : Disjoint f h
H2 : Disjoint g h
x : α
h✝ : ↑f x = x
⊢ ↑(f * g) x = x ∨ ↑h x = x
[PROOFSTEP]
cases H2 x
[GOAL]
case inr
α : Type u_1
f g h : Perm α
H1 : Disjoint f h
H2 : Disjoint g h
x : α
h✝ : ↑h x = x
⊢ ↑(f * g) x = x ∨ ↑h x = x
[PROOFSTEP]
cases H2 x
[GOAL]
case inl.inl
α : Type u_1
f g h : Perm α
H1 : Disjoint f h
H2 : Disjoint g h
x : α
h✝¹ : ↑f x = x
h✝ : ↑g x = x
⊢ ↑(f * g) x = x ∨ ↑h x = x
[PROOFSTEP]
simp [*]
[GOAL]
case inl.inr
α : Type u_1
f g h : Perm α
H1 : Disjoint f h
H2 : Disjoint g h
x : α
h✝¹ : ↑f x = x
h✝ : ↑h x = x
⊢ ↑(f * g) x = x ∨ ↑h x = x
[PROOFSTEP]
simp [*]
[GOAL]
case inr.inl
α : Type u_1
f g h : Perm α
H1 : Disjoint f h
H2 : Disjoint g h
x : α
h✝¹ : ↑h x = x
h✝ : ↑g x = x
⊢ ↑(f * g) x = x ∨ ↑h x = x
[PROOFSTEP]
simp [*]
[GOAL]
case inr.inr
α : Type u_1
f g h : Perm α
H1 : Disjoint f h
H2 : Disjoint g h
x : α
h✝¹ h✝ : ↑h x = x
⊢ ↑(f * g) x = x ∨ ↑h x = x
[PROOFSTEP]
simp [*]
[GOAL]
α : Type u_1
f g h : Perm α
H1 : Disjoint f g
H2 : Disjoint f h
⊢ Disjoint f (g * h)
[PROOFSTEP]
rw [disjoint_comm]
[GOAL]
α : Type u_1
f g h : Perm α
H1 : Disjoint f g
H2 : Disjoint f h
⊢ Disjoint (g * h) f
[PROOFSTEP]
exact H1.symm.mul_left H2.symm
[GOAL]
α : Type u_1
f g h✝ h : Perm α
x✝ : α
⊢ ↑(h * f * h⁻¹) x✝ = x✝ ∨ ↑(h * g * h⁻¹) x✝ = x✝ ↔ ↑f (↑h⁻¹ x✝) = ↑h⁻¹ x✝ ∨ ↑g (↑h⁻¹ x✝) = ↑h⁻¹ x✝
[PROOFSTEP]
simp only [mul_apply, eq_inv_iff_eq]
[GOAL]
α : Type u_1
f g h✝ : Perm α
l : List (Perm α)
h : ∀ (g : Perm α), g ∈ l → Disjoint f g
⊢ Disjoint f (List.prod l)
[PROOFSTEP]
induction' l with g l ih
[GOAL]
case nil
α : Type u_1
f g h✝¹ : Perm α
l : List (Perm α)
h✝ : ∀ (g : Perm α), g ∈ l → Disjoint f g
h : ∀ (g : Perm α), g ∈ [] → Disjoint f g
⊢ Disjoint f (List.prod [])
[PROOFSTEP]
exact disjoint_one_right _
[GOAL]
case cons
α : Type u_1
f g✝ h✝¹ : Perm α
l✝ : List (Perm α)
h✝ : ∀ (g : Perm α), g ∈ l✝ → Disjoint f g
g : Perm α
l : List (Perm α)
ih : (∀ (g : Perm α), g ∈ l → Disjoint f g) → Disjoint f (List.prod l)
h : ∀ (g_1 : Perm α), g_1 ∈ g :: l → Disjoint f g_1
⊢ Disjoint f (List.prod (g :: l))
[PROOFSTEP]
rw [List.prod_cons]
[GOAL]
case cons
α : Type u_1
f g✝ h✝¹ : Perm α
l✝ : List (Perm α)
h✝ : ∀ (g : Perm α), g ∈ l✝ → Disjoint f g
g : Perm α
l : List (Perm α)
ih : (∀ (g : Perm α), g ∈ l → Disjoint f g) → Disjoint f (List.prod l)
h : ∀ (g_1 : Perm α), g_1 ∈ g :: l → Disjoint f g_1
⊢ Disjoint f (g * List.prod l)
[PROOFSTEP]
exact (h _ (List.mem_cons_self _ _)).mul_right (ih fun g hg => h g (List.mem_cons_of_mem _ hg))
[GOAL]
α : Type u_1
f g h : Perm α
l : List (Perm α)
h1 : ¬1 ∈ l
h2 : List.Pairwise Disjoint l
⊢ List.Nodup l
[PROOFSTEP]
refine' List.Pairwise.imp_of_mem _ h2
[GOAL]
α : Type u_1
f g h : Perm α
l : List (Perm α)
h1 : ¬1 ∈ l
h2 : List.Pairwise Disjoint l
⊢ ∀ {a b : Perm α}, a ∈ l → b ∈ l → Disjoint a b → a ≠ b
[PROOFSTEP]
intro τ σ h_mem _ h_disjoint _
[GOAL]
α : Type u_1
f g h : Perm α
l : List (Perm α)
h1 : ¬1 ∈ l
h2 : List.Pairwise Disjoint l
τ σ : Perm α
h_mem : τ ∈ l
a✝¹ : σ ∈ l
h_disjoint : Disjoint τ σ
a✝ : τ = σ
⊢ False
[PROOFSTEP]
subst τ
[GOAL]
α : Type u_1
f g h : Perm α
l : List (Perm α)
h1 : ¬1 ∈ l
h2 : List.Pairwise Disjoint l
σ : Perm α
a✝ h_mem : σ ∈ l
h_disjoint : Disjoint σ σ
⊢ False
[PROOFSTEP]
suffices (σ : Perm α) = 1 by
rw [this] at h_mem
exact h1 h_mem
[GOAL]
α : Type u_1
f g h : Perm α
l : List (Perm α)
h1 : ¬1 ∈ l
h2 : List.Pairwise Disjoint l
σ : Perm α
a✝ h_mem : σ ∈ l
h_disjoint : Disjoint σ σ
this : σ = 1
⊢ False
[PROOFSTEP]
rw [this] at h_mem
[GOAL]
α : Type u_1
f g h : Perm α
l : List (Perm α)
h1 : ¬1 ∈ l
h2 : List.Pairwise Disjoint l
σ : Perm α
a✝ : σ ∈ l
h_mem : 1 ∈ l
h_disjoint : Disjoint σ σ
this : σ = 1
⊢ False
[PROOFSTEP]
exact h1 h_mem
[GOAL]
α : Type u_1
f g h : Perm α
l : List (Perm α)
h1 : ¬1 ∈ l
h2 : List.Pairwise Disjoint l
σ : Perm α
a✝ h_mem : σ ∈ l
h_disjoint : Disjoint σ σ
⊢ σ = 1
[PROOFSTEP]
exact ext fun a => (or_self_iff _).mp (h_disjoint a)
[GOAL]
α : Type u_1
f g h : Perm α
x : α
hfx : ↑f x = x
n : ℕ
⊢ ↑(f ^ (n + 1)) x = x
[PROOFSTEP]
rw [pow_succ', mul_apply, hfx, pow_apply_eq_self_of_apply_eq_self hfx n]
[GOAL]
α : Type u_1
f g h : Perm α
x : α
hfx : ↑f x = x
n : ℕ
⊢ ↑(f ^ Int.negSucc n) x = x
[PROOFSTEP]
rw [zpow_negSucc, inv_eq_iff_eq, pow_apply_eq_self_of_apply_eq_self hfx]
[GOAL]
α : Type u_1
f g h✝ : Perm α
x : α
hffx : ↑f (↑f x) = x
n : ℕ
h : ↑(f ^ n) x = x
⊢ ↑(f ^ (n + 1)) x = ↑f x
[PROOFSTEP]
rw [pow_succ, mul_apply, h]
[GOAL]
α : Type u_1
f g h✝ : Perm α
x : α
hffx : ↑f (↑f x) = x
n : ℕ
h : ↑(f ^ n) x = ↑f x
⊢ ↑(f ^ (n + 1)) x = x
[PROOFSTEP]
rw [pow_succ, mul_apply, h, hffx]
[GOAL]
α : Type u_1
f g h : Perm α
x : α
hffx : ↑f (↑f x) = x
n : ℕ
⊢ ↑(f ^ Int.negSucc n) x = x ∨ ↑(f ^ Int.negSucc n) x = ↑f x
[PROOFSTEP]
rw [zpow_negSucc, inv_eq_iff_eq, ← f.injective.eq_iff, ← mul_apply, ← pow_succ, eq_comm, inv_eq_iff_eq, ← mul_apply, ←
pow_succ', @eq_comm _ x, or_comm]
[GOAL]
α : Type u_1
f g h : Perm α
x : α
hffx : ↑f (↑f x) = x
n : ℕ
⊢ ↑(f ^ (n + 1 + 1)) x = x ∨ ↑(f ^ (n + 1 + 1)) x = ↑f x
[PROOFSTEP]
exact pow_apply_eq_of_apply_apply_eq_self hffx _
[GOAL]
α : Type u_1
f g h σ τ : Perm α
hστ : Disjoint σ τ
a : α
⊢ ↑(σ * τ) a = a ↔ ↑σ a = a ∧ ↑τ a = a
[PROOFSTEP]
refine' ⟨fun h => _, fun h => by rw [mul_apply, h.2, h.1]⟩
[GOAL]
α : Type u_1
f g h✝ σ τ : Perm α
hστ : Disjoint σ τ
a : α
h : ↑σ a = a ∧ ↑τ a = a
⊢ ↑(σ * τ) a = a
[PROOFSTEP]
rw [mul_apply, h.2, h.1]
[GOAL]
α : Type u_1
f g h✝ σ τ : Perm α
hστ : Disjoint σ τ
a : α
h : ↑(σ * τ) a = a
⊢ ↑σ a = a ∧ ↑τ a = a
[PROOFSTEP]
cases' hστ a with hσ hτ
[GOAL]
case inl
α : Type u_1
f g h✝ σ τ : Perm α
hστ : Disjoint σ τ
a : α
h : ↑(σ * τ) a = a
hσ : ↑σ a = a
⊢ ↑σ a = a ∧ ↑τ a = a
[PROOFSTEP]
exact ⟨hσ, σ.injective (h.trans hσ.symm)⟩
[GOAL]
case inr
α : Type u_1
f g h✝ σ τ : Perm α
hστ : Disjoint σ τ
a : α
h : ↑(σ * τ) a = a
hτ : ↑τ a = a
⊢ ↑σ a = a ∧ ↑τ a = a
[PROOFSTEP]
exact ⟨(congr_arg σ hτ).symm.trans h, hτ⟩
[GOAL]
α : Type u_1
f g h σ τ : Perm α
hστ : Disjoint σ τ
⊢ σ * τ = 1 ↔ σ = 1 ∧ τ = 1
[PROOFSTEP]
simp_rw [ext_iff, one_apply, hστ.mul_apply_eq_iff, forall_and]
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
p : α → Prop
inst✝ : DecidablePred p
x y : Subtype p
z : α
⊢ ↑(↑ofSubtype (swap x y)) z = ↑(swap ↑x ↑y) z
[PROOFSTEP]
by_cases hz : p z
[GOAL]
case pos
α : Type u_1
inst✝¹ : DecidableEq α
p : α → Prop
inst✝ : DecidablePred p
x y : Subtype p
z : α
hz : p z
⊢ ↑(↑ofSubtype (swap x y)) z = ↑(swap ↑x ↑y) z
[PROOFSTEP]
rw [swap_apply_def, ofSubtype_apply_of_mem _ hz]
[GOAL]
case pos
α : Type u_1
inst✝¹ : DecidableEq α
p : α → Prop
inst✝ : DecidablePred p
x y : Subtype p
z : α
hz : p z
⊢ ↑(↑(swap x y) { val := z, property := hz }) = if z = ↑x then ↑y else if z = ↑y then ↑x else z
[PROOFSTEP]
split_ifs with hzx hzy
[GOAL]
case pos
α : Type u_1
inst✝¹ : DecidableEq α
p : α → Prop
inst✝ : DecidablePred p
x y : Subtype p
z : α
hz : p z
hzx : z = ↑x
⊢ ↑(↑(swap x y) { val := z, property := hz }) = ↑y
[PROOFSTEP]
simp_rw [hzx, Subtype.coe_eta, swap_apply_left]
[GOAL]
case pos
α : Type u_1
inst✝¹ : DecidableEq α
p : α → Prop
inst✝ : DecidablePred p
x y : Subtype p
z : α
hz : p z
hzx : ¬z = ↑x
hzy : z = ↑y
⊢ ↑(↑(swap x y) { val := z, property := hz }) = ↑x
[PROOFSTEP]
simp_rw [hzy, Subtype.coe_eta, swap_apply_right]
[GOAL]
case neg
α : Type u_1
inst✝¹ : DecidableEq α
p : α → Prop
inst✝ : DecidablePred p
x y : Subtype p
z : α
hz : p z
hzx : ¬z = ↑x
hzy : ¬z = ↑y
⊢ ↑(↑(swap x y) { val := z, property := hz }) = z
[PROOFSTEP]
rw [swap_apply_of_ne_of_ne]
[GOAL]
case neg.a
α : Type u_1
inst✝¹ : DecidableEq α
p : α → Prop
inst✝ : DecidablePred p
x y : Subtype p
z : α
hz : p z
hzx : ¬z = ↑x
hzy : ¬z = ↑y
⊢ { val := z, property := hz } ≠ x
[PROOFSTEP]
simp [Subtype.ext_iff, *]
[GOAL]
case neg.a
α : Type u_1
inst✝¹ : DecidableEq α
p : α → Prop
inst✝ : DecidablePred p
x y : Subtype p
z : α
hz : p z
hzx : ¬z = ↑x
hzy : ¬z = ↑y
⊢ { val := z, property := hz } ≠ y
[PROOFSTEP]
simp [Subtype.ext_iff, *]
[GOAL]
case neg
α : Type u_1
inst✝¹ : DecidableEq α
p : α → Prop
inst✝ : DecidablePred p
x y : Subtype p
z : α
hz : ¬p z
⊢ ↑(↑ofSubtype (swap x y)) z = ↑(swap ↑x ↑y) z
[PROOFSTEP]
rw [ofSubtype_apply_of_not_mem _ hz, swap_apply_of_ne_of_ne]
[GOAL]
case neg.a
α : Type u_1
inst✝¹ : DecidableEq α
p : α → Prop
inst✝ : DecidablePred p
x y : Subtype p
z : α
hz : ¬p z
⊢ z ≠ ↑x
case neg.a
α : Type u_1
inst✝¹ : DecidableEq α
p : α → Prop
inst✝ : DecidablePred p
x y : Subtype p
z : α
hz : ¬p z
⊢ z ≠ ↑y
[PROOFSTEP]
intro h
[GOAL]
case neg.a
α : Type u_1
inst✝¹ : DecidableEq α
p : α → Prop
inst✝ : DecidablePred p
x y : Subtype p
z : α
hz : ¬p z
h : z = ↑x
⊢ False
case neg.a
α : Type u_1
inst✝¹ : DecidableEq α
p : α → Prop
inst✝ : DecidablePred p
x y : Subtype p
z : α
hz : ¬p z
⊢ z ≠ ↑y
[PROOFSTEP]
apply hz
[GOAL]
case neg.a
α : Type u_1
inst✝¹ : DecidableEq α
p : α → Prop
inst✝ : DecidablePred p
x y : Subtype p
z : α
hz : ¬p z
h : z = ↑x
⊢ p z
case neg.a
α : Type u_1
inst✝¹ : DecidableEq α
p : α → Prop
inst✝ : DecidablePred p
x y : Subtype p
z : α
hz : ¬p z
⊢ z ≠ ↑y
[PROOFSTEP]
rw [h]
[GOAL]
case neg.a
α : Type u_1
inst✝¹ : DecidableEq α
p : α → Prop
inst✝ : DecidablePred p
x y : Subtype p
z : α
hz : ¬p z
h : z = ↑x
⊢ p ↑x
case neg.a
α : Type u_1
inst✝¹ : DecidableEq α
p : α → Prop
inst✝ : DecidablePred p
x y : Subtype p
z : α
hz : ¬p z
⊢ z ≠ ↑y
[PROOFSTEP]
exact Subtype.prop x
[GOAL]
case neg.a
α : Type u_1
inst✝¹ : DecidableEq α
p : α → Prop
inst✝ : DecidablePred p
x y : Subtype p
z : α
hz : ¬p z
⊢ z ≠ ↑y
[PROOFSTEP]
intro h
[GOAL]
case neg.a
α : Type u_1
inst✝¹ : DecidableEq α
p : α → Prop
inst✝ : DecidablePred p
x y : Subtype p
z : α
hz : ¬p z
h : z = ↑y
⊢ False
[PROOFSTEP]
apply hz
[GOAL]
case neg.a
α : Type u_1
inst✝¹ : DecidableEq α
p : α → Prop
inst✝ : DecidablePred p
x y : Subtype p
z : α
hz : ¬p z
h : z = ↑y
⊢ p z
[PROOFSTEP]
rw [h]
[GOAL]
case neg.a
α : Type u_1
inst✝¹ : DecidableEq α
p : α → Prop
inst✝ : DecidablePred p
x y : Subtype p
z : α
hz : ¬p z
h : z = ↑y
⊢ p ↑y
[PROOFSTEP]
exact Subtype.prop y
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
p : α → Prop
inst✝ : DecidablePred p
f : Perm (Subtype p)
h : IsSwap f
x : α
hx : p x
y : α
hy : p y
hxy :
{ val := x, property := hx } ≠ { val := y, property := hy } ∧
f = swap { val := x, property := hx } { val := y, property := hy }
⊢ x ≠ y
[PROOFSTEP]
simp only [Ne.def, Subtype.ext_iff] at hxy
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
p : α → Prop
inst✝ : DecidablePred p
f : Perm (Subtype p)
h : IsSwap f
x : α
hx : p x
y : α
hy : p y
hxy : ¬x = y ∧ f = swap { val := x, property := hx } { val := y, property := hy }
⊢ x ≠ y
[PROOFSTEP]
exact hxy.1
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
p : α → Prop
inst✝ : DecidablePred p
f : Perm (Subtype p)
h : IsSwap f
x : α
hx : p x
y : α
hy : p y
hxy :
{ val := x, property := hx } ≠ { val := y, property := hy } ∧
f = swap { val := x, property := hx } { val := y, property := hy }
⊢ ↑ofSubtype f = swap x y
[PROOFSTEP]
rw [hxy.2, ofSubtype_swap_eq]
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
f : Perm α
x y : α
hy : ↑(swap x (↑f x) * f) y ≠ y
⊢ ↑f y ≠ y ∧ y ≠ x
[PROOFSTEP]
simp only [swap_apply_def, mul_apply, f.injective.eq_iff] at *
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
f : Perm α
x y : α
hy : (if ↑f y = x then ↑f x else if y = x then x else ↑f y) ≠ y
⊢ ↑f y ≠ y ∧ y ≠ x
[PROOFSTEP]
by_cases h : f y = x
[GOAL]
case pos
α : Type u_1
inst✝ : DecidableEq α
f : Perm α
x y : α
hy : (if ↑f y = x then ↑f x else if y = x then x else ↑f y) ≠ y
h : ↑f y = x
⊢ ↑f y ≠ y ∧ y ≠ x
[PROOFSTEP]
constructor
[GOAL]
case pos.left
α : Type u_1
inst✝ : DecidableEq α
f : Perm α
x y : α
hy : (if ↑f y = x then ↑f x else if y = x then x else ↑f y) ≠ y
h : ↑f y = x
⊢ ↑f y ≠ y
[PROOFSTEP]
intro
[GOAL]
case pos.right
α : Type u_1
inst✝ : DecidableEq α
f : Perm α
x y : α
hy : (if ↑f y = x then ↑f x else if y = x then x else ↑f y) ≠ y
h : ↑f y = x
⊢ y ≠ x
[PROOFSTEP]
intro
[GOAL]
case pos.left
α : Type u_1
inst✝ : DecidableEq α
f : Perm α
x y : α
hy : (if ↑f y = x then ↑f x else if y = x then x else ↑f y) ≠ y
h : ↑f y = x
a✝ : ↑f y = y
⊢ False
[PROOFSTEP]
simp_all only [if_true, eq_self_iff_true, not_true, Ne.def]
[GOAL]
case pos.right
α : Type u_1
inst✝ : DecidableEq α
f : Perm α
x y : α
hy : (if ↑f y = x then ↑f x else if y = x then x else ↑f y) ≠ y
h : ↑f y = x
a✝ : y = x
⊢ False
[PROOFSTEP]
simp_all only [if_true, eq_self_iff_true, not_true, Ne.def]
[GOAL]
case neg
α : Type u_1
inst✝ : DecidableEq α
f : Perm α
x y : α
hy : (if ↑f y = x then ↑f x else if y = x then x else ↑f y) ≠ y
h : ¬↑f y = x
⊢ ↑f y ≠ y ∧ y ≠ x
[PROOFSTEP]
split_ifs at hy with h h
[GOAL]
case pos
α : Type u_1
inst✝ : DecidableEq α
f : Perm α
x y : α
h✝ : ¬↑f y = x
h : ↑f y = x
hy : ↑f x ≠ y
⊢ ↑f y ≠ y ∧ y ≠ x
[PROOFSTEP]
try {subst x
}
[GOAL]
case pos
α : Type u_1
inst✝ : DecidableEq α
f : Perm α
x y : α
h✝ : ¬↑f y = x
h : ↑f y = x
hy : ↑f x ≠ y
⊢ ↑f y ≠ y ∧ y ≠ x
[PROOFSTEP]
{subst x
}
[GOAL]
case pos
α : Type u_1
inst✝ : DecidableEq α
f : Perm α
x y : α
h✝ : ¬↑f y = x
h : ↑f y = x
hy : ↑f x ≠ y
⊢ ↑f y ≠ y ∧ y ≠ x
[PROOFSTEP]
subst x
[GOAL]
case pos
α : Type u_1
inst✝ : DecidableEq α
f : Perm α
x y : α
h✝¹ : ¬↑f y = x
h✝ : ¬↑f y = x
h : y = x
hy : x ≠ y
⊢ ↑f y ≠ y ∧ y ≠ x
[PROOFSTEP]
try {subst x
}
[GOAL]
case pos
α : Type u_1
inst✝ : DecidableEq α
f : Perm α
x y : α
h✝¹ : ¬↑f y = x
h✝ : ¬↑f y = x
h : y = x
hy : x ≠ y
⊢ ↑f y ≠ y ∧ y ≠ x
[PROOFSTEP]
{subst x
}
[GOAL]
case pos
α : Type u_1
inst✝ : DecidableEq α
f : Perm α
x y : α
h✝¹ : ¬↑f y = x
h✝ : ¬↑f y = x
h : y = x
hy : x ≠ y
⊢ ↑f y ≠ y ∧ y ≠ x
[PROOFSTEP]
subst x
[GOAL]
case neg
α : Type u_1
inst✝ : DecidableEq α
f : Perm α
x y : α
h✝¹ : ¬↑f y = x
h✝ : ¬↑f y = x
h : ¬y = x
hy : ↑f y ≠ y
⊢ ↑f y ≠ y ∧ y ≠ x
[PROOFSTEP]
try {subst x
}
[GOAL]
case neg
α : Type u_1
inst✝ : DecidableEq α
f : Perm α
x y : α
h✝¹ : ¬↑f y = x
h✝ : ¬↑f y = x
h : ¬y = x
hy : ↑f y ≠ y
⊢ ↑f y ≠ y ∧ y ≠ x
[PROOFSTEP]
{subst x
}
[GOAL]
case neg
α : Type u_1
inst✝ : DecidableEq α
f : Perm α
x y : α
h✝¹ : ¬↑f y = x
h✝ : ¬↑f y = x
h : ¬y = x
hy : ↑f y ≠ y
⊢ ↑f y ≠ y ∧ y ≠ x
[PROOFSTEP]
subst x
[GOAL]
case pos
α : Type u_1
inst✝ : DecidableEq α
f : Perm α
x y : α
h✝ : ¬↑f y = x
h : ↑f y = x
hy : ↑f x ≠ y
⊢ ↑f y ≠ y ∧ y ≠ x
[PROOFSTEP]
try {simp [*] at *
}
[GOAL]
case pos
α : Type u_1
inst✝ : DecidableEq α
f : Perm α
x y : α
h✝ : ¬↑f y = x
h : ↑f y = x
hy : ↑f x ≠ y
⊢ ↑f y ≠ y ∧ y ≠ x
[PROOFSTEP]
{simp [*] at *
}
[GOAL]
case pos
α : Type u_1
inst✝ : DecidableEq α
f : Perm α
x y : α
h✝ : ¬↑f y = x
h : ↑f y = x
hy : ↑f x ≠ y
⊢ ↑f y ≠ y ∧ y ≠ x
[PROOFSTEP]
simp [*] at *
[GOAL]
case pos
α : Type u_1
inst✝ : DecidableEq α
f : Perm α
x y : α
h✝¹ : ¬↑f y = x
h✝ : ¬↑f y = x
h : y = x
hy : x ≠ y
⊢ ↑f y ≠ y ∧ y ≠ x
[PROOFSTEP]
try {simp [*] at *
}
[GOAL]
case pos
α : Type u_1
inst✝ : DecidableEq α
f : Perm α
x y : α
h✝¹ : ¬↑f y = x
h✝ : ¬↑f y = x
h : y = x
hy : x ≠ y
⊢ ↑f y ≠ y ∧ y ≠ x
[PROOFSTEP]
{simp [*] at *
}
[GOAL]
case pos
α : Type u_1
inst✝ : DecidableEq α
f : Perm α
x y : α
h✝¹ : ¬↑f y = x
h✝ : ¬↑f y = x
h : y = x
hy : x ≠ y
⊢ ↑f y ≠ y ∧ y ≠ x
[PROOFSTEP]
simp [*] at *
[GOAL]
case neg
α : Type u_1
inst✝ : DecidableEq α
f : Perm α
x y : α
h✝¹ : ¬↑f y = x
h✝ : ¬↑f y = x
h : ¬y = x
hy : ↑f y ≠ y
⊢ ↑f y ≠ y ∧ y ≠ x
[PROOFSTEP]
try {simp [*] at *
}
[GOAL]
case neg
α : Type u_1
inst✝ : DecidableEq α
f : Perm α
x y : α
h✝¹ : ¬↑f y = x
h✝ : ¬↑f y = x
h : ¬y = x
hy : ↑f y ≠ y
⊢ ↑f y ≠ y ∧ y ≠ x
[PROOFSTEP]
{simp [*] at *
}
[GOAL]
case neg
α : Type u_1
inst✝ : DecidableEq α
f : Perm α
x y : α
h✝¹ : ¬↑f y = x
h✝ : ¬↑f y = x
h : ¬y = x
hy : ↑f y ≠ y
⊢ ↑f y ≠ y ∧ y ≠ x
[PROOFSTEP]
simp [*] at *
[GOAL]
α : Type u_1
p q : Perm α
⊢ {x | ↑p⁻¹ x ≠ x} = {x | ↑p x ≠ x}
[PROOFSTEP]
ext x
[GOAL]
case h
α : Type u_1
p q : Perm α
x : α
⊢ x ∈ {x | ↑p⁻¹ x ≠ x} ↔ x ∈ {x | ↑p x ≠ x}
[PROOFSTEP]
simp only [Set.mem_setOf_eq, Ne.def]
[GOAL]
case h
α : Type u_1
p q : Perm α
x : α
⊢ ¬↑p⁻¹ x = x ↔ ¬↑p x = x
[PROOFSTEP]
rw [inv_def, symm_apply_eq, eq_comm]
[GOAL]
α : Type u_1
p✝ q p : Perm α
a : α
⊢ ↑p a ∈ {x | ↑p x ≠ x} ↔ a ∈ {x | ↑p x ≠ x}
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
p q : Perm α
n : ℤ
⊢ {x | ↑(p ^ n) x ≠ x} ⊆ {x | ↑p x ≠ x}
[PROOFSTEP]
intro x
[GOAL]
α : Type u_1
p q : Perm α
n : ℤ
x : α
⊢ x ∈ {x | ↑(p ^ n) x ≠ x} → x ∈ {x | ↑p x ≠ x}
[PROOFSTEP]
simp only [Set.mem_setOf_eq, Ne.def]
[GOAL]
α : Type u_1
p q : Perm α
n : ℤ
x : α
⊢ ¬↑(p ^ n) x = x → ¬↑p x = x
[PROOFSTEP]
intro hx H
[GOAL]
α : Type u_1
p q : Perm α
n : ℤ
x : α
hx : ¬↑(p ^ n) x = x
H : ↑p x = x
⊢ False
[PROOFSTEP]
simp [zpow_apply_eq_self_of_apply_eq_self H] at hx
[GOAL]
α : Type u_1
p q : Perm α
⊢ {x | ↑(p * q) x ≠ x} ⊆ {x | ↑p x ≠ x} ∪ {x | ↑q x ≠ x}
[PROOFSTEP]
intro x
[GOAL]
α : Type u_1
p q : Perm α
x : α
⊢ x ∈ {x | ↑(p * q) x ≠ x} → x ∈ {x | ↑p x ≠ x} ∪ {x | ↑q x ≠ x}
[PROOFSTEP]
simp only [Perm.coe_mul, Function.comp_apply, Ne.def, Set.mem_union, Set.mem_setOf_eq]
[GOAL]
α : Type u_1
p q : Perm α
x : α
⊢ ¬↑p (↑q x) = x → ¬↑p x = x ∨ ¬↑q x = x
[PROOFSTEP]
by_cases hq : q x = x
[GOAL]
case pos
α : Type u_1
p q : Perm α
x : α
hq : ↑q x = x
⊢ ¬↑p (↑q x) = x → ¬↑p x = x ∨ ¬↑q x = x
[PROOFSTEP]
simp [hq]
[GOAL]
case neg
α : Type u_1
p q : Perm α
x : α
hq : ¬↑q x = x
⊢ ¬↑p (↑q x) = x → ¬↑p x = x ∨ ¬↑q x = x
[PROOFSTEP]
simp [hq]
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x : α
⊢ x ∈ support f ↔ ↑f x ≠ x
[PROOFSTEP]
rw [support, mem_filter, and_iff_right (mem_univ x)]
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x : α
⊢ ¬x ∈ support f ↔ ↑f x = x
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g f : Perm α
⊢ ↑(support f) = {x | ↑f x ≠ x}
[PROOFSTEP]
ext
[GOAL]
case h
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g f : Perm α
x✝ : α
⊢ x✝ ∈ ↑(support f) ↔ x✝ ∈ {x | ↑f x ≠ x}
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g σ : Perm α
⊢ support σ = ∅ ↔ σ = 1
[PROOFSTEP]
simp_rw [Finset.ext_iff, mem_support, Finset.not_mem_empty, iff_false_iff, not_not, Equiv.Perm.ext_iff, one_apply]
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
⊢ support 1 = ∅
[PROOFSTEP]
rw [support_eq_empty_iff]
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
h : support f ⊆ support g
h' : ∀ (x : α), x ∈ support g → ↑f x = ↑g x
⊢ f = g
[PROOFSTEP]
ext x
[GOAL]
case H
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
h : support f ⊆ support g
h' : ∀ (x : α), x ∈ support g → ↑f x = ↑g x
x : α
⊢ ↑f x = ↑g x
[PROOFSTEP]
by_cases hx : x ∈ g.support
[GOAL]
case pos
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
h : support f ⊆ support g
h' : ∀ (x : α), x ∈ support g → ↑f x = ↑g x
x : α
hx : x ∈ support g
⊢ ↑f x = ↑g x
[PROOFSTEP]
exact h' x hx
[GOAL]
case neg
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
h : support f ⊆ support g
h' : ∀ (x : α), x ∈ support g → ↑f x = ↑g x
x : α
hx : ¬x ∈ support g
⊢ ↑f x = ↑g x
[PROOFSTEP]
rw [not_mem_support.mp hx, ← not_mem_support]
[GOAL]
case neg
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
h : support f ⊆ support g
h' : ∀ (x : α), x ∈ support g → ↑f x = ↑g x
x : α
hx : ¬x ∈ support g
⊢ ¬x ∈ support f
[PROOFSTEP]
exact fun H => hx (h H)
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g✝ f g : Perm α
x : α
⊢ x ∈ support (f * g) → x ∈ support f ⊔ support g
[PROOFSTEP]
simp only [sup_eq_union]
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g✝ f g : Perm α
x : α
⊢ x ∈ support (f * g) → x ∈ support f ∪ support g
[PROOFSTEP]
rw [mem_union, mem_support, mem_support, mem_support, mul_apply, ← not_and_or, not_imp_not]
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g✝ f g : Perm α
x : α
⊢ ↑f x = x ∧ ↑g x = x → ↑f (↑g x) = x
[PROOFSTEP]
rintro ⟨hf, hg⟩
[GOAL]
case intro
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g✝ f g : Perm α
x : α
hf : ↑f x = x
hg : ↑g x = x
⊢ ↑f (↑g x) = x
[PROOFSTEP]
rw [hg, hf]
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
l : List (Perm α)
x : α
hx : x ∈ support (List.prod l)
⊢ ∃ f, f ∈ l ∧ x ∈ support f
[PROOFSTEP]
contrapose! hx
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
l : List (Perm α)
x : α
hx : ∀ (f : Perm α), f ∈ l → ¬x ∈ support f
⊢ ¬x ∈ support (List.prod l)
[PROOFSTEP]
simp_rw [mem_support, not_not] at hx ⊢
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
l : List (Perm α)
x : α
hx : ∀ (f : Perm α), f ∈ l → ↑f x = x
⊢ ↑(List.prod l) x = x
[PROOFSTEP]
induction' l with f l ih
[GOAL]
case nil
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
l : List (Perm α)
x : α
hx✝ : ∀ (f : Perm α), f ∈ l → ↑f x = x
hx : ∀ (f : Perm α), f ∈ [] → ↑f x = x
⊢ ↑(List.prod []) x = x
[PROOFSTEP]
rfl
[GOAL]
case cons
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g : Perm α
l✝ : List (Perm α)
x : α
hx✝ : ∀ (f : Perm α), f ∈ l✝ → ↑f x = x
f : Perm α
l : List (Perm α)
ih : (∀ (f : Perm α), f ∈ l → ↑f x = x) → ↑(List.prod l) x = x
hx : ∀ (f_1 : Perm α), f_1 ∈ f :: l → ↑f_1 x = x
⊢ ↑(List.prod (f :: l)) x = x
[PROOFSTEP]
rw [List.prod_cons, mul_apply, ih, hx]
[GOAL]
case cons._
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g : Perm α
l✝ : List (Perm α)
x : α
hx✝ : ∀ (f : Perm α), f ∈ l✝ → ↑f x = x
f : Perm α
l : List (Perm α)
ih : (∀ (f : Perm α), f ∈ l → ↑f x = x) → ↑(List.prod l) x = x
hx : ∀ (f_1 : Perm α), f_1 ∈ f :: l → ↑f_1 x = x
⊢ f ∈ f :: l
case cons
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g : Perm α
l✝ : List (Perm α)
x : α
hx✝ : ∀ (f : Perm α), f ∈ l✝ → ↑f x = x
f : Perm α
l : List (Perm α)
ih : (∀ (f : Perm α), f ∈ l → ↑f x = x) → ↑(List.prod l) x = x
hx : ∀ (f_1 : Perm α), f_1 ∈ f :: l → ↑f_1 x = x
⊢ ∀ (f : Perm α), f ∈ l → ↑f x = x
[PROOFSTEP]
simp only [List.find?, List.mem_cons, true_or]
[GOAL]
case cons
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g : Perm α
l✝ : List (Perm α)
x : α
hx✝ : ∀ (f : Perm α), f ∈ l✝ → ↑f x = x
f : Perm α
l : List (Perm α)
ih : (∀ (f : Perm α), f ∈ l → ↑f x = x) → ↑(List.prod l) x = x
hx : ∀ (f_1 : Perm α), f_1 ∈ f :: l → ↑f_1 x = x
⊢ ∀ (f : Perm α), f ∈ l → ↑f x = x
[PROOFSTEP]
intros f' hf'
[GOAL]
case cons
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g : Perm α
l✝ : List (Perm α)
x : α
hx✝ : ∀ (f : Perm α), f ∈ l✝ → ↑f x = x
f : Perm α
l : List (Perm α)
ih : (∀ (f : Perm α), f ∈ l → ↑f x = x) → ↑(List.prod l) x = x
hx : ∀ (f_1 : Perm α), f_1 ∈ f :: l → ↑f_1 x = x
f' : Perm α
hf' : f' ∈ l
⊢ ↑f' x = x
[PROOFSTEP]
refine' hx f' _
[GOAL]
case cons
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g : Perm α
l✝ : List (Perm α)
x : α
hx✝ : ∀ (f : Perm α), f ∈ l✝ → ↑f x = x
f : Perm α
l : List (Perm α)
ih : (∀ (f : Perm α), f ∈ l → ↑f x = x) → ↑(List.prod l) x = x
hx : ∀ (f_1 : Perm α), f_1 ∈ f :: l → ↑f_1 x = x
f' : Perm α
hf' : f' ∈ l
⊢ f' ∈ f :: l
[PROOFSTEP]
simp only [List.find?, List.mem_cons]
[GOAL]
case cons
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g : Perm α
l✝ : List (Perm α)
x : α
hx✝ : ∀ (f : Perm α), f ∈ l✝ → ↑f x = x
f : Perm α
l : List (Perm α)
ih : (∀ (f : Perm α), f ∈ l → ↑f x = x) → ↑(List.prod l) x = x
hx : ∀ (f_1 : Perm α), f_1 ∈ f :: l → ↑f_1 x = x
f' : Perm α
hf' : f' ∈ l
⊢ f' = f ∨ f' ∈ l
[PROOFSTEP]
exact Or.inr hf'
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g σ : Perm α
⊢ support σ⁻¹ = support σ
[PROOFSTEP]
simp_rw [Finset.ext_iff, mem_support, not_iff_not, inv_eq_iff_eq.trans eq_comm, imp_true_iff]
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x : α
⊢ ↑f x ∈ support f ↔ x ∈ support f
[PROOFSTEP]
rw [mem_support, mem_support, Ne.def, Ne.def, apply_eq_iff_eq]
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g f : Perm α
n : ℕ
x : α
⊢ ↑f (↑(f ^ n) x) = ↑(f ^ n) x ↔ ↑f x = x
[PROOFSTEP]
rw [← mul_apply, Commute.self_pow f, mul_apply, apply_eq_iff_eq]
-- @[simp] -- Porting note: simp can prove this
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
n : ℕ
x : α
⊢ ↑(f ^ n) x ∈ support f ↔ x ∈ support f
[PROOFSTEP]
simp only [mem_support, ne_eq, apply_pow_apply_eq_iff]
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g f : Perm α
n : ℤ
x : α
⊢ ↑f (↑(f ^ n) x) = ↑(f ^ n) x ↔ ↑f x = x
[PROOFSTEP]
rw [← mul_apply, Commute.self_zpow f, mul_apply, apply_eq_iff_eq]
-- @[simp] -- Porting note: simp can prove this
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
n : ℤ
x : α
⊢ ↑(f ^ n) x ∈ support f ↔ x ∈ support f
[PROOFSTEP]
simp only [mem_support, ne_eq, apply_zpow_apply_eq_iff]
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
h : ∀ (x : α), x ∈ support f ∩ support g → ↑f x = ↑g x
k : ℕ
⊢ ∀ (x : α), x ∈ support f ∩ support g → ↑(f ^ k) x = ↑(g ^ k) x
[PROOFSTEP]
induction' k with k hk
[GOAL]
case zero
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
h : ∀ (x : α), x ∈ support f ∩ support g → ↑f x = ↑g x
⊢ ∀ (x : α), x ∈ support f ∩ support g → ↑(f ^ Nat.zero) x = ↑(g ^ Nat.zero) x
[PROOFSTEP]
simp
[GOAL]
case succ
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
h : ∀ (x : α), x ∈ support f ∩ support g → ↑f x = ↑g x
k : ℕ
hk : ∀ (x : α), x ∈ support f ∩ support g → ↑(f ^ k) x = ↑(g ^ k) x
⊢ ∀ (x : α), x ∈ support f ∩ support g → ↑(f ^ Nat.succ k) x = ↑(g ^ Nat.succ k) x
[PROOFSTEP]
intro x hx
[GOAL]
case succ
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
h : ∀ (x : α), x ∈ support f ∩ support g → ↑f x = ↑g x
k : ℕ
hk : ∀ (x : α), x ∈ support f ∩ support g → ↑(f ^ k) x = ↑(g ^ k) x
x : α
hx : x ∈ support f ∩ support g
⊢ ↑(f ^ Nat.succ k) x = ↑(g ^ Nat.succ k) x
[PROOFSTEP]
rw [pow_succ', mul_apply, pow_succ', mul_apply, h _ hx, hk]
[GOAL]
case succ.a
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
h : ∀ (x : α), x ∈ support f ∩ support g → ↑f x = ↑g x
k : ℕ
hk : ∀ (x : α), x ∈ support f ∩ support g → ↑(f ^ k) x = ↑(g ^ k) x
x : α
hx : x ∈ support f ∩ support g
⊢ ↑g x ∈ support f ∩ support g
[PROOFSTEP]
rwa [mem_inter, apply_mem_support, ← h _ hx, apply_mem_support, ← mem_inter]
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
⊢ Disjoint f g ↔ _root_.Disjoint (support f) (support g)
[PROOFSTEP]
simp [disjoint_iff_eq_or_eq, disjoint_iff, disjoint_iff, Finset.ext_iff, not_and_or, imp_iff_not_or]
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
h : Disjoint f g
⊢ support (f * g) = support f ∪ support g
[PROOFSTEP]
refine' le_antisymm (support_mul_le _ _) fun a => _
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
h : Disjoint f g
a : α
⊢ a ∈ support f ∪ support g → a ∈ support (f * g)
[PROOFSTEP]
rw [mem_union, mem_support, mem_support, mem_support, mul_apply, ← not_and_or, not_imp_not]
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
h : Disjoint f g
a : α
⊢ ↑f (↑g a) = a → ↑f a = a ∧ ↑g a = a
[PROOFSTEP]
exact
(h a).elim (fun hf h => ⟨hf, f.apply_eq_iff_eq.mp (h.trans hf.symm)⟩) fun hg h => ⟨(congr_arg f hg).symm.trans h, hg⟩
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
l : List (Perm α)
h : List.Pairwise Disjoint l
⊢ support (List.prod l) = List.foldr (fun x x_1 => x ⊔ x_1) ⊥ (List.map support l)
[PROOFSTEP]
induction' l with hd tl hl
[GOAL]
case nil
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
l : List (Perm α)
h✝ : List.Pairwise Disjoint l
h : List.Pairwise Disjoint []
⊢ support (List.prod []) = List.foldr (fun x x_1 => x ⊔ x_1) ⊥ (List.map support [])
[PROOFSTEP]
simp
[GOAL]
case cons
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
l : List (Perm α)
h✝ : List.Pairwise Disjoint l
hd : Perm α
tl : List (Perm α)
hl : List.Pairwise Disjoint tl → support (List.prod tl) = List.foldr (fun x x_1 => x ⊔ x_1) ⊥ (List.map support tl)
h : List.Pairwise Disjoint (hd :: tl)
⊢ support (List.prod (hd :: tl)) = List.foldr (fun x x_1 => x ⊔ x_1) ⊥ (List.map support (hd :: tl))
[PROOFSTEP]
rw [List.pairwise_cons] at h
[GOAL]
case cons
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
l : List (Perm α)
h✝ : List.Pairwise Disjoint l
hd : Perm α
tl : List (Perm α)
hl : List.Pairwise Disjoint tl → support (List.prod tl) = List.foldr (fun x x_1 => x ⊔ x_1) ⊥ (List.map support tl)
h : (∀ (a' : Perm α), a' ∈ tl → Disjoint hd a') ∧ List.Pairwise Disjoint tl
⊢ support (List.prod (hd :: tl)) = List.foldr (fun x x_1 => x ⊔ x_1) ⊥ (List.map support (hd :: tl))
[PROOFSTEP]
have : Disjoint hd tl.prod := disjoint_prod_right _ h.left
[GOAL]
case cons
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
l : List (Perm α)
h✝ : List.Pairwise Disjoint l
hd : Perm α
tl : List (Perm α)
hl : List.Pairwise Disjoint tl → support (List.prod tl) = List.foldr (fun x x_1 => x ⊔ x_1) ⊥ (List.map support tl)
h : (∀ (a' : Perm α), a' ∈ tl → Disjoint hd a') ∧ List.Pairwise Disjoint tl
this : Disjoint hd (List.prod tl)
⊢ support (List.prod (hd :: tl)) = List.foldr (fun x x_1 => x ⊔ x_1) ⊥ (List.map support (hd :: tl))
[PROOFSTEP]
simp [this.support_mul, hl h.right]
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
l : List (Perm α)
⊢ support (List.prod l) ≤ List.foldr (fun x x_1 => x ⊔ x_1) ⊥ (List.map support l)
[PROOFSTEP]
induction' l with hd tl hl
[GOAL]
case nil
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
⊢ support (List.prod []) ≤ List.foldr (fun x x_1 => x ⊔ x_1) ⊥ (List.map support [])
[PROOFSTEP]
simp
[GOAL]
case cons
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g hd : Perm α
tl : List (Perm α)
hl : support (List.prod tl) ≤ List.foldr (fun x x_1 => x ⊔ x_1) ⊥ (List.map support tl)
⊢ support (List.prod (hd :: tl)) ≤ List.foldr (fun x x_1 => x ⊔ x_1) ⊥ (List.map support (hd :: tl))
[PROOFSTEP]
rw [List.prod_cons, List.map_cons, List.foldr_cons]
[GOAL]
case cons
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g hd : Perm α
tl : List (Perm α)
hl : support (List.prod tl) ≤ List.foldr (fun x x_1 => x ⊔ x_1) ⊥ (List.map support tl)
⊢ support (hd * List.prod tl) ≤ support hd ⊔ List.foldr (fun x x_1 => x ⊔ x_1) ⊥ (List.map support tl)
[PROOFSTEP]
refine' (support_mul_le hd tl.prod).trans _
[GOAL]
case cons
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g hd : Perm α
tl : List (Perm α)
hl : support (List.prod tl) ≤ List.foldr (fun x x_1 => x ⊔ x_1) ⊥ (List.map support tl)
⊢ support hd ⊔ support (List.prod tl) ≤ support hd ⊔ List.foldr (fun x x_1 => x ⊔ x_1) ⊥ (List.map support tl)
[PROOFSTEP]
exact sup_le_sup le_rfl hl
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x y : α
h : x ≠ y
⊢ support (swap x y) = {x, y}
[PROOFSTEP]
ext z
[GOAL]
case a
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x y : α
h : x ≠ y
z : α
⊢ z ∈ support (swap x y) ↔ z ∈ {x, y}
[PROOFSTEP]
by_cases hx : z = x
[GOAL]
case pos
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x y : α
h : x ≠ y
z : α
hx : z = x
⊢ z ∈ support (swap x y) ↔ z ∈ {x, y}
case neg
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x y : α
h : x ≠ y
z : α
hx : ¬z = x
⊢ z ∈ support (swap x y) ↔ z ∈ {x, y}
[PROOFSTEP]
any_goals simpa [hx] using h.symm
[GOAL]
case pos
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x y : α
h : x ≠ y
z : α
hx : z = x
⊢ z ∈ support (swap x y) ↔ z ∈ {x, y}
[PROOFSTEP]
simpa [hx] using h.symm
[GOAL]
case neg
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x y : α
h : x ≠ y
z : α
hx : ¬z = x
⊢ z ∈ support (swap x y) ↔ z ∈ {x, y}
[PROOFSTEP]
simpa [hx] using h.symm
[GOAL]
case neg
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x y : α
h : x ≠ y
z : α
hx : ¬z = x
⊢ z ∈ support (swap x y) ↔ z ∈ {x, y}
[PROOFSTEP]
by_cases hy : z = y
[GOAL]
case pos
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x y : α
h : x ≠ y
z : α
hx : ¬z = x
hy : z = y
⊢ z ∈ support (swap x y) ↔ z ∈ {x, y}
[PROOFSTEP]
simp [swap_apply_of_ne_of_ne, hx, hy]
[GOAL]
case pos
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x y : α
h : x ≠ y
z : α
hx : ¬z = x
hy : z = y
⊢ ¬x = y
[PROOFSTEP]
exact h
[GOAL]
case neg
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x y : α
h : x ≠ y
z : α
hx : ¬z = x
hy : ¬z = y
⊢ z ∈ support (swap x y) ↔ z ∈ {x, y}
[PROOFSTEP]
simp [swap_apply_of_ne_of_ne, hx, hy]
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x y : α
⊢ support (swap x y) = {x, y} ↔ x ≠ y
[PROOFSTEP]
refine' ⟨fun h => _, fun h => support_swap h⟩
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x y : α
h : support (swap x y) = {x, y}
⊢ x ≠ y
[PROOFSTEP]
by_contra'
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x y : α
h : support (swap x y) = {x, y}
this : x = y
⊢ False
[PROOFSTEP]
rw [← this] at h
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x y : α
h : support (swap x x) = {x, x}
this : x = y
⊢ False
[PROOFSTEP]
simp only [swap_self, support_refl, pair_eq_singleton] at h
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x y : α
this : x = y
h : ∅ = {x}
⊢ False
[PROOFSTEP]
have : x ∈ ∅ := by
rw [h]
exact mem_singleton.mpr rfl
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x y : α
this : x = y
h : ∅ = {x}
⊢ x ∈ ∅
[PROOFSTEP]
rw [h]
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x y : α
this : x = y
h : ∅ = {x}
⊢ x ∈ {x}
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x y : α
this : x = y
h : ∅ = {x}
⊢ Membership α (Finset α)
[PROOFSTEP]
exact mem_singleton.mpr rfl
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x y : α
this✝ : x = y
h : ∅ = {x}
this : x ∈ ∅
⊢ False
[PROOFSTEP]
have := (Finset.ne_empty_of_mem this)
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x y : α
this✝¹ : x = y
h : ∅ = {x}
this✝ : x ∈ ∅
this : ∅ ≠ ∅
⊢ False
[PROOFSTEP]
exact this rfl
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x y z : α
h : List.Nodup [x, y, z]
⊢ support (swap x y * swap y z) = {x, y, z}
[PROOFSTEP]
simp only [List.not_mem_nil, and_true_iff, List.mem_cons, not_false_iff, List.nodup_cons, List.mem_singleton,
and_self_iff, List.nodup_nil] at h
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x y z : α
h : ¬(x = y ∨ x = z ∨ False) ∧ ¬(y = z ∨ False)
⊢ support (swap x y * swap y z) = {x, y, z}
[PROOFSTEP]
push_neg at h
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x y z : α
h : (x ≠ y ∧ x ≠ z ∧ ¬False) ∧ y ≠ z ∧ ¬False
⊢ support (swap x y * swap y z) = {x, y, z}
[PROOFSTEP]
apply le_antisymm
[GOAL]
case a
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x y z : α
h : (x ≠ y ∧ x ≠ z ∧ ¬False) ∧ y ≠ z ∧ ¬False
⊢ support (swap x y * swap y z) ≤ {x, y, z}
[PROOFSTEP]
convert support_mul_le (swap x y) (swap y z) using 1
[GOAL]
case h.e'_4
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x y z : α
h : (x ≠ y ∧ x ≠ z ∧ ¬False) ∧ y ≠ z ∧ ¬False
⊢ {x, y, z} = support (swap x y) ⊔ support (swap y z)
[PROOFSTEP]
rw [support_swap h.left.left, support_swap h.right.left]
[GOAL]
case h.e'_4
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x y z : α
h : (x ≠ y ∧ x ≠ z ∧ ¬False) ∧ y ≠ z ∧ ¬False
⊢ {x, y, z} = {x, y} ⊔ {y, z}
[PROOFSTEP]
simp only [sup_eq_union]
[GOAL]
case h.e'_4
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x y z : α
h : (x ≠ y ∧ x ≠ z ∧ ¬False) ∧ y ≠ z ∧ ¬False
⊢ {x, y, z} = {x, y} ∪ {y, z}
[PROOFSTEP]
simp only [mem_singleton, mem_insert, union_insert, insert_union, mem_union, true_or, or_true, insert_eq_of_mem]
[GOAL]
case h.e'_4
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x y z : α
h : (x ≠ y ∧ x ≠ z ∧ ¬False) ∧ y ≠ z ∧ ¬False
⊢ {x, y, z} = insert x ({y} ∪ {z})
[PROOFSTEP]
rfl
[GOAL]
case a
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x y z : α
h : (x ≠ y ∧ x ≠ z ∧ ¬False) ∧ y ≠ z ∧ ¬False
⊢ {x, y, z} ≤ support (swap x y * swap y z)
[PROOFSTEP]
intro
[GOAL]
case a
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x y z : α
h : (x ≠ y ∧ x ≠ z ∧ ¬False) ∧ y ≠ z ∧ ¬False
a✝ : α
⊢ a✝ ∈ {x, y, z} → a✝ ∈ support (swap x y * swap y z)
[PROOFSTEP]
simp only [mem_insert, mem_singleton]
[GOAL]
case a
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x y z : α
h : (x ≠ y ∧ x ≠ z ∧ ¬False) ∧ y ≠ z ∧ ¬False
a✝ : α
⊢ a✝ = x ∨ a✝ = y ∨ a✝ = z → a✝ ∈ support (swap x y * swap y z)
[PROOFSTEP]
rintro (rfl | rfl | rfl | _)
[GOAL]
case a.inl
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
y z a✝ : α
h : (a✝ ≠ y ∧ a✝ ≠ z ∧ ¬False) ∧ y ≠ z ∧ ¬False
⊢ a✝ ∈ support (swap a✝ y * swap y z)
[PROOFSTEP]
simp [swap_apply_of_ne_of_ne, h.left.left, h.left.left.symm, h.left.right.symm, h.left.right.left.symm,
h.right.left.symm]
[GOAL]
case a.inr.inl
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x z a✝ : α
h : (x ≠ a✝ ∧ x ≠ z ∧ ¬False) ∧ a✝ ≠ z ∧ ¬False
⊢ a✝ ∈ support (swap x a✝ * swap a✝ z)
[PROOFSTEP]
simp [swap_apply_of_ne_of_ne, h.left.left, h.left.left.symm, h.left.right.symm, h.left.right.left.symm,
h.right.left.symm]
[GOAL]
case a.inr.inr.refl
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x y z : α
h : (x ≠ y ∧ x ≠ z ∧ ¬False) ∧ y ≠ z ∧ ¬False
⊢ z ∈ support (swap x y * swap y z)
[PROOFSTEP]
simp [swap_apply_of_ne_of_ne, h.left.left, h.left.left.symm, h.left.right.symm, h.left.right.left.symm,
h.right.left.symm]
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g f : Perm α
x y : α
⊢ support f \ {x, y} ≤ support (swap x y * f)
[PROOFSTEP]
intro
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g f : Perm α
x y a✝ : α
⊢ a✝ ∈ support f \ {x, y} → a✝ ∈ support (swap x y * f)
[PROOFSTEP]
simp only [and_imp, Perm.coe_mul, Function.comp_apply, Ne.def, mem_support, mem_insert, mem_sdiff, mem_singleton]
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g f : Perm α
x y a✝ : α
⊢ ¬↑f a✝ = a✝ → ¬(a✝ = x ∨ a✝ = y) → ¬↑(swap x y) (↑f a✝) = a✝
[PROOFSTEP]
push_neg
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g f : Perm α
x y a✝ : α
⊢ ↑f a✝ ≠ a✝ → a✝ ≠ x ∧ a✝ ≠ y → ↑(swap x y) (↑f a✝) ≠ a✝
[PROOFSTEP]
rintro ha ⟨hx, hy⟩ H
[GOAL]
case intro
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g f : Perm α
x y a✝ : α
ha : ↑f a✝ ≠ a✝
hx : a✝ ≠ x
hy : a✝ ≠ y
H : ↑(swap x y) (↑f a✝) = a✝
⊢ False
[PROOFSTEP]
rw [swap_apply_eq_iff, swap_apply_of_ne_of_ne hx hy] at H
[GOAL]
case intro
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g f : Perm α
x y a✝ : α
ha : ↑f a✝ ≠ a✝
hx : a✝ ≠ x
hy : a✝ ≠ y
H : ↑f a✝ = a✝
⊢ False
[PROOFSTEP]
exact ha H
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g f : Perm α
x : α
h : ↑f (↑f x) ≠ x
⊢ support (swap x (↑f x) * f) = support f \ {x}
[PROOFSTEP]
by_cases hx : f x = x
[GOAL]
case pos
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g f : Perm α
x : α
h : ↑f (↑f x) ≠ x
hx : ↑f x = x
⊢ support (swap x (↑f x) * f) = support f \ {x}
[PROOFSTEP]
simp [hx, sdiff_singleton_eq_erase, not_mem_support.mpr hx, erase_eq_of_not_mem]
[GOAL]
case neg
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g f : Perm α
x : α
h : ↑f (↑f x) ≠ x
hx : ¬↑f x = x
⊢ support (swap x (↑f x) * f) = support f \ {x}
[PROOFSTEP]
ext z
[GOAL]
case neg.a
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g f : Perm α
x : α
h : ↑f (↑f x) ≠ x
hx : ¬↑f x = x
z : α
⊢ z ∈ support (swap x (↑f x) * f) ↔ z ∈ support f \ {x}
[PROOFSTEP]
by_cases hzx : z = x
[GOAL]
case pos
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g f : Perm α
x : α
h : ↑f (↑f x) ≠ x
hx : ¬↑f x = x
z : α
hzx : z = x
⊢ z ∈ support (swap x (↑f x) * f) ↔ z ∈ support f \ {x}
[PROOFSTEP]
simp [hzx]
[GOAL]
case neg
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g f : Perm α
x : α
h : ↑f (↑f x) ≠ x
hx : ¬↑f x = x
z : α
hzx : ¬z = x
⊢ z ∈ support (swap x (↑f x) * f) ↔ z ∈ support f \ {x}
[PROOFSTEP]
by_cases hzf : z = f x
[GOAL]
case pos
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g f : Perm α
x : α
h : ↑f (↑f x) ≠ x
hx : ¬↑f x = x
z : α
hzx : ¬z = x
hzf : z = ↑f x
⊢ z ∈ support (swap x (↑f x) * f) ↔ z ∈ support f \ {x}
[PROOFSTEP]
simp [hzf, hx, h, swap_apply_of_ne_of_ne]
[GOAL]
case neg
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g f : Perm α
x : α
h : ↑f (↑f x) ≠ x
hx : ¬↑f x = x
z : α
hzx : ¬z = x
hzf : ¬z = ↑f x
⊢ z ∈ support (swap x (↑f x) * f) ↔ z ∈ support f \ {x}
[PROOFSTEP]
by_cases hzfx : f z = x
[GOAL]
case pos
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g f : Perm α
x : α
h : ↑f (↑f x) ≠ x
hx : ¬↑f x = x
z : α
hzx : ¬z = x
hzf : ¬z = ↑f x
hzfx : ↑f z = x
⊢ z ∈ support (swap x (↑f x) * f) ↔ z ∈ support f \ {x}
[PROOFSTEP]
simp [Ne.symm hzx, hzx, Ne.symm hzf, hzfx]
[GOAL]
case neg
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g f : Perm α
x : α
h : ↑f (↑f x) ≠ x
hx : ¬↑f x = x
z : α
hzx : ¬z = x
hzf : ¬z = ↑f x
hzfx : ¬↑f z = x
⊢ z ∈ support (swap x (↑f x) * f) ↔ z ∈ support f \ {x}
[PROOFSTEP]
simp [Ne.symm hzx, hzx, Ne.symm hzf, hzfx, f.injective.ne hzx, swap_apply_of_ne_of_ne]
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x y : α
hy : y ∈ support (swap x (↑f x) * f)
⊢ y ∈ support f ∧ y ≠ x
[PROOFSTEP]
simp only [mem_support, swap_apply_def, mul_apply, f.injective.eq_iff] at *
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x y : α
hy : (if ↑f y = x then ↑f x else if y = x then x else ↑f y) ≠ y
⊢ ↑f y ≠ y ∧ y ≠ x
[PROOFSTEP]
by_cases h : f y = x
[GOAL]
case pos
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x y : α
hy : (if ↑f y = x then ↑f x else if y = x then x else ↑f y) ≠ y
h : ↑f y = x
⊢ ↑f y ≠ y ∧ y ≠ x
[PROOFSTEP]
constructor
[GOAL]
case pos.left
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x y : α
hy : (if ↑f y = x then ↑f x else if y = x then x else ↑f y) ≠ y
h : ↑f y = x
⊢ ↑f y ≠ y
[PROOFSTEP]
intro
[GOAL]
case pos.right
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x y : α
hy : (if ↑f y = x then ↑f x else if y = x then x else ↑f y) ≠ y
h : ↑f y = x
⊢ y ≠ x
[PROOFSTEP]
intro
[GOAL]
case pos.left
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x y : α
hy : (if ↑f y = x then ↑f x else if y = x then x else ↑f y) ≠ y
h : ↑f y = x
a✝ : ↑f y = y
⊢ False
[PROOFSTEP]
simp_all only [if_true, eq_self_iff_true, not_true, Ne.def]
[GOAL]
case pos.right
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x y : α
hy : (if ↑f y = x then ↑f x else if y = x then x else ↑f y) ≠ y
h : ↑f y = x
a✝ : y = x
⊢ False
[PROOFSTEP]
simp_all only [if_true, eq_self_iff_true, not_true, Ne.def]
[GOAL]
case neg
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x y : α
hy : (if ↑f y = x then ↑f x else if y = x then x else ↑f y) ≠ y
h : ¬↑f y = x
⊢ ↑f y ≠ y ∧ y ≠ x
[PROOFSTEP]
split_ifs at hy with hf heq
[GOAL]
case pos
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x y : α
h : ¬↑f y = x
hf : ↑f y = x
hy : ↑f x ≠ y
⊢ ↑f y ≠ y ∧ y ≠ x
[PROOFSTEP]
simp_all only [not_true]
[GOAL]
case pos
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x y : α
h : ¬↑f y = x
hf : ¬↑f y = x
heq : y = x
hy : x ≠ y
⊢ ↑f y ≠ y ∧ y ≠ x
[PROOFSTEP]
simp_all only [not_true]
[GOAL]
case neg
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x y : α
h : ¬↑f y = x
hf : ¬↑f y = x
heq : ¬y = x
hy : ↑f y ≠ y
⊢ ↑f y ≠ y ∧ y ≠ x
[PROOFSTEP]
simp_all only [not_true]
[GOAL]
case pos
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x y : α
h : ¬↑f x = x
heq : y = x
hy : x ≠ x
⊢ ↑f x ≠ x ∧ x ≠ x
case neg
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x y : α
hf : ¬↑f y = x
heq : ¬y = x
hy : ↑f y ≠ y
⊢ ↑f y ≠ y ∧ y ≠ x
[PROOFSTEP]
exact ⟨h, hy⟩
[GOAL]
case neg
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x y : α
hf : ¬↑f y = x
heq : ¬y = x
hy : ↑f y ≠ y
⊢ ↑f y ≠ y ∧ y ≠ x
[PROOFSTEP]
refine' ⟨hy, heq⟩
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
l : List (Perm α)
h : f ∈ l
hl : List.Pairwise Disjoint l
⊢ ∀ (x : α), x ∈ support f → ↑f x = ↑(List.prod l) x
[PROOFSTEP]
induction' l with hd tl IH
[GOAL]
case nil
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
l : List (Perm α)
h✝ : f ∈ l
hl✝ : List.Pairwise Disjoint l
h : f ∈ []
hl : List.Pairwise Disjoint []
⊢ ∀ (x : α), x ∈ support f → ↑f x = ↑(List.prod []) x
[PROOFSTEP]
simp at h
[GOAL]
case cons
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
l : List (Perm α)
h✝ : f ∈ l
hl✝ : List.Pairwise Disjoint l
hd : Perm α
tl : List (Perm α)
IH : f ∈ tl → List.Pairwise Disjoint tl → ∀ (x : α), x ∈ support f → ↑f x = ↑(List.prod tl) x
h : f ∈ hd :: tl
hl : List.Pairwise Disjoint (hd :: tl)
⊢ ∀ (x : α), x ∈ support f → ↑f x = ↑(List.prod (hd :: tl)) x
[PROOFSTEP]
intro x hx
[GOAL]
case cons
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
l : List (Perm α)
h✝ : f ∈ l
hl✝ : List.Pairwise Disjoint l
hd : Perm α
tl : List (Perm α)
IH : f ∈ tl → List.Pairwise Disjoint tl → ∀ (x : α), x ∈ support f → ↑f x = ↑(List.prod tl) x
h : f ∈ hd :: tl
hl : List.Pairwise Disjoint (hd :: tl)
x : α
hx : x ∈ support f
⊢ ↑f x = ↑(List.prod (hd :: tl)) x
[PROOFSTEP]
rw [List.pairwise_cons] at hl
[GOAL]
case cons
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
l : List (Perm α)
h✝ : f ∈ l
hl✝ : List.Pairwise Disjoint l
hd : Perm α
tl : List (Perm α)
IH : f ∈ tl → List.Pairwise Disjoint tl → ∀ (x : α), x ∈ support f → ↑f x = ↑(List.prod tl) x
h : f ∈ hd :: tl
hl : (∀ (a' : Perm α), a' ∈ tl → Disjoint hd a') ∧ List.Pairwise Disjoint tl
x : α
hx : x ∈ support f
⊢ ↑f x = ↑(List.prod (hd :: tl)) x
[PROOFSTEP]
rw [List.mem_cons] at h
[GOAL]
case cons
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
l : List (Perm α)
h✝ : f ∈ l
hl✝ : List.Pairwise Disjoint l
hd : Perm α
tl : List (Perm α)
IH : f ∈ tl → List.Pairwise Disjoint tl → ∀ (x : α), x ∈ support f → ↑f x = ↑(List.prod tl) x
h : f = hd ∨ f ∈ tl
hl : (∀ (a' : Perm α), a' ∈ tl → Disjoint hd a') ∧ List.Pairwise Disjoint tl
x : α
hx : x ∈ support f
⊢ ↑f x = ↑(List.prod (hd :: tl)) x
[PROOFSTEP]
rcases h with (rfl | h)
[GOAL]
case cons.inl
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
l : List (Perm α)
h : f ∈ l
hl✝ : List.Pairwise Disjoint l
tl : List (Perm α)
IH : f ∈ tl → List.Pairwise Disjoint tl → ∀ (x : α), x ∈ support f → ↑f x = ↑(List.prod tl) x
x : α
hx : x ∈ support f
hl : (∀ (a' : Perm α), a' ∈ tl → Disjoint f a') ∧ List.Pairwise Disjoint tl
⊢ ↑f x = ↑(List.prod (f :: tl)) x
[PROOFSTEP]
rw [List.prod_cons, mul_apply, not_mem_support.mp ((disjoint_prod_right tl hl.left).mem_imp hx)]
[GOAL]
case cons.inr
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
l : List (Perm α)
h✝ : f ∈ l
hl✝ : List.Pairwise Disjoint l
hd : Perm α
tl : List (Perm α)
IH : f ∈ tl → List.Pairwise Disjoint tl → ∀ (x : α), x ∈ support f → ↑f x = ↑(List.prod tl) x
hl : (∀ (a' : Perm α), a' ∈ tl → Disjoint hd a') ∧ List.Pairwise Disjoint tl
x : α
hx : x ∈ support f
h : f ∈ tl
⊢ ↑f x = ↑(List.prod (hd :: tl)) x
[PROOFSTEP]
rw [List.prod_cons, mul_apply, ← IH h hl.right _ hx, eq_comm, ← not_mem_support]
[GOAL]
case cons.inr
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
l : List (Perm α)
h✝ : f ∈ l
hl✝ : List.Pairwise Disjoint l
hd : Perm α
tl : List (Perm α)
IH : f ∈ tl → List.Pairwise Disjoint tl → ∀ (x : α), x ∈ support f → ↑f x = ↑(List.prod tl) x
hl : (∀ (a' : Perm α), a' ∈ tl → Disjoint hd a') ∧ List.Pairwise Disjoint tl
x : α
hx : x ∈ support f
h : f ∈ tl
⊢ ¬↑f x ∈ support hd
[PROOFSTEP]
refine' (hl.left _ h).symm.mem_imp _
[GOAL]
case cons.inr
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
l : List (Perm α)
h✝ : f ∈ l
hl✝ : List.Pairwise Disjoint l
hd : Perm α
tl : List (Perm α)
IH : f ∈ tl → List.Pairwise Disjoint tl → ∀ (x : α), x ∈ support f → ↑f x = ↑(List.prod tl) x
hl : (∀ (a' : Perm α), a' ∈ tl → Disjoint hd a') ∧ List.Pairwise Disjoint tl
x : α
hx : x ∈ support f
h : f ∈ tl
⊢ ↑f x ∈ support f
[PROOFSTEP]
simpa using hx
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g x y : Perm α
h : Disjoint f g
hf : support x ≤ support f
hg : support y ≤ support g
⊢ Disjoint x y
[PROOFSTEP]
rw [disjoint_iff_disjoint_support] at h ⊢
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g x y : Perm α
h✝ : Disjoint f g
h : _root_.Disjoint (support f) (support g)
hf : support x ≤ support f
hg : support y ≤ support g
⊢ _root_.Disjoint (support x) (support y)
[PROOFSTEP]
exact h.mono hf hg
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
l : List (Perm α)
h : f ∈ l
hl : List.Pairwise Disjoint l
⊢ support f ≤ support (List.prod l)
[PROOFSTEP]
intro x hx
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
l : List (Perm α)
h : f ∈ l
hl : List.Pairwise Disjoint l
x : α
hx : x ∈ support f
⊢ x ∈ support (List.prod l)
[PROOFSTEP]
rwa [mem_support, ← eq_on_support_mem_disjoint h hl _ hx, ← mem_support]
[GOAL]
α : Type u_1
inst✝⁴ : DecidableEq α
inst✝³ : Fintype α
f✝ g✝ : Perm α
β : Type u_2
inst✝² : DecidableEq β
inst✝¹ : Fintype β
p : β → Prop
inst✝ : DecidablePred p
f : α ≃ Subtype p
g : Perm α
⊢ support (extendDomain g f) = map (asEmbedding f) (support g)
[PROOFSTEP]
ext b
[GOAL]
case a
α : Type u_1
inst✝⁴ : DecidableEq α
inst✝³ : Fintype α
f✝ g✝ : Perm α
β : Type u_2
inst✝² : DecidableEq β
inst✝¹ : Fintype β
p : β → Prop
inst✝ : DecidablePred p
f : α ≃ Subtype p
g : Perm α
b : β
⊢ b ∈ support (extendDomain g f) ↔ b ∈ map (asEmbedding f) (support g)
[PROOFSTEP]
simp only [exists_prop, Function.Embedding.coeFn_mk, toEmbedding_apply, mem_map, Ne.def, Function.Embedding.trans_apply,
mem_support]
[GOAL]
case a
α : Type u_1
inst✝⁴ : DecidableEq α
inst✝³ : Fintype α
f✝ g✝ : Perm α
β : Type u_2
inst✝² : DecidableEq β
inst✝¹ : Fintype β
p : β → Prop
inst✝ : DecidablePred p
f : α ≃ Subtype p
g : Perm α
b : β
⊢ ¬↑(extendDomain g f) b = b ↔ ∃ a, ¬↑g a = a ∧ ↑(asEmbedding f) a = b
[PROOFSTEP]
by_cases pb : p b
[GOAL]
case pos
α : Type u_1
inst✝⁴ : DecidableEq α
inst✝³ : Fintype α
f✝ g✝ : Perm α
β : Type u_2
inst✝² : DecidableEq β
inst✝¹ : Fintype β
p : β → Prop
inst✝ : DecidablePred p
f : α ≃ Subtype p
g : Perm α
b : β
pb : p b
⊢ ¬↑(extendDomain g f) b = b ↔ ∃ a, ¬↑g a = a ∧ ↑(asEmbedding f) a = b
[PROOFSTEP]
rw [extendDomain_apply_subtype _ _ pb]
[GOAL]
case pos
α : Type u_1
inst✝⁴ : DecidableEq α
inst✝³ : Fintype α
f✝ g✝ : Perm α
β : Type u_2
inst✝² : DecidableEq β
inst✝¹ : Fintype β
p : β → Prop
inst✝ : DecidablePred p
f : α ≃ Subtype p
g : Perm α
b : β
pb : p b
⊢ ¬↑(↑f (↑g (↑f.symm { val := b, property := pb }))) = b ↔ ∃ a, ¬↑g a = a ∧ ↑(asEmbedding f) a = b
[PROOFSTEP]
constructor
[GOAL]
case pos.mp
α : Type u_1
inst✝⁴ : DecidableEq α
inst✝³ : Fintype α
f✝ g✝ : Perm α
β : Type u_2
inst✝² : DecidableEq β
inst✝¹ : Fintype β
p : β → Prop
inst✝ : DecidablePred p
f : α ≃ Subtype p
g : Perm α
b : β
pb : p b
⊢ ¬↑(↑f (↑g (↑f.symm { val := b, property := pb }))) = b → ∃ a, ¬↑g a = a ∧ ↑(asEmbedding f) a = b
[PROOFSTEP]
rintro h
[GOAL]
case pos.mp
α : Type u_1
inst✝⁴ : DecidableEq α
inst✝³ : Fintype α
f✝ g✝ : Perm α
β : Type u_2
inst✝² : DecidableEq β
inst✝¹ : Fintype β
p : β → Prop
inst✝ : DecidablePred p
f : α ≃ Subtype p
g : Perm α
b : β
pb : p b
h : ¬↑(↑f (↑g (↑f.symm { val := b, property := pb }))) = b
⊢ ∃ a, ¬↑g a = a ∧ ↑(asEmbedding f) a = b
[PROOFSTEP]
refine' ⟨f.symm ⟨b, pb⟩, _, by simp⟩
[GOAL]
α : Type u_1
inst✝⁴ : DecidableEq α
inst✝³ : Fintype α
f✝ g✝ : Perm α
β : Type u_2
inst✝² : DecidableEq β
inst✝¹ : Fintype β
p : β → Prop
inst✝ : DecidablePred p
f : α ≃ Subtype p
g : Perm α
b : β
pb : p b
h : ¬↑(↑f (↑g (↑f.symm { val := b, property := pb }))) = b
⊢ ↑(asEmbedding f) (↑f.symm { val := b, property := pb }) = b
[PROOFSTEP]
simp
[GOAL]
case pos.mp
α : Type u_1
inst✝⁴ : DecidableEq α
inst✝³ : Fintype α
f✝ g✝ : Perm α
β : Type u_2
inst✝² : DecidableEq β
inst✝¹ : Fintype β
p : β → Prop
inst✝ : DecidablePred p
f : α ≃ Subtype p
g : Perm α
b : β
pb : p b
h : ¬↑(↑f (↑g (↑f.symm { val := b, property := pb }))) = b
⊢ ¬↑g (↑f.symm { val := b, property := pb }) = ↑f.symm { val := b, property := pb }
[PROOFSTEP]
contrapose! h
[GOAL]
case pos.mp
α : Type u_1
inst✝⁴ : DecidableEq α
inst✝³ : Fintype α
f✝ g✝ : Perm α
β : Type u_2
inst✝² : DecidableEq β
inst✝¹ : Fintype β
p : β → Prop
inst✝ : DecidablePred p
f : α ≃ Subtype p
g : Perm α
b : β
pb : p b
h : ↑g (↑f.symm { val := b, property := pb }) = ↑f.symm { val := b, property := pb }
⊢ ↑(↑f (↑g (↑f.symm { val := b, property := pb }))) = b
[PROOFSTEP]
simp [h]
[GOAL]
case pos.mpr
α : Type u_1
inst✝⁴ : DecidableEq α
inst✝³ : Fintype α
f✝ g✝ : Perm α
β : Type u_2
inst✝² : DecidableEq β
inst✝¹ : Fintype β
p : β → Prop
inst✝ : DecidablePred p
f : α ≃ Subtype p
g : Perm α
b : β
pb : p b
⊢ (∃ a, ¬↑g a = a ∧ ↑(asEmbedding f) a = b) → ¬↑(↑f (↑g (↑f.symm { val := b, property := pb }))) = b
[PROOFSTEP]
rintro ⟨a, ha, hb⟩
[GOAL]
case pos.mpr.intro.intro
α : Type u_1
inst✝⁴ : DecidableEq α
inst✝³ : Fintype α
f✝ g✝ : Perm α
β : Type u_2
inst✝² : DecidableEq β
inst✝¹ : Fintype β
p : β → Prop
inst✝ : DecidablePred p
f : α ≃ Subtype p
g : Perm α
b : β
pb : p b
a : α
ha : ¬↑g a = a
hb : ↑(asEmbedding f) a = b
⊢ ¬↑(↑f (↑g (↑f.symm { val := b, property := pb }))) = b
[PROOFSTEP]
contrapose! ha
[GOAL]
case pos.mpr.intro.intro
α : Type u_1
inst✝⁴ : DecidableEq α
inst✝³ : Fintype α
f✝ g✝ : Perm α
β : Type u_2
inst✝² : DecidableEq β
inst✝¹ : Fintype β
p : β → Prop
inst✝ : DecidablePred p
f : α ≃ Subtype p
g : Perm α
b : β
pb : p b
a : α
hb : ↑(asEmbedding f) a = b
ha : ↑(↑f (↑g (↑f.symm { val := b, property := pb }))) = b
⊢ ↑g a = a
[PROOFSTEP]
obtain rfl : a = f.symm ⟨b, pb⟩ := by
rw [eq_symm_apply]
exact Subtype.coe_injective hb
[GOAL]
α : Type u_1
inst✝⁴ : DecidableEq α
inst✝³ : Fintype α
f✝ g✝ : Perm α
β : Type u_2
inst✝² : DecidableEq β
inst✝¹ : Fintype β
p : β → Prop
inst✝ : DecidablePred p
f : α ≃ Subtype p
g : Perm α
b : β
pb : p b
a : α
hb : ↑(asEmbedding f) a = b
ha : ↑(↑f (↑g (↑f.symm { val := b, property := pb }))) = b
⊢ a = ↑f.symm { val := b, property := pb }
[PROOFSTEP]
rw [eq_symm_apply]
[GOAL]
α : Type u_1
inst✝⁴ : DecidableEq α
inst✝³ : Fintype α
f✝ g✝ : Perm α
β : Type u_2
inst✝² : DecidableEq β
inst✝¹ : Fintype β
p : β → Prop
inst✝ : DecidablePred p
f : α ≃ Subtype p
g : Perm α
b : β
pb : p b
a : α
hb : ↑(asEmbedding f) a = b
ha : ↑(↑f (↑g (↑f.symm { val := b, property := pb }))) = b
⊢ ↑f a = { val := b, property := pb }
[PROOFSTEP]
exact Subtype.coe_injective hb
[GOAL]
case pos.mpr.intro.intro
α : Type u_1
inst✝⁴ : DecidableEq α
inst✝³ : Fintype α
f✝ g✝ : Perm α
β : Type u_2
inst✝² : DecidableEq β
inst✝¹ : Fintype β
p : β → Prop
inst✝ : DecidablePred p
f : α ≃ Subtype p
g : Perm α
b : β
pb : p b
ha : ↑(↑f (↑g (↑f.symm { val := b, property := pb }))) = b
hb : ↑(asEmbedding f) (↑f.symm { val := b, property := pb }) = b
⊢ ↑g (↑f.symm { val := b, property := pb }) = ↑f.symm { val := b, property := pb }
[PROOFSTEP]
rw [eq_symm_apply]
[GOAL]
case pos.mpr.intro.intro
α : Type u_1
inst✝⁴ : DecidableEq α
inst✝³ : Fintype α
f✝ g✝ : Perm α
β : Type u_2
inst✝² : DecidableEq β
inst✝¹ : Fintype β
p : β → Prop
inst✝ : DecidablePred p
f : α ≃ Subtype p
g : Perm α
b : β
pb : p b
ha : ↑(↑f (↑g (↑f.symm { val := b, property := pb }))) = b
hb : ↑(asEmbedding f) (↑f.symm { val := b, property := pb }) = b
⊢ ↑f (↑g (↑f.symm { val := b, property := pb })) = { val := b, property := pb }
[PROOFSTEP]
exact Subtype.coe_injective ha
[GOAL]
case neg
α : Type u_1
inst✝⁴ : DecidableEq α
inst✝³ : Fintype α
f✝ g✝ : Perm α
β : Type u_2
inst✝² : DecidableEq β
inst✝¹ : Fintype β
p : β → Prop
inst✝ : DecidablePred p
f : α ≃ Subtype p
g : Perm α
b : β
pb : ¬p b
⊢ ¬↑(extendDomain g f) b = b ↔ ∃ a, ¬↑g a = a ∧ ↑(asEmbedding f) a = b
[PROOFSTEP]
rw [extendDomain_apply_not_subtype _ _ pb]
[GOAL]
case neg
α : Type u_1
inst✝⁴ : DecidableEq α
inst✝³ : Fintype α
f✝ g✝ : Perm α
β : Type u_2
inst✝² : DecidableEq β
inst✝¹ : Fintype β
p : β → Prop
inst✝ : DecidablePred p
f : α ≃ Subtype p
g : Perm α
b : β
pb : ¬p b
⊢ ¬b = b ↔ ∃ a, ¬↑g a = a ∧ ↑(asEmbedding f) a = b
[PROOFSTEP]
simp only [not_exists, false_iff_iff, not_and, eq_self_iff_true, not_true]
[GOAL]
case neg
α : Type u_1
inst✝⁴ : DecidableEq α
inst✝³ : Fintype α
f✝ g✝ : Perm α
β : Type u_2
inst✝² : DecidableEq β
inst✝¹ : Fintype β
p : β → Prop
inst✝ : DecidablePred p
f : α ≃ Subtype p
g : Perm α
b : β
pb : ¬p b
⊢ ∀ (x : α), ¬↑g x = x → ¬↑(asEmbedding f) x = b
[PROOFSTEP]
rintro a _ rfl
[GOAL]
case neg
α : Type u_1
inst✝⁴ : DecidableEq α
inst✝³ : Fintype α
f✝ g✝ : Perm α
β : Type u_2
inst✝² : DecidableEq β
inst✝¹ : Fintype β
p : β → Prop
inst✝ : DecidablePred p
f : α ≃ Subtype p
g : Perm α
a : α
a✝ : ¬↑g a = a
pb : ¬p (↑(asEmbedding f) a)
⊢ False
[PROOFSTEP]
exact pb (Subtype.prop _)
[GOAL]
α : Type u_1
inst✝⁴ : DecidableEq α
inst✝³ : Fintype α
f✝ g✝ : Perm α
β : Type u_2
inst✝² : DecidableEq β
inst✝¹ : Fintype β
p : β → Prop
inst✝ : DecidablePred p
f : α ≃ Subtype p
g : Perm α
⊢ card (support (extendDomain g f)) = card (support g)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g f : Perm α
⊢ card (support f) = 0 ↔ f = 1
[PROOFSTEP]
rw [Finset.card_eq_zero, support_eq_empty_iff]
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g f : Perm α
h : f ≠ 1
⊢ 1 < card (support f)
[PROOFSTEP]
simp_rw [one_lt_card_iff, mem_support, ← not_or]
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g f : Perm α
h : f ≠ 1
⊢ ∃ a b, ¬(↑f a = a ∨ ↑f b = b ∨ a = b)
[PROOFSTEP]
contrapose! h
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g f : Perm α
h : ∀ (a b : α), ↑f a = a ∨ ↑f b = b ∨ a = b
⊢ f = 1
[PROOFSTEP]
ext a
[GOAL]
case H
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g f : Perm α
h : ∀ (a b : α), ↑f a = a ∨ ↑f b = b ∨ a = b
a : α
⊢ ↑f a = ↑1 a
[PROOFSTEP]
specialize h (f a) a
[GOAL]
case H
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g f : Perm α
a : α
h : ↑f (↑f a) = ↑f a ∨ ↑f a = a ∨ ↑f a = a
⊢ ↑f a = ↑1 a
[PROOFSTEP]
rwa [apply_eq_iff_eq, or_self_iff, or_self_iff] at h
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g f : Perm α
⊢ card (support f) ≠ 1
[PROOFSTEP]
by_cases h : f = 1
[GOAL]
case pos
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g f : Perm α
h : f = 1
⊢ card (support f) ≠ 1
[PROOFSTEP]
exact ne_of_eq_of_ne (card_support_eq_zero.mpr h) zero_ne_one
[GOAL]
case neg
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g f : Perm α
h : ¬f = 1
⊢ card (support f) ≠ 1
[PROOFSTEP]
exact ne_of_gt (one_lt_card_support_of_ne_one h)
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g f : Perm α
⊢ card (support f) ≤ 1 ↔ f = 1
[PROOFSTEP]
rw [le_iff_lt_or_eq, Nat.lt_succ_iff, le_zero_iff, card_support_eq_zero, or_iff_not_imp_right,
imp_iff_right f.card_support_ne_one]
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g f : Perm α
x : α
hx : ↑f x ≠ x
h : support f ⊆ support (swap x (↑f x) * f)
⊢ ¬↑(swap x (↑f x) * f) x ≠ x
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x y : α
hxy : x ≠ y
⊢ Multiset.Nodup (x ::ₘ y ::ₘ 0)
[PROOFSTEP]
simp [hxy]
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x y : α
hxy : x ≠ y
⊢ support (swap x y) = { val := x ::ₘ y ::ₘ 0, nodup := (_ : Multiset.Nodup (x ::ₘ {y})) }
[PROOFSTEP]
simp [support_swap hxy, *, Finset.ext_iff]
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g f : Perm α
⊢ card (support f) = 2 ↔ IsSwap f
[PROOFSTEP]
constructor
[GOAL]
case mp
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g f : Perm α
⊢ card (support f) = 2 → IsSwap f
[PROOFSTEP]
intro h
[GOAL]
case mpr
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g f : Perm α
⊢ IsSwap f → card (support f) = 2
[PROOFSTEP]
intro h
[GOAL]
case mp
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g f : Perm α
h : card (support f) = 2
⊢ IsSwap f
[PROOFSTEP]
obtain ⟨x, t, hmem, hins, ht⟩ := card_eq_succ.1 h
[GOAL]
case mp.intro.intro.intro.intro
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g f : Perm α
h : card (support f) = 2
x : α
t : Finset α
hmem : ¬x ∈ t
hins : insert x t = support f
ht : card t = 1
⊢ IsSwap f
[PROOFSTEP]
obtain ⟨y, rfl⟩ := card_eq_one.1 ht
[GOAL]
case mp.intro.intro.intro.intro.intro
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g f : Perm α
h : card (support f) = 2
x y : α
hmem : ¬x ∈ {y}
hins : {x, y} = support f
ht : card {y} = 1
⊢ IsSwap f
[PROOFSTEP]
rw [mem_singleton] at hmem
[GOAL]
case mp.intro.intro.intro.intro.intro
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g f : Perm α
h : card (support f) = 2
x y : α
hmem : ¬x = y
hins : {x, y} = support f
ht : card {y} = 1
⊢ IsSwap f
[PROOFSTEP]
refine' ⟨x, y, hmem, _⟩
[GOAL]
case mp.intro.intro.intro.intro.intro
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g f : Perm α
h : card (support f) = 2
x y : α
hmem : ¬x = y
hins : {x, y} = support f
ht : card {y} = 1
⊢ f = swap x y
[PROOFSTEP]
ext a
[GOAL]
case mp.intro.intro.intro.intro.intro.H
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g f : Perm α
h : card (support f) = 2
x y : α
hmem : ¬x = y
hins : {x, y} = support f
ht : card {y} = 1
a : α
⊢ ↑f a = ↑(swap x y) a
[PROOFSTEP]
have key : ∀ b, f b ≠ b ↔ _ := fun b => by rw [← mem_support, ← hins, mem_insert, mem_singleton]
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g f : Perm α
h : card (support f) = 2
x y : α
hmem : ¬x = y
hins : {x, y} = support f
ht : card {y} = 1
a b : α
⊢ ↑f b ≠ b ↔ ?m.195733 b
[PROOFSTEP]
rw [← mem_support, ← hins, mem_insert, mem_singleton]
[GOAL]
case mp.intro.intro.intro.intro.intro.H
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g f : Perm α
h : card (support f) = 2
x y : α
hmem : ¬x = y
hins : {x, y} = support f
ht : card {y} = 1
a : α
key : ∀ (b : α), ↑f b ≠ b ↔ b = x ∨ b = y
⊢ ↑f a = ↑(swap x y) a
[PROOFSTEP]
by_cases ha : f a = a
[GOAL]
case pos
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g f : Perm α
h : card (support f) = 2
x y : α
hmem : ¬x = y
hins : {x, y} = support f
ht : card {y} = 1
a : α
key : ∀ (b : α), ↑f b ≠ b ↔ b = x ∨ b = y
ha : ↑f a = a
⊢ ↑f a = ↑(swap x y) a
[PROOFSTEP]
have ha' := not_or.mp (mt (key a).mpr (not_not.mpr ha))
[GOAL]
case pos
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g f : Perm α
h : card (support f) = 2
x y : α
hmem : ¬x = y
hins : {x, y} = support f
ht : card {y} = 1
a : α
key : ∀ (b : α), ↑f b ≠ b ↔ b = x ∨ b = y
ha : ↑f a = a
ha' : ¬a = x ∧ ¬a = y
⊢ ↑f a = ↑(swap x y) a
[PROOFSTEP]
rw [ha, swap_apply_of_ne_of_ne ha'.1 ha'.2]
[GOAL]
case neg
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g f : Perm α
h : card (support f) = 2
x y : α
hmem : ¬x = y
hins : {x, y} = support f
ht : card {y} = 1
a : α
key : ∀ (b : α), ↑f b ≠ b ↔ b = x ∨ b = y
ha : ¬↑f a = a
⊢ ↑f a = ↑(swap x y) a
[PROOFSTEP]
have ha' := (key (f a)).mp (mt f.apply_eq_iff_eq.mp ha)
[GOAL]
case neg
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g f : Perm α
h : card (support f) = 2
x y : α
hmem : ¬x = y
hins : {x, y} = support f
ht : card {y} = 1
a : α
key : ∀ (b : α), ↑f b ≠ b ↔ b = x ∨ b = y
ha : ¬↑f a = a
ha' : ↑f a = x ∨ ↑f a = y
⊢ ↑f a = ↑(swap x y) a
[PROOFSTEP]
obtain rfl | rfl := (key a).mp ha
[GOAL]
case neg.inl
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g f : Perm α
h : card (support f) = 2
y : α
ht : card {y} = 1
a : α
ha : ¬↑f a = a
hmem : ¬a = y
hins : {a, y} = support f
key : ∀ (b : α), ↑f b ≠ b ↔ b = a ∨ b = y
ha' : ↑f a = a ∨ ↑f a = y
⊢ ↑f a = ↑(swap a y) a
[PROOFSTEP]
rw [Or.resolve_left ha' ha, swap_apply_left]
[GOAL]
case neg.inr
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g f : Perm α
h : card (support f) = 2
x a : α
ha : ¬↑f a = a
hmem : ¬x = a
hins : {x, a} = support f
ht : card {a} = 1
key : ∀ (b : α), ↑f b ≠ b ↔ b = x ∨ b = a
ha' : ↑f a = x ∨ ↑f a = a
⊢ ↑f a = ↑(swap x a) a
[PROOFSTEP]
rw [Or.resolve_right ha' ha, swap_apply_right]
[GOAL]
case mpr
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f✝ g f : Perm α
h : IsSwap f
⊢ card (support f) = 2
[PROOFSTEP]
obtain ⟨x, y, hxy, rfl⟩ := h
[GOAL]
case mpr.intro.intro.intro
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
x y : α
hxy : x ≠ y
⊢ card (support (swap x y)) = 2
[PROOFSTEP]
exact card_support_swap hxy
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
h : Disjoint f g
⊢ card (support (f * g)) = card (support f) + card (support g)
[PROOFSTEP]
rw [← Finset.card_disjoint_union]
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
h : Disjoint f g
⊢ card (support (f * g)) = card (support f ∪ support g)
[PROOFSTEP]
congr
[GOAL]
case e_s
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
h : Disjoint f g
⊢ support (f * g) = support f ∪ support g
[PROOFSTEP]
ext
[GOAL]
case e_s.a
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
h : Disjoint f g
a✝ : α
⊢ a✝ ∈ support (f * g) ↔ a✝ ∈ support f ∪ support g
[PROOFSTEP]
simp [h.support_mul]
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
h : Disjoint f g
⊢ _root_.Disjoint (support f) (support g)
[PROOFSTEP]
simpa using h.disjoint_support
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
l : List (Perm α)
h : List.Pairwise Disjoint l
⊢ card (support (List.prod l)) = List.sum (List.map (card ∘ support) l)
[PROOFSTEP]
induction' l with a t ih
[GOAL]
case nil
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
l : List (Perm α)
h✝ : List.Pairwise Disjoint l
h : List.Pairwise Disjoint []
⊢ card (support (List.prod [])) = List.sum (List.map (card ∘ support) [])
[PROOFSTEP]
exact card_support_eq_zero.mpr rfl
[GOAL]
case cons
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
l : List (Perm α)
h✝ : List.Pairwise Disjoint l
a : Perm α
t : List (Perm α)
ih : List.Pairwise Disjoint t → card (support (List.prod t)) = List.sum (List.map (card ∘ support) t)
h : List.Pairwise Disjoint (a :: t)
⊢ card (support (List.prod (a :: t))) = List.sum (List.map (card ∘ support) (a :: t))
[PROOFSTEP]
obtain ⟨ha, ht⟩ := List.pairwise_cons.1 h
[GOAL]
case cons.intro
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
l : List (Perm α)
h✝ : List.Pairwise Disjoint l
a : Perm α
t : List (Perm α)
ih : List.Pairwise Disjoint t → card (support (List.prod t)) = List.sum (List.map (card ∘ support) t)
h : List.Pairwise Disjoint (a :: t)
ha : ∀ (a' : Perm α), a' ∈ t → Disjoint a a'
ht : List.Pairwise Disjoint t
⊢ card (support (List.prod (a :: t))) = List.sum (List.map (card ∘ support) (a :: t))
[PROOFSTEP]
rw [List.prod_cons, List.map_cons, List.sum_cons, ← ih ht]
[GOAL]
case cons.intro
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : Fintype α
f g : Perm α
l : List (Perm α)
h✝ : List.Pairwise Disjoint l
a : Perm α
t : List (Perm α)
ih : List.Pairwise Disjoint t → card (support (List.prod t)) = List.sum (List.map (card ∘ support) t)
h : List.Pairwise Disjoint (a :: t)
ha : ∀ (a' : Perm α), a' ∈ t → Disjoint a a'
ht : List.Pairwise Disjoint t
⊢ card (support (a * List.prod t)) = (card ∘ support) a + card (support (List.prod t))
[PROOFSTEP]
exact (disjoint_prod_right _ ha).card_support_mul
[GOAL]
α : Type u_1
inst✝ : DecidableEq α
s : Finset α
f : Perm α
h : ∀ (x : α), x ∈ s ↔ ↑f x ∈ s
⊢ support (subtypePerm f h) = filter (fun x => decide (↑f ↑x ≠ ↑x) = true) (attach s)
[PROOFSTEP]
ext
[GOAL]
case a
α : Type u_1
inst✝ : DecidableEq α
s : Finset α
f : Perm α
h : ∀ (x : α), x ∈ s ↔ ↑f x ∈ s
a✝ : { x // x ∈ s }
⊢ a✝ ∈ support (subtypePerm f h) ↔ a✝ ∈ filter (fun x => decide (↑f ↑x ≠ ↑x) = true) (attach s)
[PROOFSTEP]
simp [Subtype.ext_iff]
| {"mathlib_filename": "Mathlib.GroupTheory.Perm.Support", "llama_tokens": 37836} |
[GOAL]
G : Type u_1
inst✝ : Group G
H : Subgroup G
⊢ Saturated H ↔ ∀ (n : ℤ) (g : G), g ^ n ∈ H → n = 0 ∨ g ∈ H
[PROOFSTEP]
constructor
[GOAL]
case mp
G : Type u_1
inst✝ : Group G
H : Subgroup G
⊢ Saturated H → ∀ (n : ℤ) (g : G), g ^ n ∈ H → n = 0 ∨ g ∈ H
[PROOFSTEP]
intros hH n g hgn
[GOAL]
case mp
G : Type u_1
inst✝ : Group G
H : Subgroup G
hH : Saturated H
n : ℤ
g : G
hgn : g ^ n ∈ H
⊢ n = 0 ∨ g ∈ H
[PROOFSTEP]
induction' n with n n
[GOAL]
case mp.ofNat
G : Type u_1
inst✝ : Group G
H : Subgroup G
hH : Saturated H
n✝ : ℤ
g : G
hgn✝ : g ^ n✝ ∈ H
n : ℕ
hgn : g ^ Int.ofNat n ∈ H
⊢ Int.ofNat n = 0 ∨ g ∈ H
[PROOFSTEP]
simp only [Int.coe_nat_eq_zero, Int.ofNat_eq_coe, zpow_ofNat] at hgn ⊢
[GOAL]
case mp.ofNat
G : Type u_1
inst✝ : Group G
H : Subgroup G
hH : Saturated H
n✝ : ℤ
g : G
hgn✝ : g ^ n✝ ∈ H
n : ℕ
hgn : g ^ n ∈ H
⊢ n = 0 ∨ g ∈ H
[PROOFSTEP]
exact hH hgn
[GOAL]
case mp.negSucc
G : Type u_1
inst✝ : Group G
H : Subgroup G
hH : Saturated H
n✝ : ℤ
g : G
hgn✝ : g ^ n✝ ∈ H
n : ℕ
hgn : g ^ Int.negSucc n ∈ H
⊢ Int.negSucc n = 0 ∨ g ∈ H
[PROOFSTEP]
suffices g ^ (n + 1) ∈ H by
refine' (hH this).imp _ id
simp only [IsEmpty.forall_iff, Nat.succ_ne_zero]
[GOAL]
G : Type u_1
inst✝ : Group G
H : Subgroup G
hH : Saturated H
n✝ : ℤ
g : G
hgn✝ : g ^ n✝ ∈ H
n : ℕ
hgn : g ^ Int.negSucc n ∈ H
this : g ^ (n + 1) ∈ H
⊢ Int.negSucc n = 0 ∨ g ∈ H
[PROOFSTEP]
refine' (hH this).imp _ id
[GOAL]
G : Type u_1
inst✝ : Group G
H : Subgroup G
hH : Saturated H
n✝ : ℤ
g : G
hgn✝ : g ^ n✝ ∈ H
n : ℕ
hgn : g ^ Int.negSucc n ∈ H
this : g ^ (n + 1) ∈ H
⊢ n + 1 = 0 → Int.negSucc n = 0
[PROOFSTEP]
simp only [IsEmpty.forall_iff, Nat.succ_ne_zero]
[GOAL]
case mp.negSucc
G : Type u_1
inst✝ : Group G
H : Subgroup G
hH : Saturated H
n✝ : ℤ
g : G
hgn✝ : g ^ n✝ ∈ H
n : ℕ
hgn : g ^ Int.negSucc n ∈ H
⊢ g ^ (n + 1) ∈ H
[PROOFSTEP]
simpa only [inv_mem_iff, zpow_negSucc] using hgn
[GOAL]
case mpr
G : Type u_1
inst✝ : Group G
H : Subgroup G
⊢ (∀ (n : ℤ) (g : G), g ^ n ∈ H → n = 0 ∨ g ∈ H) → Saturated H
[PROOFSTEP]
intro h n g hgn
[GOAL]
case mpr
G : Type u_1
inst✝ : Group G
H : Subgroup G
h : ∀ (n : ℤ) (g : G), g ^ n ∈ H → n = 0 ∨ g ∈ H
n : ℕ
g : G
hgn : g ^ n ∈ H
⊢ n = 0 ∨ g ∈ H
[PROOFSTEP]
specialize h n g
[GOAL]
case mpr
G : Type u_1
inst✝ : Group G
H : Subgroup G
n : ℕ
g : G
hgn : g ^ n ∈ H
h : g ^ ↑n ∈ H → ↑n = 0 ∨ g ∈ H
⊢ n = 0 ∨ g ∈ H
[PROOFSTEP]
simp only [Int.coe_nat_eq_zero, zpow_ofNat] at h
[GOAL]
case mpr
G : Type u_1
inst✝ : Group G
H : Subgroup G
n : ℕ
g : G
hgn : g ^ n ∈ H
h : g ^ n ∈ H → n = 0 ∨ g ∈ H
⊢ n = 0 ∨ g ∈ H
[PROOFSTEP]
apply h hgn
[GOAL]
A₁ : Type u_1
A₂ : Type u_2
inst✝² : AddCommGroup A₁
inst✝¹ : AddCommGroup A₂
inst✝ : NoZeroSMulDivisors ℕ A₂
f : A₁ →+ A₂
⊢ Saturated (AddMonoidHom.ker f)
[PROOFSTEP]
intro n g hg
[GOAL]
A₁ : Type u_1
A₂ : Type u_2
inst✝² : AddCommGroup A₁
inst✝¹ : AddCommGroup A₂
inst✝ : NoZeroSMulDivisors ℕ A₂
f : A₁ →+ A₂
n : ℕ
g : A₁
hg : n • g ∈ AddMonoidHom.ker f
⊢ n = 0 ∨ g ∈ AddMonoidHom.ker f
[PROOFSTEP]
simpa only [f.mem_ker, nsmul_eq_smul, f.map_nsmul, smul_eq_zero] using hg
| {"mathlib_filename": "Mathlib.GroupTheory.Subgroup.Saturated", "llama_tokens": 1725} |
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
σ : Type u_4
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
S✝ : Subsemigroup M
f : M →ₙ* N
S : Subsemigroup N
a✝ b✝ : M
ha : a✝ ∈ ↑f ⁻¹' ↑S
hb : b✝ ∈ ↑f ⁻¹' ↑S
⊢ ↑f (a✝ * b✝) ∈ S
[PROOFSTEP]
rw [map_mul]
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
σ : Type u_4
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
S✝ : Subsemigroup M
f : M →ₙ* N
S : Subsemigroup N
a✝ b✝ : M
ha : a✝ ∈ ↑f ⁻¹' ↑S
hb : b✝ ∈ ↑f ⁻¹' ↑S
⊢ ↑f a✝ * ↑f b✝ ∈ S
[PROOFSTEP]
exact mul_mem ha hb
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
σ : Type u_4
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
S✝ : Subsemigroup M
S : Subsemigroup P
⊢ ∀ (x : P), x ∈ comap (MulHom.id P) S ↔ x ∈ S
[PROOFSTEP]
simp
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
σ : Type u_4
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
S✝ : Subsemigroup M
f : M →ₙ* N
S : Subsemigroup M
⊢ ∀ {a b : N}, a ∈ ↑f '' ↑S → b ∈ ↑f '' ↑S → a * b ∈ ↑f '' ↑S
[PROOFSTEP]
rintro _ _ ⟨x, hx, rfl⟩ ⟨y, hy, rfl⟩
[GOAL]
case intro.intro.intro.intro
M : Type u_1
N : Type u_2
P : Type u_3
σ : Type u_4
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
S✝ : Subsemigroup M
f : M →ₙ* N
S : Subsemigroup M
x : M
hx : x ∈ ↑S
y : M
hy : y ∈ ↑S
⊢ ↑f x * ↑f y ∈ ↑f '' ↑S
[PROOFSTEP]
exact ⟨x * y, @mul_mem (Subsemigroup M) M _ _ _ _ _ _ hx hy, by rw [map_mul]⟩
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
σ : Type u_4
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
S✝ : Subsemigroup M
f : M →ₙ* N
S : Subsemigroup M
x : M
hx : x ∈ ↑S
y : M
hy : y ∈ ↑S
⊢ ↑f (x * y) = ↑f x * ↑f y
[PROOFSTEP]
rw [map_mul]
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
σ : Type u_4
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
S✝ : Subsemigroup M
ι : Type u_5
f : M →ₙ* N
hf : Function.Injective ↑f
S : Subsemigroup M
x : M
⊢ x ∈ comap f (map f S) → x ∈ S
[PROOFSTEP]
simp [mem_comap, mem_map, hf.eq_iff]
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
σ : Type u_4
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
S✝ : Subsemigroup M
ι : Type u_5
f : M →ₙ* N
hf : Function.Surjective ↑f
S : Subsemigroup N
x : N
h : x ∈ S
y : M
hy : ↑f y = x
⊢ y ∈ comap f S ∧ ↑f y = x
[PROOFSTEP]
simp [hy, h]
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
σ : Type u_4
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
S : Subsemigroup M
s : Set M
x✝¹ : { x // x ∈ closure s }
x : M
hx : x ∈ closure s
x✝ : { val := x, property := hx } ∈ ⊤
⊢ { val := x, property := hx } ∈ closure (Subtype.val ⁻¹' s)
[PROOFSTEP]
refine' closure_induction' _ (fun g hg => subset_closure hg) (fun g₁ g₂ hg₁ hg₂ => _) hx
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
σ : Type u_4
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
S : Subsemigroup M
s : Set M
x✝¹ : { x // x ∈ closure s }
x : M
hx : x ∈ closure s
x✝ : { val := x, property := hx } ∈ ⊤
g₁ : M
g₂ : g₁ ∈ closure s
hg₁ : M
hg₂ : hg₁ ∈ closure s
⊢ { val := g₁, property := g₂ } ∈ closure (Subtype.val ⁻¹' s) →
{ val := hg₁, property := hg₂ } ∈ closure (Subtype.val ⁻¹' s) →
{ val := g₁ * hg₁, property := (_ : g₁ * hg₁ ∈ closure s) } ∈ closure (Subtype.val ⁻¹' s)
[PROOFSTEP]
exact Subsemigroup.mul_mem _
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
σ : Type u_4
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
S s : Subsemigroup M
x : M × N
⊢ x ∈ prod s ⊤ ↔ x ∈ comap (MulHom.fst M N) s
[PROOFSTEP]
simp [mem_prod, MulHom.coe_fst]
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
σ : Type u_4
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
S : Subsemigroup M
s : Subsemigroup N
x : M × N
⊢ x ∈ prod ⊤ s ↔ x ∈ comap (MulHom.snd M N) s
[PROOFSTEP]
simp [mem_prod, MulHom.coe_snd]
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
σ : Type u_4
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
S : Subsemigroup M
⊢ ↑(prod ⊥ ⊥) = ↑⊥
[PROOFSTEP]
simp [coe_prod, Prod.one_eq_mk]
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
σ : Type u_4
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
S s : Subsemigroup M
t : Subsemigroup N
u : Subsemigroup (M × N)
⊢ u ≤ prod s t ↔ map (fst M N) u ≤ s ∧ map (snd M N) u ≤ t
[PROOFSTEP]
constructor
[GOAL]
case mp
M : Type u_1
N : Type u_2
P : Type u_3
σ : Type u_4
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
S s : Subsemigroup M
t : Subsemigroup N
u : Subsemigroup (M × N)
⊢ u ≤ prod s t → map (fst M N) u ≤ s ∧ map (snd M N) u ≤ t
[PROOFSTEP]
intro h
[GOAL]
case mp
M : Type u_1
N : Type u_2
P : Type u_3
σ : Type u_4
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
S s : Subsemigroup M
t : Subsemigroup N
u : Subsemigroup (M × N)
h : u ≤ prod s t
⊢ map (fst M N) u ≤ s ∧ map (snd M N) u ≤ t
[PROOFSTEP]
constructor
[GOAL]
case mp.left
M : Type u_1
N : Type u_2
P : Type u_3
σ : Type u_4
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
S s : Subsemigroup M
t : Subsemigroup N
u : Subsemigroup (M × N)
h : u ≤ prod s t
⊢ map (fst M N) u ≤ s
[PROOFSTEP]
rintro x ⟨⟨y1, y2⟩, ⟨hy1, rfl⟩⟩
[GOAL]
case mp.left.intro.mk.intro
M : Type u_1
N : Type u_2
P : Type u_3
σ : Type u_4
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
S s : Subsemigroup M
t : Subsemigroup N
u : Subsemigroup (M × N)
h : u ≤ prod s t
y1 : M
y2 : N
hy1 : (y1, y2) ∈ ↑u
⊢ ↑(fst M N) (y1, y2) ∈ s
[PROOFSTEP]
exact (h hy1).1
[GOAL]
case mp.right
M : Type u_1
N : Type u_2
P : Type u_3
σ : Type u_4
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
S s : Subsemigroup M
t : Subsemigroup N
u : Subsemigroup (M × N)
h : u ≤ prod s t
⊢ map (snd M N) u ≤ t
[PROOFSTEP]
rintro x ⟨⟨y1, y2⟩, ⟨hy1, rfl⟩⟩
[GOAL]
case mp.right.intro.mk.intro
M : Type u_1
N : Type u_2
P : Type u_3
σ : Type u_4
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
S s : Subsemigroup M
t : Subsemigroup N
u : Subsemigroup (M × N)
h : u ≤ prod s t
y1 : M
y2 : N
hy1 : (y1, y2) ∈ ↑u
⊢ ↑(snd M N) (y1, y2) ∈ t
[PROOFSTEP]
exact (h hy1).2
[GOAL]
case mpr
M : Type u_1
N : Type u_2
P : Type u_3
σ : Type u_4
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
S s : Subsemigroup M
t : Subsemigroup N
u : Subsemigroup (M × N)
⊢ map (fst M N) u ≤ s ∧ map (snd M N) u ≤ t → u ≤ prod s t
[PROOFSTEP]
rintro ⟨hH, hK⟩ ⟨x1, x2⟩ h
[GOAL]
case mpr.intro.mk
M : Type u_1
N : Type u_2
P : Type u_3
σ : Type u_4
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
S s : Subsemigroup M
t : Subsemigroup N
u : Subsemigroup (M × N)
hH : map (fst M N) u ≤ s
hK : map (snd M N) u ≤ t
x1 : M
x2 : N
h : (x1, x2) ∈ u
⊢ (x1, x2) ∈ prod s t
[PROOFSTEP]
exact ⟨hH ⟨_, h, rfl⟩, hK ⟨_, h, rfl⟩⟩
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
σ : Type u_4
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
S : Subsemigroup M
g : N →ₙ* P
f : M →ₙ* N
⊢ map g (srange f) = srange (comp g f)
[PROOFSTEP]
simpa only [srange_eq_map] using (⊤ : Subsemigroup M).map_map g f
[GOAL]
M : Type u_1
N✝ : Type u_2
P : Type u_3
σ : Type u_4
inst✝³ : Mul M
inst✝² : Mul N✝
inst✝¹ : Mul P
S : Subsemigroup M
N : Type u_5
inst✝ : Mul N
f : M →ₙ* N
⊢ ↑(srange f) = ↑⊤ ↔ Set.range ↑f = Set.univ
[PROOFSTEP]
rw [coe_srange, coe_top]
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
σ : Type u_4
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
S : Subsemigroup M
f : M →ₙ* N
M' : Subsemigroup M
⊢ Function.Surjective ↑(subsemigroupMap f M')
[PROOFSTEP]
rintro ⟨_, x, hx, rfl⟩
[GOAL]
case mk.intro.intro
M : Type u_1
N : Type u_2
P : Type u_3
σ : Type u_4
inst✝² : Mul M
inst✝¹ : Mul N
inst✝ : Mul P
S : Subsemigroup M
f : M →ₙ* N
M' : Subsemigroup M
x : M
hx : x ∈ ↑M'
⊢ ∃ a, ↑(subsemigroupMap f M') a = { val := ↑f x, property := (_ : ∃ a, a ∈ ↑M' ∧ ↑f a = ↑f x) }
[PROOFSTEP]
exact ⟨⟨x, hx⟩, rfl⟩
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
σ : Type u_4
inst✝⁴ : Mul M
inst✝³ : Mul N
inst✝² : Mul P
S : Subsemigroup M
inst✝¹ : Nonempty M
inst✝ : Nonempty N
s : Subsemigroup M
t : Subsemigroup N
⊢ prod s t = ⊤ ↔ s = ⊤ ∧ t = ⊤
[PROOFSTEP]
simp only [eq_top_iff, le_prod_iff, ← (gc_map_comap _).le_iff_le, ← srange_eq_map, srange_fst, srange_snd]
[GOAL]
M : Type u_1
N : Type u_2
P : Type u_3
σ : Type u_4
inst✝¹ : Mul M
inst✝ : Mul N
S T : Subsemigroup M
f : M →ₙ* N
g : N → M
h : Function.LeftInverse g ↑f
src✝ : M →ₙ* { x // x ∈ MulHom.srange f } := MulHom.srangeRestrict f
x : { x // x ∈ MulHom.srange f }
x' : M
hx' : ↑f x' = ↑x
⊢ ↑f (g ↑x) = ↑x
[PROOFSTEP]
rw [← hx', h x']
| {"mathlib_filename": "Mathlib.GroupTheory.Subsemigroup.Operations", "llama_tokens": 4449} |
{"mathlib_filename": "Mathlib.GroupTheory.Subgroup.Actions", "llama_tokens": 0} |
|
[GOAL]
M : Type u_1
N : Type u_2
A : Type u_3
inst✝¹ : Mul M
s : Set M
inst✝ : Add A
t : Set A
p q : Subsemigroup M
h : p.carrier = q.carrier
⊢ p = q
[PROOFSTEP]
cases p
[GOAL]
case mk
M : Type u_1
N : Type u_2
A : Type u_3
inst✝¹ : Mul M
s : Set M
inst✝ : Add A
t : Set A
q : Subsemigroup M
carrier✝ : Set M
mul_mem'✝ : ∀ {a b : M}, a ∈ carrier✝ → b ∈ carrier✝ → a * b ∈ carrier✝
h : { carrier := carrier✝, mul_mem' := mul_mem'✝ }.carrier = q.carrier
⊢ { carrier := carrier✝, mul_mem' := mul_mem'✝ } = q
[PROOFSTEP]
cases q
[GOAL]
case mk.mk
M : Type u_1
N : Type u_2
A : Type u_3
inst✝¹ : Mul M
s : Set M
inst✝ : Add A
t : Set A
carrier✝¹ : Set M
mul_mem'✝¹ : ∀ {a b : M}, a ∈ carrier✝¹ → b ∈ carrier✝¹ → a * b ∈ carrier✝¹
carrier✝ : Set M
mul_mem'✝ : ∀ {a b : M}, a ∈ carrier✝ → b ∈ carrier✝ → a * b ∈ carrier✝
h : { carrier := carrier✝¹, mul_mem' := mul_mem'✝¹ }.carrier = { carrier := carrier✝, mul_mem' := mul_mem'✝ }.carrier
⊢ { carrier := carrier✝¹, mul_mem' := mul_mem'✝¹ } = { carrier := carrier✝, mul_mem' := mul_mem'✝ }
[PROOFSTEP]
congr
[GOAL]
M : Type u_1
N : Type u_2
A : Type u_3
inst✝¹ : Mul M
s✝ : Set M
inst✝ : Add A
t : Set A
S : Subsemigroup M
s : Set (Subsemigroup M)
a✝ b✝ : M
hx : a✝ ∈ ⋂ (t : Subsemigroup M) (_ : t ∈ s), ↑t
hy : b✝ ∈ ⋂ (t : Subsemigroup M) (_ : t ∈ s), ↑t
i : Subsemigroup M
h : i ∈ s
⊢ a✝ ∈ i
[PROOFSTEP]
apply Set.mem_iInter₂.1 hx i h
[GOAL]
M : Type u_1
N : Type u_2
A : Type u_3
inst✝¹ : Mul M
s✝ : Set M
inst✝ : Add A
t : Set A
S : Subsemigroup M
s : Set (Subsemigroup M)
a✝ b✝ : M
hx : a✝ ∈ ⋂ (t : Subsemigroup M) (_ : t ∈ s), ↑t
hy : b✝ ∈ ⋂ (t : Subsemigroup M) (_ : t ∈ s), ↑t
i : Subsemigroup M
h : i ∈ s
⊢ b✝ ∈ i
[PROOFSTEP]
apply Set.mem_iInter₂.1 hy i h
[GOAL]
M : Type u_1
N : Type u_2
A : Type u_3
inst✝¹ : Mul M
s : Set M
inst✝ : Add A
t : Set A
S✝ : Subsemigroup M
ι : Sort u_4
S : ι → Subsemigroup M
x : M
⊢ x ∈ ⨅ (i : ι), S i ↔ ∀ (i : ι), x ∈ S i
[PROOFSTEP]
simp only [iInf, mem_sInf, Set.forall_range_iff]
[GOAL]
M : Type u_1
N : Type u_2
A : Type u_3
inst✝¹ : Mul M
s : Set M
inst✝ : Add A
t : Set A
S✝ : Subsemigroup M
ι : Sort u_4
S : ι → Subsemigroup M
⊢ ↑(⨅ (i : ι), S i) = ⋂ (i : ι), ↑(S i)
[PROOFSTEP]
simp only [iInf, coe_sInf, Set.biInter_range]
[GOAL]
M : Type u_1
N : Type u_2
A : Type u_3
inst✝² : Mul M
s : Set M
inst✝¹ : Add A
t : Set A
S : Subsemigroup M
inst✝ : Subsingleton (Subsemigroup M)
⊢ Subsingleton M
[PROOFSTEP]
constructor
[GOAL]
case allEq
M : Type u_1
N : Type u_2
A : Type u_3
inst✝² : Mul M
s : Set M
inst✝¹ : Add A
t : Set A
S : Subsemigroup M
inst✝ : Subsingleton (Subsemigroup M)
⊢ ∀ (a b : M), a = b
[PROOFSTEP]
intro x y
[GOAL]
case allEq
M : Type u_1
N : Type u_2
A : Type u_3
inst✝² : Mul M
s : Set M
inst✝¹ : Add A
t : Set A
S : Subsemigroup M
inst✝ : Subsingleton (Subsemigroup M)
x y : M
⊢ x = y
[PROOFSTEP]
have : ∀ a : M, a ∈ (⊥ : Subsemigroup M) := by simp [Subsingleton.elim (⊥ : Subsemigroup M) ⊤]
[GOAL]
M : Type u_1
N : Type u_2
A : Type u_3
inst✝² : Mul M
s : Set M
inst✝¹ : Add A
t : Set A
S : Subsemigroup M
inst✝ : Subsingleton (Subsemigroup M)
x y : M
⊢ ∀ (a : M), a ∈ ⊥
[PROOFSTEP]
simp [Subsingleton.elim (⊥ : Subsemigroup M) ⊤]
[GOAL]
case allEq
M : Type u_1
N : Type u_2
A : Type u_3
inst✝² : Mul M
s : Set M
inst✝¹ : Add A
t : Set A
S : Subsemigroup M
inst✝ : Subsingleton (Subsemigroup M)
x y : M
this : ∀ (a : M), a ∈ ⊥
⊢ x = y
[PROOFSTEP]
exact absurd (this x) not_mem_bot
[GOAL]
M : Type u_1
N : Type u_2
A : Type u_3
inst✝¹ : Mul M
s : Set M
inst✝ : Add A
t : Set A
S : Subsemigroup M
hn : Nonempty M
h : ⊥ = ⊤
⊢ False
[PROOFSTEP]
obtain ⟨x⟩ := id hn
[GOAL]
case intro
M : Type u_1
N : Type u_2
A : Type u_3
inst✝¹ : Mul M
s : Set M
inst✝ : Add A
t : Set A
S : Subsemigroup M
hn : Nonempty M
h : ⊥ = ⊤
x : M
⊢ False
[PROOFSTEP]
refine' absurd (_ : x ∈ ⊥) not_mem_bot
[GOAL]
case intro
M : Type u_1
N : Type u_2
A : Type u_3
inst✝¹ : Mul M
s : Set M
inst✝ : Add A
t : Set A
S : Subsemigroup M
hn : Nonempty M
h : ⊥ = ⊤
x : M
⊢ x ∈ ⊥
[PROOFSTEP]
simp [h]
[GOAL]
M : Type u_1
N : Type u_2
A : Type u_3
inst✝¹ : Mul M
s✝ : Set M
inst✝ : Add A
t : Set A
S : Subsemigroup M
s : Set M
p : (x : M) → x ∈ closure s → Prop
Hs : ∀ (x : M) (h : x ∈ s), p x (_ : x ∈ ↑(closure s))
Hmul : ∀ (x : M) (hx : x ∈ closure s) (y : M) (hy : y ∈ closure s), p x hx → p y hy → p (x * y) (_ : x * y ∈ closure s)
x : M
hx : x ∈ closure s
⊢ p x hx
[PROOFSTEP]
refine' Exists.elim _ fun (hx : x ∈ closure s) (hc : p x hx) => hc
[GOAL]
M : Type u_1
N : Type u_2
A : Type u_3
inst✝¹ : Mul M
s✝ : Set M
inst✝ : Add A
t : Set A
S : Subsemigroup M
s : Set M
p : (x : M) → x ∈ closure s → Prop
Hs : ∀ (x : M) (h : x ∈ s), p x (_ : x ∈ ↑(closure s))
Hmul : ∀ (x : M) (hx : x ∈ closure s) (y : M) (hy : y ∈ closure s), p x hx → p y hy → p (x * y) (_ : x * y ∈ closure s)
x : M
hx : x ∈ closure s
⊢ ∃ x_1, p x x_1
[PROOFSTEP]
exact closure_induction hx (fun x hx => ⟨_, Hs x hx⟩) fun x y ⟨hx', hx⟩ ⟨hy', hy⟩ => ⟨_, Hmul _ _ _ _ hx hy⟩
[GOAL]
M : Type u_1
N : Type u_2
A : Type u_3
inst✝¹ : Mul M
s✝ : Set M
inst✝ : Add A
t : Set A
S : Subsemigroup M
p : M → Prop
x : M
s : Set M
hs : closure s = ⊤
Hs : ∀ (x : M), x ∈ s → p x
Hmul : ∀ (x y : M), p x → p y → p (x * y)
⊢ p x
[PROOFSTEP]
have : ∀ x ∈ closure s, p x := fun x hx => closure_induction hx Hs Hmul
[GOAL]
M : Type u_1
N : Type u_2
A : Type u_3
inst✝¹ : Mul M
s✝ : Set M
inst✝ : Add A
t : Set A
S : Subsemigroup M
p : M → Prop
x : M
s : Set M
hs : closure s = ⊤
Hs : ∀ (x : M), x ∈ s → p x
Hmul : ∀ (x y : M), p x → p y → p (x * y)
this : ∀ (x : M), x ∈ closure s → p x
⊢ p x
[PROOFSTEP]
simpa [hs] using this x
[GOAL]
M : Type u_1
N : Type u_2
A : Type u_3
inst✝¹ : Mul M
s : Set M
inst✝ : Add A
t : Set A
S : Subsemigroup M
m : M
p : Subsemigroup M
⊢ closure {m} ≤ p ↔ m ∈ p
[PROOFSTEP]
rw [closure_le, singleton_subset_iff, SetLike.mem_coe]
[GOAL]
M : Type u_1
N : Type u_2
A : Type u_3
inst✝¹ : Mul M
s : Set M
inst✝ : Add A
t : Set A
S : Subsemigroup M
ι : Sort u_4
p : ι → Subsemigroup M
m : M
⊢ m ∈ ⨆ (i : ι), p i ↔ ∀ (N : Subsemigroup M), (∀ (i : ι), p i ≤ N) → m ∈ N
[PROOFSTEP]
rw [← closure_singleton_le_iff_mem, le_iSup_iff]
[GOAL]
M : Type u_1
N : Type u_2
A : Type u_3
inst✝¹ : Mul M
s : Set M
inst✝ : Add A
t : Set A
S : Subsemigroup M
ι : Sort u_4
p : ι → Subsemigroup M
m : M
⊢ (∀ (b : Subsemigroup M), (∀ (i : ι), p i ≤ b) → closure {m} ≤ b) ↔
∀ (N : Subsemigroup M), (∀ (i : ι), p i ≤ N) → m ∈ N
[PROOFSTEP]
simp only [closure_singleton_le_iff_mem]
[GOAL]
M : Type u_1
N : Type u_2
A : Type u_3
inst✝¹ : Mul M
s : Set M
inst✝ : Add A
t : Set A
S : Subsemigroup M
ι : Sort u_4
p : ι → Subsemigroup M
⊢ ⨆ (i : ι), p i = closure (⋃ (i : ι), ↑(p i))
[PROOFSTEP]
simp_rw [Subsemigroup.closure_iUnion, Subsemigroup.closure_eq]
[GOAL]
M : Type u_1
N : Type u_2
A : Type u_3
inst✝² : Mul M
s : Set M
inst✝¹ : Add A
t : Set A
inst✝ : Mul N
f g : M →ₙ* N
a✝ b✝ : M
hx : ↑f a✝ = ↑g a✝
hy : ↑f b✝ = ↑g b✝
⊢ a✝ * b✝ ∈ {x | ↑f x = ↑g x}
[PROOFSTEP]
simp [*]
[GOAL]
M✝ : Type u_1
N✝ : Type u_2
A : Type u_3
M : Type ?u.26668
N : Type ?u.26671
inst✝¹ : Semigroup M
inst✝ : Semigroup N
s : Set M
f : M → N
hs : closure s = ⊤
hmul : ∀ (x y : M), y ∈ s → f (x * y) = f x * f y
x✝ y y₁ y₂ : M
h₁ : ∀ (x : M), f (x * y₁) = f x * f y₁
h₂ : ∀ (x : M), f (x * y₂) = f x * f y₂
x : M
⊢ f (x * (y₁ * y₂)) = f x * f (y₁ * y₂)
[PROOFSTEP]
simp only [← mul_assoc, h₁, h₂]
| {"mathlib_filename": "Mathlib.GroupTheory.Subsemigroup.Basic", "llama_tokens": 3980} |
[GOAL]
n : ℕ
⊢ ∀ (a b c : QuaternionGroup n), a * b * c = a * (b * c)
[PROOFSTEP]
rintro (i | i) (j | j) (k | k)
[GOAL]
case a.a.a
n : ℕ
i j k : ZMod (2 * n)
⊢ a i * a j * a k = a i * (a j * a k)
[PROOFSTEP]
simp only [(· * ·), mul]
[GOAL]
case a.a.xa
n : ℕ
i j k : ZMod (2 * n)
⊢ a i * a j * xa k = a i * (a j * xa k)
[PROOFSTEP]
simp only [(· * ·), mul]
[GOAL]
case a.xa.a
n : ℕ
i j k : ZMod (2 * n)
⊢ a i * xa j * a k = a i * (xa j * a k)
[PROOFSTEP]
simp only [(· * ·), mul]
[GOAL]
case a.xa.xa
n : ℕ
i j k : ZMod (2 * n)
⊢ a i * xa j * xa k = a i * (xa j * xa k)
[PROOFSTEP]
simp only [(· * ·), mul]
[GOAL]
case xa.a.a
n : ℕ
i j k : ZMod (2 * n)
⊢ xa i * a j * a k = xa i * (a j * a k)
[PROOFSTEP]
simp only [(· * ·), mul]
[GOAL]
case xa.a.xa
n : ℕ
i j k : ZMod (2 * n)
⊢ xa i * a j * xa k = xa i * (a j * xa k)
[PROOFSTEP]
simp only [(· * ·), mul]
[GOAL]
case xa.xa.a
n : ℕ
i j k : ZMod (2 * n)
⊢ xa i * xa j * a k = xa i * (xa j * a k)
[PROOFSTEP]
simp only [(· * ·), mul]
[GOAL]
case xa.xa.xa
n : ℕ
i j k : ZMod (2 * n)
⊢ xa i * xa j * xa k = xa i * (xa j * xa k)
[PROOFSTEP]
simp only [(· * ·), mul]
[GOAL]
case a.a.a
n : ℕ
i j k : ZMod (2 * n)
⊢ a (i + j + k) = a (i + (j + k))
[PROOFSTEP]
ring_nf
[GOAL]
case a.a.xa
n : ℕ
i j k : ZMod (2 * n)
⊢ xa (k - (i + j)) = xa (k - j - i)
[PROOFSTEP]
ring_nf
[GOAL]
case a.xa.a
n : ℕ
i j k : ZMod (2 * n)
⊢ xa (j - i + k) = xa (j + k - i)
[PROOFSTEP]
ring_nf
[GOAL]
case a.xa.xa
n : ℕ
i j k : ZMod (2 * n)
⊢ a (↑n + k - (j - i)) = a (i + (↑n + k - j))
[PROOFSTEP]
ring_nf
[GOAL]
case xa.a.a
n : ℕ
i j k : ZMod (2 * n)
⊢ xa (i + j + k) = xa (i + (j + k))
[PROOFSTEP]
ring_nf
[GOAL]
case xa.a.xa
n : ℕ
i j k : ZMod (2 * n)
⊢ a (↑n + k - (i + j)) = a (↑n + (k - j) - i)
[PROOFSTEP]
ring_nf
[GOAL]
case xa.xa.a
n : ℕ
i j k : ZMod (2 * n)
⊢ a (↑n + j - i + k) = a (↑n + (j + k) - i)
[PROOFSTEP]
ring_nf
[GOAL]
case xa.xa.xa
n : ℕ
i j k : ZMod (2 * n)
⊢ xa (k - (↑n + j - i)) = xa (i + (↑n + k - j))
[PROOFSTEP]
ring_nf
[GOAL]
case xa.xa.xa
n : ℕ
i j k : ZMod (2 * n)
⊢ xa (k + (-↑n - j) + i) = xa (k + (↑n - j) + i)
[PROOFSTEP]
congr
[GOAL]
case xa.xa.xa.e_a.e_a.e_a.e_a
n : ℕ
i j k : ZMod (2 * n)
⊢ -↑n = ↑n
[PROOFSTEP]
calc
-(n : ZMod (2 * n)) = 0 - n := by rw [zero_sub]
_ = 2 * n - n := by norm_cast; simp
_ = n := by ring
[GOAL]
n : ℕ
i j k : ZMod (2 * n)
⊢ -↑n = 0 - ↑n
[PROOFSTEP]
rw [zero_sub]
[GOAL]
n : ℕ
i j k : ZMod (2 * n)
⊢ 0 - ↑n = 2 * ↑n - ↑n
[PROOFSTEP]
norm_cast
[GOAL]
n : ℕ
i j k : ZMod (2 * n)
⊢ ↑(Int.subNatNat 0 n) = ↑(Int.subNatNat (2 * n) n)
[PROOFSTEP]
simp
[GOAL]
n : ℕ
i j k : ZMod (2 * n)
⊢ 2 * ↑n - ↑n = ↑n
[PROOFSTEP]
ring
[GOAL]
n : ℕ
⊢ ∀ (a : QuaternionGroup n), 1 * a = a
[PROOFSTEP]
rintro (i | i)
[GOAL]
case a
n : ℕ
i : ZMod (2 * n)
⊢ 1 * a i = a i
[PROOFSTEP]
exact congr_arg a (zero_add i)
[GOAL]
case xa
n : ℕ
i : ZMod (2 * n)
⊢ 1 * xa i = xa i
[PROOFSTEP]
exact congr_arg xa (sub_zero i)
[GOAL]
n : ℕ
⊢ ∀ (a : QuaternionGroup n), a * 1 = a
[PROOFSTEP]
rintro (i | i)
[GOAL]
case a
n : ℕ
i : ZMod (2 * n)
⊢ a i * 1 = a i
[PROOFSTEP]
exact congr_arg a (add_zero i)
[GOAL]
case xa
n : ℕ
i : ZMod (2 * n)
⊢ xa i * 1 = xa i
[PROOFSTEP]
exact congr_arg xa (add_zero i)
[GOAL]
n : ℕ
⊢ ∀ (a : QuaternionGroup n), a⁻¹ * a = 1
[PROOFSTEP]
rintro (i | i)
[GOAL]
case a
n : ℕ
i : ZMod (2 * n)
⊢ (a i)⁻¹ * a i = 1
[PROOFSTEP]
exact congr_arg a (neg_add_self i)
[GOAL]
case xa
n : ℕ
i : ZMod (2 * n)
⊢ (xa i)⁻¹ * xa i = 1
[PROOFSTEP]
exact congr_arg a (sub_self (n + i))
[GOAL]
n : ℕ
⊢ Function.LeftInverse
(fun i =>
match i with
| a j => Sum.inl j
| xa j => Sum.inr j)
fun i =>
match i with
| Sum.inl j => a j
| Sum.inr j => xa j
[PROOFSTEP]
rintro (x | x)
[GOAL]
case inl
n : ℕ
x : ZMod (2 * n)
⊢ (fun i =>
match i with
| a j => Sum.inl j
| xa j => Sum.inr j)
((fun i =>
match i with
| Sum.inl j => a j
| Sum.inr j => xa j)
(Sum.inl x)) =
Sum.inl x
[PROOFSTEP]
rfl
[GOAL]
case inr
n : ℕ
x : ZMod (2 * n)
⊢ (fun i =>
match i with
| a j => Sum.inl j
| xa j => Sum.inr j)
((fun i =>
match i with
| Sum.inl j => a j
| Sum.inr j => xa j)
(Sum.inr x)) =
Sum.inr x
[PROOFSTEP]
rfl
[GOAL]
n : ℕ
⊢ Function.RightInverse
(fun i =>
match i with
| a j => Sum.inl j
| xa j => Sum.inr j)
fun i =>
match i with
| Sum.inl j => a j
| Sum.inr j => xa j
[PROOFSTEP]
rintro (x | x)
[GOAL]
case a
n : ℕ
x : ZMod (2 * n)
⊢ (fun i =>
match i with
| Sum.inl j => a j
| Sum.inr j => xa j)
((fun i =>
match i with
| a j => Sum.inl j
| xa j => Sum.inr j)
(a x)) =
a x
[PROOFSTEP]
rfl
[GOAL]
case xa
n : ℕ
x : ZMod (2 * n)
⊢ (fun i =>
match i with
| Sum.inl j => a j
| Sum.inr j => xa j)
((fun i =>
match i with
| a j => Sum.inl j
| xa j => Sum.inr j)
(xa x)) =
xa x
[PROOFSTEP]
rfl
[GOAL]
n : ℕ
⊢ Function.LeftInverse
(fun i =>
match i with
| DihedralGroup.r j => a j
| DihedralGroup.sr j => xa j)
fun i =>
match i with
| a j => DihedralGroup.r j
| xa j => DihedralGroup.sr j
[PROOFSTEP]
rintro (k | k)
[GOAL]
case a
n : ℕ
k : ZMod (2 * 0)
⊢ (fun i =>
match i with
| DihedralGroup.r j => a j
| DihedralGroup.sr j => xa j)
((fun i =>
match i with
| a j => DihedralGroup.r j
| xa j => DihedralGroup.sr j)
(a k)) =
a k
[PROOFSTEP]
rfl
[GOAL]
case xa
n : ℕ
k : ZMod (2 * 0)
⊢ (fun i =>
match i with
| DihedralGroup.r j => a j
| DihedralGroup.sr j => xa j)
((fun i =>
match i with
| a j => DihedralGroup.r j
| xa j => DihedralGroup.sr j)
(xa k)) =
xa k
[PROOFSTEP]
rfl
[GOAL]
n : ℕ
⊢ Function.RightInverse
(fun i =>
match i with
| DihedralGroup.r j => a j
| DihedralGroup.sr j => xa j)
fun i =>
match i with
| a j => DihedralGroup.r j
| xa j => DihedralGroup.sr j
[PROOFSTEP]
rintro (k | k)
[GOAL]
case r
n : ℕ
k : ZMod 0
⊢ (fun i =>
match i with
| a j => DihedralGroup.r j
| xa j => DihedralGroup.sr j)
((fun i =>
match i with
| DihedralGroup.r j => a j
| DihedralGroup.sr j => xa j)
(DihedralGroup.r k)) =
DihedralGroup.r k
[PROOFSTEP]
rfl
[GOAL]
case sr
n : ℕ
k : ZMod 0
⊢ (fun i =>
match i with
| a j => DihedralGroup.r j
| xa j => DihedralGroup.sr j)
((fun i =>
match i with
| DihedralGroup.r j => a j
| DihedralGroup.sr j => xa j)
(DihedralGroup.sr k)) =
DihedralGroup.sr k
[PROOFSTEP]
rfl
[GOAL]
n : ℕ
⊢ ∀ (x y : QuaternionGroup 0),
Equiv.toFun
{
toFun := fun i =>
match i with
| a j => DihedralGroup.r j
| xa j => DihedralGroup.sr j,
invFun := fun i =>
match i with
| DihedralGroup.r j => a j
| DihedralGroup.sr j => xa j,
left_inv :=
(_ :
∀ (x : QuaternionGroup 0),
(fun i =>
match i with
| DihedralGroup.r j => a j
| DihedralGroup.sr j => xa j)
((fun i =>
match i with
| a j => DihedralGroup.r j
| xa j => DihedralGroup.sr j)
x) =
x),
right_inv :=
(_ :
∀ (x : DihedralGroup 0),
(fun i =>
match i with
| a j => DihedralGroup.r j
| xa j => DihedralGroup.sr j)
((fun i =>
match i with
| DihedralGroup.r j => a j
| DihedralGroup.sr j => xa j)
x) =
x) }
(x * y) =
Equiv.toFun
{
toFun := fun i =>
match i with
| a j => DihedralGroup.r j
| xa j => DihedralGroup.sr j,
invFun := fun i =>
match i with
| DihedralGroup.r j => a j
| DihedralGroup.sr j => xa j,
left_inv :=
(_ :
∀ (x : QuaternionGroup 0),
(fun i =>
match i with
| DihedralGroup.r j => a j
| DihedralGroup.sr j => xa j)
((fun i =>
match i with
| a j => DihedralGroup.r j
| xa j => DihedralGroup.sr j)
x) =
x),
right_inv :=
(_ :
∀ (x : DihedralGroup 0),
(fun i =>
match i with
| a j => DihedralGroup.r j
| xa j => DihedralGroup.sr j)
((fun i =>
match i with
| DihedralGroup.r j => a j
| DihedralGroup.sr j => xa j)
x) =
x) }
x *
Equiv.toFun
{
toFun := fun i =>
match i with
| a j => DihedralGroup.r j
| xa j => DihedralGroup.sr j,
invFun := fun i =>
match i with
| DihedralGroup.r j => a j
| DihedralGroup.sr j => xa j,
left_inv :=
(_ :
∀ (x : QuaternionGroup 0),
(fun i =>
match i with
| DihedralGroup.r j => a j
| DihedralGroup.sr j => xa j)
((fun i =>
match i with
| a j => DihedralGroup.r j
| xa j => DihedralGroup.sr j)
x) =
x),
right_inv :=
(_ :
∀ (x : DihedralGroup 0),
(fun i =>
match i with
| a j => DihedralGroup.r j
| xa j => DihedralGroup.sr j)
((fun i =>
match i with
| DihedralGroup.r j => a j
| DihedralGroup.sr j => xa j)
x) =
x) }
y
[PROOFSTEP]
rintro (k | k) (l | l)
[GOAL]
case a.a
n : ℕ
k l : ZMod (2 * 0)
⊢ Equiv.toFun
{
toFun := fun i =>
match i with
| a j => DihedralGroup.r j
| xa j => DihedralGroup.sr j,
invFun := fun i =>
match i with
| DihedralGroup.r j => a j
| DihedralGroup.sr j => xa j,
left_inv :=
(_ :
∀ (x : QuaternionGroup 0),
(fun i =>
match i with
| DihedralGroup.r j => a j
| DihedralGroup.sr j => xa j)
((fun i =>
match i with
| a j => DihedralGroup.r j
| xa j => DihedralGroup.sr j)
x) =
x),
right_inv :=
(_ :
∀ (x : DihedralGroup 0),
(fun i =>
match i with
| a j => DihedralGroup.r j
| xa j => DihedralGroup.sr j)
((fun i =>
match i with
| DihedralGroup.r j => a j
| DihedralGroup.sr j => xa j)
x) =
x) }
(a k * a l) =
Equiv.toFun
{
toFun := fun i =>
match i with
| a j => DihedralGroup.r j
| xa j => DihedralGroup.sr j,
invFun := fun i =>
match i with
| DihedralGroup.r j => a j
| DihedralGroup.sr j => xa j,
left_inv :=
(_ :
∀ (x : QuaternionGroup 0),
(fun i =>
match i with
| DihedralGroup.r j => a j
| DihedralGroup.sr j => xa j)
((fun i =>
match i with
| a j => DihedralGroup.r j
| xa j => DihedralGroup.sr j)
x) =
x),
right_inv :=
(_ :
∀ (x : DihedralGroup 0),
(fun i =>
match i with
| a j => DihedralGroup.r j
| xa j => DihedralGroup.sr j)
((fun i =>
match i with
| DihedralGroup.r j => a j
| DihedralGroup.sr j => xa j)
x) =
x) }
(a k) *
Equiv.toFun
{
toFun := fun i =>
match i with
| a j => DihedralGroup.r j
| xa j => DihedralGroup.sr j,
invFun := fun i =>
match i with
| DihedralGroup.r j => a j
| DihedralGroup.sr j => xa j,
left_inv :=
(_ :
∀ (x : QuaternionGroup 0),
(fun i =>
match i with
| DihedralGroup.r j => a j
| DihedralGroup.sr j => xa j)
((fun i =>
match i with
| a j => DihedralGroup.r j
| xa j => DihedralGroup.sr j)
x) =
x),
right_inv :=
(_ :
∀ (x : DihedralGroup 0),
(fun i =>
match i with
| a j => DihedralGroup.r j
| xa j => DihedralGroup.sr j)
((fun i =>
match i with
| DihedralGroup.r j => a j
| DihedralGroup.sr j => xa j)
x) =
x) }
(a l)
[PROOFSTEP]
simp
[GOAL]
case a.xa
n : ℕ
k l : ZMod (2 * 0)
⊢ Equiv.toFun
{
toFun := fun i =>
match i with
| a j => DihedralGroup.r j
| xa j => DihedralGroup.sr j,
invFun := fun i =>
match i with
| DihedralGroup.r j => a j
| DihedralGroup.sr j => xa j,
left_inv :=
(_ :
∀ (x : QuaternionGroup 0),
(fun i =>
match i with
| DihedralGroup.r j => a j
| DihedralGroup.sr j => xa j)
((fun i =>
match i with
| a j => DihedralGroup.r j
| xa j => DihedralGroup.sr j)
x) =
x),
right_inv :=
(_ :
∀ (x : DihedralGroup 0),
(fun i =>
match i with
| a j => DihedralGroup.r j
| xa j => DihedralGroup.sr j)
((fun i =>
match i with
| DihedralGroup.r j => a j
| DihedralGroup.sr j => xa j)
x) =
x) }
(a k * xa l) =
Equiv.toFun
{
toFun := fun i =>
match i with
| a j => DihedralGroup.r j
| xa j => DihedralGroup.sr j,
invFun := fun i =>
match i with
| DihedralGroup.r j => a j
| DihedralGroup.sr j => xa j,
left_inv :=
(_ :
∀ (x : QuaternionGroup 0),
(fun i =>
match i with
| DihedralGroup.r j => a j
| DihedralGroup.sr j => xa j)
((fun i =>
match i with
| a j => DihedralGroup.r j
| xa j => DihedralGroup.sr j)
x) =
x),
right_inv :=
(_ :
∀ (x : DihedralGroup 0),
(fun i =>
match i with
| a j => DihedralGroup.r j
| xa j => DihedralGroup.sr j)
((fun i =>
match i with
| DihedralGroup.r j => a j
| DihedralGroup.sr j => xa j)
x) =
x) }
(a k) *
Equiv.toFun
{
toFun := fun i =>
match i with
| a j => DihedralGroup.r j
| xa j => DihedralGroup.sr j,
invFun := fun i =>
match i with
| DihedralGroup.r j => a j
| DihedralGroup.sr j => xa j,
left_inv :=
(_ :
∀ (x : QuaternionGroup 0),
(fun i =>
match i with
| DihedralGroup.r j => a j
| DihedralGroup.sr j => xa j)
((fun i =>
match i with
| a j => DihedralGroup.r j
| xa j => DihedralGroup.sr j)
x) =
x),
right_inv :=
(_ :
∀ (x : DihedralGroup 0),
(fun i =>
match i with
| a j => DihedralGroup.r j
| xa j => DihedralGroup.sr j)
((fun i =>
match i with
| DihedralGroup.r j => a j
| DihedralGroup.sr j => xa j)
x) =
x) }
(xa l)
[PROOFSTEP]
simp
[GOAL]
case xa.a
n : ℕ
k l : ZMod (2 * 0)
⊢ Equiv.toFun
{
toFun := fun i =>
match i with
| a j => DihedralGroup.r j
| xa j => DihedralGroup.sr j,
invFun := fun i =>
match i with
| DihedralGroup.r j => a j
| DihedralGroup.sr j => xa j,
left_inv :=
(_ :
∀ (x : QuaternionGroup 0),
(fun i =>
match i with
| DihedralGroup.r j => a j
| DihedralGroup.sr j => xa j)
((fun i =>
match i with
| a j => DihedralGroup.r j
| xa j => DihedralGroup.sr j)
x) =
x),
right_inv :=
(_ :
∀ (x : DihedralGroup 0),
(fun i =>
match i with
| a j => DihedralGroup.r j
| xa j => DihedralGroup.sr j)
((fun i =>
match i with
| DihedralGroup.r j => a j
| DihedralGroup.sr j => xa j)
x) =
x) }
(xa k * a l) =
Equiv.toFun
{
toFun := fun i =>
match i with
| a j => DihedralGroup.r j
| xa j => DihedralGroup.sr j,
invFun := fun i =>
match i with
| DihedralGroup.r j => a j
| DihedralGroup.sr j => xa j,
left_inv :=
(_ :
∀ (x : QuaternionGroup 0),
(fun i =>
match i with
| DihedralGroup.r j => a j
| DihedralGroup.sr j => xa j)
((fun i =>
match i with
| a j => DihedralGroup.r j
| xa j => DihedralGroup.sr j)
x) =
x),
right_inv :=
(_ :
∀ (x : DihedralGroup 0),
(fun i =>
match i with
| a j => DihedralGroup.r j
| xa j => DihedralGroup.sr j)
((fun i =>
match i with
| DihedralGroup.r j => a j
| DihedralGroup.sr j => xa j)
x) =
x) }
(xa k) *
Equiv.toFun
{
toFun := fun i =>
match i with
| a j => DihedralGroup.r j
| xa j => DihedralGroup.sr j,
invFun := fun i =>
match i with
| DihedralGroup.r j => a j
| DihedralGroup.sr j => xa j,
left_inv :=
(_ :
∀ (x : QuaternionGroup 0),
(fun i =>
match i with
| DihedralGroup.r j => a j
| DihedralGroup.sr j => xa j)
((fun i =>
match i with
| a j => DihedralGroup.r j
| xa j => DihedralGroup.sr j)
x) =
x),
right_inv :=
(_ :
∀ (x : DihedralGroup 0),
(fun i =>
match i with
| a j => DihedralGroup.r j
| xa j => DihedralGroup.sr j)
((fun i =>
match i with
| DihedralGroup.r j => a j
| DihedralGroup.sr j => xa j)
x) =
x) }
(a l)
[PROOFSTEP]
simp
[GOAL]
case xa.xa
n : ℕ
k l : ZMod (2 * 0)
⊢ Equiv.toFun
{
toFun := fun i =>
match i with
| a j => DihedralGroup.r j
| xa j => DihedralGroup.sr j,
invFun := fun i =>
match i with
| DihedralGroup.r j => a j
| DihedralGroup.sr j => xa j,
left_inv :=
(_ :
∀ (x : QuaternionGroup 0),
(fun i =>
match i with
| DihedralGroup.r j => a j
| DihedralGroup.sr j => xa j)
((fun i =>
match i with
| a j => DihedralGroup.r j
| xa j => DihedralGroup.sr j)
x) =
x),
right_inv :=
(_ :
∀ (x : DihedralGroup 0),
(fun i =>
match i with
| a j => DihedralGroup.r j
| xa j => DihedralGroup.sr j)
((fun i =>
match i with
| DihedralGroup.r j => a j
| DihedralGroup.sr j => xa j)
x) =
x) }
(xa k * xa l) =
Equiv.toFun
{
toFun := fun i =>
match i with
| a j => DihedralGroup.r j
| xa j => DihedralGroup.sr j,
invFun := fun i =>
match i with
| DihedralGroup.r j => a j
| DihedralGroup.sr j => xa j,
left_inv :=
(_ :
∀ (x : QuaternionGroup 0),
(fun i =>
match i with
| DihedralGroup.r j => a j
| DihedralGroup.sr j => xa j)
((fun i =>
match i with
| a j => DihedralGroup.r j
| xa j => DihedralGroup.sr j)
x) =
x),
right_inv :=
(_ :
∀ (x : DihedralGroup 0),
(fun i =>
match i with
| a j => DihedralGroup.r j
| xa j => DihedralGroup.sr j)
((fun i =>
match i with
| DihedralGroup.r j => a j
| DihedralGroup.sr j => xa j)
x) =
x) }
(xa k) *
Equiv.toFun
{
toFun := fun i =>
match i with
| a j => DihedralGroup.r j
| xa j => DihedralGroup.sr j,
invFun := fun i =>
match i with
| DihedralGroup.r j => a j
| DihedralGroup.sr j => xa j,
left_inv :=
(_ :
∀ (x : QuaternionGroup 0),
(fun i =>
match i with
| DihedralGroup.r j => a j
| DihedralGroup.sr j => xa j)
((fun i =>
match i with
| a j => DihedralGroup.r j
| xa j => DihedralGroup.sr j)
x) =
x),
right_inv :=
(_ :
∀ (x : DihedralGroup 0),
(fun i =>
match i with
| a j => DihedralGroup.r j
| xa j => DihedralGroup.sr j)
((fun i =>
match i with
| DihedralGroup.r j => a j
| DihedralGroup.sr j => xa j)
x) =
x) }
(xa l)
[PROOFSTEP]
simp
[GOAL]
n : ℕ
⊢ a 0 ≠ xa 0
[PROOFSTEP]
revert n
[GOAL]
⊢ ∀ {n : ℕ}, a 0 ≠ xa 0
[PROOFSTEP]
simp
[GOAL]
n : ℕ
inst✝ : NeZero n
⊢ Fintype.card (QuaternionGroup n) = 4 * n
[PROOFSTEP]
rw [← Fintype.card_eq.mpr ⟨fintypeHelper⟩, Fintype.card_sum, ZMod.card, two_mul]
[GOAL]
n : ℕ
inst✝ : NeZero n
⊢ n + n + (n + n) = 4 * n
[PROOFSTEP]
ring
[GOAL]
n k : ℕ
⊢ a 1 ^ k = a ↑k
[PROOFSTEP]
induction' k with k IH
[GOAL]
case zero
n : ℕ
⊢ a 1 ^ Nat.zero = a ↑Nat.zero
[PROOFSTEP]
rw [Nat.cast_zero]
[GOAL]
case zero
n : ℕ
⊢ a 1 ^ Nat.zero = a 0
[PROOFSTEP]
rfl
[GOAL]
case succ
n k : ℕ
IH : a 1 ^ k = a ↑k
⊢ a 1 ^ Nat.succ k = a ↑(Nat.succ k)
[PROOFSTEP]
rw [pow_succ, IH, a_mul_a]
[GOAL]
case succ
n k : ℕ
IH : a 1 ^ k = a ↑k
⊢ a (1 + ↑k) = a ↑(Nat.succ k)
[PROOFSTEP]
congr 1
[GOAL]
case succ.e_a
n k : ℕ
IH : a 1 ^ k = a ↑k
⊢ 1 + ↑k = ↑(Nat.succ k)
[PROOFSTEP]
norm_cast
[GOAL]
case succ.e_a
n k : ℕ
IH : a 1 ^ k = a ↑k
⊢ ↑(1 + k) = ↑(Nat.succ k)
[PROOFSTEP]
rw [Nat.one_add]
[GOAL]
n : ℕ
⊢ a 1 ^ (2 * n) = 1
[PROOFSTEP]
rw [a_one_pow, one_def]
[GOAL]
n : ℕ
⊢ a ↑(2 * n) = a 0
[PROOFSTEP]
congr 1
[GOAL]
case e_a
n : ℕ
⊢ ↑(2 * n) = 0
[PROOFSTEP]
exact ZMod.nat_cast_self _
[GOAL]
n : ℕ
i : ZMod (2 * n)
⊢ xa i ^ 2 = a ↑n
[PROOFSTEP]
simp [sq]
[GOAL]
n : ℕ
i : ZMod (2 * n)
⊢ xa i ^ 4 = 1
[PROOFSTEP]
rw [pow_succ, pow_succ, sq, xa_mul_xa, xa_mul_a, xa_mul_xa, add_sub_cancel, add_sub_assoc, add_sub_cancel']
[GOAL]
n : ℕ
i : ZMod (2 * n)
⊢ a (↑n + ↑n) = 1
[PROOFSTEP]
norm_cast
[GOAL]
n : ℕ
i : ZMod (2 * n)
⊢ a ↑(n + n) = 1
[PROOFSTEP]
rw [← two_mul]
[GOAL]
n : ℕ
i : ZMod (2 * n)
⊢ a ↑(2 * n) = 1
[PROOFSTEP]
simp [one_def]
[GOAL]
n : ℕ
inst✝ : NeZero n
i : ZMod (2 * n)
⊢ orderOf (xa i) = 4
[PROOFSTEP]
change _ = 2 ^ 2
[GOAL]
n : ℕ
inst✝ : NeZero n
i : ZMod (2 * n)
⊢ orderOf (xa i) = 2 ^ 2
[PROOFSTEP]
haveI : Fact (Nat.Prime 2) := Fact.mk Nat.prime_two
[GOAL]
n : ℕ
inst✝ : NeZero n
i : ZMod (2 * n)
this : Fact (Nat.Prime 2)
⊢ orderOf (xa i) = 2 ^ 2
[PROOFSTEP]
apply orderOf_eq_prime_pow
[GOAL]
case hnot
n : ℕ
inst✝ : NeZero n
i : ZMod (2 * n)
this : Fact (Nat.Prime 2)
⊢ ¬xa i ^ 2 ^ 1 = 1
[PROOFSTEP]
intro h
[GOAL]
case hnot
n : ℕ
inst✝ : NeZero n
i : ZMod (2 * n)
this : Fact (Nat.Prime 2)
h : xa i ^ 2 ^ 1 = 1
⊢ False
[PROOFSTEP]
simp only [pow_one, xa_sq] at h
[GOAL]
case hnot
n : ℕ
inst✝ : NeZero n
i : ZMod (2 * n)
this : Fact (Nat.Prime 2)
h : a ↑n = 1
⊢ False
[PROOFSTEP]
injection h with h'
[GOAL]
case hnot
n : ℕ
inst✝ : NeZero n
i : ZMod (2 * n)
this : Fact (Nat.Prime 2)
h' : ↑n = 0
⊢ False
[PROOFSTEP]
apply_fun ZMod.val at h'
[GOAL]
case hnot
n : ℕ
inst✝ : NeZero n
i : ZMod (2 * n)
this : Fact (Nat.Prime 2)
h' : ZMod.val ↑n = ZMod.val 0
⊢ False
[PROOFSTEP]
apply_fun (· / n) at h'
[GOAL]
case hnot
n : ℕ
inst✝ : NeZero n
i : ZMod (2 * n)
this : Fact (Nat.Prime 2)
h' : ZMod.val ↑n / n = ZMod.val 0 / n
⊢ False
[PROOFSTEP]
simp only [ZMod.val_nat_cast, ZMod.val_zero, Nat.zero_div, Nat.mod_mul_left_div_self, Nat.div_self (NeZero.pos n)] at h'
[GOAL]
case hfin
n : ℕ
inst✝ : NeZero n
i : ZMod (2 * n)
this : Fact (Nat.Prime 2)
⊢ xa i ^ 2 ^ (1 + 1) = 1
[PROOFSTEP]
norm_num
[GOAL]
n : ℕ
⊢ IsCyclic (QuaternionGroup 1)
[PROOFSTEP]
apply isCyclic_of_orderOf_eq_card
[GOAL]
case hx
n : ℕ
⊢ orderOf ?x = Fintype.card (QuaternionGroup 1)
case x n : ℕ ⊢ QuaternionGroup 1
[PROOFSTEP]
rw [card, mul_one]
[GOAL]
case hx
n : ℕ
⊢ orderOf ?x = 4
case x
n : ℕ
⊢ QuaternionGroup 1
case x
n : ℕ
⊢ QuaternionGroup 1
case x n : ℕ ⊢ QuaternionGroup 1
[PROOFSTEP]
exact orderOf_xa 0
[GOAL]
n : ℕ
⊢ orderOf (a 1) = 2 * n
[PROOFSTEP]
cases' eq_zero_or_neZero n with hn hn
[GOAL]
case inl
n : ℕ
hn : n = 0
⊢ orderOf (a 1) = 2 * n
[PROOFSTEP]
subst hn
[GOAL]
case inl
⊢ orderOf (a 1) = 2 * 0
[PROOFSTEP]
simp_rw [mul_zero, orderOf_eq_zero_iff']
[GOAL]
case inl
⊢ ∀ (n : ℕ), 0 < n → QuaternionGroup.a 1 ^ n ≠ 1
[PROOFSTEP]
intro n h
[GOAL]
case inl
n : ℕ
h : 0 < n
⊢ a 1 ^ n ≠ 1
[PROOFSTEP]
rw [one_def, a_one_pow]
[GOAL]
case inl
n : ℕ
h : 0 < n
⊢ a ↑n ≠ a 0
[PROOFSTEP]
apply mt a.inj
[GOAL]
case inl
n : ℕ
h : 0 < n
⊢ ¬↑n = 0
[PROOFSTEP]
haveI : CharZero (ZMod (2 * 0)) := ZMod.charZero
[GOAL]
case inl
n : ℕ
h : 0 < n
this : CharZero (ZMod (2 * 0))
⊢ ¬↑n = 0
[PROOFSTEP]
simpa using h.ne'
[GOAL]
case inr
n : ℕ
hn : NeZero n
⊢ orderOf (a 1) = 2 * n
[PROOFSTEP]
apply (Nat.le_of_dvd (NeZero.pos _) (orderOf_dvd_of_pow_eq_one (@a_one_pow_n n))).lt_or_eq.resolve_left
[GOAL]
case inr
n : ℕ
hn : NeZero n
⊢ ¬orderOf (a 1) < 2 * n
[PROOFSTEP]
intro h
[GOAL]
case inr
n : ℕ
hn : NeZero n
h : orderOf (a 1) < 2 * n
⊢ False
[PROOFSTEP]
have h1 : (a 1 : QuaternionGroup n) ^ orderOf (a 1) = 1 := pow_orderOf_eq_one _
[GOAL]
case inr
n : ℕ
hn : NeZero n
h : orderOf (a 1) < 2 * n
h1 : a 1 ^ orderOf (a 1) = 1
⊢ False
[PROOFSTEP]
rw [a_one_pow] at h1
[GOAL]
case inr
n : ℕ
hn : NeZero n
h : orderOf (a 1) < 2 * n
h1 : a ↑(orderOf (a 1)) = 1
⊢ False
[PROOFSTEP]
injection h1 with h2
[GOAL]
case inr
n : ℕ
hn : NeZero n
h : orderOf (a 1) < 2 * n
h2 : ↑(orderOf (a 1)) = 0
⊢ False
[PROOFSTEP]
rw [← ZMod.val_eq_zero, ZMod.val_nat_cast, Nat.mod_eq_of_lt h] at h2
[GOAL]
case inr
n : ℕ
hn : NeZero n
h : orderOf (a 1) < 2 * n
h2 : orderOf (a 1) = 0
⊢ False
[PROOFSTEP]
exact absurd h2.symm (orderOf_pos _).ne
[GOAL]
n : ℕ
inst✝ : NeZero n
i : ZMod (2 * n)
⊢ orderOf (a i) = 2 * n / Nat.gcd (2 * n) (ZMod.val i)
[PROOFSTEP]
conv_lhs => rw [← ZMod.nat_cast_zmod_val i]
[GOAL]
n : ℕ
inst✝ : NeZero n
i : ZMod (2 * n)
| orderOf (a i)
[PROOFSTEP]
rw [← ZMod.nat_cast_zmod_val i]
[GOAL]
n : ℕ
inst✝ : NeZero n
i : ZMod (2 * n)
| orderOf (a i)
[PROOFSTEP]
rw [← ZMod.nat_cast_zmod_val i]
[GOAL]
n : ℕ
inst✝ : NeZero n
i : ZMod (2 * n)
| orderOf (a i)
[PROOFSTEP]
rw [← ZMod.nat_cast_zmod_val i]
[GOAL]
n : ℕ
inst✝ : NeZero n
i : ZMod (2 * n)
⊢ orderOf (a ↑(ZMod.val i)) = 2 * n / Nat.gcd (2 * n) (ZMod.val i)
[PROOFSTEP]
rw [← a_one_pow, orderOf_pow, orderOf_a_one]
[GOAL]
n : ℕ
⊢ Monoid.exponent (QuaternionGroup n) = 2 * lcm n 2
[PROOFSTEP]
rw [← normalize_eq 2, ← lcm_mul_left, normalize_eq]
[GOAL]
n : ℕ
⊢ Monoid.exponent (QuaternionGroup n) = lcm (2 * n) (2 * 2)
[PROOFSTEP]
norm_num
[GOAL]
n : ℕ
⊢ Monoid.exponent (QuaternionGroup n) = lcm (2 * n) 4
[PROOFSTEP]
cases' eq_zero_or_neZero n with hn hn
[GOAL]
case inl
n : ℕ
hn : n = 0
⊢ Monoid.exponent (QuaternionGroup n) = lcm (2 * n) 4
[PROOFSTEP]
subst hn
[GOAL]
case inl
⊢ Monoid.exponent (QuaternionGroup 0) = lcm (2 * 0) 4
[PROOFSTEP]
simp only [lcm_zero_left, mul_zero]
[GOAL]
case inl
⊢ Monoid.exponent (QuaternionGroup 0) = 0
[PROOFSTEP]
exact Monoid.exponent_eq_zero_of_order_zero orderOf_a_one
[GOAL]
case inr
n : ℕ
hn : NeZero n
⊢ Monoid.exponent (QuaternionGroup n) = lcm (2 * n) 4
[PROOFSTEP]
apply Nat.dvd_antisymm
[GOAL]
case inr.a
n : ℕ
hn : NeZero n
⊢ Monoid.exponent (QuaternionGroup n) ∣ lcm (2 * n) 4
[PROOFSTEP]
apply Monoid.exponent_dvd_of_forall_pow_eq_one
[GOAL]
case inr.a.hG
n : ℕ
hn : NeZero n
⊢ ∀ (g : QuaternionGroup n), g ^ lcm (2 * n) 4 = 1
[PROOFSTEP]
rintro (m | m)
[GOAL]
case inr.a.hG.a
n : ℕ
hn : NeZero n
m : ZMod (2 * n)
⊢ a m ^ lcm (2 * n) 4 = 1
[PROOFSTEP]
rw [← orderOf_dvd_iff_pow_eq_one, orderOf_a]
[GOAL]
case inr.a.hG.a
n : ℕ
hn : NeZero n
m : ZMod (2 * n)
⊢ 2 * n / Nat.gcd (2 * n) (ZMod.val m) ∣ lcm (2 * n) 4
[PROOFSTEP]
refine' Nat.dvd_trans ⟨gcd (2 * n) m.val, _⟩ (dvd_lcm_left (2 * n) 4)
[GOAL]
case inr.a.hG.a
n : ℕ
hn : NeZero n
m : ZMod (2 * n)
⊢ 2 * n = 2 * n / Nat.gcd (2 * n) (ZMod.val m) * gcd (2 * n) (ZMod.val m)
[PROOFSTEP]
exact (Nat.div_mul_cancel (Nat.gcd_dvd_left (2 * n) m.val)).symm
[GOAL]
case inr.a.hG.xa
n : ℕ
hn : NeZero n
m : ZMod (2 * n)
⊢ xa m ^ lcm (2 * n) 4 = 1
[PROOFSTEP]
rw [← orderOf_dvd_iff_pow_eq_one, orderOf_xa]
[GOAL]
case inr.a.hG.xa
n : ℕ
hn : NeZero n
m : ZMod (2 * n)
⊢ 4 ∣ lcm (2 * n) 4
[PROOFSTEP]
exact dvd_lcm_right (2 * n) 4
[GOAL]
case inr.a
n : ℕ
hn : NeZero n
⊢ lcm (2 * n) 4 ∣ Monoid.exponent (QuaternionGroup n)
[PROOFSTEP]
apply lcm_dvd
[GOAL]
case inr.a.hab
n : ℕ
hn : NeZero n
⊢ 2 * n ∣ Monoid.exponent (QuaternionGroup n)
[PROOFSTEP]
convert Monoid.order_dvd_exponent (a 1)
[GOAL]
case h.e'_3
n : ℕ
hn : NeZero n
⊢ 2 * n = orderOf (a 1)
[PROOFSTEP]
exact orderOf_a_one.symm
[GOAL]
case inr.a.hcb
n : ℕ
hn : NeZero n
⊢ 4 ∣ Monoid.exponent (QuaternionGroup n)
[PROOFSTEP]
convert Monoid.order_dvd_exponent (xa (0 : ZMod (2 * n)))
[GOAL]
case h.e'_3
n : ℕ
hn : NeZero n
⊢ 4 = orderOf (xa 0)
[PROOFSTEP]
exact (orderOf_xa 0).symm
| {"mathlib_filename": "Mathlib.GroupTheory.SpecificGroups.Quaternion", "llama_tokens": 13339} |
[GOAL]
n : ℕ
p : Fin (n + 1)
⊢ ↑decomposeFin.symm (p, Equiv.refl (Fin n)) = swap 0 p
[PROOFSTEP]
simp [Equiv.Perm.decomposeFin, Equiv.permCongr_def]
[GOAL]
n : ℕ
p : Fin (n + 1)
e : Perm (Fin n)
⊢ ↑(↑decomposeFin.symm (p, e)) 0 = p
[PROOFSTEP]
simp [Equiv.Perm.decomposeFin]
[GOAL]
n : ℕ
e : Perm (Fin n)
p : Fin (n + 1)
x : Fin n
⊢ ↑(↑decomposeFin.symm (p, e)) (Fin.succ x) = ↑(swap 0 p) (Fin.succ (↑e x))
[PROOFSTEP]
refine' Fin.cases _ _ p
[GOAL]
case refine'_1
n : ℕ
e : Perm (Fin n)
p : Fin (n + 1)
x : Fin n
⊢ ↑(↑decomposeFin.symm (0, e)) (Fin.succ x) = ↑(swap 0 0) (Fin.succ (↑e x))
[PROOFSTEP]
simp [Equiv.Perm.decomposeFin, EquivFunctor.map]
[GOAL]
case refine'_2
n : ℕ
e : Perm (Fin n)
p : Fin (n + 1)
x : Fin n
⊢ ∀ (i : Fin n), ↑(↑decomposeFin.symm (Fin.succ i, e)) (Fin.succ x) = ↑(swap 0 (Fin.succ i)) (Fin.succ (↑e x))
[PROOFSTEP]
intro i
[GOAL]
case refine'_2
n : ℕ
e : Perm (Fin n)
p : Fin (n + 1)
x i : Fin n
⊢ ↑(↑decomposeFin.symm (Fin.succ i, e)) (Fin.succ x) = ↑(swap 0 (Fin.succ i)) (Fin.succ (↑e x))
[PROOFSTEP]
by_cases h : i = e x
[GOAL]
case pos
n : ℕ
e : Perm (Fin n)
p : Fin (n + 1)
x i : Fin n
h : i = ↑e x
⊢ ↑(↑decomposeFin.symm (Fin.succ i, e)) (Fin.succ x) = ↑(swap 0 (Fin.succ i)) (Fin.succ (↑e x))
[PROOFSTEP]
simp [h, Equiv.Perm.decomposeFin, EquivFunctor.map]
[GOAL]
case neg
n : ℕ
e : Perm (Fin n)
p : Fin (n + 1)
x i : Fin n
h : ¬i = ↑e x
⊢ ↑(↑decomposeFin.symm (Fin.succ i, e)) (Fin.succ x) = ↑(swap 0 (Fin.succ i)) (Fin.succ (↑e x))
[PROOFSTEP]
simp [h, Fin.succ_ne_zero, Equiv.Perm.decomposeFin, EquivFunctor.map, swap_apply_def, Ne.symm h]
[GOAL]
n : ℕ
e : Perm (Fin (n + 1))
p : Fin (n + 2)
⊢ ↑(↑decomposeFin.symm (p, e)) 1 = ↑(swap 0 p) (Fin.succ (↑e 0))
[PROOFSTEP]
rw [← Fin.succ_zero_eq_one, Equiv.Perm.decomposeFin_symm_apply_succ e p 0]
[GOAL]
n : ℕ
p : Fin (n + 1)
e : Perm (Fin n)
⊢ ↑sign (↑decomposeFin.symm (p, e)) = (if p = 0 then 1 else -1) * ↑sign e
[PROOFSTEP]
refine' Fin.cases _ _ p
[GOAL]
case refine'_1
n : ℕ
p : Fin (n + 1)
e : Perm (Fin n)
⊢ ↑sign (↑decomposeFin.symm (0, e)) = (if 0 = 0 then 1 else -1) * ↑sign e
[PROOFSTEP]
simp [Equiv.Perm.decomposeFin, Fin.succ_ne_zero]
[GOAL]
case refine'_2
n : ℕ
p : Fin (n + 1)
e : Perm (Fin n)
⊢ ∀ (i : Fin n), ↑sign (↑decomposeFin.symm (Fin.succ i, e)) = (if Fin.succ i = 0 then 1 else -1) * ↑sign e
[PROOFSTEP]
simp [Equiv.Perm.decomposeFin, Fin.succ_ne_zero]
[GOAL]
n : ℕ
⊢ finRotate (Nat.succ n) = ↑decomposeFin.symm (1, finRotate n)
[PROOFSTEP]
ext i
[GOAL]
case H.h
n : ℕ
i : Fin (Nat.succ n)
⊢ ↑(↑(finRotate (Nat.succ n)) i) = ↑(↑(↑decomposeFin.symm (1, finRotate n)) i)
[PROOFSTEP]
cases n
[GOAL]
case H.h.zero
i : Fin (Nat.succ Nat.zero)
⊢ ↑(↑(finRotate (Nat.succ Nat.zero)) i) = ↑(↑(↑decomposeFin.symm (1, finRotate Nat.zero)) i)
[PROOFSTEP]
simp
[GOAL]
case H.h.succ
n✝ : ℕ
i : Fin (Nat.succ (Nat.succ n✝))
⊢ ↑(↑(finRotate (Nat.succ (Nat.succ n✝))) i) = ↑(↑(↑decomposeFin.symm (1, finRotate (Nat.succ n✝))) i)
[PROOFSTEP]
refine' Fin.cases _ (fun i => _) i
[GOAL]
case H.h.succ.refine'_1
n✝ : ℕ
i : Fin (Nat.succ (Nat.succ n✝))
⊢ ↑(↑(finRotate (Nat.succ (Nat.succ n✝))) 0) = ↑(↑(↑decomposeFin.symm (1, finRotate (Nat.succ n✝))) 0)
[PROOFSTEP]
simp
[GOAL]
case H.h.succ.refine'_2
n✝ : ℕ
i✝ : Fin (Nat.succ (Nat.succ n✝))
i : Fin (n✝ + 1)
⊢ ↑(↑(finRotate (Nat.succ (Nat.succ n✝))) (Fin.succ i)) =
↑(↑(↑decomposeFin.symm (1, finRotate (Nat.succ n✝))) (Fin.succ i))
[PROOFSTEP]
rw [coe_finRotate, decomposeFin_symm_apply_succ, if_congr i.succ_eq_last_succ rfl rfl]
[GOAL]
case H.h.succ.refine'_2
n✝ : ℕ
i✝ : Fin (Nat.succ (Nat.succ n✝))
i : Fin (n✝ + 1)
⊢ (if i = Fin.last n✝ then 0 else ↑(Fin.succ i) + 1) = ↑(↑(swap 0 1) (Fin.succ (↑(finRotate (Nat.succ n✝)) i)))
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
n✝ : ℕ
i✝ : Fin (Nat.succ (Nat.succ n✝))
i : Fin (n✝ + 1)
h : i = Fin.last n✝
⊢ 0 = ↑(↑(swap 0 1) (Fin.succ (↑(finRotate (Nat.succ n✝)) i)))
[PROOFSTEP]
simp [h]
[GOAL]
case neg
n✝ : ℕ
i✝ : Fin (Nat.succ (Nat.succ n✝))
i : Fin (n✝ + 1)
h : ¬i = Fin.last n✝
⊢ ↑(Fin.succ i) + 1 = ↑(↑(swap 0 1) (Fin.succ (↑(finRotate (Nat.succ n✝)) i)))
[PROOFSTEP]
rw [Fin.val_succ, Function.Injective.map_swap Fin.val_injective, Fin.val_succ, coe_finRotate, if_neg h, Fin.val_zero,
Fin.val_one, swap_apply_of_ne_of_ne (Nat.succ_ne_zero _) (Nat.succ_succ_ne_one _)]
[GOAL]
n : ℕ
⊢ ↑sign (finRotate (n + 1)) = (-1) ^ n
[PROOFSTEP]
induction' n with n ih
[GOAL]
case zero
⊢ ↑sign (finRotate (Nat.zero + 1)) = (-1) ^ Nat.zero
[PROOFSTEP]
simp
[GOAL]
case succ
n : ℕ
ih : ↑sign (finRotate (n + 1)) = (-1) ^ n
⊢ ↑sign (finRotate (Nat.succ n + 1)) = (-1) ^ Nat.succ n
[PROOFSTEP]
rw [finRotate_succ_eq_decomposeFin]
[GOAL]
case succ
n : ℕ
ih : ↑sign (finRotate (n + 1)) = (-1) ^ n
⊢ ↑sign (↑decomposeFin.symm (1, finRotate (n + 1))) = (-1) ^ Nat.succ n
[PROOFSTEP]
simp [ih, pow_succ]
[GOAL]
n : ℕ
⊢ support (finRotate (n + 2)) = Finset.univ
[PROOFSTEP]
ext
[GOAL]
case a
n : ℕ
a✝ : Fin (n + 2)
⊢ a✝ ∈ support (finRotate (n + 2)) ↔ a✝ ∈ Finset.univ
[PROOFSTEP]
simp
[GOAL]
n : ℕ
h : 2 ≤ n
⊢ support (finRotate n) = Finset.univ
[PROOFSTEP]
obtain ⟨m, rfl⟩ := exists_add_of_le h
[GOAL]
case intro
m : ℕ
h : 2 ≤ 2 + m
⊢ support (finRotate (2 + m)) = Finset.univ
[PROOFSTEP]
rw [add_comm, support_finRotate]
[GOAL]
n : ℕ
⊢ IsCycle (finRotate (n + 2))
[PROOFSTEP]
refine' ⟨0, by simp, fun x hx' => ⟨x, _⟩⟩
[GOAL]
n : ℕ
⊢ ↑(finRotate (n + 2)) 0 ≠ 0
[PROOFSTEP]
simp
[GOAL]
n : ℕ
x : Fin (n + 2)
hx' : ↑(finRotate (n + 2)) x ≠ x
⊢ ↑(finRotate (n + 2) ^ ↑↑x) 0 = x
[PROOFSTEP]
clear hx'
[GOAL]
n : ℕ
x : Fin (n + 2)
⊢ ↑(finRotate (n + 2) ^ ↑↑x) 0 = x
[PROOFSTEP]
cases' x with x hx
[GOAL]
case mk
n x : ℕ
hx : x < n + 2
⊢ ↑(finRotate (n + 2) ^ ↑↑{ val := x, isLt := hx }) 0 = { val := x, isLt := hx }
[PROOFSTEP]
rw [zpow_ofNat, Fin.ext_iff, Fin.val_mk]
[GOAL]
case mk
n x : ℕ
hx : x < n + 2
⊢ ↑(↑(finRotate (n + 2) ^ ↑{ val := x, isLt := hx }) 0) = ↑{ val := x, isLt := hx }
[PROOFSTEP]
induction' x with x ih
[GOAL]
case mk.zero
n x : ℕ
hx✝ : x < n + 2
hx : Nat.zero < n + 2
⊢ ↑(↑(finRotate (n + 2) ^ ↑{ val := Nat.zero, isLt := hx }) 0) = ↑{ val := Nat.zero, isLt := hx }
[PROOFSTEP]
rfl
[GOAL]
case mk.succ
n x✝ : ℕ
hx✝ : x✝ < n + 2
x : ℕ
ih : ∀ (hx : x < n + 2), ↑(↑(finRotate (n + 2) ^ ↑{ val := x, isLt := hx }) 0) = ↑{ val := x, isLt := hx }
hx : Nat.succ x < n + 2
⊢ ↑(↑(finRotate (n + 2) ^ ↑{ val := Nat.succ x, isLt := hx }) 0) = ↑{ val := Nat.succ x, isLt := hx }
[PROOFSTEP]
rw [pow_succ, Perm.mul_apply, coe_finRotate_of_ne_last, ih (lt_trans x.lt_succ_self hx)]
[GOAL]
case mk.succ
n x✝ : ℕ
hx✝ : x✝ < n + 2
x : ℕ
ih : ∀ (hx : x < n + 2), ↑(↑(finRotate (n + 2) ^ ↑{ val := x, isLt := hx }) 0) = ↑{ val := x, isLt := hx }
hx : Nat.succ x < n + 2
⊢ ↑(finRotate (n + 2) ^ x) 0 ≠ Fin.last (n + 1)
[PROOFSTEP]
rw [Ne.def, Fin.ext_iff, ih (lt_trans x.lt_succ_self hx), Fin.val_last]
[GOAL]
case mk.succ
n x✝ : ℕ
hx✝ : x✝ < n + 2
x : ℕ
ih : ∀ (hx : x < n + 2), ↑(↑(finRotate (n + 2) ^ ↑{ val := x, isLt := hx }) 0) = ↑{ val := x, isLt := hx }
hx : Nat.succ x < n + 2
⊢ ¬↑{ val := x, isLt := (_ : x < n + 2) } = n + 1
[PROOFSTEP]
exact ne_of_lt (Nat.lt_of_succ_lt_succ hx)
[GOAL]
n : ℕ
h : 2 ≤ n
⊢ IsCycle (finRotate n)
[PROOFSTEP]
obtain ⟨m, rfl⟩ := exists_add_of_le h
[GOAL]
case intro
m : ℕ
h : 2 ≤ 2 + m
⊢ IsCycle (finRotate (2 + m))
[PROOFSTEP]
rw [add_comm]
[GOAL]
case intro
m : ℕ
h : 2 ≤ 2 + m
⊢ IsCycle (finRotate (m + 2))
[PROOFSTEP]
exact isCycle_finRotate
[GOAL]
n : ℕ
⊢ cycleType (finRotate (n + 2)) = {n + 2}
[PROOFSTEP]
rw [isCycle_finRotate.cycleType, support_finRotate, ← Fintype.card, Fintype.card_fin]
[GOAL]
n : ℕ
⊢ ↑[n + 2] = {n + 2}
[PROOFSTEP]
rfl
[GOAL]
n : ℕ
h : 2 ≤ n
⊢ cycleType (finRotate n) = {n}
[PROOFSTEP]
obtain ⟨m, rfl⟩ := exists_add_of_le h
[GOAL]
case intro
m : ℕ
h : 2 ≤ 2 + m
⊢ cycleType (finRotate (2 + m)) = {2 + m}
[PROOFSTEP]
rw [add_comm, cycleType_finRotate]
[GOAL]
n : ℕ
i : Fin n
⊢ Function.LeftInverse (fun x => ↑↑x) ↑(castLEEmb (_ : Nat.succ ↑i ≤ n)).toEmbedding
[PROOFSTEP]
intro x
[GOAL]
n : ℕ
i : Fin n
x : Fin (Nat.succ ↑i)
⊢ (fun x => ↑↑x) (↑(castLEEmb (_ : Nat.succ ↑i ≤ n)).toEmbedding x) = x
[PROOFSTEP]
ext
[GOAL]
case h
n : ℕ
i : Fin n
x : Fin (Nat.succ ↑i)
⊢ ↑((fun x => ↑↑x) (↑(castLEEmb (_ : Nat.succ ↑i ≤ n)).toEmbedding x)) = ↑x
[PROOFSTEP]
simp
[GOAL]
n : ℕ
i j : Fin (Nat.succ n)
h : i < j
⊢ ↑(cycleRange i) j = j
[PROOFSTEP]
rw [cycleRange, ofLeftInverse'_eq_ofInjective, ← Function.Embedding.toEquivRange_eq_ofInjective, ← viaFintypeEmbedding,
viaFintypeEmbedding_apply_not_mem_range]
[GOAL]
case h
n : ℕ
i j : Fin (Nat.succ n)
h : i < j
⊢ ¬j ∈ Set.range ↑(castLEEmb (_ : Nat.succ ↑i ≤ Nat.succ n)).toEmbedding
[PROOFSTEP]
simpa
[GOAL]
n : ℕ
i j : Fin (Nat.succ n)
h : j ≤ i
⊢ ↑(cycleRange i) j = if j = i then 0 else j + 1
[PROOFSTEP]
cases n
[GOAL]
case zero
i j : Fin (Nat.succ Nat.zero)
h : j ≤ i
⊢ ↑(cycleRange i) j = if j = i then 0 else j + 1
[PROOFSTEP]
exact
Subsingleton.elim (α := Fin 1) _
_
--Porting note; was `simp`
[GOAL]
case succ
n✝ : ℕ
i j : Fin (Nat.succ (Nat.succ n✝))
h : j ≤ i
⊢ ↑(cycleRange i) j = if j = i then 0 else j + 1
[PROOFSTEP]
have : j = (Fin.castLE (Nat.succ_le_of_lt i.is_lt)) ⟨j, lt_of_le_of_lt h (Nat.lt_succ_self i)⟩ := by simp
[GOAL]
n✝ : ℕ
i j : Fin (Nat.succ (Nat.succ n✝))
h : j ≤ i
⊢ j = castLE (_ : Nat.succ ↑i ≤ Nat.succ (Nat.succ n✝)) { val := ↑j, isLt := (_ : ↑j < Nat.succ ↑i) }
[PROOFSTEP]
simp
[GOAL]
case succ
n✝ : ℕ
i j : Fin (Nat.succ (Nat.succ n✝))
h : j ≤ i
this : j = castLE (_ : Nat.succ ↑i ≤ Nat.succ (Nat.succ n✝)) { val := ↑j, isLt := (_ : ↑j < Nat.succ ↑i) }
⊢ ↑(cycleRange i) j = if j = i then 0 else j + 1
[PROOFSTEP]
ext
[GOAL]
case succ.h
n✝ : ℕ
i j : Fin (Nat.succ (Nat.succ n✝))
h : j ≤ i
this : j = castLE (_ : Nat.succ ↑i ≤ Nat.succ (Nat.succ n✝)) { val := ↑j, isLt := (_ : ↑j < Nat.succ ↑i) }
⊢ ↑(↑(cycleRange i) j) = ↑(if j = i then 0 else j + 1)
[PROOFSTEP]
erw [this, cycleRange, ofLeftInverse'_eq_ofInjective, ← Function.Embedding.toEquivRange_eq_ofInjective, ←
viaFintypeEmbedding, viaFintypeEmbedding_apply_image, castLEEmb_toEmbedding, Function.Embedding.coeFn_mk, coe_castLE,
coe_finRotate]
[GOAL]
case succ.h
n✝ : ℕ
i j : Fin (Nat.succ (Nat.succ n✝))
h : j ≤ i
this : j = castLE (_ : Nat.succ ↑i ≤ Nat.succ (Nat.succ n✝)) { val := ↑j, isLt := (_ : ↑j < Nat.succ ↑i) }
⊢ (if { val := ↑j, isLt := (_ : ↑j < Nat.succ ↑i) } = last ↑i then 0
else ↑{ val := ↑j, isLt := (_ : ↑j < Nat.succ ↑i) } + 1) =
↑(if castLE (_ : Nat.succ ↑i ≤ Nat.succ (Nat.succ n✝)) { val := ↑j, isLt := (_ : ↑j < Nat.succ ↑i) } = i then 0
else castLE (_ : Nat.succ ↑i ≤ Nat.succ (Nat.succ n✝)) { val := ↑j, isLt := (_ : ↑j < Nat.succ ↑i) } + 1)
[PROOFSTEP]
simp only [Fin.ext_iff, val_last, val_mk, val_zero, Fin.eta, castLE_mk]
[GOAL]
case succ.h
n✝ : ℕ
i j : Fin (Nat.succ (Nat.succ n✝))
h : j ≤ i
this : j = castLE (_ : Nat.succ ↑i ≤ Nat.succ (Nat.succ n✝)) { val := ↑j, isLt := (_ : ↑j < Nat.succ ↑i) }
⊢ (if ↑j = ↑i then 0 else ↑j + 1) = ↑(if ↑j = ↑i then 0 else j + 1)
[PROOFSTEP]
split_ifs with heq
[GOAL]
case pos
n✝ : ℕ
i j : Fin (Nat.succ (Nat.succ n✝))
h : j ≤ i
this : j = castLE (_ : Nat.succ ↑i ≤ Nat.succ (Nat.succ n✝)) { val := ↑j, isLt := (_ : ↑j < Nat.succ ↑i) }
heq : ↑j = ↑i
⊢ 0 = ↑0
[PROOFSTEP]
rfl
[GOAL]
case neg
n✝ : ℕ
i j : Fin (Nat.succ (Nat.succ n✝))
h : j ≤ i
this : j = castLE (_ : Nat.succ ↑i ≤ Nat.succ (Nat.succ n✝)) { val := ↑j, isLt := (_ : ↑j < Nat.succ ↑i) }
heq : ¬↑j = ↑i
⊢ ↑j + 1 = ↑(j + 1)
[PROOFSTEP]
rw [Fin.val_add_one_of_lt]
[GOAL]
case neg
n✝ : ℕ
i j : Fin (Nat.succ (Nat.succ n✝))
h : j ≤ i
this : j = castLE (_ : Nat.succ ↑i ≤ Nat.succ (Nat.succ n✝)) { val := ↑j, isLt := (_ : ↑j < Nat.succ ↑i) }
heq : ¬↑j = ↑i
⊢ j < last (n✝ + 1)
[PROOFSTEP]
exact lt_of_lt_of_le (lt_of_le_of_ne h (mt (congr_arg _) heq)) (le_last i)
[GOAL]
n : ℕ
i j : Fin (Nat.succ n)
h : j ≤ i
⊢ ↑(↑(cycleRange i) j) = if j = i then 0 else ↑j + 1
[PROOFSTEP]
rw [cycleRange_of_le h]
[GOAL]
n : ℕ
i j : Fin (Nat.succ n)
h : j ≤ i
⊢ ↑(if j = i then 0 else j + 1) = if j = i then 0 else ↑j + 1
[PROOFSTEP]
split_ifs with h'
[GOAL]
case pos
n : ℕ
i j : Fin (Nat.succ n)
h : j ≤ i
h' : j = i
⊢ ↑0 = 0
[PROOFSTEP]
rfl
[GOAL]
case neg
n : ℕ
i j : Fin (Nat.succ n)
h : j ≤ i
h' : ¬j = i
⊢ ↑(j + 1) = ↑j + 1
[PROOFSTEP]
exact
val_add_one_of_lt
(calc
(j : ℕ) < i := Fin.lt_iff_val_lt_val.mp (lt_of_le_of_ne h h')
_ ≤ n := Nat.lt_succ_iff.mp i.2)
[GOAL]
n : ℕ
i j : Fin (Nat.succ n)
h : j < i
⊢ ↑(cycleRange i) j = j + 1
[PROOFSTEP]
rw [cycleRange_of_le h.le, if_neg h.ne]
[GOAL]
n : ℕ
i j : Fin (Nat.succ n)
h : j < i
⊢ ↑(↑(cycleRange i) j) = ↑j + 1
[PROOFSTEP]
rw [coe_cycleRange_of_le h.le, if_neg h.ne]
[GOAL]
n : ℕ
i j : Fin (Nat.succ n)
h : j = i
⊢ ↑(cycleRange i) j = 0
[PROOFSTEP]
rw [cycleRange_of_le h.le, if_pos h]
[GOAL]
n : ℕ
i j : Fin (Nat.succ n)
⊢ ↑(cycleRange i) j = if j < i then j + 1 else if j = i then 0 else j
[PROOFSTEP]
split_ifs with h₁ h₂
[GOAL]
case pos
n : ℕ
i j : Fin (Nat.succ n)
h₁ : j < i
⊢ ↑(cycleRange i) j = j + 1
[PROOFSTEP]
exact cycleRange_of_lt h₁
[GOAL]
case pos
n : ℕ
i j : Fin (Nat.succ n)
h₁ : ¬j < i
h₂ : j = i
⊢ ↑(cycleRange i) j = 0
[PROOFSTEP]
exact cycleRange_of_eq h₂
[GOAL]
case neg
n : ℕ
i j : Fin (Nat.succ n)
h₁ : ¬j < i
h₂ : ¬j = i
⊢ ↑(cycleRange i) j = j
[PROOFSTEP]
exact cycleRange_of_gt (lt_of_le_of_ne (le_of_not_gt h₁) (Ne.symm h₂))
[GOAL]
n : ℕ
⊢ cycleRange 0 = 1
[PROOFSTEP]
ext j
[GOAL]
case H.h
n : ℕ
j : Fin (Nat.succ n)
⊢ ↑(↑(cycleRange 0) j) = ↑(↑1 j)
[PROOFSTEP]
refine' Fin.cases _ (fun j => _) j
[GOAL]
case H.h.refine'_1
n : ℕ
j : Fin (Nat.succ n)
⊢ ↑(↑(cycleRange 0) 0) = ↑(↑1 0)
[PROOFSTEP]
simp
[GOAL]
case H.h.refine'_2
n : ℕ
j✝ : Fin (Nat.succ n)
j : Fin n
⊢ ↑(↑(cycleRange 0) (succ j)) = ↑(↑1 (succ j))
[PROOFSTEP]
rw [cycleRange_of_gt (Fin.succ_pos j), one_apply]
[GOAL]
n : ℕ
⊢ cycleRange (last n) = finRotate (n + 1)
[PROOFSTEP]
ext i
[GOAL]
case H.h
n : ℕ
i : Fin (n + 1)
⊢ ↑(↑(cycleRange (last n)) i) = ↑(↑(finRotate (n + 1)) i)
[PROOFSTEP]
rw [coe_cycleRange_of_le (le_last _), coe_finRotate]
[GOAL]
n : ℕ
h : 0 < n
⊢ cycleRange { val := 0, isLt := h } = 1
[PROOFSTEP]
cases' n with n
[GOAL]
case zero
h : 0 < Nat.zero
⊢ cycleRange { val := 0, isLt := h } = 1
[PROOFSTEP]
cases h
[GOAL]
case succ
n : ℕ
h : 0 < Nat.succ n
⊢ cycleRange { val := 0, isLt := h } = 1
[PROOFSTEP]
exact cycleRange_zero n
[GOAL]
n : ℕ
i : Fin n
⊢ ↑sign (cycleRange i) = (-1) ^ ↑i
[PROOFSTEP]
simp [cycleRange]
[GOAL]
n : ℕ
i j : Fin n
⊢ succAbove (succ i) (↑(cycleRange i) j) = ↑(swap 0 (succ i)) (succ j)
[PROOFSTEP]
cases n
[GOAL]
case zero
i j : Fin Nat.zero
⊢ succAbove (succ i) (↑(cycleRange i) j) = ↑(swap 0 (succ i)) (succ j)
[PROOFSTEP]
rcases j with ⟨_, ⟨⟩⟩
[GOAL]
case succ
n✝ : ℕ
i j : Fin (Nat.succ n✝)
⊢ succAbove (succ i) (↑(cycleRange i) j) = ↑(swap 0 (succ i)) (succ j)
[PROOFSTEP]
rcases lt_trichotomy j i with (hlt | heq | hgt)
[GOAL]
case succ.inl
n✝ : ℕ
i j : Fin (Nat.succ n✝)
hlt : j < i
⊢ succAbove (succ i) (↑(cycleRange i) j) = ↑(swap 0 (succ i)) (succ j)
[PROOFSTEP]
have : castSucc (j + 1) = j.succ := by
ext
rw [coe_castSucc, val_succ, Fin.val_add_one_of_lt (lt_of_lt_of_le hlt i.le_last)]
[GOAL]
n✝ : ℕ
i j : Fin (Nat.succ n✝)
hlt : j < i
⊢ castSucc (j + 1) = succ j
[PROOFSTEP]
ext
[GOAL]
case h
n✝ : ℕ
i j : Fin (Nat.succ n✝)
hlt : j < i
⊢ ↑(castSucc (j + 1)) = ↑(succ j)
[PROOFSTEP]
rw [coe_castSucc, val_succ, Fin.val_add_one_of_lt (lt_of_lt_of_le hlt i.le_last)]
[GOAL]
case succ.inl
n✝ : ℕ
i j : Fin (Nat.succ n✝)
hlt : j < i
this : castSucc (j + 1) = succ j
⊢ succAbove (succ i) (↑(cycleRange i) j) = ↑(swap 0 (succ i)) (succ j)
[PROOFSTEP]
rw [Fin.cycleRange_of_lt hlt, Fin.succAbove_below, this, swap_apply_of_ne_of_ne]
[GOAL]
case succ.inl.a
n✝ : ℕ
i j : Fin (Nat.succ n✝)
hlt : j < i
this : castSucc (j + 1) = succ j
⊢ succ j ≠ 0
[PROOFSTEP]
apply Fin.succ_ne_zero
[GOAL]
case succ.inl.a
n✝ : ℕ
i j : Fin (Nat.succ n✝)
hlt : j < i
this : castSucc (j + 1) = succ j
⊢ succ j ≠ succ i
[PROOFSTEP]
exact (Fin.succ_injective _).ne hlt.ne
[GOAL]
case succ.inl.h
n✝ : ℕ
i j : Fin (Nat.succ n✝)
hlt : j < i
this : castSucc (j + 1) = succ j
⊢ castSucc (j + 1) < succ i
[PROOFSTEP]
rw [Fin.lt_iff_val_lt_val]
[GOAL]
case succ.inl.h
n✝ : ℕ
i j : Fin (Nat.succ n✝)
hlt : j < i
this : castSucc (j + 1) = succ j
⊢ ↑(castSucc (j + 1)) < ↑(succ i)
[PROOFSTEP]
simpa [this] using hlt
[GOAL]
case succ.inr.inl
n✝ : ℕ
i j : Fin (Nat.succ n✝)
heq : j = i
⊢ succAbove (succ i) (↑(cycleRange i) j) = ↑(swap 0 (succ i)) (succ j)
[PROOFSTEP]
rw [heq, Fin.cycleRange_self, Fin.succAbove_below, swap_apply_right, Fin.castSucc_zero]
[GOAL]
case succ.inr.inl.h
n✝ : ℕ
i j : Fin (Nat.succ n✝)
heq : j = i
⊢ castSucc 0 < succ i
[PROOFSTEP]
rw [Fin.castSucc_zero]
[GOAL]
case succ.inr.inl.h
n✝ : ℕ
i j : Fin (Nat.succ n✝)
heq : j = i
⊢ 0 < succ i
[PROOFSTEP]
apply Fin.succ_pos
[GOAL]
case succ.inr.inr
n✝ : ℕ
i j : Fin (Nat.succ n✝)
hgt : i < j
⊢ succAbove (succ i) (↑(cycleRange i) j) = ↑(swap 0 (succ i)) (succ j)
[PROOFSTEP]
rw [Fin.cycleRange_of_gt hgt, Fin.succAbove_above, swap_apply_of_ne_of_ne]
[GOAL]
case succ.inr.inr.a
n✝ : ℕ
i j : Fin (Nat.succ n✝)
hgt : i < j
⊢ succ j ≠ 0
[PROOFSTEP]
apply Fin.succ_ne_zero
[GOAL]
case succ.inr.inr.a
n✝ : ℕ
i j : Fin (Nat.succ n✝)
hgt : i < j
⊢ succ j ≠ succ i
[PROOFSTEP]
apply (Fin.succ_injective _).ne hgt.ne.symm
[GOAL]
case succ.inr.inr.h
n✝ : ℕ
i j : Fin (Nat.succ n✝)
hgt : i < j
⊢ succ i ≤ castSucc j
[PROOFSTEP]
simpa [Fin.le_iff_val_le_val] using hgt
[GOAL]
n : ℕ
i : Fin (n + 1)
j : Fin n
⊢ ↑(cycleRange i) (succAbove i j) = succ j
[PROOFSTEP]
cases' lt_or_ge (castSucc j) i with h h
[GOAL]
case inl
n : ℕ
i : Fin (n + 1)
j : Fin n
h : castSucc j < i
⊢ ↑(cycleRange i) (succAbove i j) = succ j
[PROOFSTEP]
rw [Fin.succAbove_below _ _ h, Fin.cycleRange_of_lt h, Fin.coeSucc_eq_succ]
[GOAL]
case inr
n : ℕ
i : Fin (n + 1)
j : Fin n
h : castSucc j ≥ i
⊢ ↑(cycleRange i) (succAbove i j) = succ j
[PROOFSTEP]
rw [Fin.succAbove_above _ _ h, Fin.cycleRange_of_gt (Fin.le_castSucc_iff.mp h)]
[GOAL]
n : ℕ
i : Fin (n + 1)
⊢ ↑(cycleRange i) (↑(cycleRange i).symm 0) = ↑(cycleRange i) i
[PROOFSTEP]
simp
[GOAL]
n : ℕ
i : Fin (n + 1)
j : Fin n
⊢ ↑(cycleRange i) (↑(cycleRange i).symm (succ j)) = ↑(cycleRange i) (succAbove i j)
[PROOFSTEP]
simp
[GOAL]
n : ℕ
i : Fin (n + 1)
h0 : i ≠ 0
⊢ IsCycle (cycleRange i)
[PROOFSTEP]
cases' i with i hi
[GOAL]
case mk
n i : ℕ
hi : i < n + 1
h0 : { val := i, isLt := hi } ≠ 0
⊢ IsCycle (cycleRange { val := i, isLt := hi })
[PROOFSTEP]
cases i
[GOAL]
case mk.zero
n : ℕ
hi : Nat.zero < n + 1
h0 : { val := Nat.zero, isLt := hi } ≠ 0
⊢ IsCycle (cycleRange { val := Nat.zero, isLt := hi })
[PROOFSTEP]
exact (h0 rfl).elim
[GOAL]
case mk.succ
n n✝ : ℕ
hi : Nat.succ n✝ < n + 1
h0 : { val := Nat.succ n✝, isLt := hi } ≠ 0
⊢ IsCycle (cycleRange { val := Nat.succ n✝, isLt := hi })
[PROOFSTEP]
exact isCycle_finRotate.extendDomain _
[GOAL]
n : ℕ
i : Fin (n + 1)
h0 : i ≠ 0
⊢ cycleType (cycleRange i) = {↑i + 1}
[PROOFSTEP]
cases' i with i hi
[GOAL]
case mk
n i : ℕ
hi : i < n + 1
h0 : { val := i, isLt := hi } ≠ 0
⊢ cycleType (cycleRange { val := i, isLt := hi }) = {↑{ val := i, isLt := hi } + 1}
[PROOFSTEP]
cases i
[GOAL]
case mk.zero
n : ℕ
hi : Nat.zero < n + 1
h0 : { val := Nat.zero, isLt := hi } ≠ 0
⊢ cycleType (cycleRange { val := Nat.zero, isLt := hi }) = {↑{ val := Nat.zero, isLt := hi } + 1}
[PROOFSTEP]
exact (h0 rfl).elim
[GOAL]
case mk.succ
n n✝ : ℕ
hi : Nat.succ n✝ < n + 1
h0 : { val := Nat.succ n✝, isLt := hi } ≠ 0
⊢ cycleType (cycleRange { val := Nat.succ n✝, isLt := hi }) = {↑{ val := Nat.succ n✝, isLt := hi } + 1}
[PROOFSTEP]
rw [cycleRange, cycleType_extendDomain]
[GOAL]
case mk.succ
n n✝ : ℕ
hi : Nat.succ n✝ < n + 1
h0 : { val := Nat.succ n✝, isLt := hi } ≠ 0
⊢ cycleType (finRotate (↑{ val := Nat.succ n✝, isLt := hi } + 1)) = {↑{ val := Nat.succ n✝, isLt := hi } + 1}
[PROOFSTEP]
exact cycleType_finRotate
[GOAL]
n : ℕ
⊢ IsThreeCycle (cycleRange 2)
[PROOFSTEP]
rw [IsThreeCycle, cycleType_cycleRange]
[GOAL]
n : ℕ
⊢ {↑2 + 1} = {3}
[PROOFSTEP]
simp [Fin.eq_iff_veq]
[GOAL]
n : ℕ
⊢ 2 ≠ 0
[PROOFSTEP]
simp [Fin.eq_iff_veq]
| {"mathlib_filename": "Mathlib.GroupTheory.Perm.Fin", "llama_tokens": 11059} |
[GOAL]
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝¹ : Monoid M
inst✝ : AddMonoid A
s t u : Set M
S : Submonoid M
hs : s ⊆ ↑S
ht : t ⊆ ↑S
⊢ s * t ⊆ ↑S
[PROOFSTEP]
rintro _ ⟨p, q, hp, hq, rfl⟩
[GOAL]
case intro.intro.intro.intro
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝¹ : Monoid M
inst✝ : AddMonoid A
s t u : Set M
S : Submonoid M
hs : s ⊆ ↑S
ht : t ⊆ ↑S
p q : M
hp : p ∈ s
hq : q ∈ t
⊢ (fun x x_1 => x * x_1) p q ∈ ↑S
[PROOFSTEP]
exact Submonoid.mul_mem _ (hs hp) (ht hq)
[GOAL]
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝¹ : Monoid M
inst✝ : AddMonoid A
s✝ t u : Set M
s : Submonoid M
⊢ ↑s * ↑s = ↑s
[PROOFSTEP]
ext x
[GOAL]
case h
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝¹ : Monoid M
inst✝ : AddMonoid A
s✝ t u : Set M
s : Submonoid M
x : M
⊢ x ∈ ↑s * ↑s ↔ x ∈ ↑s
[PROOFSTEP]
refine' ⟨_, fun h => ⟨x, 1, h, s.one_mem, mul_one x⟩⟩
[GOAL]
case h
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝¹ : Monoid M
inst✝ : AddMonoid A
s✝ t u : Set M
s : Submonoid M
x : M
⊢ x ∈ ↑s * ↑s → x ∈ ↑s
[PROOFSTEP]
rintro ⟨a, b, ha, hb, rfl⟩
[GOAL]
case h.intro.intro.intro.intro
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝¹ : Monoid M
inst✝ : AddMonoid A
s✝ t u : Set M
s : Submonoid M
a b : M
ha : a ∈ ↑s
hb : b ∈ ↑s
⊢ (fun x x_1 => x * x_1) a b ∈ ↑s
[PROOFSTEP]
exact s.mul_mem ha hb
[GOAL]
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝¹ : Monoid M
inst✝ : AddMonoid A
s t u : Set M
H K : Submonoid M
⊢ closure ↑H ⊔ closure ↑K ≤ H ⊔ K
[PROOFSTEP]
rw [closure_eq, closure_eq]
[GOAL]
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝⁴ : Monoid M
inst✝³ : AddMonoid A
s✝ t u : Set M
N : Type u_6
inst✝² : CommMonoid N
inst✝¹ : MulAction M N
inst✝ : IsScalarTower M N N
r : M
s : Set N
x : N
hx : x ∈ closure s
⊢ ∃ n, r ^ n • x ∈ closure (r • s)
[PROOFSTEP]
refine' @closure_induction N _ s (fun x : N => ∃ n : ℕ, r ^ n • x ∈ closure (r • s)) _ hx _ _ _
[GOAL]
case refine'_1
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝⁴ : Monoid M
inst✝³ : AddMonoid A
s✝ t u : Set M
N : Type u_6
inst✝² : CommMonoid N
inst✝¹ : MulAction M N
inst✝ : IsScalarTower M N N
r : M
s : Set N
x : N
hx : x ∈ closure s
⊢ ∀ (x : N), x ∈ s → (fun x => ∃ n, r ^ n • x ∈ closure (r • s)) x
[PROOFSTEP]
intro x hx
[GOAL]
case refine'_1
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝⁴ : Monoid M
inst✝³ : AddMonoid A
s✝ t u : Set M
N : Type u_6
inst✝² : CommMonoid N
inst✝¹ : MulAction M N
inst✝ : IsScalarTower M N N
r : M
s : Set N
x✝ : N
hx✝ : x✝ ∈ closure s
x : N
hx : x ∈ s
⊢ ∃ n, r ^ n • x ∈ closure (r • s)
[PROOFSTEP]
exact ⟨1, subset_closure ⟨_, hx, by rw [pow_one]⟩⟩
[GOAL]
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝⁴ : Monoid M
inst✝³ : AddMonoid A
s✝ t u : Set M
N : Type u_6
inst✝² : CommMonoid N
inst✝¹ : MulAction M N
inst✝ : IsScalarTower M N N
r : M
s : Set N
x✝ : N
hx✝ : x✝ ∈ closure s
x : N
hx : x ∈ s
⊢ (fun x => r • x) x = r ^ 1 • x
[PROOFSTEP]
rw [pow_one]
[GOAL]
case refine'_2
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝⁴ : Monoid M
inst✝³ : AddMonoid A
s✝ t u : Set M
N : Type u_6
inst✝² : CommMonoid N
inst✝¹ : MulAction M N
inst✝ : IsScalarTower M N N
r : M
s : Set N
x : N
hx : x ∈ closure s
⊢ (fun x => ∃ n, r ^ n • x ∈ closure (r • s)) 1
[PROOFSTEP]
exact ⟨0, by simpa using one_mem _⟩
[GOAL]
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝⁴ : Monoid M
inst✝³ : AddMonoid A
s✝ t u : Set M
N : Type u_6
inst✝² : CommMonoid N
inst✝¹ : MulAction M N
inst✝ : IsScalarTower M N N
r : M
s : Set N
x : N
hx : x ∈ closure s
⊢ r ^ 0 • 1 ∈ closure (r • s)
[PROOFSTEP]
simpa using one_mem _
[GOAL]
case refine'_3
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝⁴ : Monoid M
inst✝³ : AddMonoid A
s✝ t u : Set M
N : Type u_6
inst✝² : CommMonoid N
inst✝¹ : MulAction M N
inst✝ : IsScalarTower M N N
r : M
s : Set N
x : N
hx : x ∈ closure s
⊢ ∀ (x y : N),
(fun x => ∃ n, r ^ n • x ∈ closure (r • s)) x →
(fun x => ∃ n, r ^ n • x ∈ closure (r • s)) y → (fun x => ∃ n, r ^ n • x ∈ closure (r • s)) (x * y)
[PROOFSTEP]
rintro x y ⟨nx, hx⟩ ⟨ny, hy⟩
[GOAL]
case refine'_3.intro.intro
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝⁴ : Monoid M
inst✝³ : AddMonoid A
s✝ t u : Set M
N : Type u_6
inst✝² : CommMonoid N
inst✝¹ : MulAction M N
inst✝ : IsScalarTower M N N
r : M
s : Set N
x✝ : N
hx✝ : x✝ ∈ closure s
x y : N
nx : ℕ
hx : r ^ nx • x ∈ closure (r • s)
ny : ℕ
hy : r ^ ny • y ∈ closure (r • s)
⊢ ∃ n, r ^ n • (x * y) ∈ closure (r • s)
[PROOFSTEP]
use ny + nx
[GOAL]
case h
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝⁴ : Monoid M
inst✝³ : AddMonoid A
s✝ t u : Set M
N : Type u_6
inst✝² : CommMonoid N
inst✝¹ : MulAction M N
inst✝ : IsScalarTower M N N
r : M
s : Set N
x✝ : N
hx✝ : x✝ ∈ closure s
x y : N
nx : ℕ
hx : r ^ nx • x ∈ closure (r • s)
ny : ℕ
hy : r ^ ny • y ∈ closure (r • s)
⊢ r ^ (ny + nx) • (x * y) ∈ closure (r • s)
[PROOFSTEP]
rw [pow_add, mul_smul, ← smul_mul_assoc, mul_comm, ← smul_mul_assoc]
[GOAL]
case h
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝⁴ : Monoid M
inst✝³ : AddMonoid A
s✝ t u : Set M
N : Type u_6
inst✝² : CommMonoid N
inst✝¹ : MulAction M N
inst✝ : IsScalarTower M N N
r : M
s : Set N
x✝ : N
hx✝ : x✝ ∈ closure s
x y : N
nx : ℕ
hx : r ^ nx • x ∈ closure (r • s)
ny : ℕ
hy : r ^ ny • y ∈ closure (r • s)
⊢ r ^ ny • y * r ^ nx • x ∈ closure (r • s)
[PROOFSTEP]
exact mul_mem hy hx
[GOAL]
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝² : Monoid M
inst✝¹ : AddMonoid A
s t u : Set M
inst✝ : Group G
S : Submonoid G
a✝ b✝ : G
ha : a✝ ∈ (↑S)⁻¹
hb : b✝ ∈ (↑S)⁻¹
⊢ a✝ * b✝ ∈ (↑S)⁻¹
[PROOFSTEP]
rw [mem_inv, mul_inv_rev]
[GOAL]
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝² : Monoid M
inst✝¹ : AddMonoid A
s t u : Set M
inst✝ : Group G
S : Submonoid G
a✝ b✝ : G
ha : a✝ ∈ (↑S)⁻¹
hb : b✝ ∈ (↑S)⁻¹
⊢ b✝⁻¹ * a✝⁻¹ ∈ ↑S
[PROOFSTEP]
exact mul_mem hb ha
[GOAL]
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝² : Monoid M
inst✝¹ : AddMonoid A
s t u : Set M
inst✝ : Group G
S : Submonoid G
⊢ 1⁻¹ ∈ ↑S
[PROOFSTEP]
rw [inv_one]
[GOAL]
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝² : Monoid M
inst✝¹ : AddMonoid A
s t u : Set M
inst✝ : Group G
S : Submonoid G
⊢ 1 ∈ ↑S
[PROOFSTEP]
exact S.one_mem'
[GOAL]
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝² : Monoid M
inst✝¹ : AddMonoid A
s✝ t u : Set M
inst✝ : Group G
s : Set G
⊢ closure s⁻¹ = (closure s)⁻¹
[PROOFSTEP]
apply le_antisymm
[GOAL]
case a
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝² : Monoid M
inst✝¹ : AddMonoid A
s✝ t u : Set M
inst✝ : Group G
s : Set G
⊢ closure s⁻¹ ≤ (closure s)⁻¹
[PROOFSTEP]
rw [closure_le, coe_inv, ← Set.inv_subset, inv_inv]
[GOAL]
case a
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝² : Monoid M
inst✝¹ : AddMonoid A
s✝ t u : Set M
inst✝ : Group G
s : Set G
⊢ s ⊆ ↑(closure s)
[PROOFSTEP]
exact subset_closure
[GOAL]
case a
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝² : Monoid M
inst✝¹ : AddMonoid A
s✝ t u : Set M
inst✝ : Group G
s : Set G
⊢ (closure s)⁻¹ ≤ closure s⁻¹
[PROOFSTEP]
rw [inv_le, closure_le, coe_inv, ← Set.inv_subset]
[GOAL]
case a
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝² : Monoid M
inst✝¹ : AddMonoid A
s✝ t u : Set M
inst✝ : Group G
s : Set G
⊢ s⁻¹ ⊆ ↑(closure s⁻¹)
[PROOFSTEP]
exact subset_closure
[GOAL]
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝³ : Monoid M
inst✝² : AddMonoid A
inst✝¹ : Monoid α
inst✝ : MulDistribMulAction α M
S : Submonoid M
⊢ 1 • S = S
[PROOFSTEP]
change S.map _ = S
[GOAL]
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝³ : Monoid M
inst✝² : AddMonoid A
inst✝¹ : Monoid α
inst✝ : MulDistribMulAction α M
S : Submonoid M
⊢ map (↑(MulDistribMulAction.toMonoidEnd α M) 1) S = S
[PROOFSTEP]
simpa only [map_one] using S.map_id
[GOAL]
α : Type u_1
G✝ : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝² : Monoid M
inst✝¹ : AddMonoid A
G : Type u_6
inst✝ : Group G
S : Set G
x : G
⊢ x ∈ closure S⁻¹ ↔ x⁻¹ ∈ closure S
[PROOFSTEP]
rw [closure_inv, mem_inv]
[GOAL]
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝² : Monoid M
inst✝¹ : AddMonoid A
inst✝ : AddMonoidWithOne R
⊢ 1 = closure {1}
[PROOFSTEP]
rw [closure_singleton_eq, one_eq_mrange]
[GOAL]
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝² : Monoid M
inst✝¹ : AddMonoid A
inst✝ : AddMonoidWithOne R
⊢ AddMonoidHom.mrange (Nat.castAddMonoidHom R) = AddMonoidHom.mrange (↑(multiplesHom R) 1)
[PROOFSTEP]
congr 1
[GOAL]
case e_f
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝² : Monoid M
inst✝¹ : AddMonoid A
inst✝ : AddMonoidWithOne R
⊢ Nat.castAddMonoidHom R = ↑(multiplesHom R) 1
[PROOFSTEP]
ext
[GOAL]
case e_f.a
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝² : Monoid M
inst✝¹ : AddMonoid A
inst✝ : AddMonoidWithOne R
⊢ ↑(Nat.castAddMonoidHom R) 1 = ↑(↑(multiplesHom R) 1) 1
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
G : Type u_2
M✝ : Type u_3
R : Type u_4
A : Type u_5
inst✝² : Monoid M✝
inst✝¹ : AddMonoid A
inst✝ : NonUnitalNonAssocSemiring R
M N : AddSubmonoid R
m n : R
hm : m ∈ M
hn : n ∈ N
⊢ ↑(↑AddMonoidHom.mul ↑{ val := m, property := hm }) n = m * n
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
G : Type u_2
M✝ : Type u_3
R : Type u_4
A : Type u_5
inst✝² : Monoid M✝
inst✝¹ : AddMonoid A
inst✝ : NonUnitalNonAssocSemiring R
M N : AddSubmonoid R
C : R → Prop
r : R
hr : r ∈ M * N
hm : ∀ (m : R), m ∈ M → ∀ (n : R), n ∈ N → C (m * n)
ha : ∀ (x y : R), C x → C y → C (x + y)
⊢ 0 ∈ { carrier := setOf C, add_mem' := (_ : ∀ {a b : R}, C a → C b → C (a + b)) }.carrier
[PROOFSTEP]
simpa only [zero_mul] using hm _ (zero_mem _) _ (zero_mem _)
[GOAL]
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝² : Monoid M
inst✝¹ : AddMonoid A
inst✝ : NonUnitalNonAssocSemiring R
S T : Set R
⊢ closure S * closure T = closure (S * T)
[PROOFSTEP]
apply le_antisymm
[GOAL]
case a
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝² : Monoid M
inst✝¹ : AddMonoid A
inst✝ : NonUnitalNonAssocSemiring R
S T : Set R
⊢ closure S * closure T ≤ closure (S * T)
[PROOFSTEP]
refine mul_le.2 fun a ha b hb => ?_
[GOAL]
case a
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝² : Monoid M
inst✝¹ : AddMonoid A
inst✝ : NonUnitalNonAssocSemiring R
S T : Set R
a : R
ha : a ∈ closure S
b : R
hb : b ∈ closure T
⊢ a * b ∈ closure (S * T)
[PROOFSTEP]
rw [← AddMonoidHom.mulRight_apply, ← AddSubmonoid.mem_comap]
[GOAL]
case a
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝² : Monoid M
inst✝¹ : AddMonoid A
inst✝ : NonUnitalNonAssocSemiring R
S T : Set R
a : R
ha : a ∈ closure S
b : R
hb : b ∈ closure T
⊢ a ∈ comap (AddMonoidHom.mulRight b) (closure (S * T))
[PROOFSTEP]
refine (closure_le.2 fun a' ha' => ?_) ha
[GOAL]
case a
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝² : Monoid M
inst✝¹ : AddMonoid A
inst✝ : NonUnitalNonAssocSemiring R
S T : Set R
a : R
ha : a ∈ closure S
b : R
hb : b ∈ closure T
a' : R
ha' : a' ∈ S
⊢ a' ∈ ↑(comap (AddMonoidHom.mulRight b) (closure (S * T)))
[PROOFSTEP]
change b ∈ (closure (S * T)).comap (AddMonoidHom.mulLeft a')
[GOAL]
case a
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝² : Monoid M
inst✝¹ : AddMonoid A
inst✝ : NonUnitalNonAssocSemiring R
S T : Set R
a : R
ha : a ∈ closure S
b : R
hb : b ∈ closure T
a' : R
ha' : a' ∈ S
⊢ b ∈ comap (AddMonoidHom.mulLeft a') (closure (S * T))
[PROOFSTEP]
refine (closure_le.2 fun b' hb' => ?_) hb
[GOAL]
case a
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝² : Monoid M
inst✝¹ : AddMonoid A
inst✝ : NonUnitalNonAssocSemiring R
S T : Set R
a : R
ha : a ∈ closure S
b : R
hb : b ∈ closure T
a' : R
ha' : a' ∈ S
b' : R
hb' : b' ∈ T
⊢ b' ∈ ↑(comap (AddMonoidHom.mulLeft a') (closure (S * T)))
[PROOFSTEP]
change a' * b' ∈ closure (S * T)
[GOAL]
case a
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝² : Monoid M
inst✝¹ : AddMonoid A
inst✝ : NonUnitalNonAssocSemiring R
S T : Set R
a : R
ha : a ∈ closure S
b : R
hb : b ∈ closure T
a' : R
ha' : a' ∈ S
b' : R
hb' : b' ∈ T
⊢ a' * b' ∈ closure (S * T)
[PROOFSTEP]
exact subset_closure (Set.mul_mem_mul ha' hb')
[GOAL]
case a
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝² : Monoid M
inst✝¹ : AddMonoid A
inst✝ : NonUnitalNonAssocSemiring R
S T : Set R
⊢ closure (S * T) ≤ closure S * closure T
[PROOFSTEP]
rw [closure_le]
[GOAL]
case a
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝² : Monoid M
inst✝¹ : AddMonoid A
inst✝ : NonUnitalNonAssocSemiring R
S T : Set R
⊢ S * T ⊆ ↑(closure S * closure T)
[PROOFSTEP]
rintro _ ⟨a, b, ha, hb, rfl⟩
[GOAL]
case a.intro.intro.intro.intro
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝² : Monoid M
inst✝¹ : AddMonoid A
inst✝ : NonUnitalNonAssocSemiring R
S T : Set R
a b : R
ha : a ∈ S
hb : b ∈ T
⊢ (fun x x_1 => x * x_1) a b ∈ ↑(closure S * closure T)
[PROOFSTEP]
exact mul_mem_mul (subset_closure ha) (subset_closure hb)
[GOAL]
α : Type u_1
G : Type u_2
M✝ : Type u_3
R : Type u_4
A : Type u_5
inst✝² : Monoid M✝
inst✝¹ : AddMonoid A
inst✝ : NonUnitalNonAssocSemiring R
M N : AddSubmonoid R
⊢ M * N = closure (↑M * ↑N)
[PROOFSTEP]
rw [← closure_mul_closure, closure_eq, closure_eq]
[GOAL]
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝² : Monoid M
inst✝¹ : AddMonoid A
inst✝ : NonUnitalNonAssocSemiring R
S : AddSubmonoid R
m : R
x✝ : m ∈ S
n : R
hn : n ∈ ⊥
⊢ m * n ∈ ⊥
[PROOFSTEP]
rw [AddSubmonoid.mem_bot] at hn ⊢
[GOAL]
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝² : Monoid M
inst✝¹ : AddMonoid A
inst✝ : NonUnitalNonAssocSemiring R
S : AddSubmonoid R
m : R
x✝ : m ∈ S
n : R
hn : n = 0
⊢ m * n = 0
[PROOFSTEP]
rw [hn, mul_zero]
[GOAL]
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝² : Monoid M
inst✝¹ : AddMonoid A
inst✝ : NonUnitalNonAssocSemiring R
S : AddSubmonoid R
m : R
hm : m ∈ ⊥
n : R
hn : n ∈ S
⊢ m * n ∈ ⊥
[PROOFSTEP]
rw [AddSubmonoid.mem_bot] at hm ⊢
[GOAL]
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝² : Monoid M
inst✝¹ : AddMonoid A
inst✝ : NonUnitalNonAssocSemiring R
S : AddSubmonoid R
m : R
hm : m = 0
n : R
hn : n ∈ S
⊢ m * n = 0
[PROOFSTEP]
rw [hm, zero_mul]
[GOAL]
α : Type u_1
G : Type u_2
M✝ : Type u_3
R : Type u_4
A : Type u_5
inst✝² : Monoid M✝
inst✝¹ : AddMonoid A
inst✝ : NonUnitalNonAssocSemiring R
M N : AddSubmonoid R
⊢ ↑M * ↑N ⊆ ↑(M * N)
[PROOFSTEP]
rintro _ ⟨i, j, hi, hj, rfl⟩
[GOAL]
case intro.intro.intro.intro
α : Type u_1
G : Type u_2
M✝ : Type u_3
R : Type u_4
A : Type u_5
inst✝² : Monoid M✝
inst✝¹ : AddMonoid A
inst✝ : NonUnitalNonAssocSemiring R
M N : AddSubmonoid R
i j : R
hi : i ∈ ↑M
hj : j ∈ ↑N
⊢ (fun x x_1 => x * x_1) i j ∈ ↑(M * N)
[PROOFSTEP]
exact mul_mem_mul hi hj
[GOAL]
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝² : Monoid M
inst✝¹ : AddMonoid A
inst✝ : NonUnitalNonAssocRing R
src✝ : InvolutiveNeg (AddSubmonoid R) := involutiveNeg
x y : AddSubmonoid R
⊢ -x * y = -(x * y)
[PROOFSTEP]
refine' le_antisymm (mul_le.2 fun m hm n hn => _) ((AddSubmonoid.neg_le _ _).2 <| mul_le.2 fun m hm n hn => _)
[GOAL]
case refine'_1
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝² : Monoid M
inst✝¹ : AddMonoid A
inst✝ : NonUnitalNonAssocRing R
src✝ : InvolutiveNeg (AddSubmonoid R) := involutiveNeg
x y : AddSubmonoid R
m : R
hm : m ∈ -x
n : R
hn : n ∈ y
⊢ m * n ∈ -(x * y)
[PROOFSTEP]
simp only [AddSubmonoid.mem_neg, ← neg_mul] at *
[GOAL]
case refine'_2
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝² : Monoid M
inst✝¹ : AddMonoid A
inst✝ : NonUnitalNonAssocRing R
src✝ : InvolutiveNeg (AddSubmonoid R) := involutiveNeg
x y : AddSubmonoid R
m : R
hm : m ∈ x
n : R
hn : n ∈ y
⊢ m * n ∈ -(-x * y)
[PROOFSTEP]
simp only [AddSubmonoid.mem_neg, ← neg_mul] at *
[GOAL]
case refine'_1
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝² : Monoid M
inst✝¹ : AddMonoid A
inst✝ : NonUnitalNonAssocRing R
src✝ : InvolutiveNeg (AddSubmonoid R) := involutiveNeg
x y : AddSubmonoid R
m n : R
hn : n ∈ y
hm : -m ∈ x
⊢ -m * n ∈ x * y
[PROOFSTEP]
exact mul_mem_mul hm hn
[GOAL]
case refine'_2
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝² : Monoid M
inst✝¹ : AddMonoid A
inst✝ : NonUnitalNonAssocRing R
src✝ : InvolutiveNeg (AddSubmonoid R) := involutiveNeg
x y : AddSubmonoid R
m : R
hm : m ∈ x
n : R
hn : n ∈ y
⊢ -m * n ∈ -x * y
[PROOFSTEP]
exact mul_mem_mul (neg_mem_neg.2 hm) hn
[GOAL]
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝² : Monoid M
inst✝¹ : AddMonoid A
inst✝ : NonUnitalNonAssocRing R
src✝ : InvolutiveNeg (AddSubmonoid R) := involutiveNeg
x y : AddSubmonoid R
⊢ x * -y = -(x * y)
[PROOFSTEP]
refine' le_antisymm (mul_le.2 fun m hm n hn => _) ((AddSubmonoid.neg_le _ _).2 <| mul_le.2 fun m hm n hn => _)
[GOAL]
case refine'_1
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝² : Monoid M
inst✝¹ : AddMonoid A
inst✝ : NonUnitalNonAssocRing R
src✝ : InvolutiveNeg (AddSubmonoid R) := involutiveNeg
x y : AddSubmonoid R
m : R
hm : m ∈ x
n : R
hn : n ∈ -y
⊢ m * n ∈ -(x * y)
[PROOFSTEP]
simp only [AddSubmonoid.mem_neg, ← mul_neg] at *
[GOAL]
case refine'_2
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝² : Monoid M
inst✝¹ : AddMonoid A
inst✝ : NonUnitalNonAssocRing R
src✝ : InvolutiveNeg (AddSubmonoid R) := involutiveNeg
x y : AddSubmonoid R
m : R
hm : m ∈ x
n : R
hn : n ∈ y
⊢ m * n ∈ -(x * -y)
[PROOFSTEP]
simp only [AddSubmonoid.mem_neg, ← mul_neg] at *
[GOAL]
case refine'_1
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝² : Monoid M
inst✝¹ : AddMonoid A
inst✝ : NonUnitalNonAssocRing R
src✝ : InvolutiveNeg (AddSubmonoid R) := involutiveNeg
x y : AddSubmonoid R
m : R
hm : m ∈ x
n : R
hn : -n ∈ y
⊢ m * -n ∈ x * y
[PROOFSTEP]
exact mul_mem_mul hm hn
[GOAL]
case refine'_2
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝² : Monoid M
inst✝¹ : AddMonoid A
inst✝ : NonUnitalNonAssocRing R
src✝ : InvolutiveNeg (AddSubmonoid R) := involutiveNeg
x y : AddSubmonoid R
m : R
hm : m ∈ x
n : R
hn : n ∈ y
⊢ m * -n ∈ x * -y
[PROOFSTEP]
exact mul_mem_mul hm (neg_mem_neg.2 hn)
[GOAL]
α : Type u_1
G : Type u_2
M✝ : Type u_3
R : Type u_4
A : Type u_5
inst✝² : Monoid M✝
inst✝¹ : AddMonoid A
inst✝ : NonAssocSemiring R
M : AddSubmonoid R
⊢ 1 * M = M
[PROOFSTEP]
rw [one_eq_closure_one_set, ← closure_eq M, closure_mul_closure, one_mul]
[GOAL]
α : Type u_1
G : Type u_2
M✝ : Type u_3
R : Type u_4
A : Type u_5
inst✝² : Monoid M✝
inst✝¹ : AddMonoid A
inst✝ : NonAssocSemiring R
M : AddSubmonoid R
⊢ M * 1 = M
[PROOFSTEP]
rw [one_eq_closure_one_set, ← closure_eq M, closure_mul_closure, mul_one]
[GOAL]
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝² : Monoid M
inst✝¹ : AddMonoid A
inst✝ : Semiring R
s : Set R
⊢ closure s ^ 0 = closure (s ^ 0)
[PROOFSTEP]
rw [pow_zero, pow_zero, one_eq_closure_one_set]
[GOAL]
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝² : Monoid M
inst✝¹ : AddMonoid A
inst✝ : Semiring R
s : Set R
n : ℕ
⊢ closure s ^ (n + 1) = closure (s ^ (n + 1))
[PROOFSTEP]
rw [pow_succ, pow_succ, closure_pow s n, closure_mul_closure]
[GOAL]
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝² : Monoid M
inst✝¹ : AddMonoid A
inst✝ : Semiring R
s : AddSubmonoid R
n : ℕ
⊢ s ^ n = closure (↑s ^ n)
[PROOFSTEP]
rw [← closure_pow, closure_eq]
[GOAL]
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝² : Monoid M
inst✝¹ : AddMonoid A
inst✝ : OrderedCancelCommMonoid α
s : Set α
hpos : ∀ (x : α), x ∈ s → 1 ≤ x
h : IsPwo s
⊢ IsPwo ↑(Submonoid.closure s)
[PROOFSTEP]
rw [Submonoid.closure_eq_image_prod]
[GOAL]
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝² : Monoid M
inst✝¹ : AddMonoid A
inst✝ : OrderedCancelCommMonoid α
s : Set α
hpos : ∀ (x : α), x ∈ s → 1 ≤ x
h : IsPwo s
⊢ IsPwo (List.prod '' {l | ∀ (x : α), x ∈ l → x ∈ s})
[PROOFSTEP]
refine' (h.partiallyWellOrderedOn_sublistForall₂ (· ≤ ·)).image_of_monotone_on _
[GOAL]
α : Type u_1
G : Type u_2
M : Type u_3
R : Type u_4
A : Type u_5
inst✝² : Monoid M
inst✝¹ : AddMonoid A
inst✝ : OrderedCancelCommMonoid α
s : Set α
hpos : ∀ (x : α), x ∈ s → 1 ≤ x
h : IsPwo s
⊢ ∀ (a₁ : List α),
a₁ ∈ {l | ∀ (x : α), x ∈ l → x ∈ s} →
∀ (a₂ : List α),
a₂ ∈ {l | ∀ (x : α), x ∈ l → x ∈ s} →
List.SublistForall₂ (fun x x_1 => x ≤ x_1) a₁ a₂ → List.prod a₁ ≤ List.prod a₂
[PROOFSTEP]
exact fun l1 _ l2 hl2 h12 => h12.prod_le_prod' fun x hx => hpos x <| hl2 x hx
| {"mathlib_filename": "Mathlib.GroupTheory.Submonoid.Pointwise", "llama_tokens": 11258} |
[GOAL]
G : Type u_1
inst✝² : Group G
A : Type u_2
inst✝¹ : AddGroup A
N : Type u_3
inst✝ : Group N
g : G
⊢ zpowers g = closure {g}
[PROOFSTEP]
ext
[GOAL]
case h
G : Type u_1
inst✝² : Group G
A : Type u_2
inst✝¹ : AddGroup A
N : Type u_3
inst✝ : Group N
g x✝ : G
⊢ x✝ ∈ zpowers g ↔ x✝ ∈ closure {g}
[PROOFSTEP]
exact mem_closure_singleton.symm
[GOAL]
G : Type u_1
inst✝³ : Group G
A : Type u_2
inst✝² : AddGroup A
N : Type u_3
inst✝¹ : Group N
R : Type u_4
inst✝ : Ring R
r : R
k : ℤ
⊢ ↑k * r ∈ zmultiples r
[PROOFSTEP]
simpa only [← zsmul_eq_mul] using zsmul_mem_zmultiples r k
[GOAL]
G : Type u_1
inst✝³ : Group G
A : Type u_2
inst✝² : AddGroup A
N : Type u_3
inst✝¹ : Group N
R : Type u_4
inst✝ : Ring R
r : R
k : ℤ
⊢ (fun x => x • 1) k = ↑k
[PROOFSTEP]
simp
[GOAL]
G : Type u_1
inst✝³ : Group G
A✝ : Type u_2
inst✝² : AddGroup A✝
N : Type u_3
inst✝¹ : Group N
A : Type u_4
inst✝ : AddGroupWithOne A
⊢ AddMonoidHom.range (castAddHom A) = AddSubgroup.zmultiples 1
[PROOFSTEP]
ext a
[GOAL]
case h
G : Type u_1
inst✝³ : Group G
A✝ : Type u_2
inst✝² : AddGroup A✝
N : Type u_3
inst✝¹ : Group N
A : Type u_4
inst✝ : AddGroupWithOne A
a : A
⊢ a ∈ AddMonoidHom.range (castAddHom A) ↔ a ∈ AddSubgroup.zmultiples 1
[PROOFSTEP]
simp_rw [AddMonoidHom.mem_range, Int.coe_castAddHom, AddSubgroup.mem_zmultiples_iff, zsmul_one]
[GOAL]
G : Type u_1
inst✝² : Group G
A : Type u_2
inst✝¹ : AddGroup A
N : Type u_3
inst✝ : Group N
f : G →* N
x : G
⊢ Subgroup.map f (Subgroup.zpowers x) = Subgroup.zpowers (↑f x)
[PROOFSTEP]
rw [Subgroup.zpowers_eq_closure, Subgroup.zpowers_eq_closure, f.map_closure, Set.image_singleton]
[GOAL]
G : Type u_1
inst✝² : Group G
A : Type u_2
inst✝¹ : AddGroup A
N : Type u_3
inst✝ : Group N
a b k : ℤ
⊢ (fun x => x • a) k = b ↔ b = a * k
[PROOFSTEP]
rw [mul_comm, eq_comm, ← smul_eq_mul]
[GOAL]
G : Type u_1
inst✝² : Group G
A : Type u_2
inst✝¹ : AddGroup A
N : Type u_3
inst✝ : Group N
x : G
⊢ ↑Additive.ofMul '' ↑(Subgroup.zpowers x) = ↑(AddSubgroup.zmultiples (↑Additive.ofMul x))
[PROOFSTEP]
ext y
[GOAL]
case h
G : Type u_1
inst✝² : Group G
A : Type u_2
inst✝¹ : AddGroup A
N : Type u_3
inst✝ : Group N
x : G
y : Additive G
⊢ y ∈ ↑Additive.ofMul '' ↑(Subgroup.zpowers x) ↔ y ∈ ↑(AddSubgroup.zmultiples (↑Additive.ofMul x))
[PROOFSTEP]
constructor
[GOAL]
case h.mp
G : Type u_1
inst✝² : Group G
A : Type u_2
inst✝¹ : AddGroup A
N : Type u_3
inst✝ : Group N
x : G
y : Additive G
⊢ y ∈ ↑Additive.ofMul '' ↑(Subgroup.zpowers x) → y ∈ ↑(AddSubgroup.zmultiples (↑Additive.ofMul x))
[PROOFSTEP]
rintro ⟨z, ⟨m, hm⟩, hz2⟩
[GOAL]
case h.mp.intro.intro.intro
G : Type u_1
inst✝² : Group G
A : Type u_2
inst✝¹ : AddGroup A
N : Type u_3
inst✝ : Group N
x : G
y : Additive G
z : G
hz2 : ↑Additive.ofMul z = y
m : ℤ
hm : (fun x x_1 => x ^ x_1) x m = z
⊢ y ∈ ↑(AddSubgroup.zmultiples (↑Additive.ofMul x))
[PROOFSTEP]
use m
[GOAL]
case h
G : Type u_1
inst✝² : Group G
A : Type u_2
inst✝¹ : AddGroup A
N : Type u_3
inst✝ : Group N
x : G
y : Additive G
z : G
hz2 : ↑Additive.ofMul z = y
m : ℤ
hm : (fun x x_1 => x ^ x_1) x m = z
⊢ (fun x_1 => x_1 • ↑Additive.ofMul x) m = y
[PROOFSTEP]
simp only at *
[GOAL]
case h
G : Type u_1
inst✝² : Group G
A : Type u_2
inst✝¹ : AddGroup A
N : Type u_3
inst✝ : Group N
x : G
y : Additive G
z : G
hz2 : ↑Additive.ofMul z = y
m : ℤ
hm : x ^ m = z
⊢ m • ↑Additive.ofMul x = y
[PROOFSTEP]
rwa [← ofMul_zpow, hm]
[GOAL]
case h.mpr
G : Type u_1
inst✝² : Group G
A : Type u_2
inst✝¹ : AddGroup A
N : Type u_3
inst✝ : Group N
x : G
y : Additive G
⊢ y ∈ ↑(AddSubgroup.zmultiples (↑Additive.ofMul x)) → y ∈ ↑Additive.ofMul '' ↑(Subgroup.zpowers x)
[PROOFSTEP]
rintro ⟨n, hn⟩
[GOAL]
case h.mpr.intro
G : Type u_1
inst✝² : Group G
A : Type u_2
inst✝¹ : AddGroup A
N : Type u_3
inst✝ : Group N
x : G
y : Additive G
n : ℤ
hn : (fun x_1 => x_1 • ↑Additive.ofMul x) n = y
⊢ y ∈ ↑Additive.ofMul '' ↑(Subgroup.zpowers x)
[PROOFSTEP]
refine' ⟨x ^ n, ⟨n, rfl⟩, _⟩
[GOAL]
case h.mpr.intro
G : Type u_1
inst✝² : Group G
A : Type u_2
inst✝¹ : AddGroup A
N : Type u_3
inst✝ : Group N
x : G
y : Additive G
n : ℤ
hn : (fun x_1 => x_1 • ↑Additive.ofMul x) n = y
⊢ ↑Additive.ofMul (x ^ n) = y
[PROOFSTEP]
rwa [ofMul_zpow]
[GOAL]
G : Type u_1
inst✝² : Group G
A : Type u_2
inst✝¹ : AddGroup A
N : Type u_3
inst✝ : Group N
x : A
⊢ ↑Multiplicative.ofAdd '' ↑(AddSubgroup.zmultiples x) = ↑(Subgroup.zpowers (↑Multiplicative.ofAdd x))
[PROOFSTEP]
symm
[GOAL]
G : Type u_1
inst✝² : Group G
A : Type u_2
inst✝¹ : AddGroup A
N : Type u_3
inst✝ : Group N
x : A
⊢ ↑(Subgroup.zpowers (↑Multiplicative.ofAdd x)) = ↑Multiplicative.ofAdd '' ↑(AddSubgroup.zmultiples x)
[PROOFSTEP]
rw [Equiv.eq_image_iff_symm_image_eq]
[GOAL]
G : Type u_1
inst✝² : Group G
A : Type u_2
inst✝¹ : AddGroup A
N : Type u_3
inst✝ : Group N
x : A
⊢ ↑Multiplicative.ofAdd.symm '' ↑(Subgroup.zpowers (↑Multiplicative.ofAdd x)) = ↑(AddSubgroup.zmultiples x)
[PROOFSTEP]
exact ofMul_image_zpowers_eq_zmultiples_ofMul
[GOAL]
G : Type u_1
inst✝² : Group G
A : Type u_2
inst✝¹ : AddGroup A
N : Type u_3
inst✝ : Group N
s : Set G
g✝ g : G
x✝¹ x✝ : { x // x ∈ zpowers g }
val✝¹ : G
w✝¹ : ℤ
h₁ : (fun x x_1 => x ^ x_1) g w✝¹ = val✝¹
val✝ : G
w✝ : ℤ
h₂ : (fun x x_1 => x ^ x_1) g w✝ = val✝
⊢ { val := val✝¹, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) g y = val✝¹) } *
{ val := val✝, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) g y = val✝) } =
{ val := val✝, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) g y = val✝) } *
{ val := val✝¹, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) g y = val✝¹) }
[PROOFSTEP]
rw [Subtype.ext_iff, coe_mul, coe_mul, Subtype.coe_mk, Subtype.coe_mk, ← h₁, ← h₂, zpow_mul_comm]
[GOAL]
G : Type u_1
inst✝² : Group G
A : Type u_2
inst✝¹ : AddGroup A
N : Type u_3
inst✝ : Group N
s : Set G
g✝ g : G
H : Subgroup G
⊢ zpowers g ≤ H ↔ g ∈ H
[PROOFSTEP]
rw [zpowers_eq_closure, closure_le, Set.singleton_subset_iff, SetLike.mem_coe]
[GOAL]
G : Type u_1
inst✝² : Group G
A : Type u_2
inst✝¹ : AddGroup A
N : Type u_3
inst✝ : Group N
s : Set G
g✝ g : G
⊢ zpowers g = ⊥ ↔ g = 1
[PROOFSTEP]
rw [eq_bot_iff, zpowers_le, mem_bot]
[GOAL]
G : Type u_1
inst✝² : Group G
A : Type u_2
inst✝¹ : AddGroup A
N : Type u_3
inst✝ : Group N
s : Set G
g : G
S : Set G
hS : closure S = ⊤
⊢ center G = ⨅ (g : G) (_ : g ∈ S), centralizer ↑(zpowers g)
[PROOFSTEP]
rw [← centralizer_univ, ← coe_top, ← hS, centralizer_closure]
[GOAL]
G : Type u_1
inst✝² : Group G
A : Type u_2
inst✝¹ : AddGroup A
N : Type u_3
inst✝ : Group N
s : Set G
g : G
S : Set G
hS : closure S = ⊤
⊢ center G = ⨅ (g : ↑S), centralizer ↑(zpowers ↑g)
[PROOFSTEP]
rw [center_eq_iInf S hS, ← iInf_subtype'']
| {"mathlib_filename": "Mathlib.GroupTheory.Subgroup.ZPowers", "llama_tokens": 3460} |
[GOAL]
p : ℕ
G : Type u_1
inst✝ : Group G
P Q : Sylow p G
h : ↑P = ↑Q
⊢ P = Q
[PROOFSTEP]
cases P
[GOAL]
case mk
p : ℕ
G : Type u_1
inst✝ : Group G
Q : Sylow p G
toSubgroup✝ : Subgroup G
isPGroup'✝ : IsPGroup p { x // x ∈ toSubgroup✝ }
is_maximal'✝ : ∀ {Q : Subgroup G}, IsPGroup p { x // x ∈ Q } → toSubgroup✝ ≤ Q → Q = toSubgroup✝
h : ↑{ toSubgroup := toSubgroup✝, isPGroup' := isPGroup'✝, is_maximal' := is_maximal'✝ } = ↑Q
⊢ { toSubgroup := toSubgroup✝, isPGroup' := isPGroup'✝, is_maximal' := is_maximal'✝ } = Q
[PROOFSTEP]
cases Q
[GOAL]
case mk.mk
p : ℕ
G : Type u_1
inst✝ : Group G
toSubgroup✝¹ : Subgroup G
isPGroup'✝¹ : IsPGroup p { x // x ∈ toSubgroup✝¹ }
is_maximal'✝¹ : ∀ {Q : Subgroup G}, IsPGroup p { x // x ∈ Q } → toSubgroup✝¹ ≤ Q → Q = toSubgroup✝¹
toSubgroup✝ : Subgroup G
isPGroup'✝ : IsPGroup p { x // x ∈ toSubgroup✝ }
is_maximal'✝ : ∀ {Q : Subgroup G}, IsPGroup p { x // x ∈ Q } → toSubgroup✝ ≤ Q → Q = toSubgroup✝
h :
↑{ toSubgroup := toSubgroup✝¹, isPGroup' := isPGroup'✝¹, is_maximal' := is_maximal'✝¹ } =
↑{ toSubgroup := toSubgroup✝, isPGroup' := isPGroup'✝, is_maximal' := is_maximal'✝ }
⊢ { toSubgroup := toSubgroup✝¹, isPGroup' := isPGroup'✝¹, is_maximal' := is_maximal'✝¹ } =
{ toSubgroup := toSubgroup✝, isPGroup' := isPGroup'✝, is_maximal' := is_maximal'✝ }
[PROOFSTEP]
congr
[GOAL]
p : ℕ
G : Type u_1
inst✝¹ : Group G
P : Sylow p G
K : Type u_2
inst✝ : Group K
ϕ : K →* G
N : Subgroup G
hϕ : IsPGroup p { x // x ∈ MonoidHom.ker ϕ }
h : ↑P ≤ MonoidHom.range ϕ
src✝ : Subgroup K := comap ϕ ↑P
Q : Subgroup K
hQ : IsPGroup p { x // x ∈ Q }
hle : { toSubmonoid := src✝.toSubmonoid, inv_mem' := (_ : ∀ {x : K}, x ∈ src✝.carrier → x⁻¹ ∈ src✝.carrier) } ≤ Q
⊢ Q = { toSubmonoid := src✝.toSubmonoid, inv_mem' := (_ : ∀ {x : K}, x ∈ src✝.carrier → x⁻¹ ∈ src✝.carrier) }
[PROOFSTEP]
show Q = P.1.comap ϕ
[GOAL]
p : ℕ
G : Type u_1
inst✝¹ : Group G
P : Sylow p G
K : Type u_2
inst✝ : Group K
ϕ : K →* G
N : Subgroup G
hϕ : IsPGroup p { x // x ∈ MonoidHom.ker ϕ }
h : ↑P ≤ MonoidHom.range ϕ
src✝ : Subgroup K := comap ϕ ↑P
Q : Subgroup K
hQ : IsPGroup p { x // x ∈ Q }
hle : { toSubmonoid := src✝.toSubmonoid, inv_mem' := (_ : ∀ {x : K}, x ∈ src✝.carrier → x⁻¹ ∈ src✝.carrier) } ≤ Q
⊢ Q = comap ϕ ↑P
[PROOFSTEP]
rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))]
[GOAL]
p : ℕ
G : Type u_1
inst✝¹ : Group G
P : Sylow p G
K : Type u_2
inst✝ : Group K
ϕ : K →* G
N : Subgroup G
hϕ : IsPGroup p { x // x ∈ MonoidHom.ker ϕ }
h : ↑P ≤ MonoidHom.range ϕ
src✝ : Subgroup K := comap ϕ ↑P
Q : Subgroup K
hQ : IsPGroup p { x // x ∈ Q }
hle : { toSubmonoid := src✝.toSubmonoid, inv_mem' := (_ : ∀ {x : K}, x ∈ src✝.carrier → x⁻¹ ∈ src✝.carrier) } ≤ Q
⊢ Q = comap ϕ (map ϕ Q)
[PROOFSTEP]
exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm
[GOAL]
p : ℕ
G : Type u_1
inst✝¹ : Group G
P : Sylow p G
K : Type u_2
inst✝ : Group K
ϕ : K →* G
N : Subgroup G
h : ↑P ≤ N
⊢ ↑P ≤ MonoidHom.range (Subgroup.subtype N)
[PROOFSTEP]
rwa [subtype_range]
[GOAL]
p : ℕ
G : Type u_1
inst✝¹ : Group G
P✝ : Sylow p G
K : Type u_2
inst✝ : Group K
ϕ : K →* G
N : Subgroup G
P Q : Sylow p G
hP : ↑P ≤ N
hQ : ↑Q ≤ N
h : Sylow.subtype P hP = Sylow.subtype Q hQ
⊢ P = Q
[PROOFSTEP]
rw [SetLike.ext_iff] at h ⊢
[GOAL]
p : ℕ
G : Type u_1
inst✝¹ : Group G
P✝ : Sylow p G
K : Type u_2
inst✝ : Group K
ϕ : K →* G
N : Subgroup G
P Q : Sylow p G
hP : ↑P ≤ N
hQ : ↑Q ≤ N
h✝ : Sylow.subtype P hP = Sylow.subtype Q hQ
h : ∀ (x : { x // x ∈ N }), x ∈ Sylow.subtype P hP ↔ x ∈ Sylow.subtype Q hQ
⊢ ∀ (x : G), x ∈ P ↔ x ∈ Q
[PROOFSTEP]
exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩
[GOAL]
p : ℕ
G : Type u_1
inst✝ : Group G
P : Subgroup G
hP : IsPGroup p { x // x ∈ P }
c : Set (Subgroup G)
hc1 : c ⊆ {Q | IsPGroup p { x // x ∈ Q }}
hc2 : IsChain (fun x x_1 => x ≤ x_1) c
Q : Subgroup G
hQ : Q ∈ c
x✝ :
{ x //
x ∈
{
toSubmonoid :=
{
toSubsemigroup :=
{ carrier := ⋃ (R : ↑c), ↑↑R,
mul_mem' :=
(_ : ∀ {g : G} (h : G), g ∈ ⋃ (R : ↑c), ↑↑R → h ∈ ⋃ (R : ↑c), ↑↑R → g * h ∈ ⋃ (R : ↑c), ↑↑R) },
one_mem' := (_ : ∃ t, (t ∈ Set.range fun R => ↑↑R) ∧ 1 ∈ t) },
inv_mem' :=
(_ :
∀ {g : G},
g ∈
{
toSubsemigroup :=
{ carrier := ⋃ (R : ↑c), ↑↑R,
mul_mem' :=
(_ :
∀ {g : G} (h : G),
g ∈ ⋃ (R : ↑c), ↑↑R → h ∈ ⋃ (R : ↑c), ↑↑R → g * h ∈ ⋃ (R : ↑c), ↑↑R) },
one_mem' := (_ : ∃ t, (t ∈ Set.range fun R => ↑↑R) ∧ 1 ∈ t) }.toSubsemigroup.carrier →
g⁻¹ ∈
{
toSubsemigroup :=
{ carrier := ⋃ (R : ↑c), ↑↑R,
mul_mem' :=
(_ :
∀ {g : G} (h : G),
g ∈ ⋃ (R : ↑c), ↑↑R → h ∈ ⋃ (R : ↑c), ↑↑R → g * h ∈ ⋃ (R : ↑c), ↑↑R) },
one_mem' := (_ : ∃ t, (t ∈ Set.range fun R => ↑↑R) ∧ 1 ∈ t) }.toSubsemigroup.carrier) } }
g : G
S : ↑c
hg : g ∈ (fun R => ↑↑R) S
⊢ ∃ k, { val := g, property := (_ : ∃ t, (t ∈ Set.range fun R => ↑↑R) ∧ g ∈ t) } ^ p ^ k = 1
[PROOFSTEP]
refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩)
[GOAL]
p : ℕ
G : Type u_1
inst✝ : Group G
P : Subgroup G
hP : IsPGroup p { x // x ∈ P }
c : Set (Subgroup G)
hc1 : c ⊆ {Q | IsPGroup p { x // x ∈ Q }}
hc2 : IsChain (fun x x_1 => x ≤ x_1) c
Q : Subgroup G
hQ : Q ∈ c
x✝ :
{ x //
x ∈
{
toSubmonoid :=
{
toSubsemigroup :=
{ carrier := ⋃ (R : ↑c), ↑↑R,
mul_mem' :=
(_ : ∀ {g : G} (h : G), g ∈ ⋃ (R : ↑c), ↑↑R → h ∈ ⋃ (R : ↑c), ↑↑R → g * h ∈ ⋃ (R : ↑c), ↑↑R) },
one_mem' := (_ : ∃ t, (t ∈ Set.range fun R => ↑↑R) ∧ 1 ∈ t) },
inv_mem' :=
(_ :
∀ {g : G},
g ∈
{
toSubsemigroup :=
{ carrier := ⋃ (R : ↑c), ↑↑R,
mul_mem' :=
(_ :
∀ {g : G} (h : G),
g ∈ ⋃ (R : ↑c), ↑↑R → h ∈ ⋃ (R : ↑c), ↑↑R → g * h ∈ ⋃ (R : ↑c), ↑↑R) },
one_mem' := (_ : ∃ t, (t ∈ Set.range fun R => ↑↑R) ∧ 1 ∈ t) }.toSubsemigroup.carrier →
g⁻¹ ∈
{
toSubsemigroup :=
{ carrier := ⋃ (R : ↑c), ↑↑R,
mul_mem' :=
(_ :
∀ {g : G} (h : G),
g ∈ ⋃ (R : ↑c), ↑↑R → h ∈ ⋃ (R : ↑c), ↑↑R → g * h ∈ ⋃ (R : ↑c), ↑↑R) },
one_mem' := (_ : ∃ t, (t ∈ Set.range fun R => ↑↑R) ∧ 1 ∈ t) }.toSubsemigroup.carrier) } }
g : G
S : ↑c
hg : g ∈ (fun R => ↑↑R) S
k : ℕ
hk : { val := g, property := hg } ^ p ^ k = 1
⊢ { val := g, property := (_ : ∃ t, (t ∈ Set.range fun R => ↑↑R) ∧ g ∈ t) } ^ p ^ k = 1
[PROOFSTEP]
rwa [Subtype.ext_iff, coe_pow] at hk ⊢
[GOAL]
p : ℕ
G : Type u_1
inst✝² : Group G
H : Type u_2
inst✝¹ : Group H
f : H →* G
hf : IsPGroup p { x // x ∈ MonoidHom.ker f }
inst✝ : Fintype (Sylow p G)
h_exists : ∀ (P : Sylow p H), ∃ Q, comap f ↑Q = ↑P := fun P => exists_comap_eq_of_ker_isPGroup P hf
g : Sylow p H → Sylow p G := fun P => Classical.choose (_ : ∃ Q, comap f ↑Q = ↑P)
hg : ∀ (P : Sylow p H), comap f ↑(g P) = ↑P
P Q : Sylow p H
h : g P = g Q
⊢ ↑P = ↑Q
[PROOFSTEP]
rw [← hg, h]
[GOAL]
p : ℕ
G : Type u_1
inst✝² : Group G
H : Type u_2
inst✝¹ : Group H
f : H →* G
hf : IsPGroup p { x // x ∈ MonoidHom.ker f }
inst✝ : Fintype (Sylow p G)
h_exists : ∀ (P : Sylow p H), ∃ Q, comap f ↑Q = ↑P := fun P => exists_comap_eq_of_ker_isPGroup P hf
g : Sylow p H → Sylow p G := fun P => Classical.choose (_ : ∃ Q, comap f ↑Q = ↑P)
hg : ∀ (P : Sylow p H), comap f ↑(g P) = ↑P
P Q : Sylow p H
h : g P = g Q
⊢ comap f ↑(g Q) = ↑Q
[PROOFSTEP]
exact (h_exists Q).choose_spec
[GOAL]
p : ℕ
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Finite (Sylow p G)
⊢ Finite (Sylow p { x // x ∈ H })
[PROOFSTEP]
cases nonempty_fintype (Sylow p G)
[GOAL]
case intro
p : ℕ
G : Type u_1
inst✝¹ : Group G
H : Subgroup G
inst✝ : Finite (Sylow p G)
val✝ : Fintype (Sylow p G)
⊢ Finite (Sylow p { x // x ∈ H })
[PROOFSTEP]
infer_instance
[GOAL]
p : ℕ
G : Type u_1
inst✝ : Group G
g : G
P : Sylow p G
⊢ g • P = P ↔ g ∈ normalizer ↑P
[PROOFSTEP]
rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv]
[GOAL]
p : ℕ
G : Type u_1
inst✝ : Group G
g : G
P : Sylow p G
⊢ (∀ (x : G), x ∈ P ↔ x ∈ g • P) ↔ ∀ (h : G), h ∈ ↑P ↔ g⁻¹ * h * g ∈ ↑P
[PROOFSTEP]
exact
forall_congr' fun h =>
iff_congr Iff.rfl
⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh =>
⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩
[GOAL]
p : ℕ
G : Type u_1
inst✝ : Group G
g : G
P : Sylow p G
h : G
x✝ : h ∈ g • P
a : G
b : a ∈ ↑↑P
c : ↑(↑(MulDistribMulAction.toMonoidEnd (MulAut G) G) (↑MulAut.conj g)) a = h
⊢ g⁻¹ * ↑(↑(MulDistribMulAction.toMonoidEnd (MulAut G) G) (↑MulAut.conj g)) a * g ∈ ↑P
[PROOFSTEP]
simpa [mul_assoc] using b
[GOAL]
p : ℕ
G : Type u_1
inst✝ : Group G
g : G
P : Sylow p G
h : Normal ↑P
⊢ g • P = P
[PROOFSTEP]
simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top]
[GOAL]
p : ℕ
G : Type u_1
inst✝ : Group G
H : Subgroup G
P : Sylow p G
⊢ P ∈ fixedPoints { x // x ∈ H } (Sylow p G) ↔ H ≤ normalizer ↑P
[PROOFSTEP]
simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]
[GOAL]
p : ℕ
G : Type u_1
inst✝ : Group G
H : Subgroup G
P : Sylow p G
⊢ P ∈ fixedPoints { x // x ∈ H } (Sylow p G) ↔ ∀ ⦃x : G⦄, x ∈ H → x • P = P
[PROOFSTEP]
exact Subtype.forall
[GOAL]
p : ℕ
G : Type u_1
inst✝ : Group G
P : Subgroup G
hP : IsPGroup p { x // x ∈ P }
Q : Sylow p G
⊢ Q ∈ fixedPoints { x // x ∈ P } (Sylow p G) ↔ P ≤ ↑Q
[PROOFSTEP]
rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left]
[GOAL]
p : ℕ
G : Type u_1
inst✝¹ : Group G
hp : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P Q : Sylow p G
⊢ ∃ g, g • P = Q
[PROOFSTEP]
classical
cases nonempty_fintype (Sylow p G)
have H := fun {R : Sylow p G} {S : orbit G P} =>
calc
S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff
_ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff
_ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩
suffices Set.Nonempty (fixedPoints Q (orbit G P)) by
exact
Exists.elim this fun R hR => by
rw [← Sylow.ext (H.mp hR)]
exact R.2
apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card
refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _)
calc
1 = card (fixedPoints P (orbit G P)) := ?_
_ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm
_ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h
rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)]
refine' card_congr' (congr_arg _ (Eq.symm _))
rw [Set.eq_singleton_iff_unique_mem]
exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩
[GOAL]
p : ℕ
G : Type u_1
inst✝¹ : Group G
hp : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P Q : Sylow p G
⊢ ∃ g, g • P = Q
[PROOFSTEP]
cases nonempty_fintype (Sylow p G)
[GOAL]
case intro
p : ℕ
G : Type u_1
inst✝¹ : Group G
hp : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P Q : Sylow p G
val✝ : Fintype (Sylow p G)
⊢ ∃ g, g • P = Q
[PROOFSTEP]
have H := fun {R : Sylow p G} {S : orbit G P} =>
calc
S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff
_ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff
_ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩
[GOAL]
case intro
p : ℕ
G : Type u_1
inst✝¹ : Group G
hp : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P Q : Sylow p G
val✝ : Fintype (Sylow p G)
H : ∀ {R : Sylow p G} {S : ↑(orbit G P)}, S ∈ fixedPoints { x // x ∈ ↑R } ↑(orbit G P) ↔ ↑↑S = ↑R
⊢ ∃ g, g • P = Q
[PROOFSTEP]
suffices Set.Nonempty (fixedPoints Q (orbit G P)) by
exact
Exists.elim this fun R hR => by
rw [← Sylow.ext (H.mp hR)]
exact R.2
[GOAL]
p : ℕ
G : Type u_1
inst✝¹ : Group G
hp : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P Q : Sylow p G
val✝ : Fintype (Sylow p G)
H : ∀ {R : Sylow p G} {S : ↑(orbit G P)}, S ∈ fixedPoints { x // x ∈ ↑R } ↑(orbit G P) ↔ ↑↑S = ↑R
this : Set.Nonempty (fixedPoints { x // x ∈ ↑Q } ↑(orbit G P))
⊢ ∃ g, g • P = Q
[PROOFSTEP]
exact
Exists.elim this fun R hR => by
rw [← Sylow.ext (H.mp hR)]
exact R.2
[GOAL]
p : ℕ
G : Type u_1
inst✝¹ : Group G
hp : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P Q : Sylow p G
val✝ : Fintype (Sylow p G)
H : ∀ {R : Sylow p G} {S : ↑(orbit G P)}, S ∈ fixedPoints { x // x ∈ ↑R } ↑(orbit G P) ↔ ↑↑S = ↑R
this : Set.Nonempty (fixedPoints { x // x ∈ ↑Q } ↑(orbit G P))
R : ↑(orbit G P)
hR : R ∈ fixedPoints { x // x ∈ ↑Q } ↑(orbit G P)
⊢ ∃ g, g • P = Q
[PROOFSTEP]
rw [← Sylow.ext (H.mp hR)]
[GOAL]
p : ℕ
G : Type u_1
inst✝¹ : Group G
hp : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P Q : Sylow p G
val✝ : Fintype (Sylow p G)
H : ∀ {R : Sylow p G} {S : ↑(orbit G P)}, S ∈ fixedPoints { x // x ∈ ↑R } ↑(orbit G P) ↔ ↑↑S = ↑R
this : Set.Nonempty (fixedPoints { x // x ∈ ↑Q } ↑(orbit G P))
R : ↑(orbit G P)
hR : R ∈ fixedPoints { x // x ∈ ↑Q } ↑(orbit G P)
⊢ ∃ g, g • P = ↑R
[PROOFSTEP]
exact R.2
[GOAL]
case intro
p : ℕ
G : Type u_1
inst✝¹ : Group G
hp : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P Q : Sylow p G
val✝ : Fintype (Sylow p G)
H : ∀ {R : Sylow p G} {S : ↑(orbit G P)}, S ∈ fixedPoints { x // x ∈ ↑R } ↑(orbit G P) ↔ ↑↑S = ↑R
⊢ Set.Nonempty (fixedPoints { x // x ∈ ↑Q } ↑(orbit G P))
[PROOFSTEP]
apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card
[GOAL]
case intro.hpα
p : ℕ
G : Type u_1
inst✝¹ : Group G
hp : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P Q : Sylow p G
val✝ : Fintype (Sylow p G)
H : ∀ {R : Sylow p G} {S : ↑(orbit G P)}, S ∈ fixedPoints { x // x ∈ ↑R } ↑(orbit G P) ↔ ↑↑S = ↑R
⊢ ¬p ∣ card ↑(orbit G P)
[PROOFSTEP]
refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _)
[GOAL]
case intro.hpα
p : ℕ
G : Type u_1
inst✝¹ : Group G
hp : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P Q : Sylow p G
val✝ : Fintype (Sylow p G)
H : ∀ {R : Sylow p G} {S : ↑(orbit G P)}, S ∈ fixedPoints { x // x ∈ ↑R } ↑(orbit G P) ↔ ↑↑S = ↑R
h : p ∣ card ↑(orbit G P)
⊢ 1 ≡ 0 [MOD p]
[PROOFSTEP]
calc
1 = card (fixedPoints P (orbit G P)) := ?_
_ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm
_ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h
[GOAL]
case intro.hpα
p : ℕ
G : Type u_1
inst✝¹ : Group G
hp : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P Q : Sylow p G
val✝ : Fintype (Sylow p G)
H : ∀ {R : Sylow p G} {S : ↑(orbit G P)}, S ∈ fixedPoints { x // x ∈ ↑R } ↑(orbit G P) ↔ ↑↑S = ↑R
h : p ∣ card ↑(orbit G P)
⊢ 1 = card ↑(fixedPoints { x // x ∈ ↑P } ↑(orbit G P))
[PROOFSTEP]
rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)]
[GOAL]
case intro.hpα
p : ℕ
G : Type u_1
inst✝¹ : Group G
hp : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P Q : Sylow p G
val✝ : Fintype (Sylow p G)
H : ∀ {R : Sylow p G} {S : ↑(orbit G P)}, S ∈ fixedPoints { x // x ∈ ↑R } ↑(orbit G P) ↔ ↑↑S = ↑R
h : p ∣ card ↑(orbit G P)
⊢ card ↑{{ val := P, property := (_ : P ∈ orbit G P) }} = card ↑(fixedPoints { x // x ∈ ↑P } ↑(orbit G P))
[PROOFSTEP]
refine' card_congr' (congr_arg _ (Eq.symm _))
[GOAL]
case intro.hpα
p : ℕ
G : Type u_1
inst✝¹ : Group G
hp : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P Q : Sylow p G
val✝ : Fintype (Sylow p G)
H : ∀ {R : Sylow p G} {S : ↑(orbit G P)}, S ∈ fixedPoints { x // x ∈ ↑R } ↑(orbit G P) ↔ ↑↑S = ↑R
h : p ∣ card ↑(orbit G P)
⊢ fixedPoints { x // x ∈ ↑P } ↑(orbit G P) = {{ val := P, property := (_ : P ∈ orbit G P) }}
[PROOFSTEP]
rw [Set.eq_singleton_iff_unique_mem]
[GOAL]
case intro.hpα
p : ℕ
G : Type u_1
inst✝¹ : Group G
hp : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P Q : Sylow p G
val✝ : Fintype (Sylow p G)
H : ∀ {R : Sylow p G} {S : ↑(orbit G P)}, S ∈ fixedPoints { x // x ∈ ↑R } ↑(orbit G P) ↔ ↑↑S = ↑R
h : p ∣ card ↑(orbit G P)
⊢ { val := P, property := (_ : P ∈ orbit G P) } ∈ fixedPoints { x // x ∈ ↑P } ↑(orbit G P) ∧
∀ (x : ↑(orbit G P)),
x ∈ fixedPoints { x // x ∈ ↑P } ↑(orbit G P) → x = { val := P, property := (_ : P ∈ orbit G P) }
[PROOFSTEP]
exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩
[GOAL]
p : ℕ
G : Type u_1
inst✝² : Group G
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Fintype (Sylow p G)
⊢ card (Sylow p G) ≡ 1 [MOD p]
[PROOFSTEP]
refine' Sylow.nonempty.elim fun P : Sylow p G => _
[GOAL]
p : ℕ
G : Type u_1
inst✝² : Group G
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Fintype (Sylow p G)
P : Sylow p G
⊢ card (Sylow p G) ≡ 1 [MOD p]
[PROOFSTEP]
have : fixedPoints P.1 (Sylow p G) = { P } :=
Set.ext fun Q : Sylow p G =>
calc
Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff
_ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩
_ ↔ Q ∈ { P } := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm
[GOAL]
p : ℕ
G : Type u_1
inst✝² : Group G
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Fintype (Sylow p G)
P : Sylow p G
this : fixedPoints { x // x ∈ ↑P } (Sylow p G) = {P}
⊢ card (Sylow p G) ≡ 1 [MOD p]
[PROOFSTEP]
have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by
rw [this]
infer_instance
[GOAL]
p : ℕ
G : Type u_1
inst✝² : Group G
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Fintype (Sylow p G)
P : Sylow p G
this : fixedPoints { x // x ∈ ↑P } (Sylow p G) = {P}
⊢ Fintype ↑(fixedPoints { x // x ∈ ↑P } (Sylow p G))
[PROOFSTEP]
rw [this]
[GOAL]
p : ℕ
G : Type u_1
inst✝² : Group G
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Fintype (Sylow p G)
P : Sylow p G
this : fixedPoints { x // x ∈ ↑P } (Sylow p G) = {P}
⊢ Fintype ↑{P}
[PROOFSTEP]
infer_instance
[GOAL]
p : ℕ
G : Type u_1
inst✝² : Group G
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Fintype (Sylow p G)
P : Sylow p G
this : fixedPoints { x // x ∈ ↑P } (Sylow p G) = {P}
fin : Fintype ↑(fixedPoints { x // x ∈ ↑P } (Sylow p G))
⊢ card (Sylow p G) ≡ 1 [MOD p]
[PROOFSTEP]
have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this]
[GOAL]
p : ℕ
G : Type u_1
inst✝² : Group G
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Fintype (Sylow p G)
P : Sylow p G
this : fixedPoints { x // x ∈ ↑P } (Sylow p G) = {P}
fin : Fintype ↑(fixedPoints { x // x ∈ ↑P } (Sylow p G))
⊢ card ↑(fixedPoints { x // x ∈ ↑P } (Sylow p G)) = 1
[PROOFSTEP]
simp [this]
[GOAL]
p : ℕ
G : Type u_1
inst✝² : Group G
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Fintype (Sylow p G)
P : Sylow p G
this✝ : fixedPoints { x // x ∈ ↑P } (Sylow p G) = {P}
fin : Fintype ↑(fixedPoints { x // x ∈ ↑P } (Sylow p G))
this : card ↑(fixedPoints { x // x ∈ ↑P } (Sylow p G)) = 1
⊢ card (Sylow p G) ≡ 1 [MOD p]
[PROOFSTEP]
exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this])
[GOAL]
p : ℕ
G : Type u_1
inst✝² : Group G
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Fintype (Sylow p G)
P : Sylow p G
this✝ : fixedPoints { x // x ∈ ↑P } (Sylow p G) = {P}
fin : Fintype ↑(fixedPoints { x // x ∈ ↑P } (Sylow p G))
this : card ↑(fixedPoints { x // x ∈ ↑P } (Sylow p G)) = 1
⊢ card ↑(fixedPoints { x // x ∈ ↑P } (Sylow p G)) ≡ 1 [MOD p]
[PROOFSTEP]
rw [this]
[GOAL]
p : ℕ
G : Type u_1
inst✝² : Group G
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P Q : Sylow p G
⊢ { x // x ∈ ↑P } ≃* { x // x ∈ ↑Q }
[PROOFSTEP]
rw [← Classical.choose_spec (exists_smul_eq G P Q)]
[GOAL]
p : ℕ
G : Type u_1
inst✝² : Group G
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P Q : Sylow p G
⊢ { x // x ∈ ↑P } ≃* { x // x ∈ ↑(Classical.choose (_ : ∃ m, m • P = Q) • P) }
[PROOFSTEP]
exact P.equivSMul (Classical.choose (exists_smul_eq G P Q))
[GOAL]
p : ℕ
G : Type u_1
inst✝ : Group G
P : Sylow p G
⊢ stabilizer G P = normalizer ↑P
[PROOFSTEP]
ext
[GOAL]
case h
p : ℕ
G : Type u_1
inst✝ : Group G
P : Sylow p G
x✝ : G
⊢ x✝ ∈ stabilizer G P ↔ x✝ ∈ normalizer ↑P
[PROOFSTEP]
simp [Sylow.smul_eq_iff_mem_normalizer]
[GOAL]
p : ℕ
G : Type u_1
inst✝² : Group G
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P : Sylow p G
x g : G
hx : x ∈ centralizer ↑P
hy : g⁻¹ * x * g ∈ centralizer ↑P
⊢ ∃ n, n ∈ normalizer ↑P ∧ g⁻¹ * x * g = n⁻¹ * x * n
[PROOFSTEP]
have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le]
[GOAL]
p : ℕ
G : Type u_1
inst✝² : Group G
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P : Sylow p G
x g : G
hx : x ∈ centralizer ↑P
hy : g⁻¹ * x * g ∈ centralizer ↑P
⊢ ↑P ≤ centralizer ↑(zpowers x)
[PROOFSTEP]
rwa [le_centralizer_iff, zpowers_le]
[GOAL]
p : ℕ
G : Type u_1
inst✝² : Group G
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P : Sylow p G
x g : G
hx : x ∈ centralizer ↑P
hy : g⁻¹ * x * g ∈ centralizer ↑P
h1 : ↑P ≤ centralizer ↑(zpowers x)
⊢ ∃ n, n ∈ normalizer ↑P ∧ g⁻¹ * x * g = n⁻¹ * x * n
[PROOFSTEP]
have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) :=
by
rw [le_centralizer_iff, zpowers_le]
rintro - ⟨z, hz, rfl⟩
specialize hy z hz
rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ←
mul_assoc, ← mul_assoc] at hy
[GOAL]
p : ℕ
G : Type u_1
inst✝² : Group G
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P : Sylow p G
x g : G
hx : x ∈ centralizer ↑P
hy : g⁻¹ * x * g ∈ centralizer ↑P
h1 : ↑P ≤ centralizer ↑(zpowers x)
⊢ ↑(g • P) ≤ centralizer ↑(zpowers x)
[PROOFSTEP]
rw [le_centralizer_iff, zpowers_le]
[GOAL]
p : ℕ
G : Type u_1
inst✝² : Group G
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P : Sylow p G
x g : G
hx : x ∈ centralizer ↑P
hy : g⁻¹ * x * g ∈ centralizer ↑P
h1 : ↑P ≤ centralizer ↑(zpowers x)
⊢ x ∈ centralizer ↑↑(g • P)
[PROOFSTEP]
rintro - ⟨z, hz, rfl⟩
[GOAL]
case intro.intro
p : ℕ
G : Type u_1
inst✝² : Group G
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P : Sylow p G
x g : G
hx : x ∈ centralizer ↑P
hy : g⁻¹ * x * g ∈ centralizer ↑P
h1 : ↑P ≤ centralizer ↑(zpowers x)
z : G
hz : z ∈ ↑↑P
⊢ ↑(↑(MulDistribMulAction.toMonoidEnd (MulAut G) G) (↑MulAut.conj g)) z * x =
x * ↑(↑(MulDistribMulAction.toMonoidEnd (MulAut G) G) (↑MulAut.conj g)) z
[PROOFSTEP]
specialize hy z hz
[GOAL]
case intro.intro
p : ℕ
G : Type u_1
inst✝² : Group G
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P : Sylow p G
x g : G
hx : x ∈ centralizer ↑P
h1 : ↑P ≤ centralizer ↑(zpowers x)
z : G
hz : z ∈ ↑↑P
hy : z * (g⁻¹ * x * g) = g⁻¹ * x * g * z
⊢ ↑(↑(MulDistribMulAction.toMonoidEnd (MulAut G) G) (↑MulAut.conj g)) z * x =
x * ↑(↑(MulDistribMulAction.toMonoidEnd (MulAut G) G) (↑MulAut.conj g)) z
[PROOFSTEP]
rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ←
mul_assoc, ← mul_assoc] at hy
[GOAL]
p : ℕ
G : Type u_1
inst✝² : Group G
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P : Sylow p G
x g : G
hx : x ∈ centralizer ↑P
hy : g⁻¹ * x * g ∈ centralizer ↑P
h1 : ↑P ≤ centralizer ↑(zpowers x)
h2 : ↑(g • P) ≤ centralizer ↑(zpowers x)
⊢ ∃ n, n ∈ normalizer ↑P ∧ g⁻¹ * x * g = n⁻¹ * x * n
[PROOFSTEP]
obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1)
[GOAL]
case intro
p : ℕ
G : Type u_1
inst✝² : Group G
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P : Sylow p G
x g : G
hx : x ∈ centralizer ↑P
hy : g⁻¹ * x * g ∈ centralizer ↑P
h1 : ↑P ≤ centralizer ↑(zpowers x)
h2 : ↑(g • P) ≤ centralizer ↑(zpowers x)
h : { x_1 // x_1 ∈ centralizer ↑(zpowers x) }
hh : h • Sylow.subtype (g • P) h2 = Sylow.subtype P h1
⊢ ∃ n, n ∈ normalizer ↑P ∧ g⁻¹ * x * g = n⁻¹ * x * n
[PROOFSTEP]
simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh
[GOAL]
case intro
p : ℕ
G : Type u_1
inst✝² : Group G
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P : Sylow p G
x g : G
hx : x ∈ centralizer ↑P
hy : g⁻¹ * x * g ∈ centralizer ↑P
h1 : ↑P ≤ centralizer ↑(zpowers x)
h2 : ↑(g • P) ≤ centralizer ↑(zpowers x)
h : { x_1 // x_1 ∈ centralizer ↑(zpowers x) }
hh : Sylow.subtype ((↑h * g) • P) (_ : ↑((↑h * g) • P) ≤ centralizer ↑(zpowers x)) = Sylow.subtype P h1
⊢ ∃ n, n ∈ normalizer ↑P ∧ g⁻¹ * x * g = n⁻¹ * x * n
[PROOFSTEP]
refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩
[GOAL]
case intro
p : ℕ
G : Type u_1
inst✝² : Group G
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P : Sylow p G
x g : G
hx : x ∈ centralizer ↑P
hy : g⁻¹ * x * g ∈ centralizer ↑P
h1 : ↑P ≤ centralizer ↑(zpowers x)
h2 : ↑(g • P) ≤ centralizer ↑(zpowers x)
h : { x_1 // x_1 ∈ centralizer ↑(zpowers x) }
hh : Sylow.subtype ((↑h * g) • P) (_ : ↑((↑h * g) • P) ≤ centralizer ↑(zpowers x)) = Sylow.subtype P h1
⊢ g⁻¹ * x * g = (↑h * g)⁻¹ * x * (↑h * g)
[PROOFSTEP]
rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right]
[GOAL]
p : ℕ
G : Type u_1
inst✝² : Group G
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Fintype (Sylow p G)
P : Sylow p G
⊢ ↑⊤ ≃ ↑(orbit G P)
[PROOFSTEP]
rw [P.orbit_eq_top]
[GOAL]
p : ℕ
G : Type u_1
inst✝² : Group G
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Fintype (Sylow p G)
P : Sylow p G
⊢ G ⧸ stabilizer G P ≃ G ⧸ normalizer ↑P
[PROOFSTEP]
rw [P.stabilizer_eq_normalizer]
[GOAL]
p : ℕ
G : Type u_1
inst✝¹ : Group G
hp : Fact (Nat.Prime p)
P : Sylow p G
inst✝ : Normal ↑P
fP : FiniteIndex ↑P
⊢ ¬p ∣ index ↑P
[PROOFSTEP]
intro h
[GOAL]
p : ℕ
G : Type u_1
inst✝¹ : Group G
hp : Fact (Nat.Prime p)
P : Sylow p G
inst✝ : Normal ↑P
fP : FiniteIndex ↑P
h : p ∣ index ↑P
⊢ False
[PROOFSTEP]
letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex
[GOAL]
p : ℕ
G : Type u_1
inst✝¹ : Group G
hp : Fact (Nat.Prime p)
P : Sylow p G
inst✝ : Normal ↑P
fP : FiniteIndex ↑P
h : p ∣ index ↑P
this : Fintype (G ⧸ ↑P) := fintypeQuotientOfFiniteIndex ↑P
⊢ False
[PROOFSTEP]
rw [index_eq_card (P : Subgroup G)] at h
[GOAL]
p : ℕ
G : Type u_1
inst✝¹ : Group G
hp : Fact (Nat.Prime p)
P : Sylow p G
inst✝ : Normal ↑P
fP : FiniteIndex ↑P
this : Fintype (G ⧸ ↑P) := fintypeQuotientOfFiniteIndex ↑P
h : p ∣ card (G ⧸ ↑P)
⊢ False
[PROOFSTEP]
obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h
[GOAL]
case intro
p : ℕ
G : Type u_1
inst✝¹ : Group G
hp : Fact (Nat.Prime p)
P : Sylow p G
inst✝ : Normal ↑P
fP : FiniteIndex ↑P
this : Fintype (G ⧸ ↑P) := fintypeQuotientOfFiniteIndex ↑P
h : p ∣ card (G ⧸ ↑P)
x : G ⧸ ↑P
hx : orderOf x = p
⊢ False
[PROOFSTEP]
have h := IsPGroup.of_card ((orderOf_eq_card_zpowers.symm.trans hx).trans (pow_one p).symm)
[GOAL]
case intro
p : ℕ
G : Type u_1
inst✝¹ : Group G
hp : Fact (Nat.Prime p)
P : Sylow p G
inst✝ : Normal ↑P
fP : FiniteIndex ↑P
this : Fintype (G ⧸ ↑P) := fintypeQuotientOfFiniteIndex ↑P
h✝ : p ∣ card (G ⧸ ↑P)
x : G ⧸ ↑P
hx : orderOf x = p
h : IsPGroup p { x_1 // x_1 ∈ zpowers x }
⊢ False
[PROOFSTEP]
let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G))
[GOAL]
case intro
p : ℕ
G : Type u_1
inst✝¹ : Group G
hp : Fact (Nat.Prime p)
P : Sylow p G
inst✝ : Normal ↑P
fP : FiniteIndex ↑P
this : Fintype (G ⧸ ↑P) := fintypeQuotientOfFiniteIndex ↑P
h✝ : p ∣ card (G ⧸ ↑P)
x : G ⧸ ↑P
hx : orderOf x = p
h : IsPGroup p { x_1 // x_1 ∈ zpowers x }
Q : Subgroup G := comap (QuotientGroup.mk' ↑P) (zpowers x)
⊢ False
[PROOFSTEP]
have hQ : IsPGroup p Q := by
apply h.comap_of_ker_isPGroup
rw [QuotientGroup.ker_mk']
exact P.2
[GOAL]
p : ℕ
G : Type u_1
inst✝¹ : Group G
hp : Fact (Nat.Prime p)
P : Sylow p G
inst✝ : Normal ↑P
fP : FiniteIndex ↑P
this : Fintype (G ⧸ ↑P) := fintypeQuotientOfFiniteIndex ↑P
h✝ : p ∣ card (G ⧸ ↑P)
x : G ⧸ ↑P
hx : orderOf x = p
h : IsPGroup p { x_1 // x_1 ∈ zpowers x }
Q : Subgroup G := comap (QuotientGroup.mk' ↑P) (zpowers x)
⊢ IsPGroup p { x // x ∈ Q }
[PROOFSTEP]
apply h.comap_of_ker_isPGroup
[GOAL]
case hϕ
p : ℕ
G : Type u_1
inst✝¹ : Group G
hp : Fact (Nat.Prime p)
P : Sylow p G
inst✝ : Normal ↑P
fP : FiniteIndex ↑P
this : Fintype (G ⧸ ↑P) := fintypeQuotientOfFiniteIndex ↑P
h✝ : p ∣ card (G ⧸ ↑P)
x : G ⧸ ↑P
hx : orderOf x = p
h : IsPGroup p { x_1 // x_1 ∈ zpowers x }
Q : Subgroup G := comap (QuotientGroup.mk' ↑P) (zpowers x)
⊢ IsPGroup p { x // x ∈ MonoidHom.ker (QuotientGroup.mk' ↑P) }
[PROOFSTEP]
rw [QuotientGroup.ker_mk']
[GOAL]
case hϕ
p : ℕ
G : Type u_1
inst✝¹ : Group G
hp : Fact (Nat.Prime p)
P : Sylow p G
inst✝ : Normal ↑P
fP : FiniteIndex ↑P
this : Fintype (G ⧸ ↑P) := fintypeQuotientOfFiniteIndex ↑P
h✝ : p ∣ card (G ⧸ ↑P)
x : G ⧸ ↑P
hx : orderOf x = p
h : IsPGroup p { x_1 // x_1 ∈ zpowers x }
Q : Subgroup G := comap (QuotientGroup.mk' ↑P) (zpowers x)
⊢ IsPGroup p { x // x ∈ ↑P }
[PROOFSTEP]
exact P.2
[GOAL]
case intro
p : ℕ
G : Type u_1
inst✝¹ : Group G
hp : Fact (Nat.Prime p)
P : Sylow p G
inst✝ : Normal ↑P
fP : FiniteIndex ↑P
this : Fintype (G ⧸ ↑P) := fintypeQuotientOfFiniteIndex ↑P
h✝ : p ∣ card (G ⧸ ↑P)
x : G ⧸ ↑P
hx : orderOf x = p
h : IsPGroup p { x_1 // x_1 ∈ zpowers x }
Q : Subgroup G := comap (QuotientGroup.mk' ↑P) (zpowers x)
hQ : IsPGroup p { x // x ∈ Q }
⊢ False
[PROOFSTEP]
replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one)
[GOAL]
case intro
p : ℕ
G : Type u_1
inst✝¹ : Group G
P : Sylow p G
inst✝ : Normal ↑P
fP : FiniteIndex ↑P
this : Fintype (G ⧸ ↑P) := fintypeQuotientOfFiniteIndex ↑P
h✝ : p ∣ card (G ⧸ ↑P)
x : G ⧸ ↑P
hx : orderOf x = p
h : IsPGroup p { x_1 // x_1 ∈ zpowers x }
Q : Subgroup G := comap (QuotientGroup.mk' ↑P) (zpowers x)
hQ : IsPGroup p { x // x ∈ Q }
hp : ¬x = 1
⊢ False
[PROOFSTEP]
rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _),
MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp
[GOAL]
case intro
p : ℕ
G : Type u_1
inst✝¹ : Group G
P : Sylow p G
inst✝ : Normal ↑P
fP : FiniteIndex ↑P
this : Fintype (G ⧸ ↑P) := fintypeQuotientOfFiniteIndex ↑P
h✝ : p ∣ card (G ⧸ ↑P)
x : G ⧸ ↑P
hx : orderOf x = p
h : IsPGroup p { x_1 // x_1 ∈ zpowers x }
Q : Subgroup G := comap (QuotientGroup.mk' ↑P) (zpowers x)
hQ : IsPGroup p { x // x ∈ Q }
hp : ↑P < comap (QuotientGroup.mk' ↑P) (zpowers x)
⊢ False
[PROOFSTEP]
exact hp.ne' (P.3 hQ hp.le)
[GOAL]
p : ℕ
G : Type u_1
inst✝¹ : Group G
hp : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P : Sylow p G
hP : relindex (↑P) (normalizer ↑P) ≠ 0
⊢ ¬p ∣ index ↑P
[PROOFSTEP]
cases nonempty_fintype (Sylow p G)
[GOAL]
case intro
p : ℕ
G : Type u_1
inst✝¹ : Group G
hp : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P : Sylow p G
hP : relindex (↑P) (normalizer ↑P) ≠ 0
val✝ : Fintype (Sylow p G)
⊢ ¬p ∣ index ↑P
[PROOFSTEP]
rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer]
[GOAL]
case intro
p : ℕ
G : Type u_1
inst✝¹ : Group G
hp : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P : Sylow p G
hP : relindex (↑P) (normalizer ↑P) ≠ 0
val✝ : Fintype (Sylow p G)
⊢ ¬p ∣ relindex (↑P) (normalizer ↑P) * card (Sylow p G)
[PROOFSTEP]
haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer
[GOAL]
case intro
p : ℕ
G : Type u_1
inst✝¹ : Group G
hp : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P : Sylow p G
hP : relindex (↑P) (normalizer ↑P) ≠ 0
val✝ : Fintype (Sylow p G)
this : Normal ↑(Sylow.subtype P (_ : ↑P ≤ normalizer ↑P))
⊢ ¬p ∣ relindex (↑P) (normalizer ↑P) * card (Sylow p G)
[PROOFSTEP]
haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩
[GOAL]
case intro
p : ℕ
G : Type u_1
inst✝¹ : Group G
hp : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P : Sylow p G
hP : relindex (↑P) (normalizer ↑P) ≠ 0
val✝ : Fintype (Sylow p G)
this✝ : Normal ↑(Sylow.subtype P (_ : ↑P ≤ normalizer ↑P))
this : FiniteIndex ↑(Sylow.subtype P (_ : ↑P ≤ normalizer ↑P))
⊢ ¬p ∣ relindex (↑P) (normalizer ↑P) * card (Sylow p G)
[PROOFSTEP]
replace hP := not_dvd_index_sylow' (P.subtype le_normalizer)
[GOAL]
case intro
p : ℕ
G : Type u_1
inst✝¹ : Group G
hp : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P : Sylow p G
val✝ : Fintype (Sylow p G)
this✝ : Normal ↑(Sylow.subtype P (_ : ↑P ≤ normalizer ↑P))
this : FiniteIndex ↑(Sylow.subtype P (_ : ↑P ≤ normalizer ↑P))
hP : ¬p ∣ index ↑(Sylow.subtype P (_ : ↑P ≤ normalizer ↑P))
⊢ ¬p ∣ relindex (↑P) (normalizer ↑P) * card (Sylow p G)
[PROOFSTEP]
exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G)
[GOAL]
p✝ : ℕ
G : Type u_1
inst✝³ : Group G
p : ℕ
inst✝² : Fact (Nat.Prime p)
N : Subgroup G
inst✝¹ : Normal N
inst✝ : Finite (Sylow p { x // x ∈ N })
P : Sylow p { x // x ∈ N }
⊢ normalizer (map (Subgroup.subtype N) ↑P) ⊔ N = ⊤
[PROOFSTEP]
refine' top_le_iff.mp fun g _ => _
[GOAL]
p✝ : ℕ
G : Type u_1
inst✝³ : Group G
p : ℕ
inst✝² : Fact (Nat.Prime p)
N : Subgroup G
inst✝¹ : Normal N
inst✝ : Finite (Sylow p { x // x ∈ N })
P : Sylow p { x // x ∈ N }
g : G
x✝ : g ∈ ⊤
⊢ g ∈ normalizer (map (Subgroup.subtype N) ↑P) ⊔ N
[PROOFSTEP]
obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P
[GOAL]
case intro
p✝ : ℕ
G : Type u_1
inst✝³ : Group G
p : ℕ
inst✝² : Fact (Nat.Prime p)
N : Subgroup G
inst✝¹ : Normal N
inst✝ : Finite (Sylow p { x // x ∈ N })
P : Sylow p { x // x ∈ N }
g : G
x✝ : g ∈ ⊤
n : { x // x ∈ N }
hn : n • ↑MulAut.conjNormal g • P = P
⊢ g ∈ normalizer (map (Subgroup.subtype N) ↑P) ⊔ N
[PROOFSTEP]
rw [← inv_mul_cancel_left (↑n) g, sup_comm]
[GOAL]
case intro
p✝ : ℕ
G : Type u_1
inst✝³ : Group G
p : ℕ
inst✝² : Fact (Nat.Prime p)
N : Subgroup G
inst✝¹ : Normal N
inst✝ : Finite (Sylow p { x // x ∈ N })
P : Sylow p { x // x ∈ N }
g : G
x✝ : g ∈ ⊤
n : { x // x ∈ N }
hn : n • ↑MulAut.conjNormal g • P = P
⊢ (↑n)⁻¹ * (↑n * g) ∈ N ⊔ normalizer (map (Subgroup.subtype N) ↑P)
[PROOFSTEP]
apply mul_mem_sup (N.inv_mem n.2)
[GOAL]
case intro
p✝ : ℕ
G : Type u_1
inst✝³ : Group G
p : ℕ
inst✝² : Fact (Nat.Prime p)
N : Subgroup G
inst✝¹ : Normal N
inst✝ : Finite (Sylow p { x // x ∈ N })
P : Sylow p { x // x ∈ N }
g : G
x✝ : g ∈ ⊤
n : { x // x ∈ N }
hn : n • ↑MulAut.conjNormal g • P = P
⊢ ↑n * g ∈ normalizer (map (Subgroup.subtype N) ↑P)
[PROOFSTEP]
rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff,
Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn
[GOAL]
case intro
p✝ : ℕ
G : Type u_1
inst✝³ : Group G
p : ℕ
inst✝² : Fact (Nat.Prime p)
N : Subgroup G
inst✝¹ : Normal N
inst✝ : Finite (Sylow p { x // x ∈ N })
P : Sylow p { x // x ∈ N }
g : G
x✝ : g ∈ ⊤
n : { x // x ∈ N }
hn✝ : (↑MulAut.conj n * ↑MulAut.conjNormal g) • P = P
hn :
map
(↑(MulDistribMulAction.toMonoidEnd ((fun x => MulAut { x // x ∈ N }) n) { x // x ∈ N })
(↑MulAut.conjNormal (↑n * g)))
↑P =
↑P
⊢ ↑n * g ∈ normalizer (map (Subgroup.subtype N) ↑P)
[PROOFSTEP]
refine' fun x =>
(mem_map_iff_mem
(show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans
_
[GOAL]
case intro
p✝ : ℕ
G : Type u_1
inst✝³ : Group G
p : ℕ
inst✝² : Fact (Nat.Prime p)
N : Subgroup G
inst✝¹ : Normal N
inst✝ : Finite (Sylow p { x // x ∈ N })
P : Sylow p { x // x ∈ N }
g : G
x✝ : g ∈ ⊤
n : { x // x ∈ N }
hn✝ : (↑MulAut.conj n * ↑MulAut.conjNormal g) • P = P
hn :
map
(↑(MulDistribMulAction.toMonoidEnd ((fun x => MulAut { x // x ∈ N }) n) { x // x ∈ N })
(↑MulAut.conjNormal (↑n * g)))
↑P =
↑P
x : G
⊢ ↑(MulEquiv.toMonoidHom (↑MulAut.conj (↑n * g))) x ∈
map (MulEquiv.toMonoidHom (↑MulAut.conj (↑n * g))) (map (Subgroup.subtype N) ↑P) ↔
↑n * g * x * (↑n * g)⁻¹ ∈ map (Subgroup.subtype N) ↑P
[PROOFSTEP]
rw [map_map, ← congr_arg (map N.subtype) hn, map_map]
[GOAL]
case intro
p✝ : ℕ
G : Type u_1
inst✝³ : Group G
p : ℕ
inst✝² : Fact (Nat.Prime p)
N : Subgroup G
inst✝¹ : Normal N
inst✝ : Finite (Sylow p { x // x ∈ N })
P : Sylow p { x // x ∈ N }
g : G
x✝ : g ∈ ⊤
n : { x // x ∈ N }
hn✝ : (↑MulAut.conj n * ↑MulAut.conjNormal g) • P = P
hn :
map
(↑(MulDistribMulAction.toMonoidEnd ((fun x => MulAut { x // x ∈ N }) n) { x // x ∈ N })
(↑MulAut.conjNormal (↑n * g)))
↑P =
↑P
x : G
⊢ ↑(MulEquiv.toMonoidHom (↑MulAut.conj (↑n * g))) x ∈
map (MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑n * g))) (Subgroup.subtype N)) ↑P ↔
↑n * g * x * (↑n * g)⁻¹ ∈
map
(MonoidHom.comp (Subgroup.subtype N)
(↑(MulDistribMulAction.toMonoidEnd ((fun x => MulAut { x // x ∈ N }) n) { x // x ∈ N })
(↑MulAut.conjNormal (↑n * g))))
↑P
[PROOFSTEP]
rfl
[GOAL]
p✝ : ℕ
G : Type u_1
inst✝³ : Group G
p : ℕ
inst✝² : Fact (Nat.Prime p)
N : Subgroup G
inst✝¹ : Normal N
inst✝ : Finite (Sylow p { x // x ∈ N })
P : Sylow p G
hP : ↑P ≤ N
⊢ normalizer ↑P ⊔ N = ⊤
[PROOFSTEP]
rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP]
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
s : Subgroup G
t : Set (G ⧸ s)
⊢ Fintype.card ↑(mk ⁻¹' t) = Fintype.card { x // x ∈ s } * Fintype.card ↑t
[PROOFSTEP]
rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)]
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
H : Subgroup G
inst✝ : Finite ↑↑H
x : G
hx : ↑x ∈ MulAction.fixedPoints { x // x ∈ H } (G ⧸ H)
ha : ∀ {y : G ⧸ H}, y ∈ orbit { x // x ∈ H } ↑x → y = ↑x
n : G
hn : n ∈ H
this : (n⁻¹ * x)⁻¹ * x ∈ H
⊢ x⁻¹ * n * x⁻¹⁻¹ ∈ H
[PROOFSTEP]
rw [mul_inv_rev, inv_inv] at this
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
H : Subgroup G
inst✝ : Finite ↑↑H
x : G
hx : ↑x ∈ MulAction.fixedPoints { x // x ∈ H } (G ⧸ H)
ha : ∀ {y : G ⧸ H}, y ∈ orbit { x // x ∈ H } ↑x → y = ↑x
n : G
hn : n ∈ H
this : x⁻¹ * n * x ∈ H
⊢ x⁻¹ * n * x⁻¹⁻¹ ∈ H
[PROOFSTEP]
convert this
[GOAL]
case h.e'_4.h.e'_6
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
H : Subgroup G
inst✝ : Finite ↑↑H
x : G
hx : ↑x ∈ MulAction.fixedPoints { x // x ∈ H } (G ⧸ H)
ha : ∀ {y : G ⧸ H}, y ∈ orbit { x // x ∈ H } ↑x → y = ↑x
n : G
hn : n ∈ H
this : x⁻¹ * n * x ∈ H
⊢ x⁻¹⁻¹ = x
[PROOFSTEP]
rw [inv_inv]
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
H : Subgroup G
inst✝ : Finite ↑↑H
x : G
hx : ∀ (n : G), n ∈ H ↔ x * n * x⁻¹ ∈ H
y✝ : G ⧸ H
y : G
hy : Quotient.mk'' y ∈ orbit { x // x ∈ H } ↑x
b : G
hb₁ : b ∈ H
hb₂✝ : (fun m => m • ↑x) { val := b, property := hb₁ } = Quotient.mk'' y
hb₂ : (b * x)⁻¹ * y ∈ H
⊢ b⁻¹ * (x * (y⁻¹ * x)⁻¹ * x⁻¹) ∈ H
[PROOFSTEP]
rw [hx] at hb₂
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
H : Subgroup G
inst✝ : Finite ↑↑H
x : G
hx : ∀ (n : G), n ∈ H ↔ x * n * x⁻¹ ∈ H
y✝ : G ⧸ H
y : G
hy : Quotient.mk'' y ∈ orbit { x // x ∈ H } ↑x
b : G
hb₁ : b ∈ H
hb₂✝ : (fun m => m • ↑x) { val := b, property := hb₁ } = Quotient.mk'' y
hb₂ : x * ((b * x)⁻¹ * y) * x⁻¹ ∈ H
⊢ b⁻¹ * (x * (y⁻¹ * x)⁻¹ * x⁻¹) ∈ H
[PROOFSTEP]
simpa [mul_inv_rev, mul_assoc] using hb₂
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
H : Subgroup G
inst✝ : Finite ↑↑H
⊢ ∀ (x y : Subtype ↑(normalizer H)), Setoid.r x y ↔ ↑x ≈ ↑y
[PROOFSTEP]
intros
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
H : Subgroup G
inst✝ : Finite ↑↑H
x✝ y✝ : Subtype ↑(normalizer H)
⊢ Setoid.r x✝ y✝ ↔ ↑x✝ ≈ ↑y✝
[PROOFSTEP]
dsimp only [instHasEquiv]
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
H : Subgroup G
inst✝ : Finite ↑↑H
x✝ y✝ : Subtype ↑(normalizer H)
⊢ Setoid.r x✝ y✝ ↔ Setoid.r ↑x✝ ↑y✝
[PROOFSTEP]
rw [leftRel_apply (α := normalizer H), leftRel_apply]
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
H : Subgroup G
inst✝ : Finite ↑↑H
x✝ y✝ : Subtype ↑(normalizer H)
⊢ x✝⁻¹ * y✝ ∈ Subgroup.comap (Subgroup.subtype (normalizer H)) H ↔ (↑x✝)⁻¹ * ↑y✝ ∈ H
[PROOFSTEP]
rfl
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
p n : ℕ
hp : Fact (Nat.Prime p)
H : Subgroup G
hH : Fintype.card { x // x ∈ H } = p ^ n
⊢ Fintype.card ({ x // x ∈ normalizer H } ⧸ Subgroup.comap (Subgroup.subtype (normalizer H)) H) ≡
Fintype.card (G ⧸ H) [MOD p]
[PROOFSTEP]
rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)]
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
p n : ℕ
hp : Fact (Nat.Prime p)
H : Subgroup G
hH : Fintype.card { x // x ∈ H } = p ^ n
⊢ Fintype.card ↑(MulAction.fixedPoints { x // x ∈ H } (G ⧸ H)) ≡ Fintype.card (G ⧸ H) [MOD p]
[PROOFSTEP]
exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
p n : ℕ
hp : Fact (Nat.Prime p)
H : Subgroup G
hH : Fintype.card { x // x ∈ H } = p ^ n
⊢ Fintype.card { x // x ∈ normalizer H } ≡ Fintype.card G [MOD p ^ (n + 1)]
[PROOFSTEP]
have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
p n : ℕ
hp : Fact (Nat.Prime p)
H : Subgroup G
hH : Fintype.card { x // x ∈ H } = p ^ n
this : { x // x ∈ subgroupOf H (normalizer H) } ≃ { x // x ∈ H }
⊢ Fintype.card { x // x ∈ normalizer H } ≡ Fintype.card G [MOD p ^ (n + 1)]
[PROOFSTEP]
rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)),
Fintype.card_congr this, hH, pow_succ]
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
p n : ℕ
hp : Fact (Nat.Prime p)
H : Subgroup G
hH : Fintype.card { x // x ∈ H } = p ^ n
this : { x // x ∈ subgroupOf H (normalizer H) } ≃ { x // x ∈ H }
⊢ Fintype.card ({ x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H)) * p ^ n ≡ Fintype.card (G ⧸ H) * p ^ n [MOD
p * p ^ n]
[PROOFSTEP]
exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
p n : ℕ
hp : Fact (Nat.Prime p)
hdvd : p ^ (n + 1) ∣ Fintype.card G
H : Subgroup G
hH : Fintype.card { x // x ∈ H } = p ^ n
s : ℕ
hs : Fintype.card G = s * p ^ (n + 1)
⊢ Fintype.card (G ⧸ H) * Fintype.card { x // x ∈ H } = s * p * Fintype.card { x // x ∈ H }
[PROOFSTEP]
rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
p n : ℕ
hp : Fact (Nat.Prime p)
hdvd : p ^ (n + 1) ∣ Fintype.card G
H : Subgroup G
hH : Fintype.card { x // x ∈ H } = p ^ n
s : ℕ
hs : Fintype.card G = s * p ^ (n + 1)
hcard : Fintype.card (G ⧸ H) = s * p
hm : s * p % p = Fintype.card ({ x // x ∈ normalizer H } ⧸ Subgroup.comap (Subgroup.subtype (normalizer H)) H) % p
⊢ Fintype.card ({ x // x ∈ normalizer H } ⧸ Subgroup.comap (Subgroup.subtype (normalizer H)) H) % p = 0
[PROOFSTEP]
rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
p n : ℕ
hp : Fact (Nat.Prime p)
hdvd : p ^ (n + 1) ∣ Fintype.card G
H : Subgroup G
hH : Fintype.card { x // x ∈ H } = p ^ n
s : ℕ
hs : Fintype.card G = s * p ^ (n + 1)
⊢ Fintype.card (G ⧸ H) * Fintype.card { x // x ∈ H } = s * p * Fintype.card { x // x ∈ H }
[PROOFSTEP]
rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
p n : ℕ
hp : Fact (Nat.Prime p)
hdvd : p ^ (n + 1) ∣ Fintype.card G
H : Subgroup G
hH : Fintype.card { x // x ∈ H } = p ^ n
s : ℕ
hs : Fintype.card G = s * p ^ (n + 1)
hcard : Fintype.card (G ⧸ H) = s * p
hm : s * p % p = Fintype.card ({ x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H)) % p
⊢ Fintype.card ({ x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H)) % p = 0
[PROOFSTEP]
rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
p n : ℕ
hp : Fact (Nat.Prime p)
hdvd : p ^ (n + 1) ∣ Fintype.card G
H : Subgroup G
hH : Fintype.card { x // x ∈ H } = p ^ n
s : ℕ
hs : Fintype.card G = s * p ^ (n + 1)
hcard : Fintype.card (G ⧸ H) = s * p
hm : s * p % p = Fintype.card ({ x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H)) % p
hm' : p ∣ Fintype.card ({ x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H))
x : { x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H)
hx : orderOf x = p
hequiv : { x // x ∈ H } ≃ { x // x ∈ subgroupOf H (normalizer H) }
⊢ Fintype.card
{ x_1 //
x_1 ∈
Subgroup.map (Subgroup.subtype (normalizer H))
(Subgroup.comap (mk' (subgroupOf H (normalizer H))) (zpowers x)) } =
p ^ (n + 1)
[PROOFSTEP]
show
Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) =
p ^ (n + 1)
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
p n : ℕ
hp : Fact (Nat.Prime p)
hdvd : p ^ (n + 1) ∣ Fintype.card G
H : Subgroup G
hH : Fintype.card { x // x ∈ H } = p ^ n
s : ℕ
hs : Fintype.card G = s * p ^ (n + 1)
hcard : Fintype.card (G ⧸ H) = s * p
hm : s * p % p = Fintype.card ({ x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H)) % p
hm' : p ∣ Fintype.card ({ x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H))
x : { x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H)
hx : orderOf x = p
hequiv : { x // x ∈ H } ≃ { x // x ∈ subgroupOf H (normalizer H) }
⊢ Fintype.card
{ x_1 //
x_1 ∈
Subgroup.map (Subgroup.subtype (normalizer H))
(Subgroup.comap (mk' (subgroupOf H (normalizer H))) (zpowers x)) } =
p ^ (n + 1)
[PROOFSTEP]
suffices
Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) =
p ^ (n + 1)
by convert this using 2
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
p n : ℕ
hp : Fact (Nat.Prime p)
hdvd : p ^ (n + 1) ∣ Fintype.card G
H : Subgroup G
hH : Fintype.card { x // x ∈ H } = p ^ n
s : ℕ
hs : Fintype.card G = s * p ^ (n + 1)
hcard : Fintype.card (G ⧸ H) = s * p
hm : s * p % p = Fintype.card ({ x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H)) % p
hm' : p ∣ Fintype.card ({ x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H))
x : { x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H)
hx : orderOf x = p
hequiv : { x // x ∈ H } ≃ { x // x ∈ subgroupOf H (normalizer H) }
this : Fintype.card ↑(Subtype.val '' ↑(Subgroup.comap (mk' (subgroupOf H (normalizer H))) (zpowers x))) = p ^ (n + 1)
⊢ Fintype.card
{ x_1 //
x_1 ∈
Subgroup.map (Subgroup.subtype (normalizer H))
(Subgroup.comap (mk' (subgroupOf H (normalizer H))) (zpowers x)) } =
p ^ (n + 1)
[PROOFSTEP]
convert this using 2
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
p n : ℕ
hp : Fact (Nat.Prime p)
hdvd : p ^ (n + 1) ∣ Fintype.card G
H : Subgroup G
hH : Fintype.card { x // x ∈ H } = p ^ n
s : ℕ
hs : Fintype.card G = s * p ^ (n + 1)
hcard : Fintype.card (G ⧸ H) = s * p
hm : s * p % p = Fintype.card ({ x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H)) % p
hm' : p ∣ Fintype.card ({ x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H))
x : { x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H)
hx : orderOf x = p
hequiv : { x // x ∈ H } ≃ { x // x ∈ subgroupOf H (normalizer H) }
⊢ Fintype.card ↑(Subtype.val '' ↑(Subgroup.comap (mk' (subgroupOf H (normalizer H))) (zpowers x))) = p ^ (n + 1)
[PROOFSTEP]
rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)
Subtype.val_injective,
pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, orderOf_eq_card_zpowers, ← Fintype.card_prod]
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
p n : ℕ
hp : Fact (Nat.Prime p)
hdvd : p ^ (n + 1) ∣ Fintype.card G
H : Subgroup G
hH : Fintype.card { x // x ∈ H } = p ^ n
s : ℕ
hs : Fintype.card G = s * p ^ (n + 1)
hcard : Fintype.card (G ⧸ H) = s * p
hm : s * p % p = Fintype.card ({ x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H)) % p
hm' : p ∣ Fintype.card ({ x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H))
x : { x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H)
hx : orderOf x = p
hequiv : { x // x ∈ H } ≃ { x // x ∈ subgroupOf H (normalizer H) }
⊢ Fintype.card ↑↑(Subgroup.comap (mk' (subgroupOf H (normalizer H))) (zpowers x)) =
Fintype.card ({ x // x ∈ subgroupOf H (normalizer H) } × { x_1 // x_1 ∈ zpowers x })
[PROOFSTEP]
exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x))
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
p n : ℕ
hp : Fact (Nat.Prime p)
hdvd : p ^ (n + 1) ∣ Fintype.card G
H : Subgroup G
hH : Fintype.card { x // x ∈ H } = p ^ n
s : ℕ
hs : Fintype.card G = s * p ^ (n + 1)
hcard : Fintype.card (G ⧸ H) = s * p
hm : s * p % p = Fintype.card ({ x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H)) % p
hm' : p ∣ Fintype.card ({ x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H))
x : { x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H)
hx : orderOf x = p
hequiv : { x // x ∈ H } ≃ { x // x ∈ subgroupOf H (normalizer H) }
⊢ H ≤ Subgroup.map (Subgroup.subtype (normalizer H)) (Subgroup.comap (mk' (subgroupOf H (normalizer H))) (zpowers x))
[PROOFSTEP]
intro y hy
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
p n : ℕ
hp : Fact (Nat.Prime p)
hdvd : p ^ (n + 1) ∣ Fintype.card G
H : Subgroup G
hH : Fintype.card { x // x ∈ H } = p ^ n
s : ℕ
hs : Fintype.card G = s * p ^ (n + 1)
hcard : Fintype.card (G ⧸ H) = s * p
hm : s * p % p = Fintype.card ({ x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H)) % p
hm' : p ∣ Fintype.card ({ x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H))
x : { x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H)
hx : orderOf x = p
hequiv : { x // x ∈ H } ≃ { x // x ∈ subgroupOf H (normalizer H) }
y : G
hy : y ∈ H
⊢ y ∈ Subgroup.map (Subgroup.subtype (normalizer H)) (Subgroup.comap (mk' (subgroupOf H (normalizer H))) (zpowers x))
[PROOFSTEP]
simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap]
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
p n : ℕ
hp : Fact (Nat.Prime p)
hdvd : p ^ (n + 1) ∣ Fintype.card G
H : Subgroup G
hH : Fintype.card { x // x ∈ H } = p ^ n
s : ℕ
hs : Fintype.card G = s * p ^ (n + 1)
hcard : Fintype.card (G ⧸ H) = s * p
hm : s * p % p = Fintype.card ({ x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H)) % p
hm' : p ∣ Fintype.card ({ x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H))
x : { x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H)
hx : orderOf x = p
hequiv : { x // x ∈ H } ≃ { x // x ∈ subgroupOf H (normalizer H) }
y : G
hy : y ∈ H
⊢ ∃ x_1, ↑x_1 ∈ zpowers x ∧ ↑x_1 = y
[PROOFSTEP]
refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
p n : ℕ
hp : Fact (Nat.Prime p)
hdvd : p ^ (n + 1) ∣ Fintype.card G
H : Subgroup G
hH : Fintype.card { x // x ∈ H } = p ^ n
s : ℕ
hs : Fintype.card G = s * p ^ (n + 1)
hcard : Fintype.card (G ⧸ H) = s * p
hm : s * p % p = Fintype.card ({ x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H)) % p
hm' : p ∣ Fintype.card ({ x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H))
x : { x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H)
hx : orderOf x = p
hequiv : { x // x ∈ H } ≃ { x // x ∈ subgroupOf H (normalizer H) }
y : G
hy : y ∈ H
⊢ (fun x x_1 => x ^ x_1) x 0 = ↑{ val := y, property := (_ : y ∈ normalizer H) }
[PROOFSTEP]
dsimp only
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
p n : ℕ
hp : Fact (Nat.Prime p)
hdvd : p ^ (n + 1) ∣ Fintype.card G
H : Subgroup G
hH : Fintype.card { x // x ∈ H } = p ^ n
s : ℕ
hs : Fintype.card G = s * p ^ (n + 1)
hcard : Fintype.card (G ⧸ H) = s * p
hm : s * p % p = Fintype.card ({ x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H)) % p
hm' : p ∣ Fintype.card ({ x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H))
x : { x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H)
hx : orderOf x = p
hequiv : { x // x ∈ H } ≃ { x // x ∈ subgroupOf H (normalizer H) }
y : G
hy : y ∈ H
⊢ x ^ 0 = ↑{ val := y, property := (_ : y ∈ normalizer H) }
[PROOFSTEP]
rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff]
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
p n : ℕ
hp : Fact (Nat.Prime p)
hdvd : p ^ (n + 1) ∣ Fintype.card G
H : Subgroup G
hH : Fintype.card { x // x ∈ H } = p ^ n
s : ℕ
hs : Fintype.card G = s * p ^ (n + 1)
hcard : Fintype.card (G ⧸ H) = s * p
hm : s * p % p = Fintype.card ({ x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H)) % p
hm' : p ∣ Fintype.card ({ x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H))
x : { x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H)
hx : orderOf x = p
hequiv : { x // x ∈ H } ≃ { x // x ∈ subgroupOf H (normalizer H) }
y : G
hy : y ∈ H
⊢ { val := y, property := (_ : y ∈ normalizer H) } ∈ subgroupOf H (normalizer H)
[PROOFSTEP]
simpa using hy
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
p : ℕ
_hp✝ : Fact (Nat.Prime p)
n m : ℕ
hdvd : p ^ m ∣ Fintype.card G
H : Subgroup G
hH : Fintype.card { x // x ∈ H } = p ^ n
hnm✝ : n ≤ m
hnm : n < m
h0m : 0 < m
_wf : m - 1 < m
hnm1 : n ≤ m - 1
K : Subgroup G
hK : Fintype.card { x // x ∈ K } = p ^ (m - 1) ∧ H ≤ K
⊢ p ^ (m - 1 + 1) ∣ Fintype.card G
[PROOFSTEP]
rwa [tsub_add_cancel_of_le h0m.nat_succ_le]
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
p : ℕ
_hp✝ : Fact (Nat.Prime p)
n m : ℕ
hdvd : p ^ m ∣ Fintype.card G
H : Subgroup G
hH : Fintype.card { x // x ∈ H } = p ^ n
hnm✝ : n ≤ m
hnm : n < m
h0m : 0 < m
_wf : m - 1 < m
hnm1 : n ≤ m - 1
K : Subgroup G
hK : Fintype.card { x // x ∈ K } = p ^ (m - 1) ∧ H ≤ K
hdvd' : p ^ (m - 1 + 1) ∣ Fintype.card G
K' : Subgroup G
hK' : Fintype.card { x // x ∈ K' } = p ^ (m - 1 + 1) ∧ K ≤ K'
⊢ Fintype.card { x // x ∈ K' } = p ^ m
[PROOFSTEP]
rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le]
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
p : ℕ
_hp✝ : Fact (Nat.Prime p)
n m : ℕ
hdvd : p ^ m ∣ Fintype.card G
H : Subgroup G
hH : Fintype.card { x // x ∈ H } = p ^ n
hnm✝ : n ≤ m
hnm : n = m
⊢ Fintype.card { x // x ∈ H } = p ^ m ∧ H ≤ H
[PROOFSTEP]
simp [hH, hnm]
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝² : Group G
inst✝¹ : Fintype G
p n : ℕ
inst✝ : Fact (Nat.Prime p)
hdvd : p ^ n ∣ Fintype.card G
⊢ 1 = p ^ 0
[PROOFSTEP]
simp
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝² : Group G
inst✝¹ : Fintype G
p : ℕ
inst✝ : Fact (Nat.Prime p)
P : Sylow p G
hdvd : p ∣ Fintype.card G
⊢ p ∣ Fintype.card { x // x ∈ ↑P }
[PROOFSTEP]
rw [← pow_one p] at hdvd
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝² : Group G
inst✝¹ : Fintype G
p : ℕ
inst✝ : Fact (Nat.Prime p)
P : Sylow p G
hdvd : p ^ 1 ∣ Fintype.card G
⊢ p ∣ Fintype.card { x // x ∈ ↑P }
[PROOFSTEP]
have key := P.pow_dvd_card_of_pow_dvd_card hdvd
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝² : Group G
inst✝¹ : Fintype G
p : ℕ
inst✝ : Fact (Nat.Prime p)
P : Sylow p G
hdvd : p ^ 1 ∣ Fintype.card G
key : p ^ 1 ∣ Fintype.card { x // x ∈ ↑P }
⊢ p ∣ Fintype.card { x // x ∈ ↑P }
[PROOFSTEP]
rwa [pow_one] at key
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
p : ℕ
hp : Fact (Nat.Prime p)
P : Sylow p G
hdvd : p ∣ Fintype.card G
⊢ ↑P ≠ ⊥
[PROOFSTEP]
refine' fun h => hp.out.not_dvd_one _
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
p : ℕ
hp : Fact (Nat.Prime p)
P : Sylow p G
hdvd : p ∣ Fintype.card G
h : ↑P = ⊥
⊢ p ∣ 1
[PROOFSTEP]
have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
p : ℕ
hp : Fact (Nat.Prime p)
P : Sylow p G
hdvd : p ∣ Fintype.card G
h : ↑P = ⊥
key : p ∣ Fintype.card { x // x ∈ ↑P }
⊢ p ∣ 1
[PROOFSTEP]
rwa [h, card_bot] at key
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
p : ℕ
hp : Fact (Nat.Prime p)
P : Sylow p G
⊢ Fintype.card { x // x ∈ ↑P } = p ^ ↑(Nat.factorization (Fintype.card G)) p
[PROOFSTEP]
obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup'
[GOAL]
case intro
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
p : ℕ
hp : Fact (Nat.Prime p)
P : Sylow p G
n : ℕ
heq : Fintype.card { x // x ∈ ↑P } = p ^ n
⊢ Fintype.card { x // x ∈ ↑P } = p ^ ↑(Nat.factorization (Fintype.card G)) p
[PROOFSTEP]
refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p))
[GOAL]
case intro
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
p : ℕ
hp : Fact (Nat.Prime p)
P : Sylow p G
n : ℕ
heq : Fintype.card { x // x ∈ ↑P } = p ^ n
⊢ Fintype.card { x // x ∈ ↑P } ∣ p ^ ↑(Nat.factorization (Fintype.card G)) p
[PROOFSTEP]
rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G ≠ 0 from card_ne_zero), ← heq]
[GOAL]
case intro
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
p : ℕ
hp : Fact (Nat.Prime p)
P : Sylow p G
n : ℕ
heq : Fintype.card { x // x ∈ ↑P } = p ^ n
⊢ Fintype.card { x // x ∈ ↑P } ∣ Fintype.card G
[PROOFSTEP]
exact P.1.card_subgroup_dvd_card
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝³ : Group G
inst✝² : Fintype G
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
H : Subgroup G
inst✝ : Fintype { x // x ∈ H }
card_eq : Fintype.card { x // x ∈ H } = p ^ ↑(Nat.factorization (Fintype.card G)) p
⊢ ∀ {Q : Subgroup G}, IsPGroup p { x // x ∈ Q } → H ≤ Q → Q = H
[PROOFSTEP]
obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow
[GOAL]
case intro
G : Type u
α : Type v
β : Type w
inst✝³ : Group G
inst✝² : Fintype G
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
H : Subgroup G
inst✝ : Fintype { x // x ∈ H }
card_eq : Fintype.card { x // x ∈ H } = p ^ ↑(Nat.factorization (Fintype.card G)) p
P : Sylow p G
hHP : H ≤ ↑P
⊢ ∀ {Q : Subgroup G}, IsPGroup p { x // x ∈ Q } → H ≤ Q → Q = H
[PROOFSTEP]
exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm ▸ P.3
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝² : Group G
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P : Sylow p G
h : Normal ↑P
⊢ Subsingleton (Sylow p G)
[PROOFSTEP]
apply Subsingleton.intro
[GOAL]
case allEq
G : Type u
α : Type v
β : Type w
inst✝² : Group G
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P : Sylow p G
h : Normal ↑P
⊢ ∀ (a b : Sylow p G), a = b
[PROOFSTEP]
intro Q R
[GOAL]
case allEq
G : Type u
α : Type v
β : Type w
inst✝² : Group G
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P : Sylow p G
h : Normal ↑P
Q R : Sylow p G
⊢ Q = R
[PROOFSTEP]
obtain ⟨x, h1⟩ := exists_smul_eq G P Q
[GOAL]
case allEq.intro
G : Type u
α : Type v
β : Type w
inst✝² : Group G
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P : Sylow p G
h : Normal ↑P
Q R : Sylow p G
x : G
h1 : x • P = Q
⊢ Q = R
[PROOFSTEP]
obtain ⟨x, h2⟩ := exists_smul_eq G P R
[GOAL]
case allEq.intro.intro
G : Type u
α : Type v
β : Type w
inst✝² : Group G
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P : Sylow p G
h : Normal ↑P
Q R : Sylow p G
x✝ : G
h1 : x✝ • P = Q
x : G
h2 : x • P = R
⊢ Q = R
[PROOFSTEP]
rw [Sylow.smul_eq_of_normal] at h1 h2
[GOAL]
case allEq.intro.intro
G : Type u
α : Type v
β : Type w
inst✝² : Group G
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P : Sylow p G
h : Normal ↑P
Q R : Sylow p G
x✝ : G
h1 : P = Q
x : G
h2 : P = R
⊢ Q = R
[PROOFSTEP]
rw [← h1, ← h2]
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝² : Group G
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P : Sylow p G
h : Normal ↑P
⊢ Characteristic ↑P
[PROOFSTEP]
haveI := Sylow.subsingleton_of_normal P h
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝² : Group G
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P : Sylow p G
h : Normal ↑P
this : Subsingleton (Sylow p G)
⊢ Characteristic ↑P
[PROOFSTEP]
rw [characteristic_iff_map_eq]
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝² : Group G
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P : Sylow p G
h : Normal ↑P
this : Subsingleton (Sylow p G)
⊢ ∀ (ϕ : G ≃* G), Subgroup.map (MulEquiv.toMonoidHom ϕ) ↑P = ↑P
[PROOFSTEP]
intro Φ
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝² : Group G
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P : Sylow p G
h : Normal ↑P
this : Subsingleton (Sylow p G)
Φ : G ≃* G
⊢ Subgroup.map (MulEquiv.toMonoidHom Φ) ↑P = ↑P
[PROOFSTEP]
show (Φ • P).toSubgroup = P.toSubgroup
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝² : Group G
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P : Sylow p G
h : Normal ↑P
this : Subsingleton (Sylow p G)
Φ : G ≃* G
⊢ ↑(Φ • P) = ↑P
[PROOFSTEP]
congr
[GOAL]
case e_self
G : Type u
α : Type v
β : Type w
inst✝² : Group G
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P : Sylow p G
h : Normal ↑P
this : Subsingleton (Sylow p G)
Φ : G ≃* G
⊢ Φ • P = P
[PROOFSTEP]
simp
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝² : Group G
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P : Sylow p G
hn : Normal (normalizer ↑P)
⊢ Normal ↑P
[PROOFSTEP]
rw [← normalizer_eq_top, ← normalizer_sup_eq_top' P le_normalizer, sup_idem]
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝² : Group G
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P : Sylow p G
⊢ normalizer (normalizer ↑P) = normalizer ↑P
[PROOFSTEP]
have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer))
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝² : Group G
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P : Sylow p G
this :
Normal (normalizer ↑(Sylow.subtype P (_ : ↑P ≤ normalizer (normalizer ↑P)))) →
Normal ↑(Sylow.subtype P (_ : ↑P ≤ normalizer (normalizer ↑P)))
⊢ normalizer (normalizer ↑P) = normalizer ↑P
[PROOFSTEP]
simp_rw [← normalizer_eq_top, Sylow.coe_subtype, ← subgroupOf_normalizer_eq le_normalizer, ←
subgroupOf_normalizer_eq le_rfl, subgroupOf_self] at this
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝² : Group G
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P : Sylow p G
this : True → subgroupOf (normalizer ↑P) (normalizer (normalizer ↑P)) = ⊤
⊢ normalizer (normalizer ↑P) = normalizer ↑P
[PROOFSTEP]
rw [← subtype_range (P : Subgroup G).normalizer.normalizer, MonoidHom.range_eq_map, ← this trivial]
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝² : Group G
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P : Sylow p G
this : True → subgroupOf (normalizer ↑P) (normalizer (normalizer ↑P)) = ⊤
⊢ Subgroup.map (Subgroup.subtype (normalizer (normalizer ↑P)))
(subgroupOf (normalizer ↑P) (normalizer (normalizer ↑P))) =
normalizer ↑P
[PROOFSTEP]
exact map_comap_eq_self (le_normalizer.trans (ge_of_eq (subtype_range _)))
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝³ : Group G
inst✝² : Finite G
hnc : ∀ (H : Subgroup G), IsCoatom H → Normal H
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P : Sylow p G
⊢ normalizer ↑P = ⊤
[PROOFSTEP]
rcases eq_top_or_exists_le_coatom (↑P : Subgroup G).normalizer with (heq | ⟨K, hK, hNK⟩)
[GOAL]
case inl
G : Type u
α : Type v
β : Type w
inst✝³ : Group G
inst✝² : Finite G
hnc : ∀ (H : Subgroup G), IsCoatom H → Normal H
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P : Sylow p G
heq : normalizer ↑P = ⊤
⊢ normalizer ↑P = ⊤
[PROOFSTEP]
exact heq
[GOAL]
case inr.intro.intro
G : Type u
α : Type v
β : Type w
inst✝³ : Group G
inst✝² : Finite G
hnc : ∀ (H : Subgroup G), IsCoatom H → Normal H
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P : Sylow p G
K : Subgroup G
hK : IsCoatom K
hNK : normalizer ↑P ≤ K
⊢ normalizer ↑P = ⊤
[PROOFSTEP]
haveI := hnc _ hK
[GOAL]
case inr.intro.intro
G : Type u
α : Type v
β : Type w
inst✝³ : Group G
inst✝² : Finite G
hnc : ∀ (H : Subgroup G), IsCoatom H → Normal H
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P : Sylow p G
K : Subgroup G
hK : IsCoatom K
hNK : normalizer ↑P ≤ K
this : Normal K
⊢ normalizer ↑P = ⊤
[PROOFSTEP]
have hPK : ↑P ≤ K := le_trans le_normalizer hNK
[GOAL]
case inr.intro.intro
G : Type u
α : Type v
β : Type w
inst✝³ : Group G
inst✝² : Finite G
hnc : ∀ (H : Subgroup G), IsCoatom H → Normal H
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P : Sylow p G
K : Subgroup G
hK : IsCoatom K
hNK : normalizer ↑P ≤ K
this : Normal K
hPK : ↑P ≤ K
⊢ normalizer ↑P = ⊤
[PROOFSTEP]
refine' (hK.1 _).elim
[GOAL]
case inr.intro.intro
G : Type u
α : Type v
β : Type w
inst✝³ : Group G
inst✝² : Finite G
hnc : ∀ (H : Subgroup G), IsCoatom H → Normal H
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Finite (Sylow p G)
P : Sylow p G
K : Subgroup G
hK : IsCoatom K
hNK : normalizer ↑P ≤ K
this : Normal K
hPK : ↑P ≤ K
⊢ K = ⊤
[PROOFSTEP]
rw [← sup_of_le_right hNK, P.normalizer_sup_eq_top' hPK]
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P
⊢ ((p : { x // x ∈ (Nat.factorization (Fintype.card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G
[PROOFSTEP]
set ps := (Fintype.card G).factorization.support
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P
ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support
⊢ ((p : { x // x ∈ ps }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G
[PROOFSTEP]
let P : ∀ p, Sylow p G := default
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P
ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support
P : (p : ℕ) → Sylow p G := default
⊢ ((p : { x // x ∈ ps }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G
[PROOFSTEP]
have hcomm : Pairwise fun p₁ p₂ : ps => ∀ x y : G, x ∈ P p₁ → y ∈ P p₂ → Commute x y :=
by
rintro ⟨p₁, hp₁⟩ ⟨p₂, hp₂⟩ hne
haveI hp₁' := Fact.mk (Nat.prime_of_mem_factorization hp₁)
haveI hp₂' := Fact.mk (Nat.prime_of_mem_factorization hp₂)
have hne' : p₁ ≠ p₂ := by simpa using hne
apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P p₂))
apply IsPGroup.disjoint_of_ne p₁ p₂ hne' _ _ (P p₁).isPGroup' (P p₂).isPGroup'
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P
ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support
P : (p : ℕ) → Sylow p G := default
⊢ _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y
[PROOFSTEP]
rintro ⟨p₁, hp₁⟩ ⟨p₂, hp₂⟩ hne
[GOAL]
case mk.mk
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P
ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support
P : (p : ℕ) → Sylow p G := default
p₁ : ℕ
hp₁ : p₁ ∈ ps
p₂ : ℕ
hp₂ : p₂ ∈ ps
hne : { val := p₁, property := hp₁ } ≠ { val := p₂, property := hp₂ }
⊢ ∀ (x y : G), x ∈ P ↑{ val := p₁, property := hp₁ } → y ∈ P ↑{ val := p₂, property := hp₂ } → Commute x y
[PROOFSTEP]
haveI hp₁' := Fact.mk (Nat.prime_of_mem_factorization hp₁)
[GOAL]
case mk.mk
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P
ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support
P : (p : ℕ) → Sylow p G := default
p₁ : ℕ
hp₁ : p₁ ∈ ps
p₂ : ℕ
hp₂ : p₂ ∈ ps
hne : { val := p₁, property := hp₁ } ≠ { val := p₂, property := hp₂ }
hp₁' : Fact (Nat.Prime p₁)
⊢ ∀ (x y : G), x ∈ P ↑{ val := p₁, property := hp₁ } → y ∈ P ↑{ val := p₂, property := hp₂ } → Commute x y
[PROOFSTEP]
haveI hp₂' := Fact.mk (Nat.prime_of_mem_factorization hp₂)
[GOAL]
case mk.mk
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P
ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support
P : (p : ℕ) → Sylow p G := default
p₁ : ℕ
hp₁ : p₁ ∈ ps
p₂ : ℕ
hp₂ : p₂ ∈ ps
hne : { val := p₁, property := hp₁ } ≠ { val := p₂, property := hp₂ }
hp₁' : Fact (Nat.Prime p₁)
hp₂' : Fact (Nat.Prime p₂)
⊢ ∀ (x y : G), x ∈ P ↑{ val := p₁, property := hp₁ } → y ∈ P ↑{ val := p₂, property := hp₂ } → Commute x y
[PROOFSTEP]
have hne' : p₁ ≠ p₂ := by simpa using hne
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P
ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support
P : (p : ℕ) → Sylow p G := default
p₁ : ℕ
hp₁ : p₁ ∈ ps
p₂ : ℕ
hp₂ : p₂ ∈ ps
hne : { val := p₁, property := hp₁ } ≠ { val := p₂, property := hp₂ }
hp₁' : Fact (Nat.Prime p₁)
hp₂' : Fact (Nat.Prime p₂)
⊢ p₁ ≠ p₂
[PROOFSTEP]
simpa using hne
[GOAL]
case mk.mk
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P
ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support
P : (p : ℕ) → Sylow p G := default
p₁ : ℕ
hp₁ : p₁ ∈ ps
p₂ : ℕ
hp₂ : p₂ ∈ ps
hne : { val := p₁, property := hp₁ } ≠ { val := p₂, property := hp₂ }
hp₁' : Fact (Nat.Prime p₁)
hp₂' : Fact (Nat.Prime p₂)
hne' : p₁ ≠ p₂
⊢ ∀ (x y : G), x ∈ P ↑{ val := p₁, property := hp₁ } → y ∈ P ↑{ val := p₂, property := hp₂ } → Commute x y
[PROOFSTEP]
apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P p₂))
[GOAL]
case mk.mk
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P
ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support
P : (p : ℕ) → Sylow p G := default
p₁ : ℕ
hp₁ : p₁ ∈ ps
p₂ : ℕ
hp₂ : p₂ ∈ ps
hne : { val := p₁, property := hp₁ } ≠ { val := p₂, property := hp₂ }
hp₁' : Fact (Nat.Prime p₁)
hp₂' : Fact (Nat.Prime p₂)
hne' : p₁ ≠ p₂
⊢ _root_.Disjoint ↑(P p₁) ↑(P p₂)
[PROOFSTEP]
apply IsPGroup.disjoint_of_ne p₁ p₂ hne' _ _ (P p₁).isPGroup' (P p₂).isPGroup'
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P
ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support
P : (p : ℕ) → Sylow p G := default
hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y
⊢ ((p : { x // x ∈ ps }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G
[PROOFSTEP]
refine'
MulEquiv.trans (N := ∀ p : ps, P p) _
_
-- There is only one Sylow subgroup for each p, so the inner product is trivial
[GOAL]
case refine'_1
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P
ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support
P : (p : ℕ) → Sylow p G := default
hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y
⊢ ((p : { x // x ∈ ps }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* ((p : { x // x ∈ ps }) → { x // x ∈ P ↑p })
case refine'_2
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P
ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support
P : (p : ℕ) → Sylow p G := default
hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y
⊢ ((p : { x // x ∈ ps }) → { x // x ∈ P ↑p }) ≃* G
[PROOFSTEP]
show (∀ p : ps, ∀ P : Sylow p G, P) ≃* ∀ p : ps, P p
[GOAL]
case refine'_1
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P
ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support
P : (p : ℕ) → Sylow p G := default
hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y
⊢ ((p : { x // x ∈ ps }) → (P : Sylow (↑p) G) → { x // x ∈ P }) ≃* ((p : { x // x ∈ ps }) → { x // x ∈ P ↑p })
[PROOFSTEP]
apply @MulEquiv.piCongrRight ps (fun p => ∀ P : Sylow p G, P) (fun p => P p) _ _
[GOAL]
case refine'_1
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P
ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support
P : (p : ℕ) → Sylow p G := default
hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y
⊢ (j : { x // x ∈ ps }) → ((P : Sylow (↑j) G) → { x // x ∈ P }) ≃* { x // x ∈ ↑(P ↑j) }
[PROOFSTEP]
rintro ⟨p, hp⟩
[GOAL]
case refine'_1.mk
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P
ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support
P : (p : ℕ) → Sylow p G := default
hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y
p : ℕ
hp : p ∈ ps
⊢ ((P : Sylow (↑{ val := p, property := hp }) G) → { x // x ∈ P }) ≃* { x // x ∈ ↑(P ↑{ val := p, property := hp }) }
[PROOFSTEP]
haveI hp' := Fact.mk (Nat.prime_of_mem_factorization hp)
[GOAL]
case refine'_1.mk
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P
ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support
P : (p : ℕ) → Sylow p G := default
hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y
p : ℕ
hp : p ∈ ps
hp' : Fact (Nat.Prime p)
⊢ ((P : Sylow (↑{ val := p, property := hp }) G) → { x // x ∈ P }) ≃* { x // x ∈ ↑(P ↑{ val := p, property := hp }) }
[PROOFSTEP]
haveI := subsingleton_of_normal _ (hn (P p))
[GOAL]
case refine'_1.mk
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P
ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support
P : (p : ℕ) → Sylow p G := default
hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y
p : ℕ
hp : p ∈ ps
hp' : Fact (Nat.Prime p)
this : Subsingleton (Sylow p G)
⊢ ((P : Sylow (↑{ val := p, property := hp }) G) → { x // x ∈ P }) ≃* { x // x ∈ ↑(P ↑{ val := p, property := hp }) }
[PROOFSTEP]
change (∀ P : Sylow p G, P) ≃* P p
[GOAL]
case refine'_1.mk
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P
ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support
P : (p : ℕ) → Sylow p G := default
hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y
p : ℕ
hp : p ∈ ps
hp' : Fact (Nat.Prime p)
this : Subsingleton (Sylow p G)
⊢ ((P : Sylow p G) → { x // x ∈ P }) ≃* { x // x ∈ ↑(P p) }
[PROOFSTEP]
exact MulEquiv.piSubsingleton _ _
[GOAL]
case refine'_2
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P
ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support
P : (p : ℕ) → Sylow p G := default
hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y
⊢ ((p : { x // x ∈ ps }) → { x // x ∈ P ↑p }) ≃* G
[PROOFSTEP]
show (∀ p : ps, P p) ≃* G
[GOAL]
case refine'_2
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P
ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support
P : (p : ℕ) → Sylow p G := default
hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y
⊢ ((p : { x // x ∈ ps }) → { x // x ∈ P ↑p }) ≃* G
[PROOFSTEP]
apply MulEquiv.ofBijective (Subgroup.noncommPiCoprod hcomm)
[GOAL]
case refine'_2
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P
ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support
P : (p : ℕ) → Sylow p G := default
hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y
⊢ Bijective ↑(noncommPiCoprod hcomm)
[PROOFSTEP]
apply (bijective_iff_injective_and_card _).mpr
[GOAL]
case refine'_2
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P
ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support
P : (p : ℕ) → Sylow p G := default
hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y
⊢ Injective ↑(noncommPiCoprod hcomm) ∧ Fintype.card ((i : { x // x ∈ ps }) → { x // x ∈ ↑(P ↑i) }) = Fintype.card G
[PROOFSTEP]
constructor
[GOAL]
case refine'_2.left
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P
ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support
P : (p : ℕ) → Sylow p G := default
hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y
⊢ Injective ↑(noncommPiCoprod hcomm)
case refine'_2.right
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P
ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support
P : (p : ℕ) → Sylow p G := default
hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y
⊢ Fintype.card ((i : { x // x ∈ ps }) → { x // x ∈ ↑(P ↑i) }) = Fintype.card G
[PROOFSTEP]
show Injective _
[GOAL]
case refine'_2.left
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P
ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support
P : (p : ℕ) → Sylow p G := default
hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y
⊢ Injective ↑(noncommPiCoprod hcomm)
[PROOFSTEP]
apply Subgroup.injective_noncommPiCoprod_of_independent
[GOAL]
case refine'_2.left.hind
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P
ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support
P : (p : ℕ) → Sylow p G := default
hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y
⊢ CompleteLattice.Independent fun i => ↑(P ↑i)
[PROOFSTEP]
apply independent_of_coprime_order hcomm
[GOAL]
case refine'_2.left.hind
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P
ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support
P : (p : ℕ) → Sylow p G := default
hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y
⊢ ∀ (i j : { x // x ∈ ps }), i ≠ j → Nat.coprime (Fintype.card { x // x ∈ ↑(P ↑i) }) (Fintype.card { x // x ∈ ↑(P ↑j) })
[PROOFSTEP]
rintro ⟨p₁, hp₁⟩ ⟨p₂, hp₂⟩ hne
[GOAL]
case refine'_2.left.hind.mk.mk
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P
ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support
P : (p : ℕ) → Sylow p G := default
hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y
p₁ : ℕ
hp₁ : p₁ ∈ ps
p₂ : ℕ
hp₂ : p₂ ∈ ps
hne : { val := p₁, property := hp₁ } ≠ { val := p₂, property := hp₂ }
⊢ Nat.coprime (Fintype.card { x // x ∈ ↑(P ↑{ val := p₁, property := hp₁ }) })
(Fintype.card { x // x ∈ ↑(P ↑{ val := p₂, property := hp₂ }) })
[PROOFSTEP]
haveI hp₁' := Fact.mk (Nat.prime_of_mem_factorization hp₁)
[GOAL]
case refine'_2.left.hind.mk.mk
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P
ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support
P : (p : ℕ) → Sylow p G := default
hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y
p₁ : ℕ
hp₁ : p₁ ∈ ps
p₂ : ℕ
hp₂ : p₂ ∈ ps
hne : { val := p₁, property := hp₁ } ≠ { val := p₂, property := hp₂ }
hp₁' : Fact (Nat.Prime p₁)
⊢ Nat.coprime (Fintype.card { x // x ∈ ↑(P ↑{ val := p₁, property := hp₁ }) })
(Fintype.card { x // x ∈ ↑(P ↑{ val := p₂, property := hp₂ }) })
[PROOFSTEP]
haveI hp₂' := Fact.mk (Nat.prime_of_mem_factorization hp₂)
[GOAL]
case refine'_2.left.hind.mk.mk
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P
ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support
P : (p : ℕ) → Sylow p G := default
hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y
p₁ : ℕ
hp₁ : p₁ ∈ ps
p₂ : ℕ
hp₂ : p₂ ∈ ps
hne : { val := p₁, property := hp₁ } ≠ { val := p₂, property := hp₂ }
hp₁' : Fact (Nat.Prime p₁)
hp₂' : Fact (Nat.Prime p₂)
⊢ Nat.coprime (Fintype.card { x // x ∈ ↑(P ↑{ val := p₁, property := hp₁ }) })
(Fintype.card { x // x ∈ ↑(P ↑{ val := p₂, property := hp₂ }) })
[PROOFSTEP]
have hne' : p₁ ≠ p₂ := by simpa using hne
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P
ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support
P : (p : ℕ) → Sylow p G := default
hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y
p₁ : ℕ
hp₁ : p₁ ∈ ps
p₂ : ℕ
hp₂ : p₂ ∈ ps
hne : { val := p₁, property := hp₁ } ≠ { val := p₂, property := hp₂ }
hp₁' : Fact (Nat.Prime p₁)
hp₂' : Fact (Nat.Prime p₂)
⊢ p₁ ≠ p₂
[PROOFSTEP]
simpa using hne
[GOAL]
case refine'_2.left.hind.mk.mk
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P
ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support
P : (p : ℕ) → Sylow p G := default
hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y
p₁ : ℕ
hp₁ : p₁ ∈ ps
p₂ : ℕ
hp₂ : p₂ ∈ ps
hne : { val := p₁, property := hp₁ } ≠ { val := p₂, property := hp₂ }
hp₁' : Fact (Nat.Prime p₁)
hp₂' : Fact (Nat.Prime p₂)
hne' : p₁ ≠ p₂
⊢ Nat.coprime (Fintype.card { x // x ∈ ↑(P ↑{ val := p₁, property := hp₁ }) })
(Fintype.card { x // x ∈ ↑(P ↑{ val := p₂, property := hp₂ }) })
[PROOFSTEP]
apply IsPGroup.coprime_card_of_ne p₁ p₂ hne' _ _ (P p₁).isPGroup' (P p₂).isPGroup'
[GOAL]
case refine'_2.right
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P
ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support
P : (p : ℕ) → Sylow p G := default
hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y
⊢ Fintype.card ((i : { x // x ∈ ps }) → { x // x ∈ ↑(P ↑i) }) = Fintype.card G
[PROOFSTEP]
show card (∀ p : ps, P p) = card G
[GOAL]
case refine'_2.right
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P
ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support
P : (p : ℕ) → Sylow p G := default
hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y
⊢ Fintype.card ((p : { x // x ∈ ps }) → { x // x ∈ P ↑p }) = Fintype.card G
[PROOFSTEP]
calc
card (∀ p : ps, P p) = ∏ p : ps, card (P p) := Fintype.card_pi
_ = ∏ p : ps, p.1 ^ (card G).factorization p.1 :=
by
congr 1 with ⟨p, hp⟩
exact @card_eq_multiplicity _ _ _ p ⟨Nat.prime_of_mem_factorization hp⟩ (P p)
_ = ∏ p in ps, p ^ (card G).factorization p := (Finset.prod_finset_coe (fun p => p ^ (card G).factorization p) _)
_ = (card G).factorization.prod (· ^ ·) := rfl
_ = card G := Nat.factorization_prod_pow_eq_self Fintype.card_ne_zero
[GOAL]
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P
ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support
P : (p : ℕ) → Sylow p G := default
hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y
⊢ ∏ p : { x // x ∈ ps }, Fintype.card { x // x ∈ ↑(P ↑p) } =
∏ p : { x // x ∈ ps }, ↑p ^ ↑(Nat.factorization (Fintype.card G)) ↑p
[PROOFSTEP]
congr 1 with ⟨p, hp⟩
[GOAL]
case e_f.h.mk
G : Type u
α : Type v
β : Type w
inst✝¹ : Group G
inst✝ : Fintype G
hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P
ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support
P : (p : ℕ) → Sylow p G := default
hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y
p : ℕ
hp : p ∈ ps
⊢ Fintype.card { x // x ∈ ↑(P ↑{ val := p, property := hp }) } =
↑{ val := p, property := hp } ^ ↑(Nat.factorization (Fintype.card G)) ↑{ val := p, property := hp }
[PROOFSTEP]
exact @card_eq_multiplicity _ _ _ p ⟨Nat.prime_of_mem_factorization hp⟩ (P p)
| {"mathlib_filename": "Mathlib.GroupTheory.Sylow", "llama_tokens": 42647} |
[GOAL]
G : Type u_1
inst✝⁴ : Group G
A : Type u_2
inst✝³ : AddGroup A
H✝ : Type u_3
inst✝² : Group H✝
inst✝¹ : IsSimpleGroup G
inst✝ : Nontrivial H✝
f : G →* H✝
hf : Function.Surjective ↑f
H : Subgroup H✝
iH : Normal H
⊢ H = ⊥ ∨ H = ⊤
[PROOFSTEP]
refine' (iH.comap f).eq_bot_or_eq_top.imp (fun h => _) fun h => _
[GOAL]
case refine'_1
G : Type u_1
inst✝⁴ : Group G
A : Type u_2
inst✝³ : AddGroup A
H✝ : Type u_3
inst✝² : Group H✝
inst✝¹ : IsSimpleGroup G
inst✝ : Nontrivial H✝
f : G →* H✝
hf : Function.Surjective ↑f
H : Subgroup H✝
iH : Normal H
h : comap f H = ⊥
⊢ H = ⊥
[PROOFSTEP]
rw [← map_bot f, ← h, map_comap_eq_self_of_surjective hf]
[GOAL]
case refine'_2
G : Type u_1
inst✝⁴ : Group G
A : Type u_2
inst✝³ : AddGroup A
H✝ : Type u_3
inst✝² : Group H✝
inst✝¹ : IsSimpleGroup G
inst✝ : Nontrivial H✝
f : G →* H✝
hf : Function.Surjective ↑f
H : Subgroup H✝
iH : Normal H
h : comap f H = ⊤
⊢ H = ⊤
[PROOFSTEP]
rw [← comap_top f] at h
[GOAL]
case refine'_2
G : Type u_1
inst✝⁴ : Group G
A : Type u_2
inst✝³ : AddGroup A
H✝ : Type u_3
inst✝² : Group H✝
inst✝¹ : IsSimpleGroup G
inst✝ : Nontrivial H✝
f : G →* H✝
hf : Function.Surjective ↑f
H : Subgroup H✝
iH : Normal H
h : comap f H = comap f ⊤
⊢ H = ⊤
[PROOFSTEP]
exact comap_injective hf h
| {"mathlib_filename": "Mathlib.GroupTheory.Subgroup.Simple", "llama_tokens": 674} |
[GOAL]
G : Type u_1
inst✝¹ : Group G
A : Type u_2
inst✝ : AddGroup A
H K : Subgroup G
⊢ ∀ (x : { x // x ∈ ⊥ }), x ∈ {1}
[PROOFSTEP]
rintro ⟨x, ⟨hx⟩⟩
[GOAL]
case mk.refl
G : Type u_1
inst✝¹ : Group G
A : Type u_2
inst✝ : AddGroup A
H K : Subgroup G
⊢ { val := 1, property := (_ : 1 = 1) } ∈ {1}
[PROOFSTEP]
exact Finset.mem_singleton_self _
[GOAL]
G : Type u_1
inst✝² : Group G
A : Type u_2
inst✝¹ : AddGroup A
H K : Subgroup G
inst✝ : Fintype G
⊢ Fintype.card { x // x ∈ ⊤ } = Fintype.card G
[PROOFSTEP]
rw [Fintype.card_eq]
[GOAL]
G : Type u_1
inst✝² : Group G
A : Type u_2
inst✝¹ : AddGroup A
H K : Subgroup G
inst✝ : Fintype G
⊢ Nonempty ({ x // x ∈ ⊤ } ≃ G)
[PROOFSTEP]
exact Nonempty.intro Subgroup.topEquiv.toEquiv
[GOAL]
G : Type u_1
inst✝³ : Group G
A : Type u_2
inst✝² : AddGroup A
H K : Subgroup G
inst✝¹ : Fintype { x // x ∈ H }
inst✝ : Fintype G
h : Fintype.card { x // x ∈ H } = Fintype.card G
⊢ H = ⊤
[PROOFSTEP]
letI : Fintype (H : Set G) := ‹Fintype H›
[GOAL]
G : Type u_1
inst✝³ : Group G
A : Type u_2
inst✝² : AddGroup A
H K : Subgroup G
inst✝¹ : Fintype { x // x ∈ H }
inst✝ : Fintype G
h : Fintype.card { x // x ∈ H } = Fintype.card G
this : Fintype ↑↑H := inst✝¹
⊢ H = ⊤
[PROOFSTEP]
rw [SetLike.ext'_iff, coe_top, ← Finset.coe_univ, ← (H : Set G).coe_toFinset, Finset.coe_inj, ←
Finset.card_eq_iff_eq_univ, ← h, Set.toFinset_card]
[GOAL]
G : Type u_1
inst✝³ : Group G
A : Type u_2
inst✝² : AddGroup A
H K : Subgroup G
inst✝¹ : Fintype { x // x ∈ H }
inst✝ : Fintype G
h : Fintype.card { x // x ∈ H } = Fintype.card G
this : Fintype ↑↑H := inst✝¹
⊢ Fintype.card ↑↑H = Fintype.card { x // x ∈ H }
[PROOFSTEP]
congr
[GOAL]
G : Type u_1
inst✝³ : Group G
A : Type u_2
inst✝² : AddGroup A
H K : Subgroup G
inst✝¹ : Fintype { x // x ∈ H }
inst✝ : Fintype G
h : H = ⊤
⊢ Fintype.card { x // x ∈ H } = Fintype.card G
[PROOFSTEP]
simpa only [h] using card_top
[GOAL]
G : Type u_1
inst✝² : Group G
A : Type u_2
inst✝¹ : AddGroup A
H K : Subgroup G
inst✝ : Fintype { x // x ∈ H }
h : Fintype.card { x // x ∈ H } ≤ 1
x : G
hx : x ∈ H
⊢ x = 1
[PROOFSTEP]
simpa [Subtype.ext_iff] using Fintype.card_le_one_iff.1 h ⟨x, hx⟩ 1
[GOAL]
G : Type u_1
inst✝² : Group G
A : Type u_2
inst✝¹ : AddGroup A
H K : Subgroup G
inst✝ : Fintype { x // x ∈ H }
h : H = ⊥
⊢ Fintype.card { x // x ∈ H } ≤ 1
[PROOFSTEP]
simp [h]
[GOAL]
G : Type u_1
inst✝³ : Group G
A : Type u_2
inst✝² : AddGroup A
η : Type u_3
f : η → Type u_4
inst✝¹ : (i : η) → Group (f i)
inst✝ : DecidableEq η
I : Finset η
H : Subgroup ((i : η) → f i)
x : (i : η) → f i
h1 : ∀ (i : η), ¬i ∈ I → x i = 1
h2 : ∀ (i : η), i ∈ I → Pi.mulSingle i (x i) ∈ H
⊢ x ∈ H
[PROOFSTEP]
induction' I using Finset.induction_on with i I hnmem ih generalizing x
[GOAL]
case empty
G : Type u_1
inst✝³ : Group G
A : Type u_2
inst✝² : AddGroup A
η : Type u_3
f : η → Type u_4
inst✝¹ : (i : η) → Group (f i)
inst✝ : DecidableEq η
I : Finset η
H : Subgroup ((i : η) → f i)
x✝ : (i : η) → f i
h1✝ : ∀ (i : η), ¬i ∈ I → x✝ i = 1
h2✝ : ∀ (i : η), i ∈ I → Pi.mulSingle i (x✝ i) ∈ H
x : (i : η) → f i
h1 : ∀ (i : η), ¬i ∈ ∅ → x i = 1
h2 : ∀ (i : η), i ∈ ∅ → Pi.mulSingle i (x i) ∈ H
⊢ x ∈ H
[PROOFSTEP]
convert one_mem H
[GOAL]
case h.e'_4
G : Type u_1
inst✝³ : Group G
A : Type u_2
inst✝² : AddGroup A
η : Type u_3
f : η → Type u_4
inst✝¹ : (i : η) → Group (f i)
inst✝ : DecidableEq η
I : Finset η
H : Subgroup ((i : η) → f i)
x✝ : (i : η) → f i
h1✝ : ∀ (i : η), ¬i ∈ I → x✝ i = 1
h2✝ : ∀ (i : η), i ∈ I → Pi.mulSingle i (x✝ i) ∈ H
x : (i : η) → f i
h1 : ∀ (i : η), ¬i ∈ ∅ → x i = 1
h2 : ∀ (i : η), i ∈ ∅ → Pi.mulSingle i (x i) ∈ H
⊢ x = 1
[PROOFSTEP]
ext i
[GOAL]
case h.e'_4.h
G : Type u_1
inst✝³ : Group G
A : Type u_2
inst✝² : AddGroup A
η : Type u_3
f : η → Type u_4
inst✝¹ : (i : η) → Group (f i)
inst✝ : DecidableEq η
I : Finset η
H : Subgroup ((i : η) → f i)
x✝ : (i : η) → f i
h1✝ : ∀ (i : η), ¬i ∈ I → x✝ i = 1
h2✝ : ∀ (i : η), i ∈ I → Pi.mulSingle i (x✝ i) ∈ H
x : (i : η) → f i
h1 : ∀ (i : η), ¬i ∈ ∅ → x i = 1
h2 : ∀ (i : η), i ∈ ∅ → Pi.mulSingle i (x i) ∈ H
i : η
⊢ x i = OfNat.ofNat 1 i
[PROOFSTEP]
exact h1 i (Finset.not_mem_empty i)
[GOAL]
case insert
G : Type u_1
inst✝³ : Group G
A : Type u_2
inst✝² : AddGroup A
η : Type u_3
f : η → Type u_4
inst✝¹ : (i : η) → Group (f i)
inst✝ : DecidableEq η
I✝ : Finset η
H : Subgroup ((i : η) → f i)
x✝ : (i : η) → f i
h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1
h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H
i : η
I : Finset η
hnmem : ¬i ∈ I
ih : ∀ (x : (i : η) → f i), (∀ (i : η), ¬i ∈ I → x i = 1) → (∀ (i : η), i ∈ I → Pi.mulSingle i (x i) ∈ H) → x ∈ H
x : (i : η) → f i
h1 : ∀ (i_1 : η), ¬i_1 ∈ insert i I → x i_1 = 1
h2 : ∀ (i_1 : η), i_1 ∈ insert i I → Pi.mulSingle i_1 (x i_1) ∈ H
⊢ x ∈ H
[PROOFSTEP]
have : x = Function.update x i 1 * Pi.mulSingle i (x i) :=
by
ext j
by_cases heq : j = i
· subst heq
simp
· simp [heq]
[GOAL]
G : Type u_1
inst✝³ : Group G
A : Type u_2
inst✝² : AddGroup A
η : Type u_3
f : η → Type u_4
inst✝¹ : (i : η) → Group (f i)
inst✝ : DecidableEq η
I✝ : Finset η
H : Subgroup ((i : η) → f i)
x✝ : (i : η) → f i
h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1
h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H
i : η
I : Finset η
hnmem : ¬i ∈ I
ih : ∀ (x : (i : η) → f i), (∀ (i : η), ¬i ∈ I → x i = 1) → (∀ (i : η), i ∈ I → Pi.mulSingle i (x i) ∈ H) → x ∈ H
x : (i : η) → f i
h1 : ∀ (i_1 : η), ¬i_1 ∈ insert i I → x i_1 = 1
h2 : ∀ (i_1 : η), i_1 ∈ insert i I → Pi.mulSingle i_1 (x i_1) ∈ H
⊢ x = Function.update x i 1 * Pi.mulSingle i (x i)
[PROOFSTEP]
ext j
[GOAL]
case h
G : Type u_1
inst✝³ : Group G
A : Type u_2
inst✝² : AddGroup A
η : Type u_3
f : η → Type u_4
inst✝¹ : (i : η) → Group (f i)
inst✝ : DecidableEq η
I✝ : Finset η
H : Subgroup ((i : η) → f i)
x✝ : (i : η) → f i
h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1
h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H
i : η
I : Finset η
hnmem : ¬i ∈ I
ih : ∀ (x : (i : η) → f i), (∀ (i : η), ¬i ∈ I → x i = 1) → (∀ (i : η), i ∈ I → Pi.mulSingle i (x i) ∈ H) → x ∈ H
x : (i : η) → f i
h1 : ∀ (i_1 : η), ¬i_1 ∈ insert i I → x i_1 = 1
h2 : ∀ (i_1 : η), i_1 ∈ insert i I → Pi.mulSingle i_1 (x i_1) ∈ H
j : η
⊢ x j = (Function.update x i 1 * Pi.mulSingle i (x i)) j
[PROOFSTEP]
by_cases heq : j = i
[GOAL]
case pos
G : Type u_1
inst✝³ : Group G
A : Type u_2
inst✝² : AddGroup A
η : Type u_3
f : η → Type u_4
inst✝¹ : (i : η) → Group (f i)
inst✝ : DecidableEq η
I✝ : Finset η
H : Subgroup ((i : η) → f i)
x✝ : (i : η) → f i
h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1
h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H
i : η
I : Finset η
hnmem : ¬i ∈ I
ih : ∀ (x : (i : η) → f i), (∀ (i : η), ¬i ∈ I → x i = 1) → (∀ (i : η), i ∈ I → Pi.mulSingle i (x i) ∈ H) → x ∈ H
x : (i : η) → f i
h1 : ∀ (i_1 : η), ¬i_1 ∈ insert i I → x i_1 = 1
h2 : ∀ (i_1 : η), i_1 ∈ insert i I → Pi.mulSingle i_1 (x i_1) ∈ H
j : η
heq : j = i
⊢ x j = (Function.update x i 1 * Pi.mulSingle i (x i)) j
[PROOFSTEP]
subst heq
[GOAL]
case pos
G : Type u_1
inst✝³ : Group G
A : Type u_2
inst✝² : AddGroup A
η : Type u_3
f : η → Type u_4
inst✝¹ : (i : η) → Group (f i)
inst✝ : DecidableEq η
I✝ : Finset η
H : Subgroup ((i : η) → f i)
x✝ : (i : η) → f i
h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1
h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H
I : Finset η
ih : ∀ (x : (i : η) → f i), (∀ (i : η), ¬i ∈ I → x i = 1) → (∀ (i : η), i ∈ I → Pi.mulSingle i (x i) ∈ H) → x ∈ H
x : (i : η) → f i
j : η
hnmem : ¬j ∈ I
h1 : ∀ (i : η), ¬i ∈ insert j I → x i = 1
h2 : ∀ (i : η), i ∈ insert j I → Pi.mulSingle i (x i) ∈ H
⊢ x j = (Function.update x j 1 * Pi.mulSingle j (x j)) j
[PROOFSTEP]
simp
[GOAL]
case neg
G : Type u_1
inst✝³ : Group G
A : Type u_2
inst✝² : AddGroup A
η : Type u_3
f : η → Type u_4
inst✝¹ : (i : η) → Group (f i)
inst✝ : DecidableEq η
I✝ : Finset η
H : Subgroup ((i : η) → f i)
x✝ : (i : η) → f i
h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1
h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H
i : η
I : Finset η
hnmem : ¬i ∈ I
ih : ∀ (x : (i : η) → f i), (∀ (i : η), ¬i ∈ I → x i = 1) → (∀ (i : η), i ∈ I → Pi.mulSingle i (x i) ∈ H) → x ∈ H
x : (i : η) → f i
h1 : ∀ (i_1 : η), ¬i_1 ∈ insert i I → x i_1 = 1
h2 : ∀ (i_1 : η), i_1 ∈ insert i I → Pi.mulSingle i_1 (x i_1) ∈ H
j : η
heq : ¬j = i
⊢ x j = (Function.update x i 1 * Pi.mulSingle i (x i)) j
[PROOFSTEP]
simp [heq]
[GOAL]
case insert
G : Type u_1
inst✝³ : Group G
A : Type u_2
inst✝² : AddGroup A
η : Type u_3
f : η → Type u_4
inst✝¹ : (i : η) → Group (f i)
inst✝ : DecidableEq η
I✝ : Finset η
H : Subgroup ((i : η) → f i)
x✝ : (i : η) → f i
h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1
h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H
i : η
I : Finset η
hnmem : ¬i ∈ I
ih : ∀ (x : (i : η) → f i), (∀ (i : η), ¬i ∈ I → x i = 1) → (∀ (i : η), i ∈ I → Pi.mulSingle i (x i) ∈ H) → x ∈ H
x : (i : η) → f i
h1 : ∀ (i_1 : η), ¬i_1 ∈ insert i I → x i_1 = 1
h2 : ∀ (i_1 : η), i_1 ∈ insert i I → Pi.mulSingle i_1 (x i_1) ∈ H
this : x = Function.update x i 1 * Pi.mulSingle i (x i)
⊢ x ∈ H
[PROOFSTEP]
rw [this]
[GOAL]
case insert
G : Type u_1
inst✝³ : Group G
A : Type u_2
inst✝² : AddGroup A
η : Type u_3
f : η → Type u_4
inst✝¹ : (i : η) → Group (f i)
inst✝ : DecidableEq η
I✝ : Finset η
H : Subgroup ((i : η) → f i)
x✝ : (i : η) → f i
h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1
h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H
i : η
I : Finset η
hnmem : ¬i ∈ I
ih : ∀ (x : (i : η) → f i), (∀ (i : η), ¬i ∈ I → x i = 1) → (∀ (i : η), i ∈ I → Pi.mulSingle i (x i) ∈ H) → x ∈ H
x : (i : η) → f i
h1 : ∀ (i_1 : η), ¬i_1 ∈ insert i I → x i_1 = 1
h2 : ∀ (i_1 : η), i_1 ∈ insert i I → Pi.mulSingle i_1 (x i_1) ∈ H
this : x = Function.update x i 1 * Pi.mulSingle i (x i)
⊢ Function.update x i 1 * Pi.mulSingle i (x i) ∈ H
[PROOFSTEP]
clear this
[GOAL]
case insert
G : Type u_1
inst✝³ : Group G
A : Type u_2
inst✝² : AddGroup A
η : Type u_3
f : η → Type u_4
inst✝¹ : (i : η) → Group (f i)
inst✝ : DecidableEq η
I✝ : Finset η
H : Subgroup ((i : η) → f i)
x✝ : (i : η) → f i
h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1
h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H
i : η
I : Finset η
hnmem : ¬i ∈ I
ih : ∀ (x : (i : η) → f i), (∀ (i : η), ¬i ∈ I → x i = 1) → (∀ (i : η), i ∈ I → Pi.mulSingle i (x i) ∈ H) → x ∈ H
x : (i : η) → f i
h1 : ∀ (i_1 : η), ¬i_1 ∈ insert i I → x i_1 = 1
h2 : ∀ (i_1 : η), i_1 ∈ insert i I → Pi.mulSingle i_1 (x i_1) ∈ H
⊢ Function.update x i 1 * Pi.mulSingle i (x i) ∈ H
[PROOFSTEP]
apply mul_mem
[GOAL]
case insert.a
G : Type u_1
inst✝³ : Group G
A : Type u_2
inst✝² : AddGroup A
η : Type u_3
f : η → Type u_4
inst✝¹ : (i : η) → Group (f i)
inst✝ : DecidableEq η
I✝ : Finset η
H : Subgroup ((i : η) → f i)
x✝ : (i : η) → f i
h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1
h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H
i : η
I : Finset η
hnmem : ¬i ∈ I
ih : ∀ (x : (i : η) → f i), (∀ (i : η), ¬i ∈ I → x i = 1) → (∀ (i : η), i ∈ I → Pi.mulSingle i (x i) ∈ H) → x ∈ H
x : (i : η) → f i
h1 : ∀ (i_1 : η), ¬i_1 ∈ insert i I → x i_1 = 1
h2 : ∀ (i_1 : η), i_1 ∈ insert i I → Pi.mulSingle i_1 (x i_1) ∈ H
⊢ Function.update x i 1 ∈ H
[PROOFSTEP]
apply ih
[GOAL]
case insert.a.h1
G : Type u_1
inst✝³ : Group G
A : Type u_2
inst✝² : AddGroup A
η : Type u_3
f : η → Type u_4
inst✝¹ : (i : η) → Group (f i)
inst✝ : DecidableEq η
I✝ : Finset η
H : Subgroup ((i : η) → f i)
x✝ : (i : η) → f i
h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1
h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H
i : η
I : Finset η
hnmem : ¬i ∈ I
ih : ∀ (x : (i : η) → f i), (∀ (i : η), ¬i ∈ I → x i = 1) → (∀ (i : η), i ∈ I → Pi.mulSingle i (x i) ∈ H) → x ∈ H
x : (i : η) → f i
h1 : ∀ (i_1 : η), ¬i_1 ∈ insert i I → x i_1 = 1
h2 : ∀ (i_1 : η), i_1 ∈ insert i I → Pi.mulSingle i_1 (x i_1) ∈ H
⊢ ∀ (i_1 : η), ¬i_1 ∈ I → Function.update x i 1 i_1 = 1
[PROOFSTEP]
clear ih
[GOAL]
case insert.a.h2
G : Type u_1
inst✝³ : Group G
A : Type u_2
inst✝² : AddGroup A
η : Type u_3
f : η → Type u_4
inst✝¹ : (i : η) → Group (f i)
inst✝ : DecidableEq η
I✝ : Finset η
H : Subgroup ((i : η) → f i)
x✝ : (i : η) → f i
h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1
h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H
i : η
I : Finset η
hnmem : ¬i ∈ I
ih : ∀ (x : (i : η) → f i), (∀ (i : η), ¬i ∈ I → x i = 1) → (∀ (i : η), i ∈ I → Pi.mulSingle i (x i) ∈ H) → x ∈ H
x : (i : η) → f i
h1 : ∀ (i_1 : η), ¬i_1 ∈ insert i I → x i_1 = 1
h2 : ∀ (i_1 : η), i_1 ∈ insert i I → Pi.mulSingle i_1 (x i_1) ∈ H
⊢ ∀ (i_1 : η), i_1 ∈ I → Pi.mulSingle i_1 (Function.update x i 1 i_1) ∈ H
[PROOFSTEP]
clear ih
[GOAL]
case insert.a.h1
G : Type u_1
inst✝³ : Group G
A : Type u_2
inst✝² : AddGroup A
η : Type u_3
f : η → Type u_4
inst✝¹ : (i : η) → Group (f i)
inst✝ : DecidableEq η
I✝ : Finset η
H : Subgroup ((i : η) → f i)
x✝ : (i : η) → f i
h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1
h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H
i : η
I : Finset η
hnmem : ¬i ∈ I
x : (i : η) → f i
h1 : ∀ (i_1 : η), ¬i_1 ∈ insert i I → x i_1 = 1
h2 : ∀ (i_1 : η), i_1 ∈ insert i I → Pi.mulSingle i_1 (x i_1) ∈ H
⊢ ∀ (i_1 : η), ¬i_1 ∈ I → Function.update x i 1 i_1 = 1
[PROOFSTEP]
intro j hj
[GOAL]
case insert.a.h1
G : Type u_1
inst✝³ : Group G
A : Type u_2
inst✝² : AddGroup A
η : Type u_3
f : η → Type u_4
inst✝¹ : (i : η) → Group (f i)
inst✝ : DecidableEq η
I✝ : Finset η
H : Subgroup ((i : η) → f i)
x✝ : (i : η) → f i
h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1
h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H
i : η
I : Finset η
hnmem : ¬i ∈ I
x : (i : η) → f i
h1 : ∀ (i_1 : η), ¬i_1 ∈ insert i I → x i_1 = 1
h2 : ∀ (i_1 : η), i_1 ∈ insert i I → Pi.mulSingle i_1 (x i_1) ∈ H
j : η
hj : ¬j ∈ I
⊢ Function.update x i 1 j = 1
[PROOFSTEP]
by_cases heq : j = i
[GOAL]
case pos
G : Type u_1
inst✝³ : Group G
A : Type u_2
inst✝² : AddGroup A
η : Type u_3
f : η → Type u_4
inst✝¹ : (i : η) → Group (f i)
inst✝ : DecidableEq η
I✝ : Finset η
H : Subgroup ((i : η) → f i)
x✝ : (i : η) → f i
h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1
h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H
i : η
I : Finset η
hnmem : ¬i ∈ I
x : (i : η) → f i
h1 : ∀ (i_1 : η), ¬i_1 ∈ insert i I → x i_1 = 1
h2 : ∀ (i_1 : η), i_1 ∈ insert i I → Pi.mulSingle i_1 (x i_1) ∈ H
j : η
hj : ¬j ∈ I
heq : j = i
⊢ Function.update x i 1 j = 1
[PROOFSTEP]
subst heq
[GOAL]
case pos
G : Type u_1
inst✝³ : Group G
A : Type u_2
inst✝² : AddGroup A
η : Type u_3
f : η → Type u_4
inst✝¹ : (i : η) → Group (f i)
inst✝ : DecidableEq η
I✝ : Finset η
H : Subgroup ((i : η) → f i)
x✝ : (i : η) → f i
h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1
h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H
I : Finset η
x : (i : η) → f i
j : η
hj hnmem : ¬j ∈ I
h1 : ∀ (i : η), ¬i ∈ insert j I → x i = 1
h2 : ∀ (i : η), i ∈ insert j I → Pi.mulSingle i (x i) ∈ H
⊢ Function.update x j 1 j = 1
[PROOFSTEP]
simp
[GOAL]
case neg
G : Type u_1
inst✝³ : Group G
A : Type u_2
inst✝² : AddGroup A
η : Type u_3
f : η → Type u_4
inst✝¹ : (i : η) → Group (f i)
inst✝ : DecidableEq η
I✝ : Finset η
H : Subgroup ((i : η) → f i)
x✝ : (i : η) → f i
h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1
h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H
i : η
I : Finset η
hnmem : ¬i ∈ I
x : (i : η) → f i
h1 : ∀ (i_1 : η), ¬i_1 ∈ insert i I → x i_1 = 1
h2 : ∀ (i_1 : η), i_1 ∈ insert i I → Pi.mulSingle i_1 (x i_1) ∈ H
j : η
hj : ¬j ∈ I
heq : ¬j = i
⊢ Function.update x i 1 j = 1
[PROOFSTEP]
simp [heq]
[GOAL]
case neg
G : Type u_1
inst✝³ : Group G
A : Type u_2
inst✝² : AddGroup A
η : Type u_3
f : η → Type u_4
inst✝¹ : (i : η) → Group (f i)
inst✝ : DecidableEq η
I✝ : Finset η
H : Subgroup ((i : η) → f i)
x✝ : (i : η) → f i
h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1
h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H
i : η
I : Finset η
hnmem : ¬i ∈ I
x : (i : η) → f i
h1 : ∀ (i_1 : η), ¬i_1 ∈ insert i I → x i_1 = 1
h2 : ∀ (i_1 : η), i_1 ∈ insert i I → Pi.mulSingle i_1 (x i_1) ∈ H
j : η
hj : ¬j ∈ I
heq : ¬j = i
⊢ x j = 1
[PROOFSTEP]
apply h1 j
[GOAL]
case neg
G : Type u_1
inst✝³ : Group G
A : Type u_2
inst✝² : AddGroup A
η : Type u_3
f : η → Type u_4
inst✝¹ : (i : η) → Group (f i)
inst✝ : DecidableEq η
I✝ : Finset η
H : Subgroup ((i : η) → f i)
x✝ : (i : η) → f i
h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1
h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H
i : η
I : Finset η
hnmem : ¬i ∈ I
x : (i : η) → f i
h1 : ∀ (i_1 : η), ¬i_1 ∈ insert i I → x i_1 = 1
h2 : ∀ (i_1 : η), i_1 ∈ insert i I → Pi.mulSingle i_1 (x i_1) ∈ H
j : η
hj : ¬j ∈ I
heq : ¬j = i
⊢ ¬j ∈ insert i I
[PROOFSTEP]
simpa [heq] using hj
[GOAL]
case insert.a.h2
G : Type u_1
inst✝³ : Group G
A : Type u_2
inst✝² : AddGroup A
η : Type u_3
f : η → Type u_4
inst✝¹ : (i : η) → Group (f i)
inst✝ : DecidableEq η
I✝ : Finset η
H : Subgroup ((i : η) → f i)
x✝ : (i : η) → f i
h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1
h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H
i : η
I : Finset η
hnmem : ¬i ∈ I
x : (i : η) → f i
h1 : ∀ (i_1 : η), ¬i_1 ∈ insert i I → x i_1 = 1
h2 : ∀ (i_1 : η), i_1 ∈ insert i I → Pi.mulSingle i_1 (x i_1) ∈ H
⊢ ∀ (i_1 : η), i_1 ∈ I → Pi.mulSingle i_1 (Function.update x i 1 i_1) ∈ H
[PROOFSTEP]
intro j hj
[GOAL]
case insert.a.h2
G : Type u_1
inst✝³ : Group G
A : Type u_2
inst✝² : AddGroup A
η : Type u_3
f : η → Type u_4
inst✝¹ : (i : η) → Group (f i)
inst✝ : DecidableEq η
I✝ : Finset η
H : Subgroup ((i : η) → f i)
x✝ : (i : η) → f i
h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1
h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H
i : η
I : Finset η
hnmem : ¬i ∈ I
x : (i : η) → f i
h1 : ∀ (i_1 : η), ¬i_1 ∈ insert i I → x i_1 = 1
h2 : ∀ (i_1 : η), i_1 ∈ insert i I → Pi.mulSingle i_1 (x i_1) ∈ H
j : η
hj : j ∈ I
⊢ Pi.mulSingle j (Function.update x i 1 j) ∈ H
[PROOFSTEP]
have : j ≠ i := by
rintro rfl
contradiction
[GOAL]
G : Type u_1
inst✝³ : Group G
A : Type u_2
inst✝² : AddGroup A
η : Type u_3
f : η → Type u_4
inst✝¹ : (i : η) → Group (f i)
inst✝ : DecidableEq η
I✝ : Finset η
H : Subgroup ((i : η) → f i)
x✝ : (i : η) → f i
h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1
h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H
i : η
I : Finset η
hnmem : ¬i ∈ I
x : (i : η) → f i
h1 : ∀ (i_1 : η), ¬i_1 ∈ insert i I → x i_1 = 1
h2 : ∀ (i_1 : η), i_1 ∈ insert i I → Pi.mulSingle i_1 (x i_1) ∈ H
j : η
hj : j ∈ I
⊢ j ≠ i
[PROOFSTEP]
rintro rfl
[GOAL]
G : Type u_1
inst✝³ : Group G
A : Type u_2
inst✝² : AddGroup A
η : Type u_3
f : η → Type u_4
inst✝¹ : (i : η) → Group (f i)
inst✝ : DecidableEq η
I✝ : Finset η
H : Subgroup ((i : η) → f i)
x✝ : (i : η) → f i
h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1
h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H
I : Finset η
x : (i : η) → f i
j : η
hj : j ∈ I
hnmem : ¬j ∈ I
h1 : ∀ (i : η), ¬i ∈ insert j I → x i = 1
h2 : ∀ (i : η), i ∈ insert j I → Pi.mulSingle i (x i) ∈ H
⊢ False
[PROOFSTEP]
contradiction
[GOAL]
case insert.a.h2
G : Type u_1
inst✝³ : Group G
A : Type u_2
inst✝² : AddGroup A
η : Type u_3
f : η → Type u_4
inst✝¹ : (i : η) → Group (f i)
inst✝ : DecidableEq η
I✝ : Finset η
H : Subgroup ((i : η) → f i)
x✝ : (i : η) → f i
h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1
h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H
i : η
I : Finset η
hnmem : ¬i ∈ I
x : (i : η) → f i
h1 : ∀ (i_1 : η), ¬i_1 ∈ insert i I → x i_1 = 1
h2 : ∀ (i_1 : η), i_1 ∈ insert i I → Pi.mulSingle i_1 (x i_1) ∈ H
j : η
hj : j ∈ I
this : j ≠ i
⊢ Pi.mulSingle j (Function.update x i 1 j) ∈ H
[PROOFSTEP]
simp [this]
[GOAL]
case insert.a.h2
G : Type u_1
inst✝³ : Group G
A : Type u_2
inst✝² : AddGroup A
η : Type u_3
f : η → Type u_4
inst✝¹ : (i : η) → Group (f i)
inst✝ : DecidableEq η
I✝ : Finset η
H : Subgroup ((i : η) → f i)
x✝ : (i : η) → f i
h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1
h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H
i : η
I : Finset η
hnmem : ¬i ∈ I
x : (i : η) → f i
h1 : ∀ (i_1 : η), ¬i_1 ∈ insert i I → x i_1 = 1
h2 : ∀ (i_1 : η), i_1 ∈ insert i I → Pi.mulSingle i_1 (x i_1) ∈ H
j : η
hj : j ∈ I
this : j ≠ i
⊢ Pi.mulSingle j (x j) ∈ H
[PROOFSTEP]
exact h2 _ (Finset.mem_insert_of_mem hj)
[GOAL]
case insert.a
G : Type u_1
inst✝³ : Group G
A : Type u_2
inst✝² : AddGroup A
η : Type u_3
f : η → Type u_4
inst✝¹ : (i : η) → Group (f i)
inst✝ : DecidableEq η
I✝ : Finset η
H : Subgroup ((i : η) → f i)
x✝ : (i : η) → f i
h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1
h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H
i : η
I : Finset η
hnmem : ¬i ∈ I
ih : ∀ (x : (i : η) → f i), (∀ (i : η), ¬i ∈ I → x i = 1) → (∀ (i : η), i ∈ I → Pi.mulSingle i (x i) ∈ H) → x ∈ H
x : (i : η) → f i
h1 : ∀ (i_1 : η), ¬i_1 ∈ insert i I → x i_1 = 1
h2 : ∀ (i_1 : η), i_1 ∈ insert i I → Pi.mulSingle i_1 (x i_1) ∈ H
⊢ Pi.mulSingle i (x i) ∈ H
[PROOFSTEP]
apply h2
[GOAL]
case insert.a.a
G : Type u_1
inst✝³ : Group G
A : Type u_2
inst✝² : AddGroup A
η : Type u_3
f : η → Type u_4
inst✝¹ : (i : η) → Group (f i)
inst✝ : DecidableEq η
I✝ : Finset η
H : Subgroup ((i : η) → f i)
x✝ : (i : η) → f i
h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1
h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H
i : η
I : Finset η
hnmem : ¬i ∈ I
ih : ∀ (x : (i : η) → f i), (∀ (i : η), ¬i ∈ I → x i = 1) → (∀ (i : η), i ∈ I → Pi.mulSingle i (x i) ∈ H) → x ∈ H
x : (i : η) → f i
h1 : ∀ (i_1 : η), ¬i_1 ∈ insert i I → x i_1 = 1
h2 : ∀ (i_1 : η), i_1 ∈ insert i I → Pi.mulSingle i_1 (x i_1) ∈ H
⊢ i ∈ insert i I
[PROOFSTEP]
simp
[GOAL]
G : Type u_1
inst✝⁴ : Group G
A : Type u_2
inst✝³ : AddGroup A
η : Type u_3
f : η → Type u_4
inst✝² : (i : η) → Group (f i)
inst✝¹ : Finite η
inst✝ : DecidableEq η
H : Subgroup ((i : η) → f i)
x : (i : η) → f i
h : ∀ (i : η), Pi.mulSingle i (x i) ∈ H
⊢ x ∈ H
[PROOFSTEP]
cases nonempty_fintype η
[GOAL]
case intro
G : Type u_1
inst✝⁴ : Group G
A : Type u_2
inst✝³ : AddGroup A
η : Type u_3
f : η → Type u_4
inst✝² : (i : η) → Group (f i)
inst✝¹ : Finite η
inst✝ : DecidableEq η
H : Subgroup ((i : η) → f i)
x : (i : η) → f i
h : ∀ (i : η), Pi.mulSingle i (x i) ∈ H
val✝ : Fintype η
⊢ x ∈ H
[PROOFSTEP]
exact pi_mem_of_mulSingle_mem_aux Finset.univ x (by simp) fun i _ => h i
[GOAL]
G : Type u_1
inst✝⁴ : Group G
A : Type u_2
inst✝³ : AddGroup A
η : Type u_3
f : η → Type u_4
inst✝² : (i : η) → Group (f i)
inst✝¹ : Finite η
inst✝ : DecidableEq η
H : Subgroup ((i : η) → f i)
x : (i : η) → f i
h : ∀ (i : η), Pi.mulSingle i (x i) ∈ H
val✝ : Fintype η
⊢ ∀ (i : η), ¬i ∈ Finset.univ → x i = 1
[PROOFSTEP]
simp
[GOAL]
G : Type u_1
inst✝⁴ : Group G
A : Type u_2
inst✝³ : AddGroup A
η : Type u_3
f : η → Type u_4
inst✝² : (i : η) → Group (f i)
inst✝¹ : DecidableEq η
inst✝ : Finite η
H : (i : η) → Subgroup (f i)
J : Subgroup ((i : η) → f i)
⊢ pi univ H ≤ J ↔ ∀ (i : η), map (MonoidHom.single f i) (H i) ≤ J
[PROOFSTEP]
constructor
[GOAL]
case mp
G : Type u_1
inst✝⁴ : Group G
A : Type u_2
inst✝³ : AddGroup A
η : Type u_3
f : η → Type u_4
inst✝² : (i : η) → Group (f i)
inst✝¹ : DecidableEq η
inst✝ : Finite η
H : (i : η) → Subgroup (f i)
J : Subgroup ((i : η) → f i)
⊢ pi univ H ≤ J → ∀ (i : η), map (MonoidHom.single f i) (H i) ≤ J
[PROOFSTEP]
rintro h i _ ⟨x, hx, rfl⟩
[GOAL]
case mp.intro.intro
G : Type u_1
inst✝⁴ : Group G
A : Type u_2
inst✝³ : AddGroup A
η : Type u_3
f : η → Type u_4
inst✝² : (i : η) → Group (f i)
inst✝¹ : DecidableEq η
inst✝ : Finite η
H : (i : η) → Subgroup (f i)
J : Subgroup ((i : η) → f i)
h : pi univ H ≤ J
i : η
x : f i
hx : x ∈ ↑(H i)
⊢ ↑(MonoidHom.single f i) x ∈ J
[PROOFSTEP]
apply h
[GOAL]
case mp.intro.intro.a
G : Type u_1
inst✝⁴ : Group G
A : Type u_2
inst✝³ : AddGroup A
η : Type u_3
f : η → Type u_4
inst✝² : (i : η) → Group (f i)
inst✝¹ : DecidableEq η
inst✝ : Finite η
H : (i : η) → Subgroup (f i)
J : Subgroup ((i : η) → f i)
h : pi univ H ≤ J
i : η
x : f i
hx : x ∈ ↑(H i)
⊢ ↑(MonoidHom.single f i) x ∈ pi univ H
[PROOFSTEP]
simpa using hx
[GOAL]
case mpr
G : Type u_1
inst✝⁴ : Group G
A : Type u_2
inst✝³ : AddGroup A
η : Type u_3
f : η → Type u_4
inst✝² : (i : η) → Group (f i)
inst✝¹ : DecidableEq η
inst✝ : Finite η
H : (i : η) → Subgroup (f i)
J : Subgroup ((i : η) → f i)
⊢ (∀ (i : η), map (MonoidHom.single f i) (H i) ≤ J) → pi univ H ≤ J
[PROOFSTEP]
exact fun h x hx => pi_mem_of_mulSingle_mem x fun i => h i (mem_map_of_mem _ (hx i trivial))
[GOAL]
G : Type u_1
inst✝² : Group G
A : Type u_2
inst✝¹ : AddGroup A
S : Set G
inst✝ : Finite ↑S
x : G
h : ∀ (n : G), n ∈ S → x * n * x⁻¹ ∈ S
⊢ x ∈ setNormalizer S
[PROOFSTEP]
haveI := Classical.propDecidable
[GOAL]
G : Type u_1
inst✝² : Group G
A : Type u_2
inst✝¹ : AddGroup A
S : Set G
inst✝ : Finite ↑S
x : G
h : ∀ (n : G), n ∈ S → x * n * x⁻¹ ∈ S
this : (a : Prop) → Decidable a
⊢ x ∈ setNormalizer S
[PROOFSTEP]
cases nonempty_fintype S
[GOAL]
case intro
G : Type u_1
inst✝² : Group G
A : Type u_2
inst✝¹ : AddGroup A
S : Set G
inst✝ : Finite ↑S
x : G
h : ∀ (n : G), n ∈ S → x * n * x⁻¹ ∈ S
this : (a : Prop) → Decidable a
val✝ : Fintype ↑S
⊢ x ∈ setNormalizer S
[PROOFSTEP]
haveI := Set.fintypeImage S fun n => x * n * x⁻¹
[GOAL]
case intro
G : Type u_1
inst✝² : Group G
A : Type u_2
inst✝¹ : AddGroup A
S : Set G
inst✝ : Finite ↑S
x : G
h : ∀ (n : G), n ∈ S → x * n * x⁻¹ ∈ S
this✝ : (a : Prop) → Decidable a
val✝ : Fintype ↑S
this : Fintype ↑((fun n => x * n * x⁻¹) '' S)
⊢ x ∈ setNormalizer S
[PROOFSTEP]
exact fun n =>
⟨h n, fun h₁ =>
have heq : (fun n => x * n * x⁻¹) '' S = S :=
Set.eq_of_subset_of_card_le (fun n ⟨y, hy⟩ => hy.2 ▸ h y hy.1)
(by rw [Set.card_image_of_injective S conj_injective])
have : x * n * x⁻¹ ∈ (fun n => x * n * x⁻¹) '' S := heq.symm ▸ h₁
let ⟨y, hy⟩ := this
conj_injective hy.2 ▸ hy.1⟩
[GOAL]
G : Type u_1
inst✝² : Group G
A : Type u_2
inst✝¹ : AddGroup A
S : Set G
inst✝ : Finite ↑S
x : G
h : ∀ (n : G), n ∈ S → x * n * x⁻¹ ∈ S
this✝ : (a : Prop) → Decidable a
val✝ : Fintype ↑S
this : Fintype ↑((fun n => x * n * x⁻¹) '' S)
n : G
h₁ : x * n * x⁻¹ ∈ S
⊢ Fintype.card ↑S ≤ Fintype.card ↑((fun n => x * n * x⁻¹) '' S)
[PROOFSTEP]
rw [Set.card_image_of_injective S conj_injective]
| {"mathlib_filename": "Mathlib.GroupTheory.Subgroup.Finite", "llama_tokens": 15117} |
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝ : (i : ι) → Monoid (M i)
⊢ Monoid (Monoid.CoprodI M)
[PROOFSTEP]
delta Monoid.CoprodI
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝ : (i : ι) → Monoid (M i)
⊢ Monoid (Con.Quotient (conGen (Monoid.CoprodI.Rel M)))
[PROOFSTEP]
infer_instance
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
f g : CoprodI M →* N
h : ∀ (i : ι), MonoidHom.comp f of = MonoidHom.comp g of
x✝ : (i : ι) × M i
i : ι
x : M i
⊢ ↑(MonoidHom.comp f (Con.mk' (conGen (Rel M)))) (FreeMonoid.of { fst := i, snd := x }) =
↑(MonoidHom.comp g (Con.mk' (conGen (Rel M)))) (FreeMonoid.of { fst := i, snd := x })
[PROOFSTEP]
rw [MonoidHom.comp_apply, MonoidHom.comp_apply, ← of_apply, ← MonoidHom.comp_apply, ← MonoidHom.comp_apply, h]
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
fi : (i : ι) → M i →* N
⊢ ∀ (x y : FreeMonoid ((i : ι) × M i)), Rel M x y → Setoid.r x y
[PROOFSTEP]
simp_rw [Con.rel_eq_coe, Con.ker_rel]
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
fi : (i : ι) → M i →* N
⊢ ∀ (x y : FreeMonoid ((i : ι) × M i)),
Rel M x y → ↑(↑FreeMonoid.lift fun p => ↑(fi p.fst) p.snd) x = ↑(↑FreeMonoid.lift fun p => ↑(fi p.fst) p.snd) y
[PROOFSTEP]
rintro _ _ (i | ⟨x, y⟩)
[GOAL]
case of_one
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
fi : (i : ι) → M i →* N
i : ι
⊢ ↑(↑FreeMonoid.lift fun p => ↑(fi p.fst) p.snd) (FreeMonoid.of { fst := i, snd := 1 }) =
↑(↑FreeMonoid.lift fun p => ↑(fi p.fst) p.snd) 1
[PROOFSTEP]
change FreeMonoid.lift _ (FreeMonoid.of _) = FreeMonoid.lift _ 1
[GOAL]
case of_one
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
fi : (i : ι) → M i →* N
i : ι
⊢ ↑(↑FreeMonoid.lift fun p => ↑(fi p.fst) p.snd) (FreeMonoid.of { fst := i, snd := 1 }) =
↑(↑FreeMonoid.lift fun p => ↑(fi p.fst) p.snd) 1
[PROOFSTEP]
simp only [MonoidHom.map_one, FreeMonoid.lift_eval_of]
[GOAL]
case of_mul
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
fi : (i : ι) → M i →* N
i✝ : ι
x y : M i✝
⊢ ↑(↑FreeMonoid.lift fun p => ↑(fi p.fst) p.snd)
(FreeMonoid.of { fst := i✝, snd := x } * FreeMonoid.of { fst := i✝, snd := y }) =
↑(↑FreeMonoid.lift fun p => ↑(fi p.fst) p.snd) (FreeMonoid.of { fst := i✝, snd := x * y })
[PROOFSTEP]
change FreeMonoid.lift _ (FreeMonoid.of _ * FreeMonoid.of _) = FreeMonoid.lift _ (FreeMonoid.of _)
[GOAL]
case of_mul
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
fi : (i : ι) → M i →* N
i✝ : ι
x y : M i✝
⊢ ↑(↑FreeMonoid.lift fun p => ↑(fi p.fst) p.snd)
(FreeMonoid.of { fst := i✝, snd := x } * FreeMonoid.of { fst := i✝, snd := y }) =
↑(↑FreeMonoid.lift fun p => ↑(fi p.fst) p.snd) (FreeMonoid.of { fst := i✝, snd := x * y })
[PROOFSTEP]
simp only [MonoidHom.map_mul, FreeMonoid.lift_eval_of]
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
⊢ Function.LeftInverse (fun f i => MonoidHom.comp f of) fun fi =>
Con.lift (conGen (Rel M)) (↑FreeMonoid.lift fun p => ↑(fi p.fst) p.snd)
(_ : conGen (Rel M) ≤ Con.ker (↑FreeMonoid.lift fun p => ↑(fi p.fst) p.snd))
[PROOFSTEP]
intro fi
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
fi : (i : ι) → M i →* N
⊢ (fun f i => MonoidHom.comp f of)
((fun fi =>
Con.lift (conGen (Rel M)) (↑FreeMonoid.lift fun p => ↑(fi p.fst) p.snd)
(_ : conGen (Rel M) ≤ Con.ker (↑FreeMonoid.lift fun p => ↑(fi p.fst) p.snd)))
fi) =
fi
[PROOFSTEP]
ext i x
[GOAL]
case h.h
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
fi : (i : ι) → M i →* N
i : ι
x : M i
⊢ ↑((fun f i => MonoidHom.comp f of)
((fun fi =>
Con.lift (conGen (Rel M)) (↑FreeMonoid.lift fun p => ↑(fi p.fst) p.snd)
(_ : conGen (Rel M) ≤ Con.ker (↑FreeMonoid.lift fun p => ↑(fi p.fst) p.snd)))
fi)
i)
x =
↑(fi i) x
[PROOFSTEP]
rw [MonoidHom.comp_apply, of_apply, Con.lift_mk', FreeMonoid.lift_eval_of]
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
⊢ Function.RightInverse (fun f i => MonoidHom.comp f of) fun fi =>
Con.lift (conGen (Rel M)) (↑FreeMonoid.lift fun p => ↑(fi p.fst) p.snd)
(_ : conGen (Rel M) ≤ Con.ker (↑FreeMonoid.lift fun p => ↑(fi p.fst) p.snd))
[PROOFSTEP]
intro f
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
f : CoprodI M →* N
⊢ (fun fi =>
Con.lift (conGen (Rel M)) (↑FreeMonoid.lift fun p => ↑(fi p.fst) p.snd)
(_ : conGen (Rel M) ≤ Con.ker (↑FreeMonoid.lift fun p => ↑(fi p.fst) p.snd)))
((fun f i => MonoidHom.comp f of) f) =
f
[PROOFSTEP]
ext i x
[GOAL]
case h.h
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
f : CoprodI M →* N
i : ι
x : M i
⊢ ↑(MonoidHom.comp
((fun fi =>
Con.lift (conGen (Rel M)) (↑FreeMonoid.lift fun p => ↑(fi p.fst) p.snd)
(_ : conGen (Rel M) ≤ Con.ker (↑FreeMonoid.lift fun p => ↑(fi p.fst) p.snd)))
((fun f i => MonoidHom.comp f of) f))
of)
x =
↑(MonoidHom.comp f of) x
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N✝ : Type u_3
inst✝¹ : Monoid N✝
N : Type u_4
inst✝ : Monoid N
fi : (i : ι) → M i →* N
i : ι
m : M i
⊢ ↑(↑lift fi) (↑of m) = ↑(fi i) m
[PROOFSTEP]
conv_rhs => rw [← lift.symm_apply_apply fi, lift_symm_apply, MonoidHom.comp_apply]
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N✝ : Type u_3
inst✝¹ : Monoid N✝
N : Type u_4
inst✝ : Monoid N
fi : (i : ι) → M i →* N
i : ι
m : M i
| ↑(fi i) m
[PROOFSTEP]
rw [← lift.symm_apply_apply fi, lift_symm_apply, MonoidHom.comp_apply]
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N✝ : Type u_3
inst✝¹ : Monoid N✝
N : Type u_4
inst✝ : Monoid N
fi : (i : ι) → M i →* N
i : ι
m : M i
| ↑(fi i) m
[PROOFSTEP]
rw [← lift.symm_apply_apply fi, lift_symm_apply, MonoidHom.comp_apply]
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N✝ : Type u_3
inst✝¹ : Monoid N✝
N : Type u_4
inst✝ : Monoid N
fi : (i : ι) → M i →* N
i : ι
m : M i
| ↑(fi i) m
[PROOFSTEP]
rw [← lift.symm_apply_apply fi, lift_symm_apply, MonoidHom.comp_apply]
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
C : CoprodI M → Prop
m : CoprodI M
h_one : C 1
h_of : ∀ (i : ι) (m : M i), C (↑of m)
h_mul : ∀ (x y : CoprodI M), C x → C y → C (x * y)
⊢ C m
[PROOFSTEP]
let S : Submonoid (CoprodI M) :=
{ carrier := setOf C
mul_mem' := h_mul _ _
one_mem' := h_one }
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
C : CoprodI M → Prop
m : CoprodI M
h_one : C 1
h_of : ∀ (i : ι) (m : M i), C (↑of m)
h_mul : ∀ (x y : CoprodI M), C x → C y → C (x * y)
S : Submonoid (CoprodI M) :=
{ toSubsemigroup := { carrier := setOf C, mul_mem' := (_ : ∀ {a b : CoprodI M}, C a → C b → C (a * b)) },
one_mem' := h_one }
⊢ C m
[PROOFSTEP]
have : C _ := Subtype.prop (lift (fun i => of.codRestrict S (h_of i)) m)
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
C : CoprodI M → Prop
m : CoprodI M
h_one : C 1
h_of : ∀ (i : ι) (m : M i), C (↑of m)
h_mul : ∀ (x y : CoprodI M), C x → C y → C (x * y)
S : Submonoid (CoprodI M) :=
{ toSubsemigroup := { carrier := setOf C, mul_mem' := (_ : ∀ {a b : CoprodI M}, C a → C b → C (a * b)) },
one_mem' := h_one }
this : C ↑(↑(↑lift fun i => MonoidHom.codRestrict of S (_ : ∀ (m : M i), C (↑of m))) m)
⊢ C m
[PROOFSTEP]
convert this
[GOAL]
case h.e'_1
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
C : CoprodI M → Prop
m : CoprodI M
h_one : C 1
h_of : ∀ (i : ι) (m : M i), C (↑of m)
h_mul : ∀ (x y : CoprodI M), C x → C y → C (x * y)
S : Submonoid (CoprodI M) :=
{ toSubsemigroup := { carrier := setOf C, mul_mem' := (_ : ∀ {a b : CoprodI M}, C a → C b → C (a * b)) },
one_mem' := h_one }
this : C ↑(↑(↑lift fun i => MonoidHom.codRestrict of S (_ : ∀ (m : M i), C (↑of m))) m)
⊢ m = ↑(↑(↑lift fun i => MonoidHom.codRestrict of S (_ : ∀ (m : M i), C (↑of m))) m)
[PROOFSTEP]
change MonoidHom.id _ m = S.subtype.comp _ m
[GOAL]
case h.e'_1
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
C : CoprodI M → Prop
m : CoprodI M
h_one : C 1
h_of : ∀ (i : ι) (m : M i), C (↑of m)
h_mul : ∀ (x y : CoprodI M), C x → C y → C (x * y)
S : Submonoid (CoprodI M) :=
{ toSubsemigroup := { carrier := setOf C, mul_mem' := (_ : ∀ {a b : CoprodI M}, C a → C b → C (a * b)) },
one_mem' := h_one }
this : C ↑(↑(↑lift fun i => MonoidHom.codRestrict of S (_ : ∀ (m : M i), C (↑of m))) m)
⊢ ↑(MonoidHom.id (CoprodI M)) m =
↑(MonoidHom.comp (Submonoid.subtype S) (↑lift fun i => MonoidHom.codRestrict of S (_ : ∀ (m : M i), C (↑of m)))) m
[PROOFSTEP]
congr
[GOAL]
case h.e'_1.e_a
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
C : CoprodI M → Prop
m : CoprodI M
h_one : C 1
h_of : ∀ (i : ι) (m : M i), C (↑of m)
h_mul : ∀ (x y : CoprodI M), C x → C y → C (x * y)
S : Submonoid (CoprodI M) :=
{ toSubsemigroup := { carrier := setOf C, mul_mem' := (_ : ∀ {a b : CoprodI M}, C a → C b → C (a * b)) },
one_mem' := h_one }
this : C ↑(↑(↑lift fun i => MonoidHom.codRestrict of S (_ : ∀ (m : M i), C (↑of m))) m)
⊢ MonoidHom.id (CoprodI M) =
MonoidHom.comp (Submonoid.subtype S) (↑lift fun i => MonoidHom.codRestrict of S (_ : ∀ (m : M i), C (↑of m)))
[PROOFSTEP]
ext i
[GOAL]
case h.e'_1.e_a.h.h
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
C : CoprodI M → Prop
m : CoprodI M
h_one : C 1
h_of : ∀ (i : ι) (m : M i), C (↑of m)
h_mul : ∀ (x y : CoprodI M), C x → C y → C (x * y)
S : Submonoid (CoprodI M) :=
{ toSubsemigroup := { carrier := setOf C, mul_mem' := (_ : ∀ {a b : CoprodI M}, C a → C b → C (a * b)) },
one_mem' := h_one }
this : C ↑(↑(↑lift fun i => MonoidHom.codRestrict of S (_ : ∀ (m : M i), C (↑of m))) m)
i : ι
x✝ : M i
⊢ ↑(MonoidHom.comp (MonoidHom.id (CoprodI M)) of) x✝ =
↑(MonoidHom.comp
(MonoidHom.comp (Submonoid.subtype S)
(↑lift fun i => MonoidHom.codRestrict of S (_ : ∀ (m : M i), C (↑of m))))
of)
x✝
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
inst✝ : DecidableEq ι
i : ι
x : M i
⊢ ↑(↑lift (Pi.mulSingle i (MonoidHom.id (M i)))) (↑of x) = x
[PROOFSTEP]
simp only [lift_of, Pi.mulSingle_eq_same, MonoidHom.id_apply]
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i : ι
⊢ Function.Injective ↑of
[PROOFSTEP]
classical exact (of_leftInverse i).injective
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i : ι
⊢ Function.Injective ↑of
[PROOFSTEP]
exact (of_leftInverse i).injective
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N✝ : Type u_3
inst✝¹ : Monoid N✝
N : Type u_4
inst✝ : Monoid N
f : (i : ι) → M i →* N
s : Submonoid N
h : ∀ (i : ι), MonoidHom.mrange (f i) ≤ s
⊢ MonoidHom.mrange (↑lift f) ≤ s
[PROOFSTEP]
rintro _ ⟨x, rfl⟩
[GOAL]
case intro
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N✝ : Type u_3
inst✝¹ : Monoid N✝
N : Type u_4
inst✝ : Monoid N
f : (i : ι) → M i →* N
s : Submonoid N
h : ∀ (i : ι), MonoidHom.mrange (f i) ≤ s
x : CoprodI fun i => M i
⊢ ↑(↑lift f) x ∈ s
[PROOFSTEP]
induction' x using CoprodI.induction_on with i x x y hx hy
[GOAL]
case intro.h_one
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N✝ : Type u_3
inst✝¹ : Monoid N✝
N : Type u_4
inst✝ : Monoid N
f : (i : ι) → M i →* N
s : Submonoid N
h : ∀ (i : ι), MonoidHom.mrange (f i) ≤ s
⊢ ↑(↑lift f) 1 ∈ s
[PROOFSTEP]
exact s.one_mem
[GOAL]
case intro.h_of
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N✝ : Type u_3
inst✝¹ : Monoid N✝
N : Type u_4
inst✝ : Monoid N
f : (i : ι) → M i →* N
s : Submonoid N
h : ∀ (i : ι), MonoidHom.mrange (f i) ≤ s
i : ι
x : M i
⊢ ↑(↑lift f) (↑of x) ∈ s
[PROOFSTEP]
simp only [lift_of, SetLike.mem_coe]
[GOAL]
case intro.h_of
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N✝ : Type u_3
inst✝¹ : Monoid N✝
N : Type u_4
inst✝ : Monoid N
f : (i : ι) → M i →* N
s : Submonoid N
h : ∀ (i : ι), MonoidHom.mrange (f i) ≤ s
i : ι
x : M i
⊢ ↑(f i) x ∈ s
[PROOFSTEP]
exact h i (Set.mem_range_self x)
[GOAL]
case intro.h_mul
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N✝ : Type u_3
inst✝¹ : Monoid N✝
N : Type u_4
inst✝ : Monoid N
f : (i : ι) → M i →* N
s : Submonoid N
h : ∀ (i : ι), MonoidHom.mrange (f i) ≤ s
x y : CoprodI fun i => M i
hx : ↑(↑lift f) x ∈ s
hy : ↑(↑lift f) y ∈ s
⊢ ↑(↑lift f) (x * y) ∈ s
[PROOFSTEP]
simp only [map_mul, SetLike.mem_coe]
[GOAL]
case intro.h_mul
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N✝ : Type u_3
inst✝¹ : Monoid N✝
N : Type u_4
inst✝ : Monoid N
f : (i : ι) → M i →* N
s : Submonoid N
h : ∀ (i : ι), MonoidHom.mrange (f i) ≤ s
x y : CoprodI fun i => M i
hx : ↑(↑lift f) x ∈ s
hy : ↑(↑lift f) y ∈ s
⊢ ↑(↑lift f) x * ↑(↑lift f) y ∈ s
[PROOFSTEP]
exact s.mul_mem hx hy
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N✝ : Type u_3
inst✝¹ : Monoid N✝
N : Type u_4
inst✝ : Monoid N
f : (i : ι) → M i →* N
⊢ MonoidHom.mrange (↑lift f) = ⨆ (i : ι), MonoidHom.mrange (f i)
[PROOFSTEP]
apply le_antisymm (lift_mrange_le f fun i => le_iSup (fun i => MonoidHom.mrange (f i)) i)
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N✝ : Type u_3
inst✝¹ : Monoid N✝
N : Type u_4
inst✝ : Monoid N
f : (i : ι) → M i →* N
⊢ ⨆ (i : ι), MonoidHom.mrange (f i) ≤ MonoidHom.mrange (↑lift f)
[PROOFSTEP]
apply iSup_le _
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N✝ : Type u_3
inst✝¹ : Monoid N✝
N : Type u_4
inst✝ : Monoid N
f : (i : ι) → M i →* N
⊢ ∀ (i : ι), MonoidHom.mrange (f i) ≤ MonoidHom.mrange (↑lift f)
[PROOFSTEP]
rintro i _ ⟨x, rfl⟩
[GOAL]
case intro
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N✝ : Type u_3
inst✝¹ : Monoid N✝
N : Type u_4
inst✝ : Monoid N
f : (i : ι) → M i →* N
i : ι
x : M i
⊢ ↑(f i) x ∈ MonoidHom.mrange (↑lift f)
[PROOFSTEP]
exact ⟨of x, by simp only [lift_of]⟩
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N✝ : Type u_3
inst✝¹ : Monoid N✝
N : Type u_4
inst✝ : Monoid N
f : (i : ι) → M i →* N
i : ι
x : M i
⊢ ↑(↑lift f) (↑of x) = ↑(f i) x
[PROOFSTEP]
simp only [lift_of]
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
G : ι → Type u_4
inst✝ : (i : ι) → Group (G i)
src✝¹ : Inv (CoprodI G) := inferInstanceAs (Inv (CoprodI G))
src✝ : Monoid (CoprodI G) := inferInstanceAs (Monoid (CoprodI G))
⊢ ∀ (a : CoprodI G), a⁻¹ * a = 1
[PROOFSTEP]
intro m
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
G : ι → Type u_4
inst✝ : (i : ι) → Group (G i)
src✝¹ : Inv (CoprodI G) := inferInstanceAs (Inv (CoprodI G))
src✝ : Monoid (CoprodI G) := inferInstanceAs (Monoid (CoprodI G))
m : CoprodI G
⊢ m⁻¹ * m = 1
[PROOFSTEP]
rw [inv_def]
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
G : ι → Type u_4
inst✝ : (i : ι) → Group (G i)
src✝¹ : Inv (CoprodI G) := inferInstanceAs (Inv (CoprodI G))
src✝ : Monoid (CoprodI G) := inferInstanceAs (Monoid (CoprodI G))
m : CoprodI G
⊢ MulOpposite.unop
(↑(↑lift fun i => MonoidHom.comp (↑MonoidHom.op of) (MulEquiv.toMonoidHom (MulEquiv.inv' (G i)))) m) *
m =
1
[PROOFSTEP]
induction m using CoprodI.induction_on with
| h_one => rw [MonoidHom.map_one, MulOpposite.unop_one, one_mul]
| h_of m ih =>
change of _⁻¹ * of _ = 1
rw [← of.map_mul, mul_left_inv, of.map_one]
| h_mul x y ihx ihy => rw [MonoidHom.map_mul, MulOpposite.unop_mul, mul_assoc, ← mul_assoc _ x y, ihx, one_mul, ihy]
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
G : ι → Type u_4
inst✝ : (i : ι) → Group (G i)
src✝¹ : Inv (CoprodI G) := inferInstanceAs (Inv (CoprodI G))
src✝ : Monoid (CoprodI G) := inferInstanceAs (Monoid (CoprodI G))
m : CoprodI G
⊢ MulOpposite.unop
(↑(↑lift fun i => MonoidHom.comp (↑MonoidHom.op of) (MulEquiv.toMonoidHom (MulEquiv.inv' (G i)))) m) *
m =
1
[PROOFSTEP]
induction m using CoprodI.induction_on with
| h_one => rw [MonoidHom.map_one, MulOpposite.unop_one, one_mul]
| h_of m ih =>
change of _⁻¹ * of _ = 1
rw [← of.map_mul, mul_left_inv, of.map_one]
| h_mul x y ihx ihy => rw [MonoidHom.map_mul, MulOpposite.unop_mul, mul_assoc, ← mul_assoc _ x y, ihx, one_mul, ihy]
[GOAL]
case h_one
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
G : ι → Type u_4
inst✝ : (i : ι) → Group (G i)
src✝¹ : Inv (CoprodI G) := inferInstanceAs (Inv (CoprodI G))
src✝ : Monoid (CoprodI G) := inferInstanceAs (Monoid (CoprodI G))
⊢ MulOpposite.unop
(↑(↑lift fun i => MonoidHom.comp (↑MonoidHom.op of) (MulEquiv.toMonoidHom (MulEquiv.inv' (G i)))) 1) *
1 =
1
[PROOFSTEP]
| h_one => rw [MonoidHom.map_one, MulOpposite.unop_one, one_mul]
[GOAL]
case h_one
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
G : ι → Type u_4
inst✝ : (i : ι) → Group (G i)
src✝¹ : Inv (CoprodI G) := inferInstanceAs (Inv (CoprodI G))
src✝ : Monoid (CoprodI G) := inferInstanceAs (Monoid (CoprodI G))
⊢ MulOpposite.unop
(↑(↑lift fun i => MonoidHom.comp (↑MonoidHom.op of) (MulEquiv.toMonoidHom (MulEquiv.inv' (G i)))) 1) *
1 =
1
[PROOFSTEP]
rw [MonoidHom.map_one, MulOpposite.unop_one, one_mul]
[GOAL]
case h_of
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
G : ι → Type u_4
inst✝ : (i : ι) → Group (G i)
src✝¹ : Inv (CoprodI G) := inferInstanceAs (Inv (CoprodI G))
src✝ : Monoid (CoprodI G) := inferInstanceAs (Monoid (CoprodI G))
m : ι
ih : G m
⊢ MulOpposite.unop
(↑(↑lift fun i => MonoidHom.comp (↑MonoidHom.op of) (MulEquiv.toMonoidHom (MulEquiv.inv' (G i)))) (↑of ih)) *
↑of ih =
1
[PROOFSTEP]
| h_of m ih =>
change of _⁻¹ * of _ = 1
rw [← of.map_mul, mul_left_inv, of.map_one]
[GOAL]
case h_of
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
G : ι → Type u_4
inst✝ : (i : ι) → Group (G i)
src✝¹ : Inv (CoprodI G) := inferInstanceAs (Inv (CoprodI G))
src✝ : Monoid (CoprodI G) := inferInstanceAs (Monoid (CoprodI G))
m : ι
ih : G m
⊢ MulOpposite.unop
(↑(↑lift fun i => MonoidHom.comp (↑MonoidHom.op of) (MulEquiv.toMonoidHom (MulEquiv.inv' (G i)))) (↑of ih)) *
↑of ih =
1
[PROOFSTEP]
change of _⁻¹ * of _ = 1
[GOAL]
case h_of
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
G : ι → Type u_4
inst✝ : (i : ι) → Group (G i)
src✝¹ : Inv (CoprodI G) := inferInstanceAs (Inv (CoprodI G))
src✝ : Monoid (CoprodI G) := inferInstanceAs (Monoid (CoprodI G))
m : ι
ih : G m
⊢ ↑of { fst := m, snd := ih }.snd⁻¹ * ↑of ih = 1
[PROOFSTEP]
rw [← of.map_mul, mul_left_inv, of.map_one]
[GOAL]
case h_mul
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
G : ι → Type u_4
inst✝ : (i : ι) → Group (G i)
src✝¹ : Inv (CoprodI G) := inferInstanceAs (Inv (CoprodI G))
src✝ : Monoid (CoprodI G) := inferInstanceAs (Monoid (CoprodI G))
x y : CoprodI G
ihx :
MulOpposite.unop
(↑(↑lift fun i => MonoidHom.comp (↑MonoidHom.op of) (MulEquiv.toMonoidHom (MulEquiv.inv' (G i)))) x) *
x =
1
ihy :
MulOpposite.unop
(↑(↑lift fun i => MonoidHom.comp (↑MonoidHom.op of) (MulEquiv.toMonoidHom (MulEquiv.inv' (G i)))) y) *
y =
1
⊢ MulOpposite.unop
(↑(↑lift fun i => MonoidHom.comp (↑MonoidHom.op of) (MulEquiv.toMonoidHom (MulEquiv.inv' (G i)))) (x * y)) *
(x * y) =
1
[PROOFSTEP]
| h_mul x y ihx ihy => rw [MonoidHom.map_mul, MulOpposite.unop_mul, mul_assoc, ← mul_assoc _ x y, ihx, one_mul, ihy]
[GOAL]
case h_mul
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
G : ι → Type u_4
inst✝ : (i : ι) → Group (G i)
src✝¹ : Inv (CoprodI G) := inferInstanceAs (Inv (CoprodI G))
src✝ : Monoid (CoprodI G) := inferInstanceAs (Monoid (CoprodI G))
x y : CoprodI G
ihx :
MulOpposite.unop
(↑(↑lift fun i => MonoidHom.comp (↑MonoidHom.op of) (MulEquiv.toMonoidHom (MulEquiv.inv' (G i)))) x) *
x =
1
ihy :
MulOpposite.unop
(↑(↑lift fun i => MonoidHom.comp (↑MonoidHom.op of) (MulEquiv.toMonoidHom (MulEquiv.inv' (G i)))) y) *
y =
1
⊢ MulOpposite.unop
(↑(↑lift fun i => MonoidHom.comp (↑MonoidHom.op of) (MulEquiv.toMonoidHom (MulEquiv.inv' (G i)))) (x * y)) *
(x * y) =
1
[PROOFSTEP]
rw [MonoidHom.map_mul, MulOpposite.unop_mul, mul_assoc, ← mul_assoc _ x y, ihx, one_mul, ihy]
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N✝ : Type u_3
inst✝² : Monoid N✝
G : ι → Type u_4
inst✝¹ : (i : ι) → Group (G i)
N : Type u_5
inst✝ : Group N
f : (i : ι) → G i →* N
s : Subgroup N
h : ∀ (i : ι), MonoidHom.range (f i) ≤ s
⊢ MonoidHom.range (↑lift f) ≤ s
[PROOFSTEP]
rintro _ ⟨x, rfl⟩
[GOAL]
case intro
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N✝ : Type u_3
inst✝² : Monoid N✝
G : ι → Type u_4
inst✝¹ : (i : ι) → Group (G i)
N : Type u_5
inst✝ : Group N
f : (i : ι) → G i →* N
s : Subgroup N
h : ∀ (i : ι), MonoidHom.range (f i) ≤ s
x : CoprodI fun i => G i
⊢ ↑(↑lift f) x ∈ s
[PROOFSTEP]
induction' x using CoprodI.induction_on with i x x y hx hy
[GOAL]
case intro.h_one
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N✝ : Type u_3
inst✝² : Monoid N✝
G : ι → Type u_4
inst✝¹ : (i : ι) → Group (G i)
N : Type u_5
inst✝ : Group N
f : (i : ι) → G i →* N
s : Subgroup N
h : ∀ (i : ι), MonoidHom.range (f i) ≤ s
⊢ ↑(↑lift f) 1 ∈ s
[PROOFSTEP]
exact s.one_mem
[GOAL]
case intro.h_of
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N✝ : Type u_3
inst✝² : Monoid N✝
G : ι → Type u_4
inst✝¹ : (i : ι) → Group (G i)
N : Type u_5
inst✝ : Group N
f : (i : ι) → G i →* N
s : Subgroup N
h : ∀ (i : ι), MonoidHom.range (f i) ≤ s
i : ι
x : G i
⊢ ↑(↑lift f) (↑of x) ∈ s
[PROOFSTEP]
simp only [lift_of, SetLike.mem_coe]
[GOAL]
case intro.h_of
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N✝ : Type u_3
inst✝² : Monoid N✝
G : ι → Type u_4
inst✝¹ : (i : ι) → Group (G i)
N : Type u_5
inst✝ : Group N
f : (i : ι) → G i →* N
s : Subgroup N
h : ∀ (i : ι), MonoidHom.range (f i) ≤ s
i : ι
x : G i
⊢ ↑(f i) x ∈ s
[PROOFSTEP]
exact h i (Set.mem_range_self x)
[GOAL]
case intro.h_mul
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N✝ : Type u_3
inst✝² : Monoid N✝
G : ι → Type u_4
inst✝¹ : (i : ι) → Group (G i)
N : Type u_5
inst✝ : Group N
f : (i : ι) → G i →* N
s : Subgroup N
h : ∀ (i : ι), MonoidHom.range (f i) ≤ s
x y : CoprodI fun i => G i
hx : ↑(↑lift f) x ∈ s
hy : ↑(↑lift f) y ∈ s
⊢ ↑(↑lift f) (x * y) ∈ s
[PROOFSTEP]
simp only [map_mul, SetLike.mem_coe]
[GOAL]
case intro.h_mul
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N✝ : Type u_3
inst✝² : Monoid N✝
G : ι → Type u_4
inst✝¹ : (i : ι) → Group (G i)
N : Type u_5
inst✝ : Group N
f : (i : ι) → G i →* N
s : Subgroup N
h : ∀ (i : ι), MonoidHom.range (f i) ≤ s
x y : CoprodI fun i => G i
hx : ↑(↑lift f) x ∈ s
hy : ↑(↑lift f) y ∈ s
⊢ ↑(↑lift f) x * ↑(↑lift f) y ∈ s
[PROOFSTEP]
exact s.mul_mem hx hy
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N✝ : Type u_3
inst✝² : Monoid N✝
G : ι → Type u_4
inst✝¹ : (i : ι) → Group (G i)
N : Type u_5
inst✝ : Group N
f : (i : ι) → G i →* N
⊢ MonoidHom.range (↑lift f) = ⨆ (i : ι), MonoidHom.range (f i)
[PROOFSTEP]
apply le_antisymm (lift_range_le _ f fun i => le_iSup (fun i => MonoidHom.range (f i)) i)
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N✝ : Type u_3
inst✝² : Monoid N✝
G : ι → Type u_4
inst✝¹ : (i : ι) → Group (G i)
N : Type u_5
inst✝ : Group N
f : (i : ι) → G i →* N
⊢ ⨆ (i : ι), MonoidHom.range (f i) ≤ MonoidHom.range (↑lift f)
[PROOFSTEP]
apply iSup_le _
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N✝ : Type u_3
inst✝² : Monoid N✝
G : ι → Type u_4
inst✝¹ : (i : ι) → Group (G i)
N : Type u_5
inst✝ : Group N
f : (i : ι) → G i →* N
⊢ ∀ (i : ι), MonoidHom.range (f i) ≤ MonoidHom.range (↑lift f)
[PROOFSTEP]
rintro i _ ⟨x, rfl⟩
[GOAL]
case intro
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N✝ : Type u_3
inst✝² : Monoid N✝
G : ι → Type u_4
inst✝¹ : (i : ι) → Group (G i)
N : Type u_5
inst✝ : Group N
f : (i : ι) → G i →* N
i : ι
x : G i
⊢ ↑(f i) x ∈ MonoidHom.range (↑lift f)
[PROOFSTEP]
exact ⟨of x, by simp only [lift_of]⟩
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N✝ : Type u_3
inst✝² : Monoid N✝
G : ι → Type u_4
inst✝¹ : (i : ι) → Group (G i)
N : Type u_5
inst✝ : Group N
f : (i : ι) → G i →* N
i : ι
x : G i
⊢ ↑(↑lift f) (↑of x) = ↑(f i) x
[PROOFSTEP]
simp only [lift_of]
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
⊢ ∀ (l : (i : ι) × M i), l ∈ [] → l.snd ≠ 1
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
w : Word M
i : ι
⊢ ¬fstIdx w ≠ some i ↔ ¬∀ (l : (i : ι) × M i), l ∈ List.head? w.toList → i ≠ l.fst
[PROOFSTEP]
simp [fstIdx]
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i : ι
⊢ fstIdx empty ≠ some i
[PROOFSTEP]
tauto
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
inst✝ : (i : ι) → DecidableEq (M i)
i : ι
p : Pair M i
h : ¬p.head = 1
⊢ ∀ (l : (i : ι) × M i), l ∈ { fst := i, snd := p.head } :: p.tail.toList → l.snd ≠ 1
[PROOFSTEP]
simp only [List.mem_cons]
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
inst✝ : (i : ι) → DecidableEq (M i)
i : ι
p : Pair M i
h : ¬p.head = 1
⊢ ∀ (l : (i : ι) × M i), l = { fst := i, snd := p.head } ∨ l ∈ p.tail.toList → l.snd ≠ 1
[PROOFSTEP]
rintro l (rfl | hl)
[GOAL]
case inl
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
inst✝ : (i : ι) → DecidableEq (M i)
i : ι
p : Pair M i
h : ¬p.head = 1
⊢ { fst := i, snd := p.head }.snd ≠ 1
case inr
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
inst✝ : (i : ι) → DecidableEq (M i)
i : ι
p : Pair M i
h : ¬p.head = 1
l : (i : ι) × M i
hl : l ∈ p.tail.toList
⊢ l.snd ≠ 1
[PROOFSTEP]
exact h
[GOAL]
case inr
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
inst✝ : (i : ι) → DecidableEq (M i)
i : ι
p : Pair M i
h : ¬p.head = 1
l : (i : ι) × M i
hl : l ∈ p.tail.toList
⊢ l.snd ≠ 1
[PROOFSTEP]
exact p.tail.ne_one l hl
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
inst✝ : (i : ι) → DecidableEq (M i)
i : ι
m : M i
ls : List ((i : ι) × M i)
h1 : ∀ (l : (i : ι) × M i), l ∈ { fst := i, snd := m } :: ls → l.snd ≠ 1
h2 : List.Chain' (fun l l' => l.fst ≠ l'.fst) ({ fst := i, snd := m } :: ls)
⊢ { toList := { fst := i, snd := m } :: ls, ne_one := h1, chain_ne := h2 } =
rcons
{ head := m, tail := Monoid.CoprodI.Word.mkAux ls h1 h2,
fstIdx_ne := (_ : fstIdx (Monoid.CoprodI.Word.mkAux ls h1 h2) ≠ some i) }
[PROOFSTEP]
rw [rcons, dif_neg]
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
inst✝ : (i : ι) → DecidableEq (M i)
i : ι
m : M i
ls : List ((i : ι) × M i)
h1 : ∀ (l : (i : ι) × M i), l ∈ { fst := i, snd := m } :: ls → l.snd ≠ 1
h2 : List.Chain' (fun l l' => l.fst ≠ l'.fst) ({ fst := i, snd := m } :: ls)
⊢ { toList := { fst := i, snd := m } :: ls, ne_one := h1, chain_ne := h2 } =
{
toList :=
{ fst := i,
snd :=
{ head := m, tail := Monoid.CoprodI.Word.mkAux ls h1 h2,
fstIdx_ne := (_ : fstIdx (Monoid.CoprodI.Word.mkAux ls h1 h2) ≠ some i) }.head } ::
{ head := m, tail := Monoid.CoprodI.Word.mkAux ls h1 h2,
fstIdx_ne := (_ : fstIdx (Monoid.CoprodI.Word.mkAux ls h1 h2) ≠ some i) }.tail.toList,
ne_one :=
(_ :
∀ (l : (i : ι) × M i),
l ∈
{ fst := i,
snd :=
{ head := m, tail := Monoid.CoprodI.Word.mkAux ls h1 h2,
fstIdx_ne := (_ : fstIdx (Monoid.CoprodI.Word.mkAux ls h1 h2) ≠ some i) }.head } ::
{ head := m, tail := Monoid.CoprodI.Word.mkAux ls h1 h2,
fstIdx_ne := (_ : fstIdx (Monoid.CoprodI.Word.mkAux ls h1 h2) ≠ some i) }.tail.toList →
l.snd ≠ 1),
chain_ne :=
(_ :
List.Chain' (fun l l' => l.fst ≠ l'.fst)
({ fst := i,
snd :=
{ head := m, tail := Monoid.CoprodI.Word.mkAux ls h1 h2,
fstIdx_ne := (_ : fstIdx (Monoid.CoprodI.Word.mkAux ls h1 h2) ≠ some i) }.head } ::
{ head := m, tail := Monoid.CoprodI.Word.mkAux ls h1 h2,
fstIdx_ne := (_ : fstIdx (Monoid.CoprodI.Word.mkAux ls h1 h2) ≠ some i) }.tail.toList)) }
case hnc
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
inst✝ : (i : ι) → DecidableEq (M i)
i : ι
m : M i
ls : List ((i : ι) × M i)
h1 : ∀ (l : (i : ι) × M i), l ∈ { fst := i, snd := m } :: ls → l.snd ≠ 1
h2 : List.Chain' (fun l l' => l.fst ≠ l'.fst) ({ fst := i, snd := m } :: ls)
⊢ ¬{ head := m, tail := Monoid.CoprodI.Word.mkAux ls h1 h2,
fstIdx_ne := (_ : fstIdx (Monoid.CoprodI.Word.mkAux ls h1 h2) ≠ some i) }.head =
1
[PROOFSTEP]
rfl
[GOAL]
case hnc
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
inst✝ : (i : ι) → DecidableEq (M i)
i : ι
m : M i
ls : List ((i : ι) × M i)
h1 : ∀ (l : (i : ι) × M i), l ∈ { fst := i, snd := m } :: ls → l.snd ≠ 1
h2 : List.Chain' (fun l l' => l.fst ≠ l'.fst) ({ fst := i, snd := m } :: ls)
⊢ ¬{ head := m, tail := Monoid.CoprodI.Word.mkAux ls h1 h2,
fstIdx_ne := (_ : fstIdx (Monoid.CoprodI.Word.mkAux ls h1 h2) ≠ some i) }.head =
1
[PROOFSTEP]
exact h1 ⟨i, m⟩ (ls.mem_cons_self _)
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
inst✝ : (i : ι) → DecidableEq (M i)
i : ι
p : Pair M i
hm : p.head = 1
⊢ prod (rcons p) = ↑of p.head * prod p.tail
[PROOFSTEP]
rw [rcons, dif_pos hm, hm, MonoidHom.map_one, one_mul]
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
inst✝ : (i : ι) → DecidableEq (M i)
i : ι
p : Pair M i
hm : ¬p.head = 1
⊢ prod (rcons p) = ↑of p.head * prod p.tail
[PROOFSTEP]
rw [rcons, dif_neg hm, prod, List.map_cons, List.prod_cons, prod]
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
inst✝ : (i : ι) → DecidableEq (M i)
i : ι
⊢ Function.Injective rcons
[PROOFSTEP]
rintro ⟨m, w, h⟩ ⟨m', w', h'⟩ he
[GOAL]
case mk.mk
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
inst✝ : (i : ι) → DecidableEq (M i)
i : ι
m : M i
w : Word M
h : fstIdx w ≠ some i
m' : M i
w' : Word M
h' : fstIdx w' ≠ some i
he : rcons { head := m, tail := w, fstIdx_ne := h } = rcons { head := m', tail := w', fstIdx_ne := h' }
⊢ { head := m, tail := w, fstIdx_ne := h } = { head := m', tail := w', fstIdx_ne := h' }
[PROOFSTEP]
by_cases hm : m = 1
[GOAL]
case pos
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
inst✝ : (i : ι) → DecidableEq (M i)
i : ι
m : M i
w : Word M
h : fstIdx w ≠ some i
m' : M i
w' : Word M
h' : fstIdx w' ≠ some i
he : rcons { head := m, tail := w, fstIdx_ne := h } = rcons { head := m', tail := w', fstIdx_ne := h' }
hm : m = 1
⊢ { head := m, tail := w, fstIdx_ne := h } = { head := m', tail := w', fstIdx_ne := h' }
[PROOFSTEP]
by_cases hm' : m' = 1
[GOAL]
case neg
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
inst✝ : (i : ι) → DecidableEq (M i)
i : ι
m : M i
w : Word M
h : fstIdx w ≠ some i
m' : M i
w' : Word M
h' : fstIdx w' ≠ some i
he : rcons { head := m, tail := w, fstIdx_ne := h } = rcons { head := m', tail := w', fstIdx_ne := h' }
hm : ¬m = 1
⊢ { head := m, tail := w, fstIdx_ne := h } = { head := m', tail := w', fstIdx_ne := h' }
[PROOFSTEP]
by_cases hm' : m' = 1
[GOAL]
case pos
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
inst✝ : (i : ι) → DecidableEq (M i)
i : ι
m : M i
w : Word M
h : fstIdx w ≠ some i
m' : M i
w' : Word M
h' : fstIdx w' ≠ some i
he : rcons { head := m, tail := w, fstIdx_ne := h } = rcons { head := m', tail := w', fstIdx_ne := h' }
hm : m = 1
hm' : m' = 1
⊢ { head := m, tail := w, fstIdx_ne := h } = { head := m', tail := w', fstIdx_ne := h' }
[PROOFSTEP]
simp only [rcons, dif_pos hm, dif_pos hm'] at he
[GOAL]
case pos
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
inst✝ : (i : ι) → DecidableEq (M i)
i : ι
m : M i
w : Word M
h : fstIdx w ≠ some i
m' : M i
w' : Word M
h' : fstIdx w' ≠ some i
hm : m = 1
hm' : m' = 1
he : w = w'
⊢ { head := m, tail := w, fstIdx_ne := h } = { head := m', tail := w', fstIdx_ne := h' }
[PROOFSTEP]
aesop
[GOAL]
case neg
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
inst✝ : (i : ι) → DecidableEq (M i)
i : ι
m : M i
w : Word M
h : fstIdx w ≠ some i
m' : M i
w' : Word M
h' : fstIdx w' ≠ some i
he : rcons { head := m, tail := w, fstIdx_ne := h } = rcons { head := m', tail := w', fstIdx_ne := h' }
hm : m = 1
hm' : ¬m' = 1
⊢ { head := m, tail := w, fstIdx_ne := h } = { head := m', tail := w', fstIdx_ne := h' }
[PROOFSTEP]
exfalso
[GOAL]
case neg.h
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
inst✝ : (i : ι) → DecidableEq (M i)
i : ι
m : M i
w : Word M
h : fstIdx w ≠ some i
m' : M i
w' : Word M
h' : fstIdx w' ≠ some i
he : rcons { head := m, tail := w, fstIdx_ne := h } = rcons { head := m', tail := w', fstIdx_ne := h' }
hm : m = 1
hm' : ¬m' = 1
⊢ False
[PROOFSTEP]
simp only [rcons, dif_pos hm, dif_neg hm'] at he
[GOAL]
case neg.h
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
inst✝ : (i : ι) → DecidableEq (M i)
i : ι
m : M i
w : Word M
h : fstIdx w ≠ some i
m' : M i
w' : Word M
h' : fstIdx w' ≠ some i
hm : m = 1
hm' : ¬m' = 1
he :
w =
{ toList := { fst := i, snd := m' } :: w'.toList,
ne_one :=
(_ :
∀ (l : (i : ι) × M i),
l ∈
{ fst := i, snd := { head := m', tail := w', fstIdx_ne := h' }.head } ::
{ head := m', tail := w', fstIdx_ne := h' }.tail.toList →
l.snd ≠ 1),
chain_ne :=
(_ :
List.Chain' (fun l l' => l.fst ≠ l'.fst)
({ fst := i, snd := { head := m', tail := w', fstIdx_ne := h' }.head } ::
{ head := m', tail := w', fstIdx_ne := h' }.tail.toList)) }
⊢ False
[PROOFSTEP]
rw [he] at h
[GOAL]
case neg.h
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
inst✝ : (i : ι) → DecidableEq (M i)
i : ι
m : M i
w : Word M
m' : M i
w' : Word M
h' : fstIdx w' ≠ some i
hm : m = 1
hm' : ¬m' = 1
h :
fstIdx
{ toList := { fst := i, snd := m' } :: w'.toList,
ne_one :=
(_ :
∀ (l : (i : ι) × M i),
l ∈
{ fst := i, snd := { head := m', tail := w', fstIdx_ne := h' }.head } ::
{ head := m', tail := w', fstIdx_ne := h' }.tail.toList →
l.snd ≠ 1),
chain_ne :=
(_ :
List.Chain' (fun l l' => l.fst ≠ l'.fst)
({ fst := i, snd := { head := m', tail := w', fstIdx_ne := h' }.head } ::
{ head := m', tail := w', fstIdx_ne := h' }.tail.toList)) } ≠
some i
he :
w =
{ toList := { fst := i, snd := m' } :: w'.toList,
ne_one :=
(_ :
∀ (l : (i : ι) × M i),
l ∈
{ fst := i, snd := { head := m', tail := w', fstIdx_ne := h' }.head } ::
{ head := m', tail := w', fstIdx_ne := h' }.tail.toList →
l.snd ≠ 1),
chain_ne :=
(_ :
List.Chain' (fun l l' => l.fst ≠ l'.fst)
({ fst := i, snd := { head := m', tail := w', fstIdx_ne := h' }.head } ::
{ head := m', tail := w', fstIdx_ne := h' }.tail.toList)) }
⊢ False
[PROOFSTEP]
exact h rfl
[GOAL]
case pos
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
inst✝ : (i : ι) → DecidableEq (M i)
i : ι
m : M i
w : Word M
h : fstIdx w ≠ some i
m' : M i
w' : Word M
h' : fstIdx w' ≠ some i
he : rcons { head := m, tail := w, fstIdx_ne := h } = rcons { head := m', tail := w', fstIdx_ne := h' }
hm : ¬m = 1
hm' : m' = 1
⊢ { head := m, tail := w, fstIdx_ne := h } = { head := m', tail := w', fstIdx_ne := h' }
[PROOFSTEP]
exfalso
[GOAL]
case pos.h
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
inst✝ : (i : ι) → DecidableEq (M i)
i : ι
m : M i
w : Word M
h : fstIdx w ≠ some i
m' : M i
w' : Word M
h' : fstIdx w' ≠ some i
he : rcons { head := m, tail := w, fstIdx_ne := h } = rcons { head := m', tail := w', fstIdx_ne := h' }
hm : ¬m = 1
hm' : m' = 1
⊢ False
[PROOFSTEP]
simp only [rcons, dif_pos hm', dif_neg hm] at he
[GOAL]
case pos.h
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
inst✝ : (i : ι) → DecidableEq (M i)
i : ι
m : M i
w : Word M
h : fstIdx w ≠ some i
m' : M i
w' : Word M
h' : fstIdx w' ≠ some i
hm : ¬m = 1
hm' : m' = 1
he :
{ toList := { fst := i, snd := m } :: w.toList,
ne_one :=
(_ :
∀ (l : (i : ι) × M i),
l ∈
{ fst := i, snd := { head := m, tail := w, fstIdx_ne := h }.head } ::
{ head := m, tail := w, fstIdx_ne := h }.tail.toList →
l.snd ≠ 1),
chain_ne :=
(_ :
List.Chain' (fun l l' => l.fst ≠ l'.fst)
({ fst := i, snd := { head := m, tail := w, fstIdx_ne := h }.head } ::
{ head := m, tail := w, fstIdx_ne := h }.tail.toList)) } =
w'
⊢ False
[PROOFSTEP]
rw [← he] at h'
[GOAL]
case pos.h
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
inst✝ : (i : ι) → DecidableEq (M i)
i : ι
m : M i
w : Word M
h : fstIdx w ≠ some i
m' : M i
w' : Word M
hm : ¬m = 1
h' :
fstIdx
{ toList := { fst := i, snd := m } :: w.toList,
ne_one :=
(_ :
∀ (l : (i : ι) × M i),
l ∈
{ fst := i, snd := { head := m, tail := w, fstIdx_ne := h }.head } ::
{ head := m, tail := w, fstIdx_ne := h }.tail.toList →
l.snd ≠ 1),
chain_ne :=
(_ :
List.Chain' (fun l l' => l.fst ≠ l'.fst)
({ fst := i, snd := { head := m, tail := w, fstIdx_ne := h }.head } ::
{ head := m, tail := w, fstIdx_ne := h }.tail.toList)) } ≠
some i
hm' : m' = 1
he :
{ toList := { fst := i, snd := m } :: w.toList,
ne_one :=
(_ :
∀ (l : (i : ι) × M i),
l ∈
{ fst := i, snd := { head := m, tail := w, fstIdx_ne := h }.head } ::
{ head := m, tail := w, fstIdx_ne := h }.tail.toList →
l.snd ≠ 1),
chain_ne :=
(_ :
List.Chain' (fun l l' => l.fst ≠ l'.fst)
({ fst := i, snd := { head := m, tail := w, fstIdx_ne := h }.head } ::
{ head := m, tail := w, fstIdx_ne := h }.tail.toList)) } =
w'
⊢ False
[PROOFSTEP]
exact h' rfl
[GOAL]
case neg
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
inst✝ : (i : ι) → DecidableEq (M i)
i : ι
m : M i
w : Word M
h : fstIdx w ≠ some i
m' : M i
w' : Word M
h' : fstIdx w' ≠ some i
he : rcons { head := m, tail := w, fstIdx_ne := h } = rcons { head := m', tail := w', fstIdx_ne := h' }
hm : ¬m = 1
hm' : ¬m' = 1
⊢ { head := m, tail := w, fstIdx_ne := h } = { head := m', tail := w', fstIdx_ne := h' }
[PROOFSTEP]
have : m = m' ∧ w.toList = w'.toList := by
simpa [rcons, dif_neg hm, dif_neg hm', true_and_iff, eq_self_iff_true, Subtype.mk_eq_mk, heq_iff_eq, ←
Subtype.ext_iff_val] using he
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
inst✝ : (i : ι) → DecidableEq (M i)
i : ι
m : M i
w : Word M
h : fstIdx w ≠ some i
m' : M i
w' : Word M
h' : fstIdx w' ≠ some i
he : rcons { head := m, tail := w, fstIdx_ne := h } = rcons { head := m', tail := w', fstIdx_ne := h' }
hm : ¬m = 1
hm' : ¬m' = 1
⊢ m = m' ∧ w.toList = w'.toList
[PROOFSTEP]
simpa [rcons, dif_neg hm, dif_neg hm', true_and_iff, eq_self_iff_true, Subtype.mk_eq_mk, heq_iff_eq, ←
Subtype.ext_iff_val] using he
[GOAL]
case neg
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
inst✝ : (i : ι) → DecidableEq (M i)
i : ι
m : M i
w : Word M
h : fstIdx w ≠ some i
m' : M i
w' : Word M
h' : fstIdx w' ≠ some i
he : rcons { head := m, tail := w, fstIdx_ne := h } = rcons { head := m', tail := w', fstIdx_ne := h' }
hm : ¬m = 1
hm' : ¬m' = 1
this : m = m' ∧ w.toList = w'.toList
⊢ { head := m, tail := w, fstIdx_ne := h } = { head := m', tail := w', fstIdx_ne := h' }
[PROOFSTEP]
rcases this with ⟨rfl, h⟩
[GOAL]
case neg.intro
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
inst✝ : (i : ι) → DecidableEq (M i)
i : ι
m : M i
w : Word M
h✝ : fstIdx w ≠ some i
w' : Word M
h' : fstIdx w' ≠ some i
hm : ¬m = 1
h : w.toList = w'.toList
he : rcons { head := m, tail := w, fstIdx_ne := h✝ } = rcons { head := m, tail := w', fstIdx_ne := h' }
hm' : ¬m = 1
⊢ { head := m, tail := w, fstIdx_ne := h✝ } = { head := m, tail := w', fstIdx_ne := h' }
[PROOFSTEP]
congr
[GOAL]
case neg.intro.e_tail
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
inst✝ : (i : ι) → DecidableEq (M i)
i : ι
m : M i
w : Word M
h✝ : fstIdx w ≠ some i
w' : Word M
h' : fstIdx w' ≠ some i
hm : ¬m = 1
h : w.toList = w'.toList
he : rcons { head := m, tail := w, fstIdx_ne := h✝ } = rcons { head := m, tail := w', fstIdx_ne := h' }
hm' : ¬m = 1
⊢ w = w'
[PROOFSTEP]
exact Word.ext _ _ h
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝² : Monoid N
inst✝¹ : (i : ι) → DecidableEq (M i)
inst✝ : DecidableEq ι
i : ι
w : Word M
ne_one✝ : ∀ (l : (i : ι) × M i), l ∈ [] → l.snd ≠ 1
chain_ne✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) []
h✝ : w = { toList := [], ne_one := ne_one✝, chain_ne := chain_ne✝ }
⊢ fstIdx w ≠ some i
[PROOFSTEP]
subst w
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝² : Monoid N
inst✝¹ : (i : ι) → DecidableEq (M i)
inst✝ : DecidableEq ι
i : ι
ne_one✝ : ∀ (l : (i : ι) × M i), l ∈ [] → l.snd ≠ 1
chain_ne✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) []
⊢ fstIdx { toList := [], ne_one := ne_one✝, chain_ne := chain_ne✝ } ≠ some i
[PROOFSTEP]
simp [fstIdx]
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝² : Monoid N
inst✝¹ : (i : ι) → DecidableEq (M i)
inst✝ : DecidableEq ι
i : ι
w : Word M
ne_one✝ : ∀ (l : (i : ι) × M i), l ∈ [] → l.snd ≠ 1
chain_ne✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) []
h✝ : w = { toList := [], ne_one := ne_one✝, chain_ne := chain_ne✝ }
⊢ rcons { head := 1, tail := w, fstIdx_ne := (_ : fstIdx w ≠ some i) } =
namedPattern w { toList := [], ne_one := ne_one✝, chain_ne := chain_ne✝ } h✝
[PROOFSTEP]
subst w
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝² : Monoid N
inst✝¹ : (i : ι) → DecidableEq (M i)
inst✝ : DecidableEq ι
i : ι
ne_one✝ : ∀ (l : (i : ι) × M i), l ∈ [] → l.snd ≠ 1
chain_ne✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) []
⊢ rcons
{ head := 1, tail := { toList := [], ne_one := ne_one✝, chain_ne := chain_ne✝ },
fstIdx_ne := (_ : fstIdx { toList := [], ne_one := ne_one✝, chain_ne := chain_ne✝ } ≠ some i) } =
namedPattern { toList := [], ne_one := ne_one✝, chain_ne := chain_ne✝ }
{ toList := [], ne_one := ne_one✝, chain_ne := chain_ne✝ }
(_ :
{ toList := [], ne_one := ne_one✝, chain_ne := chain_ne✝ } =
{ toList := [], ne_one := ne_one✝, chain_ne := chain_ne✝ })
[PROOFSTEP]
simp [rcons]
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝² : Monoid N
inst✝¹ : (i : ι) → DecidableEq (M i)
inst✝ : DecidableEq ι
i : ι
w : Word M
j : ι
m : M j
ls : List ((i : ι) × M i)
h1 : ∀ (l : (i : ι) × M i), l ∈ { fst := j, snd := m } :: ls → l.snd ≠ 1
h2 : List.Chain' (fun l l' => l.fst ≠ l'.fst) ({ fst := j, snd := m } :: ls)
h✝ : w = { toList := { fst := j, snd := m } :: ls, ne_one := h1, chain_ne := h2 }
ij : i = j
⊢ fstIdx (Monoid.CoprodI.Word.mkAux ls h1 h2) ≠ some i
[PROOFSTEP]
cases ij
[GOAL]
case refl
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝² : Monoid N
inst✝¹ : (i : ι) → DecidableEq (M i)
inst✝ : DecidableEq ι
i : ι
w : Word M
ls : List ((i : ι) × M i)
m : M i
h1 : ∀ (l : (i : ι) × M i), l ∈ { fst := i, snd := m } :: ls → l.snd ≠ 1
h2 : List.Chain' (fun l l' => l.fst ≠ l'.fst) ({ fst := i, snd := m } :: ls)
h✝ : w = { toList := { fst := i, snd := m } :: ls, ne_one := h1, chain_ne := h2 }
⊢ fstIdx (Monoid.CoprodI.Word.mkAux ls h1 h2) ≠ some i
[PROOFSTEP]
exact fstIdx_ne_iff.mpr h2.rel_head?
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝² : Monoid N
inst✝¹ : (i : ι) → DecidableEq (M i)
inst✝ : DecidableEq ι
i : ι
w : Word M
j : ι
m : M j
ls : List ((i : ι) × M i)
h1 : ∀ (l : (i : ι) × M i), l ∈ { fst := j, snd := m } :: ls → l.snd ≠ 1
h2 : List.Chain' (fun l l' => l.fst ≠ l'.fst) ({ fst := j, snd := m } :: ls)
h✝ : w = { toList := { fst := j, snd := m } :: ls, ne_one := h1, chain_ne := h2 }
ij : i = j
⊢ rcons
{ head := (_ : j = i) ▸ m, tail := Monoid.CoprodI.Word.mkAux ls h1 h2,
fstIdx_ne := (_ : fstIdx (Monoid.CoprodI.Word.mkAux ls h1 h2) ≠ some i) } =
namedPattern w { toList := { fst := j, snd := m } :: ls, ne_one := h1, chain_ne := h2 } h✝
[PROOFSTEP]
cases ij
[GOAL]
case refl
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝² : Monoid N
inst✝¹ : (i : ι) → DecidableEq (M i)
inst✝ : DecidableEq ι
i : ι
w : Word M
ls : List ((i : ι) × M i)
m : M i
h1 : ∀ (l : (i : ι) × M i), l ∈ { fst := i, snd := m } :: ls → l.snd ≠ 1
h2 : List.Chain' (fun l l' => l.fst ≠ l'.fst) ({ fst := i, snd := m } :: ls)
h✝ : w = { toList := { fst := i, snd := m } :: ls, ne_one := h1, chain_ne := h2 }
⊢ rcons
{ head := (_ : i = i) ▸ m, tail := Monoid.CoprodI.Word.mkAux ls h1 h2,
fstIdx_ne := (_ : fstIdx (Monoid.CoprodI.Word.mkAux ls h1 h2) ≠ some i) } =
namedPattern w { toList := { fst := i, snd := m } :: ls, ne_one := h1, chain_ne := h2 } h✝
[PROOFSTEP]
exact cons_eq_rcons.symm
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝² : Monoid N
inst✝¹ : (i : ι) → DecidableEq (M i)
inst✝ : DecidableEq ι
i : ι
w : Word M
j : ι
m : M j
ls : List ((i : ι) × M i)
h1 : ∀ (l : (i : ι) × M i), l ∈ { fst := j, snd := m } :: ls → l.snd ≠ 1
h2 : List.Chain' (fun l l' => l.fst ≠ l'.fst) ({ fst := j, snd := m } :: ls)
h✝ : w = { toList := { fst := j, snd := m } :: ls, ne_one := h1, chain_ne := h2 }
ij : ¬i = j
⊢ fstIdx w ≠ some i
[PROOFSTEP]
subst w
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝² : Monoid N
inst✝¹ : (i : ι) → DecidableEq (M i)
inst✝ : DecidableEq ι
i j : ι
m : M j
ls : List ((i : ι) × M i)
h1 : ∀ (l : (i : ι) × M i), l ∈ { fst := j, snd := m } :: ls → l.snd ≠ 1
h2 : List.Chain' (fun l l' => l.fst ≠ l'.fst) ({ fst := j, snd := m } :: ls)
ij : ¬i = j
⊢ fstIdx { toList := { fst := j, snd := m } :: ls, ne_one := h1, chain_ne := h2 } ≠ some i
[PROOFSTEP]
exact (Option.some_injective _).ne (Ne.symm ij)
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝² : Monoid N
inst✝¹ : (i : ι) → DecidableEq (M i)
inst✝ : DecidableEq ι
i : ι
w : Word M
j : ι
m : M j
ls : List ((i : ι) × M i)
h1 : ∀ (l : (i : ι) × M i), l ∈ { fst := j, snd := m } :: ls → l.snd ≠ 1
h2 : List.Chain' (fun l l' => l.fst ≠ l'.fst) ({ fst := j, snd := m } :: ls)
h✝ : w = { toList := { fst := j, snd := m } :: ls, ne_one := h1, chain_ne := h2 }
ij : ¬i = j
⊢ rcons { head := 1, tail := w, fstIdx_ne := (_ : fstIdx w ≠ some i) } =
namedPattern w { toList := { fst := j, snd := m } :: ls, ne_one := h1, chain_ne := h2 } h✝
[PROOFSTEP]
subst w
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝² : Monoid N
inst✝¹ : (i : ι) → DecidableEq (M i)
inst✝ : DecidableEq ι
i j : ι
m : M j
ls : List ((i : ι) × M i)
h1 : ∀ (l : (i : ι) × M i), l ∈ { fst := j, snd := m } :: ls → l.snd ≠ 1
h2 : List.Chain' (fun l l' => l.fst ≠ l'.fst) ({ fst := j, snd := m } :: ls)
ij : ¬i = j
⊢ rcons
{ head := 1, tail := { toList := { fst := j, snd := m } :: ls, ne_one := h1, chain_ne := h2 },
fstIdx_ne := (_ : fstIdx { toList := { fst := j, snd := m } :: ls, ne_one := h1, chain_ne := h2 } ≠ some i) } =
namedPattern { toList := { fst := j, snd := m } :: ls, ne_one := h1, chain_ne := h2 }
{ toList := { fst := j, snd := m } :: ls, ne_one := h1, chain_ne := h2 }
(_ :
{ toList := { fst := j, snd := m } :: ls, ne_one := h1, chain_ne := h2 } =
{ toList := { fst := j, snd := m } :: ls, ne_one := h1, chain_ne := h2 })
[PROOFSTEP]
simp [rcons]
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝² : Monoid N
inst✝¹ : (i : ι) → DecidableEq (M i)
inst✝ : DecidableEq ι
i : ι
w : Word M
⊢ 1 • w = w
[PROOFSTEP]
apply (equivPair i).symm_apply_eq.mpr
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝² : Monoid N
inst✝¹ : (i : ι) → DecidableEq (M i)
inst✝ : DecidableEq ι
i : ι
w : Word M
⊢ (let src := ↑(equivPair i) w;
{ head := 1 * (↑(equivPair i) w).head, tail := src.tail, fstIdx_ne := (_ : fstIdx src.tail ≠ some i) }) =
↑(equivPair i) w
[PROOFSTEP]
simp [equivPair]
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝² : Monoid N
inst✝¹ : (i : ι) → DecidableEq (M i)
inst✝ : DecidableEq ι
i : ι
m m' : M i
w : Word M
⊢ (m * m') • w = m • m' • w
[PROOFSTEP]
dsimp [instHSMul]
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝² : Monoid N
inst✝¹ : (i : ι) → DecidableEq (M i)
inst✝ : DecidableEq ι
i : ι
m m' : M i
w : Word M
⊢ rcons
{ head := m * m' * (↑(equivPair i) w).head, tail := (↑(equivPair i) w).tail,
fstIdx_ne := (_ : fstIdx (↑(equivPair i) w).tail ≠ some i) } =
rcons
{
head :=
m *
(↑(equivPair i)
(rcons
{ head := m' * (↑(equivPair i) w).head, tail := (↑(equivPair i) w).tail,
fstIdx_ne := (_ : fstIdx (↑(equivPair i) w).tail ≠ some i) })).head,
tail :=
(↑(equivPair i)
(rcons
{ head := m' * (↑(equivPair i) w).head, tail := (↑(equivPair i) w).tail,
fstIdx_ne := (_ : fstIdx (↑(equivPair i) w).tail ≠ some i) })).tail,
fstIdx_ne :=
(_ :
fstIdx
(↑(equivPair i)
(rcons
{ head := m' * (↑(equivPair i) w).head, tail := (↑(equivPair i) w).tail,
fstIdx_ne := (_ : fstIdx (↑(equivPair i) w).tail ≠ some i) })).tail ≠
some i) }
[PROOFSTEP]
simp [mul_assoc, ← equivPair_symm, Equiv.apply_symm_apply]
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝² : Monoid N
inst✝¹ : (i : ι) → DecidableEq (M i)
inst✝ : DecidableEq ι
i : ι
m : M i
ls : List ((i : ι) × M i)
h1 : ∀ (l : (i : ι) × M i), l ∈ { fst := i, snd := m } :: ls → l.snd ≠ 1
h2 : List.Chain' (fun l l' => l.fst ≠ l'.fst) ({ fst := i, snd := m } :: ls)
⊢ { toList := { fst := i, snd := m } :: ls, ne_one := h1, chain_ne := h2 } = ↑of m • Monoid.CoprodI.Word.mkAux ls h1 h2
[PROOFSTEP]
rw [cons_eq_rcons, of_smul_def, equivPair_eq_of_fstIdx_ne _]
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝² : Monoid N
inst✝¹ : (i : ι) → DecidableEq (M i)
inst✝ : DecidableEq ι
i : ι
m : M i
ls : List ((i : ι) × M i)
h1 : ∀ (l : (i : ι) × M i), l ∈ { fst := i, snd := m } :: ls → l.snd ≠ 1
h2 : List.Chain' (fun l l' => l.fst ≠ l'.fst) ({ fst := i, snd := m } :: ls)
⊢ rcons
{ head := m, tail := Monoid.CoprodI.Word.mkAux ls h1 h2,
fstIdx_ne := (_ : fstIdx (Monoid.CoprodI.Word.mkAux ls h1 h2) ≠ some i) } =
rcons
(let src := { head := 1, tail := Monoid.CoprodI.Word.mkAux ls h1 h2, fstIdx_ne := ?m.459575 };
{ head := m * { head := 1, tail := Monoid.CoprodI.Word.mkAux ls h1 h2, fstIdx_ne := ?m.459575 }.head,
tail := src.tail, fstIdx_ne := (_ : fstIdx src.tail ≠ some i) })
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝² : Monoid N
inst✝¹ : (i : ι) → DecidableEq (M i)
inst✝ : DecidableEq ι
i : ι
m : M i
ls : List ((i : ι) × M i)
h1 : ∀ (l : (i : ι) × M i), l ∈ { fst := i, snd := m } :: ls → l.snd ≠ 1
h2 : List.Chain' (fun l l' => l.fst ≠ l'.fst) ({ fst := i, snd := m } :: ls)
⊢ fstIdx (Monoid.CoprodI.Word.mkAux ls h1 h2) ≠ some i
[PROOFSTEP]
rw [fstIdx_ne_iff]
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝² : Monoid N
inst✝¹ : (i : ι) → DecidableEq (M i)
inst✝ : DecidableEq ι
i : ι
m : M i
ls : List ((i : ι) × M i)
h1 : ∀ (l : (i : ι) × M i), l ∈ { fst := i, snd := m } :: ls → l.snd ≠ 1
h2 : List.Chain' (fun l l' => l.fst ≠ l'.fst) ({ fst := i, snd := m } :: ls)
⊢ ∀ (l : (i : ι) × M i), l ∈ List.head? (Monoid.CoprodI.Word.mkAux ls h1 h2).toList → i ≠ l.fst
[PROOFSTEP]
exact (List.chain'_cons'.1 h2).1
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝² : Monoid N
inst✝¹ : (i : ι) → DecidableEq (M i)
inst✝ : DecidableEq ι
C : Word M → Prop
h_empty : C empty
h_smul : ∀ (i : ι) (m : M i) (w : Word M), C w → C (↑of m • w)
w : Word M
⊢ C w
[PROOFSTEP]
cases' w with ls h1 h2
[GOAL]
case mk
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝² : Monoid N
inst✝¹ : (i : ι) → DecidableEq (M i)
inst✝ : DecidableEq ι
C : Word M → Prop
h_empty : C empty
h_smul : ∀ (i : ι) (m : M i) (w : Word M), C w → C (↑of m • w)
ls : List ((i : ι) × M i)
h1 : ∀ (l : (i : ι) × M i), l ∈ ls → l.snd ≠ 1
h2 : List.Chain' (fun l l' => l.fst ≠ l'.fst) ls
⊢ C { toList := ls, ne_one := h1, chain_ne := h2 }
[PROOFSTEP]
induction' ls with l ls ih
[GOAL]
case mk.nil
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝² : Monoid N
inst✝¹ : (i : ι) → DecidableEq (M i)
inst✝ : DecidableEq ι
C : Word M → Prop
h_empty : C empty
h_smul : ∀ (i : ι) (m : M i) (w : Word M), C w → C (↑of m • w)
ls : List ((i : ι) × M i)
h1✝ : ∀ (l : (i : ι) × M i), l ∈ ls → l.snd ≠ 1
h2✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) ls
h1 : ∀ (l : (i : ι) × M i), l ∈ [] → l.snd ≠ 1
h2 : List.Chain' (fun l l' => l.fst ≠ l'.fst) []
⊢ C { toList := [], ne_one := h1, chain_ne := h2 }
[PROOFSTEP]
exact h_empty
[GOAL]
case mk.cons
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝² : Monoid N
inst✝¹ : (i : ι) → DecidableEq (M i)
inst✝ : DecidableEq ι
C : Word M → Prop
h_empty : C empty
h_smul : ∀ (i : ι) (m : M i) (w : Word M), C w → C (↑of m • w)
ls✝ : List ((i : ι) × M i)
h1✝ : ∀ (l : (i : ι) × M i), l ∈ ls✝ → l.snd ≠ 1
h2✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) ls✝
l : (i : ι) × M i
ls : List ((i : ι) × M i)
ih :
∀ (h1 : ∀ (l : (i : ι) × M i), l ∈ ls → l.snd ≠ 1) (h2 : List.Chain' (fun l l' => l.fst ≠ l'.fst) ls),
C { toList := ls, ne_one := h1, chain_ne := h2 }
h1 : ∀ (l_1 : (i : ι) × M i), l_1 ∈ l :: ls → l_1.snd ≠ 1
h2 : List.Chain' (fun l l' => l.fst ≠ l'.fst) (l :: ls)
⊢ C { toList := l :: ls, ne_one := h1, chain_ne := h2 }
[PROOFSTEP]
cases' l with i m
[GOAL]
case mk.cons.mk
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝² : Monoid N
inst✝¹ : (i : ι) → DecidableEq (M i)
inst✝ : DecidableEq ι
C : Word M → Prop
h_empty : C empty
h_smul : ∀ (i : ι) (m : M i) (w : Word M), C w → C (↑of m • w)
ls✝ : List ((i : ι) × M i)
h1✝ : ∀ (l : (i : ι) × M i), l ∈ ls✝ → l.snd ≠ 1
h2✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) ls✝
ls : List ((i : ι) × M i)
ih :
∀ (h1 : ∀ (l : (i : ι) × M i), l ∈ ls → l.snd ≠ 1) (h2 : List.Chain' (fun l l' => l.fst ≠ l'.fst) ls),
C { toList := ls, ne_one := h1, chain_ne := h2 }
i : ι
m : M i
h1 : ∀ (l : (i : ι) × M i), l ∈ { fst := i, snd := m } :: ls → l.snd ≠ 1
h2 : List.Chain' (fun l l' => l.fst ≠ l'.fst) ({ fst := i, snd := m } :: ls)
⊢ C { toList := { fst := i, snd := m } :: ls, ne_one := h1, chain_ne := h2 }
[PROOFSTEP]
rw [cons_eq_smul]
[GOAL]
case mk.cons.mk
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝² : Monoid N
inst✝¹ : (i : ι) → DecidableEq (M i)
inst✝ : DecidableEq ι
C : Word M → Prop
h_empty : C empty
h_smul : ∀ (i : ι) (m : M i) (w : Word M), C w → C (↑of m • w)
ls✝ : List ((i : ι) × M i)
h1✝ : ∀ (l : (i : ι) × M i), l ∈ ls✝ → l.snd ≠ 1
h2✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) ls✝
ls : List ((i : ι) × M i)
ih :
∀ (h1 : ∀ (l : (i : ι) × M i), l ∈ ls → l.snd ≠ 1) (h2 : List.Chain' (fun l l' => l.fst ≠ l'.fst) ls),
C { toList := ls, ne_one := h1, chain_ne := h2 }
i : ι
m : M i
h1 : ∀ (l : (i : ι) × M i), l ∈ { fst := i, snd := m } :: ls → l.snd ≠ 1
h2 : List.Chain' (fun l l' => l.fst ≠ l'.fst) ({ fst := i, snd := m } :: ls)
⊢ C (↑of m • Monoid.CoprodI.Word.mkAux ls h1 h2)
[PROOFSTEP]
exact h_smul _ _ _ (ih _ _)
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝² : Monoid N
inst✝¹ : (i : ι) → DecidableEq (M i)
inst✝ : DecidableEq ι
m : CoprodI M
⊢ ∀ (w : Word M), prod (m • w) = m * prod w
[PROOFSTEP]
induction m using CoprodI.induction_on with
| h_one =>
intro
rw [one_smul, one_mul]
| h_of _ =>
intros
rw [of_smul_def, prod_rcons, of.map_mul, mul_assoc, ← prod_rcons, ← equivPair_symm, Equiv.symm_apply_apply]
| h_mul x y hx hy =>
intro w
rw [mul_smul, hx, hy, mul_assoc]
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝² : Monoid N
inst✝¹ : (i : ι) → DecidableEq (M i)
inst✝ : DecidableEq ι
m : CoprodI M
⊢ ∀ (w : Word M), prod (m • w) = m * prod w
[PROOFSTEP]
induction m using CoprodI.induction_on with
| h_one =>
intro
rw [one_smul, one_mul]
| h_of _ =>
intros
rw [of_smul_def, prod_rcons, of.map_mul, mul_assoc, ← prod_rcons, ← equivPair_symm, Equiv.symm_apply_apply]
| h_mul x y hx hy =>
intro w
rw [mul_smul, hx, hy, mul_assoc]
[GOAL]
case h_one
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝² : Monoid N
inst✝¹ : (i : ι) → DecidableEq (M i)
inst✝ : DecidableEq ι
⊢ ∀ (w : Word M), prod (1 • w) = 1 * prod w
[PROOFSTEP]
| h_one =>
intro
rw [one_smul, one_mul]
[GOAL]
case h_one
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝² : Monoid N
inst✝¹ : (i : ι) → DecidableEq (M i)
inst✝ : DecidableEq ι
⊢ ∀ (w : Word M), prod (1 • w) = 1 * prod w
[PROOFSTEP]
intro
[GOAL]
case h_one
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝² : Monoid N
inst✝¹ : (i : ι) → DecidableEq (M i)
inst✝ : DecidableEq ι
w✝ : Word M
⊢ prod (1 • w✝) = 1 * prod w✝
[PROOFSTEP]
rw [one_smul, one_mul]
[GOAL]
case h_of
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝² : Monoid N
inst✝¹ : (i : ι) → DecidableEq (M i)
inst✝ : DecidableEq ι
i✝ : ι
m✝ : M i✝
⊢ ∀ (w : Word M), prod (↑of m✝ • w) = ↑of m✝ * prod w
[PROOFSTEP]
| h_of _ =>
intros
rw [of_smul_def, prod_rcons, of.map_mul, mul_assoc, ← prod_rcons, ← equivPair_symm, Equiv.symm_apply_apply]
[GOAL]
case h_of
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝² : Monoid N
inst✝¹ : (i : ι) → DecidableEq (M i)
inst✝ : DecidableEq ι
i✝ : ι
m✝ : M i✝
⊢ ∀ (w : Word M), prod (↑of m✝ • w) = ↑of m✝ * prod w
[PROOFSTEP]
intros
[GOAL]
case h_of
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝² : Monoid N
inst✝¹ : (i : ι) → DecidableEq (M i)
inst✝ : DecidableEq ι
i✝ : ι
m✝ : M i✝
w✝ : Word M
⊢ prod (↑of m✝ • w✝) = ↑of m✝ * prod w✝
[PROOFSTEP]
rw [of_smul_def, prod_rcons, of.map_mul, mul_assoc, ← prod_rcons, ← equivPair_symm, Equiv.symm_apply_apply]
[GOAL]
case h_mul
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝² : Monoid N
inst✝¹ : (i : ι) → DecidableEq (M i)
inst✝ : DecidableEq ι
x y : CoprodI M
hx : ∀ (w : Word M), prod (x • w) = x * prod w
hy : ∀ (w : Word M), prod (y • w) = y * prod w
⊢ ∀ (w : Word M), prod ((x * y) • w) = x * y * prod w
[PROOFSTEP]
| h_mul x y hx hy =>
intro w
rw [mul_smul, hx, hy, mul_assoc]
[GOAL]
case h_mul
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝² : Monoid N
inst✝¹ : (i : ι) → DecidableEq (M i)
inst✝ : DecidableEq ι
x y : CoprodI M
hx : ∀ (w : Word M), prod (x • w) = x * prod w
hy : ∀ (w : Word M), prod (y • w) = y * prod w
⊢ ∀ (w : Word M), prod ((x * y) • w) = x * y * prod w
[PROOFSTEP]
intro w
[GOAL]
case h_mul
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝² : Monoid N
inst✝¹ : (i : ι) → DecidableEq (M i)
inst✝ : DecidableEq ι
x y : CoprodI M
hx : ∀ (w : Word M), prod (x • w) = x * prod w
hy : ∀ (w : Word M), prod (y • w) = y * prod w
w : Word M
⊢ prod ((x * y) • w) = x * y * prod w
[PROOFSTEP]
rw [mul_smul, hx, hy, mul_assoc]
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝² : Monoid N
inst✝¹ : (i : ι) → DecidableEq (M i)
inst✝ : DecidableEq ι
m : CoprodI M
⊢ (fun w => prod w) ((fun m => m • empty) m) = m
[PROOFSTEP]
dsimp only
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝² : Monoid N
inst✝¹ : (i : ι) → DecidableEq (M i)
inst✝ : DecidableEq ι
m : CoprodI M
⊢ prod (m • empty) = m
[PROOFSTEP]
rw [prod_smul, prod_empty, mul_one]
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝² : Monoid N
inst✝¹ : (i : ι) → DecidableEq (M i)
inst✝ : DecidableEq ι
⊢ Function.RightInverse (fun w => prod w) fun m => m • empty
[PROOFSTEP]
apply smul_induction
[GOAL]
case h_empty
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝² : Monoid N
inst✝¹ : (i : ι) → DecidableEq (M i)
inst✝ : DecidableEq ι
⊢ (fun m => m • empty) ((fun w => prod w) empty) = empty
[PROOFSTEP]
dsimp only
[GOAL]
case h_empty
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝² : Monoid N
inst✝¹ : (i : ι) → DecidableEq (M i)
inst✝ : DecidableEq ι
⊢ prod empty • empty = empty
[PROOFSTEP]
rw [prod_empty, one_smul]
[GOAL]
case h_smul
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝² : Monoid N
inst✝¹ : (i : ι) → DecidableEq (M i)
inst✝ : DecidableEq ι
⊢ ∀ (i : ι) (m : M i) (w : Word M),
(fun m => m • empty) ((fun w => prod w) w) = w → (fun m => m • empty) ((fun w => prod w) (↑of m • w)) = ↑of m • w
[PROOFSTEP]
dsimp only
[GOAL]
case h_smul
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝² : Monoid N
inst✝¹ : (i : ι) → DecidableEq (M i)
inst✝ : DecidableEq ι
⊢ ∀ (i : ι) (m : M i) (w : Word M), prod w • empty = w → prod (↑of m • w) • empty = ↑of m • w
[PROOFSTEP]
intro i m w ih
[GOAL]
case h_smul
ι : Type u_1
M : ι → Type u_2
inst✝³ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝² : Monoid N
inst✝¹ : (i : ι) → DecidableEq (M i)
inst✝ : DecidableEq ι
i : ι
m : M i
w : Word M
ih : prod w • empty = w
⊢ prod (↑of m • w) • empty = ↑of m • w
[PROOFSTEP]
rw [prod_smul, mul_smul, ih]
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i j : ι
w : NeWord M i j
⊢ toList w ≠ []
[PROOFSTEP]
induction w
[GOAL]
case singleton
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i j i✝ : ι
x✝ : M i✝
a✝ : x✝ ≠ 1
⊢ toList (singleton x✝ a✝) ≠ []
[PROOFSTEP]
rintro ⟨rfl⟩
[GOAL]
case append
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i j i✝ j✝ k✝ l✝ : ι
_w₁✝ : NeWord M i✝ j✝
_hne✝ : j✝ ≠ k✝
_w₂✝ : NeWord M k✝ l✝
_w₁_ih✝ : toList _w₁✝ ≠ []
_w₂_ih✝ : toList _w₂✝ ≠ []
⊢ toList (append _w₁✝ _hne✝ _w₂✝) ≠ []
[PROOFSTEP]
apply List.append_ne_nil_of_ne_nil_left
[GOAL]
case append.a
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i j i✝ j✝ k✝ l✝ : ι
_w₁✝ : NeWord M i✝ j✝
_hne✝ : j✝ ≠ k✝
_w₂✝ : NeWord M k✝ l✝
_w₁_ih✝ : toList _w₁✝ ≠ []
_w₂_ih✝ : toList _w₂✝ ≠ []
⊢ toList _w₁✝ ≠ []
[PROOFSTEP]
assumption
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i j : ι
w : NeWord M i j
⊢ List.head? (toList w) = some { fst := i, snd := head w }
[PROOFSTEP]
rw [← Option.mem_def]
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i j : ι
w : NeWord M i j
⊢ { fst := i, snd := head w } ∈ List.head? (toList w)
[PROOFSTEP]
induction w
[GOAL]
case singleton
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i j i✝ : ι
x✝ : M i✝
a✝ : x✝ ≠ 1
⊢ { fst := i✝, snd := head (singleton x✝ a✝) } ∈ List.head? (toList (singleton x✝ a✝))
[PROOFSTEP]
rw [Option.mem_def]
[GOAL]
case singleton
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i j i✝ : ι
x✝ : M i✝
a✝ : x✝ ≠ 1
⊢ List.head? (toList (singleton x✝ a✝)) = some { fst := i✝, snd := head (singleton x✝ a✝) }
[PROOFSTEP]
rfl
[GOAL]
case append
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i j i✝ j✝ k✝ l✝ : ι
_w₁✝ : NeWord M i✝ j✝
_hne✝ : j✝ ≠ k✝
_w₂✝ : NeWord M k✝ l✝
_w₁_ih✝ : { fst := i✝, snd := head _w₁✝ } ∈ List.head? (toList _w₁✝)
_w₂_ih✝ : { fst := k✝, snd := head _w₂✝ } ∈ List.head? (toList _w₂✝)
⊢ { fst := i✝, snd := head (append _w₁✝ _hne✝ _w₂✝) } ∈ List.head? (toList (append _w₁✝ _hne✝ _w₂✝))
[PROOFSTEP]
exact List.head?_append (by assumption)
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i j i✝ j✝ k✝ l✝ : ι
_w₁✝ : NeWord M i✝ j✝
_hne✝ : j✝ ≠ k✝
_w₂✝ : NeWord M k✝ l✝
_w₁_ih✝ : { fst := i✝, snd := head _w₁✝ } ∈ List.head? (toList _w₁✝)
_w₂_ih✝ : { fst := k✝, snd := head _w₂✝ } ∈ List.head? (toList _w₂✝)
⊢ { fst := i✝, snd := head (append _w₁✝ _hne✝ _w₂✝) } ∈ List.head? (toList _w₁✝)
[PROOFSTEP]
assumption
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i j : ι
w : NeWord M i j
⊢ List.getLast? (toList w) = some { fst := j, snd := last w }
[PROOFSTEP]
rw [← Option.mem_def]
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i j : ι
w : NeWord M i j
⊢ { fst := j, snd := last w } ∈ List.getLast? (toList w)
[PROOFSTEP]
induction w
[GOAL]
case singleton
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i j i✝ : ι
x✝ : M i✝
a✝ : x✝ ≠ 1
⊢ { fst := i✝, snd := last (singleton x✝ a✝) } ∈ List.getLast? (toList (singleton x✝ a✝))
[PROOFSTEP]
rw [Option.mem_def]
[GOAL]
case singleton
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i j i✝ : ι
x✝ : M i✝
a✝ : x✝ ≠ 1
⊢ List.getLast? (toList (singleton x✝ a✝)) = some { fst := i✝, snd := last (singleton x✝ a✝) }
[PROOFSTEP]
rfl
[GOAL]
case append
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i j i✝ j✝ k✝ l✝ : ι
_w₁✝ : NeWord M i✝ j✝
_hne✝ : j✝ ≠ k✝
_w₂✝ : NeWord M k✝ l✝
_w₁_ih✝ : { fst := j✝, snd := last _w₁✝ } ∈ List.getLast? (toList _w₁✝)
_w₂_ih✝ : { fst := l✝, snd := last _w₂✝ } ∈ List.getLast? (toList _w₂✝)
⊢ { fst := l✝, snd := last (append _w₁✝ _hne✝ _w₂✝) } ∈ List.getLast? (toList (append _w₁✝ _hne✝ _w₂✝))
[PROOFSTEP]
exact List.getLast?_append (by assumption)
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i j i✝ j✝ k✝ l✝ : ι
_w₁✝ : NeWord M i✝ j✝
_hne✝ : j✝ ≠ k✝
_w₂✝ : NeWord M k✝ l✝
_w₁_ih✝ : { fst := j✝, snd := last _w₁✝ } ∈ List.getLast? (toList _w₁✝)
_w₂_ih✝ : { fst := l✝, snd := last _w₂✝ } ∈ List.getLast? (toList _w₂✝)
⊢ { fst := l✝, snd := last (append _w₁✝ _hne✝ _w₂✝) } ∈ List.getLast? (toList _w₂✝)
[PROOFSTEP]
assumption
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i j : ι
w : NeWord M i j
⊢ ∀ (l : (i : ι) × M i), l ∈ toList w → l.snd ≠ 1
[PROOFSTEP]
induction w
[GOAL]
case singleton
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i j i✝ : ι
x✝ : M i✝
a✝ : x✝ ≠ 1
⊢ ∀ (l : (i : ι) × M i), l ∈ toList (singleton x✝ a✝) → l.snd ≠ 1
[PROOFSTEP]
simpa only [toList, List.mem_singleton, ne_eq, forall_eq]
[GOAL]
case append
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i j i✝ j✝ k✝ l✝ : ι
_w₁✝ : NeWord M i✝ j✝
_hne✝ : j✝ ≠ k✝
_w₂✝ : NeWord M k✝ l✝
_w₁_ih✝ : ∀ (l : (i : ι) × M i), l ∈ toList _w₁✝ → l.snd ≠ 1
_w₂_ih✝ : ∀ (l : (i : ι) × M i), l ∈ toList _w₂✝ → l.snd ≠ 1
⊢ ∀ (l : (i : ι) × M i), l ∈ toList (append _w₁✝ _hne✝ _w₂✝) → l.snd ≠ 1
[PROOFSTEP]
intro l h
[GOAL]
case append
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i j i✝ j✝ k✝ l✝ : ι
_w₁✝ : NeWord M i✝ j✝
_hne✝ : j✝ ≠ k✝
_w₂✝ : NeWord M k✝ l✝
_w₁_ih✝ : ∀ (l : (i : ι) × M i), l ∈ toList _w₁✝ → l.snd ≠ 1
_w₂_ih✝ : ∀ (l : (i : ι) × M i), l ∈ toList _w₂✝ → l.snd ≠ 1
l : (i : ι) × M i
h : l ∈ toList (append _w₁✝ _hne✝ _w₂✝)
⊢ l.snd ≠ 1
[PROOFSTEP]
simp only [toList, List.mem_append] at h
[GOAL]
case append
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i j i✝ j✝ k✝ l✝ : ι
_w₁✝ : NeWord M i✝ j✝
_hne✝ : j✝ ≠ k✝
_w₂✝ : NeWord M k✝ l✝
_w₁_ih✝ : ∀ (l : (i : ι) × M i), l ∈ toList _w₁✝ → l.snd ≠ 1
_w₂_ih✝ : ∀ (l : (i : ι) × M i), l ∈ toList _w₂✝ → l.snd ≠ 1
l : (i : ι) × M i
h : l ∈ toList _w₁✝ ∨ l ∈ toList _w₂✝
⊢ l.snd ≠ 1
[PROOFSTEP]
cases h
[GOAL]
case append.inl
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i j i✝ j✝ k✝ l✝ : ι
_w₁✝ : NeWord M i✝ j✝
_hne✝ : j✝ ≠ k✝
_w₂✝ : NeWord M k✝ l✝
_w₁_ih✝ : ∀ (l : (i : ι) × M i), l ∈ toList _w₁✝ → l.snd ≠ 1
_w₂_ih✝ : ∀ (l : (i : ι) × M i), l ∈ toList _w₂✝ → l.snd ≠ 1
l : (i : ι) × M i
h✝ : l ∈ toList _w₁✝
⊢ l.snd ≠ 1
[PROOFSTEP]
aesop
[GOAL]
case append.inr
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i j i✝ j✝ k✝ l✝ : ι
_w₁✝ : NeWord M i✝ j✝
_hne✝ : j✝ ≠ k✝
_w₂✝ : NeWord M k✝ l✝
_w₁_ih✝ : ∀ (l : (i : ι) × M i), l ∈ toList _w₁✝ → l.snd ≠ 1
_w₂_ih✝ : ∀ (l : (i : ι) × M i), l ∈ toList _w₂✝ → l.snd ≠ 1
l : (i : ι) × M i
h✝ : l ∈ toList _w₂✝
⊢ l.snd ≠ 1
[PROOFSTEP]
aesop
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i j : ι
w : NeWord M i j
⊢ List.Chain' (fun l l' => l.fst ≠ l'.fst) (toList w)
[PROOFSTEP]
induction w
[GOAL]
case singleton
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i j i✝ : ι
x✝ : M i✝
a✝ : x✝ ≠ 1
⊢ List.Chain' (fun l l' => l.fst ≠ l'.fst) (toList (singleton x✝ a✝))
[PROOFSTEP]
exact List.chain'_singleton _
[GOAL]
case append
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i j i✝ j✝ k✝ l✝ : ι
_w₁✝ : NeWord M i✝ j✝
_hne✝ : j✝ ≠ k✝
_w₂✝ : NeWord M k✝ l✝
_w₁_ih✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (toList _w₁✝)
_w₂_ih✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (toList _w₂✝)
⊢ List.Chain' (fun l l' => l.fst ≠ l'.fst) (toList (append _w₁✝ _hne✝ _w₂✝))
[PROOFSTEP]
refine List.Chain'.append (by assumption) (by assumption) ?_
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i j i✝ j✝ k✝ l✝ : ι
_w₁✝ : NeWord M i✝ j✝
_hne✝ : j✝ ≠ k✝
_w₂✝ : NeWord M k✝ l✝
_w₁_ih✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (toList _w₁✝)
_w₂_ih✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (toList _w₂✝)
⊢ List.Chain' (fun l l' => l.fst ≠ l'.fst) (toList _w₁✝)
[PROOFSTEP]
assumption
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i j i✝ j✝ k✝ l✝ : ι
_w₁✝ : NeWord M i✝ j✝
_hne✝ : j✝ ≠ k✝
_w₂✝ : NeWord M k✝ l✝
_w₁_ih✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (toList _w₁✝)
_w₂_ih✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (toList _w₂✝)
⊢ List.Chain' (fun l l' => l.fst ≠ l'.fst) (toList _w₂✝)
[PROOFSTEP]
assumption
[GOAL]
case append
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i j i✝ j✝ k✝ l✝ : ι
_w₁✝ : NeWord M i✝ j✝
_hne✝ : j✝ ≠ k✝
_w₂✝ : NeWord M k✝ l✝
_w₁_ih✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (toList _w₁✝)
_w₂_ih✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (toList _w₂✝)
⊢ ∀ (x : (i : ι) × M i),
x ∈ List.getLast? (toList _w₁✝) → ∀ (y : (i : ι) × M i), y ∈ List.head? (toList _w₂✝) → x.fst ≠ y.fst
[PROOFSTEP]
intro x hx y hy
[GOAL]
case append
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i j i✝ j✝ k✝ l✝ : ι
_w₁✝ : NeWord M i✝ j✝
_hne✝ : j✝ ≠ k✝
_w₂✝ : NeWord M k✝ l✝
_w₁_ih✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (toList _w₁✝)
_w₂_ih✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (toList _w₂✝)
x : (i : ι) × M i
hx : x ∈ List.getLast? (toList _w₁✝)
y : (i : ι) × M i
hy : y ∈ List.head? (toList _w₂✝)
⊢ x.fst ≠ y.fst
[PROOFSTEP]
rw [toList_getLast?, Option.mem_some_iff] at hx
[GOAL]
case append
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i j i✝ j✝ k✝ l✝ : ι
_w₁✝ : NeWord M i✝ j✝
_hne✝ : j✝ ≠ k✝
_w₂✝ : NeWord M k✝ l✝
_w₁_ih✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (toList _w₁✝)
_w₂_ih✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (toList _w₂✝)
x : (i : ι) × M i
hx : { fst := j✝, snd := last _w₁✝ } = x
y : (i : ι) × M i
hy : y ∈ List.head? (toList _w₂✝)
⊢ x.fst ≠ y.fst
[PROOFSTEP]
rw [toList_head?, Option.mem_some_iff] at hy
[GOAL]
case append
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i j i✝ j✝ k✝ l✝ : ι
_w₁✝ : NeWord M i✝ j✝
_hne✝ : j✝ ≠ k✝
_w₂✝ : NeWord M k✝ l✝
_w₁_ih✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (toList _w₁✝)
_w₂_ih✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (toList _w₂✝)
x : (i : ι) × M i
hx : { fst := j✝, snd := last _w₁✝ } = x
y : (i : ι) × M i
hy : { fst := k✝, snd := head _w₂✝ } = y
⊢ x.fst ≠ y.fst
[PROOFSTEP]
subst hx
[GOAL]
case append
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i j i✝ j✝ k✝ l✝ : ι
_w₁✝ : NeWord M i✝ j✝
_hne✝ : j✝ ≠ k✝
_w₂✝ : NeWord M k✝ l✝
_w₁_ih✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (toList _w₁✝)
_w₂_ih✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (toList _w₂✝)
y : (i : ι) × M i
hy : { fst := k✝, snd := head _w₂✝ } = y
⊢ { fst := j✝, snd := last _w₁✝ }.fst ≠ y.fst
[PROOFSTEP]
subst hy
[GOAL]
case append
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i j i✝ j✝ k✝ l✝ : ι
_w₁✝ : NeWord M i✝ j✝
_hne✝ : j✝ ≠ k✝
_w₂✝ : NeWord M k✝ l✝
_w₁_ih✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (toList _w₁✝)
_w₂_ih✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (toList _w₂✝)
⊢ { fst := j✝, snd := last _w₁✝ }.fst ≠ { fst := k✝, snd := head _w₂✝ }.fst
[PROOFSTEP]
assumption
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
w : Word M
h : w ≠ empty
⊢ ∃ i j w', toWord w' = w
[PROOFSTEP]
suffices : ∃ (i j : _) (w' : NeWord M i j), w'.toWord.toList = w.toList
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
w : Word M
h : w ≠ empty
this : ∃ i j w', (toWord w').toList = w.toList
⊢ ∃ i j w', toWord w' = w
[PROOFSTEP]
rcases this with ⟨i, j, w, h⟩
[GOAL]
case intro.intro.intro
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
w✝ : Word M
h✝ : w✝ ≠ empty
i j : ι
w : NeWord M i j
h : (toWord w).toList = w✝.toList
⊢ ∃ i j w', toWord w' = w✝
[PROOFSTEP]
refine' ⟨i, j, w, _⟩
[GOAL]
case intro.intro.intro
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
w✝ : Word M
h✝ : w✝ ≠ empty
i j : ι
w : NeWord M i j
h : (toWord w).toList = w✝.toList
⊢ toWord w = w✝
[PROOFSTEP]
ext
[GOAL]
case intro.intro.intro.toList.a.a
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
w✝ : Word M
h✝ : w✝ ≠ empty
i j : ι
w : NeWord M i j
h : (toWord w).toList = w✝.toList
n✝ : ℕ
a✝ : (i : ι) × M i
⊢ a✝ ∈ List.get? (toWord w).toList n✝ ↔ a✝ ∈ List.get? w✝.toList n✝
[PROOFSTEP]
rw [h]
[GOAL]
case this
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
w : Word M
h : w ≠ empty
⊢ ∃ i j w', (toWord w').toList = w.toList
[PROOFSTEP]
cases' w with l hnot1 hchain
[GOAL]
case this.mk
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
l : List ((i : ι) × M i)
hnot1 : ∀ (l_1 : (i : ι) × M i), l_1 ∈ l → l_1.snd ≠ 1
hchain : List.Chain' (fun l l' => l.fst ≠ l'.fst) l
h : { toList := l, ne_one := hnot1, chain_ne := hchain } ≠ empty
⊢ ∃ i j w', (toWord w').toList = { toList := l, ne_one := hnot1, chain_ne := hchain }.toList
[PROOFSTEP]
induction' l with x l hi
[GOAL]
case this.mk.nil
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
l : List ((i : ι) × M i)
hnot1✝ : ∀ (l_1 : (i : ι) × M i), l_1 ∈ l → l_1.snd ≠ 1
hchain✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) l
h✝ : { toList := l, ne_one := hnot1✝, chain_ne := hchain✝ } ≠ empty
hnot1 : ∀ (l : (i : ι) × M i), l ∈ [] → l.snd ≠ 1
hchain : List.Chain' (fun l l' => l.fst ≠ l'.fst) []
h : { toList := [], ne_one := hnot1, chain_ne := hchain } ≠ empty
⊢ ∃ i j w', (toWord w').toList = { toList := [], ne_one := hnot1, chain_ne := hchain }.toList
[PROOFSTEP]
contradiction
[GOAL]
case this.mk.cons
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
l✝ : List ((i : ι) × M i)
hnot1✝ : ∀ (l : (i : ι) × M i), l ∈ l✝ → l.snd ≠ 1
hchain✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) l✝
h✝ : { toList := l✝, ne_one := hnot1✝, chain_ne := hchain✝ } ≠ empty
x : (i : ι) × M i
l : List ((i : ι) × M i)
hi :
∀ (hnot1 : ∀ (l_1 : (i : ι) × M i), l_1 ∈ l → l_1.snd ≠ 1) (hchain : List.Chain' (fun l l' => l.fst ≠ l'.fst) l),
{ toList := l, ne_one := hnot1, chain_ne := hchain } ≠ empty →
∃ i j w', (toWord w').toList = { toList := l, ne_one := hnot1, chain_ne := hchain }.toList
hnot1 : ∀ (l_1 : (i : ι) × M i), l_1 ∈ x :: l → l_1.snd ≠ 1
hchain : List.Chain' (fun l l' => l.fst ≠ l'.fst) (x :: l)
h : { toList := x :: l, ne_one := hnot1, chain_ne := hchain } ≠ empty
⊢ ∃ i j w', (toWord w').toList = { toList := x :: l, ne_one := hnot1, chain_ne := hchain }.toList
[PROOFSTEP]
rw [List.forall_mem_cons] at hnot1
[GOAL]
case this.mk.cons
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
l✝ : List ((i : ι) × M i)
hnot1✝¹ : ∀ (l : (i : ι) × M i), l ∈ l✝ → l.snd ≠ 1
hchain✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) l✝
h✝ : { toList := l✝, ne_one := hnot1✝¹, chain_ne := hchain✝ } ≠ empty
x : (i : ι) × M i
l : List ((i : ι) × M i)
hi :
∀ (hnot1 : ∀ (l_1 : (i : ι) × M i), l_1 ∈ l → l_1.snd ≠ 1) (hchain : List.Chain' (fun l l' => l.fst ≠ l'.fst) l),
{ toList := l, ne_one := hnot1, chain_ne := hchain } ≠ empty →
∃ i j w', (toWord w').toList = { toList := l, ne_one := hnot1, chain_ne := hchain }.toList
hnot1✝ : ∀ (l_1 : (i : ι) × M i), l_1 ∈ x :: l → l_1.snd ≠ 1
hnot1 : x.snd ≠ 1 ∧ ∀ (x : (i : ι) × M i), x ∈ l → x.snd ≠ 1
hchain : List.Chain' (fun l l' => l.fst ≠ l'.fst) (x :: l)
h : { toList := x :: l, ne_one := hnot1✝, chain_ne := hchain } ≠ empty
⊢ ∃ i j w', (toWord w').toList = { toList := x :: l, ne_one := hnot1✝, chain_ne := hchain }.toList
[PROOFSTEP]
cases' l with y l
[GOAL]
case this.mk.cons.nil
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
l : List ((i : ι) × M i)
hnot1✝¹ : ∀ (l_1 : (i : ι) × M i), l_1 ∈ l → l_1.snd ≠ 1
hchain✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) l
h✝ : { toList := l, ne_one := hnot1✝¹, chain_ne := hchain✝ } ≠ empty
x : (i : ι) × M i
hi :
∀ (hnot1 : ∀ (l : (i : ι) × M i), l ∈ [] → l.snd ≠ 1) (hchain : List.Chain' (fun l l' => l.fst ≠ l'.fst) []),
{ toList := [], ne_one := hnot1, chain_ne := hchain } ≠ empty →
∃ i j w', (toWord w').toList = { toList := [], ne_one := hnot1, chain_ne := hchain }.toList
hnot1✝ : ∀ (l : (i : ι) × M i), l ∈ [x] → l.snd ≠ 1
hnot1 : x.snd ≠ 1 ∧ ∀ (x : (i : ι) × M i), x ∈ [] → x.snd ≠ 1
hchain : List.Chain' (fun l l' => l.fst ≠ l'.fst) [x]
h : { toList := [x], ne_one := hnot1✝, chain_ne := hchain } ≠ empty
⊢ ∃ i j w', (toWord w').toList = { toList := [x], ne_one := hnot1✝, chain_ne := hchain }.toList
[PROOFSTEP]
refine' ⟨x.1, x.1, singleton x.2 hnot1.1, _⟩
[GOAL]
case this.mk.cons.nil
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
l : List ((i : ι) × M i)
hnot1✝¹ : ∀ (l_1 : (i : ι) × M i), l_1 ∈ l → l_1.snd ≠ 1
hchain✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) l
h✝ : { toList := l, ne_one := hnot1✝¹, chain_ne := hchain✝ } ≠ empty
x : (i : ι) × M i
hi :
∀ (hnot1 : ∀ (l : (i : ι) × M i), l ∈ [] → l.snd ≠ 1) (hchain : List.Chain' (fun l l' => l.fst ≠ l'.fst) []),
{ toList := [], ne_one := hnot1, chain_ne := hchain } ≠ empty →
∃ i j w', (toWord w').toList = { toList := [], ne_one := hnot1, chain_ne := hchain }.toList
hnot1✝ : ∀ (l : (i : ι) × M i), l ∈ [x] → l.snd ≠ 1
hnot1 : x.snd ≠ 1 ∧ ∀ (x : (i : ι) × M i), x ∈ [] → x.snd ≠ 1
hchain : List.Chain' (fun l l' => l.fst ≠ l'.fst) [x]
h : { toList := [x], ne_one := hnot1✝, chain_ne := hchain } ≠ empty
⊢ (toWord (singleton x.snd (_ : x.snd ≠ 1))).toList = { toList := [x], ne_one := hnot1✝, chain_ne := hchain }.toList
[PROOFSTEP]
simp [toWord]
[GOAL]
case this.mk.cons.cons
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
l✝ : List ((i : ι) × M i)
hnot1✝¹ : ∀ (l : (i : ι) × M i), l ∈ l✝ → l.snd ≠ 1
hchain✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) l✝
h✝ : { toList := l✝, ne_one := hnot1✝¹, chain_ne := hchain✝ } ≠ empty
x y : (i : ι) × M i
l : List ((i : ι) × M i)
hi :
∀ (hnot1 : ∀ (l_1 : (i : ι) × M i), l_1 ∈ y :: l → l_1.snd ≠ 1)
(hchain : List.Chain' (fun l l' => l.fst ≠ l'.fst) (y :: l)),
{ toList := y :: l, ne_one := hnot1, chain_ne := hchain } ≠ empty →
∃ i j w', (toWord w').toList = { toList := y :: l, ne_one := hnot1, chain_ne := hchain }.toList
hnot1✝ : ∀ (l_1 : (i : ι) × M i), l_1 ∈ x :: y :: l → l_1.snd ≠ 1
hnot1 : x.snd ≠ 1 ∧ ∀ (x : (i : ι) × M i), x ∈ y :: l → x.snd ≠ 1
hchain : List.Chain' (fun l l' => l.fst ≠ l'.fst) (x :: y :: l)
h : { toList := x :: y :: l, ne_one := hnot1✝, chain_ne := hchain } ≠ empty
⊢ ∃ i j w', (toWord w').toList = { toList := x :: y :: l, ne_one := hnot1✝, chain_ne := hchain }.toList
[PROOFSTEP]
rw [List.chain'_cons] at hchain
[GOAL]
case this.mk.cons.cons
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
l✝ : List ((i : ι) × M i)
hnot1✝¹ : ∀ (l : (i : ι) × M i), l ∈ l✝ → l.snd ≠ 1
hchain✝¹ : List.Chain' (fun l l' => l.fst ≠ l'.fst) l✝
h✝ : { toList := l✝, ne_one := hnot1✝¹, chain_ne := hchain✝¹ } ≠ empty
x y : (i : ι) × M i
l : List ((i : ι) × M i)
hi :
∀ (hnot1 : ∀ (l_1 : (i : ι) × M i), l_1 ∈ y :: l → l_1.snd ≠ 1)
(hchain : List.Chain' (fun l l' => l.fst ≠ l'.fst) (y :: l)),
{ toList := y :: l, ne_one := hnot1, chain_ne := hchain } ≠ empty →
∃ i j w', (toWord w').toList = { toList := y :: l, ne_one := hnot1, chain_ne := hchain }.toList
hnot1✝ : ∀ (l_1 : (i : ι) × M i), l_1 ∈ x :: y :: l → l_1.snd ≠ 1
hnot1 : x.snd ≠ 1 ∧ ∀ (x : (i : ι) × M i), x ∈ y :: l → x.snd ≠ 1
hchain✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (x :: y :: l)
hchain : x.fst ≠ y.fst ∧ List.Chain' (fun l l' => l.fst ≠ l'.fst) (y :: l)
h : { toList := x :: y :: l, ne_one := hnot1✝, chain_ne := hchain✝ } ≠ empty
⊢ ∃ i j w', (toWord w').toList = { toList := x :: y :: l, ne_one := hnot1✝, chain_ne := hchain✝ }.toList
[PROOFSTEP]
specialize hi hnot1.2 hchain.2 (by rintro ⟨rfl⟩)
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
l✝ : List ((i : ι) × M i)
hnot1✝¹ : ∀ (l : (i : ι) × M i), l ∈ l✝ → l.snd ≠ 1
hchain✝¹ : List.Chain' (fun l l' => l.fst ≠ l'.fst) l✝
h✝ : { toList := l✝, ne_one := hnot1✝¹, chain_ne := hchain✝¹ } ≠ empty
x y : (i : ι) × M i
l : List ((i : ι) × M i)
hi :
∀ (hnot1 : ∀ (l_1 : (i : ι) × M i), l_1 ∈ y :: l → l_1.snd ≠ 1)
(hchain : List.Chain' (fun l l' => l.fst ≠ l'.fst) (y :: l)),
{ toList := y :: l, ne_one := hnot1, chain_ne := hchain } ≠ empty →
∃ i j w', (toWord w').toList = { toList := y :: l, ne_one := hnot1, chain_ne := hchain }.toList
hnot1✝ : ∀ (l_1 : (i : ι) × M i), l_1 ∈ x :: y :: l → l_1.snd ≠ 1
hnot1 : x.snd ≠ 1 ∧ ∀ (x : (i : ι) × M i), x ∈ y :: l → x.snd ≠ 1
hchain✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (x :: y :: l)
hchain : x.fst ≠ y.fst ∧ List.Chain' (fun l l' => l.fst ≠ l'.fst) (y :: l)
h : { toList := x :: y :: l, ne_one := hnot1✝, chain_ne := hchain✝ } ≠ empty
⊢ { toList := y :: l, ne_one := (_ : ∀ (x : (i : ι) × M i), x ∈ y :: l → x.snd ≠ 1),
chain_ne := (_ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (y :: l)) } ≠
empty
[PROOFSTEP]
rintro ⟨rfl⟩
[GOAL]
case this.mk.cons.cons
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
l✝ : List ((i : ι) × M i)
hnot1✝¹ : ∀ (l : (i : ι) × M i), l ∈ l✝ → l.snd ≠ 1
hchain✝¹ : List.Chain' (fun l l' => l.fst ≠ l'.fst) l✝
h✝ : { toList := l✝, ne_one := hnot1✝¹, chain_ne := hchain✝¹ } ≠ empty
x y : (i : ι) × M i
l : List ((i : ι) × M i)
hnot1✝ : ∀ (l_1 : (i : ι) × M i), l_1 ∈ x :: y :: l → l_1.snd ≠ 1
hnot1 : x.snd ≠ 1 ∧ ∀ (x : (i : ι) × M i), x ∈ y :: l → x.snd ≠ 1
hchain✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (x :: y :: l)
hchain : x.fst ≠ y.fst ∧ List.Chain' (fun l l' => l.fst ≠ l'.fst) (y :: l)
h : { toList := x :: y :: l, ne_one := hnot1✝, chain_ne := hchain✝ } ≠ empty
hi :
∃ i j w',
(toWord w').toList =
{ toList := y :: l, ne_one := (_ : ∀ (x : (i : ι) × M i), x ∈ y :: l → x.snd ≠ 1),
chain_ne := (_ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (y :: l)) }.toList
⊢ ∃ i j w', (toWord w').toList = { toList := x :: y :: l, ne_one := hnot1✝, chain_ne := hchain✝ }.toList
[PROOFSTEP]
obtain ⟨i, j, w', hw' : w'.toList = y :: l⟩ := hi
[GOAL]
case this.mk.cons.cons.intro.intro.intro
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
l✝ : List ((i : ι) × M i)
hnot1✝¹ : ∀ (l : (i : ι) × M i), l ∈ l✝ → l.snd ≠ 1
hchain✝¹ : List.Chain' (fun l l' => l.fst ≠ l'.fst) l✝
h✝ : { toList := l✝, ne_one := hnot1✝¹, chain_ne := hchain✝¹ } ≠ empty
x y : (i : ι) × M i
l : List ((i : ι) × M i)
hnot1✝ : ∀ (l_1 : (i : ι) × M i), l_1 ∈ x :: y :: l → l_1.snd ≠ 1
hnot1 : x.snd ≠ 1 ∧ ∀ (x : (i : ι) × M i), x ∈ y :: l → x.snd ≠ 1
hchain✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (x :: y :: l)
hchain : x.fst ≠ y.fst ∧ List.Chain' (fun l l' => l.fst ≠ l'.fst) (y :: l)
h : { toList := x :: y :: l, ne_one := hnot1✝, chain_ne := hchain✝ } ≠ empty
i j : ι
w' : NeWord M i j
hw' : toList w' = y :: l
⊢ ∃ i j w', (toWord w').toList = { toList := x :: y :: l, ne_one := hnot1✝, chain_ne := hchain✝ }.toList
[PROOFSTEP]
obtain rfl : y = ⟨i, w'.head⟩ := by simpa [hw'] using w'.toList_head?
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
l✝ : List ((i : ι) × M i)
hnot1✝¹ : ∀ (l : (i : ι) × M i), l ∈ l✝ → l.snd ≠ 1
hchain✝¹ : List.Chain' (fun l l' => l.fst ≠ l'.fst) l✝
h✝ : { toList := l✝, ne_one := hnot1✝¹, chain_ne := hchain✝¹ } ≠ empty
x y : (i : ι) × M i
l : List ((i : ι) × M i)
hnot1✝ : ∀ (l_1 : (i : ι) × M i), l_1 ∈ x :: y :: l → l_1.snd ≠ 1
hnot1 : x.snd ≠ 1 ∧ ∀ (x : (i : ι) × M i), x ∈ y :: l → x.snd ≠ 1
hchain✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (x :: y :: l)
hchain : x.fst ≠ y.fst ∧ List.Chain' (fun l l' => l.fst ≠ l'.fst) (y :: l)
h : { toList := x :: y :: l, ne_one := hnot1✝, chain_ne := hchain✝ } ≠ empty
i j : ι
w' : NeWord M i j
hw' : toList w' = y :: l
⊢ y = { fst := i, snd := head w' }
[PROOFSTEP]
simpa [hw'] using w'.toList_head?
[GOAL]
case this.mk.cons.cons.intro.intro.intro
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
l✝ : List ((i : ι) × M i)
hnot1✝¹ : ∀ (l : (i : ι) × M i), l ∈ l✝ → l.snd ≠ 1
hchain✝¹ : List.Chain' (fun l l' => l.fst ≠ l'.fst) l✝
h✝ : { toList := l✝, ne_one := hnot1✝¹, chain_ne := hchain✝¹ } ≠ empty
x : (i : ι) × M i
l : List ((i : ι) × M i)
i j : ι
w' : NeWord M i j
hnot1✝ : ∀ (l_1 : (i : ι) × M i), l_1 ∈ x :: { fst := i, snd := head w' } :: l → l_1.snd ≠ 1
hnot1 : x.snd ≠ 1 ∧ ∀ (x : (i : ι) × M i), x ∈ { fst := i, snd := head w' } :: l → x.snd ≠ 1
hchain✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (x :: { fst := i, snd := head w' } :: l)
hchain :
x.fst ≠ { fst := i, snd := head w' }.fst ∧
List.Chain' (fun l l' => l.fst ≠ l'.fst) ({ fst := i, snd := head w' } :: l)
h : { toList := x :: { fst := i, snd := head w' } :: l, ne_one := hnot1✝, chain_ne := hchain✝ } ≠ empty
hw' : toList w' = { fst := i, snd := head w' } :: l
⊢ ∃ i_1 j_1 w'_1,
(toWord w'_1).toList =
{ toList := x :: { fst := i, snd := head w' } :: l, ne_one := hnot1✝, chain_ne := hchain✝ }.toList
[PROOFSTEP]
refine' ⟨x.1, j, append (singleton x.2 hnot1.1) hchain.1 w', _⟩
[GOAL]
case this.mk.cons.cons.intro.intro.intro
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
l✝ : List ((i : ι) × M i)
hnot1✝¹ : ∀ (l : (i : ι) × M i), l ∈ l✝ → l.snd ≠ 1
hchain✝¹ : List.Chain' (fun l l' => l.fst ≠ l'.fst) l✝
h✝ : { toList := l✝, ne_one := hnot1✝¹, chain_ne := hchain✝¹ } ≠ empty
x : (i : ι) × M i
l : List ((i : ι) × M i)
i j : ι
w' : NeWord M i j
hnot1✝ : ∀ (l_1 : (i : ι) × M i), l_1 ∈ x :: { fst := i, snd := head w' } :: l → l_1.snd ≠ 1
hnot1 : x.snd ≠ 1 ∧ ∀ (x : (i : ι) × M i), x ∈ { fst := i, snd := head w' } :: l → x.snd ≠ 1
hchain✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (x :: { fst := i, snd := head w' } :: l)
hchain :
x.fst ≠ { fst := i, snd := head w' }.fst ∧
List.Chain' (fun l l' => l.fst ≠ l'.fst) ({ fst := i, snd := head w' } :: l)
h : { toList := x :: { fst := i, snd := head w' } :: l, ne_one := hnot1✝, chain_ne := hchain✝ } ≠ empty
hw' : toList w' = { fst := i, snd := head w' } :: l
⊢ (toWord (append (singleton x.snd (_ : x.snd ≠ 1)) (_ : x.fst ≠ { fst := i, snd := head w' }.fst) w')).toList =
{ toList := x :: { fst := i, snd := head w' } :: l, ne_one := hnot1✝, chain_ne := hchain✝ }.toList
[PROOFSTEP]
simpa [toWord] using hw'
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i : ι
x : M i
hne_one : x ≠ 1
⊢ prod (singleton x hne_one) = ↑of x
[PROOFSTEP]
simp [toWord, prod, Word.prod]
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i j k l : ι
w₁ : NeWord M i j
hne : j ≠ k
w₂ : NeWord M k l
⊢ prod (append w₁ hne w₂) = prod w₁ * prod w₂
[PROOFSTEP]
simp [toWord, prod, Word.prod]
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i j : ι
x : M i
hnotone : x ≠ 1
w : NeWord M i j
⊢ head (replaceHead x hnotone w) = x
[PROOFSTEP]
induction w
[GOAL]
case singleton
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i j i✝ : ι
x✝ : M i✝
a✝ : x✝ ≠ 1
x : M i✝
hnotone : x ≠ 1
⊢ head (replaceHead x hnotone (singleton x✝ a✝)) = x
case append
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i j i✝ j✝ k✝ l✝ : ι
_w₁✝ : NeWord M i✝ j✝
_hne✝ : j✝ ≠ k✝
_w₂✝ : NeWord M k✝ l✝
_w₁_ih✝ : ∀ (x : M i✝) (hnotone : x ≠ 1), head (replaceHead x hnotone _w₁✝) = x
_w₂_ih✝ : ∀ (x : M k✝) (hnotone : x ≠ 1), head (replaceHead x hnotone _w₂✝) = x
x : M i✝
hnotone : x ≠ 1
⊢ head (replaceHead x hnotone (append _w₁✝ _hne✝ _w₂✝)) = x
[PROOFSTEP]
rfl
[GOAL]
case append
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i j i✝ j✝ k✝ l✝ : ι
_w₁✝ : NeWord M i✝ j✝
_hne✝ : j✝ ≠ k✝
_w₂✝ : NeWord M k✝ l✝
_w₁_ih✝ : ∀ (x : M i✝) (hnotone : x ≠ 1), head (replaceHead x hnotone _w₁✝) = x
_w₂_ih✝ : ∀ (x : M k✝) (hnotone : x ≠ 1), head (replaceHead x hnotone _w₂✝) = x
x : M i✝
hnotone : x ≠ 1
⊢ head (replaceHead x hnotone (append _w₁✝ _hne✝ _w₂✝)) = x
[PROOFSTEP]
simp [*]
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i j : ι
w : NeWord M i j
x : M i
hnotone : x * head w ≠ 1
⊢ head (mulHead w x hnotone) = x * head w
[PROOFSTEP]
induction w
[GOAL]
case singleton
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i j i✝ : ι
x✝ : M i✝
a✝ : x✝ ≠ 1
x : M i✝
hnotone : x * head (singleton x✝ a✝) ≠ 1
⊢ head (mulHead (singleton x✝ a✝) x hnotone) = x * head (singleton x✝ a✝)
case append
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i j i✝ j✝ k✝ l✝ : ι
_w₁✝ : NeWord M i✝ j✝
_hne✝ : j✝ ≠ k✝
_w₂✝ : NeWord M k✝ l✝
_w₁_ih✝ : ∀ (x : M i✝) (hnotone : x * head _w₁✝ ≠ 1), head (mulHead _w₁✝ x hnotone) = x * head _w₁✝
_w₂_ih✝ : ∀ (x : M k✝) (hnotone : x * head _w₂✝ ≠ 1), head (mulHead _w₂✝ x hnotone) = x * head _w₂✝
x : M i✝
hnotone : x * head (append _w₁✝ _hne✝ _w₂✝) ≠ 1
⊢ head (mulHead (append _w₁✝ _hne✝ _w₂✝) x hnotone) = x * head (append _w₁✝ _hne✝ _w₂✝)
[PROOFSTEP]
rfl
[GOAL]
case append
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i j i✝ j✝ k✝ l✝ : ι
_w₁✝ : NeWord M i✝ j✝
_hne✝ : j✝ ≠ k✝
_w₂✝ : NeWord M k✝ l✝
_w₁_ih✝ : ∀ (x : M i✝) (hnotone : x * head _w₁✝ ≠ 1), head (mulHead _w₁✝ x hnotone) = x * head _w₁✝
_w₂_ih✝ : ∀ (x : M k✝) (hnotone : x * head _w₂✝ ≠ 1), head (mulHead _w₂✝ x hnotone) = x * head _w₂✝
x : M i✝
hnotone : x * head (append _w₁✝ _hne✝ _w₂✝) ≠ 1
⊢ head (mulHead (append _w₁✝ _hne✝ _w₂✝) x hnotone) = x * head (append _w₁✝ _hne✝ _w₂✝)
[PROOFSTEP]
simp [*]
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i j : ι
w : NeWord M i j
x : M i
hnotone : x * head w ≠ 1
⊢ prod (mulHead w x hnotone) = ↑of x * prod w
[PROOFSTEP]
unfold mulHead
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i j : ι
w : NeWord M i j
x : M i
hnotone : x * head w ≠ 1
⊢ prod (replaceHead (x * head w) hnotone w) = ↑of x * prod w
[PROOFSTEP]
induction' w with _ _ _ _ _ _ _ _ _ _ w_ih_w₁ w_ih_w₂
[GOAL]
case singleton
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i j : ι
w : NeWord M i j
x✝¹ : M i
hnotone✝ : x✝¹ * head w ≠ 1
i✝ : ι
x✝ : M i✝
a✝ : x✝ ≠ 1
x : M i✝
hnotone : x * head (singleton x✝ a✝) ≠ 1
⊢ prod (replaceHead (x * head (singleton x✝ a✝)) hnotone (singleton x✝ a✝)) = ↑of x * prod (singleton x✝ a✝)
[PROOFSTEP]
simp [mulHead, replaceHead]
[GOAL]
case append
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i j : ι
w : NeWord M i j
x✝ : M i
hnotone✝ : x✝ * head w ≠ 1
i✝ j✝ k✝ l✝ : ι
_w₁✝ : NeWord M i✝ j✝
_hne✝ : j✝ ≠ k✝
_w₂✝ : NeWord M k✝ l✝
w_ih_w₁ :
∀ (x : M i✝) (hnotone : x * head _w₁✝ ≠ 1), prod (replaceHead (x * head _w₁✝) hnotone _w₁✝) = ↑of x * prod _w₁✝
w_ih_w₂ :
∀ (x : M k✝) (hnotone : x * head _w₂✝ ≠ 1), prod (replaceHead (x * head _w₂✝) hnotone _w₂✝) = ↑of x * prod _w₂✝
x : M i✝
hnotone : x * head (append _w₁✝ _hne✝ _w₂✝) ≠ 1
⊢ prod (replaceHead (x * head (append _w₁✝ _hne✝ _w₂✝)) hnotone (append _w₁✝ _hne✝ _w₂✝)) =
↑of x * prod (append _w₁✝ _hne✝ _w₂✝)
[PROOFSTEP]
specialize w_ih_w₁ _ hnotone
[GOAL]
case append
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i j : ι
w : NeWord M i j
x✝ : M i
hnotone✝ : x✝ * head w ≠ 1
i✝ j✝ k✝ l✝ : ι
_w₁✝ : NeWord M i✝ j✝
_hne✝ : j✝ ≠ k✝
_w₂✝ : NeWord M k✝ l✝
w_ih_w₂ :
∀ (x : M k✝) (hnotone : x * head _w₂✝ ≠ 1), prod (replaceHead (x * head _w₂✝) hnotone _w₂✝) = ↑of x * prod _w₂✝
x : M i✝
hnotone : x * head (append _w₁✝ _hne✝ _w₂✝) ≠ 1
w_ih_w₁ : prod (replaceHead (x * head _w₁✝) hnotone _w₁✝) = ↑of x * prod _w₁✝
⊢ prod (replaceHead (x * head (append _w₁✝ _hne✝ _w₂✝)) hnotone (append _w₁✝ _hne✝ _w₂✝)) =
↑of x * prod (append _w₁✝ _hne✝ _w₂✝)
[PROOFSTEP]
clear w_ih_w₂
[GOAL]
case append
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i j : ι
w : NeWord M i j
x✝ : M i
hnotone✝ : x✝ * head w ≠ 1
i✝ j✝ k✝ l✝ : ι
_w₁✝ : NeWord M i✝ j✝
_hne✝ : j✝ ≠ k✝
_w₂✝ : NeWord M k✝ l✝
x : M i✝
hnotone : x * head (append _w₁✝ _hne✝ _w₂✝) ≠ 1
w_ih_w₁ : prod (replaceHead (x * head _w₁✝) hnotone _w₁✝) = ↑of x * prod _w₁✝
⊢ prod (replaceHead (x * head (append _w₁✝ _hne✝ _w₂✝)) hnotone (append _w₁✝ _hne✝ _w₂✝)) =
↑of x * prod (append _w₁✝ _hne✝ _w₂✝)
[PROOFSTEP]
simp [replaceHead, ← mul_assoc] at *
[GOAL]
case append
ι : Type u_1
M : ι → Type u_2
inst✝¹ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
i j : ι
w : NeWord M i j
x✝ : M i
hnotone✝ : ¬x✝ * head w = 1
i✝ j✝ k✝ l✝ : ι
_w₁✝ : NeWord M i✝ j✝
_hne✝ : j✝ ≠ k✝
_w₂✝ : NeWord M k✝ l✝
x : M i✝
hnotone : x * head (append _w₁✝ _hne✝ _w₂✝) ≠ 1
w_ih_w₁ : prod (replaceHead (x * head _w₁✝) hnotone _w₁✝) = ↑of x * prod _w₁✝
⊢ prod (replaceHead (x * head _w₁✝) (_ : x * head _w₁✝ ≠ 1) _w₁✝) * prod _w₂✝ = ↑of x * prod _w₁✝ * prod _w₂✝
[PROOFSTEP]
congr 1
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
G : ι → Type u_4
inst✝ : (i : ι) → Group (G i)
i j : ι
w : NeWord G i j
⊢ prod (inv w) = (prod w)⁻¹
[PROOFSTEP]
induction w
[GOAL]
case singleton
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
G : ι → Type u_4
inst✝ : (i : ι) → Group (G i)
i j i✝ : ι
x✝ : G i✝
a✝ : x✝ ≠ 1
⊢ prod (inv (singleton x✝ a✝)) = (prod (singleton x✝ a✝))⁻¹
[PROOFSTEP]
simp [inv, *]
[GOAL]
case append
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
G : ι → Type u_4
inst✝ : (i : ι) → Group (G i)
i j i✝ j✝ k✝ l✝ : ι
_w₁✝ : NeWord G i✝ j✝
_hne✝ : j✝ ≠ k✝
_w₂✝ : NeWord G k✝ l✝
_w₁_ih✝ : prod (inv _w₁✝) = (prod _w₁✝)⁻¹
_w₂_ih✝ : prod (inv _w₂✝) = (prod _w₂✝)⁻¹
⊢ prod (inv (append _w₁✝ _hne✝ _w₂✝)) = (prod (append _w₁✝ _hne✝ _w₂✝))⁻¹
[PROOFSTEP]
simp [inv, *]
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
G : ι → Type u_4
inst✝ : (i : ι) → Group (G i)
i j : ι
w : NeWord G i j
⊢ head (inv w) = (last w)⁻¹
[PROOFSTEP]
induction w
[GOAL]
case singleton
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
G : ι → Type u_4
inst✝ : (i : ι) → Group (G i)
i j i✝ : ι
x✝ : G i✝
a✝ : x✝ ≠ 1
⊢ head (inv (singleton x✝ a✝)) = (last (singleton x✝ a✝))⁻¹
[PROOFSTEP]
simp [inv, *]
[GOAL]
case append
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
G : ι → Type u_4
inst✝ : (i : ι) → Group (G i)
i j i✝ j✝ k✝ l✝ : ι
_w₁✝ : NeWord G i✝ j✝
_hne✝ : j✝ ≠ k✝
_w₂✝ : NeWord G k✝ l✝
_w₁_ih✝ : head (inv _w₁✝) = (last _w₁✝)⁻¹
_w₂_ih✝ : head (inv _w₂✝) = (last _w₂✝)⁻¹
⊢ head (inv (append _w₁✝ _hne✝ _w₂✝)) = (last (append _w₁✝ _hne✝ _w₂✝))⁻¹
[PROOFSTEP]
simp [inv, *]
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
G : ι → Type u_4
inst✝ : (i : ι) → Group (G i)
i j : ι
w : NeWord G i j
⊢ last (inv w) = (head w)⁻¹
[PROOFSTEP]
induction w
[GOAL]
case singleton
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
G : ι → Type u_4
inst✝ : (i : ι) → Group (G i)
i j i✝ : ι
x✝ : G i✝
a✝ : x✝ ≠ 1
⊢ last (inv (singleton x✝ a✝)) = (head (singleton x✝ a✝))⁻¹
[PROOFSTEP]
simp [inv, *]
[GOAL]
case append
ι : Type u_1
M : ι → Type u_2
inst✝² : (i : ι) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
G : ι → Type u_4
inst✝ : (i : ι) → Group (G i)
i j i✝ j✝ k✝ l✝ : ι
_w₁✝ : NeWord G i✝ j✝
_hne✝ : j✝ ≠ k✝
_w₂✝ : NeWord G k✝ l✝
_w₁_ih✝ : last (inv _w₁✝) = (head _w₁✝)⁻¹
_w₂_ih✝ : last (inv _w₂✝) = (head _w₂✝)⁻¹
⊢ last (inv (append _w₁✝ _hne✝ _w₂✝)) = (head (append _w₁✝ _hne✝ _w₂✝))⁻¹
[PROOFSTEP]
simp [inv, *]
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
hcard : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i)
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
i j k : ι
w : NeWord H i j
hk : j ≠ k
⊢ ↑(↑lift f) (NeWord.prod w) • X k ⊆ X i
[PROOFSTEP]
induction' w with i x hne_one i j k l w₁ hne w₂ hIw₁ hIw₂ generalizing k
[GOAL]
case singleton
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
hcard : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i)
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
i✝ j k✝ : ι
hk✝ : j ≠ k✝
i : ι
x : H i
hne_one : x ≠ 1
k : ι
hk : i ≠ k
⊢ ↑(↑lift f) (NeWord.prod (NeWord.singleton x hne_one)) • X k ⊆ X i
[PROOFSTEP]
simpa using hpp hk _ hne_one
[GOAL]
case append
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
hcard : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i)
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
i✝ j✝ k✝¹ : ι
hk✝ : j✝ ≠ k✝¹
i j k✝ l : ι
w₁ : NeWord H i j
hne : j ≠ k✝
w₂ : NeWord H k✝ l
hIw₁ : ∀ {k : ι}, j ≠ k → ↑(↑lift f) (NeWord.prod w₁) • X k ⊆ X i
hIw₂ : ∀ {k : ι}, l ≠ k → ↑(↑lift f) (NeWord.prod w₂) • X k ⊆ X k✝
k : ι
hk : l ≠ k
⊢ ↑(↑lift f) (NeWord.prod (NeWord.append w₁ hne w₂)) • X k ⊆ X i
[PROOFSTEP]
calc
lift f (NeWord.append w₁ hne w₂).prod • X k = lift f w₁.prod • lift f w₂.prod • X k := by simp [MulAction.mul_smul]
_ ⊆ lift f w₁.prod • X _ := (set_smul_subset_set_smul_iff.mpr (hIw₂ hk))
_ ⊆ X i := hIw₁ hne
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
hcard : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i)
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
i✝ j✝ k✝¹ : ι
hk✝ : j✝ ≠ k✝¹
i j k✝ l : ι
w₁ : NeWord H i j
hne : j ≠ k✝
w₂ : NeWord H k✝ l
hIw₁ : ∀ {k : ι}, j ≠ k → ↑(↑lift f) (NeWord.prod w₁) • X k ⊆ X i
hIw₂ : ∀ {k : ι}, l ≠ k → ↑(↑lift f) (NeWord.prod w₂) • X k ⊆ X k✝
k : ι
hk : l ≠ k
⊢ ↑(↑lift f) (NeWord.prod (NeWord.append w₁ hne w₂)) • X k =
↑(↑lift f) (NeWord.prod w₁) • ↑(↑lift f) (NeWord.prod w₂) • X k
[PROOFSTEP]
simp [MulAction.mul_smul]
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
hcard : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i)
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
i j k : ι
w : NeWord H i j
hhead : k ≠ i
hlast : k ≠ j
⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1
[PROOFSTEP]
intro heq1
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
hcard : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i)
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
i j k : ι
w : NeWord H i j
hhead : k ≠ i
hlast : k ≠ j
heq1 : ↑(↑lift f) (NeWord.prod w) = 1
⊢ False
[PROOFSTEP]
have : X k ⊆ X i := by simpa [heq1] using lift_word_ping_pong f X hpp w hlast.symm
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
hcard : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i)
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
i j k : ι
w : NeWord H i j
hhead : k ≠ i
hlast : k ≠ j
heq1 : ↑(↑lift f) (NeWord.prod w) = 1
⊢ X k ⊆ X i
[PROOFSTEP]
simpa [heq1] using lift_word_ping_pong f X hpp w hlast.symm
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
hcard : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i)
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
i j k : ι
w : NeWord H i j
hhead : k ≠ i
hlast : k ≠ j
heq1 : ↑(↑lift f) (NeWord.prod w) = 1
this : X k ⊆ X i
⊢ False
[PROOFSTEP]
obtain ⟨x, hx⟩ := hXnonempty k
[GOAL]
case intro
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
hcard : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i)
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
i j k : ι
w : NeWord H i j
hhead : k ≠ i
hlast : k ≠ j
heq1 : ↑(↑lift f) (NeWord.prod w) = 1
this : X k ⊆ X i
x : α
hx : x ∈ X k
⊢ False
[PROOFSTEP]
exact (hXdisj hhead).le_bot ⟨hx, this hx⟩
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
hcard : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i)
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
i : ι
w : NeWord H i i
⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1
[PROOFSTEP]
obtain ⟨k, hk⟩ := exists_ne i
[GOAL]
case intro
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
hcard : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i)
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
i : ι
w : NeWord H i i
k : ι
hk : k ≠ i
⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1
[PROOFSTEP]
exact lift_word_prod_nontrivial_of_other_i f X hXnonempty hXdisj hpp w hk hk
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
hcard✝ : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i)
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
i j : ι
w : NeWord H i j
hcard : 3 ≤ #(H i)
hheadtail : i ≠ j
⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1
[PROOFSTEP]
obtain ⟨h, hn1, hnh⟩ := Cardinal.three_le hcard 1 w.head⁻¹
[GOAL]
case intro.intro
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
hcard✝ : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i)
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
i j : ι
w : NeWord H i j
hcard : 3 ≤ #(H i)
hheadtail : i ≠ j
h : H i
hn1 : h ≠ 1
hnh : h ≠ (NeWord.head w)⁻¹
⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1
[PROOFSTEP]
have hnot1 : h * w.head ≠ 1 := by
rw [← div_inv_eq_mul]
exact div_ne_one_of_ne hnh
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
hcard✝ : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i)
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
i j : ι
w : NeWord H i j
hcard : 3 ≤ #(H i)
hheadtail : i ≠ j
h : H i
hn1 : h ≠ 1
hnh : h ≠ (NeWord.head w)⁻¹
⊢ h * NeWord.head w ≠ 1
[PROOFSTEP]
rw [← div_inv_eq_mul]
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
hcard✝ : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i)
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
i j : ι
w : NeWord H i j
hcard : 3 ≤ #(H i)
hheadtail : i ≠ j
h : H i
hn1 : h ≠ 1
hnh : h ≠ (NeWord.head w)⁻¹
⊢ h / (NeWord.head w)⁻¹ ≠ 1
[PROOFSTEP]
exact div_ne_one_of_ne hnh
[GOAL]
case intro.intro
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
hcard✝ : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i)
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
i j : ι
w : NeWord H i j
hcard : 3 ≤ #(H i)
hheadtail : i ≠ j
h : H i
hn1 : h ≠ 1
hnh : h ≠ (NeWord.head w)⁻¹
hnot1 : h * NeWord.head w ≠ 1
⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1
[PROOFSTEP]
let w' : NeWord H i i :=
NeWord.append (NeWord.mulHead w h hnot1) hheadtail.symm (NeWord.singleton h⁻¹ (inv_ne_one.mpr hn1))
[GOAL]
case intro.intro
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
hcard✝ : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i)
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
i j : ι
w : NeWord H i j
hcard : 3 ≤ #(H i)
hheadtail : i ≠ j
h : H i
hn1 : h ≠ 1
hnh : h ≠ (NeWord.head w)⁻¹
hnot1 : h * NeWord.head w ≠ 1
w' : NeWord H i i := NeWord.append (NeWord.mulHead w h hnot1) (_ : j ≠ i) (NeWord.singleton h⁻¹ (_ : h⁻¹ ≠ 1))
⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1
[PROOFSTEP]
have hw' : lift f w'.prod ≠ 1 := lift_word_prod_nontrivial_of_head_eq_last f X hXnonempty hXdisj hpp w'
[GOAL]
case intro.intro
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
hcard✝ : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i)
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
i j : ι
w : NeWord H i j
hcard : 3 ≤ #(H i)
hheadtail : i ≠ j
h : H i
hn1 : h ≠ 1
hnh : h ≠ (NeWord.head w)⁻¹
hnot1 : h * NeWord.head w ≠ 1
w' : NeWord H i i := NeWord.append (NeWord.mulHead w h hnot1) (_ : j ≠ i) (NeWord.singleton h⁻¹ (_ : h⁻¹ ≠ 1))
hw' : ↑(↑lift f) (NeWord.prod w') ≠ 1
⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1
[PROOFSTEP]
intro heq1
[GOAL]
case intro.intro
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
hcard✝ : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i)
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
i j : ι
w : NeWord H i j
hcard : 3 ≤ #(H i)
hheadtail : i ≠ j
h : H i
hn1 : h ≠ 1
hnh : h ≠ (NeWord.head w)⁻¹
hnot1 : h * NeWord.head w ≠ 1
w' : NeWord H i i := NeWord.append (NeWord.mulHead w h hnot1) (_ : j ≠ i) (NeWord.singleton h⁻¹ (_ : h⁻¹ ≠ 1))
hw' : ↑(↑lift f) (NeWord.prod w') ≠ 1
heq1 : ↑(↑lift f) (NeWord.prod w) = 1
⊢ False
[PROOFSTEP]
apply hw'
[GOAL]
case intro.intro
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
hcard✝ : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i)
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
i j : ι
w : NeWord H i j
hcard : 3 ≤ #(H i)
hheadtail : i ≠ j
h : H i
hn1 : h ≠ 1
hnh : h ≠ (NeWord.head w)⁻¹
hnot1 : h * NeWord.head w ≠ 1
w' : NeWord H i i := NeWord.append (NeWord.mulHead w h hnot1) (_ : j ≠ i) (NeWord.singleton h⁻¹ (_ : h⁻¹ ≠ 1))
hw' : ↑(↑lift f) (NeWord.prod w') ≠ 1
heq1 : ↑(↑lift f) (NeWord.prod w) = 1
⊢ ↑(↑lift f) (NeWord.prod w') = 1
[PROOFSTEP]
simp [heq1]
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
hcard : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i)
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
i j : ι
w : NeWord H i j
⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1
[PROOFSTEP]
classical
cases' hcard with hcard hcard
· obtain ⟨i, h1, h2⟩ := Cardinal.three_le hcard i j
exact lift_word_prod_nontrivial_of_other_i f X hXnonempty hXdisj hpp w h1 h2
· cases' hcard with k hcard
by_cases hh : i = k <;> by_cases hl : j = k
· subst hh
subst hl
exact lift_word_prod_nontrivial_of_head_eq_last f X hXnonempty hXdisj hpp w
· subst hh
change j ≠ i at hl
exact lift_word_prod_nontrivial_of_head_card f X hXnonempty hXdisj hpp w hcard hl.symm
· subst hl
change i ≠ j at hh
have : lift f w.inv.prod ≠ 1 := lift_word_prod_nontrivial_of_head_card f X hXnonempty hXdisj hpp w.inv hcard hh.symm
intro heq
apply this
simpa using heq
· change i ≠ k at hh
change j ≠ k at hl
obtain ⟨h, hn1, -⟩ := Cardinal.three_le hcard 1 1
let w' : NeWord H k k :=
NeWord.append (NeWord.append (NeWord.singleton h hn1) hh.symm w) hl (NeWord.singleton h⁻¹ (inv_ne_one.mpr hn1))
have hw' : lift f w'.prod ≠ 1 := lift_word_prod_nontrivial_of_head_eq_last f X hXnonempty hXdisj hpp w'
intro heq1
apply hw'
simp [heq1]
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
hcard : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i)
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
i j : ι
w : NeWord H i j
⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1
[PROOFSTEP]
cases' hcard with hcard hcard
[GOAL]
case inl
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
i j : ι
w : NeWord H i j
hcard : 3 ≤ #ι
⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1
[PROOFSTEP]
obtain ⟨i, h1, h2⟩ := Cardinal.three_le hcard i j
[GOAL]
case inl.intro.intro
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
i✝ j : ι
w : NeWord H i✝ j
hcard : 3 ≤ #ι
i : ι
h1 : i ≠ i✝
h2 : i ≠ j
⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1
[PROOFSTEP]
exact lift_word_prod_nontrivial_of_other_i f X hXnonempty hXdisj hpp w h1 h2
[GOAL]
case inr
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
i j : ι
w : NeWord H i j
hcard : ∃ i, 3 ≤ #(H i)
⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1
[PROOFSTEP]
cases' hcard with k hcard
[GOAL]
case inr.intro
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
i j : ι
w : NeWord H i j
k : ι
hcard : 3 ≤ #(H k)
⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1
[PROOFSTEP]
by_cases hh : i = k
[GOAL]
case pos
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
i j : ι
w : NeWord H i j
k : ι
hcard : 3 ≤ #(H k)
hh : i = k
⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1
[PROOFSTEP]
by_cases hl : j = k
[GOAL]
case neg
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
i j : ι
w : NeWord H i j
k : ι
hcard : 3 ≤ #(H k)
hh : ¬i = k
⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1
[PROOFSTEP]
by_cases hl : j = k
[GOAL]
case pos
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
i j : ι
w : NeWord H i j
k : ι
hcard : 3 ≤ #(H k)
hh : i = k
hl : j = k
⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1
[PROOFSTEP]
subst hh
[GOAL]
case pos
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
i j : ι
w : NeWord H i j
hcard : 3 ≤ #(H i)
hl : j = i
⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1
[PROOFSTEP]
subst hl
[GOAL]
case pos
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
j : ι
w : NeWord H j j
hcard : 3 ≤ #(H j)
⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1
[PROOFSTEP]
exact lift_word_prod_nontrivial_of_head_eq_last f X hXnonempty hXdisj hpp w
[GOAL]
case neg
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
i j : ι
w : NeWord H i j
k : ι
hcard : 3 ≤ #(H k)
hh : i = k
hl : ¬j = k
⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1
[PROOFSTEP]
subst hh
[GOAL]
case neg
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
i j : ι
w : NeWord H i j
hcard : 3 ≤ #(H i)
hl : ¬j = i
⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1
[PROOFSTEP]
change j ≠ i at hl
[GOAL]
case neg
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
i j : ι
w : NeWord H i j
hcard : 3 ≤ #(H i)
hl : j ≠ i
⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1
[PROOFSTEP]
exact lift_word_prod_nontrivial_of_head_card f X hXnonempty hXdisj hpp w hcard hl.symm
[GOAL]
case pos
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
i j : ι
w : NeWord H i j
k : ι
hcard : 3 ≤ #(H k)
hh : ¬i = k
hl : j = k
⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1
[PROOFSTEP]
subst hl
[GOAL]
case pos
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
i j : ι
w : NeWord H i j
hcard : 3 ≤ #(H j)
hh : ¬i = j
⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1
[PROOFSTEP]
change i ≠ j at hh
[GOAL]
case pos
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
i j : ι
w : NeWord H i j
hcard : 3 ≤ #(H j)
hh : i ≠ j
⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1
[PROOFSTEP]
have : lift f w.inv.prod ≠ 1 := lift_word_prod_nontrivial_of_head_card f X hXnonempty hXdisj hpp w.inv hcard hh.symm
[GOAL]
case pos
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
i j : ι
w : NeWord H i j
hcard : 3 ≤ #(H j)
hh : i ≠ j
this : ↑(↑lift f) (NeWord.prod (NeWord.inv w)) ≠ 1
⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1
[PROOFSTEP]
intro heq
[GOAL]
case pos
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
i j : ι
w : NeWord H i j
hcard : 3 ≤ #(H j)
hh : i ≠ j
this : ↑(↑lift f) (NeWord.prod (NeWord.inv w)) ≠ 1
heq : ↑(↑lift f) (NeWord.prod w) = 1
⊢ False
[PROOFSTEP]
apply this
[GOAL]
case pos
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
i j : ι
w : NeWord H i j
hcard : 3 ≤ #(H j)
hh : i ≠ j
this : ↑(↑lift f) (NeWord.prod (NeWord.inv w)) ≠ 1
heq : ↑(↑lift f) (NeWord.prod w) = 1
⊢ ↑(↑lift f) (NeWord.prod (NeWord.inv w)) = 1
[PROOFSTEP]
simpa using heq
[GOAL]
case neg
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
i j : ι
w : NeWord H i j
k : ι
hcard : 3 ≤ #(H k)
hh : ¬i = k
hl : ¬j = k
⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1
[PROOFSTEP]
change i ≠ k at hh
[GOAL]
case neg
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
i j : ι
w : NeWord H i j
k : ι
hcard : 3 ≤ #(H k)
hl : ¬j = k
hh : i ≠ k
⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1
[PROOFSTEP]
change j ≠ k at hl
[GOAL]
case neg
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
i j : ι
w : NeWord H i j
k : ι
hcard : 3 ≤ #(H k)
hh : i ≠ k
hl : j ≠ k
⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1
[PROOFSTEP]
obtain ⟨h, hn1, -⟩ := Cardinal.three_le hcard 1 1
[GOAL]
case neg.intro.intro
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
i j : ι
w : NeWord H i j
k : ι
hcard : 3 ≤ #(H k)
hh : i ≠ k
hl : j ≠ k
h : H k
hn1 : h ≠ 1
⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1
[PROOFSTEP]
let w' : NeWord H k k :=
NeWord.append (NeWord.append (NeWord.singleton h hn1) hh.symm w) hl (NeWord.singleton h⁻¹ (inv_ne_one.mpr hn1))
[GOAL]
case neg.intro.intro
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
i j : ι
w : NeWord H i j
k : ι
hcard : 3 ≤ #(H k)
hh : i ≠ k
hl : j ≠ k
h : H k
hn1 : h ≠ 1
w' : NeWord H k k :=
NeWord.append (NeWord.append (NeWord.singleton h hn1) (_ : k ≠ i) w) hl (NeWord.singleton h⁻¹ (_ : h⁻¹ ≠ 1))
⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1
[PROOFSTEP]
have hw' : lift f w'.prod ≠ 1 := lift_word_prod_nontrivial_of_head_eq_last f X hXnonempty hXdisj hpp w'
[GOAL]
case neg.intro.intro
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
i j : ι
w : NeWord H i j
k : ι
hcard : 3 ≤ #(H k)
hh : i ≠ k
hl : j ≠ k
h : H k
hn1 : h ≠ 1
w' : NeWord H k k :=
NeWord.append (NeWord.append (NeWord.singleton h hn1) (_ : k ≠ i) w) hl (NeWord.singleton h⁻¹ (_ : h⁻¹ ≠ 1))
hw' : ↑(↑lift f) (NeWord.prod w') ≠ 1
⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1
[PROOFSTEP]
intro heq1
[GOAL]
case neg.intro.intro
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
i j : ι
w : NeWord H i j
k : ι
hcard : 3 ≤ #(H k)
hh : i ≠ k
hl : j ≠ k
h : H k
hn1 : h ≠ 1
w' : NeWord H k k :=
NeWord.append (NeWord.append (NeWord.singleton h hn1) (_ : k ≠ i) w) hl (NeWord.singleton h⁻¹ (_ : h⁻¹ ≠ 1))
hw' : ↑(↑lift f) (NeWord.prod w') ≠ 1
heq1 : ↑(↑lift f) (NeWord.prod w) = 1
⊢ False
[PROOFSTEP]
apply hw'
[GOAL]
case neg.intro.intro
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
i j : ι
w : NeWord H i j
k : ι
hcard : 3 ≤ #(H k)
hh : i ≠ k
hl : j ≠ k
h : H k
hn1 : h ≠ 1
w' : NeWord H k k :=
NeWord.append (NeWord.append (NeWord.singleton h hn1) (_ : k ≠ i) w) hl (NeWord.singleton h⁻¹ (_ : h⁻¹ ≠ 1))
hw' : ↑(↑lift f) (NeWord.prod w') ≠ 1
heq1 : ↑(↑lift f) (NeWord.prod w) = 1
⊢ ↑(↑lift f) (NeWord.prod w') = 1
[PROOFSTEP]
simp [heq1]
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
hcard : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i)
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
w : Word H
h : ↑(↑lift f) (Word.prod w) = 1
⊢ w = Word.empty
[PROOFSTEP]
by_contra hnotempty
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
hcard : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i)
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
w : Word H
h : ↑(↑lift f) (Word.prod w) = 1
hnotempty : ¬w = Word.empty
⊢ False
[PROOFSTEP]
obtain ⟨i, j, w, rfl⟩ := NeWord.of_word w hnotempty
[GOAL]
case intro.intro.intro
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
hcard : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i)
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
i j : ι
w : NeWord H i j
h : ↑(↑lift f) (Word.prod (NeWord.toWord w)) = 1
hnotempty : ¬NeWord.toWord w = Word.empty
⊢ False
[PROOFSTEP]
exact lift_word_prod_nontrivial_of_not_empty f hcard X hXnonempty hXdisj hpp w h
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
hcard : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i)
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
⊢ Function.Injective ↑(↑lift f)
[PROOFSTEP]
classical
apply (injective_iff_map_eq_one (lift f)).mpr
rw [(CoprodI.Word.equiv).forall_congr_left']
· intro w Heq
dsimp [Word.equiv] at *
· rw [empty_of_word_prod_eq_one f hcard X hXnonempty hXdisj hpp Heq]
rfl
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
hcard : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i)
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
⊢ Function.Injective ↑(↑lift f)
[PROOFSTEP]
apply (injective_iff_map_eq_one (lift f)).mpr
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
hcard : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i)
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
⊢ ∀ (a : CoprodI fun i => H i), ↑(↑lift f) a = 1 → a = 1
[PROOFSTEP]
rw [(CoprodI.Word.equiv).forall_congr_left']
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
hcard : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i)
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
⊢ ∀ (y : Word fun i => H i), ↑(↑lift f) (↑Word.equiv.symm y) = 1 → ↑Word.equiv.symm y = 1
[PROOFSTEP]
intro w Heq
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
hcard : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i)
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i
w : Word fun i => H i
Heq : ↑(↑lift f) (↑Word.equiv.symm w) = 1
⊢ ↑Word.equiv.symm w = 1
[PROOFSTEP]
dsimp [Word.equiv] at *
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
hcard : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i)
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), ¬h = 1 → ↑(f i) h • X j ⊆ X i
w : Word fun i => H i
Heq : ↑(↑lift f) (Word.prod w) = 1
⊢ Word.prod w = 1
[PROOFSTEP]
rw [empty_of_word_prod_eq_one f hcard X hXnonempty hXdisj hpp Heq]
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
hnontriv : Nontrivial ι
G : Type u_4
inst✝² : Group G
H : ι → Type u_5
inst✝¹ : (i : ι) → Group (H i)
f : (i : ι) → H i →* G
hcard : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i)
α : Type u_6
inst✝ : MulAction G α
X : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hpp : Pairwise fun i j => ∀ (h : H i), ¬h = 1 → ↑(f i) h • X j ⊆ X i
w : Word fun i => H i
Heq : ↑(↑lift f) (Word.prod w) = 1
⊢ Word.prod Word.empty = 1
[PROOFSTEP]
rfl
[GOAL]
ι✝ : Type u_1
M : ι✝ → Type u_2
inst✝² : (i : ι✝) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
ι : Type u_4
G : ι → Type u_5
inst✝ : (i : ι) → Group (G i)
hG : (i : ι) → IsFreeGroup (G i)
⊢ MonoidHom.comp (↑lift fun i => ↑IsFreeGroup.lift fun x => FreeGroup.of { fst := i, snd := x })
(↑FreeGroup.lift fun x => ↑of (IsFreeGroup.of x.snd)) =
MonoidHom.id (FreeGroup ((i : ι) × IsFreeGroup.Generators (G i)))
[PROOFSTEP]
ext
[GOAL]
case h
ι✝ : Type u_1
M : ι✝ → Type u_2
inst✝² : (i : ι✝) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
ι : Type u_4
G : ι → Type u_5
inst✝ : (i : ι) → Group (G i)
hG : (i : ι) → IsFreeGroup (G i)
a✝ : IsFreeGroup.Generators (FreeGroup ((i : ι) × IsFreeGroup.Generators (G i)))
⊢ ↑(MonoidHom.comp (↑lift fun i => ↑IsFreeGroup.lift fun x => FreeGroup.of { fst := i, snd := x })
(↑FreeGroup.lift fun x => ↑of (IsFreeGroup.of x.snd)))
(IsFreeGroup.of a✝) =
↑(MonoidHom.id (FreeGroup ((i : ι) × IsFreeGroup.Generators (G i)))) (IsFreeGroup.of a✝)
[PROOFSTEP]
simp
[GOAL]
ι✝ : Type u_1
M : ι✝ → Type u_2
inst✝² : (i : ι✝) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
ι : Type u_4
G : ι → Type u_5
inst✝ : (i : ι) → Group (G i)
hG : (i : ι) → IsFreeGroup (G i)
⊢ MonoidHom.comp (↑FreeGroup.lift fun x => ↑of (IsFreeGroup.of x.snd))
(↑lift fun i => ↑IsFreeGroup.lift fun x => FreeGroup.of { fst := i, snd := x }) =
MonoidHom.id (CoprodI G)
[PROOFSTEP]
ext
[GOAL]
case h.h
ι✝ : Type u_1
M : ι✝ → Type u_2
inst✝² : (i : ι✝) → Monoid (M i)
N : Type u_3
inst✝¹ : Monoid N
ι : Type u_4
G : ι → Type u_5
inst✝ : (i : ι) → Group (G i)
hG : (i : ι) → IsFreeGroup (G i)
i✝ : ι
a✝ : IsFreeGroup.Generators (G i✝)
⊢ ↑(MonoidHom.comp
(MonoidHom.comp (↑FreeGroup.lift fun x => ↑of (IsFreeGroup.of x.snd))
(↑lift fun i => ↑IsFreeGroup.lift fun x => FreeGroup.of { fst := i, snd := x }))
of)
(IsFreeGroup.of a✝) =
↑(MonoidHom.comp (MonoidHom.id (CoprodI G)) of) (IsFreeGroup.of a✝)
[PROOFSTEP]
simp
[GOAL]
ι✝ : Type u_1
M : ι✝ → Type u_2
inst✝¹ : (i : ι✝) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
ι : Type u_1
⊢ FreeGroup ι ≃* CoprodI fun x => FreeGroup Unit
[PROOFSTEP]
refine' MonoidHom.toMulEquiv _ _ _ _
[GOAL]
case refine'_1
ι✝ : Type u_1
M : ι✝ → Type u_2
inst✝¹ : (i : ι✝) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
ι : Type u_1
⊢ FreeGroup ι →* CoprodI fun x => FreeGroup Unit
case refine'_2
ι✝ : Type u_1
M : ι✝ → Type u_2
inst✝¹ : (i : ι✝) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
ι : Type u_1
⊢ (CoprodI fun x => FreeGroup Unit) →* FreeGroup ι
case refine'_3
ι✝ : Type u_1
M : ι✝ → Type u_2
inst✝¹ : (i : ι✝) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
ι : Type u_1
⊢ MonoidHom.comp ?refine'_2 ?refine'_1 = MonoidHom.id (FreeGroup ι)
case refine'_4
ι✝ : Type u_1
M : ι✝ → Type u_2
inst✝¹ : (i : ι✝) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
ι : Type u_1
⊢ MonoidHom.comp ?refine'_1 ?refine'_2 = MonoidHom.id (CoprodI fun x => FreeGroup Unit)
[PROOFSTEP]
exact FreeGroup.lift fun i => @CoprodI.of ι _ _ i (FreeGroup.of Unit.unit)
[GOAL]
case refine'_2
ι✝ : Type u_1
M : ι✝ → Type u_2
inst✝¹ : (i : ι✝) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
ι : Type u_1
⊢ (CoprodI fun x => FreeGroup Unit) →* FreeGroup ι
case refine'_3
ι✝ : Type u_1
M : ι✝ → Type u_2
inst✝¹ : (i : ι✝) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
ι : Type u_1
⊢ MonoidHom.comp ?refine'_2 (↑FreeGroup.lift fun i => ↑of (FreeGroup.of ())) = MonoidHom.id (FreeGroup ι)
case refine'_4
ι✝ : Type u_1
M : ι✝ → Type u_2
inst✝¹ : (i : ι✝) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
ι : Type u_1
⊢ MonoidHom.comp (↑FreeGroup.lift fun i => ↑of (FreeGroup.of ())) ?refine'_2 =
MonoidHom.id (CoprodI fun x => FreeGroup Unit)
[PROOFSTEP]
exact CoprodI.lift fun i => FreeGroup.lift fun _ => FreeGroup.of i
[GOAL]
case refine'_3
ι✝ : Type u_1
M : ι✝ → Type u_2
inst✝¹ : (i : ι✝) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
ι : Type u_1
⊢ MonoidHom.comp (↑lift fun i => ↑FreeGroup.lift fun x => FreeGroup.of i)
(↑FreeGroup.lift fun i => ↑of (FreeGroup.of ())) =
MonoidHom.id (FreeGroup ι)
[PROOFSTEP]
ext
[GOAL]
case refine'_3.h
ι✝ : Type u_1
M : ι✝ → Type u_2
inst✝¹ : (i : ι✝) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
ι : Type u_1
a✝ : IsFreeGroup.Generators (FreeGroup ι)
⊢ ↑(MonoidHom.comp (↑lift fun i => ↑FreeGroup.lift fun x => FreeGroup.of i)
(↑FreeGroup.lift fun i => ↑of (FreeGroup.of ())))
(IsFreeGroup.of a✝) =
↑(MonoidHom.id (FreeGroup ι)) (IsFreeGroup.of a✝)
[PROOFSTEP]
simp
[GOAL]
case refine'_4
ι✝ : Type u_1
M : ι✝ → Type u_2
inst✝¹ : (i : ι✝) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
ι : Type u_1
⊢ MonoidHom.comp (↑FreeGroup.lift fun i => ↑of (FreeGroup.of ()))
(↑lift fun i => ↑FreeGroup.lift fun x => FreeGroup.of i) =
MonoidHom.id (CoprodI fun x => FreeGroup Unit)
[PROOFSTEP]
ext i a
[GOAL]
case refine'_4.h.h
ι✝ : Type u_1
M : ι✝ → Type u_2
inst✝¹ : (i : ι✝) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
ι : Type u_1
i : ι
a : IsFreeGroup.Generators (FreeGroup Unit)
⊢ ↑(MonoidHom.comp
(MonoidHom.comp (↑FreeGroup.lift fun i => ↑of (FreeGroup.of ()))
(↑lift fun i => ↑FreeGroup.lift fun x => FreeGroup.of i))
of)
(IsFreeGroup.of a) =
↑(MonoidHom.comp (MonoidHom.id (CoprodI fun x => FreeGroup Unit)) of) (IsFreeGroup.of a)
[PROOFSTEP]
cases a
[GOAL]
case refine'_4.h.h.unit
ι✝ : Type u_1
M : ι✝ → Type u_2
inst✝¹ : (i : ι✝) → Monoid (M i)
N : Type u_3
inst✝ : Monoid N
ι : Type u_1
i : ι
⊢ ↑(MonoidHom.comp
(MonoidHom.comp (↑FreeGroup.lift fun i => ↑of (FreeGroup.of ()))
(↑lift fun i => ↑FreeGroup.lift fun x => FreeGroup.of i))
of)
(IsFreeGroup.of PUnit.unit) =
↑(MonoidHom.comp (MonoidHom.id (CoprodI fun x => FreeGroup Unit)) of) (IsFreeGroup.of PUnit.unit)
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
⊢ Function.Injective ↑(↑FreeGroup.lift a)
[PROOFSTEP]
have :
FreeGroup.lift a = (CoprodI.lift fun i => FreeGroup.lift fun _ => a i).comp (@freeGroupEquivCoprodI ι).toMonoidHom :=
by
ext i
simp
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
⊢ ↑FreeGroup.lift a =
MonoidHom.comp (↑lift fun i => ↑FreeGroup.lift fun x => a i) (MulEquiv.toMonoidHom freeGroupEquivCoprodI)
[PROOFSTEP]
ext i
[GOAL]
case h
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
i : IsFreeGroup.Generators (FreeGroup ι)
⊢ ↑(↑FreeGroup.lift a) (IsFreeGroup.of i) =
↑(MonoidHom.comp (↑lift fun i => ↑FreeGroup.lift fun x => a i) (MulEquiv.toMonoidHom freeGroupEquivCoprodI))
(IsFreeGroup.of i)
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
this :
↑FreeGroup.lift a =
MonoidHom.comp (↑lift fun i => ↑FreeGroup.lift fun x => a i) (MulEquiv.toMonoidHom freeGroupEquivCoprodI)
⊢ Function.Injective ↑(↑FreeGroup.lift a)
[PROOFSTEP]
rw [this, MonoidHom.coe_comp]
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
this :
↑FreeGroup.lift a =
MonoidHom.comp (↑lift fun i => ↑FreeGroup.lift fun x => a i) (MulEquiv.toMonoidHom freeGroupEquivCoprodI)
⊢ Function.Injective (↑(↑lift fun i => ↑FreeGroup.lift fun x => a i) ∘ ↑(MulEquiv.toMonoidHom freeGroupEquivCoprodI))
[PROOFSTEP]
clear this
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
⊢ Function.Injective (↑(↑lift fun i => ↑FreeGroup.lift fun x => a i) ∘ ↑(MulEquiv.toMonoidHom freeGroupEquivCoprodI))
[PROOFSTEP]
refine'
Function.Injective.comp _
(MulEquiv.injective freeGroupEquivCoprodI)
-- Step two: Invoke the ping-pong lemma for free products
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
⊢ Function.Injective ↑(↑lift fun i => ↑FreeGroup.lift fun x => a i)
[PROOFSTEP]
show
Function.Injective
(lift fun i : ι => FreeGroup.lift fun _ => a i)
-- Prepare to instantiate lift_injective_of_ping_pong
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
⊢ Function.Injective ↑(↑lift fun i => ↑FreeGroup.lift fun x => a i)
[PROOFSTEP]
let H : ι → Type _ := fun _i => FreeGroup Unit
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
⊢ Function.Injective ↑(↑lift fun i => ↑FreeGroup.lift fun x => a i)
[PROOFSTEP]
let f : ∀ i, H i →* G := fun i => FreeGroup.lift fun _ => a i
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
⊢ Function.Injective ↑(↑lift fun i => ↑FreeGroup.lift fun x => a i)
[PROOFSTEP]
let X' : ι → Set α := fun i => X i ∪ Y i
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
⊢ Function.Injective ↑(↑lift fun i => ↑FreeGroup.lift fun x => a i)
[PROOFSTEP]
apply lift_injective_of_ping_pong f _ X'
[GOAL]
case hXnonempty
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
⊢ ∀ (i : ι), Set.Nonempty (X' i)
case hXdisj
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
⊢ Pairwise fun i j => Disjoint (X' i) (X' j)
case hpp
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
⊢ Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X' j ⊆ X' i
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
⊢ 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i)
[PROOFSTEP]
show ∀ i, (X' i).Nonempty
[GOAL]
case hXnonempty
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
⊢ ∀ (i : ι), Set.Nonempty (X' i)
[PROOFSTEP]
exact fun i => Set.Nonempty.inl (hXnonempty i)
[GOAL]
case hXdisj
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
⊢ Pairwise fun i j => Disjoint (X' i) (X' j)
case hpp
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
⊢ Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X' j ⊆ X' i
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
⊢ 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i)
[PROOFSTEP]
show Pairwise fun i j => Disjoint (X' i) (X' j)
[GOAL]
case hXdisj
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
⊢ Pairwise fun i j => Disjoint (X' i) (X' j)
[PROOFSTEP]
intro i j hij
[GOAL]
case hXdisj
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
i j : ι
hij : i ≠ j
⊢ Disjoint (X' i) (X' j)
[PROOFSTEP]
simp only
[GOAL]
case hXdisj
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
i j : ι
hij : i ≠ j
⊢ Disjoint (X i ∪ Y i) (X j ∪ Y j)
[PROOFSTEP]
apply Disjoint.union_left
[GOAL]
case hXdisj.hs
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
i j : ι
hij : i ≠ j
⊢ Disjoint (X i) (X j ∪ Y j)
[PROOFSTEP]
apply Disjoint.union_right
[GOAL]
case hXdisj.ht
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
i j : ι
hij : i ≠ j
⊢ Disjoint (Y i) (X j ∪ Y j)
[PROOFSTEP]
apply Disjoint.union_right
[GOAL]
case hXdisj.hs.ht
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
i j : ι
hij : i ≠ j
⊢ Disjoint (X i) (X j)
[PROOFSTEP]
exact hXdisj hij
[GOAL]
case hXdisj.hs.hu
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
i j : ι
hij : i ≠ j
⊢ Disjoint (X i) (Y j)
[PROOFSTEP]
exact hXYdisj i j
[GOAL]
case hXdisj.ht.ht
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
i j : ι
hij : i ≠ j
⊢ Disjoint (Y i) (X j)
[PROOFSTEP]
exact (hXYdisj j i).symm
[GOAL]
case hXdisj.ht.hu
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
i j : ι
hij : i ≠ j
⊢ Disjoint (Y i) (Y j)
[PROOFSTEP]
exact hYdisj hij
[GOAL]
case hpp
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
⊢ Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X' j ⊆ X' i
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
⊢ 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i)
[PROOFSTEP]
show Pairwise fun i j => ∀ h : H i, h ≠ 1 → f i h • X' j ⊆ X' i
[GOAL]
case hpp
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
⊢ Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X' j ⊆ X' i
[PROOFSTEP]
rintro i j hij
[GOAL]
case hpp
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
i j : ι
hij : i ≠ j
⊢ ∀ (h : H i), h ≠ 1 → ↑(f i) h • X' j ⊆ X' i
[PROOFSTEP]
refine' FreeGroup.freeGroupUnitEquivInt.forall_congr_left'.mpr _
[GOAL]
case hpp
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
i j : ι
hij : i ≠ j
⊢ ∀ (y : ℤ),
↑FreeGroup.freeGroupUnitEquivInt.symm y ≠ 1 → ↑(f i) (↑FreeGroup.freeGroupUnitEquivInt.symm y) • X' j ⊆ X' i
[PROOFSTEP]
intro n hne1
[GOAL]
case hpp
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
i j : ι
hij : i ≠ j
n : ℤ
hne1 : ↑FreeGroup.freeGroupUnitEquivInt.symm n ≠ 1
⊢ ↑(f i) (↑FreeGroup.freeGroupUnitEquivInt.symm n) • X' j ⊆ X' i
[PROOFSTEP]
change FreeGroup.lift (fun _ => a i) (FreeGroup.of () ^ n) • X' j ⊆ X' i
[GOAL]
case hpp
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
i j : ι
hij : i ≠ j
n : ℤ
hne1 : ↑FreeGroup.freeGroupUnitEquivInt.symm n ≠ 1
⊢ ↑(↑FreeGroup.lift fun x => a i) (FreeGroup.of () ^ n) • X' j ⊆ X' i
[PROOFSTEP]
simp only [map_zpow, FreeGroup.lift.of]
[GOAL]
case hpp
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
i j : ι
hij : i ≠ j
n : ℤ
hne1 : ↑FreeGroup.freeGroupUnitEquivInt.symm n ≠ 1
⊢ a i ^ n • (X j ∪ Y j) ⊆ X i ∪ Y i
[PROOFSTEP]
change a i ^ n • X' j ⊆ X' i
[GOAL]
case hpp
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
i j : ι
hij : i ≠ j
n : ℤ
hne1 : ↑FreeGroup.freeGroupUnitEquivInt.symm n ≠ 1
⊢ a i ^ n • X' j ⊆ X' i
[PROOFSTEP]
have hnne0 : n ≠ 0 := by
rintro rfl
apply hne1
simp; rfl
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
i j : ι
hij : i ≠ j
n : ℤ
hne1 : ↑FreeGroup.freeGroupUnitEquivInt.symm n ≠ 1
⊢ n ≠ 0
[PROOFSTEP]
rintro rfl
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
i j : ι
hij : i ≠ j
hne1 : ↑FreeGroup.freeGroupUnitEquivInt.symm 0 ≠ 1
⊢ False
[PROOFSTEP]
apply hne1
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
i j : ι
hij : i ≠ j
hne1 : ↑FreeGroup.freeGroupUnitEquivInt.symm 0 ≠ 1
⊢ ↑FreeGroup.freeGroupUnitEquivInt.symm 0 = 1
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
i j : ι
hij : i ≠ j
hne1 : ↑FreeGroup.freeGroupUnitEquivInt.symm 0 ≠ 1
⊢ ↑FreeGroup.freeGroupUnitEquivInt.symm 0 = 1
[PROOFSTEP]
rfl
[GOAL]
case hpp
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
i j : ι
hij : i ≠ j
n : ℤ
hne1 : ↑FreeGroup.freeGroupUnitEquivInt.symm n ≠ 1
hnne0 : n ≠ 0
⊢ a i ^ n • X' j ⊆ X' i
[PROOFSTEP]
clear hne1
[GOAL]
case hpp
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
i j : ι
hij : i ≠ j
n : ℤ
hnne0 : n ≠ 0
⊢ a i ^ n • X' j ⊆ X' i
[PROOFSTEP]
simp only
-- Positive and negative powers separately
[GOAL]
case hpp
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
i j : ι
hij : i ≠ j
n : ℤ
hnne0 : n ≠ 0
⊢ a i ^ n • (X j ∪ Y j) ⊆ X i ∪ Y i
[PROOFSTEP]
cases' (lt_or_gt_of_ne hnne0).symm with hlt hgt
[GOAL]
case hpp.inl
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
i j : ι
hij : i ≠ j
n : ℤ
hnne0 : n ≠ 0
hlt : n > 0
⊢ a i ^ n • (X j ∪ Y j) ⊆ X i ∪ Y i
[PROOFSTEP]
have h1n : 1 ≤ n := hlt
[GOAL]
case hpp.inl
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
i j : ι
hij : i ≠ j
n : ℤ
hnne0 : n ≠ 0
hlt : n > 0
h1n : 1 ≤ n
⊢ a i ^ n • (X j ∪ Y j) ⊆ X i ∪ Y i
[PROOFSTEP]
calc
a i ^ n • X' j ⊆ a i ^ n • (Y i)ᶜ := smul_set_mono ((hXYdisj j i).union_left <| hYdisj hij.symm).subset_compl_right
_ ⊆ X i := by
clear hnne0 hlt
refine Int.le_induction (P := fun n => a i ^ n • (Y i)ᶜ ⊆ X i) ?_ ?_ n h1n
· dsimp
rw [zpow_one]
exact hX i
· dsimp
intro n _hle hi
calc
a i ^ (n + 1) • (Y i)ᶜ = (a i ^ n * a i) • (Y i)ᶜ := by rw [zpow_add, zpow_one]
_ = a i ^ n • a i • (Y i)ᶜ := (MulAction.mul_smul _ _ _)
_ ⊆ a i ^ n • X i := (smul_set_mono <| hX i)
_ ⊆ a i ^ n • (Y i)ᶜ := (smul_set_mono (hXYdisj i i).subset_compl_right)
_ ⊆ X i := hi
_ ⊆ X' i := Set.subset_union_left _ _
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
i j : ι
hij : i ≠ j
n : ℤ
hnne0 : n ≠ 0
hlt : n > 0
h1n : 1 ≤ n
⊢ a i ^ n • (Y i)ᶜ ⊆ X i
[PROOFSTEP]
clear hnne0 hlt
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
i j : ι
hij : i ≠ j
n : ℤ
h1n : 1 ≤ n
⊢ a i ^ n • (Y i)ᶜ ⊆ X i
[PROOFSTEP]
refine Int.le_induction (P := fun n => a i ^ n • (Y i)ᶜ ⊆ X i) ?_ ?_ n h1n
[GOAL]
case refine_1
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
i j : ι
hij : i ≠ j
n : ℤ
h1n : 1 ≤ n
⊢ (fun n => a i ^ n • (Y i)ᶜ ⊆ X i) 1
[PROOFSTEP]
dsimp
[GOAL]
case refine_1
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
i j : ι
hij : i ≠ j
n : ℤ
h1n : 1 ≤ n
⊢ a i ^ 1 • (Y i)ᶜ ⊆ X i
[PROOFSTEP]
rw [zpow_one]
[GOAL]
case refine_1
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
i j : ι
hij : i ≠ j
n : ℤ
h1n : 1 ≤ n
⊢ a i • (Y i)ᶜ ⊆ X i
[PROOFSTEP]
exact hX i
[GOAL]
case refine_2
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
i j : ι
hij : i ≠ j
n : ℤ
h1n : 1 ≤ n
⊢ ∀ (n : ℤ), 1 ≤ n → (fun n => a i ^ n • (Y i)ᶜ ⊆ X i) n → (fun n => a i ^ n • (Y i)ᶜ ⊆ X i) (n + 1)
[PROOFSTEP]
dsimp
[GOAL]
case refine_2
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
i j : ι
hij : i ≠ j
n : ℤ
h1n : 1 ≤ n
⊢ ∀ (n : ℤ), 1 ≤ n → a i ^ n • (Y i)ᶜ ⊆ X i → a i ^ (n + 1) • (Y i)ᶜ ⊆ X i
[PROOFSTEP]
intro n _hle hi
[GOAL]
case refine_2
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
i j : ι
hij : i ≠ j
n✝ : ℤ
h1n : 1 ≤ n✝
n : ℤ
_hle : 1 ≤ n
hi : a i ^ n • (Y i)ᶜ ⊆ X i
⊢ a i ^ (n + 1) • (Y i)ᶜ ⊆ X i
[PROOFSTEP]
calc
a i ^ (n + 1) • (Y i)ᶜ = (a i ^ n * a i) • (Y i)ᶜ := by rw [zpow_add, zpow_one]
_ = a i ^ n • a i • (Y i)ᶜ := (MulAction.mul_smul _ _ _)
_ ⊆ a i ^ n • X i := (smul_set_mono <| hX i)
_ ⊆ a i ^ n • (Y i)ᶜ := (smul_set_mono (hXYdisj i i).subset_compl_right)
_ ⊆ X i := hi
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
i j : ι
hij : i ≠ j
n✝ : ℤ
h1n : 1 ≤ n✝
n : ℤ
_hle : 1 ≤ n
hi : a i ^ n • (Y i)ᶜ ⊆ X i
⊢ a i ^ (n + 1) • (Y i)ᶜ = (a i ^ n * a i) • (Y i)ᶜ
[PROOFSTEP]
rw [zpow_add, zpow_one]
[GOAL]
case hpp.inr
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
i j : ι
hij : i ≠ j
n : ℤ
hnne0 : n ≠ 0
hgt : n < 0
⊢ a i ^ n • (X j ∪ Y j) ⊆ X i ∪ Y i
[PROOFSTEP]
have h1n : n ≤ -1 := by
apply Int.le_of_lt_add_one
simpa using hgt
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
i j : ι
hij : i ≠ j
n : ℤ
hnne0 : n ≠ 0
hgt : n < 0
⊢ n ≤ -1
[PROOFSTEP]
apply Int.le_of_lt_add_one
[GOAL]
case H
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
i j : ι
hij : i ≠ j
n : ℤ
hnne0 : n ≠ 0
hgt : n < 0
⊢ n < -1 + 1
[PROOFSTEP]
simpa using hgt
[GOAL]
case hpp.inr
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
i j : ι
hij : i ≠ j
n : ℤ
hnne0 : n ≠ 0
hgt : n < 0
h1n : n ≤ -1
⊢ a i ^ n • (X j ∪ Y j) ⊆ X i ∪ Y i
[PROOFSTEP]
calc
a i ^ n • X' j ⊆ a i ^ n • (X i)ᶜ :=
smul_set_mono ((hXdisj hij.symm).union_left (hXYdisj i j).symm).subset_compl_right
_ ⊆ Y i := by
refine' Int.le_induction_down (P := fun n => a i ^ n • (X i)ᶜ ⊆ Y i) _ _ _ h1n
· dsimp
rw [zpow_neg, zpow_one]
exact hY i
· dsimp
intro n _ hi
calc
a i ^ (n - 1) • (X i)ᶜ = (a i ^ n * (a i)⁻¹) • (X i)ᶜ := by rw [zpow_sub, zpow_one]
_ = a i ^ n • (a i)⁻¹ • (X i)ᶜ := (MulAction.mul_smul _ _ _)
_ ⊆ a i ^ n • Y i := (smul_set_mono <| hY i)
_ ⊆ a i ^ n • (X i)ᶜ := (smul_set_mono (hXYdisj i i).symm.subset_compl_right)
_ ⊆ Y i := hi
_ ⊆ X' i := Set.subset_union_right _ _
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
i j : ι
hij : i ≠ j
n : ℤ
hnne0 : n ≠ 0
hgt : n < 0
h1n : n ≤ -1
⊢ a i ^ n • (X i)ᶜ ⊆ Y i
[PROOFSTEP]
refine' Int.le_induction_down (P := fun n => a i ^ n • (X i)ᶜ ⊆ Y i) _ _ _ h1n
[GOAL]
case refine'_1
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
i j : ι
hij : i ≠ j
n : ℤ
hnne0 : n ≠ 0
hgt : n < 0
h1n : n ≤ -1
⊢ (fun n => a i ^ n • (X i)ᶜ ⊆ Y i) (-1)
[PROOFSTEP]
dsimp
[GOAL]
case refine'_1
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
i j : ι
hij : i ≠ j
n : ℤ
hnne0 : n ≠ 0
hgt : n < 0
h1n : n ≤ -1
⊢ a i ^ (-1) • (X i)ᶜ ⊆ Y i
[PROOFSTEP]
rw [zpow_neg, zpow_one]
[GOAL]
case refine'_1
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
i j : ι
hij : i ≠ j
n : ℤ
hnne0 : n ≠ 0
hgt : n < 0
h1n : n ≤ -1
⊢ (a i)⁻¹ • (X i)ᶜ ⊆ Y i
[PROOFSTEP]
exact hY i
[GOAL]
case refine'_2
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
i j : ι
hij : i ≠ j
n : ℤ
hnne0 : n ≠ 0
hgt : n < 0
h1n : n ≤ -1
⊢ ∀ (n : ℤ), n ≤ -1 → (fun n => a i ^ n • (X i)ᶜ ⊆ Y i) n → (fun n => a i ^ n • (X i)ᶜ ⊆ Y i) (n - 1)
[PROOFSTEP]
dsimp
[GOAL]
case refine'_2
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
i j : ι
hij : i ≠ j
n : ℤ
hnne0 : n ≠ 0
hgt : n < 0
h1n : n ≤ -1
⊢ ∀ (n : ℤ), n ≤ -1 → a i ^ n • (X i)ᶜ ⊆ Y i → a i ^ (n - 1) • (X i)ᶜ ⊆ Y i
[PROOFSTEP]
intro n _ hi
[GOAL]
case refine'_2
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
i j : ι
hij : i ≠ j
n✝ : ℤ
hnne0 : n✝ ≠ 0
hgt : n✝ < 0
h1n : n✝ ≤ -1
n : ℤ
a✝ : n ≤ -1
hi : a i ^ n • (X i)ᶜ ⊆ Y i
⊢ a i ^ (n - 1) • (X i)ᶜ ⊆ Y i
[PROOFSTEP]
calc
a i ^ (n - 1) • (X i)ᶜ = (a i ^ n * (a i)⁻¹) • (X i)ᶜ := by rw [zpow_sub, zpow_one]
_ = a i ^ n • (a i)⁻¹ • (X i)ᶜ := (MulAction.mul_smul _ _ _)
_ ⊆ a i ^ n • Y i := (smul_set_mono <| hY i)
_ ⊆ a i ^ n • (X i)ᶜ := (smul_set_mono (hXYdisj i i).symm.subset_compl_right)
_ ⊆ Y i := hi
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
i j : ι
hij : i ≠ j
n✝ : ℤ
hnne0 : n✝ ≠ 0
hgt : n✝ < 0
h1n : n✝ ≤ -1
n : ℤ
a✝ : n ≤ -1
hi : a i ^ n • (X i)ᶜ ⊆ Y i
⊢ a i ^ (n - 1) • (X i)ᶜ = (a i ^ n * (a i)⁻¹) • (X i)ᶜ
[PROOFSTEP]
rw [zpow_sub, zpow_one]
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
⊢ 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i)
[PROOFSTEP]
show _ ∨ ∃ i, 3 ≤ #(H i)
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
⊢ 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i)
[PROOFSTEP]
inhabit ι
[GOAL]
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
inhabited_h : Inhabited ι
⊢ 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i)
[PROOFSTEP]
right
[GOAL]
case h
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
inhabited_h : Inhabited ι
⊢ ∃ i, 3 ≤ #(H i)
[PROOFSTEP]
use Inhabited.default
[GOAL]
case h
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
inhabited_h : Inhabited ι
⊢ 3 ≤ #(H default)
[PROOFSTEP]
simp only
[GOAL]
case h
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
inhabited_h : Inhabited ι
⊢ 3 ≤ #(FreeGroup Unit)
[PROOFSTEP]
rw [FreeGroup.freeGroupUnitEquivInt.cardinal_eq, Cardinal.mk_denumerable]
[GOAL]
case h
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
inhabited_h : Inhabited ι
⊢ 3 ≤ ℵ₀
[PROOFSTEP]
apply le_of_lt
[GOAL]
case h.a
ι : Type u_1
M : ι → Type u_2
inst✝⁴ : (i : ι) → Monoid (M i)
N : Type u_3
inst✝³ : Monoid N
inst✝² : Nontrivial ι
G : Type u_1
inst✝¹ : Group G
a : ι → G
α : Type u_4
inst✝ : MulAction G α
X Y : ι → Set α
hXnonempty : ∀ (i : ι), Set.Nonempty (X i)
hXdisj : Pairwise fun i j => Disjoint (X i) (X j)
hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j)
hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j)
hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i
hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i
H : ι → Type := fun _i => FreeGroup Unit
f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i
X' : ι → Set α := fun i => X i ∪ Y i
inhabited_h : Inhabited ι
⊢ 3 < ℵ₀
[PROOFSTEP]
exact nat_lt_aleph0 3
| {"mathlib_filename": "Mathlib.GroupTheory.CoprodI", "llama_tokens": 111473} |
[GOAL]
p q r : ℕ+
⊢ sumInv {p, q, r} = (↑↑p)⁻¹ + (↑↑q)⁻¹ + (↑↑r)⁻¹
[PROOFSTEP]
simp only [sumInv, add_zero, insert_eq_cons, add_assoc, map_cons, sum_cons, map_singleton, sum_singleton]
[GOAL]
pqr : Multiset ℕ+
⊢ Admissible pqr → 1 < sumInv pqr
[PROOFSTEP]
rw [Admissible]
[GOAL]
pqr : Multiset ℕ+
⊢ (∃ q r, A' q r = pqr) ∨ (∃ r, D' r = pqr) ∨ E' 3 = pqr ∨ E' 4 = pqr ∨ E' 5 = pqr → 1 < sumInv pqr
[PROOFSTEP]
rintro (⟨p', q', H⟩ | ⟨n, H⟩ | H | H | H)
[GOAL]
case inl.intro.intro
pqr : Multiset ℕ+
p' q' : ℕ+
H : A' p' q' = pqr
⊢ 1 < sumInv pqr
[PROOFSTEP]
rw [← H, A', sumInv_pqr, add_assoc]
[GOAL]
case inl.intro.intro
pqr : Multiset ℕ+
p' q' : ℕ+
H : A' p' q' = pqr
⊢ 1 < (↑↑1)⁻¹ + ((↑↑p')⁻¹ + (↑↑q')⁻¹)
[PROOFSTEP]
simp only [lt_add_iff_pos_right, PNat.one_coe, inv_one, Nat.cast_one]
[GOAL]
case inl.intro.intro
pqr : Multiset ℕ+
p' q' : ℕ+
H : A' p' q' = pqr
⊢ 0 < (↑↑p')⁻¹ + (↑↑q')⁻¹
[PROOFSTEP]
apply add_pos
[GOAL]
case inl.intro.intro.ha
pqr : Multiset ℕ+
p' q' : ℕ+
H : A' p' q' = pqr
⊢ 0 < (↑↑p')⁻¹
[PROOFSTEP]
simp only [PNat.pos, Nat.cast_pos, inv_pos]
[GOAL]
case inl.intro.intro.hb
pqr : Multiset ℕ+
p' q' : ℕ+
H : A' p' q' = pqr
⊢ 0 < (↑↑q')⁻¹
[PROOFSTEP]
simp only [PNat.pos, Nat.cast_pos, inv_pos]
[GOAL]
case inr.inl.intro
pqr : Multiset ℕ+
n : ℕ+
H : D' n = pqr
⊢ 1 < sumInv pqr
[PROOFSTEP]
rw [← H, D', sumInv_pqr]
[GOAL]
case inr.inl.intro
pqr : Multiset ℕ+
n : ℕ+
H : D' n = pqr
⊢ 1 < (↑↑2)⁻¹ + (↑↑2)⁻¹ + (↑↑n)⁻¹
[PROOFSTEP]
conv_rhs => simp only [OfNat.ofNat, PNat.mk_coe]
[GOAL]
pqr : Multiset ℕ+
n : ℕ+
H : D' n = pqr
| (↑↑2)⁻¹ + (↑↑2)⁻¹ + (↑↑n)⁻¹
[PROOFSTEP]
simp only [OfNat.ofNat, PNat.mk_coe]
[GOAL]
pqr : Multiset ℕ+
n : ℕ+
H : D' n = pqr
| (↑↑2)⁻¹ + (↑↑2)⁻¹ + (↑↑n)⁻¹
[PROOFSTEP]
simp only [OfNat.ofNat, PNat.mk_coe]
[GOAL]
pqr : Multiset ℕ+
n : ℕ+
H : D' n = pqr
| (↑↑2)⁻¹ + (↑↑2)⁻¹ + (↑↑n)⁻¹
[PROOFSTEP]
simp only [OfNat.ofNat, PNat.mk_coe]
[GOAL]
case inr.inl.intro
pqr : Multiset ℕ+
n : ℕ+
H : D' n = pqr
⊢ 1 < (↑(1 + 1))⁻¹ + (↑(1 + 1))⁻¹ + (↑↑n)⁻¹
[PROOFSTEP]
norm_num
[GOAL]
case inr.inr.inl
pqr : Multiset ℕ+
H : E' 3 = pqr
⊢ 1 < sumInv pqr
case inr.inr.inr.inl
pqr : Multiset ℕ+
H : E' 4 = pqr
⊢ 1 < sumInv pqr
case inr.inr.inr.inr pqr : Multiset ℕ+ H : E' 5 = pqr ⊢ 1 < sumInv pqr
[PROOFSTEP]
all_goals
rw [← H, E', sumInv_pqr]
conv_rhs => simp only [OfNat.ofNat, PNat.mk_coe]
[GOAL]
case inr.inr.inl
pqr : Multiset ℕ+
H : E' 3 = pqr
⊢ 1 < sumInv pqr
[PROOFSTEP]
rw [← H, E', sumInv_pqr]
[GOAL]
case inr.inr.inl
pqr : Multiset ℕ+
H : E' 3 = pqr
⊢ 1 < (↑↑2)⁻¹ + (↑↑3)⁻¹ + (↑↑3)⁻¹
[PROOFSTEP]
conv_rhs => simp only [OfNat.ofNat, PNat.mk_coe]
[GOAL]
pqr : Multiset ℕ+
H : E' 3 = pqr
| (↑↑2)⁻¹ + (↑↑3)⁻¹ + (↑↑3)⁻¹
[PROOFSTEP]
simp only [OfNat.ofNat, PNat.mk_coe]
[GOAL]
pqr : Multiset ℕ+
H : E' 3 = pqr
| (↑↑2)⁻¹ + (↑↑3)⁻¹ + (↑↑3)⁻¹
[PROOFSTEP]
simp only [OfNat.ofNat, PNat.mk_coe]
[GOAL]
pqr : Multiset ℕ+
H : E' 3 = pqr
| (↑↑2)⁻¹ + (↑↑3)⁻¹ + (↑↑3)⁻¹
[PROOFSTEP]
simp only [OfNat.ofNat, PNat.mk_coe]
[GOAL]
case inr.inr.inr.inl
pqr : Multiset ℕ+
H : E' 4 = pqr
⊢ 1 < sumInv pqr
[PROOFSTEP]
rw [← H, E', sumInv_pqr]
[GOAL]
case inr.inr.inr.inl
pqr : Multiset ℕ+
H : E' 4 = pqr
⊢ 1 < (↑↑2)⁻¹ + (↑↑3)⁻¹ + (↑↑4)⁻¹
[PROOFSTEP]
conv_rhs => simp only [OfNat.ofNat, PNat.mk_coe]
[GOAL]
pqr : Multiset ℕ+
H : E' 4 = pqr
| (↑↑2)⁻¹ + (↑↑3)⁻¹ + (↑↑4)⁻¹
[PROOFSTEP]
simp only [OfNat.ofNat, PNat.mk_coe]
[GOAL]
pqr : Multiset ℕ+
H : E' 4 = pqr
| (↑↑2)⁻¹ + (↑↑3)⁻¹ + (↑↑4)⁻¹
[PROOFSTEP]
simp only [OfNat.ofNat, PNat.mk_coe]
[GOAL]
pqr : Multiset ℕ+
H : E' 4 = pqr
| (↑↑2)⁻¹ + (↑↑3)⁻¹ + (↑↑4)⁻¹
[PROOFSTEP]
simp only [OfNat.ofNat, PNat.mk_coe]
[GOAL]
case inr.inr.inr.inr
pqr : Multiset ℕ+
H : E' 5 = pqr
⊢ 1 < sumInv pqr
[PROOFSTEP]
rw [← H, E', sumInv_pqr]
[GOAL]
case inr.inr.inr.inr
pqr : Multiset ℕ+
H : E' 5 = pqr
⊢ 1 < (↑↑2)⁻¹ + (↑↑3)⁻¹ + (↑↑5)⁻¹
[PROOFSTEP]
conv_rhs => simp only [OfNat.ofNat, PNat.mk_coe]
[GOAL]
pqr : Multiset ℕ+
H : E' 5 = pqr
| (↑↑2)⁻¹ + (↑↑3)⁻¹ + (↑↑5)⁻¹
[PROOFSTEP]
simp only [OfNat.ofNat, PNat.mk_coe]
[GOAL]
pqr : Multiset ℕ+
H : E' 5 = pqr
| (↑↑2)⁻¹ + (↑↑3)⁻¹ + (↑↑5)⁻¹
[PROOFSTEP]
simp only [OfNat.ofNat, PNat.mk_coe]
[GOAL]
pqr : Multiset ℕ+
H : E' 5 = pqr
| (↑↑2)⁻¹ + (↑↑3)⁻¹ + (↑↑5)⁻¹
[PROOFSTEP]
simp only [OfNat.ofNat, PNat.mk_coe]
[GOAL]
p q r : ℕ+
hpq : p ≤ q
hqr : q ≤ r
H : 1 < sumInv {p, q, r}
⊢ p < 3
[PROOFSTEP]
have h3 : (0 : ℚ) < 3 := by norm_num
[GOAL]
p q r : ℕ+
hpq : p ≤ q
hqr : q ≤ r
H : 1 < sumInv {p, q, r}
⊢ 0 < 3
[PROOFSTEP]
norm_num
[GOAL]
p q r : ℕ+
hpq : p ≤ q
hqr : q ≤ r
H : 1 < sumInv {p, q, r}
h3 : 0 < 3
⊢ p < 3
[PROOFSTEP]
contrapose! H
[GOAL]
p q r : ℕ+
hpq : p ≤ q
hqr : q ≤ r
h3 : 0 < 3
H : 3 ≤ p
⊢ sumInv {p, q, r} ≤ 1
[PROOFSTEP]
rw [sumInv_pqr]
[GOAL]
p q r : ℕ+
hpq : p ≤ q
hqr : q ≤ r
h3 : 0 < 3
H : 3 ≤ p
⊢ (↑↑p)⁻¹ + (↑↑q)⁻¹ + (↑↑r)⁻¹ ≤ 1
[PROOFSTEP]
have h3q := H.trans hpq
[GOAL]
p q r : ℕ+
hpq : p ≤ q
hqr : q ≤ r
h3 : 0 < 3
H : 3 ≤ p
h3q : 3 ≤ q
⊢ (↑↑p)⁻¹ + (↑↑q)⁻¹ + (↑↑r)⁻¹ ≤ 1
[PROOFSTEP]
have h3r := h3q.trans hqr
[GOAL]
p q r : ℕ+
hpq : p ≤ q
hqr : q ≤ r
h3 : 0 < 3
H : 3 ≤ p
h3q : 3 ≤ q
h3r : 3 ≤ r
⊢ (↑↑p)⁻¹ + (↑↑q)⁻¹ + (↑↑r)⁻¹ ≤ 1
[PROOFSTEP]
have hp : (p : ℚ)⁻¹ ≤ 3⁻¹ := by
rw [inv_le_inv _ h3]
assumption_mod_cast
norm_num
[GOAL]
p q r : ℕ+
hpq : p ≤ q
hqr : q ≤ r
h3 : 0 < 3
H : 3 ≤ p
h3q : 3 ≤ q
h3r : 3 ≤ r
⊢ (↑↑p)⁻¹ ≤ 3⁻¹
[PROOFSTEP]
rw [inv_le_inv _ h3]
[GOAL]
p q r : ℕ+
hpq : p ≤ q
hqr : q ≤ r
h3 : 0 < 3
H : 3 ≤ p
h3q : 3 ≤ q
h3r : 3 ≤ r
⊢ 3 ≤ ↑↑p
p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r h3 : 0 < 3 H : 3 ≤ p h3q : 3 ≤ q h3r : 3 ≤ r ⊢ 0 < ↑↑p
[PROOFSTEP]
assumption_mod_cast
[GOAL]
p q r : ℕ+
hpq : p ≤ q
hqr : q ≤ r
h3 : 0 < 3
H : 3 ≤ p
h3q : 3 ≤ q
h3r : 3 ≤ r
⊢ 0 < ↑↑p
[PROOFSTEP]
norm_num
[GOAL]
p q r : ℕ+
hpq : p ≤ q
hqr : q ≤ r
h3 : 0 < 3
H : 3 ≤ p
h3q : 3 ≤ q
h3r : 3 ≤ r
hp : (↑↑p)⁻¹ ≤ 3⁻¹
⊢ (↑↑p)⁻¹ + (↑↑q)⁻¹ + (↑↑r)⁻¹ ≤ 1
[PROOFSTEP]
have hq : (q : ℚ)⁻¹ ≤ 3⁻¹ := by
rw [inv_le_inv _ h3]
assumption_mod_cast
norm_num
[GOAL]
p q r : ℕ+
hpq : p ≤ q
hqr : q ≤ r
h3 : 0 < 3
H : 3 ≤ p
h3q : 3 ≤ q
h3r : 3 ≤ r
hp : (↑↑p)⁻¹ ≤ 3⁻¹
⊢ (↑↑q)⁻¹ ≤ 3⁻¹
[PROOFSTEP]
rw [inv_le_inv _ h3]
[GOAL]
p q r : ℕ+
hpq : p ≤ q
hqr : q ≤ r
h3 : 0 < 3
H : 3 ≤ p
h3q : 3 ≤ q
h3r : 3 ≤ r
hp : (↑↑p)⁻¹ ≤ 3⁻¹
⊢ 3 ≤ ↑↑q
p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r h3 : 0 < 3 H : 3 ≤ p h3q : 3 ≤ q h3r : 3 ≤ r hp : (↑↑p)⁻¹ ≤ 3⁻¹ ⊢ 0 < ↑↑q
[PROOFSTEP]
assumption_mod_cast
[GOAL]
p q r : ℕ+
hpq : p ≤ q
hqr : q ≤ r
h3 : 0 < 3
H : 3 ≤ p
h3q : 3 ≤ q
h3r : 3 ≤ r
hp : (↑↑p)⁻¹ ≤ 3⁻¹
⊢ 0 < ↑↑q
[PROOFSTEP]
norm_num
[GOAL]
p q r : ℕ+
hpq : p ≤ q
hqr : q ≤ r
h3 : 0 < 3
H : 3 ≤ p
h3q : 3 ≤ q
h3r : 3 ≤ r
hp : (↑↑p)⁻¹ ≤ 3⁻¹
hq : (↑↑q)⁻¹ ≤ 3⁻¹
⊢ (↑↑p)⁻¹ + (↑↑q)⁻¹ + (↑↑r)⁻¹ ≤ 1
[PROOFSTEP]
have hr : (r : ℚ)⁻¹ ≤ 3⁻¹ := by
rw [inv_le_inv _ h3]
assumption_mod_cast
norm_num
[GOAL]
p q r : ℕ+
hpq : p ≤ q
hqr : q ≤ r
h3 : 0 < 3
H : 3 ≤ p
h3q : 3 ≤ q
h3r : 3 ≤ r
hp : (↑↑p)⁻¹ ≤ 3⁻¹
hq : (↑↑q)⁻¹ ≤ 3⁻¹
⊢ (↑↑r)⁻¹ ≤ 3⁻¹
[PROOFSTEP]
rw [inv_le_inv _ h3]
[GOAL]
p q r : ℕ+
hpq : p ≤ q
hqr : q ≤ r
h3 : 0 < 3
H : 3 ≤ p
h3q : 3 ≤ q
h3r : 3 ≤ r
hp : (↑↑p)⁻¹ ≤ 3⁻¹
hq : (↑↑q)⁻¹ ≤ 3⁻¹
⊢ 3 ≤ ↑↑r
p q r : ℕ+
hpq : p ≤ q
hqr : q ≤ r
h3 : 0 < 3
H : 3 ≤ p
h3q : 3 ≤ q
h3r : 3 ≤ r
hp : (↑↑p)⁻¹ ≤ 3⁻¹
hq : (↑↑q)⁻¹ ≤ 3⁻¹
⊢ 0 < ↑↑r
[PROOFSTEP]
assumption_mod_cast
[GOAL]
p q r : ℕ+
hpq : p ≤ q
hqr : q ≤ r
h3 : 0 < 3
H : 3 ≤ p
h3q : 3 ≤ q
h3r : 3 ≤ r
hp : (↑↑p)⁻¹ ≤ 3⁻¹
hq : (↑↑q)⁻¹ ≤ 3⁻¹
⊢ 0 < ↑↑r
[PROOFSTEP]
norm_num
[GOAL]
p q r : ℕ+
hpq : p ≤ q
hqr : q ≤ r
h3 : 0 < 3
H : 3 ≤ p
h3q : 3 ≤ q
h3r : 3 ≤ r
hp : (↑↑p)⁻¹ ≤ 3⁻¹
hq : (↑↑q)⁻¹ ≤ 3⁻¹
hr : (↑↑r)⁻¹ ≤ 3⁻¹
⊢ (↑↑p)⁻¹ + (↑↑q)⁻¹ + (↑↑r)⁻¹ ≤ 1
[PROOFSTEP]
calc
(p : ℚ)⁻¹ + (q : ℚ)⁻¹ + (r : ℚ)⁻¹ ≤ 3⁻¹ + 3⁻¹ + 3⁻¹ := add_le_add (add_le_add hp hq) hr
_ = 1 := by norm_num
[GOAL]
p q r : ℕ+
hpq : p ≤ q
hqr : q ≤ r
h3 : 0 < 3
H : 3 ≤ p
h3q : 3 ≤ q
h3r : 3 ≤ r
hp : (↑↑p)⁻¹ ≤ 3⁻¹
hq : (↑↑q)⁻¹ ≤ 3⁻¹
hr : (↑↑r)⁻¹ ≤ 3⁻¹
⊢ 3⁻¹ + 3⁻¹ + 3⁻¹ = 1
[PROOFSTEP]
norm_num
[GOAL]
q r : ℕ+
hqr : q ≤ r
H : 1 < sumInv {2, q, r}
⊢ q < 4
[PROOFSTEP]
have h4 : (0 : ℚ) < 4 := by norm_num
[GOAL]
q r : ℕ+
hqr : q ≤ r
H : 1 < sumInv {2, q, r}
⊢ 0 < 4
[PROOFSTEP]
norm_num
[GOAL]
q r : ℕ+
hqr : q ≤ r
H : 1 < sumInv {2, q, r}
h4 : 0 < 4
⊢ q < 4
[PROOFSTEP]
contrapose! H
[GOAL]
q r : ℕ+
hqr : q ≤ r
h4 : 0 < 4
H : 4 ≤ q
⊢ sumInv {2, q, r} ≤ 1
[PROOFSTEP]
rw [sumInv_pqr]
[GOAL]
q r : ℕ+
hqr : q ≤ r
h4 : 0 < 4
H : 4 ≤ q
⊢ (↑↑2)⁻¹ + (↑↑q)⁻¹ + (↑↑r)⁻¹ ≤ 1
[PROOFSTEP]
have h4r := H.trans hqr
[GOAL]
q r : ℕ+
hqr : q ≤ r
h4 : 0 < 4
H : 4 ≤ q
h4r : 4 ≤ r
⊢ (↑↑2)⁻¹ + (↑↑q)⁻¹ + (↑↑r)⁻¹ ≤ 1
[PROOFSTEP]
have hq : (q : ℚ)⁻¹ ≤ 4⁻¹ := by
rw [inv_le_inv _ h4]
assumption_mod_cast
norm_num
[GOAL]
q r : ℕ+
hqr : q ≤ r
h4 : 0 < 4
H : 4 ≤ q
h4r : 4 ≤ r
⊢ (↑↑q)⁻¹ ≤ 4⁻¹
[PROOFSTEP]
rw [inv_le_inv _ h4]
[GOAL]
q r : ℕ+
hqr : q ≤ r
h4 : 0 < 4
H : 4 ≤ q
h4r : 4 ≤ r
⊢ 4 ≤ ↑↑q
q r : ℕ+ hqr : q ≤ r h4 : 0 < 4 H : 4 ≤ q h4r : 4 ≤ r ⊢ 0 < ↑↑q
[PROOFSTEP]
assumption_mod_cast
[GOAL]
q r : ℕ+
hqr : q ≤ r
h4 : 0 < 4
H : 4 ≤ q
h4r : 4 ≤ r
⊢ 0 < ↑↑q
[PROOFSTEP]
norm_num
[GOAL]
q r : ℕ+
hqr : q ≤ r
h4 : 0 < 4
H : 4 ≤ q
h4r : 4 ≤ r
hq : (↑↑q)⁻¹ ≤ 4⁻¹
⊢ (↑↑2)⁻¹ + (↑↑q)⁻¹ + (↑↑r)⁻¹ ≤ 1
[PROOFSTEP]
have hr : (r : ℚ)⁻¹ ≤ 4⁻¹ := by
rw [inv_le_inv _ h4]
assumption_mod_cast
norm_num
[GOAL]
q r : ℕ+
hqr : q ≤ r
h4 : 0 < 4
H : 4 ≤ q
h4r : 4 ≤ r
hq : (↑↑q)⁻¹ ≤ 4⁻¹
⊢ (↑↑r)⁻¹ ≤ 4⁻¹
[PROOFSTEP]
rw [inv_le_inv _ h4]
[GOAL]
q r : ℕ+
hqr : q ≤ r
h4 : 0 < 4
H : 4 ≤ q
h4r : 4 ≤ r
hq : (↑↑q)⁻¹ ≤ 4⁻¹
⊢ 4 ≤ ↑↑r
q r : ℕ+ hqr : q ≤ r h4 : 0 < 4 H : 4 ≤ q h4r : 4 ≤ r hq : (↑↑q)⁻¹ ≤ 4⁻¹ ⊢ 0 < ↑↑r
[PROOFSTEP]
assumption_mod_cast
[GOAL]
q r : ℕ+
hqr : q ≤ r
h4 : 0 < 4
H : 4 ≤ q
h4r : 4 ≤ r
hq : (↑↑q)⁻¹ ≤ 4⁻¹
⊢ 0 < ↑↑r
[PROOFSTEP]
norm_num
[GOAL]
q r : ℕ+
hqr : q ≤ r
h4 : 0 < 4
H : 4 ≤ q
h4r : 4 ≤ r
hq : (↑↑q)⁻¹ ≤ 4⁻¹
hr : (↑↑r)⁻¹ ≤ 4⁻¹
⊢ (↑↑2)⁻¹ + (↑↑q)⁻¹ + (↑↑r)⁻¹ ≤ 1
[PROOFSTEP]
calc
(2⁻¹ + (q : ℚ)⁻¹ + (r : ℚ)⁻¹) ≤ 2⁻¹ + 4⁻¹ + 4⁻¹ := add_le_add (add_le_add le_rfl hq) hr
_ = 1 := by norm_num
[GOAL]
q r : ℕ+
hqr : q ≤ r
h4 : 0 < 4
H : 4 ≤ q
h4r : 4 ≤ r
hq : (↑↑q)⁻¹ ≤ 4⁻¹
hr : (↑↑r)⁻¹ ≤ 4⁻¹
⊢ 2⁻¹ + 4⁻¹ + 4⁻¹ = 1
[PROOFSTEP]
norm_num
[GOAL]
r : ℕ+
H : 1 < sumInv {2, 3, r}
⊢ r < 6
[PROOFSTEP]
have h6 : (0 : ℚ) < 6 := by norm_num
[GOAL]
r : ℕ+
H : 1 < sumInv {2, 3, r}
⊢ 0 < 6
[PROOFSTEP]
norm_num
[GOAL]
r : ℕ+
H : 1 < sumInv {2, 3, r}
h6 : 0 < 6
⊢ r < 6
[PROOFSTEP]
contrapose! H
[GOAL]
r : ℕ+
h6 : 0 < 6
H : 6 ≤ r
⊢ sumInv {2, 3, r} ≤ 1
[PROOFSTEP]
rw [sumInv_pqr]
[GOAL]
r : ℕ+
h6 : 0 < 6
H : 6 ≤ r
⊢ (↑↑2)⁻¹ + (↑↑3)⁻¹ + (↑↑r)⁻¹ ≤ 1
[PROOFSTEP]
have hr : (r : ℚ)⁻¹ ≤ 6⁻¹ := by
rw [inv_le_inv _ h6]
assumption_mod_cast
norm_num
[GOAL]
r : ℕ+
h6 : 0 < 6
H : 6 ≤ r
⊢ (↑↑r)⁻¹ ≤ 6⁻¹
[PROOFSTEP]
rw [inv_le_inv _ h6]
[GOAL]
r : ℕ+
h6 : 0 < 6
H : 6 ≤ r
⊢ 6 ≤ ↑↑r
r : ℕ+ h6 : 0 < 6 H : 6 ≤ r ⊢ 0 < ↑↑r
[PROOFSTEP]
assumption_mod_cast
[GOAL]
r : ℕ+
h6 : 0 < 6
H : 6 ≤ r
⊢ 0 < ↑↑r
[PROOFSTEP]
norm_num
[GOAL]
r : ℕ+
h6 : 0 < 6
H : 6 ≤ r
hr : (↑↑r)⁻¹ ≤ 6⁻¹
⊢ (↑↑2)⁻¹ + (↑↑3)⁻¹ + (↑↑r)⁻¹ ≤ 1
[PROOFSTEP]
calc
(2⁻¹ + 3⁻¹ + (r : ℚ)⁻¹ : ℚ) ≤ 2⁻¹ + 3⁻¹ + 6⁻¹ := add_le_add (add_le_add le_rfl le_rfl) hr
_ = 1 := by norm_num
[GOAL]
r : ℕ+
h6 : 0 < 6
H : 6 ≤ r
hr : (↑↑r)⁻¹ ≤ 6⁻¹
⊢ 2⁻¹ + 3⁻¹ + 6⁻¹ = 1
[PROOFSTEP]
norm_num
[GOAL]
p q r : ℕ+
hpq : p ≤ q
hqr : q ≤ r
H : 1 < sumInv {p, q, r}
⊢ Admissible {p, q, r}
[PROOFSTEP]
have hp3 : p < 3 := lt_three hpq hqr H
[GOAL]
p q r : ℕ+
hpq : p ≤ q
hqr : q ≤ r
H : 1 < sumInv {p, q, r}
hp3 : p < 3
⊢ Admissible {p, q, r}
[PROOFSTEP]
replace hp3 := Finset.mem_Iio.mpr hp3
[GOAL]
p q r : ℕ+
hpq : p ≤ q
hqr : q ≤ r
H : 1 < sumInv {p, q, r}
hp3 : p ∈ Finset.Iio 3
⊢ Admissible {p, q, r}
[PROOFSTEP]
conv at hp3 => change p ∈ ({1, 2} : Multiset ℕ+)
[GOAL]
p q r : ℕ+
hpq : p ≤ q
hqr : q ≤ r
H : 1 < sumInv {p, q, r}
hp3 : p ∈ Finset.Iio 3
| p ∈ Finset.Iio 3
[PROOFSTEP]
change p ∈ ({1, 2} : Multiset ℕ+)
[GOAL]
p q r : ℕ+
hpq : p ≤ q
hqr : q ≤ r
H : 1 < sumInv {p, q, r}
hp3 : p ∈ Finset.Iio 3
| p ∈ Finset.Iio 3
[PROOFSTEP]
change p ∈ ({1, 2} : Multiset ℕ+)
[GOAL]
p q r : ℕ+
hpq : p ≤ q
hqr : q ≤ r
H : 1 < sumInv {p, q, r}
hp3 : p ∈ Finset.Iio 3
| p ∈ Finset.Iio 3
[PROOFSTEP]
change p ∈ ({1, 2} : Multiset ℕ+)
[GOAL]
p q r : ℕ+
hpq : p ≤ q
hqr : q ≤ r
H : 1 < sumInv {p, q, r}
hp3 : p ∈ {1, 2}
⊢ Admissible {p, q, r}
[PROOFSTEP]
fin_cases hp3
[GOAL]
case head
q r : ℕ+
hqr : q ≤ r
hpq : 1 ≤ q
H : 1 < sumInv {1, q, r}
⊢ Admissible {1, q, r}
[PROOFSTEP]
exact admissible_A' q r
[GOAL]
case tail.head
q r : ℕ+
hqr : q ≤ r
hpq : 2 ≤ q
H : 1 < sumInv {2, q, r}
⊢ Admissible {2, q, r}
[PROOFSTEP]
have hq4 : q < 4 := lt_four hqr H
[GOAL]
case tail.head
q r : ℕ+
hqr : q ≤ r
hpq : 2 ≤ q
H : 1 < sumInv {2, q, r}
hq4 : q < 4
⊢ Admissible {2, q, r}
[PROOFSTEP]
replace hq4 := Finset.mem_Ico.mpr ⟨hpq, hq4⟩
[GOAL]
case tail.head
q r : ℕ+
hqr : q ≤ r
hpq : 2 ≤ q
H : 1 < sumInv {2, q, r}
hq4 : q ∈ Finset.Ico 2 4
⊢ Admissible {2, q, r}
[PROOFSTEP]
clear hpq
[GOAL]
case tail.head
q r : ℕ+
hqr : q ≤ r
H : 1 < sumInv {2, q, r}
hq4 : q ∈ Finset.Ico 2 4
⊢ Admissible {2, q, r}
[PROOFSTEP]
conv at hq4 => change q ∈ ({2, 3} : Multiset ℕ+)
[GOAL]
q r : ℕ+
hqr : q ≤ r
H : 1 < sumInv {2, q, r}
hq4 : q ∈ Finset.Ico 2 4
| q ∈ Finset.Ico 2 4
[PROOFSTEP]
change q ∈ ({2, 3} : Multiset ℕ+)
[GOAL]
q r : ℕ+
hqr : q ≤ r
H : 1 < sumInv {2, q, r}
hq4 : q ∈ Finset.Ico 2 4
| q ∈ Finset.Ico 2 4
[PROOFSTEP]
change q ∈ ({2, 3} : Multiset ℕ+)
[GOAL]
q r : ℕ+
hqr : q ≤ r
H : 1 < sumInv {2, q, r}
hq4 : q ∈ Finset.Ico 2 4
| q ∈ Finset.Ico 2 4
[PROOFSTEP]
change q ∈ ({2, 3} : Multiset ℕ+)
[GOAL]
case tail.head
q r : ℕ+
hqr : q ≤ r
H : 1 < sumInv {2, q, r}
hq4 : q ∈ {2, 3}
⊢ Admissible {2, q, r}
[PROOFSTEP]
fin_cases hq4
[GOAL]
case tail.head.head
r : ℕ+
hqr : 2 ≤ r
H : 1 < sumInv {2, 2, r}
⊢ Admissible {2, 2, r}
[PROOFSTEP]
exact admissible_D' r
[GOAL]
case tail.head.tail.head
r : ℕ+
hqr : 3 ≤ r
H : 1 < sumInv {2, 3, r}
⊢ Admissible {2, 3, r}
[PROOFSTEP]
have hr6 : r < 6 := lt_six H
[GOAL]
case tail.head.tail.head
r : ℕ+
hqr : 3 ≤ r
H : 1 < sumInv {2, 3, r}
hr6 : r < 6
⊢ Admissible {2, 3, r}
[PROOFSTEP]
replace hr6 := Finset.mem_Ico.mpr ⟨hqr, hr6⟩
[GOAL]
case tail.head.tail.head
r : ℕ+
hqr : 3 ≤ r
H : 1 < sumInv {2, 3, r}
hr6 : r ∈ Finset.Ico 3 6
⊢ Admissible {2, 3, r}
[PROOFSTEP]
clear hqr
[GOAL]
case tail.head.tail.head
r : ℕ+
H : 1 < sumInv {2, 3, r}
hr6 : r ∈ Finset.Ico 3 6
⊢ Admissible {2, 3, r}
[PROOFSTEP]
conv at hr6 => change r ∈ ({3, 4, 5} : Multiset ℕ+)
[GOAL]
r : ℕ+
H : 1 < sumInv {2, 3, r}
hr6 : r ∈ Finset.Ico 3 6
| r ∈ Finset.Ico 3 6
[PROOFSTEP]
change r ∈ ({3, 4, 5} : Multiset ℕ+)
[GOAL]
r : ℕ+
H : 1 < sumInv {2, 3, r}
hr6 : r ∈ Finset.Ico 3 6
| r ∈ Finset.Ico 3 6
[PROOFSTEP]
change r ∈ ({3, 4, 5} : Multiset ℕ+)
[GOAL]
r : ℕ+
H : 1 < sumInv {2, 3, r}
hr6 : r ∈ Finset.Ico 3 6
| r ∈ Finset.Ico 3 6
[PROOFSTEP]
change r ∈ ({3, 4, 5} : Multiset ℕ+)
[GOAL]
case tail.head.tail.head
r : ℕ+
H : 1 < sumInv {2, 3, r}
hr6 : r ∈ {3, 4, 5}
⊢ Admissible {2, 3, r}
[PROOFSTEP]
fin_cases hr6
[GOAL]
case tail.head.tail.head.head
H : 1 < sumInv {2, 3, 3}
⊢ Admissible {2, 3, 3}
[PROOFSTEP]
exact admissible_E6
[GOAL]
case tail.head.tail.head.tail.head
H : 1 < sumInv {2, 3, 4}
⊢ Admissible {2, 3, 4}
[PROOFSTEP]
exact admissible_E7
[GOAL]
case tail.head.tail.head.tail.tail.head
H : 1 < sumInv {2, 3, 5}
⊢ Admissible {2, 3, 5}
[PROOFSTEP]
exact admissible_E8
[GOAL]
p q r : ℕ+
hs : List.Sorted (fun x x_1 => x ≤ x_1) [p, q, r]
x✝ : List.length [p, q, r] = 3
H : 1 < sumInv ↑[p, q, r]
⊢ Admissible ↑[p, q, r]
[PROOFSTEP]
obtain ⟨⟨hpq, -⟩, hqr⟩ : (p ≤ q ∧ p ≤ r) ∧ q ≤ r
[GOAL]
p q r : ℕ+
hs : List.Sorted (fun x x_1 => x ≤ x_1) [p, q, r]
x✝ : List.length [p, q, r] = 3
H : 1 < sumInv ↑[p, q, r]
⊢ (p ≤ q ∧ p ≤ r) ∧ q ≤ r
case intro.intro
p q r : ℕ+
hs : List.Sorted (fun x x_1 => x ≤ x_1) [p, q, r]
x✝ : List.length [p, q, r] = 3
H : 1 < sumInv ↑[p, q, r]
hqr : q ≤ r
hpq : p ≤ q
⊢ Admissible ↑[p, q, r]
[PROOFSTEP]
simpa using hs
[GOAL]
case intro.intro
p q r : ℕ+
hs : List.Sorted (fun x x_1 => x ≤ x_1) [p, q, r]
x✝ : List.length [p, q, r] = 3
H : 1 < sumInv ↑[p, q, r]
hqr : q ≤ r
hpq : p ≤ q
⊢ Admissible ↑[p, q, r]
[PROOFSTEP]
exact admissible_of_one_lt_sumInv_aux' hpq hqr H
[GOAL]
p q r : ℕ+
H : 1 < sumInv {p, q, r}
⊢ Admissible {p, q, r}
[PROOFSTEP]
simp only [Admissible]
[GOAL]
p q r : ℕ+
H : 1 < sumInv {p, q, r}
⊢ (∃ q_1 r_1, A' q_1 r_1 = {p, q, r}) ∨
(∃ r_1, D' r_1 = {p, q, r}) ∨ E' 3 = {p, q, r} ∨ E' 4 = {p, q, r} ∨ E' 5 = {p, q, r}
[PROOFSTEP]
let S := sort ((· ≤ ·) : ℕ+ → ℕ+ → Prop) { p, q, r }
[GOAL]
p q r : ℕ+
H : 1 < sumInv {p, q, r}
S : List ℕ+ := sort (fun x x_1 => x ≤ x_1) {p, q, r}
⊢ (∃ q_1 r_1, A' q_1 r_1 = {p, q, r}) ∨
(∃ r_1, D' r_1 = {p, q, r}) ∨ E' 3 = {p, q, r} ∨ E' 4 = {p, q, r} ∨ E' 5 = {p, q, r}
[PROOFSTEP]
have hS : S.Sorted (· ≤ ·) := sort_sorted _ _
[GOAL]
p q r : ℕ+
H : 1 < sumInv {p, q, r}
S : List ℕ+ := sort (fun x x_1 => x ≤ x_1) {p, q, r}
hS : List.Sorted (fun x x_1 => x ≤ x_1) S
⊢ (∃ q_1 r_1, A' q_1 r_1 = {p, q, r}) ∨
(∃ r_1, D' r_1 = {p, q, r}) ∨ E' 3 = {p, q, r} ∨ E' 4 = {p, q, r} ∨ E' 5 = {p, q, r}
[PROOFSTEP]
have hpqr : ({ p, q, r } : Multiset ℕ+) = S := (sort_eq LE.le { p, q, r }).symm
[GOAL]
p q r : ℕ+
H : 1 < sumInv {p, q, r}
S : List ℕ+ := sort (fun x x_1 => x ≤ x_1) {p, q, r}
hS : List.Sorted (fun x x_1 => x ≤ x_1) S
hpqr : {p, q, r} = ↑S
⊢ (∃ q_1 r_1, A' q_1 r_1 = {p, q, r}) ∨
(∃ r_1, D' r_1 = {p, q, r}) ∨ E' 3 = {p, q, r} ∨ E' 4 = {p, q, r} ∨ E' 5 = {p, q, r}
[PROOFSTEP]
rw [hpqr]
[GOAL]
p q r : ℕ+
H : 1 < sumInv {p, q, r}
S : List ℕ+ := sort (fun x x_1 => x ≤ x_1) {p, q, r}
hS : List.Sorted (fun x x_1 => x ≤ x_1) S
hpqr : {p, q, r} = ↑S
⊢ (∃ q r, A' q r = ↑S) ∨ (∃ r, D' r = ↑S) ∨ E' 3 = ↑S ∨ E' 4 = ↑S ∨ E' 5 = ↑S
[PROOFSTEP]
rw [hpqr] at H
[GOAL]
p q r : ℕ+
S : List ℕ+ := sort (fun x x_1 => x ≤ x_1) {p, q, r}
H : 1 < sumInv ↑S
hS : List.Sorted (fun x x_1 => x ≤ x_1) S
hpqr : {p, q, r} = ↑S
⊢ (∃ q r, A' q r = ↑S) ∨ (∃ r, D' r = ↑S) ∨ E' 3 = ↑S ∨ E' 4 = ↑S ∨ E' 5 = ↑S
[PROOFSTEP]
apply admissible_of_one_lt_sumInv_aux hS _ H
[GOAL]
p q r : ℕ+
S : List ℕ+ := sort (fun x x_1 => x ≤ x_1) {p, q, r}
H : 1 < sumInv ↑S
hS : List.Sorted (fun x x_1 => x ≤ x_1) S
hpqr : {p, q, r} = ↑S
⊢ List.length S = 3
[PROOFSTEP]
simp only [ge_iff_le, insert_eq_cons, length_sort, card_cons, card_singleton]
| {"mathlib_filename": "Mathlib.NumberTheory.ADEInequality", "llama_tokens": 11762} |