text
stringlengths
0
3.06M
meta
stringlengths
57
121
{"mathlib_filename": "Mathlib.Tactic.Nontriviality.Core", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Tactic.Polyrith", "llama_tokens": 0}
[GOAL] R✝ : Type ?u.74090 inst✝¹ : CommSemiring R✝ R : Type u_1 inst✝ : Ring R a b : R ⊢ a * -b = -(a * b) [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝ : CommSemiring R ⊢ Nat.rawCast 0 = 0 [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝ : CommSemiring R ⊢ Nat.rawCast 1 = 1 [PROOFSTEP] simp [GOAL] R✝ : Type ?u.76702 inst✝¹ : CommSemiring R✝ R : Type u_1 inst✝ : Ring R ⊢ Int.rawCast (Int.negOfNat 1) = -1 [PROOFSTEP] simp [Int.negOfNat_eq] [GOAL] R✝ : Type ?u.78211 inst✝² : CommSemiring R✝ n : ℕ R : Type u_1 inst✝¹ : Ring R inst✝ : Nat.AtLeastTwo n ⊢ Int.rawCast (Int.negOfNat n) = -OfNat.ofNat n [PROOFSTEP] simp [Int.negOfNat_eq, OfNat.ofNat] [GOAL] R✝ : Type ?u.80333 inst✝¹ : CommSemiring R✝ n : ℤ d : ℕ R : Type u_1 inst✝ : DivisionRing R ⊢ Rat.rawCast n d = ↑n / ↑d [PROOFSTEP] simp
{"mathlib_filename": "Mathlib.Tactic.Ring.RingNF", "llama_tokens": 452}
{"mathlib_filename": "Mathlib.Tactic.Relation.Rfl", "llama_tokens": 0}
[GOAL] n a b n' a' b' : ℕ H : IsFibAux n a b hn : 2 * n = n' h1 : a * (2 * b - a) = a' h2 : a * a + b * b = b' ⊢ fib n' = a' [PROOFSTEP] rw [← hn, fib_two_mul, H.1, H.2, ← h1] [GOAL] n a b n' a' b' : ℕ H : IsFibAux n a b hn : 2 * n = n' h1 : a * (2 * b - a) = a' h2 : a * a + b * b = b' ⊢ fib (n' + 1) = b' [PROOFSTEP] rw [← hn, fib_two_mul_add_one, H.1, H.2, pow_two, pow_two, add_comm, h2] [GOAL] n a b n' a' b' : ℕ H : IsFibAux n a b hn : 2 * n + 1 = n' h1 : a * a + b * b = a' h2 : b * (2 * a + b) = b' ⊢ fib n' = a' [PROOFSTEP] rw [← hn, fib_two_mul_add_one, H.1, H.2, pow_two, pow_two, add_comm, h1] [GOAL] n a b n' a' b' : ℕ H : IsFibAux n a b hn : 2 * n + 1 = n' h1 : a * a + b * b = a' h2 : b * (2 * a + b) = b' ⊢ fib (n' + 1) = b' [PROOFSTEP] rw [← hn, fib_two_mul_add_two, H.1, H.2, h2]
{"mathlib_filename": "Mathlib.Tactic.NormNum.NatFib", "llama_tokens": 486}
{"mathlib_filename": "Mathlib.Tactic.Simps.NotationClass", "llama_tokens": 0}
[GOAL] α : Type u_1 inst✝ : Ring α a✝ : ℕ ⊢ ↑(Int.ofNat a✝) = ↑a✝ [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : Ring α n✝ : ℕ ⊢ ↑n✝ = ↑(Int.ofNat n✝) [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : Ring α n : ℕ ⊢ ↑(Int.negOfNat n) = -↑n [PROOFSTEP] simp [Int.negOfNat_eq, Int.cast_neg] [GOAL] α : Type u_1 inst✝ : Ring α a✝ : ℕ inv : Invertible ↑1 this : Invertible 1 ⊢ ↑(Int.ofNat a✝) * ⅟↑1 = ↑a✝ [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : Ring α n✝ : ℕ ⊢ 1 * ↑1 = 1 [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : Ring α n✝ : ℕ ⊢ ↑1 * 1 = 1 [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : Ring α n✝ : ℕ ⊢ ↑n✝ = ↑(Int.ofNat n✝) * ⅟↑1 [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : Ring α num✝ : ℤ inv : Invertible ↑1 this : Invertible 1 ⊢ ↑num✝ * ⅟↑1 = ↑num✝ [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : Ring α n✝ : ℤ ⊢ 1 * ↑1 = 1 [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : Ring α n✝ : ℤ ⊢ ↑1 * 1 = 1 [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : Ring α n✝ : ℤ ⊢ ↑n✝ = ↑n✝ * ⅟↑1 [PROOFSTEP] simp [GOAL] α : Type u_1 n : ℤ d : ℕ inst✝ : DivisionRing α inv : Invertible ↑d ⊢ ↑n * ⅟↑d = Rat.rawCast n d [PROOFSTEP] simp [div_eq_mul_inv] [GOAL] α : Type u_1 inst✝ : DivisionRing α n d : ℕ inv✝ : Invertible ↑d ⊢ ↑(Int.negOfNat n) * ⅟↑d = -(↑n / ↑d) [PROOFSTEP] simp [div_eq_mul_inv] [GOAL] α : Type u_1 inst✝ : DivisionRing α n d : ℕ inv✝ : Invertible ↑d ⊢ ↑(Int.ofNat n) * ⅟↑d = ↑n / ↑d [PROOFSTEP] simp [div_eq_mul_inv] [GOAL] α : Type u_1 inst✝ : DivisionRing α n : ℤ d : ℕ h : ↑d ≠ 0 this : Invertible ↑d ⊢ Rat.rawCast n d = ↑n * ⅟↑d [PROOFSTEP] simp [div_eq_mul_inv]
{"mathlib_filename": "Mathlib.Tactic.NormNum.Core", "llama_tokens": 999}
{"mathlib_filename": "Mathlib.Tactic.Relation.Trans", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Tactic.NormCast.Tactic", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Tactic.Relation.Symm", "llama_tokens": 0}
[GOAL] p : Prop as ps as₁ : List Prop ⊢ as = List.reverseAux as₁ ps → implies (mk as) p ps (List.length as₁) → p [PROOFSTEP] induction ps generalizing as₁ with | nil => exact fun _ ↦ id | cons a as ih => refine fun e H ↦ @ih (a :: as₁) e (H ?_) subst e; clear ih H suffices ∀ n n', n' = List.length as₁ + n → ∀ bs, mk (as₁.reverseAux bs) n' ↔ mk bs n from this 0 _ rfl (a :: as) induction as₁ with simp | cons b as₁ ih => exact fun n bs ↦ ih (n + 1) _ (Nat.succ_add ..) _ [GOAL] p : Prop as ps as₁ : List Prop ⊢ as = List.reverseAux as₁ ps → implies (mk as) p ps (List.length as₁) → p [PROOFSTEP] induction ps generalizing as₁ with | nil => exact fun _ ↦ id | cons a as ih => refine fun e H ↦ @ih (a :: as₁) e (H ?_) subst e; clear ih H suffices ∀ n n', n' = List.length as₁ + n → ∀ bs, mk (as₁.reverseAux bs) n' ↔ mk bs n from this 0 _ rfl (a :: as) induction as₁ with simp | cons b as₁ ih => exact fun n bs ↦ ih (n + 1) _ (Nat.succ_add ..) _ [GOAL] case nil p : Prop as as₁ : List Prop ⊢ as = List.reverseAux as₁ [] → implies (mk as) p [] (List.length as₁) → p [PROOFSTEP] | nil => exact fun _ ↦ id [GOAL] case nil p : Prop as as₁ : List Prop ⊢ as = List.reverseAux as₁ [] → implies (mk as) p [] (List.length as₁) → p [PROOFSTEP] exact fun _ ↦ id [GOAL] case cons p : Prop as✝ : List Prop a : Prop as : List Prop ih : ∀ (as₁ : List Prop), as✝ = List.reverseAux as₁ as → implies (mk as✝) p as (List.length as₁) → p as₁ : List Prop ⊢ as✝ = List.reverseAux as₁ (a :: as) → implies (mk as✝) p (a :: as) (List.length as₁) → p [PROOFSTEP] | cons a as ih => refine fun e H ↦ @ih (a :: as₁) e (H ?_) subst e; clear ih H suffices ∀ n n', n' = List.length as₁ + n → ∀ bs, mk (as₁.reverseAux bs) n' ↔ mk bs n from this 0 _ rfl (a :: as) induction as₁ with simp | cons b as₁ ih => exact fun n bs ↦ ih (n + 1) _ (Nat.succ_add ..) _ [GOAL] case cons p : Prop as✝ : List Prop a : Prop as : List Prop ih : ∀ (as₁ : List Prop), as✝ = List.reverseAux as₁ as → implies (mk as✝) p as (List.length as₁) → p as₁ : List Prop ⊢ as✝ = List.reverseAux as₁ (a :: as) → implies (mk as✝) p (a :: as) (List.length as₁) → p [PROOFSTEP] refine fun e H ↦ @ih (a :: as₁) e (H ?_) [GOAL] case cons p : Prop as✝ : List Prop a : Prop as : List Prop ih : ∀ (as₁ : List Prop), as✝ = List.reverseAux as₁ as → implies (mk as✝) p as (List.length as₁) → p as₁ : List Prop e : as✝ = List.reverseAux as₁ (a :: as) H : implies (mk as✝) p (a :: as) (List.length as₁) ⊢ mk as✝ (List.length as₁) ↔ a [PROOFSTEP] subst e [GOAL] case cons p a : Prop as as₁ : List Prop ih : ∀ (as₁_1 : List Prop), List.reverseAux as₁ (a :: as) = List.reverseAux as₁_1 as → implies (mk (List.reverseAux as₁ (a :: as))) p as (List.length as₁_1) → p H : implies (mk (List.reverseAux as₁ (a :: as))) p (a :: as) (List.length as₁) ⊢ mk (List.reverseAux as₁ (a :: as)) (List.length as₁) ↔ a [PROOFSTEP] clear ih H [GOAL] case cons p a : Prop as as₁ : List Prop ⊢ mk (List.reverseAux as₁ (a :: as)) (List.length as₁) ↔ a [PROOFSTEP] suffices ∀ n n', n' = List.length as₁ + n → ∀ bs, mk (as₁.reverseAux bs) n' ↔ mk bs n from this 0 _ rfl (a :: as) [GOAL] case cons p a : Prop as as₁ : List Prop ⊢ ∀ (n n' : ℕ), n' = List.length as₁ + n → ∀ (bs : List Prop), mk (List.reverseAux as₁ bs) n' ↔ mk bs n [PROOFSTEP] induction as₁ with simp | cons b as₁ ih => exact fun n bs ↦ ih (n + 1) _ (Nat.succ_add ..) _ [GOAL] case cons p a : Prop as as₁ : List Prop ⊢ ∀ (n n' : ℕ), n' = List.length as₁ + n → ∀ (bs : List Prop), mk (List.reverseAux as₁ bs) n' ↔ mk bs n [PROOFSTEP] induction as₁ with simp | cons b as₁ ih => exact fun n bs ↦ ih (n + 1) _ (Nat.succ_add ..) _ [GOAL] case cons.cons p a : Prop as : List Prop b : Prop as₁ : List Prop ih : ∀ (n n' : ℕ), n' = List.length as₁ + n → ∀ (bs : List Prop), mk (List.reverseAux as₁ bs) n' ↔ mk bs n ⊢ ∀ (n n' : ℕ), n' = List.length (b :: as₁) + n → ∀ (bs : List Prop), mk (List.reverseAux (b :: as₁) bs) n' ↔ mk bs n [PROOFSTEP] simp [GOAL] case cons.cons p a : Prop as : List Prop b : Prop as₁ : List Prop ih : ∀ (n n' : ℕ), n' = List.length as₁ + n → ∀ (bs : List Prop), mk (List.reverseAux as₁ bs) n' ↔ mk bs n ⊢ ∀ (n : ℕ) (bs : List Prop), mk (List.reverseAux as₁ (b :: bs)) (Nat.succ (List.length as₁) + n) ↔ mk bs n [PROOFSTEP] | cons b as₁ ih => exact fun n bs ↦ ih (n + 1) _ (Nat.succ_add ..) _ [GOAL] case cons.cons p a : Prop as : List Prop b : Prop as₁ : List Prop ih : ∀ (n n' : ℕ), n' = List.length as₁ + n → ∀ (bs : List Prop), mk (List.reverseAux as₁ bs) n' ↔ mk bs n ⊢ ∀ (n : ℕ) (bs : List Prop), mk (List.reverseAux as₁ (b :: bs)) (Nat.succ (List.length as₁) + n) ↔ mk bs n [PROOFSTEP] exact fun n bs ↦ ih (n + 1) _ (Nat.succ_add ..) _ [GOAL] case cons.nil p a : Prop as : List Prop ⊢ ∀ (n n' : ℕ), n' = List.length [] + n → ∀ (bs : List Prop), mk (List.reverseAux [] bs) n' ↔ mk bs n [PROOFSTEP] simp [GOAL] v : Valuation f₁ : Fmla a : Prop f₂ : Fmla b : Prop h₁ : reify v f₁ a h₂ : reify v f₂ b ⊢ reify v (and f₁ f₂) (a ∨ b) [PROOFSTEP] refine ⟨fun H ↦ by_contra fun hn ↦ H ⟨fun c h ↦ by_contra fun hn' ↦ ?_⟩⟩ [GOAL] v : Valuation f₁ : Fmla a : Prop f₂ : Fmla b : Prop h₁ : reify v f₁ a h₂ : reify v f₂ b H : ¬Valuation.satisfies_fmla v (and f₁ f₂) hn : ¬(a ∨ b) c : Clause h : c ∈ and f₁ f₂ hn' : ¬Valuation.satisfies v c ⊢ False [PROOFSTEP] rcases List.mem_append.1 h with h | h [GOAL] case inl v : Valuation f₁ : Fmla a : Prop f₂ : Fmla b : Prop h₁ : reify v f₁ a h₂ : reify v f₂ b H : ¬Valuation.satisfies_fmla v (and f₁ f₂) hn : ¬(a ∨ b) c : Clause h✝ : c ∈ and f₁ f₂ hn' : ¬Valuation.satisfies v c h : c ∈ f₁ ⊢ False [PROOFSTEP] exact hn $ Or.inl $ h₁.1 fun Hc ↦ hn' $ Hc.1 _ h [GOAL] case inr v : Valuation f₁ : Fmla a : Prop f₂ : Fmla b : Prop h₁ : reify v f₁ a h₂ : reify v f₂ b H : ¬Valuation.satisfies_fmla v (and f₁ f₂) hn : ¬(a ∨ b) c : Clause h✝ : c ∈ and f₁ f₂ hn' : ¬Valuation.satisfies v c h : c ∈ f₂ ⊢ False [PROOFSTEP] exact hn $ Or.inr $ h₂.1 fun Hc ↦ hn' $ Hc.1 _ h
{"mathlib_filename": "Mathlib.Tactic.Sat.FromLRAT", "llama_tokens": 2804}
[GOAL] M : Type u_1 inst✝¹ : Mul M M' : Type u_2 inst✝ : Mul M' ⊢ commProb (M × M') = commProb M * commProb M' [PROOFSTEP] simp_rw [commProb_def, div_mul_div_comm, Nat.card_prod, Nat.cast_mul, mul_pow, ← Nat.cast_mul, ← Nat.card_prod, Commute, SemiconjBy, Prod.ext_iff] [GOAL] M : Type u_1 inst✝¹ : Mul M M' : Type u_2 inst✝ : Mul M' ⊢ ↑(Nat.card { p // (p.fst * p.snd).fst = (p.snd * p.fst).fst ∧ (p.fst * p.snd).snd = (p.snd * p.fst).snd }) / (↑(Nat.card M) ^ 2 * ↑(Nat.card M') ^ 2) = ↑(Nat.card ({ p // p.fst * p.snd = p.snd * p.fst } × { p // p.fst * p.snd = p.snd * p.fst })) / (↑(Nat.card M) ^ 2 * ↑(Nat.card M') ^ 2) [PROOFSTEP] congr 2 [GOAL] case e_a.e_a M : Type u_1 inst✝¹ : Mul M M' : Type u_2 inst✝ : Mul M' ⊢ Nat.card { p // (p.fst * p.snd).fst = (p.snd * p.fst).fst ∧ (p.fst * p.snd).snd = (p.snd * p.fst).snd } = Nat.card ({ p // p.fst * p.snd = p.snd * p.fst } × { p // p.fst * p.snd = p.snd * p.fst }) [PROOFSTEP] exact Nat.card_congr ⟨fun x => ⟨⟨⟨x.1.1.1, x.1.2.1⟩, x.2.1⟩, ⟨⟨x.1.1.2, x.1.2.2⟩, x.2.2⟩⟩, fun x => ⟨⟨⟨x.1.1.1, x.2.1.1⟩, ⟨x.1.1.2, x.2.1.2⟩⟩, ⟨x.1.2, x.2.2⟩⟩, fun x => rfl, fun x => rfl⟩ [GOAL] M : Type u_1 inst✝² : Mul M α : Type u_3 i : α → Type u_2 inst✝¹ : Fintype α inst✝ : (a : α) → Mul (i a) ⊢ commProb ((a : α) → i a) = ∏ a : α, commProb (i a) [PROOFSTEP] simp_rw [commProb_def, Finset.prod_div_distrib, Finset.prod_pow, ← Nat.cast_prod, ← Nat.card_pi, Commute, SemiconjBy, Function.funext_iff] [GOAL] M : Type u_1 inst✝² : Mul M α : Type u_3 i : α → Type u_2 inst✝¹ : Fintype α inst✝ : (a : α) → Mul (i a) ⊢ ↑(Nat.card { p // ∀ (a : α), (p.fst * p.snd) a = (p.snd * p.fst) a }) / ↑(Nat.card ((a : α) → i a)) ^ 2 = ↑(Nat.card ((a : α) → { p // p.fst * p.snd = p.snd * p.fst })) / ↑(Nat.card ((a : α) → i a)) ^ 2 [PROOFSTEP] congr 2 [GOAL] case e_a.e_a M : Type u_1 inst✝² : Mul M α : Type u_3 i : α → Type u_2 inst✝¹ : Fintype α inst✝ : (a : α) → Mul (i a) ⊢ Nat.card { p // ∀ (a : α), (p.fst * p.snd) a = (p.snd * p.fst) a } = Nat.card ((a : α) → { p // p.fst * p.snd = p.snd * p.fst }) [PROOFSTEP] exact Nat.card_congr ⟨fun x a => ⟨⟨x.1.1 a, x.1.2 a⟩, x.2 a⟩, fun x => ⟨⟨fun a => (x a).1.1, fun a => (x a).1.2⟩, fun a => (x a).2⟩, fun x => rfl, fun x => rfl⟩ [GOAL] M : Type u_1 inst✝² : Mul M α : Type u_2 β : Type u_3 inst✝¹ : Fintype α inst✝ : Mul β ⊢ commProb (α → β) = commProb β ^ card α [PROOFSTEP] rw [commProb_pi, Finset.prod_const, Finset.card_univ] [GOAL] M : Type u_1 inst✝¹ : Mul M inst✝ : Finite M ⊢ commProb M ≤ 1 [PROOFSTEP] refine' div_le_one_of_le _ (sq_nonneg (Nat.card M : ℚ)) [GOAL] M : Type u_1 inst✝¹ : Mul M inst✝ : Finite M ⊢ ↑(Nat.card { p // Commute p.fst p.snd }) ≤ ↑(Nat.card M) ^ 2 [PROOFSTEP] rw [← Nat.cast_pow, Nat.cast_le, sq, ← Nat.card_prod] [GOAL] M : Type u_1 inst✝¹ : Mul M inst✝ : Finite M ⊢ Nat.card { p // Commute p.fst p.snd } ≤ Nat.card (M × M) [PROOFSTEP] apply Finite.card_subtype_le [GOAL] M : Type u_1 inst✝¹ : Mul M inst✝ : Finite M h : Nonempty M ⊢ commProb M = 1 ↔ Commutative fun x x_1 => x * x_1 [PROOFSTEP] haveI := Fintype.ofFinite M [GOAL] M : Type u_1 inst✝¹ : Mul M inst✝ : Finite M h : Nonempty M this : Fintype M ⊢ commProb M = 1 ↔ Commutative fun x x_1 => x * x_1 [PROOFSTEP] rw [commProb, ← Set.coe_setOf, Nat.card_eq_fintype_card, Nat.card_eq_fintype_card] [GOAL] M : Type u_1 inst✝¹ : Mul M inst✝ : Finite M h : Nonempty M this : Fintype M ⊢ ↑(card ↑{x | Commute x.fst x.snd}) / ↑(card M) ^ 2 = 1 ↔ Commutative fun x x_1 => x * x_1 [PROOFSTEP] rw [div_eq_one_iff_eq, ← Nat.cast_pow, Nat.cast_inj, sq, ← card_prod, set_fintype_card_eq_univ_iff, Set.eq_univ_iff_forall] [GOAL] M : Type u_1 inst✝¹ : Mul M inst✝ : Finite M h : Nonempty M this : Fintype M ⊢ (∀ (x : M × M), x ∈ {x | Commute x.fst x.snd}) ↔ Commutative fun x x_1 => x * x_1 [PROOFSTEP] exact ⟨fun h x y ↦ h (x, y), fun h x ↦ h x.1 x.2⟩ [GOAL] M : Type u_1 inst✝¹ : Mul M inst✝ : Finite M h : Nonempty M this : Fintype M ⊢ ↑(card M) ^ 2 ≠ 0 [PROOFSTEP] exact pow_ne_zero 2 (Nat.cast_ne_zero.mpr card_ne_zero) [GOAL] M : Type u_1 inst✝² : Mul M inst✝¹ : Finite M G : Type u_2 inst✝ : Group G ⊢ commProb G = ↑(Nat.card (ConjClasses G)) / ↑(Nat.card G) [PROOFSTEP] rw [commProb, card_comm_eq_card_conjClasses_mul_card, Nat.cast_mul, sq] [GOAL] M : Type u_1 inst✝² : Mul M inst✝¹ : Finite M G : Type u_2 inst✝ : Group G ⊢ ↑(Nat.card (ConjClasses G)) * ↑(Nat.card G) / (↑(Nat.card G) * ↑(Nat.card G)) = ↑(Nat.card (ConjClasses G)) / ↑(Nat.card G) [PROOFSTEP] by_cases h : (Nat.card G : ℚ) = 0 [GOAL] case pos M : Type u_1 inst✝² : Mul M inst✝¹ : Finite M G : Type u_2 inst✝ : Group G h : ↑(Nat.card G) = 0 ⊢ ↑(Nat.card (ConjClasses G)) * ↑(Nat.card G) / (↑(Nat.card G) * ↑(Nat.card G)) = ↑(Nat.card (ConjClasses G)) / ↑(Nat.card G) [PROOFSTEP] rw [h, zero_mul, div_zero, div_zero] [GOAL] case neg M : Type u_1 inst✝² : Mul M inst✝¹ : Finite M G : Type u_2 inst✝ : Group G h : ¬↑(Nat.card G) = 0 ⊢ ↑(Nat.card (ConjClasses G)) * ↑(Nat.card G) / (↑(Nat.card G) * ↑(Nat.card G)) = ↑(Nat.card (ConjClasses G)) / ↑(Nat.card G) [PROOFSTEP] exact mul_div_mul_right _ _ h [GOAL] M : Type u_1 inst✝³ : Mul M inst✝² : Finite M G : Type u_2 inst✝¹ : Group G inst✝ : Finite G H : Subgroup G ⊢ commProb { x // x ∈ H } ≤ commProb G * ↑(index H) ^ 2 [PROOFSTEP] rw [commProb_def, commProb_def, div_le_iff, mul_assoc, ← mul_pow, ← Nat.cast_mul, mul_comm H.index, H.card_mul_index, div_mul_cancel, Nat.cast_le] [GOAL] M : Type u_1 inst✝³ : Mul M inst✝² : Finite M G : Type u_2 inst✝¹ : Group G inst✝ : Finite G H : Subgroup G ⊢ Nat.card { p // Commute p.fst p.snd } ≤ Nat.card { p // Commute p.fst p.snd } [PROOFSTEP] refine' Finite.card_le_of_injective (fun p ↦ ⟨⟨p.1.1, p.1.2⟩, Subtype.ext_iff.mp p.2⟩) _ [GOAL] M : Type u_1 inst✝³ : Mul M inst✝² : Finite M G : Type u_2 inst✝¹ : Group G inst✝ : Finite G H : Subgroup G ⊢ Function.Injective fun p => { val := (↑(↑p).fst, ↑(↑p).snd), property := (_ : ↑((↑p).fst * (↑p).snd) = ↑((↑p).snd * (↑p).fst)) } [PROOFSTEP] exact fun p q h ↦ by simpa only [Subtype.ext_iff, Prod.ext_iff] using h [GOAL] M : Type u_1 inst✝³ : Mul M inst✝² : Finite M G : Type u_2 inst✝¹ : Group G inst✝ : Finite G H : Subgroup G p q : { p // Commute p.fst p.snd } h : (fun p => { val := (↑(↑p).fst, ↑(↑p).snd), property := (_ : ↑((↑p).fst * (↑p).snd) = ↑((↑p).snd * (↑p).fst)) }) p = (fun p => { val := (↑(↑p).fst, ↑(↑p).snd), property := (_ : ↑((↑p).fst * (↑p).snd) = ↑((↑p).snd * (↑p).fst)) }) q ⊢ p = q [PROOFSTEP] simpa only [Subtype.ext_iff, Prod.ext_iff] using h [GOAL] case h M : Type u_1 inst✝³ : Mul M inst✝² : Finite M G : Type u_2 inst✝¹ : Group G inst✝ : Finite G H : Subgroup G ⊢ ↑(Nat.card G) ^ 2 ≠ 0 [PROOFSTEP] exact pow_ne_zero 2 (Nat.cast_ne_zero.mpr Finite.card_pos.ne') [GOAL] M : Type u_1 inst✝³ : Mul M inst✝² : Finite M G : Type u_2 inst✝¹ : Group G inst✝ : Finite G H : Subgroup G ⊢ 0 < ↑(Nat.card { x // x ∈ H }) ^ 2 [PROOFSTEP] exact pow_pos (Nat.cast_pos.mpr Finite.card_pos) 2 [GOAL] M : Type u_1 inst✝⁴ : Mul M inst✝³ : Finite M G : Type u_2 inst✝² : Group G inst✝¹ : Finite G H : Subgroup G inst✝ : Normal H ⊢ commProb (G ⧸ H) ≤ commProb G * ↑(Nat.card { x // x ∈ H }) [PROOFSTEP] rw [commProb_def', commProb_def', div_le_iff, mul_assoc, ← Nat.cast_mul, ← Subgroup.index, H.card_mul_index, div_mul_cancel, Nat.cast_le] [GOAL] M : Type u_1 inst✝⁴ : Mul M inst✝³ : Finite M G : Type u_2 inst✝² : Group G inst✝¹ : Finite G H : Subgroup G inst✝ : Normal H ⊢ Nat.card (ConjClasses (G ⧸ H)) ≤ Nat.card (ConjClasses G) [PROOFSTEP] apply Finite.card_le_of_surjective [GOAL] case hf M : Type u_1 inst✝⁴ : Mul M inst✝³ : Finite M G : Type u_2 inst✝² : Group G inst✝¹ : Finite G H : Subgroup G inst✝ : Normal H ⊢ Function.Surjective ?f case f M : Type u_1 inst✝⁴ : Mul M inst✝³ : Finite M G : Type u_2 inst✝² : Group G inst✝¹ : Finite G H : Subgroup G inst✝ : Normal H ⊢ ConjClasses G → ConjClasses (G ⧸ H) [PROOFSTEP] show Function.Surjective (ConjClasses.map (QuotientGroup.mk' H)) [GOAL] case hf M : Type u_1 inst✝⁴ : Mul M inst✝³ : Finite M G : Type u_2 inst✝² : Group G inst✝¹ : Finite G H : Subgroup G inst✝ : Normal H ⊢ Function.Surjective (ConjClasses.map (QuotientGroup.mk' H)) [PROOFSTEP] exact ConjClasses.map_surjective Quotient.surjective_Quotient_mk'' [GOAL] case h M : Type u_1 inst✝⁴ : Mul M inst✝³ : Finite M G : Type u_2 inst✝² : Group G inst✝¹ : Finite G H : Subgroup G inst✝ : Normal H ⊢ ↑(Nat.card G) ≠ 0 [PROOFSTEP] exact Nat.cast_ne_zero.mpr Finite.card_pos.ne' [GOAL] M : Type u_1 inst✝⁴ : Mul M inst✝³ : Finite M G : Type u_2 inst✝² : Group G inst✝¹ : Finite G H : Subgroup G inst✝ : Normal H ⊢ 0 < ↑(Nat.card (G ⧸ H)) [PROOFSTEP] exact Nat.cast_pos.mpr Finite.card_pos
{"mathlib_filename": "Mathlib.GroupTheory.CommutingProbability", "llama_tokens": 4650}
[GOAL] G : Type u_1 inst✝¹ : LinearOrderedAddCommGroup G inst✝ : Archimedean G H : AddSubgroup G a : G ha : IsLeast {g | g ∈ H ∧ 0 < g} a ⊢ H = closure {a} [PROOFSTEP] obtain ⟨⟨a_in, a_pos⟩, a_min⟩ := ha [GOAL] case intro.intro G : Type u_1 inst✝¹ : LinearOrderedAddCommGroup G inst✝ : Archimedean G H : AddSubgroup G a : G a_min : a ∈ lowerBounds {g | g ∈ H ∧ 0 < g} a_in : a ∈ H a_pos : 0 < a ⊢ H = closure {a} [PROOFSTEP] refine' le_antisymm _ (H.closure_le.mpr <| by simp [a_in]) [GOAL] G : Type u_1 inst✝¹ : LinearOrderedAddCommGroup G inst✝ : Archimedean G H : AddSubgroup G a : G a_min : a ∈ lowerBounds {g | g ∈ H ∧ 0 < g} a_in : a ∈ H a_pos : 0 < a ⊢ {a} ⊆ ↑H [PROOFSTEP] simp [a_in] [GOAL] case intro.intro G : Type u_1 inst✝¹ : LinearOrderedAddCommGroup G inst✝ : Archimedean G H : AddSubgroup G a : G a_min : a ∈ lowerBounds {g | g ∈ H ∧ 0 < g} a_in : a ∈ H a_pos : 0 < a ⊢ H ≤ closure {a} [PROOFSTEP] intro g g_in [GOAL] case intro.intro G : Type u_1 inst✝¹ : LinearOrderedAddCommGroup G inst✝ : Archimedean G H : AddSubgroup G a : G a_min : a ∈ lowerBounds {g | g ∈ H ∧ 0 < g} a_in : a ∈ H a_pos : 0 < a g : G g_in : g ∈ H ⊢ g ∈ closure {a} [PROOFSTEP] obtain ⟨k, ⟨nonneg, lt⟩, _⟩ := existsUnique_zsmul_near_of_pos' a_pos g [GOAL] case intro.intro.intro.intro.intro G : Type u_1 inst✝¹ : LinearOrderedAddCommGroup G inst✝ : Archimedean G H : AddSubgroup G a : G a_min : a ∈ lowerBounds {g | g ∈ H ∧ 0 < g} a_in : a ∈ H a_pos : 0 < a g : G g_in : g ∈ H k : ℤ right✝ : ∀ (y : ℤ), (fun k => 0 ≤ g - k • a ∧ g - k • a < a) y → y = k nonneg : 0 ≤ g - k • a lt : g - k • a < a ⊢ g ∈ closure {a} [PROOFSTEP] have h_zero : g - k • a = 0 := by by_contra h have h : a ≤ g - k • a := by refine' a_min ⟨_, _⟩ · exact AddSubgroup.sub_mem H g_in (AddSubgroup.zsmul_mem H a_in k) · exact lt_of_le_of_ne nonneg (Ne.symm h) have h' : ¬a ≤ g - k • a := not_le.mpr lt contradiction [GOAL] G : Type u_1 inst✝¹ : LinearOrderedAddCommGroup G inst✝ : Archimedean G H : AddSubgroup G a : G a_min : a ∈ lowerBounds {g | g ∈ H ∧ 0 < g} a_in : a ∈ H a_pos : 0 < a g : G g_in : g ∈ H k : ℤ right✝ : ∀ (y : ℤ), (fun k => 0 ≤ g - k • a ∧ g - k • a < a) y → y = k nonneg : 0 ≤ g - k • a lt : g - k • a < a ⊢ g - k • a = 0 [PROOFSTEP] by_contra h [GOAL] G : Type u_1 inst✝¹ : LinearOrderedAddCommGroup G inst✝ : Archimedean G H : AddSubgroup G a : G a_min : a ∈ lowerBounds {g | g ∈ H ∧ 0 < g} a_in : a ∈ H a_pos : 0 < a g : G g_in : g ∈ H k : ℤ right✝ : ∀ (y : ℤ), (fun k => 0 ≤ g - k • a ∧ g - k • a < a) y → y = k nonneg : 0 ≤ g - k • a lt : g - k • a < a h : ¬g - k • a = 0 ⊢ False [PROOFSTEP] have h : a ≤ g - k • a := by refine' a_min ⟨_, _⟩ · exact AddSubgroup.sub_mem H g_in (AddSubgroup.zsmul_mem H a_in k) · exact lt_of_le_of_ne nonneg (Ne.symm h) [GOAL] G : Type u_1 inst✝¹ : LinearOrderedAddCommGroup G inst✝ : Archimedean G H : AddSubgroup G a : G a_min : a ∈ lowerBounds {g | g ∈ H ∧ 0 < g} a_in : a ∈ H a_pos : 0 < a g : G g_in : g ∈ H k : ℤ right✝ : ∀ (y : ℤ), (fun k => 0 ≤ g - k • a ∧ g - k • a < a) y → y = k nonneg : 0 ≤ g - k • a lt : g - k • a < a h : ¬g - k • a = 0 ⊢ a ≤ g - k • a [PROOFSTEP] refine' a_min ⟨_, _⟩ [GOAL] case refine'_1 G : Type u_1 inst✝¹ : LinearOrderedAddCommGroup G inst✝ : Archimedean G H : AddSubgroup G a : G a_min : a ∈ lowerBounds {g | g ∈ H ∧ 0 < g} a_in : a ∈ H a_pos : 0 < a g : G g_in : g ∈ H k : ℤ right✝ : ∀ (y : ℤ), (fun k => 0 ≤ g - k • a ∧ g - k • a < a) y → y = k nonneg : 0 ≤ g - k • a lt : g - k • a < a h : ¬g - k • a = 0 ⊢ g - k • a ∈ H [PROOFSTEP] exact AddSubgroup.sub_mem H g_in (AddSubgroup.zsmul_mem H a_in k) [GOAL] case refine'_2 G : Type u_1 inst✝¹ : LinearOrderedAddCommGroup G inst✝ : Archimedean G H : AddSubgroup G a : G a_min : a ∈ lowerBounds {g | g ∈ H ∧ 0 < g} a_in : a ∈ H a_pos : 0 < a g : G g_in : g ∈ H k : ℤ right✝ : ∀ (y : ℤ), (fun k => 0 ≤ g - k • a ∧ g - k • a < a) y → y = k nonneg : 0 ≤ g - k • a lt : g - k • a < a h : ¬g - k • a = 0 ⊢ 0 < g - k • a [PROOFSTEP] exact lt_of_le_of_ne nonneg (Ne.symm h) [GOAL] G : Type u_1 inst✝¹ : LinearOrderedAddCommGroup G inst✝ : Archimedean G H : AddSubgroup G a : G a_min : a ∈ lowerBounds {g | g ∈ H ∧ 0 < g} a_in : a ∈ H a_pos : 0 < a g : G g_in : g ∈ H k : ℤ right✝ : ∀ (y : ℤ), (fun k => 0 ≤ g - k • a ∧ g - k • a < a) y → y = k nonneg : 0 ≤ g - k • a lt : g - k • a < a h✝ : ¬g - k • a = 0 h : a ≤ g - k • a ⊢ False [PROOFSTEP] have h' : ¬a ≤ g - k • a := not_le.mpr lt [GOAL] G : Type u_1 inst✝¹ : LinearOrderedAddCommGroup G inst✝ : Archimedean G H : AddSubgroup G a : G a_min : a ∈ lowerBounds {g | g ∈ H ∧ 0 < g} a_in : a ∈ H a_pos : 0 < a g : G g_in : g ∈ H k : ℤ right✝ : ∀ (y : ℤ), (fun k => 0 ≤ g - k • a ∧ g - k • a < a) y → y = k nonneg : 0 ≤ g - k • a lt : g - k • a < a h✝ : ¬g - k • a = 0 h : a ≤ g - k • a h' : ¬a ≤ g - k • a ⊢ False [PROOFSTEP] contradiction [GOAL] case intro.intro.intro.intro.intro G : Type u_1 inst✝¹ : LinearOrderedAddCommGroup G inst✝ : Archimedean G H : AddSubgroup G a : G a_min : a ∈ lowerBounds {g | g ∈ H ∧ 0 < g} a_in : a ∈ H a_pos : 0 < a g : G g_in : g ∈ H k : ℤ right✝ : ∀ (y : ℤ), (fun k => 0 ≤ g - k • a ∧ g - k • a < a) y → y = k nonneg : 0 ≤ g - k • a lt : g - k • a < a h_zero : g - k • a = 0 ⊢ g ∈ closure {a} [PROOFSTEP] simp [sub_eq_zero.mp h_zero, AddSubgroup.mem_closure_singleton] [GOAL] G : Type u_1 inst✝¹ : LinearOrderedAddCommGroup G inst✝ : Archimedean G H : AddSubgroup G hbot : H ≠ ⊥ a : G h₀ : 0 < a hd : Disjoint (↑H) (Ioo 0 a) ⊢ ∃ b, IsLeast {g | g ∈ H ∧ 0 < g} b [PROOFSTEP] have hex : ∀ g > 0, ∃ n : ℕ, g ∈ Ioc (n • a) ((n + 1) • a) := fun g hg => by rcases existsUnique_add_zsmul_mem_Ico h₀ 0 (g - a) with ⟨m, ⟨hm, hm'⟩, -⟩ simp only [zero_add, sub_le_iff_le_add, sub_add_cancel, ← add_one_zsmul] at hm hm' lift m to ℕ · rw [← Int.lt_add_one_iff, ← zsmul_lt_zsmul_iff h₀, zero_zsmul] exact hg.trans_le hm · simp only [← Nat.cast_succ, coe_nat_zsmul] at hm hm' exact ⟨m, hm', hm⟩ [GOAL] G : Type u_1 inst✝¹ : LinearOrderedAddCommGroup G inst✝ : Archimedean G H : AddSubgroup G hbot : H ≠ ⊥ a : G h₀ : 0 < a hd : Disjoint (↑H) (Ioo 0 a) g : G hg : g > 0 ⊢ ∃ n, g ∈ Ioc (n • a) ((n + 1) • a) [PROOFSTEP] rcases existsUnique_add_zsmul_mem_Ico h₀ 0 (g - a) with ⟨m, ⟨hm, hm'⟩, -⟩ [GOAL] case intro.intro.intro G : Type u_1 inst✝¹ : LinearOrderedAddCommGroup G inst✝ : Archimedean G H : AddSubgroup G hbot : H ≠ ⊥ a : G h₀ : 0 < a hd : Disjoint (↑H) (Ioo 0 a) g : G hg : g > 0 m : ℤ hm : g - a ≤ 0 + m • a hm' : 0 + m • a < g - a + a ⊢ ∃ n, g ∈ Ioc (n • a) ((n + 1) • a) [PROOFSTEP] simp only [zero_add, sub_le_iff_le_add, sub_add_cancel, ← add_one_zsmul] at hm hm' [GOAL] case intro.intro.intro G : Type u_1 inst✝¹ : LinearOrderedAddCommGroup G inst✝ : Archimedean G H : AddSubgroup G hbot : H ≠ ⊥ a : G h₀ : 0 < a hd : Disjoint (↑H) (Ioo 0 a) g : G hg : g > 0 m : ℤ hm : g ≤ (m + 1) • a hm' : m • a < g ⊢ ∃ n, g ∈ Ioc (n • a) ((n + 1) • a) [PROOFSTEP] lift m to ℕ [GOAL] G : Type u_1 inst✝¹ : LinearOrderedAddCommGroup G inst✝ : Archimedean G H : AddSubgroup G hbot : H ≠ ⊥ a : G h₀ : 0 < a hd : Disjoint (↑H) (Ioo 0 a) g : G hg : g > 0 m : ℤ hm : g ≤ (m + 1) • a hm' : m • a < g ⊢ 0 ≤ m [PROOFSTEP] rw [← Int.lt_add_one_iff, ← zsmul_lt_zsmul_iff h₀, zero_zsmul] [GOAL] G : Type u_1 inst✝¹ : LinearOrderedAddCommGroup G inst✝ : Archimedean G H : AddSubgroup G hbot : H ≠ ⊥ a : G h₀ : 0 < a hd : Disjoint (↑H) (Ioo 0 a) g : G hg : g > 0 m : ℤ hm : g ≤ (m + 1) • a hm' : m • a < g ⊢ 0 < (m + 1) • a [PROOFSTEP] exact hg.trans_le hm [GOAL] case intro.intro.intro.intro G : Type u_1 inst✝¹ : LinearOrderedAddCommGroup G inst✝ : Archimedean G H : AddSubgroup G hbot : H ≠ ⊥ a : G h₀ : 0 < a hd : Disjoint (↑H) (Ioo 0 a) g : G hg : g > 0 m : ℕ hm : g ≤ (↑m + 1) • a hm' : ↑m • a < g ⊢ ∃ n, g ∈ Ioc (n • a) ((n + 1) • a) [PROOFSTEP] simp only [← Nat.cast_succ, coe_nat_zsmul] at hm hm' [GOAL] case intro.intro.intro.intro G : Type u_1 inst✝¹ : LinearOrderedAddCommGroup G inst✝ : Archimedean G H : AddSubgroup G hbot : H ≠ ⊥ a : G h₀ : 0 < a hd : Disjoint (↑H) (Ioo 0 a) g : G hg : g > 0 m : ℕ hm : g ≤ Nat.succ m • a hm' : m • a < g ⊢ ∃ n, g ∈ Ioc (n • a) ((n + 1) • a) [PROOFSTEP] exact ⟨m, hm', hm⟩ [GOAL] G : Type u_1 inst✝¹ : LinearOrderedAddCommGroup G inst✝ : Archimedean G H : AddSubgroup G hbot : H ≠ ⊥ a : G h₀ : 0 < a hd : Disjoint (↑H) (Ioo 0 a) hex : ∀ (g : G), g > 0 → ∃ n, g ∈ Ioc (n • a) ((n + 1) • a) ⊢ ∃ b, IsLeast {g | g ∈ H ∧ 0 < g} b [PROOFSTEP] have : ∃ n : ℕ, Set.Nonempty (H ∩ Ioc (n • a) ((n + 1) • a)) [GOAL] case this G : Type u_1 inst✝¹ : LinearOrderedAddCommGroup G inst✝ : Archimedean G H : AddSubgroup G hbot : H ≠ ⊥ a : G h₀ : 0 < a hd : Disjoint (↑H) (Ioo 0 a) hex : ∀ (g : G), g > 0 → ∃ n, g ∈ Ioc (n • a) ((n + 1) • a) ⊢ ∃ n, Set.Nonempty (↑H ∩ Ioc (n • a) ((n + 1) • a)) [PROOFSTEP] rcases(bot_or_exists_ne_zero H).resolve_left hbot with ⟨g, hgH, hg₀⟩ [GOAL] case this.intro.intro G : Type u_1 inst✝¹ : LinearOrderedAddCommGroup G inst✝ : Archimedean G H : AddSubgroup G hbot : H ≠ ⊥ a : G h₀ : 0 < a hd : Disjoint (↑H) (Ioo 0 a) hex : ∀ (g : G), g > 0 → ∃ n, g ∈ Ioc (n • a) ((n + 1) • a) g : G hgH : g ∈ H hg₀ : g ≠ 0 ⊢ ∃ n, Set.Nonempty (↑H ∩ Ioc (n • a) ((n + 1) • a)) [PROOFSTEP] rcases hex |g| (abs_pos.2 hg₀) with ⟨n, hn⟩ [GOAL] case this.intro.intro.intro G : Type u_1 inst✝¹ : LinearOrderedAddCommGroup G inst✝ : Archimedean G H : AddSubgroup G hbot : H ≠ ⊥ a : G h₀ : 0 < a hd : Disjoint (↑H) (Ioo 0 a) hex : ∀ (g : G), g > 0 → ∃ n, g ∈ Ioc (n • a) ((n + 1) • a) g : G hgH : g ∈ H hg₀ : g ≠ 0 n : ℕ hn : |g| ∈ Ioc (n • a) ((n + 1) • a) ⊢ ∃ n, Set.Nonempty (↑H ∩ Ioc (n • a) ((n + 1) • a)) [PROOFSTEP] exact ⟨n, _, (@abs_mem_iff (AddSubgroup G) G _ _).2 hgH, hn⟩ [GOAL] G : Type u_1 inst✝¹ : LinearOrderedAddCommGroup G inst✝ : Archimedean G H : AddSubgroup G hbot : H ≠ ⊥ a : G h₀ : 0 < a hd : Disjoint (↑H) (Ioo 0 a) hex : ∀ (g : G), g > 0 → ∃ n, g ∈ Ioc (n • a) ((n + 1) • a) this : ∃ n, Set.Nonempty (↑H ∩ Ioc (n • a) ((n + 1) • a)) ⊢ ∃ b, IsLeast {g | g ∈ H ∧ 0 < g} b [PROOFSTEP] classical rcases Nat.findX this with ⟨n, ⟨x, hxH, hnx, hxn⟩, hmin⟩ [GOAL] G : Type u_1 inst✝¹ : LinearOrderedAddCommGroup G inst✝ : Archimedean G H : AddSubgroup G hbot : H ≠ ⊥ a : G h₀ : 0 < a hd : Disjoint (↑H) (Ioo 0 a) hex : ∀ (g : G), g > 0 → ∃ n, g ∈ Ioc (n • a) ((n + 1) • a) this : ∃ n, Set.Nonempty (↑H ∩ Ioc (n • a) ((n + 1) • a)) ⊢ ∃ b, IsLeast {g | g ∈ H ∧ 0 < g} b [PROOFSTEP] rcases Nat.findX this with ⟨n, ⟨x, hxH, hnx, hxn⟩, hmin⟩ [GOAL] case mk.intro.intro.intro.intro G : Type u_1 inst✝¹ : LinearOrderedAddCommGroup G inst✝ : Archimedean G H : AddSubgroup G hbot : H ≠ ⊥ a : G h₀ : 0 < a hd : Disjoint (↑H) (Ioo 0 a) hex : ∀ (g : G), g > 0 → ∃ n, g ∈ Ioc (n • a) ((n + 1) • a) this : ∃ n, Set.Nonempty (↑H ∩ Ioc (n • a) ((n + 1) • a)) n : ℕ hmin : ∀ (m : ℕ), m < n → ¬Set.Nonempty (↑H ∩ Ioc (m • a) ((m + 1) • a)) x : G hxH : x ∈ ↑H hnx : n • a < x hxn : x ≤ (n + 1) • a ⊢ ∃ b, IsLeast {g | g ∈ H ∧ 0 < g} b [PROOFSTEP] by_contra hxmin [GOAL] case mk.intro.intro.intro.intro G : Type u_1 inst✝¹ : LinearOrderedAddCommGroup G inst✝ : Archimedean G H : AddSubgroup G hbot : H ≠ ⊥ a : G h₀ : 0 < a hd : Disjoint (↑H) (Ioo 0 a) hex : ∀ (g : G), g > 0 → ∃ n, g ∈ Ioc (n • a) ((n + 1) • a) this : ∃ n, Set.Nonempty (↑H ∩ Ioc (n • a) ((n + 1) • a)) n : ℕ hmin : ∀ (m : ℕ), m < n → ¬Set.Nonempty (↑H ∩ Ioc (m • a) ((m + 1) • a)) x : G hxH : x ∈ ↑H hnx : n • a < x hxn : x ≤ (n + 1) • a hxmin : ¬∃ b, IsLeast {g | g ∈ H ∧ 0 < g} b ⊢ False [PROOFSTEP] simp only [IsLeast, not_and, mem_setOf_eq, mem_lowerBounds, not_exists, not_forall, not_le] at hxmin [GOAL] case mk.intro.intro.intro.intro G : Type u_1 inst✝¹ : LinearOrderedAddCommGroup G inst✝ : Archimedean G H : AddSubgroup G hbot : H ≠ ⊥ a : G h₀ : 0 < a hd : Disjoint (↑H) (Ioo 0 a) hex : ∀ (g : G), g > 0 → ∃ n, g ∈ Ioc (n • a) ((n + 1) • a) this : ∃ n, Set.Nonempty (↑H ∩ Ioc (n • a) ((n + 1) • a)) n : ℕ hmin : ∀ (m : ℕ), m < n → ¬Set.Nonempty (↑H ∩ Ioc (m • a) ((m + 1) • a)) x : G hxH : x ∈ ↑H hnx : n • a < x hxn : x ≤ (n + 1) • a hxmin : ∀ (x : G), x ∈ H ∧ 0 < x → ∃ x_1 h, x_1 < x ⊢ False [PROOFSTEP] rcases hxmin x ⟨hxH, (nsmul_nonneg h₀.le _).trans_lt hnx⟩ with ⟨y, ⟨hyH, hy₀⟩, hxy⟩ [GOAL] case mk.intro.intro.intro.intro.intro.intro.intro G : Type u_1 inst✝¹ : LinearOrderedAddCommGroup G inst✝ : Archimedean G H : AddSubgroup G hbot : H ≠ ⊥ a : G h₀ : 0 < a hd : Disjoint (↑H) (Ioo 0 a) hex : ∀ (g : G), g > 0 → ∃ n, g ∈ Ioc (n • a) ((n + 1) • a) this : ∃ n, Set.Nonempty (↑H ∩ Ioc (n • a) ((n + 1) • a)) n : ℕ hmin : ∀ (m : ℕ), m < n → ¬Set.Nonempty (↑H ∩ Ioc (m • a) ((m + 1) • a)) x : G hxH : x ∈ ↑H hnx : n • a < x hxn : x ≤ (n + 1) • a hxmin : ∀ (x : G), x ∈ H ∧ 0 < x → ∃ x_1 h, x_1 < x y : G hxy : y < x hyH : y ∈ H hy₀ : 0 < y ⊢ False [PROOFSTEP] rcases hex y hy₀ with ⟨m, hm⟩ [GOAL] case mk.intro.intro.intro.intro.intro.intro.intro.intro G : Type u_1 inst✝¹ : LinearOrderedAddCommGroup G inst✝ : Archimedean G H : AddSubgroup G hbot : H ≠ ⊥ a : G h₀ : 0 < a hd : Disjoint (↑H) (Ioo 0 a) hex : ∀ (g : G), g > 0 → ∃ n, g ∈ Ioc (n • a) ((n + 1) • a) this : ∃ n, Set.Nonempty (↑H ∩ Ioc (n • a) ((n + 1) • a)) n : ℕ hmin : ∀ (m : ℕ), m < n → ¬Set.Nonempty (↑H ∩ Ioc (m • a) ((m + 1) • a)) x : G hxH : x ∈ ↑H hnx : n • a < x hxn : x ≤ (n + 1) • a hxmin : ∀ (x : G), x ∈ H ∧ 0 < x → ∃ x_1 h, x_1 < x y : G hxy : y < x hyH : y ∈ H hy₀ : 0 < y m : ℕ hm : y ∈ Ioc (m • a) ((m + 1) • a) ⊢ False [PROOFSTEP] cases' lt_or_le m n with hmn hnm [GOAL] case mk.intro.intro.intro.intro.intro.intro.intro.intro.inl G : Type u_1 inst✝¹ : LinearOrderedAddCommGroup G inst✝ : Archimedean G H : AddSubgroup G hbot : H ≠ ⊥ a : G h₀ : 0 < a hd : Disjoint (↑H) (Ioo 0 a) hex : ∀ (g : G), g > 0 → ∃ n, g ∈ Ioc (n • a) ((n + 1) • a) this : ∃ n, Set.Nonempty (↑H ∩ Ioc (n • a) ((n + 1) • a)) n : ℕ hmin : ∀ (m : ℕ), m < n → ¬Set.Nonempty (↑H ∩ Ioc (m • a) ((m + 1) • a)) x : G hxH : x ∈ ↑H hnx : n • a < x hxn : x ≤ (n + 1) • a hxmin : ∀ (x : G), x ∈ H ∧ 0 < x → ∃ x_1 h, x_1 < x y : G hxy : y < x hyH : y ∈ H hy₀ : 0 < y m : ℕ hm : y ∈ Ioc (m • a) ((m + 1) • a) hmn : m < n ⊢ False [PROOFSTEP] exact hmin m hmn ⟨y, hyH, hm⟩ [GOAL] case mk.intro.intro.intro.intro.intro.intro.intro.intro.inr G : Type u_1 inst✝¹ : LinearOrderedAddCommGroup G inst✝ : Archimedean G H : AddSubgroup G hbot : H ≠ ⊥ a : G h₀ : 0 < a hd : Disjoint (↑H) (Ioo 0 a) hex : ∀ (g : G), g > 0 → ∃ n, g ∈ Ioc (n • a) ((n + 1) • a) this : ∃ n, Set.Nonempty (↑H ∩ Ioc (n • a) ((n + 1) • a)) n : ℕ hmin : ∀ (m : ℕ), m < n → ¬Set.Nonempty (↑H ∩ Ioc (m • a) ((m + 1) • a)) x : G hxH : x ∈ ↑H hnx : n • a < x hxn : x ≤ (n + 1) • a hxmin : ∀ (x : G), x ∈ H ∧ 0 < x → ∃ x_1 h, x_1 < x y : G hxy : y < x hyH : y ∈ H hy₀ : 0 < y m : ℕ hm : y ∈ Ioc (m • a) ((m + 1) • a) hnm : n ≤ m ⊢ False [PROOFSTEP] refine disjoint_left.1 hd (sub_mem hxH hyH) ⟨sub_pos.2 hxy, sub_lt_iff_lt_add'.2 ?_⟩ [GOAL] case mk.intro.intro.intro.intro.intro.intro.intro.intro.inr G : Type u_1 inst✝¹ : LinearOrderedAddCommGroup G inst✝ : Archimedean G H : AddSubgroup G hbot : H ≠ ⊥ a : G h₀ : 0 < a hd : Disjoint (↑H) (Ioo 0 a) hex : ∀ (g : G), g > 0 → ∃ n, g ∈ Ioc (n • a) ((n + 1) • a) this : ∃ n, Set.Nonempty (↑H ∩ Ioc (n • a) ((n + 1) • a)) n : ℕ hmin : ∀ (m : ℕ), m < n → ¬Set.Nonempty (↑H ∩ Ioc (m • a) ((m + 1) • a)) x : G hxH : x ∈ ↑H hnx : n • a < x hxn : x ≤ (n + 1) • a hxmin : ∀ (x : G), x ∈ H ∧ 0 < x → ∃ x_1 h, x_1 < x y : G hxy : y < x hyH : y ∈ H hy₀ : 0 < y m : ℕ hm : y ∈ Ioc (m • a) ((m + 1) • a) hnm : n ≤ m ⊢ x < y + a [PROOFSTEP] calc x ≤ (n + 1) • a := hxn _ ≤ (m + 1) • a := (nsmul_le_nsmul h₀.le (add_le_add_right hnm _)) _ = m • a + a := (succ_nsmul' _ _) _ < y + a := add_lt_add_right hm.1 _ [GOAL] G : Type u_1 inst✝¹ : LinearOrderedAddCommGroup G inst✝ : Archimedean G H : AddSubgroup G a : G h₀ : 0 < a hd : Disjoint (↑H) (Ioo 0 a) ⊢ ∃ b, H = closure {b} [PROOFSTEP] rcases eq_or_ne H ⊥ with rfl | hbot [GOAL] case inl G : Type u_1 inst✝¹ : LinearOrderedAddCommGroup G inst✝ : Archimedean G a : G h₀ : 0 < a hd : Disjoint (↑⊥) (Ioo 0 a) ⊢ ∃ b, ⊥ = closure {b} [PROOFSTEP] exact ⟨0, closure_singleton_zero.symm⟩ [GOAL] case inr G : Type u_1 inst✝¹ : LinearOrderedAddCommGroup G inst✝ : Archimedean G H : AddSubgroup G a : G h₀ : 0 < a hd : Disjoint (↑H) (Ioo 0 a) hbot : H ≠ ⊥ ⊢ ∃ b, H = closure {b} [PROOFSTEP] exact (exists_isLeast_pos hbot h₀ hd).imp fun _ => cyclic_of_min [GOAL] G : Type u_1 inst✝¹ : LinearOrderedAddCommGroup G inst✝ : Archimedean G H : AddSubgroup ℤ this : Ioo 0 1 = ∅ ⊢ Disjoint (↑H) (Ioo 0 1) [PROOFSTEP] simp [this]
{"mathlib_filename": "Mathlib.GroupTheory.Archimedean", "llama_tokens": 9053}
[GOAL] G : Type u_1 inst✝¹ : Group G H K L : Subgroup G G' : Type u_2 inst✝ : Group G' f : G' →* G hf : Function.Surjective ↑f ⊢ index (comap f H) = index H [PROOFSTEP] letI := QuotientGroup.leftRel H [GOAL] G : Type u_1 inst✝¹ : Group G H K L : Subgroup G G' : Type u_2 inst✝ : Group G' f : G' →* G hf : Function.Surjective ↑f this : Setoid G := QuotientGroup.leftRel H ⊢ index (comap f H) = index H [PROOFSTEP] letI := QuotientGroup.leftRel (H.comap f) [GOAL] G : Type u_1 inst✝¹ : Group G H K L : Subgroup G G' : Type u_2 inst✝ : Group G' f : G' →* G hf : Function.Surjective ↑f this✝ : Setoid G := QuotientGroup.leftRel H this : Setoid G' := QuotientGroup.leftRel (comap f H) ⊢ index (comap f H) = index H [PROOFSTEP] have key : ∀ x y : G', Setoid.r x y ↔ Setoid.r (f x) (f y) := by simp only [QuotientGroup.leftRel_apply] exact fun x y => iff_of_eq (congr_arg (· ∈ H) (by rw [f.map_mul, f.map_inv])) [GOAL] G : Type u_1 inst✝¹ : Group G H K L : Subgroup G G' : Type u_2 inst✝ : Group G' f : G' →* G hf : Function.Surjective ↑f this✝ : Setoid G := QuotientGroup.leftRel H this : Setoid G' := QuotientGroup.leftRel (comap f H) ⊢ ∀ (x y : G'), Setoid.r x y ↔ Setoid.r (↑f x) (↑f y) [PROOFSTEP] simp only [QuotientGroup.leftRel_apply] [GOAL] G : Type u_1 inst✝¹ : Group G H K L : Subgroup G G' : Type u_2 inst✝ : Group G' f : G' →* G hf : Function.Surjective ↑f this✝ : Setoid G := QuotientGroup.leftRel H this : Setoid G' := QuotientGroup.leftRel (comap f H) ⊢ ∀ (x y : G'), x⁻¹ * y ∈ comap f H ↔ (↑f x)⁻¹ * ↑f y ∈ H [PROOFSTEP] exact fun x y => iff_of_eq (congr_arg (· ∈ H) (by rw [f.map_mul, f.map_inv])) [GOAL] G : Type u_1 inst✝¹ : Group G H K L : Subgroup G G' : Type u_2 inst✝ : Group G' f : G' →* G hf : Function.Surjective ↑f this✝ : Setoid G := QuotientGroup.leftRel H this : Setoid G' := QuotientGroup.leftRel (comap f H) x y : G' ⊢ ↑f (x⁻¹ * y) = (↑f x)⁻¹ * ↑f y [PROOFSTEP] rw [f.map_mul, f.map_inv] [GOAL] G : Type u_1 inst✝¹ : Group G H K L : Subgroup G G' : Type u_2 inst✝ : Group G' f : G' →* G hf : Function.Surjective ↑f this✝ : Setoid G := QuotientGroup.leftRel H this : Setoid G' := QuotientGroup.leftRel (comap f H) key : ∀ (x y : G'), Setoid.r x y ↔ Setoid.r (↑f x) (↑f y) ⊢ index (comap f H) = index H [PROOFSTEP] refine' Cardinal.toNat_congr (Equiv.ofBijective (Quotient.map' f fun x y => (key x y).mp) ⟨_, _⟩) [GOAL] case refine'_1 G : Type u_1 inst✝¹ : Group G H K L : Subgroup G G' : Type u_2 inst✝ : Group G' f : G' →* G hf : Function.Surjective ↑f this✝ : Setoid G := QuotientGroup.leftRel H this : Setoid G' := QuotientGroup.leftRel (comap f H) key : ∀ (x y : G'), Setoid.r x y ↔ Setoid.r (↑f x) (↑f y) ⊢ Function.Injective (Quotient.map' ↑f (_ : ∀ (x y : G'), Setoid.r x y → Setoid.r (↑f x) (↑f y))) [PROOFSTEP] simp_rw [← Quotient.eq''] at key [GOAL] case refine'_1 G : Type u_1 inst✝¹ : Group G H K L : Subgroup G G' : Type u_2 inst✝ : Group G' f : G' →* G hf : Function.Surjective ↑f this✝ : Setoid G := QuotientGroup.leftRel H this : Setoid G' := QuotientGroup.leftRel (comap f H) key✝ : ∀ (x y : G'), Setoid.r x y ↔ Setoid.r (↑f x) (↑f y) key : ∀ (x y : G'), Quotient.mk'' x = Quotient.mk'' y ↔ Quotient.mk'' (↑f x) = Quotient.mk'' (↑f y) ⊢ Function.Injective (Quotient.map' ↑f (_ : ∀ (x y : G'), Setoid.r x y → Setoid.r (↑f x) (↑f y))) [PROOFSTEP] refine' Quotient.ind' fun x => _ [GOAL] case refine'_1 G : Type u_1 inst✝¹ : Group G H K L : Subgroup G G' : Type u_2 inst✝ : Group G' f : G' →* G hf : Function.Surjective ↑f this✝ : Setoid G := QuotientGroup.leftRel H this : Setoid G' := QuotientGroup.leftRel (comap f H) key✝ : ∀ (x y : G'), Setoid.r x y ↔ Setoid.r (↑f x) (↑f y) key : ∀ (x y : G'), Quotient.mk'' x = Quotient.mk'' y ↔ Quotient.mk'' (↑f x) = Quotient.mk'' (↑f y) x : G' ⊢ ∀ ⦃a₂ : G' ⧸ comap f H⦄, Quotient.map' ↑f (_ : ∀ (x y : G'), Setoid.r x y → Setoid.r (↑f x) (↑f y)) (Quotient.mk'' x) = Quotient.map' ↑f (_ : ∀ (x y : G'), Setoid.r x y → Setoid.r (↑f x) (↑f y)) a₂ → Quotient.mk'' x = a₂ [PROOFSTEP] refine' Quotient.ind' fun y => _ [GOAL] case refine'_1 G : Type u_1 inst✝¹ : Group G H K L : Subgroup G G' : Type u_2 inst✝ : Group G' f : G' →* G hf : Function.Surjective ↑f this✝ : Setoid G := QuotientGroup.leftRel H this : Setoid G' := QuotientGroup.leftRel (comap f H) key✝ : ∀ (x y : G'), Setoid.r x y ↔ Setoid.r (↑f x) (↑f y) key : ∀ (x y : G'), Quotient.mk'' x = Quotient.mk'' y ↔ Quotient.mk'' (↑f x) = Quotient.mk'' (↑f y) x y : G' ⊢ Quotient.map' ↑f (_ : ∀ (x y : G'), Setoid.r x y → Setoid.r (↑f x) (↑f y)) (Quotient.mk'' x) = Quotient.map' ↑f (_ : ∀ (x y : G'), Setoid.r x y → Setoid.r (↑f x) (↑f y)) (Quotient.mk'' y) → Quotient.mk'' x = Quotient.mk'' y [PROOFSTEP] exact (key x y).mpr [GOAL] case refine'_2 G : Type u_1 inst✝¹ : Group G H K L : Subgroup G G' : Type u_2 inst✝ : Group G' f : G' →* G hf : Function.Surjective ↑f this✝ : Setoid G := QuotientGroup.leftRel H this : Setoid G' := QuotientGroup.leftRel (comap f H) key : ∀ (x y : G'), Setoid.r x y ↔ Setoid.r (↑f x) (↑f y) ⊢ Function.Surjective (Quotient.map' ↑f (_ : ∀ (x y : G'), Setoid.r x y → Setoid.r (↑f x) (↑f y))) [PROOFSTEP] refine' Quotient.ind' fun x => _ [GOAL] case refine'_2 G : Type u_1 inst✝¹ : Group G H K L : Subgroup G G' : Type u_2 inst✝ : Group G' f : G' →* G hf : Function.Surjective ↑f this✝ : Setoid G := QuotientGroup.leftRel H this : Setoid G' := QuotientGroup.leftRel (comap f H) key : ∀ (x y : G'), Setoid.r x y ↔ Setoid.r (↑f x) (↑f y) x : G ⊢ ∃ a, Quotient.map' ↑f (_ : ∀ (x y : G'), Setoid.r x y → Setoid.r (↑f x) (↑f y)) a = Quotient.mk'' x [PROOFSTEP] obtain ⟨y, hy⟩ := hf x [GOAL] case refine'_2.intro G : Type u_1 inst✝¹ : Group G H K L : Subgroup G G' : Type u_2 inst✝ : Group G' f : G' →* G hf : Function.Surjective ↑f this✝ : Setoid G := QuotientGroup.leftRel H this : Setoid G' := QuotientGroup.leftRel (comap f H) key : ∀ (x y : G'), Setoid.r x y ↔ Setoid.r (↑f x) (↑f y) x : G y : G' hy : ↑f y = x ⊢ ∃ a, Quotient.map' ↑f (_ : ∀ (x y : G'), Setoid.r x y → Setoid.r (↑f x) (↑f y)) a = Quotient.mk'' x [PROOFSTEP] exact ⟨y, (Quotient.map'_mk'' f _ y).trans (congr_arg Quotient.mk'' hy)⟩ [GOAL] G : Type u_1 inst✝¹ : Group G H K L : Subgroup G G' : Type u_2 inst✝ : Group G' f : G' →* G ⊢ comap f H = comap (MonoidHom.rangeRestrict f) (subgroupOf H (MonoidHom.range f)) [PROOFSTEP] rfl [GOAL] G : Type u_1 inst✝¹ : Group G H K✝ L : Subgroup G G' : Type u_2 inst✝ : Group G' f : G' →* G K : Subgroup G' ⊢ relindex (comap f H) K = relindex H (map f K) [PROOFSTEP] rw [relindex, subgroupOf, comap_comap, index_comap, ← f.map_range, K.subtype_range] [GOAL] G : Type u_1 inst✝ : Group G H K L : Subgroup G hHK : H ≤ K hKL : K ≤ L ⊢ relindex H K * relindex K L = relindex H L [PROOFSTEP] rw [← relindex_subgroupOf hKL] [GOAL] G : Type u_1 inst✝ : Group G H K L : Subgroup G hHK : H ≤ K hKL : K ≤ L ⊢ relindex (subgroupOf H L) (subgroupOf K L) * relindex K L = relindex H L [PROOFSTEP] exact relindex_mul_index fun x hx => hHK hx [GOAL] G : Type u_1 inst✝ : Group G H K L : Subgroup G ⊢ relindex (H ⊓ K) K = relindex H K [PROOFSTEP] rw [relindex, relindex, inf_subgroupOf_right] [GOAL] G : Type u_1 inst✝ : Group G H K L : Subgroup G ⊢ relindex (H ⊓ K) H = relindex K H [PROOFSTEP] rw [inf_comm, inf_relindex_right] [GOAL] G : Type u_1 inst✝ : Group G H K L : Subgroup G ⊢ relindex H (K ⊓ L) * relindex K L = relindex (H ⊓ K) L [PROOFSTEP] rw [← inf_relindex_right H (K ⊓ L), ← inf_relindex_right K L, ← inf_relindex_right (H ⊓ K) L, inf_assoc, relindex_mul_relindex (H ⊓ (K ⊓ L)) (K ⊓ L) L inf_le_right inf_le_right] [GOAL] G : Type u_1 inst✝¹ : Group G H K L : Subgroup G inst✝ : Normal K ⊢ relindex K (K ⊔ H) = relindex K H [PROOFSTEP] rw [sup_comm, relindex_sup_right] [GOAL] G : Type u_1 inst✝ : Group G H K L : Subgroup G ⊢ index H = 2 ↔ ∃ a, ∀ (b : G), Xor' (b * a ∈ H) (b ∈ H) [PROOFSTEP] simp only [index, Nat.card_eq_two_iff' ((1 : G) : G ⧸ H), ExistsUnique, inv_mem_iff, QuotientGroup.exists_mk, QuotientGroup.forall_mk, Ne.def, QuotientGroup.eq, mul_one, xor_iff_iff_not] [GOAL] G : Type u_1 inst✝ : Group G H K L : Subgroup G ⊢ (∃ x, ¬x ∈ H ∧ ∀ (x_1 : G), ¬x_1 ∈ H → x_1⁻¹ * x ∈ H) ↔ ∃ a, ∀ (b : G), b * a ∈ H ↔ ¬b ∈ H [PROOFSTEP] refine' exists_congr fun a => ⟨fun ha b => ⟨fun hba hb => _, fun hb => _⟩, fun ha => ⟨_, fun b hb => _⟩⟩ [GOAL] case refine'_1 G : Type u_1 inst✝ : Group G H K L : Subgroup G a : G ha : ¬a ∈ H ∧ ∀ (x : G), ¬x ∈ H → x⁻¹ * a ∈ H b : G hba : b * a ∈ H hb : b ∈ H ⊢ False [PROOFSTEP] exact ha.1 ((mul_mem_cancel_left hb).1 hba) [GOAL] case refine'_2 G : Type u_1 inst✝ : Group G H K L : Subgroup G a : G ha : ¬a ∈ H ∧ ∀ (x : G), ¬x ∈ H → x⁻¹ * a ∈ H b : G hb : ¬b ∈ H ⊢ b * a ∈ H [PROOFSTEP] exact inv_inv b ▸ ha.2 _ (mt (inv_mem_iff (x := b)).1 hb) [GOAL] case refine'_3 G : Type u_1 inst✝ : Group G H K L : Subgroup G a : G ha : ∀ (b : G), b * a ∈ H ↔ ¬b ∈ H ⊢ ¬a ∈ H [PROOFSTEP] rw [← inv_mem_iff (x := a), ← ha, inv_mul_self] [GOAL] case refine'_3 G : Type u_1 inst✝ : Group G H K L : Subgroup G a : G ha : ∀ (b : G), b * a ∈ H ↔ ¬b ∈ H ⊢ 1 ∈ H [PROOFSTEP] exact one_mem _ [GOAL] case refine'_4 G : Type u_1 inst✝ : Group G H K L : Subgroup G a : G ha : ∀ (b : G), b * a ∈ H ↔ ¬b ∈ H b : G hb : ¬b ∈ H ⊢ b⁻¹ * a ∈ H [PROOFSTEP] rwa [ha, inv_mem_iff (x := b)] [GOAL] G : Type u_1 inst✝ : Group G H K L : Subgroup G h : index H = 2 a b : G ⊢ a * b ∈ H ↔ (a ∈ H ↔ b ∈ H) [PROOFSTEP] by_cases ha : a ∈ H [GOAL] case pos G : Type u_1 inst✝ : Group G H K L : Subgroup G h : index H = 2 a b : G ha : a ∈ H ⊢ a * b ∈ H ↔ (a ∈ H ↔ b ∈ H) [PROOFSTEP] simp only [ha, true_iff_iff, mul_mem_cancel_left ha] [GOAL] case neg G : Type u_1 inst✝ : Group G H K L : Subgroup G h : index H = 2 a b : G ha : ¬a ∈ H ⊢ a * b ∈ H ↔ (a ∈ H ↔ b ∈ H) [PROOFSTEP] by_cases hb : b ∈ H [GOAL] case pos G : Type u_1 inst✝ : Group G H K L : Subgroup G h : index H = 2 a b : G ha : ¬a ∈ H hb : b ∈ H ⊢ a * b ∈ H ↔ (a ∈ H ↔ b ∈ H) [PROOFSTEP] simp only [hb, iff_true_iff, mul_mem_cancel_right hb] [GOAL] case neg G : Type u_1 inst✝ : Group G H K L : Subgroup G h : index H = 2 a b : G ha : ¬a ∈ H hb : ¬b ∈ H ⊢ a * b ∈ H ↔ (a ∈ H ↔ b ∈ H) [PROOFSTEP] simp only [ha, hb, iff_self_iff, iff_true_iff] [GOAL] case neg G : Type u_1 inst✝ : Group G H K L : Subgroup G h : index H = 2 a b : G ha : ¬a ∈ H hb : ¬b ∈ H ⊢ a * b ∈ H [PROOFSTEP] rcases index_eq_two_iff.1 h with ⟨c, hc⟩ [GOAL] case neg.intro G : Type u_1 inst✝ : Group G H K L : Subgroup G h : index H = 2 a b : G ha : ¬a ∈ H hb : ¬b ∈ H c : G hc : ∀ (b : G), Xor' (b * c ∈ H) (b ∈ H) ⊢ a * b ∈ H [PROOFSTEP] refine' (hc _).or.resolve_left _ [GOAL] case neg.intro G : Type u_1 inst✝ : Group G H K L : Subgroup G h : index H = 2 a b : G ha : ¬a ∈ H hb : ¬b ∈ H c : G hc : ∀ (b : G), Xor' (b * c ∈ H) (b ∈ H) ⊢ ¬a * b * c ∈ H [PROOFSTEP] rwa [mul_assoc, mul_mem_cancel_right ((hc _).or.resolve_right hb)] [GOAL] G : Type u_1 inst✝ : Group G H K L : Subgroup G h : index H = 2 a : G ⊢ a * a ∈ H [PROOFSTEP] rw [mul_mem_iff_of_index_two h] [GOAL] G : Type u_1 inst✝ : Group G H K L : Subgroup G ⊢ relindex H ⊤ = index H [PROOFSTEP] rw [← relindex_mul_index (show H ≤ ⊤ from le_top), index_top, mul_one] [GOAL] G : Type u_1 inst✝ : Group G H K L : Subgroup G ⊢ relindex ⊥ H = Nat.card { x // x ∈ H } [PROOFSTEP] rw [relindex, bot_subgroupOf, index_bot] [GOAL] G : Type u_1 inst✝ : Group G H K L : Subgroup G ⊢ relindex H ⊥ = 1 [PROOFSTEP] rw [relindex, subgroupOf_bot_eq_top, index_top] [GOAL] G : Type u_1 inst✝ : Group G H K L : Subgroup G ⊢ relindex H H = 1 [PROOFSTEP] rw [relindex, subgroupOf_self, index_top] [GOAL] G : Type u_1 inst✝¹ : Group G H✝ K L : Subgroup G H : Type u_2 inst✝ : Group H f : G →* H ⊢ index (MonoidHom.ker f) = Nat.card ↑(Set.range ↑f) [PROOFSTEP] rw [← MonoidHom.comap_bot, index_comap, relindex_bot_left] [GOAL] G : Type u_1 inst✝¹ : Group G H✝ K L : Subgroup G H : Type u_2 inst✝ : Group H f : G →* H ⊢ Nat.card { x // x ∈ MonoidHom.range f } = Nat.card ↑(Set.range ↑f) [PROOFSTEP] rfl [GOAL] G : Type u_1 inst✝¹ : Group G H✝ K✝ L : Subgroup G H : Type u_2 inst✝ : Group H f : G →* H K : Subgroup G ⊢ relindex (MonoidHom.ker f) K = Nat.card ↑(↑f '' ↑K) [PROOFSTEP] rw [← MonoidHom.comap_bot, relindex_comap, relindex_bot_left] [GOAL] G : Type u_1 inst✝¹ : Group G H✝ K✝ L : Subgroup G H : Type u_2 inst✝ : Group H f : G →* H K : Subgroup G ⊢ Nat.card { x // x ∈ map f K } = Nat.card ↑(↑f '' ↑K) [PROOFSTEP] rfl [GOAL] G : Type u_1 inst✝ : Group G H K L : Subgroup G ⊢ Nat.card { x // x ∈ H } * index H = Nat.card G [PROOFSTEP] rw [← relindex_bot_left, ← index_bot] [GOAL] G : Type u_1 inst✝ : Group G H K L : Subgroup G ⊢ relindex ⊥ H * index H = index ⊥ [PROOFSTEP] exact relindex_mul_index bot_le [GOAL] G✝ : Type u_1 inst✝² : Group G✝ H✝ K L : Subgroup G✝ G : Type u_2 H : Type u_3 inst✝¹ : Group G inst✝ : Group H f : G →* H hf : Function.Injective ↑f ⊢ Nat.card G ∣ Nat.card H [PROOFSTEP] rw [Nat.card_congr (MonoidHom.ofInjective hf).toEquiv] [GOAL] G✝ : Type u_1 inst✝² : Group G✝ H✝ K L : Subgroup G✝ G : Type u_2 H : Type u_3 inst✝¹ : Group G inst✝ : Group H f : G →* H hf : Function.Injective ↑f ⊢ Nat.card { x // x ∈ MonoidHom.range f } ∣ Nat.card H [PROOFSTEP] exact Dvd.intro f.range.index f.range.card_mul_index [GOAL] G✝ : Type u_1 inst✝² : Group G✝ H✝ K L : Subgroup G✝ G : Type u_2 H : Type u_3 inst✝¹ : Group G inst✝ : Group H f : G →* H hf : Function.Surjective ↑f ⊢ Nat.card H ∣ Nat.card G [PROOFSTEP] rw [← Nat.card_congr (QuotientGroup.quotientKerEquivOfSurjective f hf).toEquiv] [GOAL] G✝ : Type u_1 inst✝² : Group G✝ H✝ K L : Subgroup G✝ G : Type u_2 H : Type u_3 inst✝¹ : Group G inst✝ : Group H f : G →* H hf : Function.Surjective ↑f ⊢ Nat.card (G ⧸ MonoidHom.ker f) ∣ Nat.card G [PROOFSTEP] exact Dvd.intro_left (Nat.card f.ker) f.ker.card_mul_index [GOAL] G✝ : Type u_1 inst✝⁴ : Group G✝ H✝ K L : Subgroup G✝ G : Type u_2 H : Type u_3 inst✝³ : Group G inst✝² : Group H inst✝¹ : Fintype G inst✝ : Fintype H f : G →* H hf : Function.Surjective ↑f ⊢ Fintype.card H ∣ Fintype.card G [PROOFSTEP] simp only [← Nat.card_eq_fintype_card, nat_card_dvd_of_surjective f hf] [GOAL] G : Type u_1 inst✝¹ : Group G H K L : Subgroup G G' : Type u_2 inst✝ : Group G' f : G →* G' ⊢ index (map f H) = index (H ⊔ MonoidHom.ker f) * index (MonoidHom.range f) [PROOFSTEP] rw [← comap_map_eq, index_comap, relindex_mul_index (H.map_le_range f)] [GOAL] G : Type u_1 inst✝¹ : Group G H K L : Subgroup G G' : Type u_2 inst✝ : Group G' f : G →* G' hf : Function.Surjective ↑f ⊢ index (map f H) ∣ index H [PROOFSTEP] rw [index_map, f.range_top_of_surjective hf, index_top, mul_one] [GOAL] G : Type u_1 inst✝¹ : Group G H K L : Subgroup G G' : Type u_2 inst✝ : Group G' f : G →* G' hf : Function.Surjective ↑f ⊢ index (H ⊔ MonoidHom.ker f) ∣ index H [PROOFSTEP] exact index_dvd_of_le le_sup_left [GOAL] G : Type u_1 inst✝¹ : Group G H K L : Subgroup G G' : Type u_2 inst✝ : Group G' f : G →* G' hf : MonoidHom.ker f ≤ H ⊢ index H ∣ index (map f H) [PROOFSTEP] rw [index_map, sup_of_le_left hf] [GOAL] G : Type u_1 inst✝¹ : Group G H K L : Subgroup G G' : Type u_2 inst✝ : Group G' f : G →* G' hf : MonoidHom.ker f ≤ H ⊢ index H ∣ index H * index (MonoidHom.range f) [PROOFSTEP] apply dvd_mul_right [GOAL] G : Type u_1 inst✝¹ : Group G H K L : Subgroup G inst✝ : Fintype G hH : Fintype { x // x ∈ H } ⊢ index H * Fintype.card { x // x ∈ H } = Fintype.card G [PROOFSTEP] rw [← relindex_bot_left_eq_card, ← index_bot_eq_card, mul_comm] [GOAL] G : Type u_1 inst✝¹ : Group G H K L : Subgroup G inst✝ : Fintype G hH : Fintype { x // x ∈ H } ⊢ relindex ⊥ H * index H = index ⊥ [PROOFSTEP] exact relindex_mul_index bot_le [GOAL] G : Type u_1 inst✝¹ : Group G H K L : Subgroup G inst✝ : Fintype G ⊢ index H ∣ Fintype.card G [PROOFSTEP] classical exact ⟨Fintype.card H, H.index_mul_card.symm⟩ [GOAL] G : Type u_1 inst✝¹ : Group G H K L : Subgroup G inst✝ : Fintype G ⊢ index H ∣ Fintype.card G [PROOFSTEP] exact ⟨Fintype.card H, H.index_mul_card.symm⟩ [GOAL] G : Type u_1 inst✝ : Group G H K L : Subgroup G hH : relindex H L ≠ 0 hK : relindex K L ≠ 0 ⊢ relindex (H ⊓ K) L ≠ 0 [PROOFSTEP] replace hH : H.relindex (K ⊓ L) ≠ 0 := mt (relindex_eq_zero_of_le_right inf_le_right) hH [GOAL] G : Type u_1 inst✝ : Group G H K L : Subgroup G hK : relindex K L ≠ 0 hH : relindex H (K ⊓ L) ≠ 0 ⊢ relindex (H ⊓ K) L ≠ 0 [PROOFSTEP] rw [← inf_relindex_right] at hH hK ⊢ [GOAL] G : Type u_1 inst✝ : Group G H K L : Subgroup G hK : relindex (K ⊓ L) L ≠ 0 hH : relindex (H ⊓ (K ⊓ L)) (K ⊓ L) ≠ 0 ⊢ relindex (H ⊓ K ⊓ L) L ≠ 0 [PROOFSTEP] rw [inf_assoc] [GOAL] G : Type u_1 inst✝ : Group G H K L : Subgroup G hK : relindex (K ⊓ L) L ≠ 0 hH : relindex (H ⊓ (K ⊓ L)) (K ⊓ L) ≠ 0 ⊢ relindex (H ⊓ (K ⊓ L)) L ≠ 0 [PROOFSTEP] exact relindex_ne_zero_trans hH hK [GOAL] G : Type u_1 inst✝ : Group G H K L : Subgroup G hH : index H ≠ 0 hK : index K ≠ 0 ⊢ index (H ⊓ K) ≠ 0 [PROOFSTEP] rw [← relindex_top_right] at hH hK ⊢ [GOAL] G : Type u_1 inst✝ : Group G H K L : Subgroup G hH : relindex H ⊤ ≠ 0 hK : relindex K ⊤ ≠ 0 ⊢ relindex (H ⊓ K) ⊤ ≠ 0 [PROOFSTEP] exact relindex_inf_ne_zero hH hK [GOAL] G : Type u_1 inst✝ : Group G H K L : Subgroup G ⊢ relindex (H ⊓ K) L ≤ relindex H L * relindex K L [PROOFSTEP] by_cases h : H.relindex L = 0 [GOAL] case pos G : Type u_1 inst✝ : Group G H K L : Subgroup G h : relindex H L = 0 ⊢ relindex (H ⊓ K) L ≤ relindex H L * relindex K L [PROOFSTEP] exact (le_of_eq (relindex_eq_zero_of_le_left inf_le_left h)).trans (zero_le _) [GOAL] case neg G : Type u_1 inst✝ : Group G H K L : Subgroup G h : ¬relindex H L = 0 ⊢ relindex (H ⊓ K) L ≤ relindex H L * relindex K L [PROOFSTEP] rw [← inf_relindex_right, inf_assoc, ← relindex_mul_relindex _ _ L inf_le_right inf_le_right, inf_relindex_right, inf_relindex_right] [GOAL] case neg G : Type u_1 inst✝ : Group G H K L : Subgroup G h : ¬relindex H L = 0 ⊢ relindex H (K ⊓ L) * relindex K L ≤ relindex H L * relindex K L [PROOFSTEP] exact mul_le_mul_right' (relindex_le_of_le_right inf_le_right h) (K.relindex L) [GOAL] G : Type u_1 inst✝ : Group G H K L : Subgroup G ⊢ index (H ⊓ K) ≤ index H * index K [PROOFSTEP] simp_rw [← relindex_top_right, relindex_inf_le] [GOAL] G : Type u_1 inst✝¹ : Group G H K L : Subgroup G ι : Type u_2 inst✝ : Finite ι f : ι → Subgroup G hf : ∀ (i : ι), index (f i) ≠ 0 ⊢ index (⨅ (i : ι), f i) ≠ 0 [PROOFSTEP] simp_rw [← relindex_top_right] at hf ⊢ [GOAL] G : Type u_1 inst✝¹ : Group G H K L : Subgroup G ι : Type u_2 inst✝ : Finite ι f : ι → Subgroup G hf : ∀ (i : ι), relindex (f i) ⊤ ≠ 0 ⊢ relindex (⨅ (i : ι), f i) ⊤ ≠ 0 [PROOFSTEP] exact relindex_iInf_ne_zero hf [GOAL] G : Type u_1 inst✝¹ : Group G H K L : Subgroup G ι : Type u_2 inst✝ : Fintype ι f : ι → Subgroup G ⊢ index (⨅ (i : ι), f i) ≤ ∏ i : ι, index (f i) [PROOFSTEP] simp_rw [← relindex_top_right, relindex_iInf_le] [GOAL] G : Type u_1 inst✝ : Group G H K L : Subgroup G hH : Finite (G ⧸ H) ⊢ index H ≠ 0 [PROOFSTEP] cases nonempty_fintype (G ⧸ H) [GOAL] case intro G : Type u_1 inst✝ : Group G H K L : Subgroup G hH : Finite (G ⧸ H) val✝ : Fintype (G ⧸ H) ⊢ index H ≠ 0 [PROOFSTEP] rw [index_eq_card] [GOAL] case intro G : Type u_1 inst✝ : Group G H K L : Subgroup G hH : Finite (G ⧸ H) val✝ : Fintype (G ⧸ H) ⊢ Fintype.card (G ⧸ H) ≠ 0 [PROOFSTEP] exact Fintype.card_ne_zero [GOAL] G : Type u_1 inst✝¹ : Group G H K L : Subgroup G inst✝ : FiniteIndex H ⊢ FiniteIndex (normalCore H) [PROOFSTEP] rw [normalCore_eq_ker] [GOAL] G : Type u_1 inst✝¹ : Group G H K L : Subgroup G inst✝ : FiniteIndex H ⊢ FiniteIndex (MonoidHom.ker (MulAction.toPermHom G (G ⧸ H))) [PROOFSTEP] infer_instance [GOAL] G : Type u_1 inst✝² : Group G H K L : Subgroup G inst✝¹ : Finite ↑(commutatorSet G) inst✝ : Group.FG G ⊢ FiniteIndex (center G) [PROOFSTEP] obtain ⟨S, -, hS⟩ := Group.rank_spec G [GOAL] case intro.intro G : Type u_1 inst✝² : Group G H K L : Subgroup G inst✝¹ : Finite ↑(commutatorSet G) inst✝ : Group.FG G S : Finset G hS : closure ↑S = ⊤ ⊢ FiniteIndex (center G) [PROOFSTEP] exact ⟨mt (Finite.card_eq_zero_of_embedding (quotientCenterEmbedding hS)) Finite.card_pos.ne'⟩ [GOAL] G : Type u_1 inst✝² : Group G H K L : Subgroup G inst✝¹ : Finite ↑(commutatorSet G) inst✝ : Group.FG G ⊢ index (center G) ≤ Nat.card ↑(commutatorSet G) ^ Group.rank G [PROOFSTEP] obtain ⟨S, hS1, hS2⟩ := Group.rank_spec G [GOAL] case intro.intro G : Type u_1 inst✝² : Group G H K L : Subgroup G inst✝¹ : Finite ↑(commutatorSet G) inst✝ : Group.FG G S : Finset G hS1 : Finset.card S = Group.rank G hS2 : closure ↑S = ⊤ ⊢ index (center G) ≤ Nat.card ↑(commutatorSet G) ^ Group.rank G [PROOFSTEP] rw [← hS1, ← Fintype.card_coe, ← Nat.card_eq_fintype_card, ← Finset.coe_sort_coe, ← Nat.card_fun] [GOAL] case intro.intro G : Type u_1 inst✝² : Group G H K L : Subgroup G inst✝¹ : Finite ↑(commutatorSet G) inst✝ : Group.FG G S : Finset G hS1 : Finset.card S = Group.rank G hS2 : closure ↑S = ⊤ ⊢ index (center G) ≤ Nat.card (↑↑S → ↑(commutatorSet G)) [PROOFSTEP] exact Finite.card_le_of_embedding (quotientCenterEmbedding hS2)
{"mathlib_filename": "Mathlib.GroupTheory.Index", "llama_tokens": 10672}
[GOAL] α : Type u_1 G : Type u_2 inst✝ : Group G f : α → G rels : Set (FreeGroup α) h : ∀ (r : FreeGroup α), r ∈ rels → ↑(↑FreeGroup.lift f) r = 1 g : PresentedGroup rels →* G hg : ∀ (x : α), ↑g (PresentedGroup.of x) = f x ⊢ ∀ {x : PresentedGroup rels}, ↑g x = ↑(toGroup h) x [PROOFSTEP] intro x [GOAL] α : Type u_1 G : Type u_2 inst✝ : Group G f : α → G rels : Set (FreeGroup α) h : ∀ (r : FreeGroup α), r ∈ rels → ↑(↑FreeGroup.lift f) r = 1 g : PresentedGroup rels →* G hg : ∀ (x : α), ↑g (PresentedGroup.of x) = f x x : PresentedGroup rels ⊢ ↑g x = ↑(toGroup h) x [PROOFSTEP] refine' QuotientGroup.induction_on x _ [GOAL] α : Type u_1 G : Type u_2 inst✝ : Group G f : α → G rels : Set (FreeGroup α) h : ∀ (r : FreeGroup α), r ∈ rels → ↑(↑FreeGroup.lift f) r = 1 g : PresentedGroup rels →* G hg : ∀ (x : α), ↑g (PresentedGroup.of x) = f x x : PresentedGroup rels ⊢ ∀ (z : FreeGroup α), ↑g ↑z = ↑(toGroup h) ↑z [PROOFSTEP] exact fun _ ↦ FreeGroup.lift.unique (g.comp (QuotientGroup.mk' _)) hg
{"mathlib_filename": "Mathlib.GroupTheory.PresentedGroup", "llama_tokens": 492}
[GOAL] G : Type u_1 H : Type u_2 inst✝ : Monoid G ⊢ ¬IsTorsion G ↔ ∃ g, ¬IsOfFinOrder g [PROOFSTEP] rw [IsTorsion, not_forall] [GOAL] G : Type u_1 H : Type u_2 inst✝ : Monoid G tG : IsTorsion G src✝ : Monoid G := inst✝ g : G ⊢ g⁻¹ * g = 1 [PROOFSTEP] erw [← pow_succ', tsub_add_cancel_of_le, pow_orderOf_eq_one] [GOAL] G : Type u_1 H : Type u_2 inst✝ : Monoid G tG : IsTorsion G src✝ : Monoid G := inst✝ g : G ⊢ 1 ≤ orderOf g [PROOFSTEP] exact orderOf_pos' (tG g) [GOAL] G : Type u_1 H : Type u_2 inst✝¹ : Group G N : Subgroup G inst✝ : Group H f : G →* H hf : Function.Surjective ↑f tG : IsTorsion G h : H ⊢ IsOfFinOrder h [PROOFSTEP] obtain ⟨g, hg⟩ := hf h [GOAL] case intro G : Type u_1 H : Type u_2 inst✝¹ : Group G N : Subgroup G inst✝ : Group H f : G →* H hf : Function.Surjective ↑f tG : IsTorsion G h : H g : G hg : ↑f g = h ⊢ IsOfFinOrder h [PROOFSTEP] rw [← hg] [GOAL] case intro G : Type u_1 H : Type u_2 inst✝¹ : Group G N : Subgroup G inst✝ : Group H f : G →* H hf : Function.Surjective ↑f tG : IsTorsion G h : H g : G hg : ↑f g = h ⊢ IsOfFinOrder (↑f g) [PROOFSTEP] exact f.isOfFinOrder (tG g) [GOAL] G : Type u_1 H : Type u_2 inst✝¹ : Group G N : Subgroup G inst✝ : Group H f : G →* H hN : N = MonoidHom.ker f tH : IsTorsion H tN : IsTorsion { x // x ∈ N } g : G ⊢ ∃ n, 0 < n ∧ g ^ n = 1 [PROOFSTEP] obtain ⟨ngn, ngnpos, hngn⟩ := (isOfFinOrder_iff_pow_eq_one _).mp (tH <| f g) [GOAL] case intro.intro G : Type u_1 H : Type u_2 inst✝¹ : Group G N : Subgroup G inst✝ : Group H f : G →* H hN : N = MonoidHom.ker f tH : IsTorsion H tN : IsTorsion { x // x ∈ N } g : G ngn : ℕ ngnpos : 0 < ngn hngn : ↑f g ^ ngn = 1 ⊢ ∃ n, 0 < n ∧ g ^ n = 1 [PROOFSTEP] have hmem := f.mem_ker.mpr ((f.map_pow g ngn).trans hngn) [GOAL] case intro.intro G : Type u_1 H : Type u_2 inst✝¹ : Group G N : Subgroup G inst✝ : Group H f : G →* H hN : N = MonoidHom.ker f tH : IsTorsion H tN : IsTorsion { x // x ∈ N } g : G ngn : ℕ ngnpos : 0 < ngn hngn : ↑f g ^ ngn = 1 hmem : g ^ ngn ∈ MonoidHom.ker f ⊢ ∃ n, 0 < n ∧ g ^ n = 1 [PROOFSTEP] lift g ^ ngn to N using hN.symm ▸ hmem with gn h [GOAL] case intro.intro.intro G : Type u_1 H : Type u_2 inst✝¹ : Group G N : Subgroup G inst✝ : Group H f : G →* H hN : N = MonoidHom.ker f tH : IsTorsion H tN : IsTorsion { x // x ∈ N } g : G ngn : ℕ ngnpos : 0 < ngn hngn : ↑f g ^ ngn = 1 gn : { x // x ∈ N } h : ↑gn = g ^ ngn hmem✝ hmem : ↑gn ∈ MonoidHom.ker f ⊢ ∃ n, 0 < n ∧ g ^ n = 1 [PROOFSTEP] obtain ⟨nn, nnpos, hnn⟩ := (isOfFinOrder_iff_pow_eq_one _).mp (tN gn) [GOAL] case intro.intro.intro.intro.intro G : Type u_1 H : Type u_2 inst✝¹ : Group G N : Subgroup G inst✝ : Group H f : G →* H hN : N = MonoidHom.ker f tH : IsTorsion H tN : IsTorsion { x // x ∈ N } g : G ngn : ℕ ngnpos : 0 < ngn hngn : ↑f g ^ ngn = 1 gn : { x // x ∈ N } h : ↑gn = g ^ ngn hmem✝ hmem : ↑gn ∈ MonoidHom.ker f nn : ℕ nnpos : 0 < nn hnn : gn ^ nn = 1 ⊢ ∃ n, 0 < n ∧ g ^ n = 1 [PROOFSTEP] exact ⟨ngn * nn, mul_pos ngnpos nnpos, by rw [pow_mul, ← h, ← Subgroup.coe_pow, hnn, Subgroup.coe_one]⟩ [GOAL] G : Type u_1 H : Type u_2 inst✝¹ : Group G N : Subgroup G inst✝ : Group H f : G →* H hN : N = MonoidHom.ker f tH : IsTorsion H tN : IsTorsion { x // x ∈ N } g : G ngn : ℕ ngnpos : 0 < ngn hngn : ↑f g ^ ngn = 1 gn : { x // x ∈ N } h : ↑gn = g ^ ngn hmem✝ hmem : ↑gn ∈ MonoidHom.ker f nn : ℕ nnpos : 0 < nn hnn : gn ^ nn = 1 ⊢ g ^ (ngn * nn) = 1 [PROOFSTEP] rw [pow_mul, ← h, ← Subgroup.coe_pow, hnn, Subgroup.coe_one] [GOAL] G : Type u_1 H : Type u_2 inst✝¹ : Group G N : Subgroup G inst✝ : Group H h : ExponentExists G g : G ⊢ IsOfFinOrder g [PROOFSTEP] obtain ⟨n, npos, hn⟩ := h [GOAL] case intro.intro G : Type u_1 H : Type u_2 inst✝¹ : Group G N : Subgroup G inst✝ : Group H g : G n : ℕ npos : 0 < n hn : ∀ (g : G), g ^ n = 1 ⊢ IsOfFinOrder g [PROOFSTEP] exact (isOfFinOrder_iff_pow_eq_one g).mpr ⟨n, npos, hn g⟩ [GOAL] G : Type u_1 H : Type u_2 R : Type u_3 M : Type u_4 inst✝² : AddCommMonoid M inst✝¹ : Semiring R inst✝ : Module R M tR : IsTorsion R f : M ⊢ ∃ n, 0 < n ∧ n • f = 0 [PROOFSTEP] obtain ⟨n, npos, hn⟩ := (isOfFinAddOrder_iff_nsmul_eq_zero _).mp (tR 1) [GOAL] case intro.intro G : Type u_1 H : Type u_2 R : Type u_3 M : Type u_4 inst✝² : AddCommMonoid M inst✝¹ : Semiring R inst✝ : Module R M tR : IsTorsion R f : M n : ℕ npos : 0 < n hn : n • 1 = 0 ⊢ ∃ n, 0 < n ∧ n • f = 0 [PROOFSTEP] exact ⟨n, npos, by simp only [nsmul_eq_smul_cast R _ f, ← nsmul_one, hn, zero_smul]⟩ [GOAL] G : Type u_1 H : Type u_2 R : Type u_3 M : Type u_4 inst✝² : AddCommMonoid M inst✝¹ : Semiring R inst✝ : Module R M tR : IsTorsion R f : M n : ℕ npos : 0 < n hn : n • 1 = 0 ⊢ n • f = 0 [PROOFSTEP] simp only [nsmul_eq_smul_cast R _ f, ← nsmul_one, hn, zero_smul] [GOAL] G : Type u_1 H : Type u_2 inst✝ : CommMonoid G x✝ : { x // x ∈ torsion G } x : G n : ℕ npos : n > 0 hn : Function.IsPeriodicPt ((fun x x_1 => x * x_1) x) n 1 ⊢ ↑(((fun x x_1 => x * x_1) { val := x, property := (_ : ∃ n, n > 0 ∧ Function.IsPeriodicPt ((fun x x_1 => x * x_1) x) n 1) })^[n] 1) = ↑1 [PROOFSTEP] dsimp [GOAL] G : Type u_1 H : Type u_2 inst✝ : CommMonoid G x✝ : { x // x ∈ torsion G } x : G n : ℕ npos : n > 0 hn : Function.IsPeriodicPt ((fun x x_1 => x * x_1) x) n 1 ⊢ ↑((fun x_1 => { val := x, property := (_ : ∃ n, n > 0 ∧ Function.IsPeriodicPt (fun x_2 => x * x_2) n 1) } * x_1)^[n] 1) = 1 [PROOFSTEP] rw [mul_left_iterate] [GOAL] G : Type u_1 H : Type u_2 inst✝ : CommMonoid G x✝ : { x // x ∈ torsion G } x : G n : ℕ npos : n > 0 hn : Function.IsPeriodicPt ((fun x x_1 => x * x_1) x) n 1 ⊢ ↑((fun x_1 => { val := x, property := (_ : ∃ n, n > 0 ∧ Function.IsPeriodicPt (fun x_2 => x * x_2) n 1) } ^ n * x_1) 1) = 1 [PROOFSTEP] change _ * 1 = 1 [GOAL] G : Type u_1 H : Type u_2 inst✝ : CommMonoid G x✝ : { x // x ∈ torsion G } x : G n : ℕ npos : n > 0 hn : Function.IsPeriodicPt ((fun x x_1 => x * x_1) x) n 1 ⊢ ↑({ val := x, property := (_ : ∃ n, n > 0 ∧ Function.IsPeriodicPt (fun x_1 => x * x_1) n 1) } ^ n) * 1 = 1 [PROOFSTEP] rw [_root_.mul_one, SubmonoidClass.coe_pow, Subtype.coe_mk, (isPeriodicPt_mul_iff_pow_eq_one _).mp hn] [GOAL] G : Type u_1 H : Type u_2 inst✝ : CommMonoid G p : ℕ hp : Fact (Nat.Prime p) a✝ b✝ : G hg₁ : a✝ ∈ {g | ∃ n, orderOf g = p ^ n} hg₂ : b✝ ∈ {g | ∃ n, orderOf g = p ^ n} ⊢ ∃ m, (a✝ * b✝) ^ p ^ m = 1 [PROOFSTEP] obtain ⟨m, hm⟩ := exists_orderOf_eq_prime_pow_iff.mp hg₁ [GOAL] case intro G : Type u_1 H : Type u_2 inst✝ : CommMonoid G p : ℕ hp : Fact (Nat.Prime p) a✝ b✝ : G hg₁ : a✝ ∈ {g | ∃ n, orderOf g = p ^ n} hg₂ : b✝ ∈ {g | ∃ n, orderOf g = p ^ n} m : ℕ hm : a✝ ^ p ^ m = 1 ⊢ ∃ m, (a✝ * b✝) ^ p ^ m = 1 [PROOFSTEP] obtain ⟨n, hn⟩ := exists_orderOf_eq_prime_pow_iff.mp hg₂ [GOAL] case intro.intro G : Type u_1 H : Type u_2 inst✝ : CommMonoid G p : ℕ hp : Fact (Nat.Prime p) a✝ b✝ : G hg₁ : a✝ ∈ {g | ∃ n, orderOf g = p ^ n} hg₂ : b✝ ∈ {g | ∃ n, orderOf g = p ^ n} m : ℕ hm : a✝ ^ p ^ m = 1 n : ℕ hn : b✝ ^ p ^ n = 1 ⊢ ∃ m, (a✝ * b✝) ^ p ^ m = 1 [PROOFSTEP] exact ⟨m + n, by rw [mul_pow, pow_add, pow_mul, hm, one_pow, Monoid.one_mul, mul_comm, pow_mul, hn, one_pow]⟩ [GOAL] G : Type u_1 H : Type u_2 inst✝ : CommMonoid G p : ℕ hp : Fact (Nat.Prime p) a✝ b✝ : G hg₁ : a✝ ∈ {g | ∃ n, orderOf g = p ^ n} hg₂ : b✝ ∈ {g | ∃ n, orderOf g = p ^ n} m : ℕ hm : a✝ ^ p ^ m = 1 n : ℕ hn : b✝ ^ p ^ n = 1 ⊢ (a✝ * b✝) ^ p ^ (m + n) = 1 [PROOFSTEP] rw [mul_pow, pow_add, pow_mul, hm, one_pow, Monoid.one_mul, mul_comm, pow_mul, hn, one_pow] [GOAL] G : Type u_1 H : Type u_2 inst✝ : CommMonoid G p : ℕ hp : Fact (Nat.Prime p) ⊢ orderOf 1 = p ^ 0 [PROOFSTEP] rw [pow_zero, orderOf_one] [GOAL] G : Type u_1 H : Type u_2 inst✝ : CommMonoid G p : ℕ hp : Fact (Nat.Prime p) g : { x // x ∈ primaryComponent G p } ⊢ ∃ n, orderOf g = p ^ n [PROOFSTEP] simpa [primaryComponent] using g.property [GOAL] G : Type u_1 H : Type u_2 inst✝ : CommMonoid G p : ℕ hp : Fact (Nat.Prime p) p' : ℕ hp' : Fact (Nat.Prime p') hne : p ≠ p' ⊢ ∀ {x : G}, x ∈ primaryComponent G p → x ∈ primaryComponent G p' → x = 1 [PROOFSTEP] rintro g ⟨_ | n, hn⟩ ⟨n', hn'⟩ [GOAL] case intro.zero.intro G : Type u_1 H : Type u_2 inst✝ : CommMonoid G p : ℕ hp : Fact (Nat.Prime p) p' : ℕ hp' : Fact (Nat.Prime p') hne : p ≠ p' g : G hn : orderOf g = p ^ Nat.zero n' : ℕ hn' : orderOf g = p' ^ n' ⊢ g = 1 [PROOFSTEP] rwa [pow_zero, orderOf_eq_one_iff] at hn [GOAL] case intro.succ.intro G : Type u_1 H : Type u_2 inst✝ : CommMonoid G p : ℕ hp : Fact (Nat.Prime p) p' : ℕ hp' : Fact (Nat.Prime p') hne : p ≠ p' g : G n : ℕ hn : orderOf g = p ^ Nat.succ n n' : ℕ hn' : orderOf g = p' ^ n' ⊢ g = 1 [PROOFSTEP] exact absurd (eq_of_prime_pow_eq hp.out.prime hp'.out.prime n.succ_pos (hn.symm.trans hn')) hne [GOAL] G : Type u_1 H : Type u_2 inst✝ : CommMonoid G tG : IsTorsion G ⊢ torsion G = ⊤ [PROOFSTEP] ext [GOAL] case h G : Type u_1 H : Type u_2 inst✝ : CommMonoid G tG : IsTorsion G x✝ : G ⊢ x✝ ∈ torsion G ↔ x✝ ∈ ⊤ [PROOFSTEP] tauto [GOAL] G : Type u_1 H : Type u_2 inst✝ : Monoid G ⊢ ¬IsTorsionFree G ↔ ∃ g, g ≠ 1 ∧ IsOfFinOrder g [PROOFSTEP] simp_rw [IsTorsionFree, Ne.def, not_forall, Classical.not_not, exists_prop] [GOAL] G : Type u_1 H : Type u_2 inst✝ : Group G hN : Nontrivial G tG : IsTorsion G ⊢ ∃ g, g ≠ 1 ∧ IsOfFinOrder g [PROOFSTEP] obtain ⟨x, hx⟩ := (nontrivial_iff_exists_ne (1 : G)).mp hN [GOAL] case intro G : Type u_1 H : Type u_2 inst✝ : Group G hN : Nontrivial G tG : IsTorsion G x : G hx : x ≠ 1 ⊢ ∃ g, g ≠ 1 ∧ IsOfFinOrder g [PROOFSTEP] exact ⟨x, hx, tG x⟩ [GOAL] G : Type u_1 H : Type u_2 inst✝ : Group G hN : Nontrivial G tfG : IsTorsionFree G ⊢ ∃ g, ¬IsOfFinOrder g [PROOFSTEP] obtain ⟨x, hx⟩ := (nontrivial_iff_exists_ne (1 : G)).mp hN [GOAL] case intro G : Type u_1 H : Type u_2 inst✝ : Group G hN : Nontrivial G tfG : IsTorsionFree G x : G hx : x ≠ 1 ⊢ ∃ g, ¬IsOfFinOrder g [PROOFSTEP] exact ⟨x, (tfG x) hx⟩ [GOAL] G : Type u_1 H✝ : Type u_2 inst✝ : Group G tG : IsTorsionFree G H : Subgroup G h : { x // x ∈ H } hne : h ≠ 1 ⊢ ↑h ≠ 1 [PROOFSTEP] norm_cast [GOAL] G : Type u_1 H : Type u_2 inst✝ : CommGroup G g : G ⧸ torsion G hne : g ≠ 1 hfin : IsOfFinOrder g ⊢ g = 1 [PROOFSTEP] induction' g using QuotientGroup.induction_on' with g [GOAL] case H G : Type u_1 H : Type u_2 inst✝ : CommGroup G g✝ : G ⧸ torsion G hne✝ : g✝ ≠ 1 hfin✝ : IsOfFinOrder g✝ g : G hne : ↑g ≠ 1 hfin : IsOfFinOrder ↑g ⊢ ↑g = 1 [PROOFSTEP] obtain ⟨m, mpos, hm⟩ := (isOfFinOrder_iff_pow_eq_one _).mp hfin [GOAL] case H.intro.intro G : Type u_1 H : Type u_2 inst✝ : CommGroup G g✝ : G ⧸ torsion G hne✝ : g✝ ≠ 1 hfin✝ : IsOfFinOrder g✝ g : G hne : ↑g ≠ 1 hfin : IsOfFinOrder ↑g m : ℕ mpos : 0 < m hm : ↑g ^ m = 1 ⊢ ↑g = 1 [PROOFSTEP] obtain ⟨n, npos, hn⟩ := (isOfFinOrder_iff_pow_eq_one _).mp ((QuotientGroup.eq_one_iff _).mp hm) [GOAL] case H.intro.intro.intro.intro G : Type u_1 H : Type u_2 inst✝ : CommGroup G g✝ : G ⧸ torsion G hne✝ : g✝ ≠ 1 hfin✝ : IsOfFinOrder g✝ g : G hne : ↑g ≠ 1 hfin : IsOfFinOrder ↑g m : ℕ mpos : 0 < m hm : ↑g ^ m = 1 n : ℕ npos : 0 < n hn : (fun x => x ^ m) g ^ n = 1 ⊢ ↑g = 1 [PROOFSTEP] exact (QuotientGroup.eq_one_iff g).mpr ((isOfFinOrder_iff_pow_eq_one _).mpr ⟨m * n, mul_pos mpos npos, (pow_mul g m n).symm ▸ hn⟩)
{"mathlib_filename": "Mathlib.GroupTheory.Torsion", "llama_tokens": 6120}
{"mathlib_filename": "Mathlib.Tactic.Simps.Basic", "llama_tokens": 0}
[GOAL] n : ℕ pn : NormNum.IsNat n 0 ⊢ List.range n = [] [PROOFSTEP] rw [pn.out, Nat.cast_zero, List.range_zero] [GOAL] n nn n' : ℕ pn : NormNum.IsNat n nn pn' : nn = Nat.succ n' ⊢ List.range n = 0 :: List.map Nat.succ (List.range n') [PROOFSTEP] rw [pn.out, Nat.cast_id, pn', List.range_succ_eq_map] [GOAL] α : Type u_1 inst✝ : DecidableEq α a : α s : Multiset α ⊢ insert a s = a ::ₘ s [PROOFSTEP] ext [GOAL] case a α : Type u_1 inst✝ : DecidableEq α a : α s : Multiset α a✝ : α ⊢ Multiset.count a✝ (insert a s) = Multiset.count a✝ (a ::ₘ s) [PROOFSTEP] simp [GOAL] n : ℕ pn : NormNum.IsNat n 0 ⊢ Multiset.range n = 0 [PROOFSTEP] rw [pn.out, Nat.cast_zero, Multiset.range_zero] [GOAL] n nn n' : ℕ pn : NormNum.IsNat n nn pn' : nn = Nat.succ n' ⊢ Multiset.range n = n' ::ₘ Multiset.range n' [PROOFSTEP] rw [pn.out, Nat.cast_id, pn', Multiset.range_succ] [GOAL] α : Type u_1 inst✝ : DecidableEq α a : α s : Finset α h : ¬a ∈ s ⊢ insert a s = Finset.cons a s h [PROOFSTEP] ext [GOAL] case a α : Type u_1 inst✝ : DecidableEq α a : α s : Finset α h : ¬a ∈ s a✝ : α ⊢ a✝ ∈ insert a s ↔ a✝ ∈ Finset.cons a s h [PROOFSTEP] simp [GOAL] n : ℕ pn : NormNum.IsNat n 0 ⊢ Finset.range n = ∅ [PROOFSTEP] rw [pn.out, Nat.cast_zero, Finset.range_zero] [GOAL] n nn n' : ℕ pn : NormNum.IsNat n nn pn' : nn = Nat.succ n' ⊢ Finset.range n = Finset.cons n' (Finset.range n') (_ : ¬n' ∈ Finset.range n') [PROOFSTEP] rw [pn.out, Nat.cast_id, pn', Finset.range_succ, Finset.insert_eq_cons] [GOAL] α : Type u_1 inst✝ : Fintype α elems : Finset α complete : ∀ (x : α), x ∈ elems ⊢ Finset.univ = elems [PROOFSTEP] ext x [GOAL] case a α : Type u_1 inst✝ : Fintype α elems : Finset α complete : ∀ (x : α), x ∈ elems x : α ⊢ x ∈ Finset.univ ↔ x ∈ elems [PROOFSTEP] simpa using complete x [GOAL] β : Type u_1 α : Type u_2 inst✝ : CommSemiring β f : α → β ⊢ Finset.sum ∅ f = ↑0 [PROOFSTEP] simp [GOAL] β : Type u_1 α : Type u_2 inst✝ : CommSemiring β f : α → β ⊢ Finset.prod ∅ f = ↑1 [PROOFSTEP] simp
{"mathlib_filename": "Mathlib.Tactic.NormNum.BigOperators", "llama_tokens": 1035}
[GOAL] A : Type u_1 α : Type u_2 inst✝² : Monoid A inst✝¹ : Pow A α inst✝ : Zero α H : ∀ {n : α}, n ≠ 0 → Function.Surjective fun a => a ^ n x✝ : A ⊢ (fun a n => if x : n = 0 then 1 else Exists.choose (_ : ∃ a_1, (fun a => a ^ n) a_1 = a)) x✝ 0 = 1 [PROOFSTEP] classical exact dif_pos rfl [GOAL] A : Type u_1 α : Type u_2 inst✝² : Monoid A inst✝¹ : Pow A α inst✝ : Zero α H : ∀ {n : α}, n ≠ 0 → Function.Surjective fun a => a ^ n x✝ : A ⊢ (fun a n => if x : n = 0 then 1 else Exists.choose (_ : ∃ a_1, (fun a => a ^ n) a_1 = a)) x✝ 0 = 1 [PROOFSTEP] exact dif_pos rfl [GOAL] A : Type u_1 α : Type u_2 inst✝² : Monoid A inst✝¹ : Pow A α inst✝ : Zero α H : ∀ {n : α}, n ≠ 0 → Function.Surjective fun a => a ^ n n✝ : α a : A hn : n✝ ≠ 0 ⊢ (fun a n => if x : n = 0 then 1 else Exists.choose (_ : ∃ a_1, (fun a => a ^ n) a_1 = a)) a n✝ ^ n✝ = a [PROOFSTEP] dsimp only [GOAL] A : Type u_1 α : Type u_2 inst✝² : Monoid A inst✝¹ : Pow A α inst✝ : Zero α H : ∀ {n : α}, n ≠ 0 → Function.Surjective fun a => a ^ n n✝ : α a : A hn : n✝ ≠ 0 ⊢ (if x : n✝ = 0 then 1 else Exists.choose (_ : ∃ a_1, (fun a => a ^ n✝) a_1 = a)) ^ n✝ = a [PROOFSTEP] rw [dif_neg hn] [GOAL] A : Type u_1 α : Type u_2 inst✝² : Monoid A inst✝¹ : Pow A α inst✝ : Zero α H : ∀ {n : α}, n ≠ 0 → Function.Surjective fun a => a ^ n n✝ : α a : A hn : n✝ ≠ 0 ⊢ Exists.choose (_ : ∃ a_1, (fun a => a ^ n✝) a_1 = a) ^ n✝ = a [PROOFSTEP] exact (H hn a).choose_spec [GOAL] A : Type u_1 inst✝ : AddCommGroup A H : ∀ {n : ℤ}, n ≠ 0 → n • ⊤ = ⊤ a : A n : ℤ hn : ¬n = 0 ⊢ a ∈ n • ⊤ [PROOFSTEP] rw [H hn] [GOAL] A : Type u_1 inst✝ : AddCommGroup A H : ∀ {n : ℤ}, n ≠ 0 → n • ⊤ = ⊤ a : A n : ℤ hn : ¬n = 0 ⊢ a ∈ ⊤ [PROOFSTEP] trivial [GOAL] A : Type u_1 inst✝ : AddCommGroup A H : ∀ {n : ℤ}, n ≠ 0 → n • ⊤ = ⊤ n✝ : ℤ a : A hn : n✝ ≠ 0 ⊢ n✝ • (fun a n => if hn : n = 0 then 0 else Exists.choose (_ : a ∈ n • ⊤)) a n✝ = a [PROOFSTEP] simp_rw [dif_neg hn] [GOAL] A : Type u_1 inst✝ : AddCommGroup A H : ∀ {n : ℤ}, n ≠ 0 → n • ⊤ = ⊤ n✝ : ℤ a : A hn : n✝ ≠ 0 ⊢ n✝ • Exists.choose (_ : a ∈ n✝ • ⊤) = a [PROOFSTEP] generalize_proofs h1 [GOAL] A : Type u_1 inst✝ : AddCommGroup A H : ∀ {n : ℤ}, n ≠ 0 → n • ⊤ = ⊤ n✝ : ℤ a : A hn : n✝ ≠ 0 h1 : a ∈ n✝ • ⊤ ⊢ n✝ • Exists.choose h1 = a [PROOFSTEP] exact h1.choose_spec.2 [GOAL] 𝕜 : Type ?u.71834 inst✝¹ : DivisionRing 𝕜 inst✝ : CharZero 𝕜 q : 𝕜 ⊢ (fun q n => q / ↑n) q 0 = 0 [PROOFSTEP] norm_num [GOAL] 𝕜 : Type ?u.71834 inst✝¹ : DivisionRing 𝕜 inst✝ : CharZero 𝕜 n : ℤ q : 𝕜 hn : n ≠ 0 ⊢ n • (fun q n => q / ↑n) q n = q [PROOFSTEP] rw [zsmul_eq_mul, (Int.cast_commute n _).eq, div_mul_cancel q (Int.cast_ne_zero.mpr hn)] [GOAL] A : Type u_1 inst✝¹ : Group A inst✝ : RootableBy A ℕ n : ℤ a : A hn : n ≠ 0 ⊢ (fun a z => match z with | ofNat n => RootableBy.root a n | -[n+1] => (RootableBy.root a (n + 1))⁻¹) a n ^ n = a [PROOFSTEP] induction n [GOAL] case ofNat A : Type u_1 inst✝¹ : Group A inst✝ : RootableBy A ℕ a : A a✝ : ℕ hn : ofNat a✝ ≠ 0 ⊢ (fun a z => match z with | ofNat n => RootableBy.root a n | -[n+1] => (RootableBy.root a (n + 1))⁻¹) a (ofNat a✝) ^ ofNat a✝ = a [PROOFSTEP] change RootableBy.root a _ ^ _ = a [GOAL] case ofNat A : Type u_1 inst✝¹ : Group A inst✝ : RootableBy A ℕ a : A a✝ : ℕ hn : ofNat a✝ ≠ 0 ⊢ RootableBy.root a a✝ ^ ofNat a✝ = a [PROOFSTEP] norm_num [GOAL] case ofNat A : Type u_1 inst✝¹ : Group A inst✝ : RootableBy A ℕ a : A a✝ : ℕ hn : ofNat a✝ ≠ 0 ⊢ RootableBy.root a a✝ ^ a✝ = a [PROOFSTEP] rw [RootableBy.root_cancel] [GOAL] case ofNat.a A : Type u_1 inst✝¹ : Group A inst✝ : RootableBy A ℕ a : A a✝ : ℕ hn : ofNat a✝ ≠ 0 ⊢ a✝ ≠ 0 [PROOFSTEP] rw [Int.ofNat_eq_coe] at hn [GOAL] case ofNat.a A : Type u_1 inst✝¹ : Group A inst✝ : RootableBy A ℕ a : A a✝ : ℕ hn : ↑a✝ ≠ 0 ⊢ a✝ ≠ 0 [PROOFSTEP] exact_mod_cast hn [GOAL] case negSucc A : Type u_1 inst✝¹ : Group A inst✝ : RootableBy A ℕ a : A a✝ : ℕ hn : -[a✝+1] ≠ 0 ⊢ (fun a z => match z with | ofNat n => RootableBy.root a n | -[n+1] => (RootableBy.root a (n + 1))⁻¹) a -[a✝+1] ^ -[a✝+1] = a [PROOFSTEP] change (RootableBy.root a _)⁻¹ ^ _ = a [GOAL] case negSucc A : Type u_1 inst✝¹ : Group A inst✝ : RootableBy A ℕ a : A a✝ : ℕ hn : -[a✝+1] ≠ 0 ⊢ (RootableBy.root a (a✝ + 1))⁻¹ ^ -[a✝+1] = a [PROOFSTEP] norm_num [GOAL] case negSucc A : Type u_1 inst✝¹ : Group A inst✝ : RootableBy A ℕ a : A a✝ : ℕ hn : -[a✝+1] ≠ 0 ⊢ RootableBy.root a (a✝ + 1) ^ (a✝ + 1) = a [PROOFSTEP] rw [RootableBy.root_cancel] [GOAL] case negSucc.a A : Type u_1 inst✝¹ : Group A inst✝ : RootableBy A ℕ a : A a✝ : ℕ hn : -[a✝+1] ≠ 0 ⊢ a✝ + 1 ≠ 0 [PROOFSTEP] norm_num [GOAL] A : Type u_1 inst✝¹ : Group A inst✝ : RootableBy A ℤ n : ℕ a : A hn : n ≠ 0 ⊢ (fun a n => RootableBy.root a ↑n) a n ^ n = a [PROOFSTEP] simpa only [zpow_coe_nat] using RootableBy.root_cancel a (show (n : ℤ) ≠ 0 by exact_mod_cast hn) [GOAL] A : Type u_1 inst✝¹ : Group A inst✝ : RootableBy A ℤ n : ℕ a : A hn : n ≠ 0 ⊢ ↑n ≠ 0 [PROOFSTEP] exact_mod_cast hn [GOAL] A : Type u_1 B : Type u_2 α : Type u_3 inst✝⁵ : Zero α inst✝⁴ : Monoid A inst✝³ : Monoid B inst✝² : Pow A α inst✝¹ : Pow B α inst✝ : RootableBy A α f : A → B hf : Surjective f hpow : ∀ (a : A) (n : α), f (a ^ n) = f a ^ n n : α hn : n ≠ 0 x : B y : A hy : f y = x ⊢ f (RootableBy.root y n) ^ n = x [PROOFSTEP] rw [← hpow (RootableBy.root y n) n, RootableBy.root_cancel _ hn, hy]
{"mathlib_filename": "Mathlib.GroupTheory.Divisible", "llama_tokens": 3070}
[GOAL] M : Type u_1 N : Type u_2 inst✝¹ : Monoid M inst✝ : AddMonoid N P : Submonoid M x✝ : ∃ S, closure S = P ∧ Set.Finite S S : Set M hS : closure S = P hf : Set.Finite S ⊢ closure ↑(Set.Finite.toFinset hf) = P [PROOFSTEP] simp [hS] [GOAL] M : Type u_1 N : Type u_2 inst✝¹ : Monoid M inst✝ : AddMonoid N P : Submonoid M h : FG P S : Set M hS : closure S = P hf : Set.Finite S ⊢ AddSubmonoid.closure (↑Additive.toMul ⁻¹' S) = ↑toAddSubmonoid P [PROOFSTEP] simp [← Submonoid.toAddSubmonoid_closure, hS] [GOAL] M : Type u_1 N : Type u_2 inst✝¹ : Monoid M inst✝ : AddMonoid N P : Submonoid M h : AddSubmonoid.FG (↑toAddSubmonoid P) T : Set (Additive M) hT : AddSubmonoid.closure T = ↑toAddSubmonoid P hf : Set.Finite T ⊢ closure (↑Multiplicative.ofAdd ⁻¹' T) = P [PROOFSTEP] simp [← AddSubmonoid.toSubmonoid'_closure, hT] [GOAL] M : Type u_1 N : Type u_2 inst✝¹ : Monoid M inst✝ : AddMonoid N P : AddSubmonoid N ⊢ FG P ↔ Submonoid.FG (↑toSubmonoid P) [PROOFSTEP] convert (Submonoid.fg_iff_add_fg (toSubmonoid P)).symm [GOAL] M : Type u_1 N : Type u_2 inst✝² : Monoid M inst✝¹ : AddMonoid N inst✝ : Finite M ⊢ FG M [PROOFSTEP] cases nonempty_fintype M [GOAL] case intro M : Type u_1 N : Type u_2 inst✝² : Monoid M inst✝¹ : AddMonoid N inst✝ : Finite M val✝ : Fintype M ⊢ FG M [PROOFSTEP] exact ⟨⟨Finset.univ, by rw [Finset.coe_univ]; exact Submonoid.closure_univ⟩⟩ [GOAL] M : Type u_1 N : Type u_2 inst✝² : Monoid M inst✝¹ : AddMonoid N inst✝ : Finite M val✝ : Fintype M ⊢ Submonoid.closure ↑Finset.univ = ⊤ [PROOFSTEP] rw [Finset.coe_univ] [GOAL] M : Type u_1 N : Type u_2 inst✝² : Monoid M inst✝¹ : AddMonoid N inst✝ : Finite M val✝ : Fintype M ⊢ Submonoid.closure Set.univ = ⊤ [PROOFSTEP] exact Submonoid.closure_univ [GOAL] M : Type u_1 N : Type u_2 inst✝² : Monoid M inst✝¹ : AddMonoid N M' : Type u_3 inst✝ : Monoid M' P : Submonoid M h : FG P e : M →* M' ⊢ FG (Submonoid.map e P) [PROOFSTEP] classical obtain ⟨s, rfl⟩ := h exact ⟨s.image e, by rw [Finset.coe_image, MonoidHom.map_mclosure]⟩ [GOAL] M : Type u_1 N : Type u_2 inst✝² : Monoid M inst✝¹ : AddMonoid N M' : Type u_3 inst✝ : Monoid M' P : Submonoid M h : FG P e : M →* M' ⊢ FG (Submonoid.map e P) [PROOFSTEP] obtain ⟨s, rfl⟩ := h [GOAL] case intro M : Type u_1 N : Type u_2 inst✝² : Monoid M inst✝¹ : AddMonoid N M' : Type u_3 inst✝ : Monoid M' e : M →* M' s : Finset M ⊢ FG (Submonoid.map e (closure ↑s)) [PROOFSTEP] exact ⟨s.image e, by rw [Finset.coe_image, MonoidHom.map_mclosure]⟩ [GOAL] M : Type u_1 N : Type u_2 inst✝² : Monoid M inst✝¹ : AddMonoid N M' : Type u_3 inst✝ : Monoid M' e : M →* M' s : Finset M ⊢ closure ↑(Finset.image (↑e) s) = Submonoid.map e (closure ↑s) [PROOFSTEP] rw [Finset.coe_image, MonoidHom.map_mclosure] [GOAL] M : Type u_1 N : Type u_2 inst✝² : Monoid M inst✝¹ : AddMonoid N M' : Type u_3 inst✝ : Monoid M' P : Submonoid M e : M →* M' he : Function.Injective ↑e h : FG (Submonoid.map e P) ⊢ FG P [PROOFSTEP] obtain ⟨s, hs⟩ := h [GOAL] case intro M : Type u_1 N : Type u_2 inst✝² : Monoid M inst✝¹ : AddMonoid N M' : Type u_3 inst✝ : Monoid M' P : Submonoid M e : M →* M' he : Function.Injective ↑e s : Finset M' hs : closure ↑s = Submonoid.map e P ⊢ FG P [PROOFSTEP] use s.preimage e (he.injOn _) [GOAL] case h M : Type u_1 N : Type u_2 inst✝² : Monoid M inst✝¹ : AddMonoid N M' : Type u_3 inst✝ : Monoid M' P : Submonoid M e : M →* M' he : Function.Injective ↑e s : Finset M' hs : closure ↑s = Submonoid.map e P ⊢ closure ↑(Finset.preimage s ↑e (_ : Set.InjOn (↑e) (↑e ⁻¹' ↑s))) = P [PROOFSTEP] apply Submonoid.map_injective_of_injective he [GOAL] case h.a M : Type u_1 N : Type u_2 inst✝² : Monoid M inst✝¹ : AddMonoid N M' : Type u_3 inst✝ : Monoid M' P : Submonoid M e : M →* M' he : Function.Injective ↑e s : Finset M' hs : closure ↑s = Submonoid.map e P ⊢ Submonoid.map e (closure ↑(Finset.preimage s ↑e (_ : Set.InjOn (↑e) (↑e ⁻¹' ↑s)))) = Submonoid.map e P [PROOFSTEP] rw [← hs, MonoidHom.map_mclosure e, Finset.coe_preimage] [GOAL] case h.a M : Type u_1 N : Type u_2 inst✝² : Monoid M inst✝¹ : AddMonoid N M' : Type u_3 inst✝ : Monoid M' P : Submonoid M e : M →* M' he : Function.Injective ↑e s : Finset M' hs : closure ↑s = Submonoid.map e P ⊢ closure (↑e '' (↑e ⁻¹' ↑s)) = closure ↑s [PROOFSTEP] congr [GOAL] case h.a.e_s M : Type u_1 N : Type u_2 inst✝² : Monoid M inst✝¹ : AddMonoid N M' : Type u_3 inst✝ : Monoid M' P : Submonoid M e : M →* M' he : Function.Injective ↑e s : Finset M' hs : closure ↑s = Submonoid.map e P ⊢ ↑e '' (↑e ⁻¹' ↑s) = ↑s [PROOFSTEP] rw [Set.image_preimage_eq_iff, ← MonoidHom.coe_mrange e, ← Submonoid.closure_le, hs, MonoidHom.mrange_eq_map e] [GOAL] case h.a.e_s M : Type u_1 N : Type u_2 inst✝² : Monoid M inst✝¹ : AddMonoid N M' : Type u_3 inst✝ : Monoid M' P : Submonoid M e : M →* M' he : Function.Injective ↑e s : Finset M' hs : closure ↑s = Submonoid.map e P ⊢ Submonoid.map e P ≤ Submonoid.map e ⊤ [PROOFSTEP] exact Submonoid.monotone_map le_top [GOAL] M : Type u_1 N✝ : Type u_2 inst✝¹ : Monoid M inst✝ : AddMonoid N✝ N : Submonoid M ⊢ FG { x // x ∈ N } ↔ Submonoid.FG N [PROOFSTEP] conv_rhs => rw [← N.range_subtype, MonoidHom.mrange_eq_map] [GOAL] M : Type u_1 N✝ : Type u_2 inst✝¹ : Monoid M inst✝ : AddMonoid N✝ N : Submonoid M | Submonoid.FG N [PROOFSTEP] rw [← N.range_subtype, MonoidHom.mrange_eq_map] [GOAL] M : Type u_1 N✝ : Type u_2 inst✝¹ : Monoid M inst✝ : AddMonoid N✝ N : Submonoid M | Submonoid.FG N [PROOFSTEP] rw [← N.range_subtype, MonoidHom.mrange_eq_map] [GOAL] M : Type u_1 N✝ : Type u_2 inst✝¹ : Monoid M inst✝ : AddMonoid N✝ N : Submonoid M | Submonoid.FG N [PROOFSTEP] rw [← N.range_subtype, MonoidHom.mrange_eq_map] [GOAL] M : Type u_1 N✝ : Type u_2 inst✝¹ : Monoid M inst✝ : AddMonoid N✝ N : Submonoid M ⊢ FG { x // x ∈ N } ↔ Submonoid.FG (Submonoid.map (Submonoid.subtype N) ⊤) [PROOFSTEP] exact ⟨fun h => h.out.map N.subtype, fun h => ⟨h.map_injective N.subtype Subtype.coe_injective⟩⟩ [GOAL] M : Type u_1 N : Type u_2 inst✝³ : Monoid M inst✝² : AddMonoid N M' : Type u_3 inst✝¹ : Monoid M' inst✝ : FG M f : M →* M' hf : Function.Surjective ↑f ⊢ FG M' [PROOFSTEP] classical obtain ⟨s, hs⟩ := Monoid.fg_def.mp ‹_› use s.image f rwa [Finset.coe_image, ← MonoidHom.map_mclosure, hs, ← MonoidHom.mrange_eq_map, MonoidHom.mrange_top_iff_surjective] [GOAL] M : Type u_1 N : Type u_2 inst✝³ : Monoid M inst✝² : AddMonoid N M' : Type u_3 inst✝¹ : Monoid M' inst✝ : FG M f : M →* M' hf : Function.Surjective ↑f ⊢ FG M' [PROOFSTEP] obtain ⟨s, hs⟩ := Monoid.fg_def.mp ‹_› [GOAL] case intro M : Type u_1 N : Type u_2 inst✝³ : Monoid M inst✝² : AddMonoid N M' : Type u_3 inst✝¹ : Monoid M' inst✝ : FG M f : M →* M' hf : Function.Surjective ↑f s : Finset M hs : Submonoid.closure ↑s = ⊤ ⊢ FG M' [PROOFSTEP] use s.image f [GOAL] case h M : Type u_1 N : Type u_2 inst✝³ : Monoid M inst✝² : AddMonoid N M' : Type u_3 inst✝¹ : Monoid M' inst✝ : FG M f : M →* M' hf : Function.Surjective ↑f s : Finset M hs : Submonoid.closure ↑s = ⊤ ⊢ Submonoid.closure ↑(Finset.image (↑f) s) = ⊤ [PROOFSTEP] rwa [Finset.coe_image, ← MonoidHom.map_mclosure, hs, ← MonoidHom.mrange_eq_map, MonoidHom.mrange_top_iff_surjective] [GOAL] M : Type u_1 N : Type u_2 inst✝¹ : Monoid M inst✝ : AddMonoid N s : Finset M ⊢ FG { x // x ∈ Submonoid.closure ↑s } [PROOFSTEP] refine' ⟨⟨s.preimage Subtype.val (Subtype.coe_injective.injOn _), _⟩⟩ [GOAL] M : Type u_1 N : Type u_2 inst✝¹ : Monoid M inst✝ : AddMonoid N s : Finset M ⊢ Submonoid.closure ↑(Finset.preimage s Subtype.val (_ : Set.InjOn (fun a => ↑a) (Subtype.val ⁻¹' ↑s))) = ⊤ [PROOFSTEP] rw [Finset.coe_preimage, Submonoid.closure_closure_coe_preimage] [GOAL] M : Type u_1 N : Type u_2 inst✝³ : Monoid M inst✝² : AddMonoid N G : Type u_3 H : Type u_4 inst✝¹ : Group G inst✝ : AddGroup H P : Subgroup G x✝ : ∃ S, closure S = P ∧ Set.Finite S S : Set G hS : closure S = P hf : Set.Finite S ⊢ closure ↑(Set.Finite.toFinset hf) = P [PROOFSTEP] simp [hS] [GOAL] M : Type u_1 N : Type u_2 inst✝³ : Monoid M inst✝² : AddMonoid N G : Type u_3 H : Type u_4 inst✝¹ : Group G inst✝ : AddGroup H P : Subgroup G ⊢ FG P ↔ Submonoid.FG P.toSubmonoid [PROOFSTEP] constructor [GOAL] case mp M : Type u_1 N : Type u_2 inst✝³ : Monoid M inst✝² : AddMonoid N G : Type u_3 H : Type u_4 inst✝¹ : Group G inst✝ : AddGroup H P : Subgroup G ⊢ FG P → Submonoid.FG P.toSubmonoid [PROOFSTEP] rintro ⟨S, rfl⟩ [GOAL] case mp.intro M : Type u_1 N : Type u_2 inst✝³ : Monoid M inst✝² : AddMonoid N G : Type u_3 H : Type u_4 inst✝¹ : Group G inst✝ : AddGroup H S : Finset G ⊢ Submonoid.FG (closure ↑S).toSubmonoid [PROOFSTEP] rw [Submonoid.fg_iff] [GOAL] case mp.intro M : Type u_1 N : Type u_2 inst✝³ : Monoid M inst✝² : AddMonoid N G : Type u_3 H : Type u_4 inst✝¹ : Group G inst✝ : AddGroup H S : Finset G ⊢ ∃ S_1, Submonoid.closure S_1 = (closure ↑S).toSubmonoid ∧ Set.Finite S_1 [PROOFSTEP] refine' ⟨S ∪ S⁻¹, _, S.finite_toSet.union S.finite_toSet.inv⟩ [GOAL] case mp.intro M : Type u_1 N : Type u_2 inst✝³ : Monoid M inst✝² : AddMonoid N G : Type u_3 H : Type u_4 inst✝¹ : Group G inst✝ : AddGroup H S : Finset G ⊢ Submonoid.closure (↑S ∪ (↑S)⁻¹) = (closure ↑S).toSubmonoid [PROOFSTEP] exact (Subgroup.closure_toSubmonoid _).symm [GOAL] case mpr M : Type u_1 N : Type u_2 inst✝³ : Monoid M inst✝² : AddMonoid N G : Type u_3 H : Type u_4 inst✝¹ : Group G inst✝ : AddGroup H P : Subgroup G ⊢ Submonoid.FG P.toSubmonoid → FG P [PROOFSTEP] rintro ⟨S, hS⟩ [GOAL] case mpr.intro M : Type u_1 N : Type u_2 inst✝³ : Monoid M inst✝² : AddMonoid N G : Type u_3 H : Type u_4 inst✝¹ : Group G inst✝ : AddGroup H P : Subgroup G S : Finset G hS : Submonoid.closure ↑S = P.toSubmonoid ⊢ FG P [PROOFSTEP] refine' ⟨S, le_antisymm _ _⟩ [GOAL] case mpr.intro.refine'_1 M : Type u_1 N : Type u_2 inst✝³ : Monoid M inst✝² : AddMonoid N G : Type u_3 H : Type u_4 inst✝¹ : Group G inst✝ : AddGroup H P : Subgroup G S : Finset G hS : Submonoid.closure ↑S = P.toSubmonoid ⊢ closure ↑S ≤ P [PROOFSTEP] rw [Subgroup.closure_le, ← Subgroup.coe_toSubmonoid, ← hS] [GOAL] case mpr.intro.refine'_1 M : Type u_1 N : Type u_2 inst✝³ : Monoid M inst✝² : AddMonoid N G : Type u_3 H : Type u_4 inst✝¹ : Group G inst✝ : AddGroup H P : Subgroup G S : Finset G hS : Submonoid.closure ↑S = P.toSubmonoid ⊢ ↑S ⊆ ↑(Submonoid.closure ↑S) [PROOFSTEP] exact Submonoid.subset_closure [GOAL] case mpr.intro.refine'_2 M : Type u_1 N : Type u_2 inst✝³ : Monoid M inst✝² : AddMonoid N G : Type u_3 H : Type u_4 inst✝¹ : Group G inst✝ : AddGroup H P : Subgroup G S : Finset G hS : Submonoid.closure ↑S = P.toSubmonoid ⊢ P ≤ closure ↑S [PROOFSTEP] rw [← Subgroup.toSubmonoid_le, ← hS, Submonoid.closure_le] [GOAL] case mpr.intro.refine'_2 M : Type u_1 N : Type u_2 inst✝³ : Monoid M inst✝² : AddMonoid N G : Type u_3 H : Type u_4 inst✝¹ : Group G inst✝ : AddGroup H P : Subgroup G S : Finset G hS : Submonoid.closure ↑S = P.toSubmonoid ⊢ ↑S ⊆ ↑(closure ↑S).toSubmonoid [PROOFSTEP] exact Subgroup.subset_closure [GOAL] M : Type u_1 N : Type u_2 inst✝³ : Monoid M inst✝² : AddMonoid N G : Type u_3 H : Type u_4 inst✝¹ : Group G inst✝ : AddGroup H P : Subgroup G ⊢ FG P ↔ AddSubgroup.FG (↑toAddSubgroup P) [PROOFSTEP] rw [Subgroup.fg_iff_submonoid_fg, AddSubgroup.fg_iff_addSubmonoid_fg] [GOAL] M : Type u_1 N : Type u_2 inst✝³ : Monoid M inst✝² : AddMonoid N G : Type u_3 H : Type u_4 inst✝¹ : Group G inst✝ : AddGroup H P : Subgroup G ⊢ Submonoid.FG P.toSubmonoid ↔ AddSubmonoid.FG (↑toAddSubgroup P).toAddSubmonoid [PROOFSTEP] exact (Subgroup.toSubmonoid P).fg_iff_add_fg [GOAL] M : Type u_1 N : Type u_2 inst✝³ : Monoid M inst✝² : AddMonoid N G : Type u_3 H : Type u_4 inst✝¹ : Group G inst✝ : AddGroup H P : AddSubgroup H ⊢ FG P ↔ Subgroup.FG (↑toSubgroup P) [PROOFSTEP] rw [AddSubgroup.fg_iff_addSubmonoid_fg, Subgroup.fg_iff_submonoid_fg] [GOAL] M : Type u_1 N : Type u_2 inst✝³ : Monoid M inst✝² : AddMonoid N G : Type u_3 H : Type u_4 inst✝¹ : Group G inst✝ : AddGroup H P : AddSubgroup H ⊢ AddSubmonoid.FG P.toAddSubmonoid ↔ Submonoid.FG (↑toSubgroup P).toSubmonoid [PROOFSTEP] exact AddSubmonoid.fg_iff_mul_fg (AddSubgroup.toAddSubmonoid P) [GOAL] M : Type u_1 N : Type u_2 inst✝⁴ : Monoid M inst✝³ : AddMonoid N G : Type u_3 H : Type u_4 inst✝² : Group G inst✝¹ : AddGroup H inst✝ : Finite G ⊢ FG G [PROOFSTEP] cases nonempty_fintype G [GOAL] case intro M : Type u_1 N : Type u_2 inst✝⁴ : Monoid M inst✝³ : AddMonoid N G : Type u_3 H : Type u_4 inst✝² : Group G inst✝¹ : AddGroup H inst✝ : Finite G val✝ : Fintype G ⊢ FG G [PROOFSTEP] exact ⟨⟨Finset.univ, by rw [Finset.coe_univ]; exact Subgroup.closure_univ⟩⟩ [GOAL] M : Type u_1 N : Type u_2 inst✝⁴ : Monoid M inst✝³ : AddMonoid N G : Type u_3 H : Type u_4 inst✝² : Group G inst✝¹ : AddGroup H inst✝ : Finite G val✝ : Fintype G ⊢ Subgroup.closure ↑Finset.univ = ⊤ [PROOFSTEP] rw [Finset.coe_univ] [GOAL] M : Type u_1 N : Type u_2 inst✝⁴ : Monoid M inst✝³ : AddMonoid N G : Type u_3 H : Type u_4 inst✝² : Group G inst✝¹ : AddGroup H inst✝ : Finite G val✝ : Fintype G ⊢ Subgroup.closure Set.univ = ⊤ [PROOFSTEP] exact Subgroup.closure_univ [GOAL] M : Type u_1 N : Type u_2 inst✝³ : Monoid M inst✝² : AddMonoid N G : Type u_3 H : Type u_4 inst✝¹ : Group G inst✝ : AddGroup H s : Finset G ⊢ FG { x // x ∈ Subgroup.closure ↑s } [PROOFSTEP] refine' ⟨⟨s.preimage Subtype.val (Subtype.coe_injective.injOn _), _⟩⟩ [GOAL] M : Type u_1 N : Type u_2 inst✝³ : Monoid M inst✝² : AddMonoid N G : Type u_3 H : Type u_4 inst✝¹ : Group G inst✝ : AddGroup H s : Finset G ⊢ Subgroup.closure ↑(Finset.preimage s Subtype.val (_ : Set.InjOn (fun a => ↑a) (Subtype.val ⁻¹' ↑s))) = ⊤ [PROOFSTEP] rw [Finset.coe_preimage, ← Subgroup.coeSubtype, Subgroup.closure_preimage_eq_top] [GOAL] M : Type u_1 N : Type u_2 inst✝⁶ : Monoid M inst✝⁵ : AddMonoid N G : Type u_3 H : Type u_4 inst✝⁴ : Group G inst✝³ : AddGroup H G' : Type u_5 inst✝² : Group G' inst✝¹ : FG G inst✝ : FG G' f : G →* G' hf : Function.Surjective ↑f ⊢ rank G' ≤ rank G [PROOFSTEP] classical obtain ⟨S, hS1, hS2⟩ := Group.rank_spec G trans (S.image f).card · apply Group.rank_le rw [Finset.coe_image, ← MonoidHom.map_closure, hS2, Subgroup.map_top_of_surjective f hf] · exact Finset.card_image_le.trans_eq hS1 [GOAL] M : Type u_1 N : Type u_2 inst✝⁶ : Monoid M inst✝⁵ : AddMonoid N G : Type u_3 H : Type u_4 inst✝⁴ : Group G inst✝³ : AddGroup H G' : Type u_5 inst✝² : Group G' inst✝¹ : FG G inst✝ : FG G' f : G →* G' hf : Function.Surjective ↑f ⊢ rank G' ≤ rank G [PROOFSTEP] obtain ⟨S, hS1, hS2⟩ := Group.rank_spec G [GOAL] case intro.intro M : Type u_1 N : Type u_2 inst✝⁶ : Monoid M inst✝⁵ : AddMonoid N G : Type u_3 H : Type u_4 inst✝⁴ : Group G inst✝³ : AddGroup H G' : Type u_5 inst✝² : Group G' inst✝¹ : FG G inst✝ : FG G' f : G →* G' hf : Function.Surjective ↑f S : Finset G hS1 : Finset.card S = rank G hS2 : Subgroup.closure ↑S = ⊤ ⊢ rank G' ≤ rank G [PROOFSTEP] trans (S.image f).card [GOAL] M : Type u_1 N : Type u_2 inst✝⁶ : Monoid M inst✝⁵ : AddMonoid N G : Type u_3 H : Type u_4 inst✝⁴ : Group G inst✝³ : AddGroup H G' : Type u_5 inst✝² : Group G' inst✝¹ : FG G inst✝ : FG G' f : G →* G' hf : Function.Surjective ↑f S : Finset G hS1 : Finset.card S = rank G hS2 : Subgroup.closure ↑S = ⊤ ⊢ rank G' ≤ Finset.card (Finset.image (↑f) S) [PROOFSTEP] apply Group.rank_le [GOAL] case hS M : Type u_1 N : Type u_2 inst✝⁶ : Monoid M inst✝⁵ : AddMonoid N G : Type u_3 H : Type u_4 inst✝⁴ : Group G inst✝³ : AddGroup H G' : Type u_5 inst✝² : Group G' inst✝¹ : FG G inst✝ : FG G' f : G →* G' hf : Function.Surjective ↑f S : Finset G hS1 : Finset.card S = rank G hS2 : Subgroup.closure ↑S = ⊤ ⊢ Subgroup.closure ↑(Finset.image (↑f) S) = ⊤ [PROOFSTEP] rw [Finset.coe_image, ← MonoidHom.map_closure, hS2, Subgroup.map_top_of_surjective f hf] [GOAL] M : Type u_1 N : Type u_2 inst✝⁶ : Monoid M inst✝⁵ : AddMonoid N G : Type u_3 H : Type u_4 inst✝⁴ : Group G inst✝³ : AddGroup H G' : Type u_5 inst✝² : Group G' inst✝¹ : FG G inst✝ : FG G' f : G →* G' hf : Function.Surjective ↑f S : Finset G hS1 : Finset.card S = rank G hS2 : Subgroup.closure ↑S = ⊤ ⊢ Finset.card (Finset.image (↑f) S) ≤ rank G [PROOFSTEP] exact Finset.card_image_le.trans_eq hS1 [GOAL] M : Type u_1 N : Type u_2 inst✝⁵ : Monoid M inst✝⁴ : AddMonoid N G : Type u_3 H✝ : Type u_4 inst✝³ : Group G inst✝² : AddGroup H✝ H K : Subgroup G inst✝¹ : Group.FG { x // x ∈ H } inst✝ : Group.FG { x // x ∈ K } h : H = K ⊢ Group.rank { x // x ∈ H } = Group.rank { x // x ∈ K } [PROOFSTEP] subst h [GOAL] M : Type u_1 N : Type u_2 inst✝⁵ : Monoid M inst✝⁴ : AddMonoid N G : Type u_3 H✝ : Type u_4 inst✝³ : Group G inst✝² : AddGroup H✝ H : Subgroup G inst✝¹ inst✝ : Group.FG { x // x ∈ H } ⊢ Group.rank { x // x ∈ H } = Group.rank { x // x ∈ H } [PROOFSTEP] rfl [GOAL] M : Type u_1 N : Type u_2 inst✝³ : Monoid M inst✝² : AddMonoid N G : Type u_3 H : Type u_4 inst✝¹ : Group G inst✝ : AddGroup H s : Finset G ⊢ Group.rank { x // x ∈ closure ↑s } ≤ Finset.card s [PROOFSTEP] classical let t : Finset (closure (s : Set G)) := s.preimage Subtype.val (Subtype.coe_injective.injOn _) have ht : closure (t : Set (closure (s : Set G))) = ⊤ := by rw [Finset.coe_preimage] exact closure_preimage_eq_top (s : Set G) apply (Group.rank_le (closure (s : Set G)) ht).trans suffices H : Set.InjOn Subtype.val (t : Set (closure (s : Set G))) rw [← Finset.card_image_of_injOn H, Finset.image_preimage] · apply Finset.card_filter_le · apply Subtype.coe_injective.injOn [GOAL] M : Type u_1 N : Type u_2 inst✝³ : Monoid M inst✝² : AddMonoid N G : Type u_3 H : Type u_4 inst✝¹ : Group G inst✝ : AddGroup H s : Finset G ⊢ Group.rank { x // x ∈ closure ↑s } ≤ Finset.card s [PROOFSTEP] let t : Finset (closure (s : Set G)) := s.preimage Subtype.val (Subtype.coe_injective.injOn _) [GOAL] M : Type u_1 N : Type u_2 inst✝³ : Monoid M inst✝² : AddMonoid N G : Type u_3 H : Type u_4 inst✝¹ : Group G inst✝ : AddGroup H s : Finset G t : Finset { x // x ∈ closure ↑s } := Finset.preimage s Subtype.val (_ : Set.InjOn (fun a => ↑a) (Subtype.val ⁻¹' ↑s)) ⊢ Group.rank { x // x ∈ closure ↑s } ≤ Finset.card s [PROOFSTEP] have ht : closure (t : Set (closure (s : Set G))) = ⊤ := by rw [Finset.coe_preimage] exact closure_preimage_eq_top (s : Set G) [GOAL] M : Type u_1 N : Type u_2 inst✝³ : Monoid M inst✝² : AddMonoid N G : Type u_3 H : Type u_4 inst✝¹ : Group G inst✝ : AddGroup H s : Finset G t : Finset { x // x ∈ closure ↑s } := Finset.preimage s Subtype.val (_ : Set.InjOn (fun a => ↑a) (Subtype.val ⁻¹' ↑s)) ⊢ closure ↑t = ⊤ [PROOFSTEP] rw [Finset.coe_preimage] [GOAL] M : Type u_1 N : Type u_2 inst✝³ : Monoid M inst✝² : AddMonoid N G : Type u_3 H : Type u_4 inst✝¹ : Group G inst✝ : AddGroup H s : Finset G t : Finset { x // x ∈ closure ↑s } := Finset.preimage s Subtype.val (_ : Set.InjOn (fun a => ↑a) (Subtype.val ⁻¹' ↑s)) ⊢ closure (Subtype.val ⁻¹' ↑s) = ⊤ [PROOFSTEP] exact closure_preimage_eq_top (s : Set G) [GOAL] M : Type u_1 N : Type u_2 inst✝³ : Monoid M inst✝² : AddMonoid N G : Type u_3 H : Type u_4 inst✝¹ : Group G inst✝ : AddGroup H s : Finset G t : Finset { x // x ∈ closure ↑s } := Finset.preimage s Subtype.val (_ : Set.InjOn (fun a => ↑a) (Subtype.val ⁻¹' ↑s)) ht : closure ↑t = ⊤ ⊢ Group.rank { x // x ∈ closure ↑s } ≤ Finset.card s [PROOFSTEP] apply (Group.rank_le (closure (s : Set G)) ht).trans [GOAL] M : Type u_1 N : Type u_2 inst✝³ : Monoid M inst✝² : AddMonoid N G : Type u_3 H : Type u_4 inst✝¹ : Group G inst✝ : AddGroup H s : Finset G t : Finset { x // x ∈ closure ↑s } := Finset.preimage s Subtype.val (_ : Set.InjOn (fun a => ↑a) (Subtype.val ⁻¹' ↑s)) ht : closure ↑t = ⊤ ⊢ Finset.card t ≤ Finset.card s [PROOFSTEP] suffices H : Set.InjOn Subtype.val (t : Set (closure (s : Set G))) [GOAL] M : Type u_1 N : Type u_2 inst✝³ : Monoid M inst✝² : AddMonoid N G : Type u_3 H✝ : Type u_4 inst✝¹ : Group G inst✝ : AddGroup H✝ s : Finset G t : Finset { x // x ∈ closure ↑s } := Finset.preimage s Subtype.val (_ : Set.InjOn (fun a => ↑a) (Subtype.val ⁻¹' ↑s)) ht : closure ↑t = ⊤ H : Set.InjOn Subtype.val ↑t ⊢ Finset.card t ≤ Finset.card s case H M : Type u_1 N : Type u_2 inst✝³ : Monoid M inst✝² : AddMonoid N G : Type u_3 H : Type u_4 inst✝¹ : Group G inst✝ : AddGroup H s : Finset G t : Finset { x // x ∈ closure ↑s } := Finset.preimage s Subtype.val (_ : Set.InjOn (fun a => ↑a) (Subtype.val ⁻¹' ↑s)) ht : closure ↑t = ⊤ ⊢ Set.InjOn Subtype.val ↑t [PROOFSTEP] rw [← Finset.card_image_of_injOn H, Finset.image_preimage] [GOAL] M : Type u_1 N : Type u_2 inst✝³ : Monoid M inst✝² : AddMonoid N G : Type u_3 H✝ : Type u_4 inst✝¹ : Group G inst✝ : AddGroup H✝ s : Finset G t : Finset { x // x ∈ closure ↑s } := Finset.preimage s Subtype.val (_ : Set.InjOn (fun a => ↑a) (Subtype.val ⁻¹' ↑s)) ht : closure ↑t = ⊤ H : Set.InjOn Subtype.val ↑t ⊢ Finset.card (Finset.filter (fun x => x ∈ Set.range Subtype.val) s) ≤ Finset.card s [PROOFSTEP] apply Finset.card_filter_le [GOAL] case H M : Type u_1 N : Type u_2 inst✝³ : Monoid M inst✝² : AddMonoid N G : Type u_3 H : Type u_4 inst✝¹ : Group G inst✝ : AddGroup H s : Finset G t : Finset { x // x ∈ closure ↑s } := Finset.preimage s Subtype.val (_ : Set.InjOn (fun a => ↑a) (Subtype.val ⁻¹' ↑s)) ht : closure ↑t = ⊤ ⊢ Set.InjOn Subtype.val ↑t [PROOFSTEP] apply Subtype.coe_injective.injOn [GOAL] M : Type u_1 N : Type u_2 inst✝⁴ : Monoid M inst✝³ : AddMonoid N G : Type u_3 H : Type u_4 inst✝² : Group G inst✝¹ : AddGroup H s : Set G inst✝ : Finite ↑s ⊢ Group.rank { x // x ∈ closure s } ≤ Nat.card ↑s [PROOFSTEP] haveI := Fintype.ofFinite s [GOAL] M : Type u_1 N : Type u_2 inst✝⁴ : Monoid M inst✝³ : AddMonoid N G : Type u_3 H : Type u_4 inst✝² : Group G inst✝¹ : AddGroup H s : Set G inst✝ : Finite ↑s this : Fintype ↑s ⊢ Group.rank { x // x ∈ closure s } ≤ Nat.card ↑s [PROOFSTEP] rw [Nat.card_eq_fintype_card, ← s.toFinset_card, ← rank_congr (congr_arg _ s.coe_toFinset)] [GOAL] M : Type u_1 N : Type u_2 inst✝⁴ : Monoid M inst✝³ : AddMonoid N G : Type u_3 H : Type u_4 inst✝² : Group G inst✝¹ : AddGroup H s : Set G inst✝ : Finite ↑s this : Fintype ↑s ⊢ Group.rank { x // x ∈ closure ↑(Set.toFinset s) } ≤ Finset.card (Set.toFinset s) [PROOFSTEP] exact rank_closure_finset_le_card s.toFinset
{"mathlib_filename": "Mathlib.GroupTheory.Finiteness", "llama_tokens": 11257}
[GOAL] α : Type u_1 inst✝² : Zero α p : Prop inst✝¹ : Decidable p a b : α inst✝ : LT α ha : 0 < a hb : 0 < b ⊢ 0 < if p then a else b [PROOFSTEP] by_cases p [GOAL] α : Type u_1 inst✝² : Zero α p : Prop inst✝¹ : Decidable p a b : α inst✝ : LT α ha : 0 < a hb : 0 < b ⊢ 0 < if p then a else b [PROOFSTEP] by_cases p [GOAL] case pos α : Type u_1 inst✝² : Zero α p : Prop inst✝¹ : Decidable p a b : α inst✝ : LT α ha : 0 < a hb : 0 < b h : p ⊢ 0 < if p then a else b [PROOFSTEP] simp [*] [GOAL] case neg α : Type u_1 inst✝² : Zero α p : Prop inst✝¹ : Decidable p a b : α inst✝ : LT α ha : 0 < a hb : 0 < b h : ¬p ⊢ 0 < if p then a else b [PROOFSTEP] simp [*] [GOAL] α : Type u_1 inst✝² : Zero α p : Prop inst✝¹ : Decidable p a b : α inst✝ : LE α ha : 0 ≤ a hb : 0 ≤ b ⊢ 0 ≤ if p then a else b [PROOFSTEP] by_cases p [GOAL] α : Type u_1 inst✝² : Zero α p : Prop inst✝¹ : Decidable p a b : α inst✝ : LE α ha : 0 ≤ a hb : 0 ≤ b ⊢ 0 ≤ if p then a else b [PROOFSTEP] by_cases p [GOAL] case pos α : Type u_1 inst✝² : Zero α p : Prop inst✝¹ : Decidable p a b : α inst✝ : LE α ha : 0 ≤ a hb : 0 ≤ b h : p ⊢ 0 ≤ if p then a else b [PROOFSTEP] simp [*] [GOAL] case neg α : Type u_1 inst✝² : Zero α p : Prop inst✝¹ : Decidable p a b : α inst✝ : LE α ha : 0 ≤ a hb : 0 ≤ b h : ¬p ⊢ 0 ≤ if p then a else b [PROOFSTEP] simp [*] [GOAL] α : Type u_1 inst✝¹ : Zero α p : Prop inst✝ : Decidable p a b : α ha : a ≠ 0 hb : b ≠ 0 ⊢ (if p then a else b) ≠ 0 [PROOFSTEP] by_cases p [GOAL] α : Type u_1 inst✝¹ : Zero α p : Prop inst✝ : Decidable p a b : α ha : a ≠ 0 hb : b ≠ 0 ⊢ (if p then a else b) ≠ 0 [PROOFSTEP] by_cases p [GOAL] case pos α : Type u_1 inst✝¹ : Zero α p : Prop inst✝ : Decidable p a b : α ha : a ≠ 0 hb : b ≠ 0 h : p ⊢ (if p then a else b) ≠ 0 [PROOFSTEP] simp [*] [GOAL] case neg α : Type u_1 inst✝¹ : Zero α p : Prop inst✝ : Decidable p a b : α ha : a ≠ 0 hb : b ≠ 0 h : ¬p ⊢ (if p then a else b) ≠ 0 [PROOFSTEP] simp [*] [GOAL] R : Type u_1 inst✝ : LinearOrder R a b c : R ha : a ≠ c hb : b ≠ c ⊢ min a b ≠ c [PROOFSTEP] rw [min_def] [GOAL] R : Type u_1 inst✝ : LinearOrder R a b c : R ha : a ≠ c hb : b ≠ c ⊢ (if a ≤ b then a else b) ≠ c [PROOFSTEP] split_ifs [GOAL] case pos R : Type u_1 inst✝ : LinearOrder R a b c : R ha : a ≠ c hb : b ≠ c h✝ : a ≤ b ⊢ a ≠ c [PROOFSTEP] assumption [GOAL] case neg R : Type u_1 inst✝ : LinearOrder R a b c : R ha : a ≠ c hb : b ≠ c h✝ : ¬a ≤ b ⊢ b ≠ c [PROOFSTEP] assumption [GOAL] R : Type u_1 inst✝ : LinearOrder R a b c : R ha : a ≠ c hb : b ≠ c ⊢ max a b ≠ c [PROOFSTEP] rw [max_def] [GOAL] R : Type u_1 inst✝ : LinearOrder R a b c : R ha : a ≠ c hb : b ≠ c ⊢ (if a ≤ b then b else a) ≠ c [PROOFSTEP] split_ifs [GOAL] case pos R : Type u_1 inst✝ : LinearOrder R a b c : R ha : a ≠ c hb : b ≠ c h✝ : a ≤ b ⊢ b ≠ c [PROOFSTEP] assumption [GOAL] case neg R : Type u_1 inst✝ : LinearOrder R a b c : R ha : a ≠ c hb : b ≠ c h✝ : ¬a ≤ b ⊢ a ≠ c [PROOFSTEP] assumption [GOAL] a : ℤ ha : 0 < a ⊢ 0 < a / a [PROOFSTEP] {rw [Int.ediv_self ha.ne']; exact zero_lt_one } [GOAL] a : ℤ ha : 0 < a ⊢ 0 < a / a [PROOFSTEP] rw [Int.ediv_self ha.ne'] [GOAL] a : ℤ ha : 0 < a ⊢ 0 < 1 [PROOFSTEP] exact zero_lt_one [GOAL] u : Level α : Q(Type u) zα : Q(Zero «$α») pα : Q(PartialOrder «$α») e : Q(«$α») fn✝ : Expr a : Q(«$α») b : Q(ℕ) n : ℕ x✝ : PUnit m : Q(ℕ) this✝ : «$b» =Q bit0 «$m» _a : Q(LinearOrderedRing «$α») this : «$e» =Q «$a» ^ «$b» zα_eq✝ : «$zα» =Q MonoidWithZero.toZero pα_eq✝ : «$pα» =Q StrictOrderedRing.toPartialOrder ⊢ Strictness zα pα e [PROOFSTEP] exact .nonnegative q(pow_bit0_nonneg $a $m) [GOAL] u : Level α : Q(Type u) zα : Q(Zero «$α») pα : Q(PartialOrder «$α») e : Q(«$α») fn✝ : Expr a : Q(«$α») b : Q(ℕ) result : Strictness zα pα e ra : Strictness zα pα a pa : Q(0 ≤ «$a») _oα : Q(OrderedSemiring «$α») this : «$e» =Q «$a» ^ «$b» zα_eq✝ : «$zα» =Q MonoidWithZero.toZero pα_eq✝ : «$pα» =Q OrderedSemiring.toPartialOrder ⊢ Strictness zα pα e [PROOFSTEP] exact .nonnegative (q(pow_nonneg $pa $b)) [GOAL] u : Level α : Q(Type u) zα : Q(Zero «$α») pα : Q(PartialOrder «$α») e : Q(«$α») fn✝ : Expr a : Q(«$α») b : Q(ℕ) result : Strictness zα pα e ra : Strictness zα pα a ofNonneg : Q(0 ≤ «$a») → Q(OrderedSemiring «$α») → MetaM (Strictness zα pα e) := fun pa _oα => let_fun zα_eq := (_ : «$zα» =Q MonoidWithZero.toZero); let_fun pα_eq := (_ : «$pα» =Q OrderedSemiring.toPartialOrder); pure (Strictness.nonnegative q((_ : 0 ≤ «$a» ^ «$b»))) pa : Q(«$a» ≠ 0) _oα : Q(OrderedSemiring «$α») this : «$e» =Q «$a» ^ «$b» zα_eq✝ : «$zα» =Q MonoidWithZero.toZero pα_eq✝ : «$pα» =Q OrderedSemiring.toPartialOrder _a : Q(NoZeroDivisors «$α») ⊢ Q(«$e» ≠ 0) [PROOFSTEP] exact q(pow_ne_zero $b $pa) [GOAL] u : Level α : Q(Type u) zα : Q(Zero «$α») pα : Q(PartialOrder «$α») e : Q(«$α») fn✝ : Expr a : Q(«$α») b : Q(ℕ) result : Strictness zα pα e ra : Strictness zα pα a ofNonneg : Q(0 ≤ «$a») → Q(OrderedSemiring «$α») → MetaM (Strictness zα pα e) := fun pa _oα => let_fun zα_eq := (_ : «$zα» =Q MonoidWithZero.toZero); let_fun pα_eq := (_ : «$pα» =Q OrderedSemiring.toPartialOrder); pure (Strictness.nonnegative q((_ : 0 ≤ «$a» ^ «$b»))) ofNonzero : Q(«$a» ≠ 0) → Q(OrderedSemiring «$α») → MetaM (Strictness zα pα e) := fun pa _oα => let_fun zα_eq := (_ : «$zα» =Q MonoidWithZero.toZero); let_fun pα_eq := (_ : «$pα» =Q OrderedSemiring.toPartialOrder); do let _a ← synthInstanceQ q(NoZeroDivisors «$α») pure (Strictness.nonzero q((_ : «$a» ^ «$b» ≠ 0))) pa : Q(0 < «$a») _a : Q(StrictOrderedSemiring «$α») this : «$e» =Q «$a» ^ «$b» zα_eq✝ : «$zα» =Q MonoidWithZero.toZero pα_eq✝ : «$pα» =Q StrictOrderedSemiring.toPartialOrder ⊢ Strictness zα pα e [PROOFSTEP] exact .positive (q(pow_pos $pa $b))
{"mathlib_filename": "Mathlib.Tactic.Positivity.Basic", "llama_tokens": 3137}
[GOAL] X : Type u m₁ m₂ : X → X → X e₁ e₂ : X h₁ : IsUnital m₁ e₁ h₂ : IsUnital m₂ e₂ distrib : ∀ (a b c d : X), m₁ (m₂ a b) (m₂ c d) = m₂ (m₁ a c) (m₁ b d) ⊢ e₁ = e₂ [PROOFSTEP] simpa only [h₁.left_id, h₁.right_id, h₂.left_id, h₂.right_id] using distrib e₂ e₁ e₁ e₂ [GOAL] X : Type u m₁ m₂ : X → X → X e₁ e₂ : X h₁ : IsUnital m₁ e₁ h₂ : IsUnital m₂ e₂ distrib : ∀ (a b c d : X), m₁ (m₂ a b) (m₂ c d) = m₂ (m₁ a c) (m₁ b d) ⊢ m₁ = m₂ [PROOFSTEP] funext a b [GOAL] case h.h X : Type u m₁ m₂ : X → X → X e₁ e₂ : X h₁ : IsUnital m₁ e₁ h₂ : IsUnital m₂ e₂ distrib : ∀ (a b c d : X), m₁ (m₂ a b) (m₂ c d) = m₂ (m₁ a c) (m₁ b d) a b : X ⊢ m₁ a b = m₂ a b [PROOFSTEP] calc m₁ a b = m₁ (m₂ a e₁) (m₂ e₁ b) := by {simp only [one h₁ h₂ distrib, h₁.left_id, h₁.right_id, h₂.left_id, h₂.right_id] } _ = m₂ a b := by simp only [distrib, h₁.left_id, h₁.right_id, h₂.left_id, h₂.right_id] [GOAL] X : Type u m₁ m₂ : X → X → X e₁ e₂ : X h₁ : IsUnital m₁ e₁ h₂ : IsUnital m₂ e₂ distrib : ∀ (a b c d : X), m₁ (m₂ a b) (m₂ c d) = m₂ (m₁ a c) (m₁ b d) a b : X ⊢ m₁ a b = m₁ (m₂ a e₁) (m₂ e₁ b) [PROOFSTEP] {simp only [one h₁ h₂ distrib, h₁.left_id, h₁.right_id, h₂.left_id, h₂.right_id] } [GOAL] X : Type u m₁ m₂ : X → X → X e₁ e₂ : X h₁ : IsUnital m₁ e₁ h₂ : IsUnital m₂ e₂ distrib : ∀ (a b c d : X), m₁ (m₂ a b) (m₂ c d) = m₂ (m₁ a c) (m₁ b d) a b : X ⊢ m₁ a b = m₁ (m₂ a e₁) (m₂ e₁ b) [PROOFSTEP] simp only [one h₁ h₂ distrib, h₁.left_id, h₁.right_id, h₂.left_id, h₂.right_id] [GOAL] X : Type u m₁ m₂ : X → X → X e₁ e₂ : X h₁ : IsUnital m₁ e₁ h₂ : IsUnital m₂ e₂ distrib : ∀ (a b c d : X), m₁ (m₂ a b) (m₂ c d) = m₂ (m₁ a c) (m₁ b d) a b : X ⊢ m₁ (m₂ a e₁) (m₂ e₁ b) = m₂ a b [PROOFSTEP] simp only [distrib, h₁.left_id, h₁.right_id, h₂.left_id, h₂.right_id] [GOAL] X : Type u m₁ m₂ : X → X → X e₁ e₂ : X h₁ : IsUnital m₁ e₁ h₂ : IsUnital m₂ e₂ distrib : ∀ (a b c d : X), m₁ (m₂ a b) (m₂ c d) = m₂ (m₁ a c) (m₁ b d) a b : X ⊢ m₂ a b = m₂ b a [PROOFSTEP] simpa [mul h₁ h₂ distrib, h₂.left_id, h₂.right_id] using distrib e₂ a b e₂ [GOAL] X : Type u m₁ m₂ : X → X → X e₁ e₂ : X h₁ : IsUnital m₁ e₁ h₂ : IsUnital m₂ e₂ distrib : ∀ (a b c d : X), m₁ (m₂ a b) (m₂ c d) = m₂ (m₁ a c) (m₁ b d) a b c : X ⊢ m₂ (m₂ a b) c = m₂ a (m₂ b c) [PROOFSTEP] simpa [mul h₁ h₂ distrib, h₂.left_id, h₂.right_id] using distrib a b e₂ c
{"mathlib_filename": "Mathlib.GroupTheory.EckmannHilton", "llama_tokens": 1304}
[GOAL] G : Type u_1 G' : Type u_2 F : Type u_3 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G ⊢ ⁅g₁, g₂⁆ = 1 ↔ g₁ * g₂ = g₂ * g₁ [PROOFSTEP] rw [commutatorElement_def, mul_inv_eq_one, mul_inv_eq_iff_eq_mul] [GOAL] G : Type u_1 G' : Type u_2 F : Type u_3 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G ⊢ ⁅g₁, g₂⁆⁻¹ = ⁅g₂, g₁⁆ [PROOFSTEP] simp_rw [commutatorElement_def, mul_inv_rev, inv_inv, mul_assoc] [GOAL] G : Type u_1 G' : Type u_2 F : Type u_3 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G ⊢ ↑f ⁅g₁, g₂⁆ = ⁅↑f g₁, ↑f g₂⁆ [PROOFSTEP] simp_rw [commutatorElement_def, map_mul f, map_inv f] [GOAL] G : Type u_1 G' : Type u_2 F : Type u_3 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G ⊢ ⁅H₁, H₂⁆ = ⊥ ↔ H₁ ≤ centralizer ↑H₂ [PROOFSTEP] rw [eq_bot_iff, commutator_le] [GOAL] G : Type u_1 G' : Type u_2 F : Type u_3 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G ⊢ (∀ (g₁ : G), g₁ ∈ H₁ → ∀ (g₂ : G), g₂ ∈ H₂ → ⁅g₁, g₂⁆ ∈ ⊥) ↔ H₁ ≤ centralizer ↑H₂ [PROOFSTEP] refine' forall_congr' fun p => forall_congr' fun _hp => forall_congr' fun q => forall_congr' fun hq => _ [GOAL] G : Type u_1 G' : Type u_2 F : Type u_3 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G p : G _hp : p ∈ H₁ q : G hq : q ∈ H₂ ⊢ ⁅p, q⁆ ∈ ⊥ ↔ q * p = p * q [PROOFSTEP] rw [mem_bot, commutatorElement_eq_one_iff_mul_comm, eq_comm] [GOAL] G : Type u_1 G' : Type u_2 F : Type u_3 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G h1 : ⁅⁅H₂, H₃⁆, H₁⁆ = ⊥ h2 : ⁅⁅H₃, H₁⁆, H₂⁆ = ⊥ ⊢ ⁅⁅H₁, H₂⁆, H₃⁆ = ⊥ [PROOFSTEP] simp_rw [commutator_eq_bot_iff_le_centralizer, commutator_le, mem_centralizer_iff_commutator_eq_one, ← commutatorElement_def] at h1 h2 ⊢ [GOAL] G : Type u_1 G' : Type u_2 F : Type u_3 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G h1 : ∀ (g₁ : G), g₁ ∈ H₂ → ∀ (g₂ : G), g₂ ∈ H₃ → ∀ (h : G), h ∈ ↑H₁ → ⁅h, ⁅g₁, g₂⁆⁆ = 1 h2 : ∀ (g₁ : G), g₁ ∈ H₃ → ∀ (g₂ : G), g₂ ∈ H₁ → ∀ (h : G), h ∈ ↑H₂ → ⁅h, ⁅g₁, g₂⁆⁆ = 1 ⊢ ∀ (g₁ : G), g₁ ∈ H₁ → ∀ (g₂ : G), g₂ ∈ H₂ → ∀ (h : G), h ∈ ↑H₃ → ⁅h, ⁅g₁, g₂⁆⁆ = 1 [PROOFSTEP] intro x hx y hy z hz [GOAL] G : Type u_1 G' : Type u_2 F : Type u_3 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G h1 : ∀ (g₁ : G), g₁ ∈ H₂ → ∀ (g₂ : G), g₂ ∈ H₃ → ∀ (h : G), h ∈ ↑H₁ → ⁅h, ⁅g₁, g₂⁆⁆ = 1 h2 : ∀ (g₁ : G), g₁ ∈ H₃ → ∀ (g₂ : G), g₂ ∈ H₁ → ∀ (h : G), h ∈ ↑H₂ → ⁅h, ⁅g₁, g₂⁆⁆ = 1 x : G hx : x ∈ H₁ y : G hy : y ∈ H₂ z : G hz : z ∈ ↑H₃ ⊢ ⁅z, ⁅x, y⁆⁆ = 1 [PROOFSTEP] trans x * z * ⁅y, ⁅z⁻¹, x⁻¹⁆⁆⁻¹ * z⁻¹ * y * ⁅x⁻¹, ⁅y⁻¹, z⁆⁆⁻¹ * y⁻¹ * x⁻¹ [GOAL] G : Type u_1 G' : Type u_2 F : Type u_3 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G h1 : ∀ (g₁ : G), g₁ ∈ H₂ → ∀ (g₂ : G), g₂ ∈ H₃ → ∀ (h : G), h ∈ ↑H₁ → ⁅h, ⁅g₁, g₂⁆⁆ = 1 h2 : ∀ (g₁ : G), g₁ ∈ H₃ → ∀ (g₂ : G), g₂ ∈ H₁ → ∀ (h : G), h ∈ ↑H₂ → ⁅h, ⁅g₁, g₂⁆⁆ = 1 x : G hx : x ∈ H₁ y : G hy : y ∈ H₂ z : G hz : z ∈ ↑H₃ ⊢ ⁅z, ⁅x, y⁆⁆ = x * z * ⁅y, ⁅z⁻¹, x⁻¹⁆⁆⁻¹ * z⁻¹ * y * ⁅x⁻¹, ⁅y⁻¹, z⁆⁆⁻¹ * y⁻¹ * x⁻¹ [PROOFSTEP] group [GOAL] G : Type u_1 G' : Type u_2 F : Type u_3 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G h1 : ∀ (g₁ : G), g₁ ∈ H₂ → ∀ (g₂ : G), g₂ ∈ H₃ → ∀ (h : G), h ∈ ↑H₁ → ⁅h, ⁅g₁, g₂⁆⁆ = 1 h2 : ∀ (g₁ : G), g₁ ∈ H₃ → ∀ (g₂ : G), g₂ ∈ H₁ → ∀ (h : G), h ∈ ↑H₂ → ⁅h, ⁅g₁, g₂⁆⁆ = 1 x : G hx : x ∈ H₁ y : G hy : y ∈ H₂ z : G hz : z ∈ ↑H₃ ⊢ x * z * ⁅y, ⁅z⁻¹, x⁻¹⁆⁆⁻¹ * z⁻¹ * y * ⁅x⁻¹, ⁅y⁻¹, z⁆⁆⁻¹ * y⁻¹ * x⁻¹ = 1 [PROOFSTEP] rw [h1 _ (H₂.inv_mem hy) _ hz _ (H₁.inv_mem hx), h2 _ (H₃.inv_mem hz) _ (H₁.inv_mem hx) _ hy] [GOAL] G : Type u_1 G' : Type u_2 F : Type u_3 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G h1 : ∀ (g₁ : G), g₁ ∈ H₂ → ∀ (g₂ : G), g₂ ∈ H₃ → ∀ (h : G), h ∈ ↑H₁ → ⁅h, ⁅g₁, g₂⁆⁆ = 1 h2 : ∀ (g₁ : G), g₁ ∈ H₃ → ∀ (g₂ : G), g₂ ∈ H₁ → ∀ (h : G), h ∈ ↑H₂ → ⁅h, ⁅g₁, g₂⁆⁆ = 1 x : G hx : x ∈ H₁ y : G hy : y ∈ H₂ z : G hz : z ∈ ↑H₃ ⊢ x * z * 1⁻¹ * z⁻¹ * y * 1⁻¹ * y⁻¹ * x⁻¹ = 1 [PROOFSTEP] group [GOAL] G : Type u_1 G' : Type u_2 F : Type u_3 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G h₁ : Normal H₁ h₂ : Normal H₂ ⊢ Normal ⁅H₁, H₂⁆ [PROOFSTEP] let base : Set G := {x | ∃ g₁ ∈ H₁, ∃ g₂ ∈ H₂, ⁅g₁, g₂⁆ = x} [GOAL] G : Type u_1 G' : Type u_2 F : Type u_3 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G h₁ : Normal H₁ h₂ : Normal H₂ base : Set G := {x | ∃ g₁, g₁ ∈ H₁ ∧ ∃ g₂, g₂ ∈ H₂ ∧ ⁅g₁, g₂⁆ = x} ⊢ Normal ⁅H₁, H₂⁆ [PROOFSTEP] change (closure base).Normal [GOAL] G : Type u_1 G' : Type u_2 F : Type u_3 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G h₁ : Normal H₁ h₂ : Normal H₂ base : Set G := {x | ∃ g₁, g₁ ∈ H₁ ∧ ∃ g₂, g₂ ∈ H₂ ∧ ⁅g₁, g₂⁆ = x} ⊢ Normal (closure base) [PROOFSTEP] suffices h_base : base = Group.conjugatesOfSet base [GOAL] G : Type u_1 G' : Type u_2 F : Type u_3 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G h₁ : Normal H₁ h₂ : Normal H₂ base : Set G := {x | ∃ g₁, g₁ ∈ H₁ ∧ ∃ g₂, g₂ ∈ H₂ ∧ ⁅g₁, g₂⁆ = x} h_base : base = Group.conjugatesOfSet base ⊢ Normal (closure base) [PROOFSTEP] rw [h_base] [GOAL] G : Type u_1 G' : Type u_2 F : Type u_3 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G h₁ : Normal H₁ h₂ : Normal H₂ base : Set G := {x | ∃ g₁, g₁ ∈ H₁ ∧ ∃ g₂, g₂ ∈ H₂ ∧ ⁅g₁, g₂⁆ = x} h_base : base = Group.conjugatesOfSet base ⊢ Normal (closure (Group.conjugatesOfSet base)) [PROOFSTEP] exact Subgroup.normalClosure_normal [GOAL] case h_base G : Type u_1 G' : Type u_2 F : Type u_3 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G h₁ : Normal H₁ h₂ : Normal H₂ base : Set G := {x | ∃ g₁, g₁ ∈ H₁ ∧ ∃ g₂, g₂ ∈ H₂ ∧ ⁅g₁, g₂⁆ = x} ⊢ base = Group.conjugatesOfSet base [PROOFSTEP] refine' Set.Subset.antisymm Group.subset_conjugatesOfSet fun a h => _ [GOAL] case h_base G : Type u_1 G' : Type u_2 F : Type u_3 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G h₁ : Normal H₁ h₂ : Normal H₂ base : Set G := {x | ∃ g₁, g₁ ∈ H₁ ∧ ∃ g₂, g₂ ∈ H₂ ∧ ⁅g₁, g₂⁆ = x} a : G h : a ∈ Group.conjugatesOfSet base ⊢ a ∈ base [PROOFSTEP] simp_rw [Group.mem_conjugatesOfSet_iff, isConj_iff] at h [GOAL] case h_base G : Type u_1 G' : Type u_2 F : Type u_3 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G h₁ : Normal H₁ h₂ : Normal H₂ base : Set G := {x | ∃ g₁, g₁ ∈ H₁ ∧ ∃ g₂, g₂ ∈ H₂ ∧ ⁅g₁, g₂⁆ = x} a : G h : ∃ a_1, a_1 ∈ {x | ∃ g₁, g₁ ∈ H₁ ∧ ∃ g₂, g₂ ∈ H₂ ∧ ⁅g₁, g₂⁆ = x} ∧ ∃ c, c * a_1 * c⁻¹ = a ⊢ a ∈ base [PROOFSTEP] rcases h with ⟨b, ⟨c, hc, e, he, rfl⟩, d, rfl⟩ [GOAL] case h_base.intro.intro.intro.intro.intro.intro.intro G : Type u_1 G' : Type u_2 F : Type u_3 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G h₁ : Normal H₁ h₂ : Normal H₂ base : Set G := {x | ∃ g₁, g₁ ∈ H₁ ∧ ∃ g₂, g₂ ∈ H₂ ∧ ⁅g₁, g₂⁆ = x} c : G hc : c ∈ H₁ e : G he : e ∈ H₂ d : G ⊢ d * ⁅c, e⁆ * d⁻¹ ∈ base [PROOFSTEP] exact ⟨_, h₁.conj_mem c hc d, _, h₂.conj_mem e he d, (conjugate_commutatorElement c e d).symm⟩ [GOAL] G : Type u_1 G' : Type u_2 F : Type u_3 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f✝ : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G f : G →* G' ⊢ map f ⁅H₁, H₂⁆ = ⁅map f H₁, map f H₂⁆ [PROOFSTEP] simp_rw [le_antisymm_iff, map_le_iff_le_comap, commutator_le, mem_comap, map_commutatorElement] [GOAL] G : Type u_1 G' : Type u_2 F : Type u_3 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f✝ : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G f : G →* G' ⊢ (∀ (g₁ : G), g₁ ∈ H₁ → ∀ (g₂ : G), g₂ ∈ H₂ → ⁅↑f g₁, ↑f g₂⁆ ∈ ⁅map f H₁, map f H₂⁆) ∧ ∀ (g₁ : G'), g₁ ∈ map f H₁ → ∀ (g₂ : G'), g₂ ∈ map f H₂ → ⁅g₁, g₂⁆ ∈ map f ⁅H₁, H₂⁆ [PROOFSTEP] constructor [GOAL] case left G : Type u_1 G' : Type u_2 F : Type u_3 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f✝ : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G f : G →* G' ⊢ ∀ (g₁ : G), g₁ ∈ H₁ → ∀ (g₂ : G), g₂ ∈ H₂ → ⁅↑f g₁, ↑f g₂⁆ ∈ ⁅map f H₁, map f H₂⁆ [PROOFSTEP] intro p hp q hq [GOAL] case left G : Type u_1 G' : Type u_2 F : Type u_3 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f✝ : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G f : G →* G' p : G hp : p ∈ H₁ q : G hq : q ∈ H₂ ⊢ ⁅↑f p, ↑f q⁆ ∈ ⁅map f H₁, map f H₂⁆ [PROOFSTEP] exact commutator_mem_commutator (mem_map_of_mem _ hp) (mem_map_of_mem _ hq) [GOAL] case right G : Type u_1 G' : Type u_2 F : Type u_3 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f✝ : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G f : G →* G' ⊢ ∀ (g₁ : G'), g₁ ∈ map f H₁ → ∀ (g₂ : G'), g₂ ∈ map f H₂ → ⁅g₁, g₂⁆ ∈ map f ⁅H₁, H₂⁆ [PROOFSTEP] rintro _ ⟨p, hp, rfl⟩ _ ⟨q, hq, rfl⟩ [GOAL] case right.intro.intro.intro.intro G : Type u_1 G' : Type u_2 F : Type u_3 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f✝ : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G f : G →* G' p : G hp : p ∈ ↑H₁ q : G hq : q ∈ ↑H₂ ⊢ ⁅↑f p, ↑f q⁆ ∈ map f ⁅H₁, H₂⁆ [PROOFSTEP] rw [← map_commutatorElement] [GOAL] case right.intro.intro.intro.intro G : Type u_1 G' : Type u_2 F : Type u_3 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f✝ : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G f : G →* G' p : G hp : p ∈ ↑H₁ q : G hq : q ∈ ↑H₂ ⊢ ↑f ⁅p, q⁆ ∈ map f ⁅H₁, H₂⁆ [PROOFSTEP] exact mem_map_of_mem _ (commutator_mem_commutator hp hq) [GOAL] G : Type u_1 G' : Type u_2 F : Type u_3 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁✝ K₂✝ : Subgroup G K₁ K₂ : Subgroup G' ⊢ ⁅prod H₁ K₁, prod H₂ K₂⁆ = prod ⁅H₁, H₂⁆ ⁅K₁, K₂⁆ [PROOFSTEP] apply le_antisymm [GOAL] case a G : Type u_1 G' : Type u_2 F : Type u_3 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁✝ K₂✝ : Subgroup G K₁ K₂ : Subgroup G' ⊢ ⁅prod H₁ K₁, prod H₂ K₂⁆ ≤ prod ⁅H₁, H₂⁆ ⁅K₁, K₂⁆ [PROOFSTEP] rw [commutator_le] [GOAL] case a G : Type u_1 G' : Type u_2 F : Type u_3 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁✝ K₂✝ : Subgroup G K₁ K₂ : Subgroup G' ⊢ ∀ (g₁ : G × G'), g₁ ∈ prod H₁ K₁ → ∀ (g₂ : G × G'), g₂ ∈ prod H₂ K₂ → ⁅g₁, g₂⁆ ∈ prod ⁅H₁, H₂⁆ ⁅K₁, K₂⁆ [PROOFSTEP] rintro ⟨p₁, p₂⟩ ⟨hp₁, hp₂⟩ ⟨q₁, q₂⟩ ⟨hq₁, hq₂⟩ [GOAL] case a.mk.intro.mk.intro G : Type u_1 G' : Type u_2 F : Type u_3 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁✝ K₂✝ : Subgroup G K₁ K₂ : Subgroup G' p₁ : G p₂ : G' hp₁ : (p₁, p₂).fst ∈ ↑H₁.toSubmonoid hp₂ : (p₁, p₂).snd ∈ ↑K₁.toSubmonoid q₁ : G q₂ : G' hq₁ : (q₁, q₂).fst ∈ ↑H₂.toSubmonoid hq₂ : (q₁, q₂).snd ∈ ↑K₂.toSubmonoid ⊢ ⁅(p₁, p₂), (q₁, q₂)⁆ ∈ prod ⁅H₁, H₂⁆ ⁅K₁, K₂⁆ [PROOFSTEP] exact ⟨commutator_mem_commutator hp₁ hq₁, commutator_mem_commutator hp₂ hq₂⟩ [GOAL] case a G : Type u_1 G' : Type u_2 F : Type u_3 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁✝ K₂✝ : Subgroup G K₁ K₂ : Subgroup G' ⊢ prod ⁅H₁, H₂⁆ ⁅K₁, K₂⁆ ≤ ⁅prod H₁ K₁, prod H₂ K₂⁆ [PROOFSTEP] rw [prod_le_iff] [GOAL] case a G : Type u_1 G' : Type u_2 F : Type u_3 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁✝ K₂✝ : Subgroup G K₁ K₂ : Subgroup G' ⊢ map (MonoidHom.inl G G') ⁅H₁, H₂⁆ ≤ ⁅prod H₁ K₁, prod H₂ K₂⁆ ∧ map (MonoidHom.inr G G') ⁅K₁, K₂⁆ ≤ ⁅prod H₁ K₁, prod H₂ K₂⁆ [PROOFSTEP] constructor [GOAL] case a.left G : Type u_1 G' : Type u_2 F : Type u_3 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁✝ K₂✝ : Subgroup G K₁ K₂ : Subgroup G' ⊢ map (MonoidHom.inl G G') ⁅H₁, H₂⁆ ≤ ⁅prod H₁ K₁, prod H₂ K₂⁆ [PROOFSTEP] rw [map_commutator] [GOAL] case a.left G : Type u_1 G' : Type u_2 F : Type u_3 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁✝ K₂✝ : Subgroup G K₁ K₂ : Subgroup G' ⊢ ⁅map (MonoidHom.inl G G') H₁, map (MonoidHom.inl G G') H₂⁆ ≤ ⁅prod H₁ K₁, prod H₂ K₂⁆ [PROOFSTEP] apply commutator_mono [GOAL] case a.left.h₁ G : Type u_1 G' : Type u_2 F : Type u_3 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁✝ K₂✝ : Subgroup G K₁ K₂ : Subgroup G' ⊢ map (MonoidHom.inl G G') H₁ ≤ prod H₁ K₁ [PROOFSTEP] simp [le_prod_iff, map_map, MonoidHom.fst_comp_inl, MonoidHom.snd_comp_inl, MonoidHom.fst_comp_inr, MonoidHom.snd_comp_inr] [GOAL] case a.left.h₂ G : Type u_1 G' : Type u_2 F : Type u_3 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁✝ K₂✝ : Subgroup G K₁ K₂ : Subgroup G' ⊢ map (MonoidHom.inl G G') H₂ ≤ prod H₂ K₂ [PROOFSTEP] simp [le_prod_iff, map_map, MonoidHom.fst_comp_inl, MonoidHom.snd_comp_inl, MonoidHom.fst_comp_inr, MonoidHom.snd_comp_inr] [GOAL] case a.right G : Type u_1 G' : Type u_2 F : Type u_3 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁✝ K₂✝ : Subgroup G K₁ K₂ : Subgroup G' ⊢ map (MonoidHom.inr G G') ⁅K₁, K₂⁆ ≤ ⁅prod H₁ K₁, prod H₂ K₂⁆ [PROOFSTEP] rw [map_commutator] [GOAL] case a.right G : Type u_1 G' : Type u_2 F : Type u_3 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁✝ K₂✝ : Subgroup G K₁ K₂ : Subgroup G' ⊢ ⁅map (MonoidHom.inr G G') K₁, map (MonoidHom.inr G G') K₂⁆ ≤ ⁅prod H₁ K₁, prod H₂ K₂⁆ [PROOFSTEP] apply commutator_mono [GOAL] case a.right.h₁ G : Type u_1 G' : Type u_2 F : Type u_3 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁✝ K₂✝ : Subgroup G K₁ K₂ : Subgroup G' ⊢ map (MonoidHom.inr G G') K₁ ≤ prod H₁ K₁ [PROOFSTEP] simp [le_prod_iff, map_map, MonoidHom.fst_comp_inl, MonoidHom.snd_comp_inl, MonoidHom.fst_comp_inr, MonoidHom.snd_comp_inr] [GOAL] case a.right.h₂ G : Type u_1 G' : Type u_2 F : Type u_3 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁✝ K₂✝ : Subgroup G K₁ K₂ : Subgroup G' ⊢ map (MonoidHom.inr G G') K₂ ≤ prod H₂ K₂ [PROOFSTEP] simp [le_prod_iff, map_map, MonoidHom.fst_comp_inl, MonoidHom.snd_comp_inl, MonoidHom.fst_comp_inr, MonoidHom.snd_comp_inr] [GOAL] G : Type u_1 G' : Type u_2 F : Type u_3 inst✝⁴ : Group G inst✝³ : Group G' inst✝² : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G η : Type u_4 inst✝¹ : Finite η Gs : η → Type u_5 inst✝ : (i : η) → Group (Gs i) H K : (i : η) → Subgroup (Gs i) ⊢ ⁅pi Set.univ H, pi Set.univ K⁆ = pi Set.univ fun i => ⁅H i, K i⁆ [PROOFSTEP] classical apply le_antisymm (commutator_pi_pi_le H K) · rw [pi_le_iff] intro i hi rw [map_commutator] apply commutator_mono <;> · rw [le_pi_iff] intro j _hj rintro _ ⟨_, ⟨x, hx, rfl⟩, rfl⟩ by_cases h : j = i · subst h simpa using hx · simp [h, one_mem] [GOAL] G : Type u_1 G' : Type u_2 F : Type u_3 inst✝⁴ : Group G inst✝³ : Group G' inst✝² : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G η : Type u_4 inst✝¹ : Finite η Gs : η → Type u_5 inst✝ : (i : η) → Group (Gs i) H K : (i : η) → Subgroup (Gs i) ⊢ ⁅pi Set.univ H, pi Set.univ K⁆ = pi Set.univ fun i => ⁅H i, K i⁆ [PROOFSTEP] apply le_antisymm (commutator_pi_pi_le H K) [GOAL] G : Type u_1 G' : Type u_2 F : Type u_3 inst✝⁴ : Group G inst✝³ : Group G' inst✝² : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G η : Type u_4 inst✝¹ : Finite η Gs : η → Type u_5 inst✝ : (i : η) → Group (Gs i) H K : (i : η) → Subgroup (Gs i) ⊢ (pi Set.univ fun i => ⁅H i, K i⁆) ≤ ⁅pi Set.univ H, pi Set.univ K⁆ [PROOFSTEP] rw [pi_le_iff] [GOAL] G : Type u_1 G' : Type u_2 F : Type u_3 inst✝⁴ : Group G inst✝³ : Group G' inst✝² : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G η : Type u_4 inst✝¹ : Finite η Gs : η → Type u_5 inst✝ : (i : η) → Group (Gs i) H K : (i : η) → Subgroup (Gs i) ⊢ ∀ (i : η), map (MonoidHom.single (fun i => Gs i) i) ⁅H i, K i⁆ ≤ ⁅pi Set.univ H, pi Set.univ K⁆ [PROOFSTEP] intro i hi [GOAL] G : Type u_1 G' : Type u_2 F : Type u_3 inst✝⁴ : Group G inst✝³ : Group G' inst✝² : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G η : Type u_4 inst✝¹ : Finite η Gs : η → Type u_5 inst✝ : (i : η) → Group (Gs i) H K : (i : η) → Subgroup (Gs i) i : η hi : (i : η) → Gs i ⊢ hi ∈ map (MonoidHom.single (fun i => Gs i) i) ⁅H i, K i⁆ → hi ∈ ⁅pi Set.univ H, pi Set.univ K⁆ [PROOFSTEP] rw [map_commutator] [GOAL] G : Type u_1 G' : Type u_2 F : Type u_3 inst✝⁴ : Group G inst✝³ : Group G' inst✝² : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G η : Type u_4 inst✝¹ : Finite η Gs : η → Type u_5 inst✝ : (i : η) → Group (Gs i) H K : (i : η) → Subgroup (Gs i) i : η hi : (i : η) → Gs i ⊢ hi ∈ ⁅map (MonoidHom.single (fun i => Gs i) i) (H i), map (MonoidHom.single (fun i => Gs i) i) (K i)⁆ → hi ∈ ⁅pi Set.univ H, pi Set.univ K⁆ [PROOFSTEP] apply commutator_mono [GOAL] case h₁ G : Type u_1 G' : Type u_2 F : Type u_3 inst✝⁴ : Group G inst✝³ : Group G' inst✝² : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G η : Type u_4 inst✝¹ : Finite η Gs : η → Type u_5 inst✝ : (i : η) → Group (Gs i) H K : (i : η) → Subgroup (Gs i) i : η hi : (i : η) → Gs i ⊢ map (MonoidHom.single (fun i => Gs i) i) (H i) ≤ pi Set.univ H [PROOFSTEP] rw [le_pi_iff] [GOAL] case h₁ G : Type u_1 G' : Type u_2 F : Type u_3 inst✝⁴ : Group G inst✝³ : Group G' inst✝² : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G η : Type u_4 inst✝¹ : Finite η Gs : η → Type u_5 inst✝ : (i : η) → Group (Gs i) H K : (i : η) → Subgroup (Gs i) i : η hi : (i : η) → Gs i ⊢ ∀ (i_1 : η), i_1 ∈ Set.univ → map (Pi.evalMonoidHom (fun i => Gs i) i_1) (map (MonoidHom.single (fun i => Gs i) i) (H i)) ≤ H i_1 [PROOFSTEP] intro j _hj [GOAL] case h₁ G : Type u_1 G' : Type u_2 F : Type u_3 inst✝⁴ : Group G inst✝³ : Group G' inst✝² : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G η : Type u_4 inst✝¹ : Finite η Gs : η → Type u_5 inst✝ : (i : η) → Group (Gs i) H K : (i : η) → Subgroup (Gs i) i : η hi : (i : η) → Gs i j : η _hj : j ∈ Set.univ ⊢ map (Pi.evalMonoidHom (fun i => Gs i) j) (map (MonoidHom.single (fun i => Gs i) i) (H i)) ≤ H j [PROOFSTEP] rintro _ ⟨_, ⟨x, hx, rfl⟩, rfl⟩ [GOAL] case h₁.intro.intro.intro.intro G : Type u_1 G' : Type u_2 F : Type u_3 inst✝⁴ : Group G inst✝³ : Group G' inst✝² : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G η : Type u_4 inst✝¹ : Finite η Gs : η → Type u_5 inst✝ : (i : η) → Group (Gs i) H K : (i : η) → Subgroup (Gs i) i : η hi : (i : η) → Gs i j : η _hj : j ∈ Set.univ x : Gs i hx : x ∈ ↑(H i) ⊢ ↑(Pi.evalMonoidHom (fun i => Gs i) j) (↑(MonoidHom.single (fun i => Gs i) i) x) ∈ H j [PROOFSTEP] by_cases h : j = i [GOAL] case pos G : Type u_1 G' : Type u_2 F : Type u_3 inst✝⁴ : Group G inst✝³ : Group G' inst✝² : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G η : Type u_4 inst✝¹ : Finite η Gs : η → Type u_5 inst✝ : (i : η) → Group (Gs i) H K : (i : η) → Subgroup (Gs i) i : η hi : (i : η) → Gs i j : η _hj : j ∈ Set.univ x : Gs i hx : x ∈ ↑(H i) h : j = i ⊢ ↑(Pi.evalMonoidHom (fun i => Gs i) j) (↑(MonoidHom.single (fun i => Gs i) i) x) ∈ H j [PROOFSTEP] subst h [GOAL] case pos G : Type u_1 G' : Type u_2 F : Type u_3 inst✝⁴ : Group G inst✝³ : Group G' inst✝² : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G η : Type u_4 inst✝¹ : Finite η Gs : η → Type u_5 inst✝ : (i : η) → Group (Gs i) H K : (i : η) → Subgroup (Gs i) hi : (i : η) → Gs i j : η _hj : j ∈ Set.univ x : Gs j hx : x ∈ ↑(H j) ⊢ ↑(Pi.evalMonoidHom (fun i => Gs i) j) (↑(MonoidHom.single (fun i => Gs i) j) x) ∈ H j [PROOFSTEP] simpa using hx [GOAL] case neg G : Type u_1 G' : Type u_2 F : Type u_3 inst✝⁴ : Group G inst✝³ : Group G' inst✝² : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G η : Type u_4 inst✝¹ : Finite η Gs : η → Type u_5 inst✝ : (i : η) → Group (Gs i) H K : (i : η) → Subgroup (Gs i) i : η hi : (i : η) → Gs i j : η _hj : j ∈ Set.univ x : Gs i hx : x ∈ ↑(H i) h : ¬j = i ⊢ ↑(Pi.evalMonoidHom (fun i => Gs i) j) (↑(MonoidHom.single (fun i => Gs i) i) x) ∈ H j [PROOFSTEP] simp [h, one_mem] [GOAL] case h₂ G : Type u_1 G' : Type u_2 F : Type u_3 inst✝⁴ : Group G inst✝³ : Group G' inst✝² : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G η : Type u_4 inst✝¹ : Finite η Gs : η → Type u_5 inst✝ : (i : η) → Group (Gs i) H K : (i : η) → Subgroup (Gs i) i : η hi : (i : η) → Gs i ⊢ map (MonoidHom.single (fun i => Gs i) i) (K i) ≤ pi Set.univ K [PROOFSTEP] rw [le_pi_iff] [GOAL] case h₂ G : Type u_1 G' : Type u_2 F : Type u_3 inst✝⁴ : Group G inst✝³ : Group G' inst✝² : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G η : Type u_4 inst✝¹ : Finite η Gs : η → Type u_5 inst✝ : (i : η) → Group (Gs i) H K : (i : η) → Subgroup (Gs i) i : η hi : (i : η) → Gs i ⊢ ∀ (i_1 : η), i_1 ∈ Set.univ → map (Pi.evalMonoidHom (fun i => Gs i) i_1) (map (MonoidHom.single (fun i => Gs i) i) (K i)) ≤ K i_1 [PROOFSTEP] intro j _hj [GOAL] case h₂ G : Type u_1 G' : Type u_2 F : Type u_3 inst✝⁴ : Group G inst✝³ : Group G' inst✝² : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G η : Type u_4 inst✝¹ : Finite η Gs : η → Type u_5 inst✝ : (i : η) → Group (Gs i) H K : (i : η) → Subgroup (Gs i) i : η hi : (i : η) → Gs i j : η _hj : j ∈ Set.univ ⊢ map (Pi.evalMonoidHom (fun i => Gs i) j) (map (MonoidHom.single (fun i => Gs i) i) (K i)) ≤ K j [PROOFSTEP] rintro _ ⟨_, ⟨x, hx, rfl⟩, rfl⟩ [GOAL] case h₂.intro.intro.intro.intro G : Type u_1 G' : Type u_2 F : Type u_3 inst✝⁴ : Group G inst✝³ : Group G' inst✝² : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G η : Type u_4 inst✝¹ : Finite η Gs : η → Type u_5 inst✝ : (i : η) → Group (Gs i) H K : (i : η) → Subgroup (Gs i) i : η hi : (i : η) → Gs i j : η _hj : j ∈ Set.univ x : Gs i hx : x ∈ ↑(K i) ⊢ ↑(Pi.evalMonoidHom (fun i => Gs i) j) (↑(MonoidHom.single (fun i => Gs i) i) x) ∈ K j [PROOFSTEP] by_cases h : j = i [GOAL] case pos G : Type u_1 G' : Type u_2 F : Type u_3 inst✝⁴ : Group G inst✝³ : Group G' inst✝² : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G η : Type u_4 inst✝¹ : Finite η Gs : η → Type u_5 inst✝ : (i : η) → Group (Gs i) H K : (i : η) → Subgroup (Gs i) i : η hi : (i : η) → Gs i j : η _hj : j ∈ Set.univ x : Gs i hx : x ∈ ↑(K i) h : j = i ⊢ ↑(Pi.evalMonoidHom (fun i => Gs i) j) (↑(MonoidHom.single (fun i => Gs i) i) x) ∈ K j [PROOFSTEP] subst h [GOAL] case pos G : Type u_1 G' : Type u_2 F : Type u_3 inst✝⁴ : Group G inst✝³ : Group G' inst✝² : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G η : Type u_4 inst✝¹ : Finite η Gs : η → Type u_5 inst✝ : (i : η) → Group (Gs i) H K : (i : η) → Subgroup (Gs i) hi : (i : η) → Gs i j : η _hj : j ∈ Set.univ x : Gs j hx : x ∈ ↑(K j) ⊢ ↑(Pi.evalMonoidHom (fun i => Gs i) j) (↑(MonoidHom.single (fun i => Gs i) j) x) ∈ K j [PROOFSTEP] simpa using hx [GOAL] case neg G : Type u_1 G' : Type u_2 F : Type u_3 inst✝⁴ : Group G inst✝³ : Group G' inst✝² : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G η : Type u_4 inst✝¹ : Finite η Gs : η → Type u_5 inst✝ : (i : η) → Group (Gs i) H K : (i : η) → Subgroup (Gs i) i : η hi : (i : η) → Gs i j : η _hj : j ∈ Set.univ x : Gs i hx : x ∈ ↑(K i) h : ¬j = i ⊢ ↑(Pi.evalMonoidHom (fun i => Gs i) j) (↑(MonoidHom.single (fun i => Gs i) i) x) ∈ K j [PROOFSTEP] simp [h, one_mem]
{"mathlib_filename": "Mathlib.GroupTheory.Commutator", "llama_tokens": 14379}
[GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁸ : IsROrC 𝕜 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedAddCommGroup G inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : InnerProductSpace 𝕜 F inst✝² : InnerProductSpace 𝕜 G inst✝¹ : CompleteSpace E inst✝ : CompleteSpace G A : E →L[𝕜] F x : E y : F ⊢ inner (↑(↑adjointAux A) y) x = inner y (↑A x) [PROOFSTEP] rw [adjointAux_apply, toDual_symm_apply, toSesqForm_apply_coe, coe_comp', innerSL_apply_coe, Function.comp_apply] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁸ : IsROrC 𝕜 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedAddCommGroup G inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : InnerProductSpace 𝕜 F inst✝² : InnerProductSpace 𝕜 G inst✝¹ : CompleteSpace E inst✝ : CompleteSpace G A : E →L[𝕜] F x : E y : F ⊢ inner x (↑(↑adjointAux A) y) = inner (↑A x) y [PROOFSTEP] rw [← inner_conj_symm, adjointAux_inner_left, inner_conj_symm] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : CompleteSpace E inst✝¹ : CompleteSpace G inst✝ : CompleteSpace F A : E →L[𝕜] F ⊢ ↑adjointAux (↑adjointAux A) = A [PROOFSTEP] ext v [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : CompleteSpace E inst✝¹ : CompleteSpace G inst✝ : CompleteSpace F A : E →L[𝕜] F v : E ⊢ ↑(↑adjointAux (↑adjointAux A)) v = ↑A v [PROOFSTEP] refine' ext_inner_left 𝕜 fun w => _ [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : CompleteSpace E inst✝¹ : CompleteSpace G inst✝ : CompleteSpace F A : E →L[𝕜] F v : E w : (fun x => F) v ⊢ inner w (↑(↑adjointAux (↑adjointAux A)) v) = inner w (↑A v) [PROOFSTEP] rw [adjointAux_inner_right, adjointAux_inner_left] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : CompleteSpace E inst✝¹ : CompleteSpace G inst✝ : CompleteSpace F A : E →L[𝕜] F ⊢ ‖↑adjointAux A‖ = ‖A‖ [PROOFSTEP] refine' le_antisymm _ _ [GOAL] case refine'_1 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : CompleteSpace E inst✝¹ : CompleteSpace G inst✝ : CompleteSpace F A : E →L[𝕜] F ⊢ ‖↑adjointAux A‖ ≤ ‖A‖ [PROOFSTEP] refine' ContinuousLinearMap.op_norm_le_bound _ (norm_nonneg _) fun x => _ [GOAL] case refine'_1 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : CompleteSpace E inst✝¹ : CompleteSpace G inst✝ : CompleteSpace F A : E →L[𝕜] F x : F ⊢ ‖↑(↑adjointAux A) x‖ ≤ ‖A‖ * ‖x‖ [PROOFSTEP] rw [adjointAux_apply, LinearIsometryEquiv.norm_map] [GOAL] case refine'_1 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : CompleteSpace E inst✝¹ : CompleteSpace G inst✝ : CompleteSpace F A : E →L[𝕜] F x : F ⊢ ‖↑(↑toSesqForm A) x‖ ≤ ‖A‖ * ‖x‖ [PROOFSTEP] exact toSesqForm_apply_norm_le [GOAL] case refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : CompleteSpace E inst✝¹ : CompleteSpace G inst✝ : CompleteSpace F A : E →L[𝕜] F ⊢ ‖A‖ ≤ ‖↑adjointAux A‖ [PROOFSTEP] nth_rw 1 [← adjointAux_adjointAux A] [GOAL] case refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : CompleteSpace E inst✝¹ : CompleteSpace G inst✝ : CompleteSpace F A : E →L[𝕜] F ⊢ ‖↑adjointAux (↑adjointAux A)‖ ≤ ‖↑adjointAux A‖ [PROOFSTEP] refine' ContinuousLinearMap.op_norm_le_bound _ (norm_nonneg _) fun x => _ [GOAL] case refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : CompleteSpace E inst✝¹ : CompleteSpace G inst✝ : CompleteSpace F A : E →L[𝕜] F x : E ⊢ ‖↑(↑adjointAux (↑adjointAux A)) x‖ ≤ ‖↑adjointAux A‖ * ‖x‖ [PROOFSTEP] rw [adjointAux_apply, LinearIsometryEquiv.norm_map] [GOAL] case refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : CompleteSpace E inst✝¹ : CompleteSpace G inst✝ : CompleteSpace F A : E →L[𝕜] F x : E ⊢ ‖↑(↑toSesqForm (↑adjointAux A)) x‖ ≤ ‖↑adjointAux A‖ * ‖x‖ [PROOFSTEP] exact toSesqForm_apply_norm_le [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : CompleteSpace E inst✝¹ : CompleteSpace G inst✝ : CompleteSpace F A : F →L[𝕜] G B : E →L[𝕜] F ⊢ ↑adjoint (comp A B) = comp (↑adjoint B) (↑adjoint A) [PROOFSTEP] ext v [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : CompleteSpace E inst✝¹ : CompleteSpace G inst✝ : CompleteSpace F A : F →L[𝕜] G B : E →L[𝕜] F v : G ⊢ ↑(↑adjoint (comp A B)) v = ↑(comp (↑adjoint B) (↑adjoint A)) v [PROOFSTEP] refine' ext_inner_left 𝕜 fun w => _ [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : CompleteSpace E inst✝¹ : CompleteSpace G inst✝ : CompleteSpace F A : F →L[𝕜] G B : E →L[𝕜] F v : G w : (fun x => E) v ⊢ inner w (↑(↑adjoint (comp A B)) v) = inner w (↑(comp (↑adjoint B) (↑adjoint A)) v) [PROOFSTEP] simp only [adjoint_inner_right, ContinuousLinearMap.coe_comp', Function.comp_apply] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : CompleteSpace E inst✝¹ : CompleteSpace G inst✝ : CompleteSpace F A : E →L[𝕜] E x : E ⊢ ‖↑A x‖ ^ 2 = ↑re (inner (↑(↑adjoint A * A) x) x) [PROOFSTEP] have h : ⟪(A† * A) x, x⟫ = ⟪A x, A x⟫ := by rw [← adjoint_inner_left]; rfl [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : CompleteSpace E inst✝¹ : CompleteSpace G inst✝ : CompleteSpace F A : E →L[𝕜] E x : E ⊢ inner (↑(↑adjoint A * A) x) x = inner (↑A x) (↑A x) [PROOFSTEP] rw [← adjoint_inner_left] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : CompleteSpace E inst✝¹ : CompleteSpace G inst✝ : CompleteSpace F A : E →L[𝕜] E x : E ⊢ inner (↑(↑adjoint A * A) x) x = inner (↑(↑adjoint A) (↑A x)) x [PROOFSTEP] rfl [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : CompleteSpace E inst✝¹ : CompleteSpace G inst✝ : CompleteSpace F A : E →L[𝕜] E x : E h : inner (↑(↑adjoint A * A) x) x = inner (↑A x) (↑A x) ⊢ ‖↑A x‖ ^ 2 = ↑re (inner (↑(↑adjoint A * A) x) x) [PROOFSTEP] rw [h, ← inner_self_eq_norm_sq (𝕜 := 𝕜) _] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : CompleteSpace E inst✝¹ : CompleteSpace G inst✝ : CompleteSpace F A : E →L[𝕜] E x : E ⊢ ‖↑A x‖ = Real.sqrt (↑re (inner (↑(↑adjoint A * A) x) x)) [PROOFSTEP] rw [← apply_norm_sq_eq_inner_adjoint_left, Real.sqrt_sq (norm_nonneg _)] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : CompleteSpace E inst✝¹ : CompleteSpace G inst✝ : CompleteSpace F A : E →L[𝕜] E x : E ⊢ ‖↑A x‖ ^ 2 = ↑re (inner x (↑(↑adjoint A * A) x)) [PROOFSTEP] have h : ⟪x, (A† * A) x⟫ = ⟪A x, A x⟫ := by rw [← adjoint_inner_right]; rfl [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : CompleteSpace E inst✝¹ : CompleteSpace G inst✝ : CompleteSpace F A : E →L[𝕜] E x : E ⊢ inner x (↑(↑adjoint A * A) x) = inner (↑A x) (↑A x) [PROOFSTEP] rw [← adjoint_inner_right] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : CompleteSpace E inst✝¹ : CompleteSpace G inst✝ : CompleteSpace F A : E →L[𝕜] E x : E ⊢ inner x (↑(↑adjoint A * A) x) = inner x (↑(↑adjoint A) (↑A x)) [PROOFSTEP] rfl [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : CompleteSpace E inst✝¹ : CompleteSpace G inst✝ : CompleteSpace F A : E →L[𝕜] E x : E h : inner x (↑(↑adjoint A * A) x) = inner (↑A x) (↑A x) ⊢ ‖↑A x‖ ^ 2 = ↑re (inner x (↑(↑adjoint A * A) x)) [PROOFSTEP] rw [h, ← inner_self_eq_norm_sq (𝕜 := 𝕜) _] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : CompleteSpace E inst✝¹ : CompleteSpace G inst✝ : CompleteSpace F A : E →L[𝕜] E x : E ⊢ ‖↑A x‖ = Real.sqrt (↑re (inner x (↑(↑adjoint A * A) x))) [PROOFSTEP] rw [← apply_norm_sq_eq_inner_adjoint_right, Real.sqrt_sq (norm_nonneg _)] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : CompleteSpace E inst✝¹ : CompleteSpace G inst✝ : CompleteSpace F A : E →L[𝕜] F B : F →L[𝕜] E ⊢ A = ↑adjoint B ↔ ∀ (x : E) (y : (fun x => F) x), inner (↑A x) y = inner x (↑B y) [PROOFSTEP] refine' ⟨fun h x y => by rw [h, adjoint_inner_left], fun h => _⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : CompleteSpace E inst✝¹ : CompleteSpace G inst✝ : CompleteSpace F A : E →L[𝕜] F B : F →L[𝕜] E h : A = ↑adjoint B x : E y : (fun x => F) x ⊢ inner (↑A x) y = inner x (↑B y) [PROOFSTEP] rw [h, adjoint_inner_left] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : CompleteSpace E inst✝¹ : CompleteSpace G inst✝ : CompleteSpace F A : E →L[𝕜] F B : F →L[𝕜] E h : ∀ (x : E) (y : (fun x => F) x), inner (↑A x) y = inner x (↑B y) ⊢ A = ↑adjoint B [PROOFSTEP] ext x [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : CompleteSpace E inst✝¹ : CompleteSpace G inst✝ : CompleteSpace F A : E →L[𝕜] F B : F →L[𝕜] E h : ∀ (x : E) (y : (fun x => F) x), inner (↑A x) y = inner x (↑B y) x : E ⊢ ↑A x = ↑(↑adjoint B) x [PROOFSTEP] exact ext_inner_right 𝕜 fun y => by simp only [adjoint_inner_left, h x y] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : CompleteSpace E inst✝¹ : CompleteSpace G inst✝ : CompleteSpace F A : E →L[𝕜] F B : F →L[𝕜] E h : ∀ (x : E) (y : (fun x => F) x), inner (↑A x) y = inner x (↑B y) x : E y : (fun x => F) x ⊢ inner (↑A x) y = inner (↑(↑adjoint B) x) y [PROOFSTEP] simp only [adjoint_inner_left, h x y] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : CompleteSpace E inst✝¹ : CompleteSpace G inst✝ : CompleteSpace F ⊢ ↑adjoint (id 𝕜 E) = id 𝕜 E [PROOFSTEP] refine' Eq.symm _ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : CompleteSpace E inst✝¹ : CompleteSpace G inst✝ : CompleteSpace F ⊢ id 𝕜 E = ↑adjoint (id 𝕜 E) [PROOFSTEP] rw [eq_adjoint_iff] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : CompleteSpace E inst✝¹ : CompleteSpace G inst✝ : CompleteSpace F ⊢ ∀ (x : E) (y : (fun x => E) x), inner (↑(id 𝕜 E) x) y = inner x (↑(id 𝕜 E) y) [PROOFSTEP] simp [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹⁰ : IsROrC 𝕜 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedAddCommGroup F inst✝⁷ : NormedAddCommGroup G inst✝⁶ : InnerProductSpace 𝕜 E inst✝⁵ : InnerProductSpace 𝕜 F inst✝⁴ : InnerProductSpace 𝕜 G inst✝³ : CompleteSpace E inst✝² : CompleteSpace G inst✝¹ : CompleteSpace F U : Submodule 𝕜 E inst✝ : CompleteSpace { x // x ∈ U } ⊢ ↑adjoint (Submodule.subtypeL U) = orthogonalProjection U [PROOFSTEP] symm [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹⁰ : IsROrC 𝕜 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedAddCommGroup F inst✝⁷ : NormedAddCommGroup G inst✝⁶ : InnerProductSpace 𝕜 E inst✝⁵ : InnerProductSpace 𝕜 F inst✝⁴ : InnerProductSpace 𝕜 G inst✝³ : CompleteSpace E inst✝² : CompleteSpace G inst✝¹ : CompleteSpace F U : Submodule 𝕜 E inst✝ : CompleteSpace { x // x ∈ U } ⊢ orthogonalProjection U = ↑adjoint (Submodule.subtypeL U) [PROOFSTEP] rw [eq_adjoint_iff] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹⁰ : IsROrC 𝕜 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedAddCommGroup F inst✝⁷ : NormedAddCommGroup G inst✝⁶ : InnerProductSpace 𝕜 E inst✝⁵ : InnerProductSpace 𝕜 F inst✝⁴ : InnerProductSpace 𝕜 G inst✝³ : CompleteSpace E inst✝² : CompleteSpace G inst✝¹ : CompleteSpace F U : Submodule 𝕜 E inst✝ : CompleteSpace { x // x ∈ U } ⊢ ∀ (x : E) (y : (fun x => { x // x ∈ U }) x), inner (↑(orthogonalProjection U) x) y = inner x (↑(Submodule.subtypeL U) y) [PROOFSTEP] intro x u [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹⁰ : IsROrC 𝕜 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedAddCommGroup F inst✝⁷ : NormedAddCommGroup G inst✝⁶ : InnerProductSpace 𝕜 E inst✝⁵ : InnerProductSpace 𝕜 F inst✝⁴ : InnerProductSpace 𝕜 G inst✝³ : CompleteSpace E inst✝² : CompleteSpace G inst✝¹ : CompleteSpace F U : Submodule 𝕜 E inst✝ : CompleteSpace { x // x ∈ U } x : E u : { x // x ∈ U } ⊢ inner (↑(orthogonalProjection U) x) u = inner x (↑(Submodule.subtypeL U) u) [PROOFSTEP] rw [U.coe_inner, inner_orthogonalProjection_left_eq_right, orthogonalProjection_mem_subspace_eq_self] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹⁰ : IsROrC 𝕜 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedAddCommGroup F inst✝⁷ : NormedAddCommGroup G inst✝⁶ : InnerProductSpace 𝕜 E inst✝⁵ : InnerProductSpace 𝕜 F inst✝⁴ : InnerProductSpace 𝕜 G inst✝³ : CompleteSpace E inst✝² : CompleteSpace G inst✝¹ : CompleteSpace F U : Submodule 𝕜 E inst✝ : CompleteSpace { x // x ∈ U } x : E u : { x // x ∈ U } ⊢ inner x ↑u = inner x (↑(Submodule.subtypeL U) u) [PROOFSTEP] rfl [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹⁰ : IsROrC 𝕜 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedAddCommGroup F inst✝⁷ : NormedAddCommGroup G inst✝⁶ : InnerProductSpace 𝕜 E inst✝⁵ : InnerProductSpace 𝕜 F inst✝⁴ : InnerProductSpace 𝕜 G inst✝³ : CompleteSpace E inst✝² : CompleteSpace G inst✝¹ : CompleteSpace F U : Submodule 𝕜 E inst✝ : CompleteSpace { x // x ∈ U } ⊢ ↑adjoint (orthogonalProjection U) = Submodule.subtypeL U [PROOFSTEP] rw [← U.adjoint_subtypeL, adjoint_adjoint] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : CompleteSpace E inst✝¹ : CompleteSpace G inst✝ : CompleteSpace F ⊢ ∀ {x : E →L[𝕜] E}, ‖star x * x‖ = ‖x‖ * ‖x‖ [PROOFSTEP] intro A [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : CompleteSpace E inst✝¹ : CompleteSpace G inst✝ : CompleteSpace F A : E →L[𝕜] E ⊢ ‖star A * A‖ = ‖A‖ * ‖A‖ [PROOFSTEP] rw [star_eq_adjoint] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : CompleteSpace E inst✝¹ : CompleteSpace G inst✝ : CompleteSpace F A : E →L[𝕜] E ⊢ ‖↑adjoint A * A‖ = ‖A‖ * ‖A‖ [PROOFSTEP] refine' le_antisymm _ _ [GOAL] case refine'_1 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : CompleteSpace E inst✝¹ : CompleteSpace G inst✝ : CompleteSpace F A : E →L[𝕜] E ⊢ ‖↑adjoint A * A‖ ≤ ‖A‖ * ‖A‖ [PROOFSTEP] calc ‖A† * A‖ ≤ ‖A†‖ * ‖A‖ := op_norm_comp_le _ _ _ = ‖A‖ * ‖A‖ := by rw [LinearIsometryEquiv.norm_map] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : CompleteSpace E inst✝¹ : CompleteSpace G inst✝ : CompleteSpace F A : E →L[𝕜] E ⊢ ‖↑adjoint A‖ * ‖A‖ = ‖A‖ * ‖A‖ [PROOFSTEP] rw [LinearIsometryEquiv.norm_map] [GOAL] case refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : CompleteSpace E inst✝¹ : CompleteSpace G inst✝ : CompleteSpace F A : E →L[𝕜] E ⊢ ‖A‖ * ‖A‖ ≤ ‖↑adjoint A * A‖ [PROOFSTEP] rw [← sq, ← Real.sqrt_le_sqrt_iff (norm_nonneg _), Real.sqrt_sq (norm_nonneg _)] [GOAL] case refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : CompleteSpace E inst✝¹ : CompleteSpace G inst✝ : CompleteSpace F A : E →L[𝕜] E ⊢ ‖A‖ ≤ Real.sqrt ‖↑adjoint A * A‖ [PROOFSTEP] refine' op_norm_le_bound _ (Real.sqrt_nonneg _) fun x => _ [GOAL] case refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : CompleteSpace E inst✝¹ : CompleteSpace G inst✝ : CompleteSpace F A : E →L[𝕜] E x : E ⊢ ‖↑A x‖ ≤ Real.sqrt ‖↑adjoint A * A‖ * ‖x‖ [PROOFSTEP] have := calc re ⟪(A† * A) x, x⟫ ≤ ‖(A† * A) x‖ * ‖x‖ := re_inner_le_norm _ _ _ ≤ ‖A† * A‖ * ‖x‖ * ‖x‖ := mul_le_mul_of_nonneg_right (le_op_norm _ _) (norm_nonneg _) [GOAL] case refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : CompleteSpace E inst✝¹ : CompleteSpace G inst✝ : CompleteSpace F A : E →L[𝕜] E x : E this : ↑re (inner (↑(↑adjoint A * A) x) x) ≤ ‖↑adjoint A * A‖ * ‖x‖ * ‖x‖ ⊢ ‖↑A x‖ ≤ Real.sqrt ‖↑adjoint A * A‖ * ‖x‖ [PROOFSTEP] calc ‖A x‖ = Real.sqrt (re ⟪(A† * A) x, x⟫) := by rw [apply_norm_eq_sqrt_inner_adjoint_left] _ ≤ Real.sqrt (‖A† * A‖ * ‖x‖ * ‖x‖) := (Real.sqrt_le_sqrt this) _ = Real.sqrt ‖A† * A‖ * ‖x‖ := by simp_rw [mul_assoc, Real.sqrt_mul (norm_nonneg _) (‖x‖ * ‖x‖), Real.sqrt_mul_self (norm_nonneg x)] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : CompleteSpace E inst✝¹ : CompleteSpace G inst✝ : CompleteSpace F A : E →L[𝕜] E x : E this : ↑re (inner (↑(↑adjoint A * A) x) x) ≤ ‖↑adjoint A * A‖ * ‖x‖ * ‖x‖ ⊢ ‖↑A x‖ = Real.sqrt (↑re (inner (↑(↑adjoint A * A) x) x)) [PROOFSTEP] rw [apply_norm_eq_sqrt_inner_adjoint_left] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : CompleteSpace E inst✝¹ : CompleteSpace G inst✝ : CompleteSpace F A : E →L[𝕜] E x : E this : ↑re (inner (↑(↑adjoint A * A) x) x) ≤ ‖↑adjoint A * A‖ * ‖x‖ * ‖x‖ ⊢ Real.sqrt (‖↑adjoint A * A‖ * ‖x‖ * ‖x‖) = Real.sqrt ‖↑adjoint A * A‖ * ‖x‖ [PROOFSTEP] simp_rw [mul_assoc, Real.sqrt_mul (norm_nonneg _) (‖x‖ * ‖x‖), Real.sqrt_mul_self (norm_nonneg x)] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹⁵ : IsROrC 𝕜 inst✝¹⁴ : NormedAddCommGroup E inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedAddCommGroup G inst✝¹¹ : InnerProductSpace 𝕜 E inst✝¹⁰ : InnerProductSpace 𝕜 F inst✝⁹ : InnerProductSpace 𝕜 G inst✝⁸ : CompleteSpace E inst✝⁷ : CompleteSpace G inst✝⁶ : CompleteSpace F E' : Type u_5 F' : Type u_6 inst✝⁵ : NormedAddCommGroup E' inst✝⁴ : NormedAddCommGroup F' inst✝³ : InnerProductSpace ℝ E' inst✝² : InnerProductSpace ℝ F' inst✝¹ : CompleteSpace E' inst✝ : CompleteSpace F' A : E' →L[ℝ] F' ⊢ LinearMap.IsAdjointPair sesqFormOfInner sesqFormOfInner ↑A ↑(↑adjoint A) [PROOFSTEP] intro x y [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹⁵ : IsROrC 𝕜 inst✝¹⁴ : NormedAddCommGroup E inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedAddCommGroup G inst✝¹¹ : InnerProductSpace 𝕜 E inst✝¹⁰ : InnerProductSpace 𝕜 F inst✝⁹ : InnerProductSpace 𝕜 G inst✝⁸ : CompleteSpace E inst✝⁷ : CompleteSpace G inst✝⁶ : CompleteSpace F E' : Type u_5 F' : Type u_6 inst✝⁵ : NormedAddCommGroup E' inst✝⁴ : NormedAddCommGroup F' inst✝³ : InnerProductSpace ℝ E' inst✝² : InnerProductSpace ℝ F' inst✝¹ : CompleteSpace E' inst✝ : CompleteSpace F' A : E' →L[ℝ] F' x : E' y : F' ⊢ ↑(↑sesqFormOfInner (↑↑A x)) y = ↑(↑sesqFormOfInner x) (↑↑(↑adjoint A) y) [PROOFSTEP] simp only [sesqFormOfInner_apply_apply, adjoint_inner_left, coe_coe] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁸ : IsROrC 𝕜 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedAddCommGroup G inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : InnerProductSpace 𝕜 F inst✝² : InnerProductSpace 𝕜 G inst✝¹ : CompleteSpace E inst✝ : CompleteSpace F A : E →L[𝕜] E hA : IsSelfAdjoint A ⊢ LinearMap.IsSymmetric ↑A [PROOFSTEP] intro x y [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁸ : IsROrC 𝕜 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedAddCommGroup G inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : InnerProductSpace 𝕜 F inst✝² : InnerProductSpace 𝕜 G inst✝¹ : CompleteSpace E inst✝ : CompleteSpace F A : E →L[𝕜] E hA : IsSelfAdjoint A x y : E ⊢ inner (↑↑A x) y = inner x (↑↑A y) [PROOFSTEP] rw_mod_cast [← A.adjoint_inner_right, hA.adjoint_eq] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁸ : IsROrC 𝕜 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedAddCommGroup G inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : InnerProductSpace 𝕜 F inst✝² : InnerProductSpace 𝕜 G inst✝¹ : CompleteSpace E inst✝ : CompleteSpace F T : E →L[𝕜] E hT : IsSelfAdjoint T S : E →L[𝕜] F ⊢ IsSelfAdjoint (comp S (comp T (↑adjoint S))) [PROOFSTEP] rw [isSelfAdjoint_iff'] at hT ⊢ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁸ : IsROrC 𝕜 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedAddCommGroup G inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : InnerProductSpace 𝕜 F inst✝² : InnerProductSpace 𝕜 G inst✝¹ : CompleteSpace E inst✝ : CompleteSpace F T : E →L[𝕜] E hT : ↑adjoint T = T S : E →L[𝕜] F ⊢ ↑adjoint (comp S (comp T (↑adjoint S))) = comp S (comp T (↑adjoint S)) [PROOFSTEP] simp only [hT, adjoint_comp, adjoint_adjoint] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁸ : IsROrC 𝕜 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedAddCommGroup G inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : InnerProductSpace 𝕜 F inst✝² : InnerProductSpace 𝕜 G inst✝¹ : CompleteSpace E inst✝ : CompleteSpace F T : E →L[𝕜] E hT : ↑adjoint T = T S : E →L[𝕜] F ⊢ comp (comp S T) (↑adjoint S) = comp S (comp T (↑adjoint S)) [PROOFSTEP] exact ContinuousLinearMap.comp_assoc _ _ _ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁸ : IsROrC 𝕜 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedAddCommGroup G inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : InnerProductSpace 𝕜 F inst✝² : InnerProductSpace 𝕜 G inst✝¹ : CompleteSpace E inst✝ : CompleteSpace F T : E →L[𝕜] E hT : IsSelfAdjoint T S : F →L[𝕜] E ⊢ IsSelfAdjoint (comp (↑adjoint S) (comp T S)) [PROOFSTEP] rw [isSelfAdjoint_iff'] at hT ⊢ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁸ : IsROrC 𝕜 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedAddCommGroup G inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : InnerProductSpace 𝕜 F inst✝² : InnerProductSpace 𝕜 G inst✝¹ : CompleteSpace E inst✝ : CompleteSpace F T : E →L[𝕜] E hT : ↑adjoint T = T S : F →L[𝕜] E ⊢ ↑adjoint (comp (↑adjoint S) (comp T S)) = comp (↑adjoint S) (comp T S) [PROOFSTEP] simp only [hT, adjoint_comp, adjoint_adjoint] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁸ : IsROrC 𝕜 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedAddCommGroup G inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : InnerProductSpace 𝕜 F inst✝² : InnerProductSpace 𝕜 G inst✝¹ : CompleteSpace E inst✝ : CompleteSpace F T : E →L[𝕜] E hT : ↑adjoint T = T S : F →L[𝕜] E ⊢ comp (comp (↑adjoint S) T) S = comp (↑adjoint S) (comp T S) [PROOFSTEP] exact ContinuousLinearMap.comp_assoc _ _ _ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁸ : IsROrC 𝕜 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedAddCommGroup F inst✝⁵ : NormedAddCommGroup G inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : InnerProductSpace 𝕜 F inst✝² : InnerProductSpace 𝕜 G inst✝¹ : CompleteSpace E inst✝ : CompleteSpace F A : E →L[𝕜] E hA : LinearMap.IsSymmetric ↑A ⊢ IsSelfAdjoint A [PROOFSTEP] rwa [← ContinuousLinearMap.isSelfAdjoint_iff_isSymmetric] at hA [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : CompleteSpace E inst✝¹ : CompleteSpace F T : E →L[𝕜] E hT : IsSelfAdjoint T U : Submodule 𝕜 E inst✝ : CompleteSpace { x // x ∈ U } ⊢ IsSelfAdjoint (comp (Submodule.subtypeL U) (comp (orthogonalProjection U) (comp T (comp (Submodule.subtypeL U) (orthogonalProjection U))))) [PROOFSTEP] rw [← ContinuousLinearMap.comp_assoc] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : CompleteSpace E inst✝¹ : CompleteSpace F T : E →L[𝕜] E hT : IsSelfAdjoint T U : Submodule 𝕜 E inst✝ : CompleteSpace { x // x ∈ U } ⊢ IsSelfAdjoint (comp (comp (Submodule.subtypeL U) (orthogonalProjection U)) (comp T (comp (Submodule.subtypeL U) (orthogonalProjection U)))) [PROOFSTEP] nth_rw 1 [← (orthogonalProjection_isSelfAdjoint U).adjoint_eq] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : CompleteSpace E inst✝¹ : CompleteSpace F T : E →L[𝕜] E hT : IsSelfAdjoint T U : Submodule 𝕜 E inst✝ : CompleteSpace { x // x ∈ U } ⊢ IsSelfAdjoint (comp (↑adjoint (comp (Submodule.subtypeL U) (orthogonalProjection U))) (comp T (comp (Submodule.subtypeL U) (orthogonalProjection U)))) [PROOFSTEP] refine' hT.adjoint_conj _ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : FiniteDimensional 𝕜 E inst✝¹ : FiniteDimensional 𝕜 F inst✝ : FiniteDimensional 𝕜 G A : E →ₗ[𝕜] F x : E y : F ⊢ inner (↑(↑adjoint A) y) x = inner y (↑A x) [PROOFSTEP] rw [← coe_toContinuousLinearMap A, adjoint_eq_toClm_adjoint] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : FiniteDimensional 𝕜 E inst✝¹ : FiniteDimensional 𝕜 F inst✝ : FiniteDimensional 𝕜 G A : E →ₗ[𝕜] F x : E y : F ⊢ inner (↑↑(↑ContinuousLinearMap.adjoint (↑toContinuousLinearMap ↑(↑toContinuousLinearMap A))) y) x = inner y (↑↑(↑toContinuousLinearMap A) x) [PROOFSTEP] exact ContinuousLinearMap.adjoint_inner_left _ x y [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : FiniteDimensional 𝕜 E inst✝¹ : FiniteDimensional 𝕜 F inst✝ : FiniteDimensional 𝕜 G A : E →ₗ[𝕜] F x : E y : F ⊢ inner x (↑(↑adjoint A) y) = inner (↑A x) y [PROOFSTEP] rw [← coe_toContinuousLinearMap A, adjoint_eq_toClm_adjoint] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : FiniteDimensional 𝕜 E inst✝¹ : FiniteDimensional 𝕜 F inst✝ : FiniteDimensional 𝕜 G A : E →ₗ[𝕜] F x : E y : F ⊢ inner x (↑↑(↑ContinuousLinearMap.adjoint (↑toContinuousLinearMap ↑(↑toContinuousLinearMap A))) y) = inner (↑↑(↑toContinuousLinearMap A) x) y [PROOFSTEP] exact ContinuousLinearMap.adjoint_inner_right _ x y [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : FiniteDimensional 𝕜 E inst✝¹ : FiniteDimensional 𝕜 F inst✝ : FiniteDimensional 𝕜 G A : E →ₗ[𝕜] F ⊢ ↑adjoint (↑adjoint A) = A [PROOFSTEP] ext v [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : FiniteDimensional 𝕜 E inst✝¹ : FiniteDimensional 𝕜 F inst✝ : FiniteDimensional 𝕜 G A : E →ₗ[𝕜] F v : E ⊢ ↑(↑adjoint (↑adjoint A)) v = ↑A v [PROOFSTEP] refine' ext_inner_left 𝕜 fun w => _ [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : FiniteDimensional 𝕜 E inst✝¹ : FiniteDimensional 𝕜 F inst✝ : FiniteDimensional 𝕜 G A : E →ₗ[𝕜] F v : E w : (fun x => F) v ⊢ inner w (↑(↑adjoint (↑adjoint A)) v) = inner w (↑A v) [PROOFSTEP] rw [adjoint_inner_right, adjoint_inner_left] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : FiniteDimensional 𝕜 E inst✝¹ : FiniteDimensional 𝕜 F inst✝ : FiniteDimensional 𝕜 G A : F →ₗ[𝕜] G B : E →ₗ[𝕜] F ⊢ ↑adjoint (comp A B) = comp (↑adjoint B) (↑adjoint A) [PROOFSTEP] ext v [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : FiniteDimensional 𝕜 E inst✝¹ : FiniteDimensional 𝕜 F inst✝ : FiniteDimensional 𝕜 G A : F →ₗ[𝕜] G B : E →ₗ[𝕜] F v : G ⊢ ↑(↑adjoint (comp A B)) v = ↑(comp (↑adjoint B) (↑adjoint A)) v [PROOFSTEP] refine' ext_inner_left 𝕜 fun w => _ [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : FiniteDimensional 𝕜 E inst✝¹ : FiniteDimensional 𝕜 F inst✝ : FiniteDimensional 𝕜 G A : F →ₗ[𝕜] G B : E →ₗ[𝕜] F v : G w : (fun x => E) v ⊢ inner w (↑(↑adjoint (comp A B)) v) = inner w (↑(comp (↑adjoint B) (↑adjoint A)) v) [PROOFSTEP] simp only [adjoint_inner_right, LinearMap.coe_comp, Function.comp_apply] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : FiniteDimensional 𝕜 E inst✝¹ : FiniteDimensional 𝕜 F inst✝ : FiniteDimensional 𝕜 G A : E →ₗ[𝕜] F B : F →ₗ[𝕜] E ⊢ A = ↑adjoint B ↔ ∀ (x : E) (y : (fun x => F) x), inner (↑A x) y = inner x (↑B y) [PROOFSTEP] refine' ⟨fun h x y => by rw [h, adjoint_inner_left], fun h => _⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : FiniteDimensional 𝕜 E inst✝¹ : FiniteDimensional 𝕜 F inst✝ : FiniteDimensional 𝕜 G A : E →ₗ[𝕜] F B : F →ₗ[𝕜] E h : A = ↑adjoint B x : E y : (fun x => F) x ⊢ inner (↑A x) y = inner x (↑B y) [PROOFSTEP] rw [h, adjoint_inner_left] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : FiniteDimensional 𝕜 E inst✝¹ : FiniteDimensional 𝕜 F inst✝ : FiniteDimensional 𝕜 G A : E →ₗ[𝕜] F B : F →ₗ[𝕜] E h : ∀ (x : E) (y : (fun x => F) x), inner (↑A x) y = inner x (↑B y) ⊢ A = ↑adjoint B [PROOFSTEP] ext x [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : FiniteDimensional 𝕜 E inst✝¹ : FiniteDimensional 𝕜 F inst✝ : FiniteDimensional 𝕜 G A : E →ₗ[𝕜] F B : F →ₗ[𝕜] E h : ∀ (x : E) (y : (fun x => F) x), inner (↑A x) y = inner x (↑B y) x : E ⊢ ↑A x = ↑(↑adjoint B) x [PROOFSTEP] exact ext_inner_right 𝕜 fun y => by simp only [adjoint_inner_left, h x y] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : FiniteDimensional 𝕜 E inst✝¹ : FiniteDimensional 𝕜 F inst✝ : FiniteDimensional 𝕜 G A : E →ₗ[𝕜] F B : F →ₗ[𝕜] E h : ∀ (x : E) (y : (fun x => F) x), inner (↑A x) y = inner x (↑B y) x : E y : (fun x => F) x ⊢ inner (↑A x) y = inner (↑(↑adjoint B) x) y [PROOFSTEP] simp only [adjoint_inner_left, h x y] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : FiniteDimensional 𝕜 E inst✝¹ : FiniteDimensional 𝕜 F inst✝ : FiniteDimensional 𝕜 G ι₁ : Type u_5 ι₂ : Type u_6 b₁ : Basis ι₁ 𝕜 E b₂ : Basis ι₂ 𝕜 F A : E →ₗ[𝕜] F B : F →ₗ[𝕜] E ⊢ A = ↑adjoint B ↔ ∀ (i₁ : ι₁) (i₂ : ι₂), inner (↑A (↑b₁ i₁)) (↑b₂ i₂) = inner (↑b₁ i₁) (↑B (↑b₂ i₂)) [PROOFSTEP] refine' ⟨fun h x y => by rw [h, adjoint_inner_left], fun h => _⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : FiniteDimensional 𝕜 E inst✝¹ : FiniteDimensional 𝕜 F inst✝ : FiniteDimensional 𝕜 G ι₁ : Type u_5 ι₂ : Type u_6 b₁ : Basis ι₁ 𝕜 E b₂ : Basis ι₂ 𝕜 F A : E →ₗ[𝕜] F B : F →ₗ[𝕜] E h : A = ↑adjoint B x : ι₁ y : ι₂ ⊢ inner (↑A (↑b₁ x)) (↑b₂ y) = inner (↑b₁ x) (↑B (↑b₂ y)) [PROOFSTEP] rw [h, adjoint_inner_left] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : FiniteDimensional 𝕜 E inst✝¹ : FiniteDimensional 𝕜 F inst✝ : FiniteDimensional 𝕜 G ι₁ : Type u_5 ι₂ : Type u_6 b₁ : Basis ι₁ 𝕜 E b₂ : Basis ι₂ 𝕜 F A : E →ₗ[𝕜] F B : F →ₗ[𝕜] E h : ∀ (i₁ : ι₁) (i₂ : ι₂), inner (↑A (↑b₁ i₁)) (↑b₂ i₂) = inner (↑b₁ i₁) (↑B (↑b₂ i₂)) ⊢ A = ↑adjoint B [PROOFSTEP] refine' Basis.ext b₁ fun i₁ => _ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : FiniteDimensional 𝕜 E inst✝¹ : FiniteDimensional 𝕜 F inst✝ : FiniteDimensional 𝕜 G ι₁ : Type u_5 ι₂ : Type u_6 b₁ : Basis ι₁ 𝕜 E b₂ : Basis ι₂ 𝕜 F A : E →ₗ[𝕜] F B : F →ₗ[𝕜] E h : ∀ (i₁ : ι₁) (i₂ : ι₂), inner (↑A (↑b₁ i₁)) (↑b₂ i₂) = inner (↑b₁ i₁) (↑B (↑b₂ i₂)) i₁ : ι₁ ⊢ ↑A (↑b₁ i₁) = ↑(↑adjoint B) (↑b₁ i₁) [PROOFSTEP] exact ext_inner_right_basis b₂ fun i₂ => by simp only [adjoint_inner_left, h i₁ i₂] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : FiniteDimensional 𝕜 E inst✝¹ : FiniteDimensional 𝕜 F inst✝ : FiniteDimensional 𝕜 G ι₁ : Type u_5 ι₂ : Type u_6 b₁ : Basis ι₁ 𝕜 E b₂ : Basis ι₂ 𝕜 F A : E →ₗ[𝕜] F B : F →ₗ[𝕜] E h : ∀ (i₁ : ι₁) (i₂ : ι₂), inner (↑A (↑b₁ i₁)) (↑b₂ i₂) = inner (↑b₁ i₁) (↑B (↑b₂ i₂)) i₁ : ι₁ i₂ : ι₂ ⊢ inner (↑A (↑b₁ i₁)) (↑b₂ i₂) = inner (↑(↑adjoint B) (↑b₁ i₁)) (↑b₂ i₂) [PROOFSTEP] simp only [adjoint_inner_left, h i₁ i₂] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : FiniteDimensional 𝕜 E inst✝¹ : FiniteDimensional 𝕜 F inst✝ : FiniteDimensional 𝕜 G ι : Type u_5 b : Basis ι 𝕜 E A : E →ₗ[𝕜] F B : F →ₗ[𝕜] E ⊢ A = ↑adjoint B ↔ ∀ (i : ι) (y : (fun x => F) (↑b i)), inner (↑A (↑b i)) y = inner (↑b i) (↑B y) [PROOFSTEP] refine' ⟨fun h x y => by rw [h, adjoint_inner_left], fun h => Basis.ext b fun i => _⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : FiniteDimensional 𝕜 E inst✝¹ : FiniteDimensional 𝕜 F inst✝ : FiniteDimensional 𝕜 G ι : Type u_5 b : Basis ι 𝕜 E A : E →ₗ[𝕜] F B : F →ₗ[𝕜] E h : A = ↑adjoint B x : ι y : (fun x => F) (↑b x) ⊢ inner (↑A (↑b x)) y = inner (↑b x) (↑B y) [PROOFSTEP] rw [h, adjoint_inner_left] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : FiniteDimensional 𝕜 E inst✝¹ : FiniteDimensional 𝕜 F inst✝ : FiniteDimensional 𝕜 G ι : Type u_5 b : Basis ι 𝕜 E A : E →ₗ[𝕜] F B : F →ₗ[𝕜] E h : ∀ (i : ι) (y : (fun x => F) (↑b i)), inner (↑A (↑b i)) y = inner (↑b i) (↑B y) i : ι ⊢ ↑A (↑b i) = ↑(↑adjoint B) (↑b i) [PROOFSTEP] exact ext_inner_right 𝕜 fun y => by simp only [h i, adjoint_inner_left] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : FiniteDimensional 𝕜 E inst✝¹ : FiniteDimensional 𝕜 F inst✝ : FiniteDimensional 𝕜 G ι : Type u_5 b : Basis ι 𝕜 E A : E →ₗ[𝕜] F B : F →ₗ[𝕜] E h : ∀ (i : ι) (y : (fun x => F) (↑b i)), inner (↑A (↑b i)) y = inner (↑b i) (↑B y) i : ι y : (fun x => F) (↑b i) ⊢ inner (↑A (↑b i)) y = inner (↑(↑adjoint B) (↑b i)) y [PROOFSTEP] simp only [h i, adjoint_inner_left] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : FiniteDimensional 𝕜 E inst✝¹ : FiniteDimensional 𝕜 F inst✝ : FiniteDimensional 𝕜 G ι : Type u_5 b : Basis ι 𝕜 F A : E →ₗ[𝕜] F B : F →ₗ[𝕜] E ⊢ A = ↑adjoint B ↔ ∀ (i : ι) (x : E), inner (↑A x) (↑b i) = inner x (↑B (↑b i)) [PROOFSTEP] refine' ⟨fun h x y => by rw [h, adjoint_inner_left], fun h => _⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : FiniteDimensional 𝕜 E inst✝¹ : FiniteDimensional 𝕜 F inst✝ : FiniteDimensional 𝕜 G ι : Type u_5 b : Basis ι 𝕜 F A : E →ₗ[𝕜] F B : F →ₗ[𝕜] E h : A = ↑adjoint B x : ι y : E ⊢ inner (↑A y) (↑b x) = inner y (↑B (↑b x)) [PROOFSTEP] rw [h, adjoint_inner_left] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : FiniteDimensional 𝕜 E inst✝¹ : FiniteDimensional 𝕜 F inst✝ : FiniteDimensional 𝕜 G ι : Type u_5 b : Basis ι 𝕜 F A : E →ₗ[𝕜] F B : F →ₗ[𝕜] E h : ∀ (i : ι) (x : E), inner (↑A x) (↑b i) = inner x (↑B (↑b i)) ⊢ A = ↑adjoint B [PROOFSTEP] ext x [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : FiniteDimensional 𝕜 E inst✝¹ : FiniteDimensional 𝕜 F inst✝ : FiniteDimensional 𝕜 G ι : Type u_5 b : Basis ι 𝕜 F A : E →ₗ[𝕜] F B : F →ₗ[𝕜] E h : ∀ (i : ι) (x : E), inner (↑A x) (↑b i) = inner x (↑B (↑b i)) x : E ⊢ ↑A x = ↑(↑adjoint B) x [PROOFSTEP] refine' ext_inner_right_basis b fun i => by simp only [h i, adjoint_inner_left] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : FiniteDimensional 𝕜 E inst✝¹ : FiniteDimensional 𝕜 F inst✝ : FiniteDimensional 𝕜 G ι : Type u_5 b : Basis ι 𝕜 F A : E →ₗ[𝕜] F B : F →ₗ[𝕜] E h : ∀ (i : ι) (x : E), inner (↑A x) (↑b i) = inner x (↑B (↑b i)) x : E i : ι ⊢ inner (↑A x) (↑b i) = inner (↑(↑adjoint B) x) (↑b i) [PROOFSTEP] simp only [h i, adjoint_inner_left] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : FiniteDimensional 𝕜 E inst✝¹ : FiniteDimensional 𝕜 F inst✝ : FiniteDimensional 𝕜 G A : E →ₗ[𝕜] E ⊢ IsSymmetric A ↔ IsSelfAdjoint A [PROOFSTEP] rw [isSelfAdjoint_iff', IsSymmetric, ← LinearMap.eq_adjoint_iff] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : FiniteDimensional 𝕜 E inst✝¹ : FiniteDimensional 𝕜 F inst✝ : FiniteDimensional 𝕜 G A : E →ₗ[𝕜] E ⊢ A = ↑adjoint A ↔ ↑adjoint A = A [PROOFSTEP] exact eq_comm [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹⁵ : IsROrC 𝕜 inst✝¹⁴ : NormedAddCommGroup E inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedAddCommGroup G inst✝¹¹ : InnerProductSpace 𝕜 E inst✝¹⁰ : InnerProductSpace 𝕜 F inst✝⁹ : InnerProductSpace 𝕜 G inst✝⁸ : FiniteDimensional 𝕜 E inst✝⁷ : FiniteDimensional 𝕜 F inst✝⁶ : FiniteDimensional 𝕜 G E' : Type u_5 F' : Type u_6 inst✝⁵ : NormedAddCommGroup E' inst✝⁴ : NormedAddCommGroup F' inst✝³ : InnerProductSpace ℝ E' inst✝² : InnerProductSpace ℝ F' inst✝¹ : FiniteDimensional ℝ E' inst✝ : FiniteDimensional ℝ F' A : E' →ₗ[ℝ] F' ⊢ IsAdjointPair sesqFormOfInner sesqFormOfInner A (↑adjoint A) [PROOFSTEP] intro x y [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹⁵ : IsROrC 𝕜 inst✝¹⁴ : NormedAddCommGroup E inst✝¹³ : NormedAddCommGroup F inst✝¹² : NormedAddCommGroup G inst✝¹¹ : InnerProductSpace 𝕜 E inst✝¹⁰ : InnerProductSpace 𝕜 F inst✝⁹ : InnerProductSpace 𝕜 G inst✝⁸ : FiniteDimensional 𝕜 E inst✝⁷ : FiniteDimensional 𝕜 F inst✝⁶ : FiniteDimensional 𝕜 G E' : Type u_5 F' : Type u_6 inst✝⁵ : NormedAddCommGroup E' inst✝⁴ : NormedAddCommGroup F' inst✝³ : InnerProductSpace ℝ E' inst✝² : InnerProductSpace ℝ F' inst✝¹ : FiniteDimensional ℝ E' inst✝ : FiniteDimensional ℝ F' A : E' →ₗ[ℝ] F' x : E' y : F' ⊢ ↑(↑sesqFormOfInner (↑A x)) y = ↑(↑sesqFormOfInner x) (↑(↑adjoint A) y) [PROOFSTEP] simp only [sesqFormOfInner_apply_apply, adjoint_inner_left] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : FiniteDimensional 𝕜 E inst✝¹ : FiniteDimensional 𝕜 F inst✝ : FiniteDimensional 𝕜 G T : E →ₗ[𝕜] E ⊢ IsSymmetric (↑adjoint T * T) [PROOFSTEP] intro x y [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : FiniteDimensional 𝕜 E inst✝¹ : FiniteDimensional 𝕜 F inst✝ : FiniteDimensional 𝕜 G T : E →ₗ[𝕜] E x y : E ⊢ inner (↑(↑adjoint T * T) x) y = inner x (↑(↑adjoint T * T) y) [PROOFSTEP] simp only [mul_apply, adjoint_inner_left, adjoint_inner_right] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : FiniteDimensional 𝕜 E inst✝¹ : FiniteDimensional 𝕜 F inst✝ : FiniteDimensional 𝕜 G T : E →ₗ[𝕜] E x : E ⊢ 0 ≤ ↑re (inner x (↑(↑adjoint T * T) x)) [PROOFSTEP] simp only [mul_apply, adjoint_inner_right, inner_self_eq_norm_sq_to_K] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : FiniteDimensional 𝕜 E inst✝¹ : FiniteDimensional 𝕜 F inst✝ : FiniteDimensional 𝕜 G T : E →ₗ[𝕜] E x : E ⊢ 0 ≤ ↑re (↑‖↑T x‖ ^ 2) [PROOFSTEP] norm_cast [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : FiniteDimensional 𝕜 E inst✝¹ : FiniteDimensional 𝕜 F inst✝ : FiniteDimensional 𝕜 G T : E →ₗ[𝕜] E x : E ⊢ 0 ≤ ‖↑T x‖ ^ 2 [PROOFSTEP] exact sq_nonneg _ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : FiniteDimensional 𝕜 E inst✝¹ : FiniteDimensional 𝕜 F inst✝ : FiniteDimensional 𝕜 G T : E →ₗ[𝕜] E x : E ⊢ ↑im (inner x (↑(↑adjoint T) (↑T x))) = 0 [PROOFSTEP] simp only [mul_apply, adjoint_inner_right, inner_self_eq_norm_sq_to_K] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝⁹ : IsROrC 𝕜 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedAddCommGroup F inst✝⁶ : NormedAddCommGroup G inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : InnerProductSpace 𝕜 F inst✝³ : InnerProductSpace 𝕜 G inst✝² : FiniteDimensional 𝕜 E inst✝¹ : FiniteDimensional 𝕜 F inst✝ : FiniteDimensional 𝕜 G T : E →ₗ[𝕜] E x : E ⊢ ↑im (↑‖↑T x‖ ^ 2) = 0 [PROOFSTEP] norm_cast [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹⁰ : IsROrC 𝕜 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedAddCommGroup F inst✝⁷ : NormedAddCommGroup G inst✝⁶ : InnerProductSpace 𝕜 E inst✝⁵ : InnerProductSpace 𝕜 F inst✝⁴ : InnerProductSpace 𝕜 G m : Type u_5 n : Type u_6 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix m n 𝕜 ⊢ ↑toEuclideanLin Aᴴ = ↑LinearMap.adjoint (↑toEuclideanLin A) [PROOFSTEP] rw [LinearMap.eq_adjoint_iff] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹⁰ : IsROrC 𝕜 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedAddCommGroup F inst✝⁷ : NormedAddCommGroup G inst✝⁶ : InnerProductSpace 𝕜 E inst✝⁵ : InnerProductSpace 𝕜 F inst✝⁴ : InnerProductSpace 𝕜 G m : Type u_5 n : Type u_6 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix m n 𝕜 ⊢ ∀ (x : EuclideanSpace 𝕜 m) (y : (fun x => EuclideanSpace 𝕜 n) x), inner (↑(↑toEuclideanLin Aᴴ) x) y = inner x (↑(↑toEuclideanLin A) y) [PROOFSTEP] intro x y [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 G : Type u_4 inst✝¹⁰ : IsROrC 𝕜 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedAddCommGroup F inst✝⁷ : NormedAddCommGroup G inst✝⁶ : InnerProductSpace 𝕜 E inst✝⁵ : InnerProductSpace 𝕜 F inst✝⁴ : InnerProductSpace 𝕜 G m : Type u_5 n : Type u_6 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix m n 𝕜 x : EuclideanSpace 𝕜 m y : EuclideanSpace 𝕜 n ⊢ inner (↑(↑toEuclideanLin Aᴴ) x) y = inner x (↑(↑toEuclideanLin A) y) [PROOFSTEP] simp_rw [EuclideanSpace.inner_eq_star_dotProduct, piLp_equiv_toEuclideanLin, toLin'_apply, star_mulVec, conjTranspose_conjTranspose, dotProduct_mulVec]
{"mathlib_filename": "Mathlib.Analysis.InnerProductSpace.Adjoint", "llama_tokens": 26819}
[GOAL] G : Type u_1 inst✝ : Group G H : Subgroup G R S : Set G hR : R ∈ rightTransversals ↑H hR1 : 1 ∈ R hS : closure S = ⊤ ⊢ ↑(closure ((fun g => g * (↑(toFun hR g))⁻¹) '' (R * S))) * R = ⊤ [PROOFSTEP] let f : G → R := fun g => toFun hR g [GOAL] G : Type u_1 inst✝ : Group G H : Subgroup G R S : Set G hR : R ∈ rightTransversals ↑H hR1 : 1 ∈ R hS : closure S = ⊤ f : G → ↑R := fun g => toFun hR g ⊢ ↑(closure ((fun g => g * (↑(toFun hR g))⁻¹) '' (R * S))) * R = ⊤ [PROOFSTEP] let U : Set G := (R * S).image fun g => g * (f g : G)⁻¹ [GOAL] G : Type u_1 inst✝ : Group G H : Subgroup G R S : Set G hR : R ∈ rightTransversals ↑H hR1 : 1 ∈ R hS : closure S = ⊤ f : G → ↑R := fun g => toFun hR g U : Set G := (fun g => g * (↑(f g))⁻¹) '' (R * S) ⊢ ↑(closure ((fun g => g * (↑(toFun hR g))⁻¹) '' (R * S))) * R = ⊤ [PROOFSTEP] change (closure U : Set G) * R = ⊤ [GOAL] G : Type u_1 inst✝ : Group G H : Subgroup G R S : Set G hR : R ∈ rightTransversals ↑H hR1 : 1 ∈ R hS : closure S = ⊤ f : G → ↑R := fun g => toFun hR g U : Set G := (fun g => g * (↑(f g))⁻¹) '' (R * S) ⊢ ↑(closure U) * R = ⊤ [PROOFSTEP] refine' top_le_iff.mp fun g _ => _ [GOAL] G : Type u_1 inst✝ : Group G H : Subgroup G R S : Set G hR : R ∈ rightTransversals ↑H hR1 : 1 ∈ R hS : closure S = ⊤ f : G → ↑R := fun g => toFun hR g U : Set G := (fun g => g * (↑(f g))⁻¹) '' (R * S) g : G x✝ : g ∈ ⊤ ⊢ g ∈ ↑(closure U) * R [PROOFSTEP] apply closure_induction_right (eq_top_iff.mp hS (mem_top g)) [GOAL] case H1 G : Type u_1 inst✝ : Group G H : Subgroup G R S : Set G hR : R ∈ rightTransversals ↑H hR1 : 1 ∈ R hS : closure S = ⊤ f : G → ↑R := fun g => toFun hR g U : Set G := (fun g => g * (↑(f g))⁻¹) '' (R * S) g : G x✝ : g ∈ ⊤ ⊢ 1 ∈ ↑(closure U) * R [PROOFSTEP] exact ⟨1, 1, (closure U).one_mem, hR1, one_mul 1⟩ [GOAL] case Hmul G : Type u_1 inst✝ : Group G H : Subgroup G R S : Set G hR : R ∈ rightTransversals ↑H hR1 : 1 ∈ R hS : closure S = ⊤ f : G → ↑R := fun g => toFun hR g U : Set G := (fun g => g * (↑(f g))⁻¹) '' (R * S) g : G x✝ : g ∈ ⊤ ⊢ ∀ (x y : G), y ∈ S → x ∈ ↑(closure U) * R → x * y ∈ ↑(closure U) * R [PROOFSTEP] rintro - s hs ⟨u, r, hu, hr, rfl⟩ [GOAL] case Hmul.intro.intro.intro.intro G : Type u_1 inst✝ : Group G H : Subgroup G R S : Set G hR : R ∈ rightTransversals ↑H hR1 : 1 ∈ R hS : closure S = ⊤ f : G → ↑R := fun g => toFun hR g U : Set G := (fun g => g * (↑(f g))⁻¹) '' (R * S) g : G x✝ : g ∈ ⊤ s : G hs : s ∈ S u r : G hu : u ∈ ↑(closure U) hr : r ∈ R ⊢ (fun x x_1 => x * x_1) u r * s ∈ ↑(closure U) * R [PROOFSTEP] rw [show u * r * s = u * (r * s * (f (r * s) : G)⁻¹) * f (r * s) by group] [GOAL] G : Type u_1 inst✝ : Group G H : Subgroup G R S : Set G hR : R ∈ rightTransversals ↑H hR1 : 1 ∈ R hS : closure S = ⊤ f : G → ↑R := fun g => toFun hR g U : Set G := (fun g => g * (↑(f g))⁻¹) '' (R * S) g : G x✝ : g ∈ ⊤ s : G hs : s ∈ S u r : G hu : u ∈ ↑(closure U) hr : r ∈ R ⊢ u * r * s = u * (r * s * (↑(f (r * s)))⁻¹) * ↑(f (r * s)) [PROOFSTEP] group [GOAL] case Hmul.intro.intro.intro.intro G : Type u_1 inst✝ : Group G H : Subgroup G R S : Set G hR : R ∈ rightTransversals ↑H hR1 : 1 ∈ R hS : closure S = ⊤ f : G → ↑R := fun g => toFun hR g U : Set G := (fun g => g * (↑(f g))⁻¹) '' (R * S) g : G x✝ : g ∈ ⊤ s : G hs : s ∈ S u r : G hu : u ∈ ↑(closure U) hr : r ∈ R ⊢ u * (r * s * (↑(f (r * s)))⁻¹) * ↑(f (r * s)) ∈ ↑(closure U) * R [PROOFSTEP] refine' Set.mul_mem_mul ((closure U).mul_mem hu _) (f (r * s)).coe_prop [GOAL] case Hmul.intro.intro.intro.intro G : Type u_1 inst✝ : Group G H : Subgroup G R S : Set G hR : R ∈ rightTransversals ↑H hR1 : 1 ∈ R hS : closure S = ⊤ f : G → ↑R := fun g => toFun hR g U : Set G := (fun g => g * (↑(f g))⁻¹) '' (R * S) g : G x✝ : g ∈ ⊤ s : G hs : s ∈ S u r : G hu : u ∈ ↑(closure U) hr : r ∈ R ⊢ r * s * (↑(f (r * s)))⁻¹ ∈ closure U [PROOFSTEP] exact subset_closure ⟨r * s, Set.mul_mem_mul hr hs, rfl⟩ [GOAL] case Hinv G : Type u_1 inst✝ : Group G H : Subgroup G R S : Set G hR : R ∈ rightTransversals ↑H hR1 : 1 ∈ R hS : closure S = ⊤ f : G → ↑R := fun g => toFun hR g U : Set G := (fun g => g * (↑(f g))⁻¹) '' (R * S) g : G x✝ : g ∈ ⊤ ⊢ ∀ (x y : G), y ∈ S → x ∈ ↑(closure U) * R → x * y⁻¹ ∈ ↑(closure U) * R [PROOFSTEP] rintro - s hs ⟨u, r, hu, hr, rfl⟩ [GOAL] case Hinv.intro.intro.intro.intro G : Type u_1 inst✝ : Group G H : Subgroup G R S : Set G hR : R ∈ rightTransversals ↑H hR1 : 1 ∈ R hS : closure S = ⊤ f : G → ↑R := fun g => toFun hR g U : Set G := (fun g => g * (↑(f g))⁻¹) '' (R * S) g : G x✝ : g ∈ ⊤ s : G hs : s ∈ S u r : G hu : u ∈ ↑(closure U) hr : r ∈ R ⊢ (fun x x_1 => x * x_1) u r * s⁻¹ ∈ ↑(closure U) * R [PROOFSTEP] rw [show u * r * s⁻¹ = u * (f (r * s⁻¹) * s * r⁻¹)⁻¹ * f (r * s⁻¹) by group] [GOAL] G : Type u_1 inst✝ : Group G H : Subgroup G R S : Set G hR : R ∈ rightTransversals ↑H hR1 : 1 ∈ R hS : closure S = ⊤ f : G → ↑R := fun g => toFun hR g U : Set G := (fun g => g * (↑(f g))⁻¹) '' (R * S) g : G x✝ : g ∈ ⊤ s : G hs : s ∈ S u r : G hu : u ∈ ↑(closure U) hr : r ∈ R ⊢ u * r * s⁻¹ = u * (↑(f (r * s⁻¹)) * s * r⁻¹)⁻¹ * ↑(f (r * s⁻¹)) [PROOFSTEP] group [GOAL] case Hinv.intro.intro.intro.intro G : Type u_1 inst✝ : Group G H : Subgroup G R S : Set G hR : R ∈ rightTransversals ↑H hR1 : 1 ∈ R hS : closure S = ⊤ f : G → ↑R := fun g => toFun hR g U : Set G := (fun g => g * (↑(f g))⁻¹) '' (R * S) g : G x✝ : g ∈ ⊤ s : G hs : s ∈ S u r : G hu : u ∈ ↑(closure U) hr : r ∈ R ⊢ u * (↑(f (r * s⁻¹)) * s * r⁻¹)⁻¹ * ↑(f (r * s⁻¹)) ∈ ↑(closure U) * R [PROOFSTEP] refine' Set.mul_mem_mul ((closure U).mul_mem hu ((closure U).inv_mem _)) (f (r * s⁻¹)).2 [GOAL] case Hinv.intro.intro.intro.intro G : Type u_1 inst✝ : Group G H : Subgroup G R S : Set G hR : R ∈ rightTransversals ↑H hR1 : 1 ∈ R hS : closure S = ⊤ f : G → ↑R := fun g => toFun hR g U : Set G := (fun g => g * (↑(f g))⁻¹) '' (R * S) g : G x✝ : g ∈ ⊤ s : G hs : s ∈ S u r : G hu : u ∈ ↑(closure U) hr : r ∈ R ⊢ ↑(f (r * s⁻¹)) * s * r⁻¹ ∈ closure U [PROOFSTEP] refine' subset_closure ⟨f (r * s⁻¹) * s, Set.mul_mem_mul (f (r * s⁻¹)).2 hs, _⟩ [GOAL] case Hinv.intro.intro.intro.intro G : Type u_1 inst✝ : Group G H : Subgroup G R S : Set G hR : R ∈ rightTransversals ↑H hR1 : 1 ∈ R hS : closure S = ⊤ f : G → ↑R := fun g => toFun hR g U : Set G := (fun g => g * (↑(f g))⁻¹) '' (R * S) g : G x✝ : g ∈ ⊤ s : G hs : s ∈ S u r : G hu : u ∈ ↑(closure U) hr : r ∈ R ⊢ (fun g => g * (↑(f g))⁻¹) (↑(f (r * s⁻¹)) * s) = ↑(f (r * s⁻¹)) * s * r⁻¹ [PROOFSTEP] rw [mul_right_inj, inv_inj, ← Subtype.coe_mk r hr, ← Subtype.ext_iff, Subtype.coe_mk] [GOAL] case Hinv.intro.intro.intro.intro G : Type u_1 inst✝ : Group G H : Subgroup G R S : Set G hR : R ∈ rightTransversals ↑H hR1 : 1 ∈ R hS : closure S = ⊤ f : G → ↑R := fun g => toFun hR g U : Set G := (fun g => g * (↑(f g))⁻¹) '' (R * S) g : G x✝ : g ∈ ⊤ s : G hs : s ∈ S u r : G hu : u ∈ ↑(closure U) hr : r ∈ R ⊢ f (↑(toFun hR (↑{ val := r, property := hr } * s⁻¹)) * s) = { val := r, property := hr } [PROOFSTEP] apply (mem_rightTransversals_iff_existsUnique_mul_inv_mem.mp hR (f (r * s⁻¹) * s)).unique (mul_inv_toFun_mem hR (f (r * s⁻¹) * s)) [GOAL] case Hinv.intro.intro.intro.intro G : Type u_1 inst✝ : Group G H : Subgroup G R S : Set G hR : R ∈ rightTransversals ↑H hR1 : 1 ∈ R hS : closure S = ⊤ f : G → ↑R := fun g => toFun hR g U : Set G := (fun g => g * (↑(f g))⁻¹) '' (R * S) g : G x✝ : g ∈ ⊤ s : G hs : s ∈ S u r : G hu : u ∈ ↑(closure U) hr : r ∈ R ⊢ ↑(f (r * s⁻¹)) * s * (↑{ val := r, property := hr })⁻¹ ∈ ↑H [PROOFSTEP] rw [mul_assoc, ← inv_inv s, ← mul_inv_rev, inv_inv] [GOAL] case Hinv.intro.intro.intro.intro G : Type u_1 inst✝ : Group G H : Subgroup G R S : Set G hR : R ∈ rightTransversals ↑H hR1 : 1 ∈ R hS : closure S = ⊤ f : G → ↑R := fun g => toFun hR g U : Set G := (fun g => g * (↑(f g))⁻¹) '' (R * S) g : G x✝ : g ∈ ⊤ s : G hs : s ∈ S u r : G hu : u ∈ ↑(closure U) hr : r ∈ R ⊢ ↑(f (r * s⁻¹)) * (↑{ val := r, property := hr } * s⁻¹)⁻¹ ∈ ↑H [PROOFSTEP] exact toFun_mul_inv_mem hR (r * s⁻¹) [GOAL] G : Type u_1 inst✝ : Group G H : Subgroup G R S : Set G hR : R ∈ rightTransversals ↑H hR1 : 1 ∈ R hS : closure S = ⊤ ⊢ closure ((fun g => g * (↑(toFun hR g))⁻¹) '' (R * S)) = H [PROOFSTEP] have hU : closure ((R * S).image fun g => g * (toFun hR g : G)⁻¹) ≤ H := by rw [closure_le] rintro - ⟨g, -, rfl⟩ exact mul_inv_toFun_mem hR g [GOAL] G : Type u_1 inst✝ : Group G H : Subgroup G R S : Set G hR : R ∈ rightTransversals ↑H hR1 : 1 ∈ R hS : closure S = ⊤ ⊢ closure ((fun g => g * (↑(toFun hR g))⁻¹) '' (R * S)) ≤ H [PROOFSTEP] rw [closure_le] [GOAL] G : Type u_1 inst✝ : Group G H : Subgroup G R S : Set G hR : R ∈ rightTransversals ↑H hR1 : 1 ∈ R hS : closure S = ⊤ ⊢ (fun g => g * (↑(toFun hR g))⁻¹) '' (R * S) ⊆ ↑H [PROOFSTEP] rintro - ⟨g, -, rfl⟩ [GOAL] case intro.intro G : Type u_1 inst✝ : Group G H : Subgroup G R S : Set G hR : R ∈ rightTransversals ↑H hR1 : 1 ∈ R hS : closure S = ⊤ g : G ⊢ (fun g => g * (↑(toFun hR g))⁻¹) g ∈ ↑H [PROOFSTEP] exact mul_inv_toFun_mem hR g [GOAL] G : Type u_1 inst✝ : Group G H : Subgroup G R S : Set G hR : R ∈ rightTransversals ↑H hR1 : 1 ∈ R hS : closure S = ⊤ hU : closure ((fun g => g * (↑(toFun hR g))⁻¹) '' (R * S)) ≤ H ⊢ closure ((fun g => g * (↑(toFun hR g))⁻¹) '' (R * S)) = H [PROOFSTEP] refine' le_antisymm hU fun h hh => _ [GOAL] G : Type u_1 inst✝ : Group G H : Subgroup G R S : Set G hR : R ∈ rightTransversals ↑H hR1 : 1 ∈ R hS : closure S = ⊤ hU : closure ((fun g => g * (↑(toFun hR g))⁻¹) '' (R * S)) ≤ H h : G hh : h ∈ H ⊢ h ∈ closure ((fun g => g * (↑(toFun hR g))⁻¹) '' (R * S)) [PROOFSTEP] obtain ⟨g, r, hg, hr, rfl⟩ := show h ∈ _ from eq_top_iff.mp (closure_mul_image_mul_eq_top hR hR1 hS) (mem_top h) [GOAL] case intro.intro.intro.intro G : Type u_1 inst✝ : Group G H : Subgroup G R S : Set G hR : R ∈ rightTransversals ↑H hR1 : 1 ∈ R hS : closure S = ⊤ hU : closure ((fun g => g * (↑(toFun hR g))⁻¹) '' (R * S)) ≤ H g r : G hg : g ∈ ↑(closure ((fun g => g * (↑(toFun hR g))⁻¹) '' (R * S))) hr : r ∈ R hh : (fun x x_1 => x * x_1) g r ∈ H ⊢ (fun x x_1 => x * x_1) g r ∈ closure ((fun g => g * (↑(toFun hR g))⁻¹) '' (R * S)) [PROOFSTEP] suffices (⟨r, hr⟩ : R) = (⟨1, hR1⟩ : R) by simpa only [show r = 1 from Subtype.ext_iff.mp this, mul_one] [GOAL] G : Type u_1 inst✝ : Group G H : Subgroup G R S : Set G hR : R ∈ rightTransversals ↑H hR1 : 1 ∈ R hS : closure S = ⊤ hU : closure ((fun g => g * (↑(toFun hR g))⁻¹) '' (R * S)) ≤ H g r : G hg : g ∈ ↑(closure ((fun g => g * (↑(toFun hR g))⁻¹) '' (R * S))) hr : r ∈ R hh : (fun x x_1 => x * x_1) g r ∈ H this : { val := r, property := hr } = { val := 1, property := hR1 } ⊢ (fun x x_1 => x * x_1) g r ∈ closure ((fun g => g * (↑(toFun hR g))⁻¹) '' (R * S)) [PROOFSTEP] simpa only [show r = 1 from Subtype.ext_iff.mp this, mul_one] [GOAL] case intro.intro.intro.intro G : Type u_1 inst✝ : Group G H : Subgroup G R S : Set G hR : R ∈ rightTransversals ↑H hR1 : 1 ∈ R hS : closure S = ⊤ hU : closure ((fun g => g * (↑(toFun hR g))⁻¹) '' (R * S)) ≤ H g r : G hg : g ∈ ↑(closure ((fun g => g * (↑(toFun hR g))⁻¹) '' (R * S))) hr : r ∈ R hh : (fun x x_1 => x * x_1) g r ∈ H ⊢ { val := r, property := hr } = { val := 1, property := hR1 } [PROOFSTEP] apply (mem_rightTransversals_iff_existsUnique_mul_inv_mem.mp hR r).unique [GOAL] case intro.intro.intro.intro.py₁ G : Type u_1 inst✝ : Group G H : Subgroup G R S : Set G hR : R ∈ rightTransversals ↑H hR1 : 1 ∈ R hS : closure S = ⊤ hU : closure ((fun g => g * (↑(toFun hR g))⁻¹) '' (R * S)) ≤ H g r : G hg : g ∈ ↑(closure ((fun g => g * (↑(toFun hR g))⁻¹) '' (R * S))) hr : r ∈ R hh : (fun x x_1 => x * x_1) g r ∈ H ⊢ r * (↑{ val := r, property := hr })⁻¹ ∈ ↑H [PROOFSTEP] rw [Subtype.coe_mk, mul_inv_self] [GOAL] case intro.intro.intro.intro.py₁ G : Type u_1 inst✝ : Group G H : Subgroup G R S : Set G hR : R ∈ rightTransversals ↑H hR1 : 1 ∈ R hS : closure S = ⊤ hU : closure ((fun g => g * (↑(toFun hR g))⁻¹) '' (R * S)) ≤ H g r : G hg : g ∈ ↑(closure ((fun g => g * (↑(toFun hR g))⁻¹) '' (R * S))) hr : r ∈ R hh : (fun x x_1 => x * x_1) g r ∈ H ⊢ 1 ∈ ↑H [PROOFSTEP] exact H.one_mem [GOAL] case intro.intro.intro.intro.py₂ G : Type u_1 inst✝ : Group G H : Subgroup G R S : Set G hR : R ∈ rightTransversals ↑H hR1 : 1 ∈ R hS : closure S = ⊤ hU : closure ((fun g => g * (↑(toFun hR g))⁻¹) '' (R * S)) ≤ H g r : G hg : g ∈ ↑(closure ((fun g => g * (↑(toFun hR g))⁻¹) '' (R * S))) hr : r ∈ R hh : (fun x x_1 => x * x_1) g r ∈ H ⊢ r * (↑{ val := 1, property := hR1 })⁻¹ ∈ ↑H [PROOFSTEP] rw [Subtype.coe_mk, inv_one, mul_one] [GOAL] case intro.intro.intro.intro.py₂ G : Type u_1 inst✝ : Group G H : Subgroup G R S : Set G hR : R ∈ rightTransversals ↑H hR1 : 1 ∈ R hS : closure S = ⊤ hU : closure ((fun g => g * (↑(toFun hR g))⁻¹) '' (R * S)) ≤ H g r : G hg : g ∈ ↑(closure ((fun g => g * (↑(toFun hR g))⁻¹) '' (R * S))) hr : r ∈ R hh : (fun x x_1 => x * x_1) g r ∈ H ⊢ r ∈ ↑H [PROOFSTEP] exact (H.mul_mem_cancel_left (hU hg)).mp hh [GOAL] G : Type u_1 inst✝ : Group G H : Subgroup G R S : Set G hR : R ∈ rightTransversals ↑H hR1 : 1 ∈ R hS : closure S = ⊤ ⊢ closure ((fun g => { val := g * (↑(toFun hR g))⁻¹, property := (_ : g * (↑(toFun hR g))⁻¹ ∈ H) }) '' (R * S)) = ⊤ [PROOFSTEP] rw [eq_top_iff, ← map_subtype_le_map_subtype, MonoidHom.map_closure, Set.image_image] [GOAL] G : Type u_1 inst✝ : Group G H : Subgroup G R S : Set G hR : R ∈ rightTransversals ↑H hR1 : 1 ∈ R hS : closure S = ⊤ ⊢ map (Subgroup.subtype H) ⊤ ≤ closure ((fun x => ↑(Subgroup.subtype H) { val := x * (↑(toFun hR x))⁻¹, property := (_ : x * (↑(toFun hR x))⁻¹ ∈ H) }) '' (R * S)) [PROOFSTEP] exact (map_subtype_le ⊤).trans (ge_of_eq (closure_mul_image_eq hR hR1 hS)) [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G R✝ S✝ : Set G inst✝ : DecidableEq G R S : Finset G hR : ↑R ∈ rightTransversals ↑H hR1 : 1 ∈ R hS : closure ↑S = ⊤ ⊢ closure ↑(Finset.image (fun g => { val := g * (↑(toFun hR g))⁻¹, property := (_ : g * (↑(toFun hR g))⁻¹ ∈ H) }) (R * S)) = ⊤ [PROOFSTEP] rw [Finset.coe_image, Finset.coe_mul] [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G R✝ S✝ : Set G inst✝ : DecidableEq G R S : Finset G hR : ↑R ∈ rightTransversals ↑H hR1 : 1 ∈ R hS : closure ↑S = ⊤ ⊢ closure ((fun g => { val := g * (↑(toFun hR g))⁻¹, property := (_ : g * (↑(toFun hR g))⁻¹ ∈ H) }) '' (↑R * ↑S)) = ⊤ [PROOFSTEP] exact closure_mul_image_eq_top hR hR1 hS [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G R S✝ : Set G inst✝ : FiniteIndex H S : Finset G hS : closure ↑S = ⊤ ⊢ ∃ T, Finset.card T ≤ index H * Finset.card S ∧ closure ↑T = ⊤ [PROOFSTEP] letI := H.fintypeQuotientOfFiniteIndex [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G R S✝ : Set G inst✝ : FiniteIndex H S : Finset G hS : closure ↑S = ⊤ this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H ⊢ ∃ T, Finset.card T ≤ index H * Finset.card S ∧ closure ↑T = ⊤ [PROOFSTEP] haveI : DecidableEq G := Classical.decEq G [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G R S✝ : Set G inst✝ : FiniteIndex H S : Finset G hS : closure ↑S = ⊤ this✝ : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H this : DecidableEq G ⊢ ∃ T, Finset.card T ≤ index H * Finset.card S ∧ closure ↑T = ⊤ [PROOFSTEP] obtain ⟨R₀, hR : R₀ ∈ rightTransversals (H : Set G), hR1⟩ := exists_right_transversal (1 : G) [GOAL] case intro.intro G : Type u_1 inst✝¹ : Group G H : Subgroup G R S✝ : Set G inst✝ : FiniteIndex H S : Finset G hS : closure ↑S = ⊤ this✝ : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H this : DecidableEq G R₀ : Set G hR : R₀ ∈ rightTransversals ↑H hR1 : 1 ∈ R₀ ⊢ ∃ T, Finset.card T ≤ index H * Finset.card S ∧ closure ↑T = ⊤ [PROOFSTEP] haveI : Fintype R₀ := Fintype.ofEquiv _ (toEquiv hR) [GOAL] case intro.intro G : Type u_1 inst✝¹ : Group G H : Subgroup G R S✝ : Set G inst✝ : FiniteIndex H S : Finset G hS : closure ↑S = ⊤ this✝¹ : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H this✝ : DecidableEq G R₀ : Set G hR : R₀ ∈ rightTransversals ↑H hR1 : 1 ∈ R₀ this : Fintype ↑R₀ ⊢ ∃ T, Finset.card T ≤ index H * Finset.card S ∧ closure ↑T = ⊤ [PROOFSTEP] let R : Finset G := Set.toFinset R₀ [GOAL] case intro.intro G : Type u_1 inst✝¹ : Group G H : Subgroup G R✝ S✝ : Set G inst✝ : FiniteIndex H S : Finset G hS : closure ↑S = ⊤ this✝¹ : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H this✝ : DecidableEq G R₀ : Set G hR : R₀ ∈ rightTransversals ↑H hR1 : 1 ∈ R₀ this : Fintype ↑R₀ R : Finset G := Set.toFinset R₀ ⊢ ∃ T, Finset.card T ≤ index H * Finset.card S ∧ closure ↑T = ⊤ [PROOFSTEP] replace hR : (R : Set G) ∈ rightTransversals (H : Set G) := by rwa [Set.coe_toFinset] [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G R✝ S✝ : Set G inst✝ : FiniteIndex H S : Finset G hS : closure ↑S = ⊤ this✝¹ : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H this✝ : DecidableEq G R₀ : Set G hR : R₀ ∈ rightTransversals ↑H hR1 : 1 ∈ R₀ this : Fintype ↑R₀ R : Finset G := Set.toFinset R₀ ⊢ ↑R ∈ rightTransversals ↑H [PROOFSTEP] rwa [Set.coe_toFinset] [GOAL] case intro.intro G : Type u_1 inst✝¹ : Group G H : Subgroup G R✝ S✝ : Set G inst✝ : FiniteIndex H S : Finset G hS : closure ↑S = ⊤ this✝¹ : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H this✝ : DecidableEq G R₀ : Set G hR1 : 1 ∈ R₀ this : Fintype ↑R₀ R : Finset G := Set.toFinset R₀ hR : ↑R ∈ rightTransversals ↑H ⊢ ∃ T, Finset.card T ≤ index H * Finset.card S ∧ closure ↑T = ⊤ [PROOFSTEP] replace hR1 : (1 : G) ∈ R := by rwa [Set.mem_toFinset] [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G R✝ S✝ : Set G inst✝ : FiniteIndex H S : Finset G hS : closure ↑S = ⊤ this✝¹ : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H this✝ : DecidableEq G R₀ : Set G hR1 : 1 ∈ R₀ this : Fintype ↑R₀ R : Finset G := Set.toFinset R₀ hR : ↑R ∈ rightTransversals ↑H ⊢ 1 ∈ R [PROOFSTEP] rwa [Set.mem_toFinset] [GOAL] case intro.intro G : Type u_1 inst✝¹ : Group G H : Subgroup G R✝ S✝ : Set G inst✝ : FiniteIndex H S : Finset G hS : closure ↑S = ⊤ this✝¹ : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H this✝ : DecidableEq G R₀ : Set G this : Fintype ↑R₀ R : Finset G := Set.toFinset R₀ hR : ↑R ∈ rightTransversals ↑H hR1 : 1 ∈ R ⊢ ∃ T, Finset.card T ≤ index H * Finset.card S ∧ closure ↑T = ⊤ [PROOFSTEP] refine' ⟨_, _, closure_mul_image_eq_top' hR hR1 hS⟩ [GOAL] case intro.intro G : Type u_1 inst✝¹ : Group G H : Subgroup G R✝ S✝ : Set G inst✝ : FiniteIndex H S : Finset G hS : closure ↑S = ⊤ this✝¹ : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H this✝ : DecidableEq G R₀ : Set G this : Fintype ↑R₀ R : Finset G := Set.toFinset R₀ hR : ↑R ∈ rightTransversals ↑H hR1 : 1 ∈ R ⊢ Finset.card (Finset.image (fun g => { val := g * (↑(toFun hR g))⁻¹, property := (_ : g * (↑(toFun hR g))⁻¹ ∈ H) }) (R * S)) ≤ index H * Finset.card S [PROOFSTEP] calc _ ≤ (R * S).card := Finset.card_image_le _ ≤ (R ×ˢ S).card := Finset.card_image_le _ = R.card * S.card := (R.card_product S) _ = H.index * S.card := congr_arg (· * S.card) ?_ [GOAL] case intro.intro G : Type u_1 inst✝¹ : Group G H : Subgroup G R✝ S✝ : Set G inst✝ : FiniteIndex H S : Finset G hS : closure ↑S = ⊤ this✝¹ : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H this✝ : DecidableEq G R₀ : Set G this : Fintype ↑R₀ R : Finset G := Set.toFinset R₀ hR : ↑R ∈ rightTransversals ↑H hR1 : 1 ∈ R ⊢ Finset.card R = index H [PROOFSTEP] calc R.card = Fintype.card R := (Fintype.card_coe R).symm _ = _ := (Fintype.card_congr (toEquiv hR)).symm _ = Fintype.card (G ⧸ H) := (QuotientGroup.card_quotient_rightRel H) _ = H.index := H.index_eq_card.symm [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G R S : Set G hG : Group.FG G inst✝ : FiniteIndex H ⊢ Group.FG { x // x ∈ H } [PROOFSTEP] obtain ⟨S, hS⟩ := hG.1 [GOAL] case intro G : Type u_1 inst✝¹ : Group G H : Subgroup G R S✝ : Set G hG : Group.FG G inst✝ : FiniteIndex H S : Finset G hS : closure ↑S = ⊤ ⊢ Group.FG { x // x ∈ H } [PROOFSTEP] obtain ⟨T, -, hT⟩ := exists_finset_card_le_mul H hS [GOAL] case intro.intro.intro G : Type u_1 inst✝¹ : Group G H : Subgroup G R S✝ : Set G hG : Group.FG G inst✝ : FiniteIndex H S : Finset G hS : closure ↑S = ⊤ T : Finset { x // x ∈ H } hT : closure ↑T = ⊤ ⊢ Group.FG { x // x ∈ H } [PROOFSTEP] exact ⟨⟨T, hT⟩⟩ [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G R S : Set G hG : Group.FG G inst✝ : FiniteIndex H ⊢ Group.rank { x // x ∈ H } ≤ index H * Group.rank G [PROOFSTEP] haveI := H.fg_of_index_ne_zero [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G R S : Set G hG : Group.FG G inst✝ : FiniteIndex H this : Group.FG { x // x ∈ H } ⊢ Group.rank { x // x ∈ H } ≤ index H * Group.rank G [PROOFSTEP] obtain ⟨S, hS₀, hS⟩ := Group.rank_spec G [GOAL] case intro.intro G : Type u_1 inst✝¹ : Group G H : Subgroup G R S✝ : Set G hG : Group.FG G inst✝ : FiniteIndex H this : Group.FG { x // x ∈ H } S : Finset G hS₀ : Finset.card S = Group.rank G hS : closure ↑S = ⊤ ⊢ Group.rank { x // x ∈ H } ≤ index H * Group.rank G [PROOFSTEP] obtain ⟨T, hT₀, hT⟩ := exists_finset_card_le_mul H hS [GOAL] case intro.intro.intro.intro G : Type u_1 inst✝¹ : Group G H : Subgroup G R S✝ : Set G hG : Group.FG G inst✝ : FiniteIndex H this : Group.FG { x // x ∈ H } S : Finset G hS₀ : Finset.card S = Group.rank G hS : closure ↑S = ⊤ T : Finset { x // x ∈ H } hT₀ : Finset.card T ≤ index H * Finset.card S hT : closure ↑T = ⊤ ⊢ Group.rank { x // x ∈ H } ≤ index H * Group.rank G [PROOFSTEP] calc Group.rank H ≤ T.card := Group.rank_le H hT _ ≤ H.index * S.card := hT₀ _ = H.index * Group.rank G := congr_arg ((· * ·) H.index) hS₀ [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G R S : Set G inst✝ : Finite ↑(commutatorSet G) ⊢ Nat.card { x // x ∈ _root_.commutator G } ∣ index (center G) ^ (index (center G) * Nat.card ↑(commutatorSet G) + 1) [PROOFSTEP] by_cases hG : (center G).index = 0 [GOAL] case pos G : Type u_1 inst✝¹ : Group G H : Subgroup G R S : Set G inst✝ : Finite ↑(commutatorSet G) hG : index (center G) = 0 ⊢ Nat.card { x // x ∈ _root_.commutator G } ∣ index (center G) ^ (index (center G) * Nat.card ↑(commutatorSet G) + 1) [PROOFSTEP] simp_rw [hG, zero_mul, zero_add, pow_one, dvd_zero] [GOAL] case neg G : Type u_1 inst✝¹ : Group G H : Subgroup G R S : Set G inst✝ : Finite ↑(commutatorSet G) hG : ¬index (center G) = 0 ⊢ Nat.card { x // x ∈ _root_.commutator G } ∣ index (center G) ^ (index (center G) * Nat.card ↑(commutatorSet G) + 1) [PROOFSTEP] haveI : FiniteIndex (center G) := ⟨hG⟩ -- Rewrite as `|Z(G) ∩ G'| * [G' : Z(G) ∩ G'] ∣ [G : Z(G)] ^ ([G : Z(G)] * n) * [G : Z(G)]` [GOAL] case neg G : Type u_1 inst✝¹ : Group G H : Subgroup G R S : Set G inst✝ : Finite ↑(commutatorSet G) hG : ¬index (center G) = 0 this : FiniteIndex (center G) ⊢ Nat.card { x // x ∈ _root_.commutator G } ∣ index (center G) ^ (index (center G) * Nat.card ↑(commutatorSet G) + 1) [PROOFSTEP] rw [← ((center G).subgroupOf (_root_.commutator G)).card_mul_index, pow_succ'] -- We have `h1 : [G' : Z(G) ∩ G'] ∣ [G : Z(G)]` [GOAL] case neg G : Type u_1 inst✝¹ : Group G H : Subgroup G R S : Set G inst✝ : Finite ↑(commutatorSet G) hG : ¬index (center G) = 0 this : FiniteIndex (center G) ⊢ Nat.card { x // x ∈ subgroupOf (center G) (_root_.commutator G) } * index (subgroupOf (center G) (_root_.commutator G)) ∣ index (center G) ^ (index (center G) * Nat.card ↑(commutatorSet G)) * index (center G) [PROOFSTEP] have h1 := relindex_dvd_index_of_normal (center G) (_root_.commutator G) -- So we can reduce to proving `|Z(G) ∩ G'| ∣ [G : Z(G)] ^ ([G : Z(G)] * n)` [GOAL] case neg G : Type u_1 inst✝¹ : Group G H : Subgroup G R S : Set G inst✝ : Finite ↑(commutatorSet G) hG : ¬index (center G) = 0 this : FiniteIndex (center G) h1 : relindex (center G) (_root_.commutator G) ∣ index (center G) ⊢ Nat.card { x // x ∈ subgroupOf (center G) (_root_.commutator G) } * index (subgroupOf (center G) (_root_.commutator G)) ∣ index (center G) ^ (index (center G) * Nat.card ↑(commutatorSet G)) * index (center G) [PROOFSTEP] refine' mul_dvd_mul _ h1 [GOAL] case neg G : Type u_1 inst✝¹ : Group G H : Subgroup G R S : Set G inst✝ : Finite ↑(commutatorSet G) hG : ¬index (center G) = 0 this : FiniteIndex (center G) h1 : relindex (center G) (_root_.commutator G) ∣ index (center G) ⊢ Nat.card { x // x ∈ subgroupOf (center G) (_root_.commutator G) } ∣ index (center G) ^ (index (center G) * Nat.card ↑(commutatorSet G)) [PROOFSTEP] haveI : FiniteIndex ((center G).subgroupOf (_root_.commutator G)) := ⟨ne_zero_of_dvd_ne_zero hG h1⟩ -- We have `h2 : rank (Z(G) ∩ G') ≤ [G' : Z(G) ∩ G'] * rank G'` by Schreier's lemma [GOAL] case neg G : Type u_1 inst✝¹ : Group G H : Subgroup G R S : Set G inst✝ : Finite ↑(commutatorSet G) hG : ¬index (center G) = 0 this✝ : FiniteIndex (center G) h1 : relindex (center G) (_root_.commutator G) ∣ index (center G) this : FiniteIndex (subgroupOf (center G) (_root_.commutator G)) ⊢ Nat.card { x // x ∈ subgroupOf (center G) (_root_.commutator G) } ∣ index (center G) ^ (index (center G) * Nat.card ↑(commutatorSet G)) [PROOFSTEP] have h2 := rank_le_index_mul_rank ((center G).subgroupOf (_root_.commutator G)) -- We have `h3 : [G' : Z(G) ∩ G'] * rank G' ≤ [G : Z(G)] * n` by `h1` and `rank G' ≤ n` [GOAL] case neg G : Type u_1 inst✝¹ : Group G H : Subgroup G R S : Set G inst✝ : Finite ↑(commutatorSet G) hG : ¬index (center G) = 0 this✝ : FiniteIndex (center G) h1 : relindex (center G) (_root_.commutator G) ∣ index (center G) this : FiniteIndex (subgroupOf (center G) (_root_.commutator G)) h2 : Group.rank { x // x ∈ subgroupOf (center G) (_root_.commutator G) } ≤ index (subgroupOf (center G) (_root_.commutator G)) * Group.rank { x // x ∈ _root_.commutator G } ⊢ Nat.card { x // x ∈ subgroupOf (center G) (_root_.commutator G) } ∣ index (center G) ^ (index (center G) * Nat.card ↑(commutatorSet G)) [PROOFSTEP] have h3 := Nat.mul_le_mul (Nat.le_of_dvd (Nat.pos_of_ne_zero hG) h1) (rank_commutator_le_card G) -- So we can reduce to proving `|Z(G) ∩ G'| ∣ [G : Z(G)] ^ rank (Z(G) ∩ G')` [GOAL] case neg G : Type u_1 inst✝¹ : Group G H : Subgroup G R S : Set G inst✝ : Finite ↑(commutatorSet G) hG : ¬index (center G) = 0 this✝ : FiniteIndex (center G) h1 : relindex (center G) (_root_.commutator G) ∣ index (center G) this : FiniteIndex (subgroupOf (center G) (_root_.commutator G)) h2 : Group.rank { x // x ∈ subgroupOf (center G) (_root_.commutator G) } ≤ index (subgroupOf (center G) (_root_.commutator G)) * Group.rank { x // x ∈ _root_.commutator G } h3 : relindex (center G) (_root_.commutator G) * Group.rank { x // x ∈ _root_.commutator G } ≤ index (center G) * Nat.card ↑(commutatorSet G) ⊢ Nat.card { x // x ∈ subgroupOf (center G) (_root_.commutator G) } ∣ index (center G) ^ (index (center G) * Nat.card ↑(commutatorSet G)) [PROOFSTEP] refine' dvd_trans _ (pow_dvd_pow (center G).index (h2.trans h3)) -- `Z(G) ∩ G'` is abelian, so it enough to prove that `g ^ [G : Z(G)] = 1` for `g ∈ Z(G) ∩ G'` [GOAL] case neg G : Type u_1 inst✝¹ : Group G H : Subgroup G R S : Set G inst✝ : Finite ↑(commutatorSet G) hG : ¬index (center G) = 0 this✝ : FiniteIndex (center G) h1 : relindex (center G) (_root_.commutator G) ∣ index (center G) this : FiniteIndex (subgroupOf (center G) (_root_.commutator G)) h2 : Group.rank { x // x ∈ subgroupOf (center G) (_root_.commutator G) } ≤ index (subgroupOf (center G) (_root_.commutator G)) * Group.rank { x // x ∈ _root_.commutator G } h3 : relindex (center G) (_root_.commutator G) * Group.rank { x // x ∈ _root_.commutator G } ≤ index (center G) * Nat.card ↑(commutatorSet G) ⊢ Nat.card { x // x ∈ subgroupOf (center G) (_root_.commutator G) } ∣ index (center G) ^ Group.rank { x // x ∈ subgroupOf (center G) (_root_.commutator G) } [PROOFSTEP] apply card_dvd_exponent_pow_rank' [GOAL] case neg.hG G : Type u_1 inst✝¹ : Group G H : Subgroup G R S : Set G inst✝ : Finite ↑(commutatorSet G) hG : ¬index (center G) = 0 this✝ : FiniteIndex (center G) h1 : relindex (center G) (_root_.commutator G) ∣ index (center G) this : FiniteIndex (subgroupOf (center G) (_root_.commutator G)) h2 : Group.rank { x // x ∈ subgroupOf (center G) (_root_.commutator G) } ≤ index (subgroupOf (center G) (_root_.commutator G)) * Group.rank { x // x ∈ _root_.commutator G } h3 : relindex (center G) (_root_.commutator G) * Group.rank { x // x ∈ _root_.commutator G } ≤ index (center G) * Nat.card ↑(commutatorSet G) ⊢ ∀ (g : { x // x ∈ subgroupOf (center G) (_root_.commutator G) }), g ^ index (center G) = 1 [PROOFSTEP] intro g [GOAL] case neg.hG G : Type u_1 inst✝¹ : Group G H : Subgroup G R S : Set G inst✝ : Finite ↑(commutatorSet G) hG : ¬index (center G) = 0 this✝ : FiniteIndex (center G) h1 : relindex (center G) (_root_.commutator G) ∣ index (center G) this : FiniteIndex (subgroupOf (center G) (_root_.commutator G)) h2 : Group.rank { x // x ∈ subgroupOf (center G) (_root_.commutator G) } ≤ index (subgroupOf (center G) (_root_.commutator G)) * Group.rank { x // x ∈ _root_.commutator G } h3 : relindex (center G) (_root_.commutator G) * Group.rank { x // x ∈ _root_.commutator G } ≤ index (center G) * Nat.card ↑(commutatorSet G) g : { x // x ∈ subgroupOf (center G) (_root_.commutator G) } ⊢ g ^ index (center G) = 1 [PROOFSTEP] have := Abelianization.commutator_subset_ker (MonoidHom.transferCenterPow G) g.1.2 -- `transfer g` is defeq to `g ^ [G : Z(G)]`, so we are done [GOAL] case neg.hG G : Type u_1 inst✝¹ : Group G H : Subgroup G R S : Set G inst✝ : Finite ↑(commutatorSet G) hG : ¬index (center G) = 0 this✝¹ : FiniteIndex (center G) h1 : relindex (center G) (_root_.commutator G) ∣ index (center G) this✝ : FiniteIndex (subgroupOf (center G) (_root_.commutator G)) h2 : Group.rank { x // x ∈ subgroupOf (center G) (_root_.commutator G) } ≤ index (subgroupOf (center G) (_root_.commutator G)) * Group.rank { x // x ∈ _root_.commutator G } h3 : relindex (center G) (_root_.commutator G) * Group.rank { x // x ∈ _root_.commutator G } ≤ index (center G) * Nat.card ↑(commutatorSet G) g : { x // x ∈ subgroupOf (center G) (_root_.commutator G) } this : ↑↑g ∈ MonoidHom.ker (MonoidHom.transferCenterPow G) ⊢ g ^ index (center G) = 1 [PROOFSTEP] simpa only [MonoidHom.mem_ker, Subtype.ext_iff] using this [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G R S : Set G inst✝ : Finite ↑(commutatorSet G) ⊢ Nat.card { x // x ∈ _root_.commutator G } ≤ cardCommutatorBound (Nat.card ↑(commutatorSet G)) [PROOFSTEP] have h1 := index_center_le_pow (closureCommutatorRepresentatives G) [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G R S : Set G inst✝ : Finite ↑(commutatorSet G) h1 : index (center { x // x ∈ closureCommutatorRepresentatives G }) ≤ Nat.card ↑(commutatorSet { x // x ∈ closureCommutatorRepresentatives G }) ^ Group.rank { x // x ∈ closureCommutatorRepresentatives G } ⊢ Nat.card { x // x ∈ _root_.commutator G } ≤ cardCommutatorBound (Nat.card ↑(commutatorSet G)) [PROOFSTEP] have h2 := card_commutator_dvd_index_center_pow (closureCommutatorRepresentatives G) [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G R S : Set G inst✝ : Finite ↑(commutatorSet G) h1 : index (center { x // x ∈ closureCommutatorRepresentatives G }) ≤ Nat.card ↑(commutatorSet { x // x ∈ closureCommutatorRepresentatives G }) ^ Group.rank { x // x ∈ closureCommutatorRepresentatives G } h2 : Nat.card { x // x ∈ _root_.commutator { x // x ∈ closureCommutatorRepresentatives G } } ∣ index (center { x // x ∈ closureCommutatorRepresentatives G }) ^ (index (center { x // x ∈ closureCommutatorRepresentatives G }) * Nat.card ↑(commutatorSet { x // x ∈ closureCommutatorRepresentatives G }) + 1) ⊢ Nat.card { x // x ∈ _root_.commutator G } ≤ cardCommutatorBound (Nat.card ↑(commutatorSet G)) [PROOFSTEP] rw [card_commutatorSet_closureCommutatorRepresentatives] at h1 h2 [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G R S : Set G inst✝ : Finite ↑(commutatorSet G) h1 : index (center { x // x ∈ closureCommutatorRepresentatives G }) ≤ Nat.card ↑(commutatorSet G) ^ Group.rank { x // x ∈ closureCommutatorRepresentatives G } h2 : Nat.card { x // x ∈ _root_.commutator { x // x ∈ closureCommutatorRepresentatives G } } ∣ index (center { x // x ∈ closureCommutatorRepresentatives G }) ^ (index (center { x // x ∈ closureCommutatorRepresentatives G }) * Nat.card ↑(commutatorSet G) + 1) ⊢ Nat.card { x // x ∈ _root_.commutator G } ≤ cardCommutatorBound (Nat.card ↑(commutatorSet G)) [PROOFSTEP] rw [card_commutator_closureCommutatorRepresentatives] at h2 [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G R S : Set G inst✝ : Finite ↑(commutatorSet G) h1 : index (center { x // x ∈ closureCommutatorRepresentatives G }) ≤ Nat.card ↑(commutatorSet G) ^ Group.rank { x // x ∈ closureCommutatorRepresentatives G } h2 : Nat.card { x // x ∈ _root_.commutator G } ∣ index (center { x // x ∈ closureCommutatorRepresentatives G }) ^ (index (center { x // x ∈ closureCommutatorRepresentatives G }) * Nat.card ↑(commutatorSet G) + 1) ⊢ Nat.card { x // x ∈ _root_.commutator G } ≤ cardCommutatorBound (Nat.card ↑(commutatorSet G)) [PROOFSTEP] replace h1 := h1.trans (Nat.pow_le_pow_of_le_right Finite.card_pos (rank_closureCommutatorRepresentatives_le G)) [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G R S : Set G inst✝ : Finite ↑(commutatorSet G) h2 : Nat.card { x // x ∈ _root_.commutator G } ∣ index (center { x // x ∈ closureCommutatorRepresentatives G }) ^ (index (center { x // x ∈ closureCommutatorRepresentatives G }) * Nat.card ↑(commutatorSet G) + 1) h1 : index (center { x // x ∈ closureCommutatorRepresentatives G }) ≤ Nat.card ↑(commutatorSet G) ^ (2 * Nat.card ↑(commutatorSet G)) ⊢ Nat.card { x // x ∈ _root_.commutator G } ≤ cardCommutatorBound (Nat.card ↑(commutatorSet G)) [PROOFSTEP] replace h2 := h2.trans (pow_dvd_pow _ (add_le_add_right (mul_le_mul_right' h1 _) 1)) [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G R S : Set G inst✝ : Finite ↑(commutatorSet G) h1 : index (center { x // x ∈ closureCommutatorRepresentatives G }) ≤ Nat.card ↑(commutatorSet G) ^ (2 * Nat.card ↑(commutatorSet G)) h2 : Nat.card { x // x ∈ _root_.commutator G } ∣ index (center { x // x ∈ closureCommutatorRepresentatives G }) ^ (Nat.card ↑(commutatorSet G) ^ (2 * Nat.card ↑(commutatorSet G)) * Nat.card ↑(commutatorSet G) + 1) ⊢ Nat.card { x // x ∈ _root_.commutator G } ≤ cardCommutatorBound (Nat.card ↑(commutatorSet G)) [PROOFSTEP] rw [← pow_succ'] at h2 [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G R S : Set G inst✝ : Finite ↑(commutatorSet G) h1 : index (center { x // x ∈ closureCommutatorRepresentatives G }) ≤ Nat.card ↑(commutatorSet G) ^ (2 * Nat.card ↑(commutatorSet G)) h2 : Nat.card { x // x ∈ _root_.commutator G } ∣ index (center { x // x ∈ closureCommutatorRepresentatives G }) ^ (Nat.card ↑(commutatorSet G) ^ (2 * Nat.card ↑(commutatorSet G) + 1) + 1) ⊢ Nat.card { x // x ∈ _root_.commutator G } ≤ cardCommutatorBound (Nat.card ↑(commutatorSet G)) [PROOFSTEP] refine' (Nat.le_of_dvd _ h2).trans (Nat.pow_le_pow_of_le_left h1 _) [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G R S : Set G inst✝ : Finite ↑(commutatorSet G) h1 : index (center { x // x ∈ closureCommutatorRepresentatives G }) ≤ Nat.card ↑(commutatorSet G) ^ (2 * Nat.card ↑(commutatorSet G)) h2 : Nat.card { x // x ∈ _root_.commutator G } ∣ index (center { x // x ∈ closureCommutatorRepresentatives G }) ^ (Nat.card ↑(commutatorSet G) ^ (2 * Nat.card ↑(commutatorSet G) + 1) + 1) ⊢ 0 < index (center { x // x ∈ closureCommutatorRepresentatives G }) ^ (Nat.card ↑(commutatorSet G) ^ (2 * Nat.card ↑(commutatorSet G) + 1) + 1) [PROOFSTEP] exact pow_pos (Nat.pos_of_ne_zero FiniteIndex.finiteIndex) _ [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G R S : Set G inst✝ : Finite ↑(commutatorSet G) ⊢ Finite { x // x ∈ _root_.commutator G } [PROOFSTEP] have h2 := card_commutator_dvd_index_center_pow (closureCommutatorRepresentatives G) [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G R S : Set G inst✝ : Finite ↑(commutatorSet G) h2 : Nat.card { x // x ∈ _root_.commutator { x // x ∈ closureCommutatorRepresentatives G } } ∣ index (center { x // x ∈ closureCommutatorRepresentatives G }) ^ (index (center { x // x ∈ closureCommutatorRepresentatives G }) * Nat.card ↑(commutatorSet { x // x ∈ closureCommutatorRepresentatives G }) + 1) ⊢ Finite { x // x ∈ _root_.commutator G } [PROOFSTEP] refine' Nat.finite_of_card_ne_zero fun h => _ [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G R S : Set G inst✝ : Finite ↑(commutatorSet G) h2 : Nat.card { x // x ∈ _root_.commutator { x // x ∈ closureCommutatorRepresentatives G } } ∣ index (center { x // x ∈ closureCommutatorRepresentatives G }) ^ (index (center { x // x ∈ closureCommutatorRepresentatives G }) * Nat.card ↑(commutatorSet { x // x ∈ closureCommutatorRepresentatives G }) + 1) h : Nat.card { x // x ∈ _root_.commutator G } = 0 ⊢ False [PROOFSTEP] rw [card_commutator_closureCommutatorRepresentatives, h, zero_dvd_iff] at h2 [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G R S : Set G inst✝ : Finite ↑(commutatorSet G) h2 : index (center { x // x ∈ closureCommutatorRepresentatives G }) ^ (index (center { x // x ∈ closureCommutatorRepresentatives G }) * Nat.card ↑(commutatorSet { x // x ∈ closureCommutatorRepresentatives G }) + 1) = 0 h : Nat.card { x // x ∈ _root_.commutator G } = 0 ⊢ False [PROOFSTEP] exact FiniteIndex.finiteIndex (pow_eq_zero h2)
{"mathlib_filename": "Mathlib.GroupTheory.Schreier", "llama_tokens": 17761}
[GOAL] G : Type u_1 inst✝² : Group G H : Subgroup G inst✝¹ : IsCommutative H inst✝ : FiniteIndex H α β x✝ y✝ : ↑(leftTransversals ↑H) h : diff (MonoidHom.id { x // x ∈ H }) x✝ y✝ = 1 ⊢ diff (MonoidHom.id { x // x ∈ H }) y✝ x✝ = 1 [PROOFSTEP] rw [← diff_inv, h, inv_one] [GOAL] G : Type u_1 inst✝² : Group G H : Subgroup G inst✝¹ : IsCommutative H inst✝ : FiniteIndex H α β x✝ y✝ z✝ : ↑(leftTransversals ↑H) h : diff (MonoidHom.id { x // x ∈ H }) x✝ y✝ = 1 h' : diff (MonoidHom.id { x // x ∈ H }) y✝ z✝ = 1 ⊢ diff (MonoidHom.id { x // x ∈ H }) x✝ z✝ = 1 [PROOFSTEP] rw [← diff_mul_diff, h, h', one_mul] [GOAL] G : Type u_1 inst✝² : Group G H : Subgroup G inst✝¹ : IsCommutative H inst✝ : FiniteIndex H α β : ↑(leftTransversals ↑H) ⊢ Inhabited (QuotientDiff H) [PROOFSTEP] dsimp [QuotientDiff] -- porting note: Added `dsimp` [GOAL] G : Type u_1 inst✝² : Group G H : Subgroup G inst✝¹ : IsCommutative H inst✝ : FiniteIndex H α β : ↑(leftTransversals ↑H) ⊢ Inhabited (Quotient { r := fun α β => diff (MonoidHom.id { x // x ∈ H }) α β = 1, iseqv := (_ : Equivalence fun α β => diff (MonoidHom.id { x // x ∈ H }) α β = 1) }) [PROOFSTEP] infer_instance [GOAL] G : Type u_1 inst✝² : Group G H : Subgroup G inst✝¹ : IsCommutative H inst✝ : FiniteIndex H α β : ↑(leftTransversals ↑H) hH : Normal H g : Gᵐᵒᵖ ⊢ diff (MonoidHom.id { x // x ∈ H }) (g • α) (g • β) = { val := (unop g)⁻¹ * ↑(diff (MonoidHom.id { x // x ∈ H }) α β) * unop g, property := (_ : (unop g)⁻¹ * ↑(diff (MonoidHom.id { x // x ∈ H }) α β) * unop g ∈ H) } [PROOFSTEP] letI := H.fintypeQuotientOfFiniteIndex [GOAL] G : Type u_1 inst✝² : Group G H : Subgroup G inst✝¹ : IsCommutative H inst✝ : FiniteIndex H α β : ↑(leftTransversals ↑H) hH : Normal H g : Gᵐᵒᵖ this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H ⊢ diff (MonoidHom.id { x // x ∈ H }) (g • α) (g • β) = { val := (unop g)⁻¹ * ↑(diff (MonoidHom.id { x // x ∈ H }) α β) * unop g, property := (_ : (unop g)⁻¹ * ↑(diff (MonoidHom.id { x // x ∈ H }) α β) * unop g ∈ H) } [PROOFSTEP] let ϕ : H →* H := { toFun := fun h => ⟨g.unop⁻¹ * h * g.unop, hH.mem_comm ((congr_arg (· ∈ H) (mul_inv_cancel_left _ _)).mpr (SetLike.coe_mem _))⟩ map_one' := by rw [Subtype.ext_iff, coe_mk, coe_one, mul_one, inv_mul_self] map_mul' := fun h₁ h₂ => by simp only [Subtype.ext_iff, coe_mk, coe_mul, mul_assoc, mul_inv_cancel_left] } [GOAL] G : Type u_1 inst✝² : Group G H : Subgroup G inst✝¹ : IsCommutative H inst✝ : FiniteIndex H α β : ↑(leftTransversals ↑H) hH : Normal H g : Gᵐᵒᵖ this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H ⊢ (fun h => { val := (unop g)⁻¹ * ↑h * unop g, property := (_ : (unop g)⁻¹ * ↑h * unop g ∈ H) }) 1 = 1 [PROOFSTEP] rw [Subtype.ext_iff, coe_mk, coe_one, mul_one, inv_mul_self] [GOAL] G : Type u_1 inst✝² : Group G H : Subgroup G inst✝¹ : IsCommutative H inst✝ : FiniteIndex H α β : ↑(leftTransversals ↑H) hH : Normal H g : Gᵐᵒᵖ this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H h₁ h₂ : { x // x ∈ H } ⊢ OneHom.toFun { toFun := fun h => { val := (unop g)⁻¹ * ↑h * unop g, property := (_ : (unop g)⁻¹ * ↑h * unop g ∈ H) }, map_one' := (_ : (fun h => { val := (unop g)⁻¹ * ↑h * unop g, property := (_ : (unop g)⁻¹ * ↑h * unop g ∈ H) }) 1 = 1) } (h₁ * h₂) = OneHom.toFun { toFun := fun h => { val := (unop g)⁻¹ * ↑h * unop g, property := (_ : (unop g)⁻¹ * ↑h * unop g ∈ H) }, map_one' := (_ : (fun h => { val := (unop g)⁻¹ * ↑h * unop g, property := (_ : (unop g)⁻¹ * ↑h * unop g ∈ H) }) 1 = 1) } h₁ * OneHom.toFun { toFun := fun h => { val := (unop g)⁻¹ * ↑h * unop g, property := (_ : (unop g)⁻¹ * ↑h * unop g ∈ H) }, map_one' := (_ : (fun h => { val := (unop g)⁻¹ * ↑h * unop g, property := (_ : (unop g)⁻¹ * ↑h * unop g ∈ H) }) 1 = 1) } h₂ [PROOFSTEP] simp only [Subtype.ext_iff, coe_mk, coe_mul, mul_assoc, mul_inv_cancel_left] [GOAL] G : Type u_1 inst✝² : Group G H : Subgroup G inst✝¹ : IsCommutative H inst✝ : FiniteIndex H α β : ↑(leftTransversals ↑H) hH : Normal H g : Gᵐᵒᵖ this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H ϕ : { x // x ∈ H } →* { x // x ∈ H } := { toOneHom := { toFun := fun h => { val := (unop g)⁻¹ * ↑h * unop g, property := (_ : (unop g)⁻¹ * ↑h * unop g ∈ H) }, map_one' := (_ : (fun h => { val := (unop g)⁻¹ * ↑h * unop g, property := (_ : (unop g)⁻¹ * ↑h * unop g ∈ H) }) 1 = 1) }, map_mul' := (_ : ∀ (h₁ h₂ : { x // x ∈ H }), { val := (unop g)⁻¹ * ↑(h₁ * h₂) * unop g, property := (_ : (unop g)⁻¹ * ↑(h₁ * h₂) * unop g ∈ H) } = { val := (unop g)⁻¹ * ↑h₁ * unop g, property := (_ : (unop g)⁻¹ * ↑h₁ * unop g ∈ H) } * { val := (unop g)⁻¹ * ↑h₂ * unop g, property := (_ : (unop g)⁻¹ * ↑h₂ * unop g ∈ H) }) } ⊢ diff (MonoidHom.id { x // x ∈ H }) (g • α) (g • β) = { val := (unop g)⁻¹ * ↑(diff (MonoidHom.id { x // x ∈ H }) α β) * unop g, property := (_ : (unop g)⁻¹ * ↑(diff (MonoidHom.id { x // x ∈ H }) α β) * unop g ∈ H) } [PROOFSTEP] refine' Eq.trans (Finset.prod_bij' (fun q _ => g⁻¹ • q) (fun q _ => Finset.mem_univ _) (fun q _ => Subtype.ext _) (fun q _ => g • q) (fun q _ => Finset.mem_univ _) (fun q _ => smul_inv_smul g q) fun q _ => inv_smul_smul g q) (map_prod ϕ _ _).symm [GOAL] G : Type u_1 inst✝² : Group G H : Subgroup G inst✝¹ : IsCommutative H inst✝ : FiniteIndex H α β : ↑(leftTransversals ↑H) hH : Normal H g : Gᵐᵒᵖ this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H ϕ : { x // x ∈ H } →* { x // x ∈ H } := { toOneHom := { toFun := fun h => { val := (unop g)⁻¹ * ↑h * unop g, property := (_ : (unop g)⁻¹ * ↑h * unop g ∈ H) }, map_one' := (_ : (fun h => { val := (unop g)⁻¹ * ↑h * unop g, property := (_ : (unop g)⁻¹ * ↑h * unop g ∈ H) }) 1 = 1) }, map_mul' := (_ : ∀ (h₁ h₂ : { x // x ∈ H }), { val := (unop g)⁻¹ * ↑(h₁ * h₂) * unop g, property := (_ : (unop g)⁻¹ * ↑(h₁ * h₂) * unop g ∈ H) } = { val := (unop g)⁻¹ * ↑h₁ * unop g, property := (_ : (unop g)⁻¹ * ↑h₁ * unop g ∈ H) } * { val := (unop g)⁻¹ * ↑h₂ * unop g, property := (_ : (unop g)⁻¹ * ↑h₂ * unop g ∈ H) }) } q : G ⧸ H x✝ : q ∈ Finset.univ ⊢ ↑(↑(MonoidHom.id { x // x ∈ H }) { val := (↑(↑(toEquiv (_ : ↑(g • α) ∈ leftTransversals ↑H)) q))⁻¹ * ↑(↑(toEquiv (_ : ↑(g • β) ∈ leftTransversals ↑H)) q), property := (_ : (↑(↑(toEquiv (_ : ↑(g • α) ∈ leftTransversals ↑H)) q))⁻¹ * ↑(↑(toEquiv (_ : ↑(g • β) ∈ leftTransversals ↑H)) q) ∈ H) }) = ↑(↑ϕ (↑(MonoidHom.id { x // x ∈ H }) { val := (↑(↑(toEquiv (_ : ↑α ∈ leftTransversals ↑H)) ((fun q x => g⁻¹ • q) q x✝)))⁻¹ * ↑(↑(toEquiv (_ : ↑β ∈ leftTransversals ↑H)) ((fun q x => g⁻¹ • q) q x✝)), property := (_ : (↑(↑(toEquiv (_ : ↑α ∈ leftTransversals ↑H)) ((fun q x => g⁻¹ • q) q x✝)))⁻¹ * ↑(↑(toEquiv (_ : ↑β ∈ leftTransversals ↑H)) ((fun q x => g⁻¹ • q) q x✝)) ∈ H) })) [PROOFSTEP] simp only [MonoidHom.id_apply, MonoidHom.coe_mk, OneHom.coe_mk, smul_apply_eq_smul_apply_inv_smul, smul_eq_mul_unop, mul_inv_rev, mul_assoc] [GOAL] G : Type u_1 inst✝³ : Group G H : Subgroup G inst✝² : IsCommutative H inst✝¹ : FiniteIndex H α✝ β✝ : ↑(leftTransversals ↑H) inst✝ : Normal H g : G α β : ↑(leftTransversals ↑H) h : Setoid.r α β ⊢ ↑(diff (MonoidHom.id { x // x ∈ H }) ((fun α => op g⁻¹ • α) α) ((fun α => op g⁻¹ • α) β)) = ↑1 [PROOFSTEP] rwa [smul_diff_smul', coe_mk, coe_one, mul_eq_one_iff_eq_inv, mul_right_eq_self, ← coe_one, ← Subtype.ext_iff] [GOAL] G : Type u_1 inst✝³ : Group G H : Subgroup G inst✝² : IsCommutative H inst✝¹ : FiniteIndex H α β : ↑(leftTransversals ↑H) inst✝ : Normal H q : QuotientDiff H T : ↑(leftTransversals ↑H) ⊢ (fun α => op 1⁻¹ • α) T = T [PROOFSTEP] rw [inv_one] [GOAL] G : Type u_1 inst✝³ : Group G H : Subgroup G inst✝² : IsCommutative H inst✝¹ : FiniteIndex H α β : ↑(leftTransversals ↑H) inst✝ : Normal H q : QuotientDiff H T : ↑(leftTransversals ↑H) ⊢ (fun α => op 1 • α) T = T [PROOFSTEP] apply one_smul Gᵐᵒᵖ T [GOAL] G : Type u_1 inst✝³ : Group G H : Subgroup G inst✝² : IsCommutative H inst✝¹ : FiniteIndex H α β : ↑(leftTransversals ↑H) inst✝ : Normal H g₁ g₂ : G q : QuotientDiff H T : ↑(leftTransversals ↑H) ⊢ (fun α => op (g₁ * g₂)⁻¹ • α) T = (fun α => op g₁⁻¹ • α) ((fun α => op g₂⁻¹ • α) T) [PROOFSTEP] rw [mul_inv_rev] [GOAL] G : Type u_1 inst✝³ : Group G H : Subgroup G inst✝² : IsCommutative H inst✝¹ : FiniteIndex H α β : ↑(leftTransversals ↑H) inst✝ : Normal H g₁ g₂ : G q : QuotientDiff H T : ↑(leftTransversals ↑H) ⊢ (fun α => op (g₂⁻¹ * g₁⁻¹) • α) T = (fun α => op g₁⁻¹ • α) ((fun α => op g₂⁻¹ • α) T) [PROOFSTEP] exact mul_smul (op g₁⁻¹) (op g₂⁻¹) T [GOAL] G : Type u_1 inst✝³ : Group G H : Subgroup G inst✝² : IsCommutative H inst✝¹ : FiniteIndex H α β : ↑(leftTransversals ↑H) inst✝ : Normal H h : { x // x ∈ H } ⊢ diff (MonoidHom.id { x // x ∈ H }) α (op ↑h • β) = diff (MonoidHom.id { x // x ∈ H }) α β * h ^ index H [PROOFSTEP] letI := H.fintypeQuotientOfFiniteIndex [GOAL] G : Type u_1 inst✝³ : Group G H : Subgroup G inst✝² : IsCommutative H inst✝¹ : FiniteIndex H α β : ↑(leftTransversals ↑H) inst✝ : Normal H h : { x // x ∈ H } this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H ⊢ diff (MonoidHom.id { x // x ∈ H }) α (op ↑h • β) = diff (MonoidHom.id { x // x ∈ H }) α β * h ^ index H [PROOFSTEP] rw [diff, diff, index_eq_card, ← Finset.card_univ, ← Finset.prod_const, ← Finset.prod_mul_distrib] [GOAL] G : Type u_1 inst✝³ : Group G H : Subgroup G inst✝² : IsCommutative H inst✝¹ : FiniteIndex H α β : ↑(leftTransversals ↑H) inst✝ : Normal H h : { x // x ∈ H } this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H ⊢ (let α_1 := toEquiv (_ : ↑α ∈ leftTransversals ↑H); let β_1 := toEquiv (_ : ↑(op ↑h • β) ∈ leftTransversals ↑H); ∏ q : G ⧸ H, ↑(MonoidHom.id { x // x ∈ H }) { val := (↑(↑α_1 q))⁻¹ * ↑(↑β_1 q), property := (_ : (↑(↑(toEquiv (_ : ↑α ∈ leftTransversals ↑H)) q))⁻¹ * ↑(↑(toEquiv (_ : ↑(op ↑h • β) ∈ leftTransversals ↑H)) q) ∈ H) }) = ∏ x : G ⧸ H, ↑(MonoidHom.id { x // x ∈ H }) { val := (↑(↑(toEquiv (_ : ↑α ∈ leftTransversals ↑H)) x))⁻¹ * ↑(↑(toEquiv (_ : ↑β ∈ leftTransversals ↑H)) x), property := (_ : (↑(↑(toEquiv (_ : ↑α ∈ leftTransversals ↑H)) x))⁻¹ * ↑(↑(toEquiv (_ : ↑β ∈ leftTransversals ↑H)) x) ∈ H) } * h [PROOFSTEP] refine' Finset.prod_congr rfl fun q _ => _ [GOAL] G : Type u_1 inst✝³ : Group G H : Subgroup G inst✝² : IsCommutative H inst✝¹ : FiniteIndex H α β : ↑(leftTransversals ↑H) inst✝ : Normal H h : { x // x ∈ H } this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H q : G ⧸ H x✝ : q ∈ Finset.univ ⊢ ↑(MonoidHom.id { x // x ∈ H }) { val := (↑(↑(toEquiv (_ : ↑α ∈ leftTransversals ↑H)) q))⁻¹ * ↑(↑(toEquiv (_ : ↑(op ↑h • β) ∈ leftTransversals ↑H)) q), property := (_ : (↑(↑(toEquiv (_ : ↑α ∈ leftTransversals ↑H)) q))⁻¹ * ↑(↑(toEquiv (_ : ↑(op ↑h • β) ∈ leftTransversals ↑H)) q) ∈ H) } = ↑(MonoidHom.id { x // x ∈ H }) { val := (↑(↑(toEquiv (_ : ↑α ∈ leftTransversals ↑H)) q))⁻¹ * ↑(↑(toEquiv (_ : ↑β ∈ leftTransversals ↑H)) q), property := (_ : (↑(↑(toEquiv (_ : ↑α ∈ leftTransversals ↑H)) q))⁻¹ * ↑(↑(toEquiv (_ : ↑β ∈ leftTransversals ↑H)) q) ∈ H) } * h [PROOFSTEP] simp_rw [Subtype.ext_iff, MonoidHom.id_apply, coe_mul, mul_assoc, mul_right_inj] [GOAL] G : Type u_1 inst✝³ : Group G H : Subgroup G inst✝² : IsCommutative H inst✝¹ : FiniteIndex H α β : ↑(leftTransversals ↑H) inst✝ : Normal H h : { x // x ∈ H } this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H q : G ⧸ H x✝ : q ∈ Finset.univ ⊢ ↑(↑(toEquiv (_ : ↑(op ↑h • β) ∈ leftTransversals ↑H)) q) = ↑(↑(toEquiv (_ : ↑β ∈ leftTransversals ↑H)) q) * ↑h [PROOFSTEP] rw [smul_apply_eq_smul_apply_inv_smul, smul_eq_mul_unop, unop_op, mul_left_inj, ← Subtype.ext_iff, Equiv.apply_eq_iff_eq, inv_smul_eq_iff] [GOAL] G : Type u_1 inst✝³ : Group G H : Subgroup G inst✝² : IsCommutative H inst✝¹ : FiniteIndex H α β : ↑(leftTransversals ↑H) inst✝ : Normal H h : { x // x ∈ H } this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H q : G ⧸ H x✝ : q ∈ Finset.univ ⊢ q = op ↑h • q [PROOFSTEP] exact self_eq_mul_right.mpr ((QuotientGroup.eq_one_iff _).mpr h.2) [GOAL] G : Type u_1 inst✝³ : Group G H : Subgroup G inst✝² : IsCommutative H inst✝¹ : FiniteIndex H α✝¹ β : ↑(leftTransversals ↑H) inst✝ : Normal H hH : Nat.coprime (Nat.card { x // x ∈ H }) (index H) α✝ : QuotientDiff H h : { x // x ∈ H } α : ↑(leftTransversals ↑H) hα : h • Quotient.mk'' α = Quotient.mk'' α ⊢ h ^ index H = diff (MonoidHom.id { x // x ∈ H }) (op ↑h⁻¹ • α) α [PROOFSTEP] rw [← diff_inv, smul_diff', diff_self, one_mul, inv_pow, inv_inv] [GOAL] G : Type u_1 inst✝³ : Group G H : Subgroup G inst✝² : IsCommutative H inst✝¹ : FiniteIndex H α✝¹ β✝¹ : ↑(leftTransversals ↑H) inst✝ : Normal H hH : Nat.coprime (Nat.card { x // x ∈ H }) (index H) α✝ β✝ : QuotientDiff H β α : ↑(leftTransversals ↑H) ⊢ diff (MonoidHom.id { x // x ∈ H }) β α * (↑(powCoprime hH).symm (diff (MonoidHom.id { x // x ∈ H }) β α))⁻¹ ^ index H = 1 [PROOFSTEP] rw [inv_pow, ← powCoprime_apply hH, Equiv.apply_symm_apply, mul_inv_self] [GOAL] G : Type u inst✝² : Group G inst✝¹ : Fintype G N : Subgroup G inst✝ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' h3 : ∀ (H : Subgroup G), ¬IsComplement' N H ⊢ N ≠ ⊥ [PROOFSTEP] rintro rfl [GOAL] G : Type u inst✝² : Group G inst✝¹ : Fintype G h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' inst✝ : Normal ⊥ h1 : Nat.coprime (Fintype.card { x // x ∈ ⊥ }) (index ⊥) h3 : ∀ (H : Subgroup G), ¬IsComplement' ⊥ H ⊢ False [PROOFSTEP] exact h3 ⊤ isComplement'_bot_top [GOAL] G : Type u inst✝² : Group G inst✝¹ : Fintype G N : Subgroup G inst✝ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' h3 : ∀ (H : Subgroup G), ¬IsComplement' N H K : Subgroup G hK : K ⊔ N = ⊤ ⊢ K = ⊤ [PROOFSTEP] contrapose! h3 [GOAL] G : Type u inst✝² : Group G inst✝¹ : Fintype G N : Subgroup G inst✝ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' K : Subgroup G hK : K ⊔ N = ⊤ h3 : K ≠ ⊤ ⊢ ∃ H, IsComplement' N H [PROOFSTEP] have h4 : (N.comap K.subtype).index = N.index := by rw [← N.relindex_top_right, ← hK] exact (relindex_sup_right K N).symm [GOAL] G : Type u inst✝² : Group G inst✝¹ : Fintype G N : Subgroup G inst✝ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' K : Subgroup G hK : K ⊔ N = ⊤ h3 : K ≠ ⊤ ⊢ index (comap (Subgroup.subtype K) N) = index N [PROOFSTEP] rw [← N.relindex_top_right, ← hK] [GOAL] G : Type u inst✝² : Group G inst✝¹ : Fintype G N : Subgroup G inst✝ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' K : Subgroup G hK : K ⊔ N = ⊤ h3 : K ≠ ⊤ ⊢ index (comap (Subgroup.subtype K) N) = relindex N (K ⊔ N) [PROOFSTEP] exact (relindex_sup_right K N).symm [GOAL] G : Type u inst✝² : Group G inst✝¹ : Fintype G N : Subgroup G inst✝ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' K : Subgroup G hK : K ⊔ N = ⊤ h3 : K ≠ ⊤ h4 : index (comap (Subgroup.subtype K) N) = index N ⊢ ∃ H, IsComplement' N H [PROOFSTEP] have h5 : Fintype.card K < Fintype.card G := by rw [← K.index_mul_card] exact lt_mul_of_one_lt_left Fintype.card_pos (one_lt_index_of_ne_top h3) [GOAL] G : Type u inst✝² : Group G inst✝¹ : Fintype G N : Subgroup G inst✝ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' K : Subgroup G hK : K ⊔ N = ⊤ h3 : K ≠ ⊤ h4 : index (comap (Subgroup.subtype K) N) = index N ⊢ Fintype.card { x // x ∈ K } < Fintype.card G [PROOFSTEP] rw [← K.index_mul_card] [GOAL] G : Type u inst✝² : Group G inst✝¹ : Fintype G N : Subgroup G inst✝ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' K : Subgroup G hK : K ⊔ N = ⊤ h3 : K ≠ ⊤ h4 : index (comap (Subgroup.subtype K) N) = index N ⊢ Fintype.card { x // x ∈ K } < index K * Fintype.card { x // x ∈ K } [PROOFSTEP] exact lt_mul_of_one_lt_left Fintype.card_pos (one_lt_index_of_ne_top h3) [GOAL] G : Type u inst✝² : Group G inst✝¹ : Fintype G N : Subgroup G inst✝ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' K : Subgroup G hK : K ⊔ N = ⊤ h3 : K ≠ ⊤ h4 : index (comap (Subgroup.subtype K) N) = index N h5 : Fintype.card { x // x ∈ K } < Fintype.card G ⊢ ∃ H, IsComplement' N H [PROOFSTEP] have h6 : Nat.coprime (Fintype.card (N.comap K.subtype)) (N.comap K.subtype).index := by rw [h4] exact h1.coprime_dvd_left (card_comap_dvd_of_injective N K.subtype Subtype.coe_injective) [GOAL] G : Type u inst✝² : Group G inst✝¹ : Fintype G N : Subgroup G inst✝ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' K : Subgroup G hK : K ⊔ N = ⊤ h3 : K ≠ ⊤ h4 : index (comap (Subgroup.subtype K) N) = index N h5 : Fintype.card { x // x ∈ K } < Fintype.card G ⊢ Nat.coprime (Fintype.card { x // x ∈ comap (Subgroup.subtype K) N }) (index (comap (Subgroup.subtype K) N)) [PROOFSTEP] rw [h4] [GOAL] G : Type u inst✝² : Group G inst✝¹ : Fintype G N : Subgroup G inst✝ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' K : Subgroup G hK : K ⊔ N = ⊤ h3 : K ≠ ⊤ h4 : index (comap (Subgroup.subtype K) N) = index N h5 : Fintype.card { x // x ∈ K } < Fintype.card G ⊢ Nat.coprime (Fintype.card { x // x ∈ comap (Subgroup.subtype K) N }) (index N) [PROOFSTEP] exact h1.coprime_dvd_left (card_comap_dvd_of_injective N K.subtype Subtype.coe_injective) [GOAL] G : Type u inst✝² : Group G inst✝¹ : Fintype G N : Subgroup G inst✝ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' K : Subgroup G hK : K ⊔ N = ⊤ h3 : K ≠ ⊤ h4 : index (comap (Subgroup.subtype K) N) = index N h5 : Fintype.card { x // x ∈ K } < Fintype.card G h6 : Nat.coprime (Fintype.card { x // x ∈ comap (Subgroup.subtype K) N }) (index (comap (Subgroup.subtype K) N)) ⊢ ∃ H, IsComplement' N H [PROOFSTEP] obtain ⟨H, hH⟩ := h2 K h5 h6 [GOAL] case intro G : Type u inst✝² : Group G inst✝¹ : Fintype G N : Subgroup G inst✝ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' K : Subgroup G hK : K ⊔ N = ⊤ h3 : K ≠ ⊤ h4 : index (comap (Subgroup.subtype K) N) = index N h5 : Fintype.card { x // x ∈ K } < Fintype.card G h6 : Nat.coprime (Fintype.card { x // x ∈ comap (Subgroup.subtype K) N }) (index (comap (Subgroup.subtype K) N)) H : Subgroup { x // x ∈ K } hH : IsComplement' (comap (Subgroup.subtype K) N) H ⊢ ∃ H, IsComplement' N H [PROOFSTEP] replace hH : Fintype.card (H.map K.subtype) = N.index := by rw [← relindex_bot_left_eq_card, ← relindex_comap, MonoidHom.comap_bot, Subgroup.ker_subtype, relindex_bot_left, ← IsComplement'.index_eq_card (IsComplement'.symm hH), index_comap, subtype_range, ← relindex_sup_right, hK, relindex_top_right] [GOAL] G : Type u inst✝² : Group G inst✝¹ : Fintype G N : Subgroup G inst✝ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' K : Subgroup G hK : K ⊔ N = ⊤ h3 : K ≠ ⊤ h4 : index (comap (Subgroup.subtype K) N) = index N h5 : Fintype.card { x // x ∈ K } < Fintype.card G h6 : Nat.coprime (Fintype.card { x // x ∈ comap (Subgroup.subtype K) N }) (index (comap (Subgroup.subtype K) N)) H : Subgroup { x // x ∈ K } hH : IsComplement' (comap (Subgroup.subtype K) N) H ⊢ Fintype.card { x // x ∈ map (Subgroup.subtype K) H } = index N [PROOFSTEP] rw [← relindex_bot_left_eq_card, ← relindex_comap, MonoidHom.comap_bot, Subgroup.ker_subtype, relindex_bot_left, ← IsComplement'.index_eq_card (IsComplement'.symm hH), index_comap, subtype_range, ← relindex_sup_right, hK, relindex_top_right] [GOAL] case intro G : Type u inst✝² : Group G inst✝¹ : Fintype G N : Subgroup G inst✝ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' K : Subgroup G hK : K ⊔ N = ⊤ h3 : K ≠ ⊤ h4 : index (comap (Subgroup.subtype K) N) = index N h5 : Fintype.card { x // x ∈ K } < Fintype.card G h6 : Nat.coprime (Fintype.card { x // x ∈ comap (Subgroup.subtype K) N }) (index (comap (Subgroup.subtype K) N)) H : Subgroup { x // x ∈ K } hH : Fintype.card { x // x ∈ map (Subgroup.subtype K) H } = index N ⊢ ∃ H, IsComplement' N H [PROOFSTEP] have h7 : Fintype.card N * Fintype.card (H.map K.subtype) = Fintype.card G := by rw [hH, ← N.index_mul_card, mul_comm] [GOAL] G : Type u inst✝² : Group G inst✝¹ : Fintype G N : Subgroup G inst✝ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' K : Subgroup G hK : K ⊔ N = ⊤ h3 : K ≠ ⊤ h4 : index (comap (Subgroup.subtype K) N) = index N h5 : Fintype.card { x // x ∈ K } < Fintype.card G h6 : Nat.coprime (Fintype.card { x // x ∈ comap (Subgroup.subtype K) N }) (index (comap (Subgroup.subtype K) N)) H : Subgroup { x // x ∈ K } hH : Fintype.card { x // x ∈ map (Subgroup.subtype K) H } = index N ⊢ Fintype.card { x // x ∈ N } * Fintype.card { x // x ∈ map (Subgroup.subtype K) H } = Fintype.card G [PROOFSTEP] rw [hH, ← N.index_mul_card, mul_comm] [GOAL] case intro G : Type u inst✝² : Group G inst✝¹ : Fintype G N : Subgroup G inst✝ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' K : Subgroup G hK : K ⊔ N = ⊤ h3 : K ≠ ⊤ h4 : index (comap (Subgroup.subtype K) N) = index N h5 : Fintype.card { x // x ∈ K } < Fintype.card G h6 : Nat.coprime (Fintype.card { x // x ∈ comap (Subgroup.subtype K) N }) (index (comap (Subgroup.subtype K) N)) H : Subgroup { x // x ∈ K } hH : Fintype.card { x // x ∈ map (Subgroup.subtype K) H } = index N h7 : Fintype.card { x // x ∈ N } * Fintype.card { x // x ∈ map (Subgroup.subtype K) H } = Fintype.card G ⊢ ∃ H, IsComplement' N H [PROOFSTEP] have h8 : (Fintype.card N).coprime (Fintype.card (H.map K.subtype)) := by rwa [hH] [GOAL] G : Type u inst✝² : Group G inst✝¹ : Fintype G N : Subgroup G inst✝ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' K : Subgroup G hK : K ⊔ N = ⊤ h3 : K ≠ ⊤ h4 : index (comap (Subgroup.subtype K) N) = index N h5 : Fintype.card { x // x ∈ K } < Fintype.card G h6 : Nat.coprime (Fintype.card { x // x ∈ comap (Subgroup.subtype K) N }) (index (comap (Subgroup.subtype K) N)) H : Subgroup { x // x ∈ K } hH : Fintype.card { x // x ∈ map (Subgroup.subtype K) H } = index N h7 : Fintype.card { x // x ∈ N } * Fintype.card { x // x ∈ map (Subgroup.subtype K) H } = Fintype.card G ⊢ Nat.coprime (Fintype.card { x // x ∈ N }) (Fintype.card { x // x ∈ map (Subgroup.subtype K) H }) [PROOFSTEP] rwa [hH] [GOAL] case intro G : Type u inst✝² : Group G inst✝¹ : Fintype G N : Subgroup G inst✝ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' K : Subgroup G hK : K ⊔ N = ⊤ h3 : K ≠ ⊤ h4 : index (comap (Subgroup.subtype K) N) = index N h5 : Fintype.card { x // x ∈ K } < Fintype.card G h6 : Nat.coprime (Fintype.card { x // x ∈ comap (Subgroup.subtype K) N }) (index (comap (Subgroup.subtype K) N)) H : Subgroup { x // x ∈ K } hH : Fintype.card { x // x ∈ map (Subgroup.subtype K) H } = index N h7 : Fintype.card { x // x ∈ N } * Fintype.card { x // x ∈ map (Subgroup.subtype K) H } = Fintype.card G h8 : Nat.coprime (Fintype.card { x // x ∈ N }) (Fintype.card { x // x ∈ map (Subgroup.subtype K) H }) ⊢ ∃ H, IsComplement' N H [PROOFSTEP] exact ⟨H.map K.subtype, isComplement'_of_coprime h7 h8⟩ [GOAL] G : Type u inst✝³ : Group G inst✝² : Fintype G N : Subgroup G inst✝¹ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' h3 : ∀ (H : Subgroup G), ¬IsComplement' N H K : Subgroup G inst✝ : Normal K hK : K ≤ N ⊢ K = ⊥ ∨ K = N [PROOFSTEP] have : Function.Surjective (QuotientGroup.mk' K) := Quotient.surjective_Quotient_mk'' [GOAL] G : Type u inst✝³ : Group G inst✝² : Fintype G N : Subgroup G inst✝¹ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' h3 : ∀ (H : Subgroup G), ¬IsComplement' N H K : Subgroup G inst✝ : Normal K hK : K ≤ N this : Function.Surjective ↑(QuotientGroup.mk' K) ⊢ K = ⊥ ∨ K = N [PROOFSTEP] have h4 := step1 h1 h2 h3 [GOAL] G : Type u inst✝³ : Group G inst✝² : Fintype G N : Subgroup G inst✝¹ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' h3 : ∀ (H : Subgroup G), ¬IsComplement' N H K : Subgroup G inst✝ : Normal K hK : K ≤ N this : Function.Surjective ↑(QuotientGroup.mk' K) h4 : ∀ (K : Subgroup G), K ⊔ N = ⊤ → K = ⊤ ⊢ K = ⊥ ∨ K = N [PROOFSTEP] contrapose! h4 [GOAL] G : Type u inst✝³ : Group G inst✝² : Fintype G N : Subgroup G inst✝¹ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' h3 : ∀ (H : Subgroup G), ¬IsComplement' N H K : Subgroup G inst✝ : Normal K hK : K ≤ N this : Function.Surjective ↑(QuotientGroup.mk' K) h4 : K ≠ ⊥ ∧ K ≠ N ⊢ ∃ K, K ⊔ N = ⊤ ∧ K ≠ ⊤ [PROOFSTEP] have h5 : Fintype.card (G ⧸ K) < Fintype.card G := by rw [← index_eq_card, ← K.index_mul_card] refine' lt_mul_of_one_lt_right (Nat.pos_of_ne_zero index_ne_zero_of_finite) (K.one_lt_card_iff_ne_bot.mpr h4.1) [GOAL] G : Type u inst✝³ : Group G inst✝² : Fintype G N : Subgroup G inst✝¹ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' h3 : ∀ (H : Subgroup G), ¬IsComplement' N H K : Subgroup G inst✝ : Normal K hK : K ≤ N this : Function.Surjective ↑(QuotientGroup.mk' K) h4 : K ≠ ⊥ ∧ K ≠ N ⊢ Fintype.card (G ⧸ K) < Fintype.card G [PROOFSTEP] rw [← index_eq_card, ← K.index_mul_card] [GOAL] G : Type u inst✝³ : Group G inst✝² : Fintype G N : Subgroup G inst✝¹ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' h3 : ∀ (H : Subgroup G), ¬IsComplement' N H K : Subgroup G inst✝ : Normal K hK : K ≤ N this : Function.Surjective ↑(QuotientGroup.mk' K) h4 : K ≠ ⊥ ∧ K ≠ N ⊢ index K < index K * Fintype.card { x // x ∈ K } [PROOFSTEP] refine' lt_mul_of_one_lt_right (Nat.pos_of_ne_zero index_ne_zero_of_finite) (K.one_lt_card_iff_ne_bot.mpr h4.1) [GOAL] G : Type u inst✝³ : Group G inst✝² : Fintype G N : Subgroup G inst✝¹ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' h3 : ∀ (H : Subgroup G), ¬IsComplement' N H K : Subgroup G inst✝ : Normal K hK : K ≤ N this : Function.Surjective ↑(QuotientGroup.mk' K) h4 : K ≠ ⊥ ∧ K ≠ N h5 : Fintype.card (G ⧸ K) < Fintype.card G ⊢ ∃ K, K ⊔ N = ⊤ ∧ K ≠ ⊤ [PROOFSTEP] have h6 : (Fintype.card (N.map (QuotientGroup.mk' K))).coprime (N.map (QuotientGroup.mk' K)).index := by have index_map := N.index_map_eq this (by rwa [QuotientGroup.ker_mk']) have index_pos : 0 < N.index := Nat.pos_of_ne_zero index_ne_zero_of_finite rw [index_map] refine' h1.coprime_dvd_left _ rw [← Nat.mul_dvd_mul_iff_left index_pos, index_mul_card, ← index_map, index_mul_card] exact K.card_quotient_dvd_card [GOAL] G : Type u inst✝³ : Group G inst✝² : Fintype G N : Subgroup G inst✝¹ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' h3 : ∀ (H : Subgroup G), ¬IsComplement' N H K : Subgroup G inst✝ : Normal K hK : K ≤ N this : Function.Surjective ↑(QuotientGroup.mk' K) h4 : K ≠ ⊥ ∧ K ≠ N h5 : Fintype.card (G ⧸ K) < Fintype.card G ⊢ Nat.coprime (Fintype.card { x // x ∈ map (QuotientGroup.mk' K) N }) (index (map (QuotientGroup.mk' K) N)) [PROOFSTEP] have index_map := N.index_map_eq this (by rwa [QuotientGroup.ker_mk']) [GOAL] G : Type u inst✝³ : Group G inst✝² : Fintype G N : Subgroup G inst✝¹ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' h3 : ∀ (H : Subgroup G), ¬IsComplement' N H K : Subgroup G inst✝ : Normal K hK : K ≤ N this : Function.Surjective ↑(QuotientGroup.mk' K) h4 : K ≠ ⊥ ∧ K ≠ N h5 : Fintype.card (G ⧸ K) < Fintype.card G ⊢ MonoidHom.ker (QuotientGroup.mk' K) ≤ N [PROOFSTEP] rwa [QuotientGroup.ker_mk'] [GOAL] G : Type u inst✝³ : Group G inst✝² : Fintype G N : Subgroup G inst✝¹ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' h3 : ∀ (H : Subgroup G), ¬IsComplement' N H K : Subgroup G inst✝ : Normal K hK : K ≤ N this : Function.Surjective ↑(QuotientGroup.mk' K) h4 : K ≠ ⊥ ∧ K ≠ N h5 : Fintype.card (G ⧸ K) < Fintype.card G index_map : index (map (QuotientGroup.mk' K) N) = index N ⊢ Nat.coprime (Fintype.card { x // x ∈ map (QuotientGroup.mk' K) N }) (index (map (QuotientGroup.mk' K) N)) [PROOFSTEP] have index_pos : 0 < N.index := Nat.pos_of_ne_zero index_ne_zero_of_finite [GOAL] G : Type u inst✝³ : Group G inst✝² : Fintype G N : Subgroup G inst✝¹ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' h3 : ∀ (H : Subgroup G), ¬IsComplement' N H K : Subgroup G inst✝ : Normal K hK : K ≤ N this : Function.Surjective ↑(QuotientGroup.mk' K) h4 : K ≠ ⊥ ∧ K ≠ N h5 : Fintype.card (G ⧸ K) < Fintype.card G index_map : index (map (QuotientGroup.mk' K) N) = index N index_pos : 0 < index N ⊢ Nat.coprime (Fintype.card { x // x ∈ map (QuotientGroup.mk' K) N }) (index (map (QuotientGroup.mk' K) N)) [PROOFSTEP] rw [index_map] [GOAL] G : Type u inst✝³ : Group G inst✝² : Fintype G N : Subgroup G inst✝¹ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' h3 : ∀ (H : Subgroup G), ¬IsComplement' N H K : Subgroup G inst✝ : Normal K hK : K ≤ N this : Function.Surjective ↑(QuotientGroup.mk' K) h4 : K ≠ ⊥ ∧ K ≠ N h5 : Fintype.card (G ⧸ K) < Fintype.card G index_map : index (map (QuotientGroup.mk' K) N) = index N index_pos : 0 < index N ⊢ Nat.coprime (Fintype.card { x // x ∈ map (QuotientGroup.mk' K) N }) (index N) [PROOFSTEP] refine' h1.coprime_dvd_left _ [GOAL] G : Type u inst✝³ : Group G inst✝² : Fintype G N : Subgroup G inst✝¹ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' h3 : ∀ (H : Subgroup G), ¬IsComplement' N H K : Subgroup G inst✝ : Normal K hK : K ≤ N this : Function.Surjective ↑(QuotientGroup.mk' K) h4 : K ≠ ⊥ ∧ K ≠ N h5 : Fintype.card (G ⧸ K) < Fintype.card G index_map : index (map (QuotientGroup.mk' K) N) = index N index_pos : 0 < index N ⊢ Fintype.card { x // x ∈ map (QuotientGroup.mk' K) N } ∣ Fintype.card { x // x ∈ N } [PROOFSTEP] rw [← Nat.mul_dvd_mul_iff_left index_pos, index_mul_card, ← index_map, index_mul_card] [GOAL] G : Type u inst✝³ : Group G inst✝² : Fintype G N : Subgroup G inst✝¹ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' h3 : ∀ (H : Subgroup G), ¬IsComplement' N H K : Subgroup G inst✝ : Normal K hK : K ≤ N this : Function.Surjective ↑(QuotientGroup.mk' K) h4 : K ≠ ⊥ ∧ K ≠ N h5 : Fintype.card (G ⧸ K) < Fintype.card G index_map : index (map (QuotientGroup.mk' K) N) = index N index_pos : 0 < index N ⊢ Fintype.card (G ⧸ K) ∣ Fintype.card G [PROOFSTEP] exact K.card_quotient_dvd_card [GOAL] G : Type u inst✝³ : Group G inst✝² : Fintype G N : Subgroup G inst✝¹ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' h3 : ∀ (H : Subgroup G), ¬IsComplement' N H K : Subgroup G inst✝ : Normal K hK : K ≤ N this : Function.Surjective ↑(QuotientGroup.mk' K) h4 : K ≠ ⊥ ∧ K ≠ N h5 : Fintype.card (G ⧸ K) < Fintype.card G h6 : Nat.coprime (Fintype.card { x // x ∈ map (QuotientGroup.mk' K) N }) (index (map (QuotientGroup.mk' K) N)) ⊢ ∃ K, K ⊔ N = ⊤ ∧ K ≠ ⊤ [PROOFSTEP] obtain ⟨H, hH⟩ := h2 (G ⧸ K) h5 h6 [GOAL] case intro G : Type u inst✝³ : Group G inst✝² : Fintype G N : Subgroup G inst✝¹ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' h3 : ∀ (H : Subgroup G), ¬IsComplement' N H K : Subgroup G inst✝ : Normal K hK : K ≤ N this : Function.Surjective ↑(QuotientGroup.mk' K) h4 : K ≠ ⊥ ∧ K ≠ N h5 : Fintype.card (G ⧸ K) < Fintype.card G h6 : Nat.coprime (Fintype.card { x // x ∈ map (QuotientGroup.mk' K) N }) (index (map (QuotientGroup.mk' K) N)) H : Subgroup (G ⧸ K) hH : IsComplement' (map (QuotientGroup.mk' K) N) H ⊢ ∃ K, K ⊔ N = ⊤ ∧ K ≠ ⊤ [PROOFSTEP] refine' ⟨H.comap (QuotientGroup.mk' K), _, _⟩ [GOAL] case intro.refine'_1 G : Type u inst✝³ : Group G inst✝² : Fintype G N : Subgroup G inst✝¹ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' h3 : ∀ (H : Subgroup G), ¬IsComplement' N H K : Subgroup G inst✝ : Normal K hK : K ≤ N this : Function.Surjective ↑(QuotientGroup.mk' K) h4 : K ≠ ⊥ ∧ K ≠ N h5 : Fintype.card (G ⧸ K) < Fintype.card G h6 : Nat.coprime (Fintype.card { x // x ∈ map (QuotientGroup.mk' K) N }) (index (map (QuotientGroup.mk' K) N)) H : Subgroup (G ⧸ K) hH : IsComplement' (map (QuotientGroup.mk' K) N) H ⊢ comap (QuotientGroup.mk' K) H ⊔ N = ⊤ [PROOFSTEP] have key : (N.map (QuotientGroup.mk' K)).comap (QuotientGroup.mk' K) = N := by refine' comap_map_eq_self _ rwa [QuotientGroup.ker_mk'] [GOAL] G : Type u inst✝³ : Group G inst✝² : Fintype G N : Subgroup G inst✝¹ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' h3 : ∀ (H : Subgroup G), ¬IsComplement' N H K : Subgroup G inst✝ : Normal K hK : K ≤ N this : Function.Surjective ↑(QuotientGroup.mk' K) h4 : K ≠ ⊥ ∧ K ≠ N h5 : Fintype.card (G ⧸ K) < Fintype.card G h6 : Nat.coprime (Fintype.card { x // x ∈ map (QuotientGroup.mk' K) N }) (index (map (QuotientGroup.mk' K) N)) H : Subgroup (G ⧸ K) hH : IsComplement' (map (QuotientGroup.mk' K) N) H ⊢ comap (QuotientGroup.mk' K) (map (QuotientGroup.mk' K) N) = N [PROOFSTEP] refine' comap_map_eq_self _ [GOAL] G : Type u inst✝³ : Group G inst✝² : Fintype G N : Subgroup G inst✝¹ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' h3 : ∀ (H : Subgroup G), ¬IsComplement' N H K : Subgroup G inst✝ : Normal K hK : K ≤ N this : Function.Surjective ↑(QuotientGroup.mk' K) h4 : K ≠ ⊥ ∧ K ≠ N h5 : Fintype.card (G ⧸ K) < Fintype.card G h6 : Nat.coprime (Fintype.card { x // x ∈ map (QuotientGroup.mk' K) N }) (index (map (QuotientGroup.mk' K) N)) H : Subgroup (G ⧸ K) hH : IsComplement' (map (QuotientGroup.mk' K) N) H ⊢ MonoidHom.ker (QuotientGroup.mk' K) ≤ N [PROOFSTEP] rwa [QuotientGroup.ker_mk'] [GOAL] case intro.refine'_1 G : Type u inst✝³ : Group G inst✝² : Fintype G N : Subgroup G inst✝¹ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' h3 : ∀ (H : Subgroup G), ¬IsComplement' N H K : Subgroup G inst✝ : Normal K hK : K ≤ N this : Function.Surjective ↑(QuotientGroup.mk' K) h4 : K ≠ ⊥ ∧ K ≠ N h5 : Fintype.card (G ⧸ K) < Fintype.card G h6 : Nat.coprime (Fintype.card { x // x ∈ map (QuotientGroup.mk' K) N }) (index (map (QuotientGroup.mk' K) N)) H : Subgroup (G ⧸ K) hH : IsComplement' (map (QuotientGroup.mk' K) N) H key : comap (QuotientGroup.mk' K) (map (QuotientGroup.mk' K) N) = N ⊢ comap (QuotientGroup.mk' K) H ⊔ N = ⊤ [PROOFSTEP] rwa [← key, comap_sup_eq, hH.symm.sup_eq_top, comap_top] [GOAL] case intro.refine'_2 G : Type u inst✝³ : Group G inst✝² : Fintype G N : Subgroup G inst✝¹ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' h3 : ∀ (H : Subgroup G), ¬IsComplement' N H K : Subgroup G inst✝ : Normal K hK : K ≤ N this : Function.Surjective ↑(QuotientGroup.mk' K) h4 : K ≠ ⊥ ∧ K ≠ N h5 : Fintype.card (G ⧸ K) < Fintype.card G h6 : Nat.coprime (Fintype.card { x // x ∈ map (QuotientGroup.mk' K) N }) (index (map (QuotientGroup.mk' K) N)) H : Subgroup (G ⧸ K) hH : IsComplement' (map (QuotientGroup.mk' K) N) H ⊢ comap (QuotientGroup.mk' K) H ≠ ⊤ [PROOFSTEP] rw [← comap_top (QuotientGroup.mk' K)] [GOAL] case intro.refine'_2 G : Type u inst✝³ : Group G inst✝² : Fintype G N : Subgroup G inst✝¹ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' h3 : ∀ (H : Subgroup G), ¬IsComplement' N H K : Subgroup G inst✝ : Normal K hK : K ≤ N this : Function.Surjective ↑(QuotientGroup.mk' K) h4 : K ≠ ⊥ ∧ K ≠ N h5 : Fintype.card (G ⧸ K) < Fintype.card G h6 : Nat.coprime (Fintype.card { x // x ∈ map (QuotientGroup.mk' K) N }) (index (map (QuotientGroup.mk' K) N)) H : Subgroup (G ⧸ K) hH : IsComplement' (map (QuotientGroup.mk' K) N) H ⊢ comap (QuotientGroup.mk' K) H ≠ comap (QuotientGroup.mk' K) ⊤ [PROOFSTEP] intro hH' [GOAL] case intro.refine'_2 G : Type u inst✝³ : Group G inst✝² : Fintype G N : Subgroup G inst✝¹ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' h3 : ∀ (H : Subgroup G), ¬IsComplement' N H K : Subgroup G inst✝ : Normal K hK : K ≤ N this : Function.Surjective ↑(QuotientGroup.mk' K) h4 : K ≠ ⊥ ∧ K ≠ N h5 : Fintype.card (G ⧸ K) < Fintype.card G h6 : Nat.coprime (Fintype.card { x // x ∈ map (QuotientGroup.mk' K) N }) (index (map (QuotientGroup.mk' K) N)) H : Subgroup (G ⧸ K) hH : IsComplement' (map (QuotientGroup.mk' K) N) H hH' : comap (QuotientGroup.mk' K) H = comap (QuotientGroup.mk' K) ⊤ ⊢ False [PROOFSTEP] rw [comap_injective this hH', isComplement'_top_right, map_eq_bot_iff, QuotientGroup.ker_mk'] at hH [GOAL] case intro.refine'_2 G : Type u inst✝³ : Group G inst✝² : Fintype G N : Subgroup G inst✝¹ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' h3 : ∀ (H : Subgroup G), ¬IsComplement' N H K : Subgroup G inst✝ : Normal K hK : K ≤ N this : Function.Surjective ↑(QuotientGroup.mk' K) h4 : K ≠ ⊥ ∧ K ≠ N h5 : Fintype.card (G ⧸ K) < Fintype.card G h6 : Nat.coprime (Fintype.card { x // x ∈ map (QuotientGroup.mk' K) N }) (index (map (QuotientGroup.mk' K) N)) H : Subgroup (G ⧸ K) hH : N ≤ K hH' : comap (QuotientGroup.mk' K) H = comap (QuotientGroup.mk' K) ⊤ ⊢ False [PROOFSTEP] exact h4.2 (le_antisymm hK hH) [GOAL] G : Type u inst✝³ : Group G inst✝² : Fintype G N : Subgroup G inst✝¹ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' h3 : ∀ (H : Subgroup G), ¬IsComplement' N H K : Subgroup { x // x ∈ N } inst✝ : Normal (map (Subgroup.subtype N) K) ⊢ K = ⊥ ∨ K = ⊤ [PROOFSTEP] have key := step2 h1 h2 h3 (K.map N.subtype) (map_subtype_le K) [GOAL] G : Type u inst✝³ : Group G inst✝² : Fintype G N : Subgroup G inst✝¹ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' h3 : ∀ (H : Subgroup G), ¬IsComplement' N H K : Subgroup { x // x ∈ N } inst✝ : Normal (map (Subgroup.subtype N) K) key : map (Subgroup.subtype N) K = ⊥ ∨ map (Subgroup.subtype N) K = N ⊢ K = ⊥ ∨ K = ⊤ [PROOFSTEP] rw [← map_bot N.subtype] at key [GOAL] G : Type u inst✝³ : Group G inst✝² : Fintype G N : Subgroup G inst✝¹ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' h3 : ∀ (H : Subgroup G), ¬IsComplement' N H K : Subgroup { x // x ∈ N } inst✝ : Normal (map (Subgroup.subtype N) K) key : map (Subgroup.subtype N) K = map (Subgroup.subtype N) ⊥ ∨ map (Subgroup.subtype N) K = N ⊢ K = ⊥ ∨ K = ⊤ [PROOFSTEP] conv at key => rhs rhs rw [← N.subtype_range, N.subtype.range_eq_map] [GOAL] G : Type u inst✝³ : Group G inst✝² : Fintype G N : Subgroup G inst✝¹ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' h3 : ∀ (H : Subgroup G), ¬IsComplement' N H K : Subgroup { x // x ∈ N } inst✝ : Normal (map (Subgroup.subtype N) K) key : map (Subgroup.subtype N) K = map (Subgroup.subtype N) ⊥ ∨ map (Subgroup.subtype N) K = N | map (Subgroup.subtype N) K = map (Subgroup.subtype N) ⊥ ∨ map (Subgroup.subtype N) K = N [PROOFSTEP] rhs rhs rw [← N.subtype_range, N.subtype.range_eq_map] [GOAL] G : Type u inst✝³ : Group G inst✝² : Fintype G N : Subgroup G inst✝¹ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' h3 : ∀ (H : Subgroup G), ¬IsComplement' N H K : Subgroup { x // x ∈ N } inst✝ : Normal (map (Subgroup.subtype N) K) key : map (Subgroup.subtype N) K = map (Subgroup.subtype N) ⊥ ∨ map (Subgroup.subtype N) K = N | map (Subgroup.subtype N) K = map (Subgroup.subtype N) ⊥ ∨ map (Subgroup.subtype N) K = N [PROOFSTEP] rhs rhs rw [← N.subtype_range, N.subtype.range_eq_map] [GOAL] G : Type u inst✝³ : Group G inst✝² : Fintype G N : Subgroup G inst✝¹ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' h3 : ∀ (H : Subgroup G), ¬IsComplement' N H K : Subgroup { x // x ∈ N } inst✝ : Normal (map (Subgroup.subtype N) K) key : map (Subgroup.subtype N) K = map (Subgroup.subtype N) ⊥ ∨ map (Subgroup.subtype N) K = N | map (Subgroup.subtype N) K = map (Subgroup.subtype N) ⊥ ∨ map (Subgroup.subtype N) K = N [PROOFSTEP] rhs [GOAL] G : Type u inst✝³ : Group G inst✝² : Fintype G N : Subgroup G inst✝¹ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' h3 : ∀ (H : Subgroup G), ¬IsComplement' N H K : Subgroup { x // x ∈ N } inst✝ : Normal (map (Subgroup.subtype N) K) key : map (Subgroup.subtype N) K = map (Subgroup.subtype N) ⊥ ∨ map (Subgroup.subtype N) K = N | map (Subgroup.subtype N) K = N [PROOFSTEP] rhs [GOAL] G : Type u inst✝³ : Group G inst✝² : Fintype G N : Subgroup G inst✝¹ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' h3 : ∀ (H : Subgroup G), ¬IsComplement' N H K : Subgroup { x // x ∈ N } inst✝ : Normal (map (Subgroup.subtype N) K) key : map (Subgroup.subtype N) K = map (Subgroup.subtype N) ⊥ ∨ map (Subgroup.subtype N) K = N | N [PROOFSTEP] rw [← N.subtype_range, N.subtype.range_eq_map] [GOAL] G : Type u inst✝³ : Group G inst✝² : Fintype G N : Subgroup G inst✝¹ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' h3 : ∀ (H : Subgroup G), ¬IsComplement' N H K : Subgroup { x // x ∈ N } inst✝ : Normal (map (Subgroup.subtype N) K) key : map (Subgroup.subtype N) K = map (Subgroup.subtype N) ⊥ ∨ map (Subgroup.subtype N) K = map (Subgroup.subtype N) ⊤ ⊢ K = ⊥ ∨ K = ⊤ [PROOFSTEP] have inj := map_injective N.subtype_injective [GOAL] G : Type u inst✝³ : Group G inst✝² : Fintype G N : Subgroup G inst✝¹ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' h3 : ∀ (H : Subgroup G), ¬IsComplement' N H K : Subgroup { x // x ∈ N } inst✝ : Normal (map (Subgroup.subtype N) K) key : map (Subgroup.subtype N) K = map (Subgroup.subtype N) ⊥ ∨ map (Subgroup.subtype N) K = map (Subgroup.subtype N) ⊤ inj : Function.Injective (map (Subgroup.subtype N)) ⊢ K = ⊥ ∨ K = ⊤ [PROOFSTEP] rwa [inj.eq_iff, inj.eq_iff] at key [GOAL] G : Type u inst✝² : Group G inst✝¹ : Fintype G N : Subgroup G inst✝ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' h3 : ∀ (H : Subgroup G), ¬IsComplement' N H ⊢ IsPGroup (Nat.minFac (Fintype.card { x // x ∈ N })) { x // x ∈ N } [PROOFSTEP] haveI : Fact (Fintype.card N).minFac.Prime := ⟨step4 h1 h3⟩ [GOAL] G : Type u inst✝² : Group G inst✝¹ : Fintype G N : Subgroup G inst✝ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' h3 : ∀ (H : Subgroup G), ¬IsComplement' N H this : Fact (Nat.Prime (Nat.minFac (Fintype.card { x // x ∈ N }))) ⊢ IsPGroup (Nat.minFac (Fintype.card { x // x ∈ N })) { x // x ∈ N } [PROOFSTEP] refine' Sylow.nonempty.elim fun P => P.2.of_surjective P.1.subtype _ [GOAL] G : Type u inst✝² : Group G inst✝¹ : Fintype G N : Subgroup G inst✝ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' h3 : ∀ (H : Subgroup G), ¬IsComplement' N H this : Fact (Nat.Prime (Nat.minFac (Fintype.card { x // x ∈ N }))) P : Sylow (Nat.minFac (Fintype.card { x // x ∈ N })) { x // x ∈ N } ⊢ Function.Surjective ↑(Subgroup.subtype ↑P) [PROOFSTEP] rw [← MonoidHom.range_top_iff_surjective, subtype_range] [GOAL] G : Type u inst✝² : Group G inst✝¹ : Fintype G N : Subgroup G inst✝ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' h3 : ∀ (H : Subgroup G), ¬IsComplement' N H this : Fact (Nat.Prime (Nat.minFac (Fintype.card { x // x ∈ N }))) P : Sylow (Nat.minFac (Fintype.card { x // x ∈ N })) { x // x ∈ N } ⊢ ↑P = ⊤ [PROOFSTEP] haveI : (P.1.map N.subtype).Normal := normalizer_eq_top.mp (step1 h1 h2 h3 (P.1.map N.subtype).normalizer P.normalizer_sup_eq_top) [GOAL] G : Type u inst✝² : Group G inst✝¹ : Fintype G N : Subgroup G inst✝ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' h3 : ∀ (H : Subgroup G), ¬IsComplement' N H this✝ : Fact (Nat.Prime (Nat.minFac (Fintype.card { x // x ∈ N }))) P : Sylow (Nat.minFac (Fintype.card { x // x ∈ N })) { x // x ∈ N } this : Normal (map (Subgroup.subtype N) ↑P) ⊢ ↑P = ⊤ [PROOFSTEP] exact (step3 h1 h2 h3 P.1).resolve_left (step5 h1 h3) [GOAL] G : Type u inst✝² : Group G inst✝¹ : Fintype G N : Subgroup G inst✝ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' h3 : ∀ (H : Subgroup G), ¬IsComplement' N H ⊢ IsCommutative N [PROOFSTEP] haveI := N.bot_or_nontrivial.resolve_left (step0 h1 h3) [GOAL] G : Type u inst✝² : Group G inst✝¹ : Fintype G N : Subgroup G inst✝ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' h3 : ∀ (H : Subgroup G), ¬IsComplement' N H this : Nontrivial { x // x ∈ N } ⊢ IsCommutative N [PROOFSTEP] haveI : Fact (Fintype.card N).minFac.Prime := ⟨step4 h1 h3⟩ [GOAL] G : Type u inst✝² : Group G inst✝¹ : Fintype G N : Subgroup G inst✝ : Normal N h1 : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h2 : ∀ (G' : Type u) [inst : Group G'] [inst_1 : Fintype G'], Fintype.card G' < Fintype.card G → ∀ {N' : Subgroup G'} [inst_2 : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' h3 : ∀ (H : Subgroup G), ¬IsComplement' N H this✝ : Nontrivial { x // x ∈ N } this : Fact (Nat.Prime (Nat.minFac (Fintype.card { x // x ∈ N }))) ⊢ IsCommutative N [PROOFSTEP] exact ⟨⟨fun g h => eq_top_iff.mp ((step3 h1 h2 h3 (center N)).resolve_left (step6 h1 h2 h3).bot_lt_center.ne') (mem_top h) g⟩⟩ [GOAL] n : ℕ G : Type u inst✝² : Group G inst✝¹ : Fintype G hG : Fintype.card G = n N : Subgroup G inst✝ : Normal N hN : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) ⊢ ∃ H, IsComplement' N H [PROOFSTEP] revert G [GOAL] n : ℕ ⊢ ∀ {G : Type u} [inst : Group G] [inst_1 : Fintype G], Fintype.card G = n → ∀ {N : Subgroup G} [inst_2 : Normal N], Nat.coprime (Fintype.card { x // x ∈ N }) (index N) → ∃ H, IsComplement' N H [PROOFSTEP] apply Nat.strongInductionOn n [GOAL] n : ℕ ⊢ ∀ (n : ℕ), (∀ (m : ℕ), m < n → ∀ {G : Type u} [inst : Group G] [inst_1 : Fintype G], Fintype.card G = m → ∀ {N : Subgroup G} [inst_2 : Normal N], Nat.coprime (Fintype.card { x // x ∈ N }) (index N) → ∃ H, IsComplement' N H) → ∀ {G : Type u} [inst : Group G] [inst_1 : Fintype G], Fintype.card G = n → ∀ {N : Subgroup G} [inst_2 : Normal N], Nat.coprime (Fintype.card { x // x ∈ N }) (index N) → ∃ H, IsComplement' N H [PROOFSTEP] rintro n ih G _ _ rfl N _ hN [GOAL] n : ℕ G : Type u inst✝² : Group G inst✝¹ : Fintype G ih : ∀ (m : ℕ), m < Fintype.card G → ∀ {G : Type u} [inst : Group G] [inst_1 : Fintype G], Fintype.card G = m → ∀ {N : Subgroup G} [inst_2 : Normal N], Nat.coprime (Fintype.card { x // x ∈ N }) (index N) → ∃ H, IsComplement' N H N : Subgroup G inst✝ : Normal N hN : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) ⊢ ∃ H, IsComplement' N H [PROOFSTEP] refine' not_forall_not.mp fun h3 => _ [GOAL] n : ℕ G : Type u inst✝² : Group G inst✝¹ : Fintype G ih : ∀ (m : ℕ), m < Fintype.card G → ∀ {G : Type u} [inst : Group G] [inst_1 : Fintype G], Fintype.card G = m → ∀ {N : Subgroup G} [inst_2 : Normal N], Nat.coprime (Fintype.card { x // x ∈ N }) (index N) → ∃ H, IsComplement' N H N : Subgroup G inst✝ : Normal N hN : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h3 : ∀ (x : Subgroup G), ¬IsComplement' N x ⊢ False [PROOFSTEP] haveI := SchurZassenhausInduction.step7 hN (fun G' _ _ hG' => by apply ih _ hG'; rfl) h3 [GOAL] n : ℕ G : Type u inst✝² : Group G inst✝¹ : Fintype G ih : ∀ (m : ℕ), m < Fintype.card G → ∀ {G : Type u} [inst : Group G] [inst_1 : Fintype G], Fintype.card G = m → ∀ {N : Subgroup G} [inst_2 : Normal N], Nat.coprime (Fintype.card { x // x ∈ N }) (index N) → ∃ H, IsComplement' N H N : Subgroup G inst✝ : Normal N hN : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h3 : ∀ (x : Subgroup G), ¬IsComplement' N x G' : Type u x✝¹ : Group G' x✝ : Fintype G' hG' : Fintype.card G' < Fintype.card G ⊢ ∀ {N' : Subgroup G'} [inst : Normal N'], Nat.coprime (Fintype.card { x // x ∈ N' }) (index N') → ∃ H', IsComplement' N' H' [PROOFSTEP] apply ih _ hG' [GOAL] n : ℕ G : Type u inst✝² : Group G inst✝¹ : Fintype G ih : ∀ (m : ℕ), m < Fintype.card G → ∀ {G : Type u} [inst : Group G] [inst_1 : Fintype G], Fintype.card G = m → ∀ {N : Subgroup G} [inst_2 : Normal N], Nat.coprime (Fintype.card { x // x ∈ N }) (index N) → ∃ H, IsComplement' N H N : Subgroup G inst✝ : Normal N hN : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h3 : ∀ (x : Subgroup G), ¬IsComplement' N x G' : Type u x✝¹ : Group G' x✝ : Fintype G' hG' : Fintype.card G' < Fintype.card G ⊢ Fintype.card G' = Fintype.card G' [PROOFSTEP] rfl [GOAL] n : ℕ G : Type u inst✝² : Group G inst✝¹ : Fintype G ih : ∀ (m : ℕ), m < Fintype.card G → ∀ {G : Type u} [inst : Group G] [inst_1 : Fintype G], Fintype.card G = m → ∀ {N : Subgroup G} [inst_2 : Normal N], Nat.coprime (Fintype.card { x // x ∈ N }) (index N) → ∃ H, IsComplement' N H N : Subgroup G inst✝ : Normal N hN : Nat.coprime (Fintype.card { x // x ∈ N }) (index N) h3 : ∀ (x : Subgroup G), ¬IsComplement' N x this : IsCommutative N ⊢ False [PROOFSTEP] rw [← Nat.card_eq_fintype_card] at hN [GOAL] n : ℕ G : Type u inst✝² : Group G inst✝¹ : Fintype G ih : ∀ (m : ℕ), m < Fintype.card G → ∀ {G : Type u} [inst : Group G] [inst_1 : Fintype G], Fintype.card G = m → ∀ {N : Subgroup G} [inst_2 : Normal N], Nat.coprime (Fintype.card { x // x ∈ N }) (index N) → ∃ H, IsComplement' N H N : Subgroup G inst✝ : Normal N hN : Nat.coprime (Nat.card { x // x ∈ N }) (index N) h3 : ∀ (x : Subgroup G), ¬IsComplement' N x this : IsCommutative N ⊢ False [PROOFSTEP] exact not_exists_of_forall_not h3 (exists_right_complement'_of_coprime_aux hN) [GOAL] n : ℕ G : Type u inst✝¹ : Group G N : Subgroup G inst✝ : Normal N hN : Nat.coprime (Nat.card { x // x ∈ N }) (index N) ⊢ ∃ H, IsComplement' N H [PROOFSTEP] by_cases hN1 : Nat.card N = 0 [GOAL] case pos n : ℕ G : Type u inst✝¹ : Group G N : Subgroup G inst✝ : Normal N hN : Nat.coprime (Nat.card { x // x ∈ N }) (index N) hN1 : Nat.card { x // x ∈ N } = 0 ⊢ ∃ H, IsComplement' N H [PROOFSTEP] rw [hN1, Nat.coprime_zero_left, index_eq_one] at hN [GOAL] case pos n : ℕ G : Type u inst✝¹ : Group G N : Subgroup G inst✝ : Normal N hN : N = ⊤ hN1 : Nat.card { x // x ∈ N } = 0 ⊢ ∃ H, IsComplement' N H [PROOFSTEP] rw [hN] [GOAL] case pos n : ℕ G : Type u inst✝¹ : Group G N : Subgroup G inst✝ : Normal N hN : N = ⊤ hN1 : Nat.card { x // x ∈ N } = 0 ⊢ ∃ H, IsComplement' ⊤ H [PROOFSTEP] exact ⟨⊥, isComplement'_top_bot⟩ [GOAL] case neg n : ℕ G : Type u inst✝¹ : Group G N : Subgroup G inst✝ : Normal N hN : Nat.coprime (Nat.card { x // x ∈ N }) (index N) hN1 : ¬Nat.card { x // x ∈ N } = 0 ⊢ ∃ H, IsComplement' N H [PROOFSTEP] by_cases hN2 : N.index = 0 [GOAL] case pos n : ℕ G : Type u inst✝¹ : Group G N : Subgroup G inst✝ : Normal N hN : Nat.coprime (Nat.card { x // x ∈ N }) (index N) hN1 : ¬Nat.card { x // x ∈ N } = 0 hN2 : index N = 0 ⊢ ∃ H, IsComplement' N H [PROOFSTEP] rw [hN2, Nat.coprime_zero_right] at hN [GOAL] case pos n : ℕ G : Type u inst✝¹ : Group G N : Subgroup G inst✝ : Normal N hN : Nat.card { x // x ∈ N } = 1 hN1 : ¬Nat.card { x // x ∈ N } = 0 hN2 : index N = 0 ⊢ ∃ H, IsComplement' N H [PROOFSTEP] haveI := (Cardinal.toNat_eq_one_iff_unique.mp hN).1 [GOAL] case pos n : ℕ G : Type u inst✝¹ : Group G N : Subgroup G inst✝ : Normal N hN : Nat.card { x // x ∈ N } = 1 hN1 : ¬Nat.card { x // x ∈ N } = 0 hN2 : index N = 0 this : Subsingleton { x // x ∈ N } ⊢ ∃ H, IsComplement' N H [PROOFSTEP] rw [N.eq_bot_of_subsingleton] [GOAL] case pos n : ℕ G : Type u inst✝¹ : Group G N : Subgroup G inst✝ : Normal N hN : Nat.card { x // x ∈ N } = 1 hN1 : ¬Nat.card { x // x ∈ N } = 0 hN2 : index N = 0 this : Subsingleton { x // x ∈ N } ⊢ ∃ H, IsComplement' ⊥ H [PROOFSTEP] exact ⟨⊤, isComplement'_bot_top⟩ [GOAL] case neg n : ℕ G : Type u inst✝¹ : Group G N : Subgroup G inst✝ : Normal N hN : Nat.coprime (Nat.card { x // x ∈ N }) (index N) hN1 : ¬Nat.card { x // x ∈ N } = 0 hN2 : ¬index N = 0 ⊢ ∃ H, IsComplement' N H [PROOFSTEP] have hN3 : Nat.card G ≠ 0 := by rw [← N.card_mul_index] exact mul_ne_zero hN1 hN2 [GOAL] n : ℕ G : Type u inst✝¹ : Group G N : Subgroup G inst✝ : Normal N hN : Nat.coprime (Nat.card { x // x ∈ N }) (index N) hN1 : ¬Nat.card { x // x ∈ N } = 0 hN2 : ¬index N = 0 ⊢ Nat.card G ≠ 0 [PROOFSTEP] rw [← N.card_mul_index] [GOAL] n : ℕ G : Type u inst✝¹ : Group G N : Subgroup G inst✝ : Normal N hN : Nat.coprime (Nat.card { x // x ∈ N }) (index N) hN1 : ¬Nat.card { x // x ∈ N } = 0 hN2 : ¬index N = 0 ⊢ Nat.card { x // x ∈ N } * index N ≠ 0 [PROOFSTEP] exact mul_ne_zero hN1 hN2 [GOAL] case neg n : ℕ G : Type u inst✝¹ : Group G N : Subgroup G inst✝ : Normal N hN : Nat.coprime (Nat.card { x // x ∈ N }) (index N) hN1 : ¬Nat.card { x // x ∈ N } = 0 hN2 : ¬index N = 0 hN3 : Nat.card G ≠ 0 ⊢ ∃ H, IsComplement' N H [PROOFSTEP] haveI := (Cardinal.lt_aleph0_iff_fintype.mp (lt_of_not_ge (mt Cardinal.toNat_apply_of_aleph0_le hN3))).some [GOAL] case neg n : ℕ G : Type u inst✝¹ : Group G N : Subgroup G inst✝ : Normal N hN : Nat.coprime (Nat.card { x // x ∈ N }) (index N) hN1 : ¬Nat.card { x // x ∈ N } = 0 hN2 : ¬index N = 0 hN3 : Nat.card G ≠ 0 this : Fintype G ⊢ ∃ H, IsComplement' N H [PROOFSTEP] apply exists_right_complement'_of_coprime_of_fintype [GOAL] case neg.hN n : ℕ G : Type u inst✝¹ : Group G N : Subgroup G inst✝ : Normal N hN : Nat.coprime (Nat.card { x // x ∈ N }) (index N) hN1 : ¬Nat.card { x // x ∈ N } = 0 hN2 : ¬index N = 0 hN3 : Nat.card G ≠ 0 this : Fintype G ⊢ Nat.coprime (Fintype.card { x // x ∈ N }) (index N) [PROOFSTEP] rwa [← Nat.card_eq_fintype_card]
{"mathlib_filename": "Mathlib.GroupTheory.SchurZassenhaus", "llama_tokens": 32379}
[GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H a b : G ha : a ∈ {x | ∀ (y : G), x * y * x⁻¹ * y⁻¹ ∈ H} hb : b ∈ {x | ∀ (y : G), x * y * x⁻¹ * y⁻¹ ∈ H} y : G ⊢ a * b * y * (a * b)⁻¹ * y⁻¹ ∈ H [PROOFSTEP] convert Subgroup.mul_mem _ (ha (b * y * b⁻¹)) (hb y) using 1 [GOAL] case h.e'_4 G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H a b : G ha : a ∈ {x | ∀ (y : G), x * y * x⁻¹ * y⁻¹ ∈ H} hb : b ∈ {x | ∀ (y : G), x * y * x⁻¹ * y⁻¹ ∈ H} y : G ⊢ a * b * y * (a * b)⁻¹ * y⁻¹ = a * (b * y * b⁻¹) * a⁻¹ * (b * y * b⁻¹)⁻¹ * (b * y * b⁻¹ * y⁻¹) [PROOFSTEP] group [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H y : G ⊢ 1 * y * 1⁻¹ * y⁻¹ ∈ H [PROOFSTEP] simp [Subgroup.one_mem] [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H x : G hx : x ∈ { toSubsemigroup := { carrier := {x | ∀ (y : G), x * y * x⁻¹ * y⁻¹ ∈ H}, mul_mem' := (_ : ∀ {a b : G} {ha : a ∈ {x | ∀ (y : G), x * y * x⁻¹ * y⁻¹ ∈ H}} {hb : b ∈ {x | ∀ (y : G), x * y * x⁻¹ * y⁻¹ ∈ H}} {y : G}, a * b * y * (a * b)⁻¹ * y⁻¹ ∈ H) }, one_mem' := (_ : ∀ (y : G), 1 * y * 1⁻¹ * y⁻¹ ∈ H) }.toSubsemigroup.carrier y : G ⊢ x⁻¹ * y * x⁻¹⁻¹ * y⁻¹ ∈ H [PROOFSTEP] specialize hx y⁻¹ [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H x y : G hx : x * y⁻¹ * x⁻¹ * y⁻¹⁻¹ ∈ H ⊢ x⁻¹ * y * x⁻¹⁻¹ * y⁻¹ ∈ H [PROOFSTEP] rw [mul_assoc, inv_inv] at hx ⊢ [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H x y : G hx : x * y⁻¹ * (x⁻¹ * y) ∈ H ⊢ x⁻¹ * y * (x * y⁻¹) ∈ H [PROOFSTEP] exact Subgroup.Normal.mem_comm inferInstance hx [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H ⊢ upperCentralSeriesStep H = comap (mk' H) (center (G ⧸ H)) [PROOFSTEP] ext [GOAL] case h G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H x✝ : G ⊢ x✝ ∈ upperCentralSeriesStep H ↔ x✝ ∈ comap (mk' H) (center (G ⧸ H)) [PROOFSTEP] rw [mem_comap, mem_center_iff, forall_mk] [GOAL] case h G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H x✝ : G ⊢ x✝ ∈ upperCentralSeriesStep H ↔ ∀ (x : G), ↑x * ↑(mk' H) x✝ = ↑(mk' H) x✝ * ↑x [PROOFSTEP] apply forall_congr' [GOAL] case h.h G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H x✝ : G ⊢ ∀ (a : G), x✝ * a * x✝⁻¹ * a⁻¹ ∈ H ↔ ↑a * ↑(mk' H) x✝ = ↑(mk' H) x✝ * ↑a [PROOFSTEP] intro y [GOAL] case h.h G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H x✝ y : G ⊢ x✝ * y * x✝⁻¹ * y⁻¹ ∈ H ↔ ↑y * ↑(mk' H) x✝ = ↑(mk' H) x✝ * ↑y [PROOFSTEP] rw [coe_mk', ← QuotientGroup.mk_mul, ← QuotientGroup.mk_mul, eq_comm, eq_iff_div_mem, div_eq_mul_inv, mul_inv_rev, mul_assoc] [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H ⊢ Normal (upperCentralSeriesStep H) [PROOFSTEP] rw [upperCentralSeriesStep_eq_comap_center] [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H ⊢ Normal (comap (mk' H) (center (G ⧸ H))) [PROOFSTEP] infer_instance [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H ⊢ upperCentralSeries G 1 = center G [PROOFSTEP] ext [GOAL] case h G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H x✝ : G ⊢ x✝ ∈ upperCentralSeries G 1 ↔ x✝ ∈ center G [PROOFSTEP] simp only [upperCentralSeries, upperCentralSeriesAux, upperCentralSeriesStep, center, Set.center, mem_mk, mem_bot, Set.mem_setOf_eq] [GOAL] case h G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H x✝ : G ⊢ (∀ (y : G), x✝ * y * x✝⁻¹ * y⁻¹ = 1) ↔ ∀ (m : G), m * x✝ = x✝ * m [PROOFSTEP] exact forall_congr' fun y => by rw [mul_inv_eq_one, mul_inv_eq_iff_eq_mul, eq_comm] [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H x✝ y : G ⊢ x✝ * y * x✝⁻¹ * y⁻¹ = 1 ↔ y * x✝ = x✝ * y [PROOFSTEP] rw [mul_inv_eq_one, mul_inv_eq_iff_eq_mul, eq_comm] [GOAL] G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ H : ℕ → Subgroup G hH : IsAscendingCentralSeries H n : ℕ ⊢ H (n + 1) ≤ upperCentralSeries G (n + 1) [PROOFSTEP] intro x hx [GOAL] G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ H : ℕ → Subgroup G hH : IsAscendingCentralSeries H n : ℕ x : G hx : x ∈ H (n + 1) ⊢ x ∈ upperCentralSeries G (n + 1) [PROOFSTEP] rw [mem_upperCentralSeries_succ_iff] [GOAL] G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ H : ℕ → Subgroup G hH : IsAscendingCentralSeries H n : ℕ x : G hx : x ∈ H (n + 1) ⊢ ∀ (y : G), x * y * x⁻¹ * y⁻¹ ∈ upperCentralSeries G n [PROOFSTEP] exact fun y => ascending_central_series_le_upper H hH n (hH.2 x n hx y) [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H ⊢ Monotone (upperCentralSeries G) [PROOFSTEP] refine' monotone_nat_of_le_succ _ [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H ⊢ ∀ (n : ℕ), upperCentralSeries G n ≤ upperCentralSeries G (n + 1) [PROOFSTEP] intro n x hx y [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H n : ℕ x : G hx : x ∈ upperCentralSeries G n y : G ⊢ x * y * x⁻¹ * y⁻¹ ∈ (upperCentralSeriesAux G (Nat.add n 0)).fst [PROOFSTEP] rw [mul_assoc, mul_assoc, ← mul_assoc y x⁻¹ y⁻¹] [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H n : ℕ x : G hx : x ∈ upperCentralSeries G n y : G ⊢ x * (y * x⁻¹ * y⁻¹) ∈ (upperCentralSeriesAux G (Nat.add n 0)).fst [PROOFSTEP] exact mul_mem hx (Normal.conj_mem (upperCentralSeries_normal G n) x⁻¹ (inv_mem hx) y) [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H ⊢ Group.IsNilpotent G ↔ ∃ n H, IsAscendingCentralSeries H ∧ H n = ⊤ [PROOFSTEP] constructor [GOAL] case mp G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H ⊢ Group.IsNilpotent G → ∃ n H, IsAscendingCentralSeries H ∧ H n = ⊤ [PROOFSTEP] rintro ⟨n, nH⟩ [GOAL] case mp.mk.intro G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H n : ℕ nH : upperCentralSeries G n = ⊤ ⊢ ∃ n H, IsAscendingCentralSeries H ∧ H n = ⊤ [PROOFSTEP] refine' ⟨_, _, upperCentralSeries_isAscendingCentralSeries G, nH⟩ [GOAL] case mpr G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H ⊢ (∃ n H, IsAscendingCentralSeries H ∧ H n = ⊤) → Group.IsNilpotent G [PROOFSTEP] rintro ⟨n, H, hH, hn⟩ [GOAL] case mpr.intro.intro.intro G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ n : ℕ H : ℕ → Subgroup G hH : IsAscendingCentralSeries H hn : H n = ⊤ ⊢ Group.IsNilpotent G [PROOFSTEP] use n [GOAL] case h G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ n : ℕ H : ℕ → Subgroup G hH : IsAscendingCentralSeries H hn : H n = ⊤ ⊢ upperCentralSeries G n = ⊤ [PROOFSTEP] rw [eq_top_iff, ← hn] [GOAL] case h G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ n : ℕ H : ℕ → Subgroup G hH : IsAscendingCentralSeries H hn : H n = ⊤ ⊢ H n ≤ upperCentralSeries G n [PROOFSTEP] exact ascending_central_series_le_upper H hH n [GOAL] G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ H : ℕ → Subgroup G n : ℕ hn : H n = ⊤ hasc : IsAscendingCentralSeries H ⊢ IsDescendingCentralSeries fun m => H (n - m) [PROOFSTEP] cases' hasc with h0 hH [GOAL] case intro G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ H : ℕ → Subgroup G n : ℕ hn : H n = ⊤ h0 : H 0 = ⊥ hH : ∀ (x : G) (n : ℕ), x ∈ H (n + 1) → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ H n ⊢ IsDescendingCentralSeries fun m => H (n - m) [PROOFSTEP] refine' ⟨hn, fun x m hx g => _⟩ [GOAL] case intro G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ H : ℕ → Subgroup G n : ℕ hn : H n = ⊤ h0 : H 0 = ⊥ hH : ∀ (x : G) (n : ℕ), x ∈ H (n + 1) → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ H n x : G m : ℕ hx : x ∈ (fun m => H (n - m)) m g : G ⊢ x * g * x⁻¹ * g⁻¹ ∈ (fun m => H (n - m)) (m + 1) [PROOFSTEP] dsimp at hx [GOAL] case intro G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ H : ℕ → Subgroup G n : ℕ hn : H n = ⊤ h0 : H 0 = ⊥ hH : ∀ (x : G) (n : ℕ), x ∈ H (n + 1) → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ H n x : G m : ℕ hx : x ∈ H (n - m) g : G ⊢ x * g * x⁻¹ * g⁻¹ ∈ (fun m => H (n - m)) (m + 1) [PROOFSTEP] by_cases hm : n ≤ m [GOAL] case pos G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ H : ℕ → Subgroup G n : ℕ hn : H n = ⊤ h0 : H 0 = ⊥ hH : ∀ (x : G) (n : ℕ), x ∈ H (n + 1) → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ H n x : G m : ℕ hx : x ∈ H (n - m) g : G hm : n ≤ m ⊢ x * g * x⁻¹ * g⁻¹ ∈ (fun m => H (n - m)) (m + 1) [PROOFSTEP] rw [tsub_eq_zero_of_le hm, h0, Subgroup.mem_bot] at hx [GOAL] case pos G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ H : ℕ → Subgroup G n : ℕ hn : H n = ⊤ h0 : H 0 = ⊥ hH : ∀ (x : G) (n : ℕ), x ∈ H (n + 1) → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ H n x : G m : ℕ hx : x = 1 g : G hm : n ≤ m ⊢ x * g * x⁻¹ * g⁻¹ ∈ (fun m => H (n - m)) (m + 1) [PROOFSTEP] subst hx [GOAL] case pos G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ H : ℕ → Subgroup G n : ℕ hn : H n = ⊤ h0 : H 0 = ⊥ hH : ∀ (x : G) (n : ℕ), x ∈ H (n + 1) → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ H n m : ℕ g : G hm : n ≤ m ⊢ 1 * g * 1⁻¹ * g⁻¹ ∈ (fun m => H (n - m)) (m + 1) [PROOFSTEP] rw [show (1 : G) * g * (1⁻¹ : G) * g⁻¹ = 1 by group] [GOAL] G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ H : ℕ → Subgroup G n : ℕ hn : H n = ⊤ h0 : H 0 = ⊥ hH : ∀ (x : G) (n : ℕ), x ∈ H (n + 1) → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ H n m : ℕ g : G hm : n ≤ m ⊢ 1 * g * 1⁻¹ * g⁻¹ = 1 [PROOFSTEP] group [GOAL] case pos G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ H : ℕ → Subgroup G n : ℕ hn : H n = ⊤ h0 : H 0 = ⊥ hH : ∀ (x : G) (n : ℕ), x ∈ H (n + 1) → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ H n m : ℕ g : G hm : n ≤ m ⊢ 1 ∈ (fun m => H (n - m)) (m + 1) [PROOFSTEP] exact Subgroup.one_mem _ [GOAL] case neg G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ H : ℕ → Subgroup G n : ℕ hn : H n = ⊤ h0 : H 0 = ⊥ hH : ∀ (x : G) (n : ℕ), x ∈ H (n + 1) → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ H n x : G m : ℕ hx : x ∈ H (n - m) g : G hm : ¬n ≤ m ⊢ x * g * x⁻¹ * g⁻¹ ∈ (fun m => H (n - m)) (m + 1) [PROOFSTEP] push_neg at hm [GOAL] case neg G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ H : ℕ → Subgroup G n : ℕ hn : H n = ⊤ h0 : H 0 = ⊥ hH : ∀ (x : G) (n : ℕ), x ∈ H (n + 1) → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ H n x : G m : ℕ hx : x ∈ H (n - m) g : G hm : m < n ⊢ x * g * x⁻¹ * g⁻¹ ∈ (fun m => H (n - m)) (m + 1) [PROOFSTEP] apply hH [GOAL] case neg.a G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ H : ℕ → Subgroup G n : ℕ hn : H n = ⊤ h0 : H 0 = ⊥ hH : ∀ (x : G) (n : ℕ), x ∈ H (n + 1) → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ H n x : G m : ℕ hx : x ∈ H (n - m) g : G hm : m < n ⊢ x ∈ H (n - (m + 1) + 1) [PROOFSTEP] convert hx using 1 [GOAL] case h.e'_5 G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ H : ℕ → Subgroup G n : ℕ hn : H n = ⊤ h0 : H 0 = ⊥ hH : ∀ (x : G) (n : ℕ), x ∈ H (n + 1) → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ H n x : G m : ℕ hx : x ∈ H (n - m) g : G hm : m < n ⊢ H (n - (m + 1) + 1) = H (n - m) [PROOFSTEP] rw [tsub_add_eq_add_tsub (Nat.succ_le_of_lt hm), Nat.succ_sub_succ] [GOAL] G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ H : ℕ → Subgroup G n : ℕ hn : H n = ⊥ hdesc : IsDescendingCentralSeries H ⊢ IsAscendingCentralSeries fun m => H (n - m) [PROOFSTEP] cases' hdesc with h0 hH [GOAL] case intro G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ H : ℕ → Subgroup G n : ℕ hn : H n = ⊥ h0 : H 0 = ⊤ hH : ∀ (x : G) (n : ℕ), x ∈ H n → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ H (n + 1) ⊢ IsAscendingCentralSeries fun m => H (n - m) [PROOFSTEP] refine' ⟨hn, fun x m hx g => _⟩ [GOAL] case intro G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ H : ℕ → Subgroup G n : ℕ hn : H n = ⊥ h0 : H 0 = ⊤ hH : ∀ (x : G) (n : ℕ), x ∈ H n → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ H (n + 1) x : G m : ℕ hx : x ∈ (fun m => H (n - m)) (m + 1) g : G ⊢ x * g * x⁻¹ * g⁻¹ ∈ (fun m => H (n - m)) m [PROOFSTEP] dsimp only at hx ⊢ [GOAL] case intro G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ H : ℕ → Subgroup G n : ℕ hn : H n = ⊥ h0 : H 0 = ⊤ hH : ∀ (x : G) (n : ℕ), x ∈ H n → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ H (n + 1) x : G m : ℕ hx : x ∈ H (n - (m + 1)) g : G ⊢ x * g * x⁻¹ * g⁻¹ ∈ H (n - m) [PROOFSTEP] by_cases hm : n ≤ m [GOAL] case pos G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ H : ℕ → Subgroup G n : ℕ hn : H n = ⊥ h0 : H 0 = ⊤ hH : ∀ (x : G) (n : ℕ), x ∈ H n → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ H (n + 1) x : G m : ℕ hx : x ∈ H (n - (m + 1)) g : G hm : n ≤ m ⊢ x * g * x⁻¹ * g⁻¹ ∈ H (n - m) [PROOFSTEP] have hnm : n - m = 0 := tsub_eq_zero_iff_le.mpr hm [GOAL] case pos G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ H : ℕ → Subgroup G n : ℕ hn : H n = ⊥ h0 : H 0 = ⊤ hH : ∀ (x : G) (n : ℕ), x ∈ H n → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ H (n + 1) x : G m : ℕ hx : x ∈ H (n - (m + 1)) g : G hm : n ≤ m hnm : n - m = 0 ⊢ x * g * x⁻¹ * g⁻¹ ∈ H (n - m) [PROOFSTEP] rw [hnm, h0] [GOAL] case pos G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ H : ℕ → Subgroup G n : ℕ hn : H n = ⊥ h0 : H 0 = ⊤ hH : ∀ (x : G) (n : ℕ), x ∈ H n → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ H (n + 1) x : G m : ℕ hx : x ∈ H (n - (m + 1)) g : G hm : n ≤ m hnm : n - m = 0 ⊢ x * g * x⁻¹ * g⁻¹ ∈ ⊤ [PROOFSTEP] exact mem_top _ [GOAL] case neg G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ H : ℕ → Subgroup G n : ℕ hn : H n = ⊥ h0 : H 0 = ⊤ hH : ∀ (x : G) (n : ℕ), x ∈ H n → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ H (n + 1) x : G m : ℕ hx : x ∈ H (n - (m + 1)) g : G hm : ¬n ≤ m ⊢ x * g * x⁻¹ * g⁻¹ ∈ H (n - m) [PROOFSTEP] push_neg at hm [GOAL] case neg G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ H : ℕ → Subgroup G n : ℕ hn : H n = ⊥ h0 : H 0 = ⊤ hH : ∀ (x : G) (n : ℕ), x ∈ H n → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ H (n + 1) x : G m : ℕ hx : x ∈ H (n - (m + 1)) g : G hm : m < n ⊢ x * g * x⁻¹ * g⁻¹ ∈ H (n - m) [PROOFSTEP] convert hH x _ hx g using 1 [GOAL] case h.e'_5 G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ H : ℕ → Subgroup G n : ℕ hn : H n = ⊥ h0 : H 0 = ⊤ hH : ∀ (x : G) (n : ℕ), x ∈ H n → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ H (n + 1) x : G m : ℕ hx : x ∈ H (n - (m + 1)) g : G hm : m < n ⊢ H (n - m) = H (n - (m + 1) + 1) [PROOFSTEP] rw [tsub_add_eq_add_tsub (Nat.succ_le_of_lt hm), Nat.succ_sub_succ] [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H ⊢ Group.IsNilpotent G ↔ ∃ n H, IsDescendingCentralSeries H ∧ H n = ⊥ [PROOFSTEP] rw [nilpotent_iff_finite_ascending_central_series] [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H ⊢ (∃ n H, IsAscendingCentralSeries H ∧ H n = ⊤) ↔ ∃ n H, IsDescendingCentralSeries H ∧ H n = ⊥ [PROOFSTEP] constructor [GOAL] case mp G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H ⊢ (∃ n H, IsAscendingCentralSeries H ∧ H n = ⊤) → ∃ n H, IsDescendingCentralSeries H ∧ H n = ⊥ [PROOFSTEP] rintro ⟨n, H, hH, hn⟩ [GOAL] case mp.intro.intro.intro G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ n : ℕ H : ℕ → Subgroup G hH : IsAscendingCentralSeries H hn : H n = ⊤ ⊢ ∃ n H, IsDescendingCentralSeries H ∧ H n = ⊥ [PROOFSTEP] refine ⟨n, fun m => H (n - m), is_decending_rev_series_of_is_ascending G hn hH, ?_⟩ [GOAL] case mp.intro.intro.intro G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ n : ℕ H : ℕ → Subgroup G hH : IsAscendingCentralSeries H hn : H n = ⊤ ⊢ (fun m => H (n - m)) n = ⊥ [PROOFSTEP] dsimp only [GOAL] case mp.intro.intro.intro G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ n : ℕ H : ℕ → Subgroup G hH : IsAscendingCentralSeries H hn : H n = ⊤ ⊢ H (n - n) = ⊥ [PROOFSTEP] rw [tsub_self] [GOAL] case mp.intro.intro.intro G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ n : ℕ H : ℕ → Subgroup G hH : IsAscendingCentralSeries H hn : H n = ⊤ ⊢ H 0 = ⊥ [PROOFSTEP] exact hH.1 [GOAL] case mpr G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H ⊢ (∃ n H, IsDescendingCentralSeries H ∧ H n = ⊥) → ∃ n H, IsAscendingCentralSeries H ∧ H n = ⊤ [PROOFSTEP] rintro ⟨n, H, hH, hn⟩ [GOAL] case mpr.intro.intro.intro G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ n : ℕ H : ℕ → Subgroup G hH : IsDescendingCentralSeries H hn : H n = ⊥ ⊢ ∃ n H, IsAscendingCentralSeries H ∧ H n = ⊤ [PROOFSTEP] refine ⟨n, fun m => H (n - m), is_ascending_rev_series_of_is_descending G hn hH, ?_⟩ [GOAL] case mpr.intro.intro.intro G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ n : ℕ H : ℕ → Subgroup G hH : IsDescendingCentralSeries H hn : H n = ⊥ ⊢ (fun m => H (n - m)) n = ⊤ [PROOFSTEP] dsimp only [GOAL] case mpr.intro.intro.intro G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ n : ℕ H : ℕ → Subgroup G hH : IsDescendingCentralSeries H hn : H n = ⊥ ⊢ H (n - n) = ⊤ [PROOFSTEP] rw [tsub_self] [GOAL] case mpr.intro.intro.intro G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ n : ℕ H : ℕ → Subgroup G hH : IsDescendingCentralSeries H hn : H n = ⊥ ⊢ H 0 = ⊤ [PROOFSTEP] exact hH.1 [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H n : ℕ ⊢ Normal (lowerCentralSeries G n) [PROOFSTEP] induction' n with d hd [GOAL] case zero G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H ⊢ Normal (lowerCentralSeries G Nat.zero) [PROOFSTEP] exact (⊤ : Subgroup G).normal_of_characteristic [GOAL] case succ G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H d : ℕ hd : Normal (lowerCentralSeries G d) ⊢ Normal (lowerCentralSeries G (Nat.succ d)) [PROOFSTEP] exact @Subgroup.commutator_normal _ _ (lowerCentralSeries G d) ⊤ hd _ [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H ⊢ Antitone (lowerCentralSeries G) [PROOFSTEP] refine' antitone_nat_of_succ_le fun n x hx => _ [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H n : ℕ x : G hx : x ∈ lowerCentralSeries G (n + 1) ⊢ x ∈ lowerCentralSeries G n [PROOFSTEP] simp only [mem_lowerCentralSeries_succ_iff, exists_prop, mem_top, exists_true_left, true_and_iff] at hx [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H n : ℕ x : G hx : x ∈ closure {x | ∃ p, p ∈ lowerCentralSeries G n ∧ ∃ q, p * q * p⁻¹ * q⁻¹ = x} ⊢ x ∈ lowerCentralSeries G n [PROOFSTEP] refine' closure_induction hx _ (Subgroup.one_mem _) (@Subgroup.mul_mem _ _ _) (@Subgroup.inv_mem _ _ _) [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H n : ℕ x : G hx : x ∈ closure {x | ∃ p, p ∈ lowerCentralSeries G n ∧ ∃ q, p * q * p⁻¹ * q⁻¹ = x} ⊢ ∀ (x : G), x ∈ {x | ∃ p, p ∈ lowerCentralSeries G n ∧ ∃ q, p * q * p⁻¹ * q⁻¹ = x} → x ∈ lowerCentralSeries G n [PROOFSTEP] rintro y ⟨z, hz, a, ha⟩ [GOAL] case intro.intro.intro G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H n : ℕ x : G hx : x ∈ closure {x | ∃ p, p ∈ lowerCentralSeries G n ∧ ∃ q, p * q * p⁻¹ * q⁻¹ = x} y z : G hz : z ∈ lowerCentralSeries G n a : G ha : z * a * z⁻¹ * a⁻¹ = y ⊢ y ∈ lowerCentralSeries G n [PROOFSTEP] rw [← ha, mul_assoc, mul_assoc, ← mul_assoc a z⁻¹ a⁻¹] [GOAL] case intro.intro.intro G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H n : ℕ x : G hx : x ∈ closure {x | ∃ p, p ∈ lowerCentralSeries G n ∧ ∃ q, p * q * p⁻¹ * q⁻¹ = x} y z : G hz : z ∈ lowerCentralSeries G n a : G ha : z * a * z⁻¹ * a⁻¹ = y ⊢ z * (a * z⁻¹ * a⁻¹) ∈ lowerCentralSeries G n [PROOFSTEP] exact mul_mem hz (Normal.conj_mem (lowerCentralSeries_normal n) z⁻¹ (inv_mem hz) a) [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H ⊢ IsDescendingCentralSeries (lowerCentralSeries G) [PROOFSTEP] constructor [GOAL] case left G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H ⊢ lowerCentralSeries G 0 = ⊤ case right G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H ⊢ ∀ (x : G) (n : ℕ), x ∈ lowerCentralSeries G n → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ lowerCentralSeries G (n + 1) [PROOFSTEP] rfl [GOAL] case right G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H ⊢ ∀ (x : G) (n : ℕ), x ∈ lowerCentralSeries G n → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ lowerCentralSeries G (n + 1) [PROOFSTEP] intro x n hxn g [GOAL] case right G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H x : G n : ℕ hxn : x ∈ lowerCentralSeries G n g : G ⊢ x * g * x⁻¹ * g⁻¹ ∈ lowerCentralSeries G (n + 1) [PROOFSTEP] exact commutator_mem_commutator hxn (mem_top g) [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H ⊢ Group.IsNilpotent G ↔ ∃ n, lowerCentralSeries G n = ⊥ [PROOFSTEP] rw [nilpotent_iff_finite_descending_central_series] [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H ⊢ (∃ n H, IsDescendingCentralSeries H ∧ H n = ⊥) ↔ ∃ n, lowerCentralSeries G n = ⊥ [PROOFSTEP] constructor [GOAL] case mp G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H ⊢ (∃ n H, IsDescendingCentralSeries H ∧ H n = ⊥) → ∃ n, lowerCentralSeries G n = ⊥ [PROOFSTEP] rintro ⟨n, H, ⟨h0, hs⟩, hn⟩ [GOAL] case mp.intro.intro.intro.intro G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ n : ℕ H : ℕ → Subgroup G hn : H n = ⊥ h0 : H 0 = ⊤ hs : ∀ (x : G) (n : ℕ), x ∈ H n → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ H (n + 1) ⊢ ∃ n, lowerCentralSeries G n = ⊥ [PROOFSTEP] use n [GOAL] case h G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ n : ℕ H : ℕ → Subgroup G hn : H n = ⊥ h0 : H 0 = ⊤ hs : ∀ (x : G) (n : ℕ), x ∈ H n → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ H (n + 1) ⊢ lowerCentralSeries G n = ⊥ [PROOFSTEP] rw [eq_bot_iff, ← hn] [GOAL] case h G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ n : ℕ H : ℕ → Subgroup G hn : H n = ⊥ h0 : H 0 = ⊤ hs : ∀ (x : G) (n : ℕ), x ∈ H n → ∀ (g : G), x * g * x⁻¹ * g⁻¹ ∈ H (n + 1) ⊢ lowerCentralSeries G n ≤ H n [PROOFSTEP] exact descending_central_series_ge_lower H ⟨h0, hs⟩ n [GOAL] case mpr G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H ⊢ (∃ n, lowerCentralSeries G n = ⊥) → ∃ n H, IsDescendingCentralSeries H ∧ H n = ⊥ [PROOFSTEP] rintro ⟨n, hn⟩ [GOAL] case mpr.intro G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H n : ℕ hn : lowerCentralSeries G n = ⊥ ⊢ ∃ n H, IsDescendingCentralSeries H ∧ H n = ⊥ [PROOFSTEP] exact ⟨n, lowerCentralSeries G, lowerCentralSeries_isDescendingCentralSeries, hn⟩ [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H hG : Group.IsNilpotent G n : ℕ ⊢ upperCentralSeries G n = ⊤ ↔ nilpotencyClass G ≤ n [PROOFSTEP] constructor [GOAL] case mp G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H hG : Group.IsNilpotent G n : ℕ ⊢ upperCentralSeries G n = ⊤ → nilpotencyClass G ≤ n [PROOFSTEP] intro h [GOAL] case mp G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H hG : Group.IsNilpotent G n : ℕ h : upperCentralSeries G n = ⊤ ⊢ nilpotencyClass G ≤ n [PROOFSTEP] exact Nat.find_le h [GOAL] case mpr G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H hG : Group.IsNilpotent G n : ℕ ⊢ nilpotencyClass G ≤ n → upperCentralSeries G n = ⊤ [PROOFSTEP] intro h [GOAL] case mpr G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H hG : Group.IsNilpotent G n : ℕ h : nilpotencyClass G ≤ n ⊢ upperCentralSeries G n = ⊤ [PROOFSTEP] apply eq_top_iff.mpr [GOAL] case mpr G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H hG : Group.IsNilpotent G n : ℕ h : nilpotencyClass G ≤ n ⊢ ⊤ ≤ upperCentralSeries G n [PROOFSTEP] rw [← upperCentralSeries_nilpotencyClass] [GOAL] case mpr G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H hG : Group.IsNilpotent G n : ℕ h : nilpotencyClass G ≤ n ⊢ upperCentralSeries G (nilpotencyClass G) ≤ upperCentralSeries G n [PROOFSTEP] exact upperCentralSeries_mono _ h [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H hG : Group.IsNilpotent G ⊢ Nat.find (_ : ∃ n H, IsAscendingCentralSeries H ∧ H n = ⊤) = nilpotencyClass G [PROOFSTEP] refine le_antisymm (Nat.find_mono ?_) (Nat.find_mono ?_) [GOAL] case refine_1 G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H hG : Group.IsNilpotent G ⊢ ∀ (n : ℕ), upperCentralSeries G n = ⊤ → ∃ H, IsAscendingCentralSeries H ∧ H n = ⊤ [PROOFSTEP] intro n hn [GOAL] case refine_1 G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H hG : Group.IsNilpotent G n : ℕ hn : upperCentralSeries G n = ⊤ ⊢ ∃ H, IsAscendingCentralSeries H ∧ H n = ⊤ [PROOFSTEP] exact ⟨upperCentralSeries G, upperCentralSeries_isAscendingCentralSeries G, hn⟩ [GOAL] case refine_2 G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H hG : Group.IsNilpotent G ⊢ ∀ (n : ℕ), (∃ H, IsAscendingCentralSeries H ∧ H n = ⊤) → upperCentralSeries G n = ⊤ [PROOFSTEP] rintro n ⟨H, ⟨hH, hn⟩⟩ [GOAL] case refine_2.intro.intro G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ hG : Group.IsNilpotent G n : ℕ H : ℕ → Subgroup G hH : IsAscendingCentralSeries H hn : H n = ⊤ ⊢ upperCentralSeries G n = ⊤ [PROOFSTEP] rw [← top_le_iff, ← hn] [GOAL] case refine_2.intro.intro G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ hG : Group.IsNilpotent G n : ℕ H : ℕ → Subgroup G hH : IsAscendingCentralSeries H hn : H n = ⊤ ⊢ H n ≤ upperCentralSeries G n [PROOFSTEP] exact ascending_central_series_le_upper H hH n [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H hG : Group.IsNilpotent G ⊢ Nat.find (_ : ∃ n H, IsDescendingCentralSeries H ∧ H n = ⊥) = nilpotencyClass G [PROOFSTEP] rw [← least_ascending_central_series_length_eq_nilpotencyClass] [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H hG : Group.IsNilpotent G ⊢ Nat.find (_ : ∃ n H, IsDescendingCentralSeries H ∧ H n = ⊥) = Nat.find (_ : ∃ n H, IsAscendingCentralSeries H ∧ H n = ⊤) [PROOFSTEP] refine le_antisymm (Nat.find_mono ?_) (Nat.find_mono ?_) [GOAL] case refine_1 G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H hG : Group.IsNilpotent G ⊢ ∀ (n : ℕ), (∃ H, IsAscendingCentralSeries H ∧ H n = ⊤) → ∃ H, IsDescendingCentralSeries H ∧ H n = ⊥ [PROOFSTEP] rintro n ⟨H, ⟨hH, hn⟩⟩ [GOAL] case refine_1.intro.intro G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ hG : Group.IsNilpotent G n : ℕ H : ℕ → Subgroup G hH : IsAscendingCentralSeries H hn : H n = ⊤ ⊢ ∃ H, IsDescendingCentralSeries H ∧ H n = ⊥ [PROOFSTEP] refine ⟨fun m => H (n - m), is_decending_rev_series_of_is_ascending G hn hH, ?_⟩ [GOAL] case refine_1.intro.intro G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ hG : Group.IsNilpotent G n : ℕ H : ℕ → Subgroup G hH : IsAscendingCentralSeries H hn : H n = ⊤ ⊢ (fun m => H (n - m)) n = ⊥ [PROOFSTEP] dsimp only [GOAL] case refine_1.intro.intro G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ hG : Group.IsNilpotent G n : ℕ H : ℕ → Subgroup G hH : IsAscendingCentralSeries H hn : H n = ⊤ ⊢ H (n - n) = ⊥ [PROOFSTEP] rw [tsub_self] [GOAL] case refine_1.intro.intro G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ hG : Group.IsNilpotent G n : ℕ H : ℕ → Subgroup G hH : IsAscendingCentralSeries H hn : H n = ⊤ ⊢ H 0 = ⊥ [PROOFSTEP] exact hH.1 [GOAL] case refine_2 G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H hG : Group.IsNilpotent G ⊢ ∀ (n : ℕ), (∃ H, IsDescendingCentralSeries H ∧ H n = ⊥) → ∃ H, IsAscendingCentralSeries H ∧ H n = ⊤ [PROOFSTEP] rintro n ⟨H, ⟨hH, hn⟩⟩ [GOAL] case refine_2.intro.intro G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ hG : Group.IsNilpotent G n : ℕ H : ℕ → Subgroup G hH : IsDescendingCentralSeries H hn : H n = ⊥ ⊢ ∃ H, IsAscendingCentralSeries H ∧ H n = ⊤ [PROOFSTEP] refine ⟨fun m => H (n - m), is_ascending_rev_series_of_is_descending G hn hH, ?_⟩ [GOAL] case refine_2.intro.intro G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ hG : Group.IsNilpotent G n : ℕ H : ℕ → Subgroup G hH : IsDescendingCentralSeries H hn : H n = ⊥ ⊢ (fun m => H (n - m)) n = ⊤ [PROOFSTEP] dsimp only [GOAL] case refine_2.intro.intro G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ hG : Group.IsNilpotent G n : ℕ H : ℕ → Subgroup G hH : IsDescendingCentralSeries H hn : H n = ⊥ ⊢ H (n - n) = ⊤ [PROOFSTEP] rw [tsub_self] [GOAL] case refine_2.intro.intro G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ hG : Group.IsNilpotent G n : ℕ H : ℕ → Subgroup G hH : IsDescendingCentralSeries H hn : H n = ⊥ ⊢ H 0 = ⊤ [PROOFSTEP] exact hH.1 [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H hG : Group.IsNilpotent G ⊢ Nat.find (_ : ∃ n, lowerCentralSeries G n = ⊥) = nilpotencyClass G [PROOFSTEP] rw [← least_descending_central_series_length_eq_nilpotencyClass] [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H hG : Group.IsNilpotent G ⊢ Nat.find (_ : ∃ n, lowerCentralSeries G n = ⊥) = Nat.find (_ : ∃ n H, IsDescendingCentralSeries H ∧ H n = ⊥) [PROOFSTEP] refine' le_antisymm (Nat.find_mono _) (Nat.find_mono _) [GOAL] case refine'_1 G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H hG : Group.IsNilpotent G ⊢ ∀ (n : ℕ), (∃ H, IsDescendingCentralSeries H ∧ H n = ⊥) → lowerCentralSeries G n = ⊥ [PROOFSTEP] rintro n ⟨H, ⟨hH, hn⟩⟩ [GOAL] case refine'_1.intro.intro G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ hG : Group.IsNilpotent G n : ℕ H : ℕ → Subgroup G hH : IsDescendingCentralSeries H hn : H n = ⊥ ⊢ lowerCentralSeries G n = ⊥ [PROOFSTEP] rw [← le_bot_iff, ← hn] [GOAL] case refine'_1.intro.intro G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ hG : Group.IsNilpotent G n : ℕ H : ℕ → Subgroup G hH : IsDescendingCentralSeries H hn : H n = ⊥ ⊢ lowerCentralSeries G n ≤ H n [PROOFSTEP] exact descending_central_series_ge_lower H hH n [GOAL] case refine'_2 G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H hG : Group.IsNilpotent G ⊢ ∀ (n : ℕ), lowerCentralSeries G n = ⊥ → ∃ H, IsDescendingCentralSeries H ∧ H n = ⊥ [PROOFSTEP] rintro n h [GOAL] case refine'_2 G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H hG : Group.IsNilpotent G n : ℕ h : lowerCentralSeries G n = ⊥ ⊢ ∃ H, IsDescendingCentralSeries H ∧ H n = ⊥ [PROOFSTEP] exact ⟨lowerCentralSeries G, ⟨lowerCentralSeries_isDescendingCentralSeries, h⟩⟩ [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H hG : Group.IsNilpotent G ⊢ lowerCentralSeries G (nilpotencyClass G) = ⊥ [PROOFSTEP] rw [← lowerCentralSeries_length_eq_nilpotencyClass] [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H hG : Group.IsNilpotent G ⊢ lowerCentralSeries G (Nat.find (_ : ∃ n, lowerCentralSeries G n = ⊥)) = ⊥ [PROOFSTEP] exact Nat.find_spec (nilpotent_iff_lowerCentralSeries.mp hG) [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H hG : Group.IsNilpotent G n : ℕ ⊢ lowerCentralSeries G n = ⊥ ↔ nilpotencyClass G ≤ n [PROOFSTEP] constructor [GOAL] case mp G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H hG : Group.IsNilpotent G n : ℕ ⊢ lowerCentralSeries G n = ⊥ → nilpotencyClass G ≤ n [PROOFSTEP] intro h [GOAL] case mp G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H hG : Group.IsNilpotent G n : ℕ h : lowerCentralSeries G n = ⊥ ⊢ nilpotencyClass G ≤ n [PROOFSTEP] rw [← lowerCentralSeries_length_eq_nilpotencyClass] [GOAL] case mp G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H hG : Group.IsNilpotent G n : ℕ h : lowerCentralSeries G n = ⊥ ⊢ Nat.find (_ : ∃ n, lowerCentralSeries G n = ⊥) ≤ n [PROOFSTEP] exact Nat.find_le h [GOAL] case mpr G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H hG : Group.IsNilpotent G n : ℕ ⊢ nilpotencyClass G ≤ n → lowerCentralSeries G n = ⊥ [PROOFSTEP] intro h [GOAL] case mpr G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H hG : Group.IsNilpotent G n : ℕ h : nilpotencyClass G ≤ n ⊢ lowerCentralSeries G n = ⊥ [PROOFSTEP] apply eq_bot_iff.mpr [GOAL] case mpr G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H hG : Group.IsNilpotent G n : ℕ h : nilpotencyClass G ≤ n ⊢ lowerCentralSeries G n ≤ ⊥ [PROOFSTEP] rw [← lowerCentralSeries_nilpotencyClass] [GOAL] case mpr G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H hG : Group.IsNilpotent G n : ℕ h : nilpotencyClass G ≤ n ⊢ lowerCentralSeries G n ≤ lowerCentralSeries G (nilpotencyClass G) [PROOFSTEP] exact lowerCentralSeries_antitone h [GOAL] G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ H : Subgroup G n : ℕ ⊢ Subgroup.map (Subgroup.subtype H) (lowerCentralSeries { x // x ∈ H } n) ≤ lowerCentralSeries G n [PROOFSTEP] induction' n with d hd [GOAL] case zero G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ H : Subgroup G ⊢ Subgroup.map (Subgroup.subtype H) (lowerCentralSeries { x // x ∈ H } Nat.zero) ≤ lowerCentralSeries G Nat.zero [PROOFSTEP] simp [GOAL] case succ G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ H : Subgroup G d : ℕ hd : Subgroup.map (Subgroup.subtype H) (lowerCentralSeries { x // x ∈ H } d) ≤ lowerCentralSeries G d ⊢ Subgroup.map (Subgroup.subtype H) (lowerCentralSeries { x // x ∈ H } (Nat.succ d)) ≤ lowerCentralSeries G (Nat.succ d) [PROOFSTEP] rw [lowerCentralSeries_succ, lowerCentralSeries_succ, MonoidHom.map_closure] [GOAL] case succ G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ H : Subgroup G d : ℕ hd : Subgroup.map (Subgroup.subtype H) (lowerCentralSeries { x // x ∈ H } d) ≤ lowerCentralSeries G d ⊢ closure (↑(Subgroup.subtype H) '' {x | ∃ p, p ∈ lowerCentralSeries { x // x ∈ H } d ∧ ∃ q, q ∈ ⊤ ∧ p * q * p⁻¹ * q⁻¹ = x}) ≤ closure {x | ∃ p, p ∈ lowerCentralSeries G d ∧ ∃ q, q ∈ ⊤ ∧ p * q * p⁻¹ * q⁻¹ = x} [PROOFSTEP] apply Subgroup.closure_mono [GOAL] case succ.h' G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ H : Subgroup G d : ℕ hd : Subgroup.map (Subgroup.subtype H) (lowerCentralSeries { x // x ∈ H } d) ≤ lowerCentralSeries G d ⊢ ↑(Subgroup.subtype H) '' {x | ∃ p, p ∈ lowerCentralSeries { x // x ∈ H } d ∧ ∃ q, q ∈ ⊤ ∧ p * q * p⁻¹ * q⁻¹ = x} ⊆ {x | ∃ p, p ∈ lowerCentralSeries G d ∧ ∃ q, q ∈ ⊤ ∧ p * q * p⁻¹ * q⁻¹ = x} [PROOFSTEP] rintro x1 ⟨x2, ⟨x3, hx3, x4, _hx4, rfl⟩, rfl⟩ [GOAL] case succ.h'.intro.intro.intro.intro.intro.intro G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ H : Subgroup G d : ℕ hd : Subgroup.map (Subgroup.subtype H) (lowerCentralSeries { x // x ∈ H } d) ≤ lowerCentralSeries G d x3 : { x // x ∈ H } hx3 : x3 ∈ lowerCentralSeries { x // x ∈ H } d x4 : { x // x ∈ H } _hx4 : x4 ∈ ⊤ ⊢ ↑(Subgroup.subtype H) (x3 * x4 * x3⁻¹ * x4⁻¹) ∈ {x | ∃ p, p ∈ lowerCentralSeries G d ∧ ∃ q, q ∈ ⊤ ∧ p * q * p⁻¹ * q⁻¹ = x} [PROOFSTEP] exact ⟨x3, hd (mem_map.mpr ⟨x3, hx3, rfl⟩), x4, by simp⟩ [GOAL] G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ H : Subgroup G d : ℕ hd : Subgroup.map (Subgroup.subtype H) (lowerCentralSeries { x // x ∈ H } d) ≤ lowerCentralSeries G d x3 : { x // x ∈ H } hx3 : x3 ∈ lowerCentralSeries { x // x ∈ H } d x4 : { x // x ∈ H } _hx4 : x4 ∈ ⊤ ⊢ ↑x4 ∈ ⊤ ∧ ↑x3 * ↑x4 * (↑x3)⁻¹ * (↑x4)⁻¹ = ↑(Subgroup.subtype H) (x3 * x4 * x3⁻¹ * x4⁻¹) [PROOFSTEP] simp [GOAL] G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ H : Subgroup G hG : Group.IsNilpotent G ⊢ Group.IsNilpotent { x // x ∈ H } [PROOFSTEP] rw [nilpotent_iff_lowerCentralSeries] at * [GOAL] G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ H : Subgroup G hG : ∃ n, lowerCentralSeries G n = ⊥ ⊢ ∃ n, lowerCentralSeries { x // x ∈ H } n = ⊥ [PROOFSTEP] rcases hG with ⟨n, hG⟩ [GOAL] case intro G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ H : Subgroup G n : ℕ hG : lowerCentralSeries G n = ⊥ ⊢ ∃ n, lowerCentralSeries { x // x ∈ H } n = ⊥ [PROOFSTEP] use n [GOAL] case h G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ H : Subgroup G n : ℕ hG : lowerCentralSeries G n = ⊥ ⊢ lowerCentralSeries { x // x ∈ H } n = ⊥ [PROOFSTEP] have := lowerCentralSeries_map_subtype_le H n [GOAL] case h G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ H : Subgroup G n : ℕ hG : lowerCentralSeries G n = ⊥ this : map (Subgroup.subtype H) (lowerCentralSeries { x // x ∈ H } n) ≤ lowerCentralSeries G n ⊢ lowerCentralSeries { x // x ∈ H } n = ⊥ [PROOFSTEP] simp only [hG, SetLike.le_def, mem_map, forall_apply_eq_imp_iff₂, exists_imp] at this [GOAL] case h G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ H : Subgroup G n : ℕ hG : lowerCentralSeries G n = ⊥ this : ∀ ⦃x : G⦄ (x_1 : { x // x ∈ H }), x_1 ∈ lowerCentralSeries { x // x ∈ H } n ∧ ↑(Subgroup.subtype H) x_1 = x → x ∈ ⊥ ⊢ lowerCentralSeries { x // x ∈ H } n = ⊥ [PROOFSTEP] exact eq_bot_iff.mpr fun x hx => Subtype.ext (this x ⟨hx, rfl⟩) [GOAL] G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ H : Subgroup G hG : Group.IsNilpotent G ⊢ nilpotencyClass { x // x ∈ H } ≤ nilpotencyClass G [PROOFSTEP] repeat rw [← lowerCentralSeries_length_eq_nilpotencyClass] --- Porting note : Lean needs to be told that predicates are decidable [GOAL] G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ H : Subgroup G hG : Group.IsNilpotent G ⊢ nilpotencyClass { x // x ∈ H } ≤ nilpotencyClass G [PROOFSTEP] rw [← lowerCentralSeries_length_eq_nilpotencyClass] --- Porting note : Lean needs to be told that predicates are decidable [GOAL] G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ H : Subgroup G hG : Group.IsNilpotent G ⊢ Nat.find (_ : ∃ n, lowerCentralSeries { x // x ∈ H } n = ⊥) ≤ nilpotencyClass G [PROOFSTEP] rw [← lowerCentralSeries_length_eq_nilpotencyClass] --- Porting note : Lean needs to be told that predicates are decidable [GOAL] G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ H : Subgroup G hG : Group.IsNilpotent G ⊢ Nat.find (_ : ∃ n, lowerCentralSeries { x // x ∈ H } n = ⊥) ≤ Nat.find (_ : ∃ n, lowerCentralSeries G n = ⊥) [PROOFSTEP] rw [← lowerCentralSeries_length_eq_nilpotencyClass] --- Porting note : Lean needs to be told that predicates are decidable [GOAL] G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ H : Subgroup G hG : Group.IsNilpotent G ⊢ Nat.find (_ : ∃ n, lowerCentralSeries { x // x ∈ H } n = ⊥) ≤ Nat.find (_ : ∃ n, lowerCentralSeries G n = ⊥) [PROOFSTEP] refine @Nat.find_mono _ _ (Classical.decPred _) (Classical.decPred _) ?_ _ _ [GOAL] G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ H : Subgroup G hG : Group.IsNilpotent G ⊢ ∀ (n : ℕ), lowerCentralSeries G n = ⊥ → lowerCentralSeries { x // x ∈ H } n = ⊥ [PROOFSTEP] intro n hG [GOAL] G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ H : Subgroup G hG✝ : Group.IsNilpotent G n : ℕ hG : lowerCentralSeries G n = ⊥ ⊢ lowerCentralSeries { x // x ∈ H } n = ⊥ [PROOFSTEP] have := lowerCentralSeries_map_subtype_le H n [GOAL] G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ H : Subgroup G hG✝ : Group.IsNilpotent G n : ℕ hG : lowerCentralSeries G n = ⊥ this : map (Subgroup.subtype H) (lowerCentralSeries { x // x ∈ H } n) ≤ lowerCentralSeries G n ⊢ lowerCentralSeries { x // x ∈ H } n = ⊥ [PROOFSTEP] simp only [hG, SetLike.le_def, mem_map, forall_apply_eq_imp_iff₂, exists_imp] at this [GOAL] G : Type u_1 inst✝¹ : Group G H✝ : Subgroup G inst✝ : Normal H✝ H : Subgroup G hG✝ : Group.IsNilpotent G n : ℕ hG : lowerCentralSeries G n = ⊥ this : ∀ ⦃x : G⦄ (x_1 : { x // x ∈ H }), x_1 ∈ lowerCentralSeries { x // x ∈ H } n ∧ ↑(Subgroup.subtype H) x_1 = x → x ∈ ⊥ ⊢ lowerCentralSeries { x // x ∈ H } n = ⊥ [PROOFSTEP] exact eq_bot_iff.mpr fun x hx => Subtype.ext (this x ⟨hx, rfl⟩) [GOAL] G : Type u_1 inst✝² : Group G H✝ : Subgroup G inst✝¹ : Normal H✝ H : Type u_2 inst✝ : Group H f : G →* H h : Function.Surjective ↑f n : ℕ ⊢ Subgroup.map f (upperCentralSeries G n) ≤ upperCentralSeries H n [PROOFSTEP] induction' n with d hd [GOAL] case zero G : Type u_1 inst✝² : Group G H✝ : Subgroup G inst✝¹ : Normal H✝ H : Type u_2 inst✝ : Group H f : G →* H h : Function.Surjective ↑f ⊢ Subgroup.map f (upperCentralSeries G Nat.zero) ≤ upperCentralSeries H Nat.zero [PROOFSTEP] simp [GOAL] case succ G : Type u_1 inst✝² : Group G H✝ : Subgroup G inst✝¹ : Normal H✝ H : Type u_2 inst✝ : Group H f : G →* H h : Function.Surjective ↑f d : ℕ hd : Subgroup.map f (upperCentralSeries G d) ≤ upperCentralSeries H d ⊢ Subgroup.map f (upperCentralSeries G (Nat.succ d)) ≤ upperCentralSeries H (Nat.succ d) [PROOFSTEP] rintro _ ⟨x, hx : x ∈ upperCentralSeries G d.succ, rfl⟩ y' [GOAL] case succ.intro.intro G : Type u_1 inst✝² : Group G H✝ : Subgroup G inst✝¹ : Normal H✝ H : Type u_2 inst✝ : Group H f : G →* H h : Function.Surjective ↑f d : ℕ hd : Subgroup.map f (upperCentralSeries G d) ≤ upperCentralSeries H d x : G hx : x ∈ upperCentralSeries G (Nat.succ d) y' : H ⊢ ↑f x * y' * (↑f x)⁻¹ * y'⁻¹ ∈ (upperCentralSeriesAux H d).fst [PROOFSTEP] rcases h y' with ⟨y, rfl⟩ [GOAL] case succ.intro.intro.intro G : Type u_1 inst✝² : Group G H✝ : Subgroup G inst✝¹ : Normal H✝ H : Type u_2 inst✝ : Group H f : G →* H h : Function.Surjective ↑f d : ℕ hd : Subgroup.map f (upperCentralSeries G d) ≤ upperCentralSeries H d x : G hx : x ∈ upperCentralSeries G (Nat.succ d) y : G ⊢ ↑f x * ↑f y * (↑f x)⁻¹ * (↑f y)⁻¹ ∈ (upperCentralSeriesAux H d).fst [PROOFSTEP] simpa using hd (mem_map_of_mem f (hx y)) [GOAL] G : Type u_1 inst✝² : Group G H✝ : Subgroup G inst✝¹ : Normal H✝ H : Type u_2 inst✝ : Group H f : G →* H n : ℕ ⊢ Subgroup.map f (lowerCentralSeries G n) ≤ lowerCentralSeries H n [PROOFSTEP] induction' n with d hd [GOAL] case zero G : Type u_1 inst✝² : Group G H✝ : Subgroup G inst✝¹ : Normal H✝ H : Type u_2 inst✝ : Group H f : G →* H ⊢ Subgroup.map f (lowerCentralSeries G Nat.zero) ≤ lowerCentralSeries H Nat.zero [PROOFSTEP] simp [Nat.zero_eq] [GOAL] case succ G : Type u_1 inst✝² : Group G H✝ : Subgroup G inst✝¹ : Normal H✝ H : Type u_2 inst✝ : Group H f : G →* H d : ℕ hd : Subgroup.map f (lowerCentralSeries G d) ≤ lowerCentralSeries H d ⊢ Subgroup.map f (lowerCentralSeries G (Nat.succ d)) ≤ lowerCentralSeries H (Nat.succ d) [PROOFSTEP] rintro a ⟨x, hx : x ∈ lowerCentralSeries G d.succ, rfl⟩ [GOAL] case succ.intro.intro G : Type u_1 inst✝² : Group G H✝ : Subgroup G inst✝¹ : Normal H✝ H : Type u_2 inst✝ : Group H f : G →* H d : ℕ hd : Subgroup.map f (lowerCentralSeries G d) ≤ lowerCentralSeries H d x : G hx : x ∈ lowerCentralSeries G (Nat.succ d) ⊢ ↑f x ∈ lowerCentralSeries H (Nat.succ d) [PROOFSTEP] refine closure_induction hx ?_ (by simp [f.map_one, Subgroup.one_mem _]) (fun y z hy hz => by simp [MonoidHom.map_mul, Subgroup.mul_mem _ hy hz]) (fun y hy => by rw [f.map_inv]; exact Subgroup.inv_mem _ hy) [GOAL] G : Type u_1 inst✝² : Group G H✝ : Subgroup G inst✝¹ : Normal H✝ H : Type u_2 inst✝ : Group H f : G →* H d : ℕ hd : Subgroup.map f (lowerCentralSeries G d) ≤ lowerCentralSeries H d x : G hx : x ∈ lowerCentralSeries G (Nat.succ d) ⊢ ↑f 1 ∈ lowerCentralSeries H (Nat.succ d) [PROOFSTEP] simp [f.map_one, Subgroup.one_mem _] [GOAL] G : Type u_1 inst✝² : Group G H✝ : Subgroup G inst✝¹ : Normal H✝ H : Type u_2 inst✝ : Group H f : G →* H d : ℕ hd : Subgroup.map f (lowerCentralSeries G d) ≤ lowerCentralSeries H d x : G hx : x ∈ lowerCentralSeries G (Nat.succ d) y z : G hy : ↑f y ∈ lowerCentralSeries H (Nat.succ d) hz : ↑f z ∈ lowerCentralSeries H (Nat.succ d) ⊢ ↑f (y * z) ∈ lowerCentralSeries H (Nat.succ d) [PROOFSTEP] simp [MonoidHom.map_mul, Subgroup.mul_mem _ hy hz] [GOAL] G : Type u_1 inst✝² : Group G H✝ : Subgroup G inst✝¹ : Normal H✝ H : Type u_2 inst✝ : Group H f : G →* H d : ℕ hd : Subgroup.map f (lowerCentralSeries G d) ≤ lowerCentralSeries H d x : G hx : x ∈ lowerCentralSeries G (Nat.succ d) y : G hy : ↑f y ∈ lowerCentralSeries H (Nat.succ d) ⊢ ↑f y⁻¹ ∈ lowerCentralSeries H (Nat.succ d) [PROOFSTEP] rw [f.map_inv] [GOAL] G : Type u_1 inst✝² : Group G H✝ : Subgroup G inst✝¹ : Normal H✝ H : Type u_2 inst✝ : Group H f : G →* H d : ℕ hd : Subgroup.map f (lowerCentralSeries G d) ≤ lowerCentralSeries H d x : G hx : x ∈ lowerCentralSeries G (Nat.succ d) y : G hy : ↑f y ∈ lowerCentralSeries H (Nat.succ d) ⊢ (↑f y)⁻¹ ∈ lowerCentralSeries H (Nat.succ d) [PROOFSTEP] exact Subgroup.inv_mem _ hy [GOAL] case succ.intro.intro G : Type u_1 inst✝² : Group G H✝ : Subgroup G inst✝¹ : Normal H✝ H : Type u_2 inst✝ : Group H f : G →* H d : ℕ hd : Subgroup.map f (lowerCentralSeries G d) ≤ lowerCentralSeries H d x : G hx : x ∈ lowerCentralSeries G (Nat.succ d) ⊢ ∀ (x : G), x ∈ {g | ∃ g₁, g₁ ∈ lowerCentralSeries G d ∧ ∃ g₂, g₂ ∈ ⊤ ∧ ⁅g₁, g₂⁆ = g} → ↑f x ∈ lowerCentralSeries H (Nat.succ d) [PROOFSTEP] rintro a ⟨y, hy, z, ⟨-, rfl⟩⟩ [GOAL] case succ.intro.intro.intro.intro.intro.intro G : Type u_1 inst✝² : Group G H✝ : Subgroup G inst✝¹ : Normal H✝ H : Type u_2 inst✝ : Group H f : G →* H d : ℕ hd : Subgroup.map f (lowerCentralSeries G d) ≤ lowerCentralSeries H d x : G hx : x ∈ lowerCentralSeries G (Nat.succ d) y : G hy : y ∈ lowerCentralSeries G d z : G ⊢ ↑f ⁅y, z⁆ ∈ lowerCentralSeries H (Nat.succ d) [PROOFSTEP] apply mem_closure.mpr [GOAL] case succ.intro.intro.intro.intro.intro.intro G : Type u_1 inst✝² : Group G H✝ : Subgroup G inst✝¹ : Normal H✝ H : Type u_2 inst✝ : Group H f : G →* H d : ℕ hd : Subgroup.map f (lowerCentralSeries G d) ≤ lowerCentralSeries H d x : G hx : x ∈ lowerCentralSeries G (Nat.succ d) y : G hy : y ∈ lowerCentralSeries G d z : G ⊢ ∀ (K : Subgroup H), {g | ∃ g₁, g₁ ∈ lowerCentralSeries H d ∧ ∃ g₂, g₂ ∈ ⊤ ∧ ⁅g₁, g₂⁆ = g} ⊆ ↑K → ↑f ⁅y, z⁆ ∈ K [PROOFSTEP] exact fun K hK => hK ⟨f y, hd (mem_map_of_mem f hy), by simp [commutatorElement_def]⟩ [GOAL] G : Type u_1 inst✝² : Group G H✝ : Subgroup G inst✝¹ : Normal H✝ H : Type u_2 inst✝ : Group H f : G →* H d : ℕ hd : Subgroup.map f (lowerCentralSeries G d) ≤ lowerCentralSeries H d x : G hx : x ∈ lowerCentralSeries G (Nat.succ d) y : G hy : y ∈ lowerCentralSeries G d z : G K : Subgroup H hK : {g | ∃ g₁, g₁ ∈ lowerCentralSeries H d ∧ ∃ g₂, g₂ ∈ ⊤ ∧ ⁅g₁, g₂⁆ = g} ⊆ ↑K ⊢ ∃ g₂, g₂ ∈ ⊤ ∧ ⁅↑f y, g₂⁆ = ↑f ⁅y, z⁆ [PROOFSTEP] simp [commutatorElement_def] [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H n : ℕ h : lowerCentralSeries G n ≤ center G ⊢ lowerCentralSeries G (n + 1) = ⊥ [PROOFSTEP] rw [lowerCentralSeries_succ, closure_eq_bot_iff, Set.subset_singleton_iff] [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H n : ℕ h : lowerCentralSeries G n ≤ center G ⊢ ∀ (y : G), y ∈ {x | ∃ p, p ∈ lowerCentralSeries G n ∧ ∃ q, q ∈ ⊤ ∧ p * q * p⁻¹ * q⁻¹ = x} → y = 1 [PROOFSTEP] rintro x ⟨y, hy1, z, ⟨⟩, rfl⟩ [GOAL] case intro.intro.intro.intro.intro G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H n : ℕ h : lowerCentralSeries G n ≤ center G y : G hy1 : y ∈ lowerCentralSeries G n z : G ⊢ y * z * y⁻¹ * z⁻¹ = 1 [PROOFSTEP] rw [mul_assoc, ← mul_inv_rev, mul_inv_eq_one, eq_comm] [GOAL] case intro.intro.intro.intro.intro G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H n : ℕ h : lowerCentralSeries G n ≤ center G y : G hy1 : y ∈ lowerCentralSeries G n z : G ⊢ z * y = y * z [PROOFSTEP] exact mem_center_iff.mp (h hy1) z [GOAL] G : Type u_1 inst✝² : Group G H✝ : Subgroup G inst✝¹ : Normal H✝ H : Type u_2 inst✝ : Group H f : G →* H hf1 : MonoidHom.ker f ≤ center G hH : Group.IsNilpotent H ⊢ Group.IsNilpotent G [PROOFSTEP] rw [nilpotent_iff_lowerCentralSeries] at * [GOAL] G : Type u_1 inst✝² : Group G H✝ : Subgroup G inst✝¹ : Normal H✝ H : Type u_2 inst✝ : Group H f : G →* H hf1 : MonoidHom.ker f ≤ center G hH : ∃ n, lowerCentralSeries H n = ⊥ ⊢ ∃ n, lowerCentralSeries G n = ⊥ [PROOFSTEP] rcases hH with ⟨n, hn⟩ [GOAL] case intro G : Type u_1 inst✝² : Group G H✝ : Subgroup G inst✝¹ : Normal H✝ H : Type u_2 inst✝ : Group H f : G →* H hf1 : MonoidHom.ker f ≤ center G n : ℕ hn : lowerCentralSeries H n = ⊥ ⊢ ∃ n, lowerCentralSeries G n = ⊥ [PROOFSTEP] use n + 1 [GOAL] case h G : Type u_1 inst✝² : Group G H✝ : Subgroup G inst✝¹ : Normal H✝ H : Type u_2 inst✝ : Group H f : G →* H hf1 : MonoidHom.ker f ≤ center G n : ℕ hn : lowerCentralSeries H n = ⊥ ⊢ lowerCentralSeries G (n + 1) = ⊥ [PROOFSTEP] refine' lowerCentralSeries_succ_eq_bot (le_trans ((Subgroup.map_eq_bot_iff _).mp _) hf1) [GOAL] case h G : Type u_1 inst✝² : Group G H✝ : Subgroup G inst✝¹ : Normal H✝ H : Type u_2 inst✝ : Group H f : G →* H hf1 : MonoidHom.ker f ≤ center G n : ℕ hn : lowerCentralSeries H n = ⊥ ⊢ Subgroup.map f (lowerCentralSeries G n) = ⊥ [PROOFSTEP] exact eq_bot_iff.mpr (hn ▸ lowerCentralSeries.map f n) [GOAL] G : Type u_1 inst✝² : Group G H✝ : Subgroup G inst✝¹ : Normal H✝ H : Type u_2 inst✝ : Group H f : G →* H hf1 : MonoidHom.ker f ≤ center G hH : Group.IsNilpotent H ⊢ nilpotencyClass G ≤ nilpotencyClass H + 1 [PROOFSTEP] haveI : IsNilpotent G := isNilpotent_of_ker_le_center f hf1 hH [GOAL] G : Type u_1 inst✝² : Group G H✝ : Subgroup G inst✝¹ : Normal H✝ H : Type u_2 inst✝ : Group H f : G →* H hf1 : MonoidHom.ker f ≤ center G hH : Group.IsNilpotent H this : Group.IsNilpotent G ⊢ nilpotencyClass G ≤ nilpotencyClass H + 1 [PROOFSTEP] rw [← lowerCentralSeries_length_eq_nilpotencyClass] -- Porting note: Lean needs to be told that predicates are decidable [GOAL] G : Type u_1 inst✝² : Group G H✝ : Subgroup G inst✝¹ : Normal H✝ H : Type u_2 inst✝ : Group H f : G →* H hf1 : MonoidHom.ker f ≤ center G hH : Group.IsNilpotent H this : Group.IsNilpotent G ⊢ Nat.find (_ : ∃ n, lowerCentralSeries G n = ⊥) ≤ nilpotencyClass H + 1 [PROOFSTEP] refine @Nat.find_min' _ (Classical.decPred _) _ _ ?_ [GOAL] G : Type u_1 inst✝² : Group G H✝ : Subgroup G inst✝¹ : Normal H✝ H : Type u_2 inst✝ : Group H f : G →* H hf1 : MonoidHom.ker f ≤ center G hH : Group.IsNilpotent H this : Group.IsNilpotent G ⊢ lowerCentralSeries G (nilpotencyClass H + 1) = ⊥ [PROOFSTEP] refine lowerCentralSeries_succ_eq_bot (le_trans ((Subgroup.map_eq_bot_iff _).mp ?_) hf1) [GOAL] G : Type u_1 inst✝² : Group G H✝ : Subgroup G inst✝¹ : Normal H✝ H : Type u_2 inst✝ : Group H f : G →* H hf1 : MonoidHom.ker f ≤ center G hH : Group.IsNilpotent H this : Group.IsNilpotent G ⊢ Subgroup.map f (lowerCentralSeries G (nilpotencyClass H)) = ⊥ [PROOFSTEP] apply eq_bot_iff.mpr [GOAL] G : Type u_1 inst✝² : Group G H✝ : Subgroup G inst✝¹ : Normal H✝ H : Type u_2 inst✝ : Group H f : G →* H hf1 : MonoidHom.ker f ≤ center G hH : Group.IsNilpotent H this : Group.IsNilpotent G ⊢ Subgroup.map f (lowerCentralSeries G (nilpotencyClass H)) ≤ ⊥ [PROOFSTEP] apply le_trans (lowerCentralSeries.map f _) [GOAL] G : Type u_1 inst✝² : Group G H✝ : Subgroup G inst✝¹ : Normal H✝ H : Type u_2 inst✝ : Group H f : G →* H hf1 : MonoidHom.ker f ≤ center G hH : Group.IsNilpotent H this : Group.IsNilpotent G ⊢ lowerCentralSeries H (nilpotencyClass H) ≤ ⊥ [PROOFSTEP] simp only [lowerCentralSeries_nilpotencyClass, le_bot_iff] [GOAL] G : Type u_1 inst✝² : Group G H : Subgroup G inst✝¹ : Normal H G' : Type u_2 inst✝ : Group G' h : Group.IsNilpotent G f : G →* G' hf : Function.Surjective ↑f ⊢ Group.IsNilpotent G' [PROOFSTEP] rcases h with ⟨n, hn⟩ [GOAL] case mk.intro G : Type u_1 inst✝² : Group G H : Subgroup G inst✝¹ : Normal H G' : Type u_2 inst✝ : Group G' f : G →* G' hf : Function.Surjective ↑f n : ℕ hn : upperCentralSeries G n = ⊤ ⊢ Group.IsNilpotent G' [PROOFSTEP] use n [GOAL] case h G : Type u_1 inst✝² : Group G H : Subgroup G inst✝¹ : Normal H G' : Type u_2 inst✝ : Group G' f : G →* G' hf : Function.Surjective ↑f n : ℕ hn : upperCentralSeries G n = ⊤ ⊢ upperCentralSeries G' n = ⊤ [PROOFSTEP] apply eq_top_iff.mpr [GOAL] case h G : Type u_1 inst✝² : Group G H : Subgroup G inst✝¹ : Normal H G' : Type u_2 inst✝ : Group G' f : G →* G' hf : Function.Surjective ↑f n : ℕ hn : upperCentralSeries G n = ⊤ ⊢ ⊤ ≤ upperCentralSeries G' n [PROOFSTEP] calc ⊤ = f.range := symm (f.range_top_of_surjective hf) _ = Subgroup.map f ⊤ := (MonoidHom.range_eq_map _) _ = Subgroup.map f (upperCentralSeries G n) := by rw [hn] _ ≤ upperCentralSeries G' n := upperCentralSeries.map hf n [GOAL] G : Type u_1 inst✝² : Group G H : Subgroup G inst✝¹ : Normal H G' : Type u_2 inst✝ : Group G' f : G →* G' hf : Function.Surjective ↑f n : ℕ hn : upperCentralSeries G n = ⊤ ⊢ Subgroup.map f ⊤ = Subgroup.map f (upperCentralSeries G n) [PROOFSTEP] rw [hn] [GOAL] G : Type u_1 inst✝² : Group G H : Subgroup G inst✝¹ : Normal H G' : Type u_2 inst✝ : Group G' f : G →* G' hf : Function.Surjective ↑f h : Group.IsNilpotent G ⊢ nilpotencyClass G' ≤ nilpotencyClass G [PROOFSTEP] refine @Nat.find_mono _ _ (Classical.decPred _) (Classical.decPred _) ?_ _ _ [GOAL] G : Type u_1 inst✝² : Group G H : Subgroup G inst✝¹ : Normal H G' : Type u_2 inst✝ : Group G' f : G →* G' hf : Function.Surjective ↑f h : Group.IsNilpotent G ⊢ ∀ (n : ℕ), upperCentralSeries G n = ⊤ → upperCentralSeries G' n = ⊤ [PROOFSTEP] intro n hn [GOAL] G : Type u_1 inst✝² : Group G H : Subgroup G inst✝¹ : Normal H G' : Type u_2 inst✝ : Group G' f : G →* G' hf : Function.Surjective ↑f h : Group.IsNilpotent G n : ℕ hn : upperCentralSeries G n = ⊤ ⊢ upperCentralSeries G' n = ⊤ [PROOFSTEP] apply eq_top_iff.mpr [GOAL] G : Type u_1 inst✝² : Group G H : Subgroup G inst✝¹ : Normal H G' : Type u_2 inst✝ : Group G' f : G →* G' hf : Function.Surjective ↑f h : Group.IsNilpotent G n : ℕ hn : upperCentralSeries G n = ⊤ ⊢ ⊤ ≤ upperCentralSeries G' n [PROOFSTEP] calc ⊤ = f.range := symm (f.range_top_of_surjective hf) _ = Subgroup.map f ⊤ := (MonoidHom.range_eq_map _) _ = Subgroup.map f (upperCentralSeries G n) := by rw [hn] _ ≤ upperCentralSeries G' n := upperCentralSeries.map hf n [GOAL] G : Type u_1 inst✝² : Group G H : Subgroup G inst✝¹ : Normal H G' : Type u_2 inst✝ : Group G' f : G →* G' hf : Function.Surjective ↑f h : Group.IsNilpotent G n : ℕ hn : upperCentralSeries G n = ⊤ ⊢ Subgroup.map f ⊤ = Subgroup.map f (upperCentralSeries G n) [PROOFSTEP] rw [hn] [GOAL] G : Type u_1 inst✝³ : Group G H : Subgroup G inst✝² : Normal H H₁ H₂ : Subgroup G inst✝¹ : Normal H₁ inst✝ : Normal H₂ h : H₁ = H₂ ⊢ comap (mk' H₁) (center (G ⧸ H₁)) = comap (mk' H₂) (center (G ⧸ H₂)) [PROOFSTEP] subst h [GOAL] G : Type u_1 inst✝³ : Group G H : Subgroup G inst✝² : Normal H H₁ : Subgroup G inst✝¹ inst✝ : Normal H₁ ⊢ comap (mk' H₁) (center (G ⧸ H₁)) = comap (mk' H₁) (center (G ⧸ H₁)) [PROOFSTEP] rfl [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H n : ℕ ⊢ comap (mk' (center G)) (upperCentralSeries (G ⧸ center G) n) = upperCentralSeries G (Nat.succ n) [PROOFSTEP] induction' n with n ih [GOAL] case zero G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H ⊢ comap (mk' (center G)) (upperCentralSeries (G ⧸ center G) Nat.zero) = upperCentralSeries G (Nat.succ Nat.zero) [PROOFSTEP] simp only [Nat.zero_eq, upperCentralSeries_zero, MonoidHom.comap_bot, ker_mk', (upperCentralSeries_one G).symm] [GOAL] case succ G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H n : ℕ ih : comap (mk' (center G)) (upperCentralSeries (G ⧸ center G) n) = upperCentralSeries G (Nat.succ n) ⊢ comap (mk' (center G)) (upperCentralSeries (G ⧸ center G) (Nat.succ n)) = upperCentralSeries G (Nat.succ (Nat.succ n)) [PROOFSTEP] let Hn := upperCentralSeries (G ⧸ center G) n [GOAL] case succ G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H n : ℕ ih : comap (mk' (center G)) (upperCentralSeries (G ⧸ center G) n) = upperCentralSeries G (Nat.succ n) Hn : Subgroup (G ⧸ center G) := upperCentralSeries (G ⧸ center G) n ⊢ comap (mk' (center G)) (upperCentralSeries (G ⧸ center G) (Nat.succ n)) = upperCentralSeries G (Nat.succ (Nat.succ n)) [PROOFSTEP] calc comap (mk' (center G)) (upperCentralSeriesStep Hn) = comap (mk' (center G)) (comap (mk' Hn) (center ((G ⧸ center G) ⧸ Hn))) := by rw [upperCentralSeriesStep_eq_comap_center] _ = comap (mk' (comap (mk' (center G)) Hn)) (center (G ⧸ comap (mk' (center G)) Hn)) := QuotientGroup.comap_comap_center _ = comap (mk' (upperCentralSeries G n.succ)) (center (G ⧸ upperCentralSeries G n.succ)) := (comap_center_subst ih) _ = upperCentralSeriesStep (upperCentralSeries G n.succ) := symm (upperCentralSeriesStep_eq_comap_center _) [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H n : ℕ ih : comap (mk' (center G)) (upperCentralSeries (G ⧸ center G) n) = upperCentralSeries G (Nat.succ n) Hn : Subgroup (G ⧸ center G) := upperCentralSeries (G ⧸ center G) n ⊢ comap (mk' (center G)) (upperCentralSeriesStep Hn) = comap (mk' (center G)) (comap (mk' Hn) (center ((G ⧸ center G) ⧸ Hn))) [PROOFSTEP] rw [upperCentralSeriesStep_eq_comap_center] [GOAL] G : Type u_1 inst✝² : Group G H : Subgroup G inst✝¹ : Normal H inst✝ : Group.IsNilpotent G ⊢ nilpotencyClass G = 0 ↔ Subsingleton G [PROOFSTEP] rw [Group.nilpotencyClass, @Nat.find_eq_zero _ (Classical.decPred _), upperCentralSeries_zero, subsingleton_iff_bot_eq_top, Subgroup.subsingleton_iff] [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H hH : Group.IsNilpotent G ⊢ nilpotencyClass (G ⧸ center G) = nilpotencyClass G - 1 [PROOFSTEP] generalize hn : Group.nilpotencyClass G = n [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H hH : Group.IsNilpotent G n : ℕ hn : nilpotencyClass G = n ⊢ nilpotencyClass (G ⧸ center G) = n - 1 [PROOFSTEP] rcases n with (rfl | n) [GOAL] case zero G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H hH : Group.IsNilpotent G hn : nilpotencyClass G = Nat.zero ⊢ nilpotencyClass (G ⧸ center G) = Nat.zero - 1 [PROOFSTEP] simp [nilpotencyClass_zero_iff_subsingleton] at * [GOAL] case zero G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H hH : Group.IsNilpotent G hn : Subsingleton G ⊢ Subsingleton (G ⧸ center G) [PROOFSTEP] exact Quotient.instSubsingletonQuotient (leftRel (center G)) [GOAL] case succ G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H hH : Group.IsNilpotent G n : ℕ hn : nilpotencyClass G = Nat.succ n ⊢ nilpotencyClass (G ⧸ center G) = Nat.succ n - 1 [PROOFSTEP] suffices Group.nilpotencyClass (G ⧸ center G) = n by simpa [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H hH : Group.IsNilpotent G n : ℕ hn : nilpotencyClass G = Nat.succ n this : nilpotencyClass (G ⧸ center G) = n ⊢ nilpotencyClass (G ⧸ center G) = Nat.succ n - 1 [PROOFSTEP] simpa [GOAL] case succ G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H hH : Group.IsNilpotent G n : ℕ hn : nilpotencyClass G = Nat.succ n ⊢ nilpotencyClass (G ⧸ center G) = n [PROOFSTEP] apply le_antisymm [GOAL] case succ.a G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H hH : Group.IsNilpotent G n : ℕ hn : nilpotencyClass G = Nat.succ n ⊢ nilpotencyClass (G ⧸ center G) ≤ n [PROOFSTEP] apply upperCentralSeries_eq_top_iff_nilpotencyClass_le.mp [GOAL] case succ.a G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H hH : Group.IsNilpotent G n : ℕ hn : nilpotencyClass G = Nat.succ n ⊢ upperCentralSeries (G ⧸ center G) n = ⊤ [PROOFSTEP] apply @comap_injective G _ _ _ (mk' (center G)) (surjective_quot_mk _) [GOAL] case succ.a.a G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H hH : Group.IsNilpotent G n : ℕ hn : nilpotencyClass G = Nat.succ n ⊢ comap (mk' (center G)) (upperCentralSeries (G ⧸ center G) n) = comap (mk' (center G)) ⊤ [PROOFSTEP] rw [comap_upperCentralSeries_quotient_center, comap_top, ← hn] [GOAL] case succ.a.a G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H hH : Group.IsNilpotent G n : ℕ hn : nilpotencyClass G = Nat.succ n ⊢ upperCentralSeries G (nilpotencyClass G) = ⊤ [PROOFSTEP] exact upperCentralSeries_nilpotencyClass [GOAL] case succ.a G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H hH : Group.IsNilpotent G n : ℕ hn : nilpotencyClass G = Nat.succ n ⊢ n ≤ nilpotencyClass (G ⧸ center G) [PROOFSTEP] apply le_of_add_le_add_right [GOAL] case succ.a.bc G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H hH : Group.IsNilpotent G n : ℕ hn : nilpotencyClass G = Nat.succ n ⊢ n + ?succ.a.a ≤ nilpotencyClass (G ⧸ center G) + ?succ.a.a case succ.a.a G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H hH : Group.IsNilpotent G n : ℕ hn : nilpotencyClass G = Nat.succ n ⊢ ℕ [PROOFSTEP] calc n + 1 = n.succ := rfl _ = Group.nilpotencyClass G := (symm hn) _ ≤ Group.nilpotencyClass (G ⧸ center G) + 1 := nilpotencyClass_le_of_ker_le_center _ (le_of_eq (ker_mk' _)) _ [GOAL] G : Type u_1 inst✝² : Group G H : Subgroup G inst✝¹ : Normal H hH : Group.IsNilpotent G inst✝ : Nontrivial G ⊢ nilpotencyClass G = nilpotencyClass (G ⧸ center G) + 1 [PROOFSTEP] rw [nilpotencyClass_quotient_center] [GOAL] G : Type u_1 inst✝² : Group G H : Subgroup G inst✝¹ : Normal H hH : Group.IsNilpotent G inst✝ : Nontrivial G ⊢ nilpotencyClass G = nilpotencyClass G - 1 + 1 [PROOFSTEP] rcases h : Group.nilpotencyClass G with ⟨⟩ [GOAL] case zero G : Type u_1 inst✝² : Group G H : Subgroup G inst✝¹ : Normal H hH : Group.IsNilpotent G inst✝ : Nontrivial G h : nilpotencyClass G = Nat.zero ⊢ Nat.zero = Nat.zero - 1 + 1 [PROOFSTEP] exfalso [GOAL] case zero.h G : Type u_1 inst✝² : Group G H : Subgroup G inst✝¹ : Normal H hH : Group.IsNilpotent G inst✝ : Nontrivial G h : nilpotencyClass G = Nat.zero ⊢ False [PROOFSTEP] rw [nilpotencyClass_zero_iff_subsingleton] at h [GOAL] case zero.h G : Type u_1 inst✝² : Group G H : Subgroup G inst✝¹ : Normal H hH : Group.IsNilpotent G inst✝ : Nontrivial G h : Subsingleton G ⊢ False [PROOFSTEP] skip [GOAL] case zero.h G : Type u_1 inst✝² : Group G H : Subgroup G inst✝¹ : Normal H hH : Group.IsNilpotent G inst✝ : Nontrivial G h : Subsingleton G ⊢ False [PROOFSTEP] apply false_of_nontrivial_of_subsingleton G [GOAL] case succ G : Type u_1 inst✝² : Group G H : Subgroup G inst✝¹ : Normal H hH : Group.IsNilpotent G inst✝ : Nontrivial G n✝ : ℕ h : nilpotencyClass G = Nat.succ n✝ ⊢ Nat.succ n✝ = Nat.succ n✝ - 1 + 1 [PROOFSTEP] simp [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H h : Group.IsNilpotent (G ⧸ center G) ⊢ Group.IsNilpotent G [PROOFSTEP] obtain ⟨n, hn⟩ := h.nilpotent [GOAL] case intro G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H h : Group.IsNilpotent (G ⧸ center G) n : ℕ hn : upperCentralSeries (G ⧸ center G) n = ⊤ ⊢ Group.IsNilpotent G [PROOFSTEP] use n.succ [GOAL] case h G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H h : Group.IsNilpotent (G ⧸ center G) n : ℕ hn : upperCentralSeries (G ⧸ center G) n = ⊤ ⊢ upperCentralSeries G (Nat.succ n) = ⊤ [PROOFSTEP] simp [← comap_upperCentralSeries_quotient_center, hn] [GOAL] G✝ : Type u_1 inst✝³ : Group G✝ H : Subgroup G✝ inst✝² : Normal H P : (G : Type u_2) → [inst : Group G] → [inst : Group.IsNilpotent G] → Prop G : Type u_2 inst✝¹ : Group G inst✝ : Group.IsNilpotent G hbase : ∀ (G : Type u_2) [inst : Group G] [inst_1 : Subsingleton G], P G hstep : ∀ (G : Type u_2) [inst : Group G] [inst_1 : Group.IsNilpotent G], P (G ⧸ center G) → P G ⊢ P G [PROOFSTEP] obtain ⟨n, h⟩ : ∃ n, Group.nilpotencyClass G = n := ⟨_, rfl⟩ [GOAL] case intro G✝ : Type u_1 inst✝³ : Group G✝ H : Subgroup G✝ inst✝² : Normal H P : (G : Type u_2) → [inst : Group G] → [inst : Group.IsNilpotent G] → Prop G : Type u_2 inst✝¹ : Group G inst✝ : Group.IsNilpotent G hbase : ∀ (G : Type u_2) [inst : Group G] [inst_1 : Subsingleton G], P G hstep : ∀ (G : Type u_2) [inst : Group G] [inst_1 : Group.IsNilpotent G], P (G ⧸ center G) → P G n : ℕ h : nilpotencyClass G = n ⊢ P G [PROOFSTEP] induction' n with n ih generalizing G [GOAL] case intro.zero G✝¹ : Type u_1 inst✝⁵ : Group G✝¹ H : Subgroup G✝¹ inst✝⁴ : Normal H P : (G : Type u_2) → [inst : Group G] → [inst : Group.IsNilpotent G] → Prop G✝ : Type u_2 inst✝³ : Group G✝ inst✝² : Group.IsNilpotent G✝ hbase : ∀ (G : Type u_2) [inst : Group G] [inst_1 : Subsingleton G], P G hstep : ∀ (G : Type u_2) [inst : Group G] [inst_1 : Group.IsNilpotent G], P (G ⧸ center G) → P G n : ℕ h✝ : nilpotencyClass G✝ = n G : Type u_2 inst✝¹ : Group G inst✝ : Group.IsNilpotent G h : nilpotencyClass G = Nat.zero ⊢ P G [PROOFSTEP] haveI := nilpotencyClass_zero_iff_subsingleton.mp h [GOAL] case intro.zero G✝¹ : Type u_1 inst✝⁵ : Group G✝¹ H : Subgroup G✝¹ inst✝⁴ : Normal H P : (G : Type u_2) → [inst : Group G] → [inst : Group.IsNilpotent G] → Prop G✝ : Type u_2 inst✝³ : Group G✝ inst✝² : Group.IsNilpotent G✝ hbase : ∀ (G : Type u_2) [inst : Group G] [inst_1 : Subsingleton G], P G hstep : ∀ (G : Type u_2) [inst : Group G] [inst_1 : Group.IsNilpotent G], P (G ⧸ center G) → P G n : ℕ h✝ : nilpotencyClass G✝ = n G : Type u_2 inst✝¹ : Group G inst✝ : Group.IsNilpotent G h : nilpotencyClass G = Nat.zero this : Subsingleton G ⊢ P G [PROOFSTEP] exact hbase _ [GOAL] case intro.succ G✝¹ : Type u_1 inst✝⁵ : Group G✝¹ H : Subgroup G✝¹ inst✝⁴ : Normal H P : (G : Type u_2) → [inst : Group G] → [inst : Group.IsNilpotent G] → Prop G✝ : Type u_2 inst✝³ : Group G✝ inst✝² : Group.IsNilpotent G✝ hbase : ∀ (G : Type u_2) [inst : Group G] [inst_1 : Subsingleton G], P G hstep : ∀ (G : Type u_2) [inst : Group G] [inst_1 : Group.IsNilpotent G], P (G ⧸ center G) → P G n✝ : ℕ h✝ : nilpotencyClass G✝ = n✝ n : ℕ ih : ∀ (G : Type u_2) [inst : Group G] [inst_1 : Group.IsNilpotent G], nilpotencyClass G = n → P G G : Type u_2 inst✝¹ : Group G inst✝ : Group.IsNilpotent G h : nilpotencyClass G = Nat.succ n ⊢ P G [PROOFSTEP] have hn : Group.nilpotencyClass (G ⧸ center G) = n := by simp [nilpotencyClass_quotient_center, h] [GOAL] G✝¹ : Type u_1 inst✝⁵ : Group G✝¹ H : Subgroup G✝¹ inst✝⁴ : Normal H P : (G : Type u_2) → [inst : Group G] → [inst : Group.IsNilpotent G] → Prop G✝ : Type u_2 inst✝³ : Group G✝ inst✝² : Group.IsNilpotent G✝ hbase : ∀ (G : Type u_2) [inst : Group G] [inst_1 : Subsingleton G], P G hstep : ∀ (G : Type u_2) [inst : Group G] [inst_1 : Group.IsNilpotent G], P (G ⧸ center G) → P G n✝ : ℕ h✝ : nilpotencyClass G✝ = n✝ n : ℕ ih : ∀ (G : Type u_2) [inst : Group G] [inst_1 : Group.IsNilpotent G], nilpotencyClass G = n → P G G : Type u_2 inst✝¹ : Group G inst✝ : Group.IsNilpotent G h : nilpotencyClass G = Nat.succ n ⊢ nilpotencyClass (G ⧸ center G) = n [PROOFSTEP] simp [nilpotencyClass_quotient_center, h] [GOAL] case intro.succ G✝¹ : Type u_1 inst✝⁵ : Group G✝¹ H : Subgroup G✝¹ inst✝⁴ : Normal H P : (G : Type u_2) → [inst : Group G] → [inst : Group.IsNilpotent G] → Prop G✝ : Type u_2 inst✝³ : Group G✝ inst✝² : Group.IsNilpotent G✝ hbase : ∀ (G : Type u_2) [inst : Group G] [inst_1 : Subsingleton G], P G hstep : ∀ (G : Type u_2) [inst : Group G] [inst_1 : Group.IsNilpotent G], P (G ⧸ center G) → P G n✝ : ℕ h✝ : nilpotencyClass G✝ = n✝ n : ℕ ih : ∀ (G : Type u_2) [inst : Group G] [inst_1 : Group.IsNilpotent G], nilpotencyClass G = n → P G G : Type u_2 inst✝¹ : Group G inst✝ : Group.IsNilpotent G h : nilpotencyClass G = Nat.succ n hn : nilpotencyClass (G ⧸ center G) = n ⊢ P G [PROOFSTEP] exact hstep _ (ih _ hn) [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H n : ℕ ⊢ derivedSeries G n ≤ lowerCentralSeries G n [PROOFSTEP] induction' n with i ih [GOAL] case zero G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H ⊢ derivedSeries G Nat.zero ≤ lowerCentralSeries G Nat.zero [PROOFSTEP] simp [GOAL] case succ G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H i : ℕ ih : derivedSeries G i ≤ lowerCentralSeries G i ⊢ derivedSeries G (Nat.succ i) ≤ lowerCentralSeries G (Nat.succ i) [PROOFSTEP] apply commutator_mono ih [GOAL] case succ G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H i : ℕ ih : derivedSeries G i ≤ lowerCentralSeries G i ⊢ derivedSeries G i ≤ ⊤ [PROOFSTEP] simp [GOAL] G✝ : Type u_1 inst✝² : Group G✝ H : Subgroup G✝ inst✝¹ : Normal H G : Type u_2 inst✝ : CommGroup G ⊢ Group.IsNilpotent G [PROOFSTEP] use 1 [GOAL] case h G✝ : Type u_1 inst✝² : Group G✝ H : Subgroup G✝ inst✝¹ : Normal H G : Type u_2 inst✝ : CommGroup G ⊢ upperCentralSeries G 1 = ⊤ [PROOFSTEP] rw [upperCentralSeries_one] [GOAL] case h G✝ : Type u_1 inst✝² : Group G✝ H : Subgroup G✝ inst✝¹ : Normal H G : Type u_2 inst✝ : CommGroup G ⊢ center G = ⊤ [PROOFSTEP] apply CommGroup.center_eq_top [GOAL] G✝ : Type u_1 inst✝² : Group G✝ H : Subgroup G✝ inst✝¹ : Normal H G : Type u_2 inst✝ : CommGroup G ⊢ nilpotencyClass G ≤ 1 [PROOFSTEP] apply upperCentralSeries_eq_top_iff_nilpotencyClass_le.mp [GOAL] G✝ : Type u_1 inst✝² : Group G✝ H : Subgroup G✝ inst✝¹ : Normal H G : Type u_2 inst✝ : CommGroup G ⊢ upperCentralSeries G 1 = ⊤ [PROOFSTEP] rw [upperCentralSeries_one] [GOAL] G✝ : Type u_1 inst✝² : Group G✝ H : Subgroup G✝ inst✝¹ : Normal H G : Type u_2 inst✝ : CommGroup G ⊢ center G = ⊤ [PROOFSTEP] apply CommGroup.center_eq_top [GOAL] G : Type u_1 inst✝² : Group G H : Subgroup G inst✝¹ : Normal H inst✝ : Group.IsNilpotent G h : nilpotencyClass G ≤ 1 ⊢ center G = ⊤ [PROOFSTEP] rw [← upperCentralSeries_one] [GOAL] G : Type u_1 inst✝² : Group G H : Subgroup G inst✝¹ : Normal H inst✝ : Group.IsNilpotent G h : nilpotencyClass G ≤ 1 ⊢ upperCentralSeries G 1 = ⊤ [PROOFSTEP] exact upperCentralSeries_eq_top_iff_nilpotencyClass_le.mpr h [GOAL] G : Type u_1 inst✝³ : Group G H : Subgroup G inst✝² : Normal H G₁ : Type u_2 G₂ : Type u_3 inst✝¹ : Group G₁ inst✝ : Group G₂ n : ℕ ⊢ lowerCentralSeries (G₁ × G₂) n = prod (lowerCentralSeries G₁ n) (lowerCentralSeries G₂ n) [PROOFSTEP] induction' n with n ih [GOAL] case zero G : Type u_1 inst✝³ : Group G H : Subgroup G inst✝² : Normal H G₁ : Type u_2 G₂ : Type u_3 inst✝¹ : Group G₁ inst✝ : Group G₂ ⊢ lowerCentralSeries (G₁ × G₂) Nat.zero = prod (lowerCentralSeries G₁ Nat.zero) (lowerCentralSeries G₂ Nat.zero) [PROOFSTEP] simp [GOAL] case succ G : Type u_1 inst✝³ : Group G H : Subgroup G inst✝² : Normal H G₁ : Type u_2 G₂ : Type u_3 inst✝¹ : Group G₁ inst✝ : Group G₂ n : ℕ ih : lowerCentralSeries (G₁ × G₂) n = prod (lowerCentralSeries G₁ n) (lowerCentralSeries G₂ n) ⊢ lowerCentralSeries (G₁ × G₂) (Nat.succ n) = prod (lowerCentralSeries G₁ (Nat.succ n)) (lowerCentralSeries G₂ (Nat.succ n)) [PROOFSTEP] calc lowerCentralSeries (G₁ × G₂) n.succ = ⁅lowerCentralSeries (G₁ × G₂) n, ⊤⁆ := rfl _ = ⁅(lowerCentralSeries G₁ n).prod (lowerCentralSeries G₂ n), ⊤⁆ := by rw [ih] _ = ⁅(lowerCentralSeries G₁ n).prod (lowerCentralSeries G₂ n), (⊤ : Subgroup G₁).prod ⊤⁆ := by simp _ = ⁅lowerCentralSeries G₁ n, (⊤ : Subgroup G₁)⁆.prod ⁅lowerCentralSeries G₂ n, ⊤⁆ := (commutator_prod_prod _ _ _ _) _ = (lowerCentralSeries G₁ n.succ).prod (lowerCentralSeries G₂ n.succ) := rfl [GOAL] G : Type u_1 inst✝³ : Group G H : Subgroup G inst✝² : Normal H G₁ : Type u_2 G₂ : Type u_3 inst✝¹ : Group G₁ inst✝ : Group G₂ n : ℕ ih : lowerCentralSeries (G₁ × G₂) n = prod (lowerCentralSeries G₁ n) (lowerCentralSeries G₂ n) ⊢ ⁅lowerCentralSeries (G₁ × G₂) n, ⊤⁆ = ⁅prod (lowerCentralSeries G₁ n) (lowerCentralSeries G₂ n), ⊤⁆ [PROOFSTEP] rw [ih] [GOAL] G : Type u_1 inst✝³ : Group G H : Subgroup G inst✝² : Normal H G₁ : Type u_2 G₂ : Type u_3 inst✝¹ : Group G₁ inst✝ : Group G₂ n : ℕ ih : lowerCentralSeries (G₁ × G₂) n = prod (lowerCentralSeries G₁ n) (lowerCentralSeries G₂ n) ⊢ ⁅prod (lowerCentralSeries G₁ n) (lowerCentralSeries G₂ n), ⊤⁆ = ⁅prod (lowerCentralSeries G₁ n) (lowerCentralSeries G₂ n), prod ⊤ ⊤⁆ [PROOFSTEP] simp [GOAL] G : Type u_1 inst✝⁵ : Group G H : Subgroup G inst✝⁴ : Normal H G₁ : Type u_2 G₂ : Type u_3 inst✝³ : Group G₁ inst✝² : Group G₂ inst✝¹ : Group.IsNilpotent G₁ inst✝ : Group.IsNilpotent G₂ ⊢ Group.IsNilpotent (G₁ × G₂) [PROOFSTEP] rw [nilpotent_iff_lowerCentralSeries] [GOAL] G : Type u_1 inst✝⁵ : Group G H : Subgroup G inst✝⁴ : Normal H G₁ : Type u_2 G₂ : Type u_3 inst✝³ : Group G₁ inst✝² : Group G₂ inst✝¹ : Group.IsNilpotent G₁ inst✝ : Group.IsNilpotent G₂ ⊢ ∃ n, lowerCentralSeries (G₁ × G₂) n = ⊥ [PROOFSTEP] refine' ⟨max (Group.nilpotencyClass G₁) (Group.nilpotencyClass G₂), _⟩ [GOAL] G : Type u_1 inst✝⁵ : Group G H : Subgroup G inst✝⁴ : Normal H G₁ : Type u_2 G₂ : Type u_3 inst✝³ : Group G₁ inst✝² : Group G₂ inst✝¹ : Group.IsNilpotent G₁ inst✝ : Group.IsNilpotent G₂ ⊢ lowerCentralSeries (G₁ × G₂) (max (nilpotencyClass G₁) (nilpotencyClass G₂)) = ⊥ [PROOFSTEP] rw [lowerCentralSeries_prod, lowerCentralSeries_eq_bot_iff_nilpotencyClass_le.mpr (le_max_left _ _), lowerCentralSeries_eq_bot_iff_nilpotencyClass_le.mpr (le_max_right _ _), bot_prod_bot] [GOAL] G : Type u_1 inst✝⁵ : Group G H : Subgroup G inst✝⁴ : Normal H G₁ : Type u_2 G₂ : Type u_3 inst✝³ : Group G₁ inst✝² : Group G₂ inst✝¹ : Group.IsNilpotent G₁ inst✝ : Group.IsNilpotent G₂ ⊢ nilpotencyClass (G₁ × G₂) = max (nilpotencyClass G₁) (nilpotencyClass G₂) [PROOFSTEP] refine' eq_of_forall_ge_iff fun k => _ [GOAL] G : Type u_1 inst✝⁵ : Group G H : Subgroup G inst✝⁴ : Normal H G₁ : Type u_2 G₂ : Type u_3 inst✝³ : Group G₁ inst✝² : Group G₂ inst✝¹ : Group.IsNilpotent G₁ inst✝ : Group.IsNilpotent G₂ k : ℕ ⊢ nilpotencyClass (G₁ × G₂) ≤ k ↔ max (nilpotencyClass G₁) (nilpotencyClass G₂) ≤ k [PROOFSTEP] simp only [max_le_iff, ← lowerCentralSeries_eq_bot_iff_nilpotencyClass_le, lowerCentralSeries_prod, prod_eq_bot_iff] [GOAL] G : Type u_1 inst✝² : Group G H : Subgroup G inst✝¹ : Normal H η : Type u_2 Gs : η → Type u_3 inst✝ : (i : η) → Group (Gs i) n : ℕ ⊢ lowerCentralSeries ((i : η) → Gs i) n ≤ pi Set.univ fun i => lowerCentralSeries (Gs i) n [PROOFSTEP] let pi := fun f : ∀ i, Subgroup (Gs i) => Subgroup.pi Set.univ f [GOAL] G : Type u_1 inst✝² : Group G H : Subgroup G inst✝¹ : Normal H η : Type u_2 Gs : η → Type u_3 inst✝ : (i : η) → Group (Gs i) n : ℕ pi : ((i : η) → Subgroup (Gs i)) → Subgroup ((i : η) → Gs i) := fun f => Subgroup.pi Set.univ f ⊢ lowerCentralSeries ((i : η) → Gs i) n ≤ Subgroup.pi Set.univ fun i => lowerCentralSeries (Gs i) n [PROOFSTEP] induction' n with n ih [GOAL] case zero G : Type u_1 inst✝² : Group G H : Subgroup G inst✝¹ : Normal H η : Type u_2 Gs : η → Type u_3 inst✝ : (i : η) → Group (Gs i) pi : ((i : η) → Subgroup (Gs i)) → Subgroup ((i : η) → Gs i) := fun f => Subgroup.pi Set.univ f ⊢ lowerCentralSeries ((i : η) → Gs i) Nat.zero ≤ Subgroup.pi Set.univ fun i => lowerCentralSeries (Gs i) Nat.zero [PROOFSTEP] simp [pi_top] [GOAL] case succ G : Type u_1 inst✝² : Group G H : Subgroup G inst✝¹ : Normal H η : Type u_2 Gs : η → Type u_3 inst✝ : (i : η) → Group (Gs i) pi : ((i : η) → Subgroup (Gs i)) → Subgroup ((i : η) → Gs i) := fun f => Subgroup.pi Set.univ f n : ℕ ih : lowerCentralSeries ((i : η) → Gs i) n ≤ Subgroup.pi Set.univ fun i => lowerCentralSeries (Gs i) n ⊢ lowerCentralSeries ((i : η) → Gs i) (Nat.succ n) ≤ Subgroup.pi Set.univ fun i => lowerCentralSeries (Gs i) (Nat.succ n) [PROOFSTEP] calc lowerCentralSeries (∀ i, Gs i) n.succ = ⁅lowerCentralSeries (∀ i, Gs i) n, ⊤⁆ := rfl _ ≤ ⁅pi fun i => lowerCentralSeries (Gs i) n, ⊤⁆ := (commutator_mono ih (le_refl _)) _ = ⁅pi fun i => lowerCentralSeries (Gs i) n, pi fun i => ⊤⁆ := by simp [pi_top] _ ≤ pi fun i => ⁅lowerCentralSeries (Gs i) n, ⊤⁆ := (commutator_pi_pi_le _ _) _ = pi fun i => lowerCentralSeries (Gs i) n.succ := rfl [GOAL] G : Type u_1 inst✝² : Group G H : Subgroup G inst✝¹ : Normal H η : Type u_2 Gs : η → Type u_3 inst✝ : (i : η) → Group (Gs i) pi : ((i : η) → Subgroup (Gs i)) → Subgroup ((i : η) → Gs i) := fun f => Subgroup.pi Set.univ f n : ℕ ih : lowerCentralSeries ((i : η) → Gs i) n ≤ Subgroup.pi Set.univ fun i => lowerCentralSeries (Gs i) n ⊢ ⁅pi fun i => lowerCentralSeries (Gs i) n, ⊤⁆ = ⁅pi fun i => lowerCentralSeries (Gs i) n, pi fun i => ⊤⁆ [PROOFSTEP] simp [pi_top] [GOAL] G : Type u_1 inst✝³ : Group G H : Subgroup G inst✝² : Normal H η : Type u_2 Gs : η → Type u_3 inst✝¹ : (i : η) → Group (Gs i) inst✝ : ∀ (i : η), Group.IsNilpotent (Gs i) n : ℕ h : ∀ (i : η), nilpotencyClass (Gs i) ≤ n ⊢ Group.IsNilpotent ((i : η) → Gs i) [PROOFSTEP] rw [nilpotent_iff_lowerCentralSeries] [GOAL] G : Type u_1 inst✝³ : Group G H : Subgroup G inst✝² : Normal H η : Type u_2 Gs : η → Type u_3 inst✝¹ : (i : η) → Group (Gs i) inst✝ : ∀ (i : η), Group.IsNilpotent (Gs i) n : ℕ h : ∀ (i : η), nilpotencyClass (Gs i) ≤ n ⊢ ∃ n, lowerCentralSeries ((i : η) → Gs i) n = ⊥ [PROOFSTEP] refine' ⟨n, _⟩ [GOAL] G : Type u_1 inst✝³ : Group G H : Subgroup G inst✝² : Normal H η : Type u_2 Gs : η → Type u_3 inst✝¹ : (i : η) → Group (Gs i) inst✝ : ∀ (i : η), Group.IsNilpotent (Gs i) n : ℕ h : ∀ (i : η), nilpotencyClass (Gs i) ≤ n ⊢ lowerCentralSeries ((i : η) → Gs i) n = ⊥ [PROOFSTEP] rw [eq_bot_iff] [GOAL] G : Type u_1 inst✝³ : Group G H : Subgroup G inst✝² : Normal H η : Type u_2 Gs : η → Type u_3 inst✝¹ : (i : η) → Group (Gs i) inst✝ : ∀ (i : η), Group.IsNilpotent (Gs i) n : ℕ h : ∀ (i : η), nilpotencyClass (Gs i) ≤ n ⊢ lowerCentralSeries ((i : η) → Gs i) n ≤ ⊥ [PROOFSTEP] apply le_trans (lowerCentralSeries_pi_le _) [GOAL] G : Type u_1 inst✝³ : Group G H : Subgroup G inst✝² : Normal H η : Type u_2 Gs : η → Type u_3 inst✝¹ : (i : η) → Group (Gs i) inst✝ : ∀ (i : η), Group.IsNilpotent (Gs i) n : ℕ h : ∀ (i : η), nilpotencyClass (Gs i) ≤ n ⊢ (pi Set.univ fun i => lowerCentralSeries (Gs i) n) ≤ ⊥ [PROOFSTEP] rw [← eq_bot_iff, pi_eq_bot_iff] [GOAL] G : Type u_1 inst✝³ : Group G H : Subgroup G inst✝² : Normal H η : Type u_2 Gs : η → Type u_3 inst✝¹ : (i : η) → Group (Gs i) inst✝ : ∀ (i : η), Group.IsNilpotent (Gs i) n : ℕ h : ∀ (i : η), nilpotencyClass (Gs i) ≤ n ⊢ ∀ (i : η), lowerCentralSeries (Gs i) n = ⊥ [PROOFSTEP] intro i [GOAL] G : Type u_1 inst✝³ : Group G H : Subgroup G inst✝² : Normal H η : Type u_2 Gs : η → Type u_3 inst✝¹ : (i : η) → Group (Gs i) inst✝ : ∀ (i : η), Group.IsNilpotent (Gs i) n : ℕ h : ∀ (i : η), nilpotencyClass (Gs i) ≤ n i : η ⊢ lowerCentralSeries (Gs i) n = ⊥ [PROOFSTEP] apply lowerCentralSeries_eq_bot_iff_nilpotencyClass_le.mpr (h i) [GOAL] G : Type u_1 inst✝³ : Group G H : Subgroup G inst✝² : Normal H η : Type u_2 Gs : η → Type u_3 inst✝¹ : (i : η) → Group (Gs i) inst✝ : Finite η n : ℕ ⊢ lowerCentralSeries ((i : η) → Gs i) n = pi Set.univ fun i => lowerCentralSeries (Gs i) n [PROOFSTEP] let pi := fun f : ∀ i, Subgroup (Gs i) => Subgroup.pi Set.univ f [GOAL] G : Type u_1 inst✝³ : Group G H : Subgroup G inst✝² : Normal H η : Type u_2 Gs : η → Type u_3 inst✝¹ : (i : η) → Group (Gs i) inst✝ : Finite η n : ℕ pi : ((i : η) → Subgroup (Gs i)) → Subgroup ((i : η) → Gs i) := fun f => Subgroup.pi Set.univ f ⊢ lowerCentralSeries ((i : η) → Gs i) n = Subgroup.pi Set.univ fun i => lowerCentralSeries (Gs i) n [PROOFSTEP] induction' n with n ih [GOAL] case zero G : Type u_1 inst✝³ : Group G H : Subgroup G inst✝² : Normal H η : Type u_2 Gs : η → Type u_3 inst✝¹ : (i : η) → Group (Gs i) inst✝ : Finite η pi : ((i : η) → Subgroup (Gs i)) → Subgroup ((i : η) → Gs i) := fun f => Subgroup.pi Set.univ f ⊢ lowerCentralSeries ((i : η) → Gs i) Nat.zero = Subgroup.pi Set.univ fun i => lowerCentralSeries (Gs i) Nat.zero [PROOFSTEP] simp [pi_top] [GOAL] case succ G : Type u_1 inst✝³ : Group G H : Subgroup G inst✝² : Normal H η : Type u_2 Gs : η → Type u_3 inst✝¹ : (i : η) → Group (Gs i) inst✝ : Finite η pi : ((i : η) → Subgroup (Gs i)) → Subgroup ((i : η) → Gs i) := fun f => Subgroup.pi Set.univ f n : ℕ ih : lowerCentralSeries ((i : η) → Gs i) n = Subgroup.pi Set.univ fun i => lowerCentralSeries (Gs i) n ⊢ lowerCentralSeries ((i : η) → Gs i) (Nat.succ n) = Subgroup.pi Set.univ fun i => lowerCentralSeries (Gs i) (Nat.succ n) [PROOFSTEP] calc lowerCentralSeries (∀ i, Gs i) n.succ = ⁅lowerCentralSeries (∀ i, Gs i) n, ⊤⁆ := rfl _ = ⁅pi fun i => lowerCentralSeries (Gs i) n, ⊤⁆ := by rw [ih] _ = ⁅pi fun i => lowerCentralSeries (Gs i) n, pi fun i => ⊤⁆ := by simp [pi_top] _ = pi fun i => ⁅lowerCentralSeries (Gs i) n, ⊤⁆ := (commutator_pi_pi_of_finite _ _) _ = pi fun i => lowerCentralSeries (Gs i) n.succ := rfl [GOAL] G : Type u_1 inst✝³ : Group G H : Subgroup G inst✝² : Normal H η : Type u_2 Gs : η → Type u_3 inst✝¹ : (i : η) → Group (Gs i) inst✝ : Finite η pi : ((i : η) → Subgroup (Gs i)) → Subgroup ((i : η) → Gs i) := fun f => Subgroup.pi Set.univ f n : ℕ ih : lowerCentralSeries ((i : η) → Gs i) n = Subgroup.pi Set.univ fun i => lowerCentralSeries (Gs i) n ⊢ ⁅lowerCentralSeries ((i : η) → Gs i) n, ⊤⁆ = ⁅pi fun i => lowerCentralSeries (Gs i) n, ⊤⁆ [PROOFSTEP] rw [ih] [GOAL] G : Type u_1 inst✝³ : Group G H : Subgroup G inst✝² : Normal H η : Type u_2 Gs : η → Type u_3 inst✝¹ : (i : η) → Group (Gs i) inst✝ : Finite η pi : ((i : η) → Subgroup (Gs i)) → Subgroup ((i : η) → Gs i) := fun f => Subgroup.pi Set.univ f n : ℕ ih : lowerCentralSeries ((i : η) → Gs i) n = Subgroup.pi Set.univ fun i => lowerCentralSeries (Gs i) n ⊢ ⁅pi fun i => lowerCentralSeries (Gs i) n, ⊤⁆ = ⁅pi fun i => lowerCentralSeries (Gs i) n, pi fun i => ⊤⁆ [PROOFSTEP] simp [pi_top] [GOAL] G : Type u_1 inst✝⁴ : Group G H : Subgroup G inst✝³ : Normal H η : Type u_2 Gs : η → Type u_3 inst✝² : (i : η) → Group (Gs i) inst✝¹ : Finite η inst✝ : ∀ (i : η), Group.IsNilpotent (Gs i) ⊢ Group.IsNilpotent ((i : η) → Gs i) [PROOFSTEP] cases nonempty_fintype η [GOAL] case intro G : Type u_1 inst✝⁴ : Group G H : Subgroup G inst✝³ : Normal H η : Type u_2 Gs : η → Type u_3 inst✝² : (i : η) → Group (Gs i) inst✝¹ : Finite η inst✝ : ∀ (i : η), Group.IsNilpotent (Gs i) val✝ : Fintype η ⊢ Group.IsNilpotent ((i : η) → Gs i) [PROOFSTEP] rw [nilpotent_iff_lowerCentralSeries] [GOAL] case intro G : Type u_1 inst✝⁴ : Group G H : Subgroup G inst✝³ : Normal H η : Type u_2 Gs : η → Type u_3 inst✝² : (i : η) → Group (Gs i) inst✝¹ : Finite η inst✝ : ∀ (i : η), Group.IsNilpotent (Gs i) val✝ : Fintype η ⊢ ∃ n, lowerCentralSeries ((i : η) → Gs i) n = ⊥ [PROOFSTEP] refine' ⟨Finset.univ.sup fun i => Group.nilpotencyClass (Gs i), _⟩ [GOAL] case intro G : Type u_1 inst✝⁴ : Group G H : Subgroup G inst✝³ : Normal H η : Type u_2 Gs : η → Type u_3 inst✝² : (i : η) → Group (Gs i) inst✝¹ : Finite η inst✝ : ∀ (i : η), Group.IsNilpotent (Gs i) val✝ : Fintype η ⊢ lowerCentralSeries ((i : η) → Gs i) (Finset.sup Finset.univ fun i => nilpotencyClass (Gs i)) = ⊥ [PROOFSTEP] rw [lowerCentralSeries_pi_of_finite, pi_eq_bot_iff] [GOAL] case intro G : Type u_1 inst✝⁴ : Group G H : Subgroup G inst✝³ : Normal H η : Type u_2 Gs : η → Type u_3 inst✝² : (i : η) → Group (Gs i) inst✝¹ : Finite η inst✝ : ∀ (i : η), Group.IsNilpotent (Gs i) val✝ : Fintype η ⊢ ∀ (i : η), lowerCentralSeries (Gs i) (Finset.sup Finset.univ fun i => nilpotencyClass (Gs i)) = ⊥ [PROOFSTEP] intro i [GOAL] case intro G : Type u_1 inst✝⁴ : Group G H : Subgroup G inst✝³ : Normal H η : Type u_2 Gs : η → Type u_3 inst✝² : (i : η) → Group (Gs i) inst✝¹ : Finite η inst✝ : ∀ (i : η), Group.IsNilpotent (Gs i) val✝ : Fintype η i : η ⊢ lowerCentralSeries (Gs i) (Finset.sup Finset.univ fun i => nilpotencyClass (Gs i)) = ⊥ [PROOFSTEP] apply lowerCentralSeries_eq_bot_iff_nilpotencyClass_le.mpr [GOAL] case intro G : Type u_1 inst✝⁴ : Group G H : Subgroup G inst✝³ : Normal H η : Type u_2 Gs : η → Type u_3 inst✝² : (i : η) → Group (Gs i) inst✝¹ : Finite η inst✝ : ∀ (i : η), Group.IsNilpotent (Gs i) val✝ : Fintype η i : η ⊢ nilpotencyClass (Gs i) ≤ Finset.sup Finset.univ fun i => nilpotencyClass (Gs i) [PROOFSTEP] exact @Finset.le_sup _ _ _ _ Finset.univ (fun i => Group.nilpotencyClass (Gs i)) _ (Finset.mem_univ i) [GOAL] G : Type u_1 inst✝⁴ : Group G H : Subgroup G inst✝³ : Normal H η : Type u_2 Gs : η → Type u_3 inst✝² : (i : η) → Group (Gs i) inst✝¹ : Fintype η inst✝ : ∀ (i : η), Group.IsNilpotent (Gs i) ⊢ nilpotencyClass ((i : η) → Gs i) = Finset.sup Finset.univ fun i => nilpotencyClass (Gs i) [PROOFSTEP] apply eq_of_forall_ge_iff [GOAL] case H G : Type u_1 inst✝⁴ : Group G H : Subgroup G inst✝³ : Normal H η : Type u_2 Gs : η → Type u_3 inst✝² : (i : η) → Group (Gs i) inst✝¹ : Fintype η inst✝ : ∀ (i : η), Group.IsNilpotent (Gs i) ⊢ ∀ (c : ℕ), nilpotencyClass ((i : η) → Gs i) ≤ c ↔ (Finset.sup Finset.univ fun i => nilpotencyClass (Gs i)) ≤ c [PROOFSTEP] intro k [GOAL] case H G : Type u_1 inst✝⁴ : Group G H : Subgroup G inst✝³ : Normal H η : Type u_2 Gs : η → Type u_3 inst✝² : (i : η) → Group (Gs i) inst✝¹ : Fintype η inst✝ : ∀ (i : η), Group.IsNilpotent (Gs i) k : ℕ ⊢ nilpotencyClass ((i : η) → Gs i) ≤ k ↔ (Finset.sup Finset.univ fun i => nilpotencyClass (Gs i)) ≤ k [PROOFSTEP] simp only [Finset.sup_le_iff, ← lowerCentralSeries_eq_bot_iff_nilpotencyClass_le, lowerCentralSeries_pi_of_finite, pi_eq_bot_iff, Finset.mem_univ, true_imp_iff] [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H h : Group.IsNilpotent G ⊢ IsSolvable G [PROOFSTEP] obtain ⟨n, hn⟩ := nilpotent_iff_lowerCentralSeries.1 h [GOAL] case intro G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H h : Group.IsNilpotent G n : ℕ hn : lowerCentralSeries G n = ⊥ ⊢ IsSolvable G [PROOFSTEP] use n [GOAL] case h G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H h : Group.IsNilpotent G n : ℕ hn : lowerCentralSeries G n = ⊥ ⊢ derivedSeries G n = ⊥ [PROOFSTEP] rw [eq_bot_iff, ← hn] [GOAL] case h G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H h : Group.IsNilpotent G n : ℕ hn : lowerCentralSeries G n = ⊥ ⊢ derivedSeries G n ≤ lowerCentralSeries G n [PROOFSTEP] exact derived_le_lower_central n [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H h : Group.IsNilpotent G ⊢ NormalizerCondition G [PROOFSTEP] rw [normalizerCondition_iff_only_full_group_self_normalizing] [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H h : Group.IsNilpotent G ⊢ ∀ (H : Subgroup G), normalizer H = H → H = ⊤ [PROOFSTEP] apply @nilpotent_center_quotient_ind _ G _ _ [GOAL] case hbase G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H h : Group.IsNilpotent G ⊢ ∀ (G : Type u_1) [inst : Group G] [inst_1 : Subsingleton G] (H : Subgroup G), normalizer H = H → H = ⊤ [PROOFSTEP] clear! G [GOAL] case hstep G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H h : Group.IsNilpotent G ⊢ ∀ (G : Type u_1) [inst : Group G] [inst_1 : Group.IsNilpotent G], (∀ (H : Subgroup (G ⧸ center G)), normalizer H = H → H = ⊤) → ∀ (H : Subgroup G), normalizer H = H → H = ⊤ [PROOFSTEP] clear! G [GOAL] case hbase ⊢ ∀ (G : Type u_1) [inst : Group G] [inst_1 : Subsingleton G] (H : Subgroup G), normalizer H = H → H = ⊤ [PROOFSTEP] intro G _ _ H _ [GOAL] case hbase G : Type u_1 inst✝¹ : Group G inst✝ : Subsingleton G H : Subgroup G a✝ : normalizer H = H ⊢ H = ⊤ [PROOFSTEP] exact @Subsingleton.elim _ Unique.instSubsingleton _ _ [GOAL] case hstep ⊢ ∀ (G : Type u_1) [inst : Group G] [inst_1 : Group.IsNilpotent G], (∀ (H : Subgroup (G ⧸ center G)), normalizer H = H → H = ⊤) → ∀ (H : Subgroup G), normalizer H = H → H = ⊤ [PROOFSTEP] intro G _ _ ih H hH [GOAL] case hstep G : Type u_1 inst✝¹ : Group G inst✝ : Group.IsNilpotent G ih : ∀ (H : Subgroup (G ⧸ center G)), normalizer H = H → H = ⊤ H : Subgroup G hH : normalizer H = H ⊢ H = ⊤ [PROOFSTEP] have hch : center G ≤ H := Subgroup.center_le_normalizer.trans (le_of_eq hH) [GOAL] case hstep G : Type u_1 inst✝¹ : Group G inst✝ : Group.IsNilpotent G ih : ∀ (H : Subgroup (G ⧸ center G)), normalizer H = H → H = ⊤ H : Subgroup G hH : normalizer H = H hch : center G ≤ H ⊢ H = ⊤ [PROOFSTEP] have hkh : (mk' (center G)).ker ≤ H := by simpa using hch [GOAL] G : Type u_1 inst✝¹ : Group G inst✝ : Group.IsNilpotent G ih : ∀ (H : Subgroup (G ⧸ center G)), normalizer H = H → H = ⊤ H : Subgroup G hH : normalizer H = H hch : center G ≤ H ⊢ MonoidHom.ker (mk' (center G)) ≤ H [PROOFSTEP] simpa using hch [GOAL] case hstep G : Type u_1 inst✝¹ : Group G inst✝ : Group.IsNilpotent G ih : ∀ (H : Subgroup (G ⧸ center G)), normalizer H = H → H = ⊤ H : Subgroup G hH : normalizer H = H hch : center G ≤ H hkh : MonoidHom.ker (mk' (center G)) ≤ H ⊢ H = ⊤ [PROOFSTEP] have hsur : Function.Surjective (mk' (center G)) := surjective_quot_mk _ [GOAL] case hstep G : Type u_1 inst✝¹ : Group G inst✝ : Group.IsNilpotent G ih : ∀ (H : Subgroup (G ⧸ center G)), normalizer H = H → H = ⊤ H : Subgroup G hH : normalizer H = H hch : center G ≤ H hkh : MonoidHom.ker (mk' (center G)) ≤ H hsur : Function.Surjective ↑(mk' (center G)) ⊢ H = ⊤ [PROOFSTEP] let H' := H.map (mk' (center G)) [GOAL] case hstep G : Type u_1 inst✝¹ : Group G inst✝ : Group.IsNilpotent G ih : ∀ (H : Subgroup (G ⧸ center G)), normalizer H = H → H = ⊤ H : Subgroup G hH : normalizer H = H hch : center G ≤ H hkh : MonoidHom.ker (mk' (center G)) ≤ H hsur : Function.Surjective ↑(mk' (center G)) H' : Subgroup (G ⧸ center G) := Subgroup.map (mk' (center G)) H ⊢ H = ⊤ [PROOFSTEP] have hH' : H'.normalizer = H' := by apply comap_injective hsur rw [comap_normalizer_eq_of_surjective _ hsur, comap_map_eq_self hkh] exact hH [GOAL] G : Type u_1 inst✝¹ : Group G inst✝ : Group.IsNilpotent G ih : ∀ (H : Subgroup (G ⧸ center G)), normalizer H = H → H = ⊤ H : Subgroup G hH : normalizer H = H hch : center G ≤ H hkh : MonoidHom.ker (mk' (center G)) ≤ H hsur : Function.Surjective ↑(mk' (center G)) H' : Subgroup (G ⧸ center G) := Subgroup.map (mk' (center G)) H ⊢ normalizer H' = H' [PROOFSTEP] apply comap_injective hsur [GOAL] case a G : Type u_1 inst✝¹ : Group G inst✝ : Group.IsNilpotent G ih : ∀ (H : Subgroup (G ⧸ center G)), normalizer H = H → H = ⊤ H : Subgroup G hH : normalizer H = H hch : center G ≤ H hkh : MonoidHom.ker (mk' (center G)) ≤ H hsur : Function.Surjective ↑(mk' (center G)) H' : Subgroup (G ⧸ center G) := Subgroup.map (mk' (center G)) H ⊢ comap (mk' (center G)) (normalizer H') = comap (mk' (center G)) H' [PROOFSTEP] rw [comap_normalizer_eq_of_surjective _ hsur, comap_map_eq_self hkh] [GOAL] case a G : Type u_1 inst✝¹ : Group G inst✝ : Group.IsNilpotent G ih : ∀ (H : Subgroup (G ⧸ center G)), normalizer H = H → H = ⊤ H : Subgroup G hH : normalizer H = H hch : center G ≤ H hkh : MonoidHom.ker (mk' (center G)) ≤ H hsur : Function.Surjective ↑(mk' (center G)) H' : Subgroup (G ⧸ center G) := Subgroup.map (mk' (center G)) H ⊢ normalizer H = H [PROOFSTEP] exact hH [GOAL] case hstep G : Type u_1 inst✝¹ : Group G inst✝ : Group.IsNilpotent G ih : ∀ (H : Subgroup (G ⧸ center G)), normalizer H = H → H = ⊤ H : Subgroup G hH : normalizer H = H hch : center G ≤ H hkh : MonoidHom.ker (mk' (center G)) ≤ H hsur : Function.Surjective ↑(mk' (center G)) H' : Subgroup (G ⧸ center G) := Subgroup.map (mk' (center G)) H hH' : normalizer H' = H' ⊢ H = ⊤ [PROOFSTEP] apply map_injective_of_ker_le (mk' (center G)) hkh le_top [GOAL] case hstep G : Type u_1 inst✝¹ : Group G inst✝ : Group.IsNilpotent G ih : ∀ (H : Subgroup (G ⧸ center G)), normalizer H = H → H = ⊤ H : Subgroup G hH : normalizer H = H hch : center G ≤ H hkh : MonoidHom.ker (mk' (center G)) ≤ H hsur : Function.Surjective ↑(mk' (center G)) H' : Subgroup (G ⧸ center G) := Subgroup.map (mk' (center G)) H hH' : normalizer H' = H' ⊢ Subgroup.map (mk' (center G)) H = Subgroup.map (mk' (center G)) ⊤ [PROOFSTEP] exact (ih H' hH').trans (symm (map_top_of_surjective _ hsur)) [GOAL] G : Type u_1 hG : Group G inst✝ : Finite G p : ℕ hp : Fact (Nat.Prime p) h : IsPGroup p G ⊢ Group.IsNilpotent G [PROOFSTEP] cases' nonempty_fintype G [GOAL] case intro G : Type u_1 hG : Group G inst✝ : Finite G p : ℕ hp : Fact (Nat.Prime p) h : IsPGroup p G val✝ : Fintype G ⊢ Group.IsNilpotent G [PROOFSTEP] classical revert hG apply @Fintype.induction_subsingleton_or_nontrivial _ G _ · intro _ _ _ _ infer_instance · intro G _ _ ih _ h have hcq : Fintype.card (G ⧸ center G) < Fintype.card G := by rw [card_eq_card_quotient_mul_card_subgroup (center G)] apply lt_mul_of_one_lt_right exact Fintype.card_pos_iff.mpr One.nonempty exact (Subgroup.one_lt_card_iff_ne_bot _).mpr (ne_of_gt h.bot_lt_center) have hnq : IsNilpotent (G ⧸ center G) := ih _ hcq (h.to_quotient (center G)) exact of_quotient_center_nilpotent hnq [GOAL] case intro G : Type u_1 hG : Group G inst✝ : Finite G p : ℕ hp : Fact (Nat.Prime p) h : IsPGroup p G val✝ : Fintype G ⊢ Group.IsNilpotent G [PROOFSTEP] revert hG [GOAL] case intro G : Type u_1 inst✝ : Finite G p : ℕ hp : Fact (Nat.Prime p) val✝ : Fintype G ⊢ ∀ [hG : Group G], IsPGroup p G → Group.IsNilpotent G [PROOFSTEP] apply @Fintype.induction_subsingleton_or_nontrivial _ G _ [GOAL] case intro.hbase G : Type u_1 inst✝ : Finite G p : ℕ hp : Fact (Nat.Prime p) val✝ : Fintype G ⊢ ∀ (α : Type u_1) [inst : Fintype α] [inst : Subsingleton α] [hG : Group α], IsPGroup p α → Group.IsNilpotent α [PROOFSTEP] intro _ _ _ _ [GOAL] case intro.hbase G : Type u_1 inst✝² : Finite G p : ℕ hp : Fact (Nat.Prime p) val✝ : Fintype G α✝ : Type u_1 inst✝¹ : Fintype α✝ inst✝ : Subsingleton α✝ hG✝ : Group α✝ ⊢ IsPGroup p α✝ → Group.IsNilpotent α✝ [PROOFSTEP] infer_instance [GOAL] case intro.hstep G : Type u_1 inst✝ : Finite G p : ℕ hp : Fact (Nat.Prime p) val✝ : Fintype G ⊢ ∀ (α : Type u_1) [inst : Fintype α] [inst_1 : Nontrivial α], (∀ (β : Type u_1) [inst_2 : Fintype β], card β < card α → ∀ [hG : Group β], IsPGroup p β → Group.IsNilpotent β) → ∀ [hG : Group α], IsPGroup p α → Group.IsNilpotent α [PROOFSTEP] intro G _ _ ih _ h [GOAL] case intro.hstep G✝ : Type u_1 inst✝² : Finite G✝ p : ℕ hp : Fact (Nat.Prime p) val✝ : Fintype G✝ G : Type u_1 inst✝¹ : Fintype G inst✝ : Nontrivial G ih : ∀ (β : Type u_1) [inst : Fintype β], card β < card G → ∀ [hG : Group β], IsPGroup p β → Group.IsNilpotent β hG✝ : Group G h : IsPGroup p G ⊢ Group.IsNilpotent G [PROOFSTEP] have hcq : Fintype.card (G ⧸ center G) < Fintype.card G := by rw [card_eq_card_quotient_mul_card_subgroup (center G)] apply lt_mul_of_one_lt_right exact Fintype.card_pos_iff.mpr One.nonempty exact (Subgroup.one_lt_card_iff_ne_bot _).mpr (ne_of_gt h.bot_lt_center) [GOAL] G✝ : Type u_1 inst✝² : Finite G✝ p : ℕ hp : Fact (Nat.Prime p) val✝ : Fintype G✝ G : Type u_1 inst✝¹ : Fintype G inst✝ : Nontrivial G ih : ∀ (β : Type u_1) [inst : Fintype β], card β < card G → ∀ [hG : Group β], IsPGroup p β → Group.IsNilpotent β hG✝ : Group G h : IsPGroup p G ⊢ card (G ⧸ center G) < card G [PROOFSTEP] rw [card_eq_card_quotient_mul_card_subgroup (center G)] [GOAL] G✝ : Type u_1 inst✝² : Finite G✝ p : ℕ hp : Fact (Nat.Prime p) val✝ : Fintype G✝ G : Type u_1 inst✝¹ : Fintype G inst✝ : Nontrivial G ih : ∀ (β : Type u_1) [inst : Fintype β], card β < card G → ∀ [hG : Group β], IsPGroup p β → Group.IsNilpotent β hG✝ : Group G h : IsPGroup p G ⊢ card (G ⧸ center G) < card (G ⧸ center G) * card { x // x ∈ center G } [PROOFSTEP] apply lt_mul_of_one_lt_right [GOAL] case ha G✝ : Type u_1 inst✝² : Finite G✝ p : ℕ hp : Fact (Nat.Prime p) val✝ : Fintype G✝ G : Type u_1 inst✝¹ : Fintype G inst✝ : Nontrivial G ih : ∀ (β : Type u_1) [inst : Fintype β], card β < card G → ∀ [hG : Group β], IsPGroup p β → Group.IsNilpotent β hG✝ : Group G h : IsPGroup p G ⊢ 0 < card (G ⧸ center G) case h G✝ : Type u_1 inst✝² : Finite G✝ p : ℕ hp : Fact (Nat.Prime p) val✝ : Fintype G✝ G : Type u_1 inst✝¹ : Fintype G inst✝ : Nontrivial G ih : ∀ (β : Type u_1) [inst : Fintype β], card β < card G → ∀ [hG : Group β], IsPGroup p β → Group.IsNilpotent β hG✝ : Group G h : IsPGroup p G ⊢ 1 < card { x // x ∈ center G } [PROOFSTEP] exact Fintype.card_pos_iff.mpr One.nonempty [GOAL] case h G✝ : Type u_1 inst✝² : Finite G✝ p : ℕ hp : Fact (Nat.Prime p) val✝ : Fintype G✝ G : Type u_1 inst✝¹ : Fintype G inst✝ : Nontrivial G ih : ∀ (β : Type u_1) [inst : Fintype β], card β < card G → ∀ [hG : Group β], IsPGroup p β → Group.IsNilpotent β hG✝ : Group G h : IsPGroup p G ⊢ 1 < card { x // x ∈ center G } [PROOFSTEP] exact (Subgroup.one_lt_card_iff_ne_bot _).mpr (ne_of_gt h.bot_lt_center) [GOAL] case intro.hstep G✝ : Type u_1 inst✝² : Finite G✝ p : ℕ hp : Fact (Nat.Prime p) val✝ : Fintype G✝ G : Type u_1 inst✝¹ : Fintype G inst✝ : Nontrivial G ih : ∀ (β : Type u_1) [inst : Fintype β], card β < card G → ∀ [hG : Group β], IsPGroup p β → Group.IsNilpotent β hG✝ : Group G h : IsPGroup p G hcq : card (G ⧸ center G) < card G ⊢ Group.IsNilpotent G [PROOFSTEP] have hnq : IsNilpotent (G ⧸ center G) := ih _ hcq (h.to_quotient (center G)) [GOAL] case intro.hstep G✝ : Type u_1 inst✝² : Finite G✝ p : ℕ hp : Fact (Nat.Prime p) val✝ : Fintype G✝ G : Type u_1 inst✝¹ : Fintype G inst✝ : Nontrivial G ih : ∀ (β : Type u_1) [inst : Fintype β], card β < card G → ∀ [hG : Group β], IsPGroup p β → Group.IsNilpotent β hG✝ : Group G h : IsPGroup p G hcq : card (G ⧸ center G) < card G hnq : Group.IsNilpotent (G ⧸ center G) ⊢ Group.IsNilpotent G [PROOFSTEP] exact of_quotient_center_nilpotent hnq [GOAL] G : Type u_1 hG : Group G inst✝ : Fintype G e : ((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G ⊢ Group.IsNilpotent G [PROOFSTEP] classical let ps := (Fintype.card G).factorization.support have : ∀ (p : ps) (P : Sylow p G), IsNilpotent (↑P : Subgroup G) := by intro p P haveI : Fact (Nat.Prime ↑p) := Fact.mk (Nat.prime_of_mem_factorization (Finset.coe_mem p)) exact P.isPGroup'.isNilpotent exact nilpotent_of_mulEquiv e [GOAL] G : Type u_1 hG : Group G inst✝ : Fintype G e : ((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G ⊢ Group.IsNilpotent G [PROOFSTEP] let ps := (Fintype.card G).factorization.support [GOAL] G : Type u_1 hG : Group G inst✝ : Fintype G e : ((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G ps : Finset ℕ := (Nat.factorization (card G)).support ⊢ Group.IsNilpotent G [PROOFSTEP] have : ∀ (p : ps) (P : Sylow p G), IsNilpotent (↑P : Subgroup G) := by intro p P haveI : Fact (Nat.Prime ↑p) := Fact.mk (Nat.prime_of_mem_factorization (Finset.coe_mem p)) exact P.isPGroup'.isNilpotent [GOAL] G : Type u_1 hG : Group G inst✝ : Fintype G e : ((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G ps : Finset ℕ := (Nat.factorization (card G)).support ⊢ ∀ (p : { x // x ∈ ps }) (P : Sylow (↑p) G), Group.IsNilpotent { x // x ∈ ↑P } [PROOFSTEP] intro p P [GOAL] G : Type u_1 hG : Group G inst✝ : Fintype G e : ((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G ps : Finset ℕ := (Nat.factorization (card G)).support p : { x // x ∈ ps } P : Sylow (↑p) G ⊢ Group.IsNilpotent { x // x ∈ ↑P } [PROOFSTEP] haveI : Fact (Nat.Prime ↑p) := Fact.mk (Nat.prime_of_mem_factorization (Finset.coe_mem p)) [GOAL] G : Type u_1 hG : Group G inst✝ : Fintype G e : ((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G ps : Finset ℕ := (Nat.factorization (card G)).support p : { x // x ∈ ps } P : Sylow (↑p) G this : Fact (Nat.Prime ↑p) ⊢ Group.IsNilpotent { x // x ∈ ↑P } [PROOFSTEP] exact P.isPGroup'.isNilpotent [GOAL] G : Type u_1 hG : Group G inst✝ : Fintype G e : ((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G ps : Finset ℕ := (Nat.factorization (card G)).support this : ∀ (p : { x // x ∈ ps }) (P : Sylow (↑p) G), Group.IsNilpotent { x // x ∈ ↑P } ⊢ Group.IsNilpotent G [PROOFSTEP] exact nilpotent_of_mulEquiv e [GOAL] G : Type u_1 hG : Group G inst✝ : Fintype G ⊢ List.TFAE [Group.IsNilpotent G, NormalizerCondition G, ∀ (H : Subgroup G), IsCoatom H → Normal H, ∀ (p : ℕ), Fact (Nat.Prime p) → ∀ (P : Sylow p G), Normal ↑P, Nonempty (((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G)] [PROOFSTEP] tfae_have 1 → 2 [GOAL] case tfae_1_to_2 G : Type u_1 hG : Group G inst✝ : Fintype G ⊢ Group.IsNilpotent G → NormalizerCondition G [PROOFSTEP] exact @normalizerCondition_of_isNilpotent _ _ [GOAL] G : Type u_1 hG : Group G inst✝ : Fintype G tfae_1_to_2 : Group.IsNilpotent G → NormalizerCondition G ⊢ List.TFAE [Group.IsNilpotent G, NormalizerCondition G, ∀ (H : Subgroup G), IsCoatom H → Normal H, ∀ (p : ℕ), Fact (Nat.Prime p) → ∀ (P : Sylow p G), Normal ↑P, Nonempty (((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G)] [PROOFSTEP] tfae_have 2 → 3 [GOAL] case tfae_2_to_3 G : Type u_1 hG : Group G inst✝ : Fintype G tfae_1_to_2 : Group.IsNilpotent G → NormalizerCondition G ⊢ NormalizerCondition G → ∀ (H : Subgroup G), IsCoatom H → Normal H [PROOFSTEP] exact fun h H => NormalizerCondition.normal_of_coatom H h [GOAL] G : Type u_1 hG : Group G inst✝ : Fintype G tfae_1_to_2 : Group.IsNilpotent G → NormalizerCondition G tfae_2_to_3 : NormalizerCondition G → ∀ (H : Subgroup G), IsCoatom H → Normal H ⊢ List.TFAE [Group.IsNilpotent G, NormalizerCondition G, ∀ (H : Subgroup G), IsCoatom H → Normal H, ∀ (p : ℕ), Fact (Nat.Prime p) → ∀ (P : Sylow p G), Normal ↑P, Nonempty (((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G)] [PROOFSTEP] tfae_have 3 → 4 [GOAL] case tfae_3_to_4 G : Type u_1 hG : Group G inst✝ : Fintype G tfae_1_to_2 : Group.IsNilpotent G → NormalizerCondition G tfae_2_to_3 : NormalizerCondition G → ∀ (H : Subgroup G), IsCoatom H → Normal H ⊢ (∀ (H : Subgroup G), IsCoatom H → Normal H) → ∀ (p : ℕ), Fact (Nat.Prime p) → ∀ (P : Sylow p G), Normal ↑P [PROOFSTEP] intro h p _ P [GOAL] case tfae_3_to_4 G : Type u_1 hG : Group G inst✝ : Fintype G tfae_1_to_2 : Group.IsNilpotent G → NormalizerCondition G tfae_2_to_3 : NormalizerCondition G → ∀ (H : Subgroup G), IsCoatom H → Normal H h : ∀ (H : Subgroup G), IsCoatom H → Normal H p : ℕ _hp✝ : Fact (Nat.Prime p) P : Sylow p G ⊢ Normal ↑P [PROOFSTEP] exact Sylow.normal_of_all_max_subgroups_normal h _ [GOAL] G : Type u_1 hG : Group G inst✝ : Fintype G tfae_1_to_2 : Group.IsNilpotent G → NormalizerCondition G tfae_2_to_3 : NormalizerCondition G → ∀ (H : Subgroup G), IsCoatom H → Normal H tfae_3_to_4 : (∀ (H : Subgroup G), IsCoatom H → Normal H) → ∀ (p : ℕ), Fact (Nat.Prime p) → ∀ (P : Sylow p G), Normal ↑P ⊢ List.TFAE [Group.IsNilpotent G, NormalizerCondition G, ∀ (H : Subgroup G), IsCoatom H → Normal H, ∀ (p : ℕ), Fact (Nat.Prime p) → ∀ (P : Sylow p G), Normal ↑P, Nonempty (((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G)] [PROOFSTEP] tfae_have 4 → 5 [GOAL] case tfae_4_to_5 G : Type u_1 hG : Group G inst✝ : Fintype G tfae_1_to_2 : Group.IsNilpotent G → NormalizerCondition G tfae_2_to_3 : NormalizerCondition G → ∀ (H : Subgroup G), IsCoatom H → Normal H tfae_3_to_4 : (∀ (H : Subgroup G), IsCoatom H → Normal H) → ∀ (p : ℕ), Fact (Nat.Prime p) → ∀ (P : Sylow p G), Normal ↑P ⊢ (∀ (p : ℕ), Fact (Nat.Prime p) → ∀ (P : Sylow p G), Normal ↑P) → Nonempty (((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G) [PROOFSTEP] exact fun h => Nonempty.intro (Sylow.directProductOfNormal fun {p hp hP} => h p hp hP) [GOAL] G : Type u_1 hG : Group G inst✝ : Fintype G tfae_1_to_2 : Group.IsNilpotent G → NormalizerCondition G tfae_2_to_3 : NormalizerCondition G → ∀ (H : Subgroup G), IsCoatom H → Normal H tfae_3_to_4 : (∀ (H : Subgroup G), IsCoatom H → Normal H) → ∀ (p : ℕ), Fact (Nat.Prime p) → ∀ (P : Sylow p G), Normal ↑P tfae_4_to_5 : (∀ (p : ℕ), Fact (Nat.Prime p) → ∀ (P : Sylow p G), Normal ↑P) → Nonempty (((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G) ⊢ List.TFAE [Group.IsNilpotent G, NormalizerCondition G, ∀ (H : Subgroup G), IsCoatom H → Normal H, ∀ (p : ℕ), Fact (Nat.Prime p) → ∀ (P : Sylow p G), Normal ↑P, Nonempty (((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G)] [PROOFSTEP] tfae_have 5 → 1 [GOAL] case tfae_5_to_1 G : Type u_1 hG : Group G inst✝ : Fintype G tfae_1_to_2 : Group.IsNilpotent G → NormalizerCondition G tfae_2_to_3 : NormalizerCondition G → ∀ (H : Subgroup G), IsCoatom H → Normal H tfae_3_to_4 : (∀ (H : Subgroup G), IsCoatom H → Normal H) → ∀ (p : ℕ), Fact (Nat.Prime p) → ∀ (P : Sylow p G), Normal ↑P tfae_4_to_5 : (∀ (p : ℕ), Fact (Nat.Prime p) → ∀ (P : Sylow p G), Normal ↑P) → Nonempty (((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G) ⊢ Nonempty (((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G) → Group.IsNilpotent G [PROOFSTEP] rintro ⟨e⟩ [GOAL] case tfae_5_to_1.intro G : Type u_1 hG : Group G inst✝ : Fintype G tfae_1_to_2 : Group.IsNilpotent G → NormalizerCondition G tfae_2_to_3 : NormalizerCondition G → ∀ (H : Subgroup G), IsCoatom H → Normal H tfae_3_to_4 : (∀ (H : Subgroup G), IsCoatom H → Normal H) → ∀ (p : ℕ), Fact (Nat.Prime p) → ∀ (P : Sylow p G), Normal ↑P tfae_4_to_5 : (∀ (p : ℕ), Fact (Nat.Prime p) → ∀ (P : Sylow p G), Normal ↑P) → Nonempty (((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G) e : ((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G ⊢ Group.IsNilpotent G [PROOFSTEP] exact isNilpotent_of_product_of_sylow_group e [GOAL] G : Type u_1 hG : Group G inst✝ : Fintype G tfae_1_to_2 : Group.IsNilpotent G → NormalizerCondition G tfae_2_to_3 : NormalizerCondition G → ∀ (H : Subgroup G), IsCoatom H → Normal H tfae_3_to_4 : (∀ (H : Subgroup G), IsCoatom H → Normal H) → ∀ (p : ℕ), Fact (Nat.Prime p) → ∀ (P : Sylow p G), Normal ↑P tfae_4_to_5 : (∀ (p : ℕ), Fact (Nat.Prime p) → ∀ (P : Sylow p G), Normal ↑P) → Nonempty (((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G) tfae_5_to_1 : Nonempty (((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G) → Group.IsNilpotent G ⊢ List.TFAE [Group.IsNilpotent G, NormalizerCondition G, ∀ (H : Subgroup G), IsCoatom H → Normal H, ∀ (p : ℕ), Fact (Nat.Prime p) → ∀ (P : Sylow p G), Normal ↑P, Nonempty (((p : { x // x ∈ (Nat.factorization (card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G)] [PROOFSTEP] tfae_finish
{"mathlib_filename": "Mathlib.GroupTheory.Nilpotent", "llama_tokens": 51561}
[GOAL] M : Type u_1 inst✝ : MulOneClass M a b : M h : 1 * a = b ⊢ a = b [PROOFSTEP] rwa [one_mul] at h
{"mathlib_filename": "Mathlib.Tactic.Linarith.Preprocessing", "llama_tokens": 59}
[GOAL] G : Type u inst✝ : Group G ⊢ commutator G = Subgroup.closure (commutatorSet G) [PROOFSTEP] simp [commutator, Subgroup.commutator_def, commutatorSet] [GOAL] G : Type u inst✝ : Group G ⊢ commutator G = Subgroup.normalClosure (commutatorSet G) [PROOFSTEP] simp [commutator, Subgroup.commutator_def', commutatorSet] [GOAL] G : Type u inst✝¹ : Group G inst✝ : Finite ↑(commutatorSet G) ⊢ Group.FG { x // x ∈ commutator G } [PROOFSTEP] rw [commutator_eq_closure] [GOAL] G : Type u inst✝¹ : Group G inst✝ : Finite ↑(commutatorSet G) ⊢ Group.FG { x // x ∈ Subgroup.closure (commutatorSet G) } [PROOFSTEP] apply Group.closure_finite_fg [GOAL] G : Type u inst✝¹ : Group G inst✝ : Finite ↑(commutatorSet G) ⊢ Group.rank { x // x ∈ commutator G } ≤ Nat.card ↑(commutatorSet G) [PROOFSTEP] rw [Subgroup.rank_congr (commutator_eq_closure G)] [GOAL] G : Type u inst✝¹ : Group G inst✝ : Finite ↑(commutatorSet G) ⊢ Group.rank { x // x ∈ Subgroup.closure (commutatorSet G) } ≤ Nat.card ↑(commutatorSet G) [PROOFSTEP] apply Subgroup.rank_closure_finite_le_nat_card [GOAL] G : Type u inst✝ : Group G ⊢ ⁅centralizer ↑(commutator G), centralizer ↑(commutator G)⁆ ≤ Subgroup.center G [PROOFSTEP] rw [← Subgroup.centralizer_univ, ← Subgroup.coe_top, ← Subgroup.commutator_eq_bot_iff_le_centralizer] [GOAL] G : Type u inst✝ : Group G ⊢ ⁅⁅centralizer ↑(commutator G), centralizer ↑(commutator G)⁆, ⊤⁆ = ⊥ [PROOFSTEP] suffices ⁅⁅⊤, centralizer (commutator G : Set G)⁆, centralizer (commutator G : Set G)⁆ = ⊥ by refine' Subgroup.commutator_commutator_eq_bot_of_rotate _ this rwa [Subgroup.commutator_comm (centralizer (commutator G : Set G))] [GOAL] G : Type u inst✝ : Group G this : ⁅⁅⊤, centralizer ↑(commutator G)⁆, centralizer ↑(commutator G)⁆ = ⊥ ⊢ ⁅⁅centralizer ↑(commutator G), centralizer ↑(commutator G)⁆, ⊤⁆ = ⊥ [PROOFSTEP] refine' Subgroup.commutator_commutator_eq_bot_of_rotate _ this [GOAL] G : Type u inst✝ : Group G this : ⁅⁅⊤, centralizer ↑(commutator G)⁆, centralizer ↑(commutator G)⁆ = ⊥ ⊢ ⁅⁅centralizer ↑(commutator G), ⊤⁆, centralizer ↑(commutator G)⁆ = ⊥ [PROOFSTEP] rwa [Subgroup.commutator_comm (centralizer (commutator G : Set G))] [GOAL] G : Type u inst✝ : Group G ⊢ ⁅⁅⊤, centralizer ↑(commutator G)⁆, centralizer ↑(commutator G)⁆ = ⊥ [PROOFSTEP] rw [Subgroup.commutator_comm, Subgroup.commutator_eq_bot_iff_le_centralizer] [GOAL] G : Type u inst✝ : Group G ⊢ centralizer ↑(commutator G) ≤ centralizer ↑⁅⊤, centralizer ↑(commutator G)⁆ [PROOFSTEP] exact Set.centralizer_subset (Subgroup.commutator_mono le_top le_top) [GOAL] G : Type u inst✝ : Group G src✝ : Group (G ⧸ commutator G) := QuotientGroup.Quotient.group (commutator G) x y : Abelianization G a b : G ⊢ ⁅b⁻¹, a⁻¹⁆ = ((fun x x_1 => x * x_1) a b)⁻¹ * (fun x x_1 => x * x_1) b a [PROOFSTEP] group [GOAL] G : Type u inst✝¹ : Group G A : Type v inst✝ : CommGroup A f : G →* A ⊢ commutator G ≤ MonoidHom.ker f [PROOFSTEP] rw [commutator_eq_closure, Subgroup.closure_le] [GOAL] G : Type u inst✝¹ : Group G A : Type v inst✝ : CommGroup A f : G →* A ⊢ commutatorSet G ⊆ ↑(MonoidHom.ker f) [PROOFSTEP] rintro x ⟨p, q, rfl⟩ [GOAL] case intro.intro G : Type u inst✝¹ : Group G A : Type v inst✝ : CommGroup A f : G →* A p q : G ⊢ ⁅p, q⁆ ∈ ↑(MonoidHom.ker f) [PROOFSTEP] simp [MonoidHom.mem_ker, mul_right_comm (f p) (f q), commutatorElement_def] [GOAL] G : Type u inst✝² inst✝¹ : Group G H : Type v inst✝ : Group H e : G ≃* H ⊢ Function.LeftInverse ↑(Abelianization.map (toMonoidHom (symm e))) ↑(Abelianization.map (toMonoidHom e)) [PROOFSTEP] rintro ⟨a⟩ [GOAL] case mk G : Type u inst✝² inst✝¹ : Group G H : Type v inst✝ : Group H e : G ≃* H x✝ : Abelianization G a : G ⊢ ↑(Abelianization.map (toMonoidHom (symm e))) (↑(Abelianization.map (toMonoidHom e)) (Quot.mk Setoid.r a)) = Quot.mk Setoid.r a [PROOFSTEP] simp [GOAL] G : Type u inst✝² inst✝¹ : Group G H : Type v inst✝ : Group H e : G ≃* H ⊢ Function.RightInverse ↑(Abelianization.map (toMonoidHom (symm e))) ↑(Abelianization.map (toMonoidHom e)) [PROOFSTEP] rintro ⟨a⟩ [GOAL] case mk G : Type u inst✝² inst✝¹ : Group G H : Type v inst✝ : Group H e : G ≃* H x✝ : Abelianization H a : H ⊢ ↑(Abelianization.map (toMonoidHom e)) (↑(Abelianization.map (toMonoidHom (symm e))) (Quot.mk Setoid.r a)) = Quot.mk Setoid.r a [PROOFSTEP] simp [GOAL] G : Type u inst✝¹ : Group G H : Type u_1 inst✝ : CommGroup H src✝ : H →* Abelianization H := of ⊢ Function.RightInverse ↑(↑lift (MonoidHom.id H)) ↑of [PROOFSTEP] rintro ⟨a⟩ [GOAL] case mk G : Type u inst✝¹ : Group G H : Type u_1 inst✝ : CommGroup H src✝ : H →* Abelianization H := of x✝ : Abelianization H a : H ⊢ ↑of (↑(↑lift (MonoidHom.id H)) (Quot.mk Setoid.r a)) = Quot.mk Setoid.r a [PROOFSTEP] rfl [GOAL] G : Type u inst✝¹ : Group G inst✝ : Finite ↑(commutatorSet G) ⊢ Group.rank { x // x ∈ closureCommutatorRepresentatives G } ≤ 2 * Nat.card ↑(commutatorSet G) [PROOFSTEP] rw [two_mul] [GOAL] G : Type u inst✝¹ : Group G inst✝ : Finite ↑(commutatorSet G) ⊢ Group.rank { x // x ∈ closureCommutatorRepresentatives G } ≤ Nat.card ↑(commutatorSet G) + Nat.card ↑(commutatorSet G) [PROOFSTEP] exact (Subgroup.rank_closure_finite_le_nat_card _).trans ((Set.card_union_le _ _).trans (add_le_add ((Finite.card_image_le _).trans (Finite.card_range_le _)) ((Finite.card_image_le _).trans (Finite.card_range_le _)))) [GOAL] G : Type u inst✝ : Group G ⊢ ↑(Subgroup.subtype (closureCommutatorRepresentatives G)) '' commutatorSet { x // x ∈ closureCommutatorRepresentatives G } = commutatorSet G [PROOFSTEP] apply Set.Subset.antisymm [GOAL] case h₁ G : Type u inst✝ : Group G ⊢ ↑(Subgroup.subtype (closureCommutatorRepresentatives G)) '' commutatorSet { x // x ∈ closureCommutatorRepresentatives G } ⊆ commutatorSet G [PROOFSTEP] rintro - ⟨-, ⟨g₁, g₂, rfl⟩, rfl⟩ [GOAL] case h₁.intro.intro.intro.intro G : Type u inst✝ : Group G g₁ g₂ : { x // x ∈ closureCommutatorRepresentatives G } ⊢ ↑(Subgroup.subtype (closureCommutatorRepresentatives G)) ⁅g₁, g₂⁆ ∈ commutatorSet G [PROOFSTEP] exact ⟨g₁, g₂, rfl⟩ [GOAL] case h₂ G : Type u inst✝ : Group G ⊢ commutatorSet G ⊆ ↑(Subgroup.subtype (closureCommutatorRepresentatives G)) '' commutatorSet { x // x ∈ closureCommutatorRepresentatives G } [PROOFSTEP] exact fun g hg => ⟨_, ⟨⟨_, subset_closure (Or.inl ⟨_, ⟨⟨g, hg⟩, rfl⟩, rfl⟩)⟩, ⟨_, subset_closure (Or.inr ⟨_, ⟨⟨g, hg⟩, rfl⟩, rfl⟩)⟩, rfl⟩, hg.choose_spec.choose_spec⟩ [GOAL] G : Type u inst✝ : Group G ⊢ Nat.card ↑(commutatorSet { x // x ∈ closureCommutatorRepresentatives G }) = Nat.card ↑(commutatorSet G) [PROOFSTEP] rw [← image_commutatorSet_closureCommutatorRepresentatives G] [GOAL] G : Type u inst✝ : Group G ⊢ Nat.card ↑(commutatorSet { x // x ∈ closureCommutatorRepresentatives G }) = Nat.card ↑(↑(Subgroup.subtype (closureCommutatorRepresentatives G)) '' commutatorSet { x // x ∈ closureCommutatorRepresentatives G }) [PROOFSTEP] exact Nat.card_congr (Equiv.Set.image _ _ (subtype_injective _)) [GOAL] G : Type u inst✝ : Group G ⊢ Nat.card { x // x ∈ _root_.commutator { x // x ∈ closureCommutatorRepresentatives G } } = Nat.card { x // x ∈ _root_.commutator G } [PROOFSTEP] rw [commutator_eq_closure G, ← image_commutatorSet_closureCommutatorRepresentatives, ← MonoidHom.map_closure, ← commutator_eq_closure] [GOAL] G : Type u inst✝ : Group G ⊢ Nat.card { x // x ∈ _root_.commutator { x // x ∈ closureCommutatorRepresentatives G } } = Nat.card { x // x ∈ map (Subgroup.subtype (closureCommutatorRepresentatives G)) (_root_.commutator { x // x ∈ closureCommutatorRepresentatives G }) } [PROOFSTEP] exact Nat.card_congr (Equiv.Set.image _ _ (subtype_injective _)) [GOAL] G : Type u inst✝¹ : Group G inst✝ : Finite ↑(commutatorSet G) ⊢ Finite ↑(commutatorSet { x // x ∈ closureCommutatorRepresentatives G }) [PROOFSTEP] apply Nat.finite_of_card_ne_zero [GOAL] case h G : Type u inst✝¹ : Group G inst✝ : Finite ↑(commutatorSet G) ⊢ Nat.card ↑(commutatorSet { x // x ∈ closureCommutatorRepresentatives G }) ≠ 0 [PROOFSTEP] rw [card_commutatorSet_closureCommutatorRepresentatives] [GOAL] case h G : Type u inst✝¹ : Group G inst✝ : Finite ↑(commutatorSet G) ⊢ Nat.card ↑(commutatorSet G) ≠ 0 [PROOFSTEP] exact Finite.card_pos.ne'
{"mathlib_filename": "Mathlib.GroupTheory.Abelianization", "llama_tokens": 3715}
[GOAL] G : Type u inst✝³ : Group G inst✝² : Fintype (ConjClasses G) inst✝¹ : Fintype G inst✝ : (x : ConjClasses G) → Fintype ↑(carrier x) ⊢ ∑ x : ConjClasses G, Finset.card (Set.toFinset (carrier x)) = Fintype.card G [PROOFSTEP] suffices : (Σ x : ConjClasses G, x.carrier) ≃ G [GOAL] G : Type u inst✝³ : Group G inst✝² : Fintype (ConjClasses G) inst✝¹ : Fintype G inst✝ : (x : ConjClasses G) → Fintype ↑(carrier x) this : (x : ConjClasses G) × ↑(carrier x) ≃ G ⊢ ∑ x : ConjClasses G, Finset.card (Set.toFinset (carrier x)) = Fintype.card G [PROOFSTEP] simpa using (Fintype.card_congr this) [GOAL] case this G : Type u inst✝³ : Group G inst✝² : Fintype (ConjClasses G) inst✝¹ : Fintype G inst✝ : (x : ConjClasses G) → Fintype ↑(carrier x) ⊢ (x : ConjClasses G) × ↑(carrier x) ≃ G [PROOFSTEP] simpa [carrier_eq_preimage_mk] using Equiv.sigmaFiberEquiv ConjClasses.mk [GOAL] G : Type u inst✝¹ : Group G inst✝ : Finite G ⊢ ∑ᶠ (x : ConjClasses G), Set.ncard (carrier x) = Nat.card G [PROOFSTEP] classical cases nonempty_fintype G rw [Nat.card_eq_fintype_card, ← sum_conjClasses_card_eq_card, finsum_eq_sum_of_fintype] simp [Set.ncard_eq_toFinset_card'] [GOAL] G : Type u inst✝¹ : Group G inst✝ : Finite G ⊢ ∑ᶠ (x : ConjClasses G), Set.ncard (carrier x) = Nat.card G [PROOFSTEP] cases nonempty_fintype G [GOAL] case intro G : Type u inst✝¹ : Group G inst✝ : Finite G val✝ : Fintype G ⊢ ∑ᶠ (x : ConjClasses G), Set.ncard (carrier x) = Nat.card G [PROOFSTEP] rw [Nat.card_eq_fintype_card, ← sum_conjClasses_card_eq_card, finsum_eq_sum_of_fintype] [GOAL] case intro G : Type u inst✝¹ : Group G inst✝ : Finite G val✝ : Fintype G ⊢ ∑ i : ConjClasses G, Set.ncard (carrier i) = ∑ x : ConjClasses G, Finset.card (Set.toFinset (carrier x)) [PROOFSTEP] simp [Set.ncard_eq_toFinset_card'] [GOAL] G : Type u inst✝¹ : Group G inst✝ : Finite G ⊢ Nat.card { x // x ∈ Subgroup.center G } + ∑ᶠ (x : ConjClasses G) (_ : x ∈ noncenter G), Nat.card ↑(carrier x) = Nat.card G [PROOFSTEP] classical cases nonempty_fintype G rw [@Nat.card_eq_fintype_card G, ← sum_conjClasses_card_eq_card, ← Finset.sum_sdiff (ConjClasses.noncenter G).toFinset.subset_univ] simp only [Nat.card_eq_fintype_card, Set.toFinset_card] congr 1 swap · convert finsum_cond_eq_sum_of_cond_iff _ _ simp [Set.mem_toFinset] calc Fintype.card (Subgroup.center G) = Fintype.card ((noncenter G)ᶜ : Set _) := Fintype.card_congr ((mk_bijOn G).equiv _) _ = Finset.card (Finset.univ \ (noncenter G).toFinset) := by rw [← Set.toFinset_card, Set.toFinset_compl, Finset.compl_eq_univ_sdiff] _ = _ := ?_ rw [Finset.card_eq_sum_ones] refine Finset.sum_congr rfl ?_ rintro ⟨g⟩ hg simp only [noncenter, Set.not_subsingleton_iff, Set.toFinset_setOf, Finset.mem_univ, true_and, forall_true_left, Finset.mem_sdiff, Finset.mem_filter, Set.not_nontrivial_iff] at hg rw [eq_comm, ← Set.toFinset_card, Finset.card_eq_one] exact ⟨g, Finset.coe_injective <| by simpa using hg.eq_singleton_of_mem mem_carrier_mk⟩ [GOAL] G : Type u inst✝¹ : Group G inst✝ : Finite G ⊢ Nat.card { x // x ∈ Subgroup.center G } + ∑ᶠ (x : ConjClasses G) (_ : x ∈ noncenter G), Nat.card ↑(carrier x) = Nat.card G [PROOFSTEP] cases nonempty_fintype G [GOAL] case intro G : Type u inst✝¹ : Group G inst✝ : Finite G val✝ : Fintype G ⊢ Nat.card { x // x ∈ Subgroup.center G } + ∑ᶠ (x : ConjClasses G) (_ : x ∈ noncenter G), Nat.card ↑(carrier x) = Nat.card G [PROOFSTEP] rw [@Nat.card_eq_fintype_card G, ← sum_conjClasses_card_eq_card, ← Finset.sum_sdiff (ConjClasses.noncenter G).toFinset.subset_univ] [GOAL] case intro G : Type u inst✝¹ : Group G inst✝ : Finite G val✝ : Fintype G ⊢ Nat.card { x // x ∈ Subgroup.center G } + ∑ᶠ (x : ConjClasses G) (_ : x ∈ noncenter G), Nat.card ↑(carrier x) = ∑ x in Finset.univ \ Set.toFinset (noncenter G), Finset.card (Set.toFinset (carrier x)) + ∑ x in Set.toFinset (noncenter G), Finset.card (Set.toFinset (carrier x)) [PROOFSTEP] simp only [Nat.card_eq_fintype_card, Set.toFinset_card] [GOAL] case intro G : Type u inst✝¹ : Group G inst✝ : Finite G val✝ : Fintype G ⊢ Fintype.card { x // x ∈ Subgroup.center G } + ∑ᶠ (x : ConjClasses G) (_ : x ∈ noncenter G), Fintype.card ↑(carrier x) = ∑ x in Finset.univ \ Set.toFinset (noncenter G), Fintype.card ↑(carrier x) + ∑ x in Set.toFinset (noncenter G), Fintype.card ↑(carrier x) [PROOFSTEP] congr 1 [GOAL] case intro.e_a G : Type u inst✝¹ : Group G inst✝ : Finite G val✝ : Fintype G ⊢ Fintype.card { x // x ∈ Subgroup.center G } = ∑ x in Finset.univ \ Set.toFinset (noncenter G), Fintype.card ↑(carrier x) case intro.e_a G : Type u inst✝¹ : Group G inst✝ : Finite G val✝ : Fintype G ⊢ ∑ᶠ (x : ConjClasses G) (_ : x ∈ noncenter G), Fintype.card ↑(carrier x) = ∑ x in Set.toFinset (noncenter G), Fintype.card ↑(carrier x) [PROOFSTEP] swap [GOAL] case intro.e_a G : Type u inst✝¹ : Group G inst✝ : Finite G val✝ : Fintype G ⊢ ∑ᶠ (x : ConjClasses G) (_ : x ∈ noncenter G), Fintype.card ↑(carrier x) = ∑ x in Set.toFinset (noncenter G), Fintype.card ↑(carrier x) [PROOFSTEP] convert finsum_cond_eq_sum_of_cond_iff _ _ [GOAL] case intro.e_a.convert_7 G : Type u inst✝¹ : Group G inst✝ : Finite G val✝ : Fintype G ⊢ ∀ {x : ConjClasses G}, Fintype.card ↑(carrier x) ≠ 0 → (x ∈ noncenter G ↔ x ∈ Set.toFinset (noncenter G)) [PROOFSTEP] simp [Set.mem_toFinset] [GOAL] case intro.e_a G : Type u inst✝¹ : Group G inst✝ : Finite G val✝ : Fintype G ⊢ Fintype.card { x // x ∈ Subgroup.center G } = ∑ x in Finset.univ \ Set.toFinset (noncenter G), Fintype.card ↑(carrier x) [PROOFSTEP] calc Fintype.card (Subgroup.center G) = Fintype.card ((noncenter G)ᶜ : Set _) := Fintype.card_congr ((mk_bijOn G).equiv _) _ = Finset.card (Finset.univ \ (noncenter G).toFinset) := by rw [← Set.toFinset_card, Set.toFinset_compl, Finset.compl_eq_univ_sdiff] _ = _ := ?_ [GOAL] G : Type u inst✝¹ : Group G inst✝ : Finite G val✝ : Fintype G ⊢ Fintype.card ↑(noncenter G)ᶜ = Finset.card (Finset.univ \ Set.toFinset (noncenter G)) [PROOFSTEP] rw [← Set.toFinset_card, Set.toFinset_compl, Finset.compl_eq_univ_sdiff] [GOAL] case intro.e_a G : Type u inst✝¹ : Group G inst✝ : Finite G val✝ : Fintype G ⊢ Finset.card (Finset.univ \ Set.toFinset (noncenter G)) = ∑ x in Finset.univ \ Set.toFinset (noncenter G), Fintype.card ↑(carrier x) [PROOFSTEP] rw [Finset.card_eq_sum_ones] [GOAL] case intro.e_a G : Type u inst✝¹ : Group G inst✝ : Finite G val✝ : Fintype G ⊢ ∑ x in Finset.univ \ Set.toFinset (noncenter G), 1 = ∑ x in Finset.univ \ Set.toFinset (noncenter G), Fintype.card ↑(carrier x) [PROOFSTEP] refine Finset.sum_congr rfl ?_ [GOAL] case intro.e_a G : Type u inst✝¹ : Group G inst✝ : Finite G val✝ : Fintype G ⊢ ∀ (x : ConjClasses G), x ∈ Finset.univ \ Set.toFinset (noncenter G) → 1 = Fintype.card ↑(carrier x) [PROOFSTEP] rintro ⟨g⟩ hg [GOAL] case intro.e_a.mk G : Type u inst✝¹ : Group G inst✝ : Finite G val✝ : Fintype G x✝ : ConjClasses G g : G hg : Quot.mk Setoid.r g ∈ Finset.univ \ Set.toFinset (noncenter G) ⊢ 1 = Fintype.card ↑(carrier (Quot.mk Setoid.r g)) [PROOFSTEP] simp only [noncenter, Set.not_subsingleton_iff, Set.toFinset_setOf, Finset.mem_univ, true_and, forall_true_left, Finset.mem_sdiff, Finset.mem_filter, Set.not_nontrivial_iff] at hg [GOAL] case intro.e_a.mk G : Type u inst✝¹ : Group G inst✝ : Finite G val✝ : Fintype G x✝ : ConjClasses G g : G hg : Set.Subsingleton (carrier (Quot.mk Setoid.r g)) ⊢ 1 = Fintype.card ↑(carrier (Quot.mk Setoid.r g)) [PROOFSTEP] rw [eq_comm, ← Set.toFinset_card, Finset.card_eq_one] [GOAL] case intro.e_a.mk G : Type u inst✝¹ : Group G inst✝ : Finite G val✝ : Fintype G x✝ : ConjClasses G g : G hg : Set.Subsingleton (carrier (Quot.mk Setoid.r g)) ⊢ ∃ a, Set.toFinset (carrier (Quot.mk Setoid.r g)) = {a} [PROOFSTEP] exact ⟨g, Finset.coe_injective <| by simpa using hg.eq_singleton_of_mem mem_carrier_mk⟩ [GOAL] G : Type u inst✝¹ : Group G inst✝ : Finite G val✝ : Fintype G x✝ : ConjClasses G g : G hg : Set.Subsingleton (carrier (Quot.mk Setoid.r g)) ⊢ ↑(Set.toFinset (carrier (Quot.mk Setoid.r g))) = ↑{g} [PROOFSTEP] simpa using hg.eq_singleton_of_mem mem_carrier_mk [GOAL] G✝ : Type u inst✝⁵ : Group G✝ G : Type u_1 inst✝⁴ : Group G inst✝³ : (x : ConjClasses G) → Fintype ↑(carrier x) inst✝² : Fintype G inst✝¹ : Fintype { x // x ∈ Subgroup.center G } inst✝ : Fintype ↑(noncenter G) ⊢ Fintype.card { x // x ∈ Subgroup.center G } + ∑ x in Set.toFinset (noncenter G), Finset.card (Set.toFinset (carrier x)) = Fintype.card G [PROOFSTEP] convert Group.nat_card_center_add_sum_card_noncenter_eq_card G using 2 [GOAL] case h.e'_2.h.e'_5 G✝ : Type u inst✝⁵ : Group G✝ G : Type u_1 inst✝⁴ : Group G inst✝³ : (x : ConjClasses G) → Fintype ↑(carrier x) inst✝² : Fintype G inst✝¹ : Fintype { x // x ∈ Subgroup.center G } inst✝ : Fintype ↑(noncenter G) ⊢ Fintype.card { x // x ∈ Subgroup.center G } = Nat.card { x // x ∈ Subgroup.center G } [PROOFSTEP] simp [GOAL] case h.e'_2.h.e'_6 G✝ : Type u inst✝⁵ : Group G✝ G : Type u_1 inst✝⁴ : Group G inst✝³ : (x : ConjClasses G) → Fintype ↑(carrier x) inst✝² : Fintype G inst✝¹ : Fintype { x // x ∈ Subgroup.center G } inst✝ : Fintype ↑(noncenter G) ⊢ ∑ x in Set.toFinset (noncenter G), Finset.card (Set.toFinset (carrier x)) = ∑ᶠ (x : ConjClasses G) (_ : x ∈ noncenter G), Nat.card ↑(carrier x) [PROOFSTEP] rw [← finsum_set_coe_eq_finsum_mem (noncenter G), finsum_eq_sum_of_fintype, ← Finset.sum_set_coe] [GOAL] case h.e'_2.h.e'_6 G✝ : Type u inst✝⁵ : Group G✝ G : Type u_1 inst✝⁴ : Group G inst✝³ : (x : ConjClasses G) → Fintype ↑(carrier x) inst✝² : Fintype G inst✝¹ : Fintype { x // x ∈ Subgroup.center G } inst✝ : Fintype ↑(noncenter G) ⊢ ∑ i : ↑(noncenter G), Finset.card (Set.toFinset (carrier ↑i)) = ∑ i : ↑(noncenter G), Nat.card ↑(carrier ↑i) [PROOFSTEP] simp [GOAL] case h.e'_3 G✝ : Type u inst✝⁵ : Group G✝ G : Type u_1 inst✝⁴ : Group G inst✝³ : (x : ConjClasses G) → Fintype ↑(carrier x) inst✝² : Fintype G inst✝¹ : Fintype { x // x ∈ Subgroup.center G } inst✝ : Fintype ↑(noncenter G) ⊢ Fintype.card G = Nat.card G [PROOFSTEP] simp
{"mathlib_filename": "Mathlib.GroupTheory.ClassEquation", "llama_tokens": 4770}
[GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : IsFreeGroup G H : Type u_2 inst✝ : Group H f : FreeGroup (Generators G) →* H ⊢ (fun f => MonoidHom.comp f (MulEquiv.toMonoidHom (MulEquiv G))) ((fun f => MonoidHom.comp f (MulEquiv.toMonoidHom (MulEquiv.symm (MulEquiv G)))) f) = f [PROOFSTEP] ext [GOAL] case h G : Type u_1 inst✝² : Group G inst✝¹ : IsFreeGroup G H : Type u_2 inst✝ : Group H f : FreeGroup (Generators G) →* H a✝ : Generators G ⊢ ↑((fun f => MonoidHom.comp f (MulEquiv.toMonoidHom (MulEquiv G))) ((fun f => MonoidHom.comp f (MulEquiv.toMonoidHom (MulEquiv.symm (MulEquiv G)))) f)) (FreeGroup.of a✝) = ↑f (FreeGroup.of a✝) [PROOFSTEP] simp [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : IsFreeGroup G H : Type u_2 inst✝ : Group H f : G →* H ⊢ (fun f => MonoidHom.comp f (MulEquiv.toMonoidHom (MulEquiv.symm (MulEquiv G)))) ((fun f => MonoidHom.comp f (MulEquiv.toMonoidHom (MulEquiv G))) f) = f [PROOFSTEP] ext [GOAL] case h G : Type u_1 inst✝² : Group G inst✝¹ : IsFreeGroup G H : Type u_2 inst✝ : Group H f : G →* H x✝ : G ⊢ ↑((fun f => MonoidHom.comp f (MulEquiv.toMonoidHom (MulEquiv.symm (MulEquiv G)))) ((fun f => MonoidHom.comp f (MulEquiv.toMonoidHom (MulEquiv G))) f)) x✝ = ↑f x✝ [PROOFSTEP] simp [GOAL] G : Type u_1 inst✝² : Group G inst✝¹ : IsFreeGroup G H : Type u_2 inst✝ : Group H f : Generators G → H ⊢ ∃! F, ∀ (a : Generators G), ↑F (of a) = f a [PROOFSTEP] simpa only [Function.funext_iff] using lift.symm.bijective.existsUnique f [GOAL] G✝ : Type u_1 inst✝³ : Group G✝ inst✝² : IsFreeGroup G✝ H : Type u_2 inst✝¹ : Group H G : Type u inst✝ : Group G X : Type u of : X → G lift : {H : Type u} → [inst : Group H] → (X → H) ≃ (G →* H) lift_of : ∀ {H : Type u} [inst : Group H] (f : X → H) (a : X), ↑(↑lift f) (of a) = f a ⊢ MonoidHom.comp (↑lift FreeGroup.of) (↑FreeGroup.lift of) = MonoidHom.id (FreeGroup X) [PROOFSTEP] apply FreeGroup.ext_hom [GOAL] case h G✝ : Type u_1 inst✝³ : Group G✝ inst✝² : IsFreeGroup G✝ H : Type u_2 inst✝¹ : Group H G : Type u inst✝ : Group G X : Type u of : X → G lift : {H : Type u} → [inst : Group H] → (X → H) ≃ (G →* H) lift_of : ∀ {H : Type u} [inst : Group H] (f : X → H) (a : X), ↑(↑lift f) (of a) = f a ⊢ ∀ (a : X), ↑(MonoidHom.comp (↑lift FreeGroup.of) (↑FreeGroup.lift of)) (FreeGroup.of a) = ↑(MonoidHom.id (FreeGroup X)) (FreeGroup.of a) [PROOFSTEP] intro x [GOAL] case h G✝ : Type u_1 inst✝³ : Group G✝ inst✝² : IsFreeGroup G✝ H : Type u_2 inst✝¹ : Group H G : Type u inst✝ : Group G X : Type u of : X → G lift : {H : Type u} → [inst : Group H] → (X → H) ≃ (G →* H) lift_of : ∀ {H : Type u} [inst : Group H] (f : X → H) (a : X), ↑(↑lift f) (of a) = f a x : X ⊢ ↑(MonoidHom.comp (↑lift FreeGroup.of) (↑FreeGroup.lift of)) (FreeGroup.of x) = ↑(MonoidHom.id (FreeGroup X)) (FreeGroup.of x) [PROOFSTEP] simp only [MonoidHom.coe_comp, Function.comp_apply, MonoidHom.id_apply, FreeGroup.lift.of, lift_of] [GOAL] G✝ : Type u_1 inst✝³ : Group G✝ inst✝² : IsFreeGroup G✝ H : Type u_2 inst✝¹ : Group H G : Type u inst✝ : Group G X : Type u of : X → G lift : {H : Type u} → [inst : Group H] → (X → H) ≃ (G →* H) lift_of : ∀ {H : Type u} [inst : Group H] (f : X → H) (a : X), ↑(↑lift f) (of a) = f a ⊢ MonoidHom.comp (↑FreeGroup.lift of) (↑lift FreeGroup.of) = MonoidHom.id G [PROOFSTEP] let lift_symm_of : ∀ {H : Type u} [Group H], ∀ (f : G →* H) (a), lift.symm f a = f (of a) := by intro H _ f a; simp [← lift_of (lift.symm f)] [GOAL] G✝ : Type u_1 inst✝³ : Group G✝ inst✝² : IsFreeGroup G✝ H : Type u_2 inst✝¹ : Group H G : Type u inst✝ : Group G X : Type u of : X → G lift : {H : Type u} → [inst : Group H] → (X → H) ≃ (G →* H) lift_of : ∀ {H : Type u} [inst : Group H] (f : X → H) (a : X), ↑(↑lift f) (of a) = f a ⊢ ∀ {H : Type u} [inst : Group H] (f : G →* H) (a : X), ↑lift.symm f a = ↑f (of a) [PROOFSTEP] intro H _ f a [GOAL] G✝ : Type u_1 inst✝⁴ : Group G✝ inst✝³ : IsFreeGroup G✝ H✝ : Type u_2 inst✝² : Group H✝ G : Type u inst✝¹ : Group G X : Type u of : X → G lift : {H : Type u} → [inst : Group H] → (X → H) ≃ (G →* H) lift_of : ∀ {H : Type u} [inst : Group H] (f : X → H) (a : X), ↑(↑lift f) (of a) = f a H : Type u inst✝ : Group H f : G →* H a : X ⊢ ↑lift.symm f a = ↑f (of a) [PROOFSTEP] simp [← lift_of (lift.symm f)] [GOAL] G✝ : Type u_1 inst✝³ : Group G✝ inst✝² : IsFreeGroup G✝ H : Type u_2 inst✝¹ : Group H G : Type u inst✝ : Group G X : Type u of : X → G lift : {H : Type u} → [inst : Group H] → (X → H) ≃ (G →* H) lift_of : ∀ {H : Type u} [inst : Group H] (f : X → H) (a : X), ↑(↑lift f) (of a) = f a lift_symm_of : ∀ {H : Type u} [inst : Group H] (f : G →* H) (a : X), ↑lift.symm f a = ↑f (of a) := fun {H} [Group H] f a => of_eq_true (Eq.trans (congrFun (congrArg Eq (Eq.trans ((fun a => Eq.symm (lift_of (↑lift.symm f) a)) a) (congrFun (congrArg FunLike.coe (Equiv.apply_symm_apply lift f)) (of a)))) (↑f (of a))) (eq_self (↑f (of a)))) ⊢ MonoidHom.comp (↑FreeGroup.lift of) (↑lift FreeGroup.of) = MonoidHom.id G [PROOFSTEP] apply lift.symm.injective [GOAL] case a G✝ : Type u_1 inst✝³ : Group G✝ inst✝² : IsFreeGroup G✝ H : Type u_2 inst✝¹ : Group H G : Type u inst✝ : Group G X : Type u of : X → G lift : {H : Type u} → [inst : Group H] → (X → H) ≃ (G →* H) lift_of : ∀ {H : Type u} [inst : Group H] (f : X → H) (a : X), ↑(↑lift f) (of a) = f a lift_symm_of : ∀ {H : Type u} [inst : Group H] (f : G →* H) (a : X), ↑lift.symm f a = ↑f (of a) := fun {H} [Group H] f a => of_eq_true (Eq.trans (congrFun (congrArg Eq (Eq.trans ((fun a => Eq.symm (lift_of (↑lift.symm f) a)) a) (congrFun (congrArg FunLike.coe (Equiv.apply_symm_apply lift f)) (of a)))) (↑f (of a))) (eq_self (↑f (of a)))) ⊢ ↑lift.symm (MonoidHom.comp (↑FreeGroup.lift of) (↑lift FreeGroup.of)) = ↑lift.symm (MonoidHom.id G) [PROOFSTEP] ext x [GOAL] case a.h G✝ : Type u_1 inst✝³ : Group G✝ inst✝² : IsFreeGroup G✝ H : Type u_2 inst✝¹ : Group H G : Type u inst✝ : Group G X : Type u of : X → G lift : {H : Type u} → [inst : Group H] → (X → H) ≃ (G →* H) lift_of : ∀ {H : Type u} [inst : Group H] (f : X → H) (a : X), ↑(↑lift f) (of a) = f a lift_symm_of : ∀ {H : Type u} [inst : Group H] (f : G →* H) (a : X), ↑lift.symm f a = ↑f (of a) := fun {H} [Group H] f a => of_eq_true (Eq.trans (congrFun (congrArg Eq (Eq.trans ((fun a => Eq.symm (lift_of (↑lift.symm f) a)) a) (congrFun (congrArg FunLike.coe (Equiv.apply_symm_apply lift f)) (of a)))) (↑f (of a))) (eq_self (↑f (of a)))) x : X ⊢ ↑lift.symm (MonoidHom.comp (↑FreeGroup.lift of) (↑lift FreeGroup.of)) x = ↑lift.symm (MonoidHom.id G) x [PROOFSTEP] simp only [MonoidHom.coe_comp, Function.comp_apply, MonoidHom.id_apply, FreeGroup.lift.of, lift_of, lift_symm_of]
{"mathlib_filename": "Mathlib.GroupTheory.IsFreeGroup", "llama_tokens": 3413}
[GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c x y : Con M h : (fun c x y => r x y) x = (fun c x y => r x y) y ⊢ x = y [PROOFSTEP] rcases x with ⟨⟨x, _⟩, _⟩ [GOAL] case mk.mk M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c y : Con M x : M → M → Prop iseqv✝ : Equivalence x mul'✝ : ∀ {w x_1 y z : M}, r w x_1 → r y z → r (w * y) (x_1 * z) h : (fun c x y => r x y) { toSetoid := { r := x, iseqv := iseqv✝ }, mul' := mul'✝ } = (fun c x y => r x y) y ⊢ { toSetoid := { r := x, iseqv := iseqv✝ }, mul' := mul'✝ } = y [PROOFSTEP] rcases y with ⟨⟨y, _⟩, _⟩ [GOAL] case mk.mk.mk.mk M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c : Con M x : M → M → Prop iseqv✝¹ : Equivalence x mul'✝¹ : ∀ {w x_1 y z : M}, r w x_1 → r y z → r (w * y) (x_1 * z) y : M → M → Prop iseqv✝ : Equivalence y mul'✝ : ∀ {w x y_1 z : M}, r w x → r y_1 z → r (w * y_1) (x * z) h : (fun c x y => r x y) { toSetoid := { r := x, iseqv := iseqv✝¹ }, mul' := mul'✝¹ } = (fun c x y => r x y) { toSetoid := { r := y, iseqv := iseqv✝ }, mul' := mul'✝ } ⊢ { toSetoid := { r := x, iseqv := iseqv✝¹ }, mul' := mul'✝¹ } = { toSetoid := { r := y, iseqv := iseqv✝ }, mul' := mul'✝ } [PROOFSTEP] have : x = y := h [GOAL] case mk.mk.mk.mk M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c : Con M x : M → M → Prop iseqv✝¹ : Equivalence x mul'✝¹ : ∀ {w x_1 y z : M}, r w x_1 → r y z → r (w * y) (x_1 * z) y : M → M → Prop iseqv✝ : Equivalence y mul'✝ : ∀ {w x y_1 z : M}, r w x → r y_1 z → r (w * y_1) (x * z) h : (fun c x y => r x y) { toSetoid := { r := x, iseqv := iseqv✝¹ }, mul' := mul'✝¹ } = (fun c x y => r x y) { toSetoid := { r := y, iseqv := iseqv✝ }, mul' := mul'✝ } this : x = y ⊢ { toSetoid := { r := x, iseqv := iseqv✝¹ }, mul' := mul'✝¹ } = { toSetoid := { r := y, iseqv := iseqv✝ }, mul' := mul'✝ } [PROOFSTEP] subst x [GOAL] case mk.mk.mk.mk M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c : Con M y : M → M → Prop iseqv✝¹ : Equivalence y mul'✝¹ : ∀ {w x y_1 z : M}, r w x → r y_1 z → r (w * y_1) (x * z) iseqv✝ : Equivalence y mul'✝ : ∀ {w x y_1 z : M}, r w x → r y_1 z → r (w * y_1) (x * z) h : (fun c x y => r x y) { toSetoid := { r := y, iseqv := iseqv✝ }, mul' := mul'✝ } = (fun c x y => r x y) { toSetoid := { r := y, iseqv := iseqv✝¹ }, mul' := mul'✝¹ } ⊢ { toSetoid := { r := y, iseqv := iseqv✝ }, mul' := mul'✝ } = { toSetoid := { r := y, iseqv := iseqv✝¹ }, mul' := mul'✝¹ } [PROOFSTEP] rfl [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c✝ c d : Con M H : r = r ⊢ c = d [PROOFSTEP] rcases c with ⟨⟨⟩⟩ [GOAL] case mk.mk M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c d : Con M r✝ : M → M → Prop iseqv✝ : Equivalence r✝ mul'✝ : ∀ {w x y z : M}, r w x → r y z → r (w * y) (x * z) H : r = r ⊢ { toSetoid := { r := r✝, iseqv := iseqv✝ }, mul' := mul'✝ } = d [PROOFSTEP] rcases d with ⟨⟨⟩⟩ [GOAL] case mk.mk.mk.mk M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c : Con M r✝¹ : M → M → Prop iseqv✝¹ : Equivalence r✝¹ mul'✝¹ : ∀ {w x y z : M}, r w x → r y z → r (w * y) (x * z) r✝ : M → M → Prop iseqv✝ : Equivalence r✝ mul'✝ : ∀ {w x y z : M}, r w x → r y z → r (w * y) (x * z) H : r = r ⊢ { toSetoid := { r := r✝¹, iseqv := iseqv✝¹ }, mul' := mul'✝¹ } = { toSetoid := { r := r✝, iseqv := iseqv✝ }, mul' := mul'✝ } [PROOFSTEP] cases H [GOAL] case mk.mk.mk.mk.refl M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c : Con M r✝ : M → M → Prop iseqv✝¹ : Equivalence r✝ mul'✝¹ : ∀ {w x y z : M}, r w x → r y z → r (w * y) (x * z) iseqv✝ : Equivalence r✝ mul'✝ : ∀ {w x y z : M}, r w x → r y z → r (w * y) (x * z) ⊢ { toSetoid := { r := r✝, iseqv := iseqv✝¹ }, mul' := mul'✝¹ } = { toSetoid := { r := r✝, iseqv := iseqv✝ }, mul' := mul'✝ } [PROOFSTEP] congr [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c✝ c d : Con M H : ∀ (x y : M), ↑c x y ↔ ↑d x y ⊢ r = r [PROOFSTEP] ext [GOAL] case h.h.a M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c✝ c d : Con M H : ∀ (x y : M), ↑c x y ↔ ↑d x y x✝¹ x✝ : M ⊢ r x✝¹ x✝ ↔ r x✝¹ x✝ [PROOFSTEP] apply H [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c : Con M f : M → P h : ∀ (x y : M), f (x * y) = f x * f y w✝ x✝ y✝ z✝ : M h1 : r w✝ x✝ h2 : r y✝ z✝ ⊢ r (w✝ * y✝) (x✝ * z✝) [PROOFSTEP] dsimp [Setoid.ker, onFun] at * [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c : Con M f : M → P h : ∀ (x y : M), f (x * y) = f x * f y w✝ x✝ y✝ z✝ : M h1 : f w✝ = f x✝ h2 : f y✝ = f z✝ ⊢ f (w✝ * y✝) = f (x✝ * z✝) [PROOFSTEP] rw [h, h1, h2, h] [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c✝ c d : Con M h : c = d ⊢ ∀ (a₁ a₂ : M), r a₁ a₂ ↔ r (↑(Equiv.refl M) a₁) (↑(Equiv.refl M) a₂) [PROOFSTEP] apply ext_iff.2 h [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c✝ c d : Con M h : c = d src✝ : Quotient c.toSetoid ≃ Quotient d.toSetoid := Quotient.congr (Equiv.refl M) (_ : ∀ (x y : M), ↑c x y ↔ ↑d x y) x y : Con.Quotient c ⊢ Equiv.toFun { toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) } (x * y) = Equiv.toFun { toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) } x * Equiv.toFun { toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) } y [PROOFSTEP] rcases x with ⟨⟩ [GOAL] case mk M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c✝ c d : Con M h : c = d src✝ : Quotient c.toSetoid ≃ Quotient d.toSetoid := Quotient.congr (Equiv.refl M) (_ : ∀ (x y : M), ↑c x y ↔ ↑d x y) x y : Con.Quotient c a✝ : M ⊢ Equiv.toFun { toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) } (Quot.mk r a✝ * y) = Equiv.toFun { toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) } (Quot.mk r a✝) * Equiv.toFun { toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) } y [PROOFSTEP] rcases y with ⟨⟩ [GOAL] case mk.mk M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c✝ c d : Con M h : c = d src✝ : Quotient c.toSetoid ≃ Quotient d.toSetoid := Quotient.congr (Equiv.refl M) (_ : ∀ (x y : M), ↑c x y ↔ ↑d x y) x y : Con.Quotient c a✝¹ a✝ : M ⊢ Equiv.toFun { toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) } (Quot.mk r a✝¹ * Quot.mk r a✝) = Equiv.toFun { toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) } (Quot.mk r a✝¹) * Equiv.toFun { toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) } (Quot.mk r a✝) [PROOFSTEP] rfl [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c✝ : Con M S : Set (Con M) x y : M h : Rel (sInf S).toSetoid x y r : Setoid M x✝ : r ∈ toSetoid '' S c : Con M hS : c ∈ S hr : c.toSetoid = r ⊢ Rel r x y [PROOFSTEP] rw [← hr] [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c✝ : Con M S : Set (Con M) x y : M h : Rel (sInf S).toSetoid x y r : Setoid M x✝ : r ∈ toSetoid '' S c : Con M hS : c ∈ S hr : c.toSetoid = r ⊢ Rel c.toSetoid x y [PROOFSTEP] exact h c hS [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c : Con M S : Set (Con M) ⊢ ↑(sInf S) = sInf (FunLike.coe '' S) [PROOFSTEP] ext [GOAL] case h.h.a M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c : Con M S : Set (Con M) x✝¹ x✝ : M ⊢ ↑(sInf S) x✝¹ x✝ ↔ sInf (FunLike.coe '' S) x✝¹ x✝ [PROOFSTEP] simp only [sInf_image, iInf_apply, iInf_Prop_eq] [GOAL] case h.h.a M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c : Con M S : Set (Con M) x✝¹ x✝ : M ⊢ ↑(sInf S) x✝¹ x✝ ↔ ∀ (i : Con M), i ∈ S → ↑i x✝¹ x✝ [PROOFSTEP] rfl [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c : Con M src✝¹ : CompleteLattice (Con M) := completeLatticeOfInf (Con M) (_ : ∀ (s : Set (Con M)), sInf s ∈ lowerBounds s ∧ sInf s ∈ upperBounds (lowerBounds s)) src✝ : Setoid M := ⊤ ⊢ ∀ {w x y z : M}, r w x → r y z → r (w * y) (x * z) [PROOFSTEP] tauto [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c : Con M r : M → M → Prop s : Con M hs : s ∈ {s | ∀ (x y : M), r x y → ↑s x y} x y : M hxy : Setoid.r x y ⊢ Setoid.r x y [PROOFSTEP] apply ConGen.Rel.recOn (motive := fun x y _ => s.r x y) hxy [GOAL] case of M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c : Con M r : M → M → Prop s : Con M hs : s ∈ {s | ∀ (x y : M), r x y → ↑s x y} x y : M hxy : Setoid.r x y ⊢ ∀ (x y : M), r x y → Setoid.r x y [PROOFSTEP] exact fun x y h => hs x y h [GOAL] case refl M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c : Con M r : M → M → Prop s : Con M hs : s ∈ {s | ∀ (x y : M), r x y → ↑s x y} x y : M hxy : Setoid.r x y ⊢ ∀ (x : M), Setoid.r x x [PROOFSTEP] exact s.refl' [GOAL] case symm M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c : Con M r : M → M → Prop s : Con M hs : s ∈ {s | ∀ (x y : M), r x y → ↑s x y} x y : M hxy : Setoid.r x y ⊢ ∀ {x y : M}, ConGen.Rel r x y → Setoid.r x y → Setoid.r y x [PROOFSTEP] exact fun _ => s.symm' [GOAL] case trans M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c : Con M r : M → M → Prop s : Con M hs : s ∈ {s | ∀ (x y : M), r x y → ↑s x y} x y : M hxy : Setoid.r x y ⊢ ∀ {x y z : M}, ConGen.Rel r x y → ConGen.Rel r y z → Setoid.r x y → Setoid.r y z → Setoid.r x z [PROOFSTEP] exact fun _ _ => s.trans' [GOAL] case mul M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c : Con M r : M → M → Prop s : Con M hs : s ∈ {s | ∀ (x y : M), r x y → ↑s x y} x y : M hxy : Setoid.r x y ⊢ ∀ {w x y z : M}, ConGen.Rel r w x → ConGen.Rel r y z → Setoid.r w x → Setoid.r y z → Setoid.r (w * y) (x * z) [PROOFSTEP] exact fun _ _ => s.mul [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c✝ : Con M r : M → M → Prop c : Con M h : ∀ (x y : M), r x y → Setoid.r x y ⊢ conGen r ≤ c [PROOFSTEP] rw [conGen_eq] [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c✝ : Con M r : M → M → Prop c : Con M h : ∀ (x y : M), r x y → Setoid.r x y ⊢ sInf {s | ∀ (x y : M), r x y → ↑s x y} ≤ c [PROOFSTEP] exact sInf_le h [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c✝ c : Con M ⊢ conGen ↑c ≤ c [PROOFSTEP] rw [conGen_eq] [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c✝ c : Con M ⊢ sInf {s | ∀ (x y : M), ↑c x y → ↑s x y} ≤ c [PROOFSTEP] exact sInf_le fun _ _ => id [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c✝ c d : Con M ⊢ c ⊔ d = conGen fun x y => ↑c x y ∨ ↑d x y [PROOFSTEP] rw [conGen_eq] [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c✝ c d : Con M ⊢ c ⊔ d = sInf {s | ∀ (x y : M), ↑c x y ∨ ↑d x y → ↑s x y} [PROOFSTEP] apply congr_arg sInf [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c✝ c d : Con M ⊢ {x | c ≤ x ∧ d ≤ x} = {s | ∀ (x y : M), ↑c x y ∨ ↑d x y → ↑s x y} [PROOFSTEP] simp only [le_def, or_imp, ← forall_and] [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c✝ c d : Con M ⊢ c ⊔ d = conGen (r ⊔ r) [PROOFSTEP] rw [sup_eq_conGen] [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c✝ c d : Con M ⊢ (conGen fun x y => ↑c x y ∨ ↑d x y) = conGen (r ⊔ r) [PROOFSTEP] rfl [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c : Con M S : Set (Con M) ⊢ sSup S = conGen fun x y => ∃ c, c ∈ S ∧ ↑c x y [PROOFSTEP] rw [conGen_eq] [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c : Con M S : Set (Con M) ⊢ sSup S = sInf {s | ∀ (x y : M), (∃ c, c ∈ S ∧ ↑c x y) → ↑s x y} [PROOFSTEP] apply congr_arg sInf [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c : Con M S : Set (Con M) ⊢ upperBounds S = {s | ∀ (x y : M), (∃ c, c ∈ S ∧ ↑c x y) → ↑s x y} [PROOFSTEP] ext [GOAL] case h M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c : Con M S : Set (Con M) x✝ : Con M ⊢ x✝ ∈ upperBounds S ↔ x✝ ∈ {s | ∀ (x y : M), (∃ c, c ∈ S ∧ ↑c x y) → ↑s x y} [PROOFSTEP] exact ⟨fun h _ _ ⟨r, hr⟩ => h hr.1 hr.2, fun h r hS _ _ hr => h _ _ ⟨r, hS, hr⟩⟩ [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c : Con M S : Set (Con M) ⊢ sSup S = conGen (sSup (FunLike.coe '' S)) [PROOFSTEP] rw [sSup_eq_conGen, sSup_image] [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c : Con M S : Set (Con M) ⊢ (conGen fun x y => ∃ c, c ∈ S ∧ ↑c x y) = conGen (⨆ (a : Con M) (_ : a ∈ S), ↑a) [PROOFSTEP] congr with (x y) [GOAL] case e_r.h.h.a M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c : Con M S : Set (Con M) x y : M ⊢ (∃ c, c ∈ S ∧ ↑c x y) ↔ iSup (fun a => ⨆ (_ : a ∈ S), ↑a) x y [PROOFSTEP] simp only [sSup_image, iSup_apply, iSup_Prop_eq, exists_prop, rel_eq_coe] [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c : Con M f : M → N H : ∀ (x y : M), f (x * y) = f x * f y h : mulKer f H ≤ c hf : Surjective f src✝ : Setoid N := Setoid.mapOfSurjective c.toSetoid f h hf w✝ x✝ y✝ z✝ : N h₁ : r w✝ x✝ h₂ : r y✝ z✝ ⊢ r (w✝ * y✝) (x✝ * z✝) [PROOFSTEP] rcases h₁ with ⟨a, b, rfl, rfl, h1⟩ [GOAL] case intro.intro.intro.intro M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c : Con M f : M → N H : ∀ (x y : M), f (x * y) = f x * f y h : mulKer f H ≤ c hf : Surjective f src✝ : Setoid N := Setoid.mapOfSurjective c.toSetoid f h hf y✝ z✝ : N h₂ : r y✝ z✝ a b : M h1 : Rel c.toSetoid a b ⊢ r (f a * y✝) (f b * z✝) [PROOFSTEP] rcases h₂ with ⟨p, q, rfl, rfl, h2⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c : Con M f : M → N H : ∀ (x y : M), f (x * y) = f x * f y h : mulKer f H ≤ c hf : Surjective f src✝ : Setoid N := Setoid.mapOfSurjective c.toSetoid f h hf a b : M h1 : Rel c.toSetoid a b p q : M h2 : Rel c.toSetoid p q ⊢ r (f a * f p) (f b * f q) [PROOFSTEP] exact ⟨a * p, b * q, by rw [H], by rw [H], c.mul h1 h2⟩ [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c : Con M f : M → N H : ∀ (x y : M), f (x * y) = f x * f y h : mulKer f H ≤ c hf : Surjective f src✝ : Setoid N := Setoid.mapOfSurjective c.toSetoid f h hf a b : M h1 : Rel c.toSetoid a b p q : M h2 : Rel c.toSetoid p q ⊢ f (a * p) = f a * f p [PROOFSTEP] rw [H] [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c : Con M f : M → N H : ∀ (x y : M), f (x * y) = f x * f y h : mulKer f H ≤ c hf : Surjective f src✝ : Setoid N := Setoid.mapOfSurjective c.toSetoid f h hf a b : M h1 : Rel c.toSetoid a b p q : M h2 : Rel c.toSetoid p q ⊢ f (b * q) = f b * f q [PROOFSTEP] rw [H] [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c✝ c : Con M f : M → N H : ∀ (x y : M), f (x * y) = f x * f y h : mulKer f H ≤ c hf : Surjective f ⊢ mapGen c f = mapOfSurjective c f H h hf [PROOFSTEP] rw [← conGen_of_con (c.mapOfSurjective f H h hf)] [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c✝ c : Con M f : M → N H : ∀ (x y : M), f (x * y) = f x * f y h : mulKer f H ≤ c hf : Surjective f ⊢ mapGen c f = conGen ↑(mapOfSurjective c f H h hf) [PROOFSTEP] rfl [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c✝ : Con M f : M → N H : ∀ (x y : M), f (x * y) = f x * f y c : Con N src✝ : Setoid M := Setoid.comap f c.toSetoid w x y z : M h1 : r w x h2 : r y z ⊢ ↑c (f (w * y)) (f (x * z)) [PROOFSTEP] rw [H, H] [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c✝ : Con M f : M → N H : ∀ (x y : M), f (x * y) = f x * f y c : Con N src✝ : Setoid M := Setoid.comap f c.toSetoid w x y z : M h1 : r w x h2 : r y z ⊢ ↑c (f w * f y) (f x * f z) [PROOFSTEP] exact c.mul h1 h2 [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c : Con M d : { d // c ≤ d } ⊢ mulKer toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑x * ↑y) ≤ ↑d [PROOFSTEP] rw [mul_ker_mk_eq] [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c : Con M d : { d // c ≤ d } ⊢ c ≤ ↑d [PROOFSTEP] exact d.2 [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c : Con M d : Con (Con.Quotient c) x y : M h : ↑c x y ⊢ ↑d ↑x ↑y [PROOFSTEP] rw [c.eq.2 h] [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c : Con M d : Con (Con.Quotient c) x y : M h : ↑c x y ⊢ ↑d ↑y ↑y [PROOFSTEP] exact d.refl _ [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c : Con M d : { d // c ≤ d } ⊢ (fun d => { val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d, property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) }) ((fun d => mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) (_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d) (_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q)) d) = d [PROOFSTEP] exact Subtype.ext_iff_val.2 <| ext fun x y => ⟨fun h => let ⟨a, b, hx, hy, H⟩ := h d.1.trans (d.1.symm <| d.2 <| c.eq.1 hx) <| d.1.trans H <| d.2 <| c.eq.1 hy, fun h => ⟨_, _, rfl, rfl, h⟩⟩ [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c : Con M d : Con (Con.Quotient c) ⊢ (fun d => mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) (_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d) (_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q)) ((fun d => { val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d, property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) }) d) = d [PROOFSTEP] exact ext fun x y => ⟨fun h => let ⟨_, _, hx, hy, H⟩ := h hx ▸ hy ▸ H, Con.induction_on₂ x y fun w z h => ⟨w, z, rfl, rfl, h⟩⟩ [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c : Con M s t : { d // c ≤ d } ⊢ ↑{ toFun := fun d => mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) (_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d) (_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q), invFun := fun d => { val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d, property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) }, left_inv := (_ : ∀ (d : { d // c ≤ d }), (fun d => { val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d, property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) }) ((fun d => mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) (_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d) (_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q)) d) = d), right_inv := (_ : ∀ (d : Con (Con.Quotient c)), (fun d => mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) (_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d) (_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q)) ((fun d => { val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d, property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) }) d) = d) } s ≤ ↑{ toFun := fun d => mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) (_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d) (_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q), invFun := fun d => { val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d, property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) }, left_inv := (_ : ∀ (d : { d // c ≤ d }), (fun d => { val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d, property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) }) ((fun d => mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) (_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d) (_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q)) d) = d), right_inv := (_ : ∀ (d : Con (Con.Quotient c)), (fun d => mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) (_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d) (_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q)) ((fun d => { val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d, property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) }) d) = d) } t ↔ s ≤ t [PROOFSTEP] constructor [GOAL] case mp M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c : Con M s t : { d // c ≤ d } ⊢ ↑{ toFun := fun d => mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) (_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d) (_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q), invFun := fun d => { val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d, property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) }, left_inv := (_ : ∀ (d : { d // c ≤ d }), (fun d => { val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d, property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) }) ((fun d => mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) (_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d) (_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q)) d) = d), right_inv := (_ : ∀ (d : Con (Con.Quotient c)), (fun d => mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) (_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d) (_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q)) ((fun d => { val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d, property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) }) d) = d) } s ≤ ↑{ toFun := fun d => mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) (_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d) (_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q), invFun := fun d => { val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d, property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) }, left_inv := (_ : ∀ (d : { d // c ≤ d }), (fun d => { val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d, property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) }) ((fun d => mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) (_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d) (_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q)) d) = d), right_inv := (_ : ∀ (d : Con (Con.Quotient c)), (fun d => mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) (_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d) (_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q)) ((fun d => { val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d, property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) }) d) = d) } t → s ≤ t [PROOFSTEP] intros h x y hs [GOAL] case mp M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c : Con M s t : { d // c ≤ d } h : ↑{ toFun := fun d => mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) (_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d) (_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q), invFun := fun d => { val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d, property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) }, left_inv := (_ : ∀ (d : { d // c ≤ d }), (fun d => { val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d, property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) }) ((fun d => mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) (_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d) (_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q)) d) = d), right_inv := (_ : ∀ (d : Con (Con.Quotient c)), (fun d => mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) (_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d) (_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q)) ((fun d => { val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d, property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) }) d) = d) } s ≤ ↑{ toFun := fun d => mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) (_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d) (_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q), invFun := fun d => { val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d, property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) }, left_inv := (_ : ∀ (d : { d // c ≤ d }), (fun d => { val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d, property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) }) ((fun d => mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) (_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d) (_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q)) d) = d), right_inv := (_ : ∀ (d : Con (Con.Quotient c)), (fun d => mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) (_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d) (_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q)) ((fun d => { val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d, property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) }) d) = d) } t x y : M hs : ↑↑s x y ⊢ ↑↑t x y [PROOFSTEP] rcases h ⟨x, y, rfl, rfl, hs⟩ with ⟨a, b, hx, hy, ht⟩ [GOAL] case mp.intro.intro.intro.intro M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c : Con M s t : { d // c ≤ d } h : ↑{ toFun := fun d => mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) (_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d) (_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q), invFun := fun d => { val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d, property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) }, left_inv := (_ : ∀ (d : { d // c ≤ d }), (fun d => { val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d, property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) }) ((fun d => mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) (_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d) (_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q)) d) = d), right_inv := (_ : ∀ (d : Con (Con.Quotient c)), (fun d => mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) (_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d) (_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q)) ((fun d => { val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d, property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) }) d) = d) } s ≤ ↑{ toFun := fun d => mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) (_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d) (_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q), invFun := fun d => { val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d, property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) }, left_inv := (_ : ∀ (d : { d // c ≤ d }), (fun d => { val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d, property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) }) ((fun d => mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) (_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d) (_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q)) d) = d), right_inv := (_ : ∀ (d : Con (Con.Quotient c)), (fun d => mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) (_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d) (_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q)) ((fun d => { val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d, property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) }) d) = d) } t x y : M hs : ↑↑s x y a b : M hx : ↑a = ↑x hy : ↑b = ↑y ht : Rel (↑t).toSetoid a b ⊢ ↑↑t x y [PROOFSTEP] exact t.1.trans (t.1.symm <| t.2 <| eq_rel.1 hx) (t.1.trans ht (t.2 <| eq_rel.1 hy)) [GOAL] case mpr M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c : Con M s t : { d // c ≤ d } ⊢ s ≤ t → ↑{ toFun := fun d => mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) (_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d) (_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q), invFun := fun d => { val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d, property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) }, left_inv := (_ : ∀ (d : { d // c ≤ d }), (fun d => { val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d, property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) }) ((fun d => mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) (_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d) (_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q)) d) = d), right_inv := (_ : ∀ (d : Con (Con.Quotient c)), (fun d => mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) (_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d) (_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q)) ((fun d => { val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d, property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) }) d) = d) } s ≤ ↑{ toFun := fun d => mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) (_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d) (_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q), invFun := fun d => { val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d, property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) }, left_inv := (_ : ∀ (d : { d // c ≤ d }), (fun d => { val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d, property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) }) ((fun d => mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) (_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d) (_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q)) d) = d), right_inv := (_ : ∀ (d : Con (Con.Quotient c)), (fun d => mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) (_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d) (_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q)) ((fun d => { val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d, property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) }) d) = d) } t [PROOFSTEP] intros h _ _ hs [GOAL] case mpr M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c : Con M s t : { d // c ≤ d } h : s ≤ t x✝ y✝ : Con.Quotient c hs : ↑(↑{ toFun := fun d => mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) (_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d) (_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q), invFun := fun d => { val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d, property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) }, left_inv := (_ : ∀ (d : { d // c ≤ d }), (fun d => { val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d, property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) }) ((fun d => mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) (_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d) (_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q)) d) = d), right_inv := (_ : ∀ (d : Con (Con.Quotient c)), (fun d => mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) (_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d) (_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q)) ((fun d => { val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d, property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) }) d) = d) } s) x✝ y✝ ⊢ ↑(↑{ toFun := fun d => mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) (_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d) (_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q), invFun := fun d => { val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d, property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) }, left_inv := (_ : ∀ (d : { d // c ≤ d }), (fun d => { val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d, property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) }) ((fun d => mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) (_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d) (_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q)) d) = d), right_inv := (_ : ∀ (d : Con (Con.Quotient c)), (fun d => mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) (_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d) (_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q)) ((fun d => { val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d, property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) }) d) = d) } t) x✝ y✝ [PROOFSTEP] rcases hs with ⟨a, b, hx, hy, Hs⟩ [GOAL] case mpr.intro.intro.intro.intro M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P c : Con M s t : { d // c ≤ d } h : s ≤ t x✝ y✝ : Con.Quotient c a b : M hx : ↑a = x✝ hy : ↑b = y✝ Hs : Rel (↑s).toSetoid a b ⊢ ↑(↑{ toFun := fun d => mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) (_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d) (_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q), invFun := fun d => { val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d, property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) }, left_inv := (_ : ∀ (d : { d // c ≤ d }), (fun d => { val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d, property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) }) ((fun d => mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) (_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d) (_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q)) d) = d), right_inv := (_ : ∀ (d : Con (Con.Quotient c)), (fun d => mapOfSurjective (↑d) toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) (_ : mulKer toQuotient (_ : ∀ (x x_1 : M), ↑(x * x_1) = ↑(x * x_1)) ≤ ↑d) (_ : ∀ (q : Quotient c.toSetoid), ∃ a, Quotient.mk c.toSetoid a = q)) ((fun d => { val := comap toQuotient (_ : ∀ (x y : M), ↑(x * y) = ↑(x * y)) d, property := (_ : ∀ (x y : M), ↑c x y → ↑d ↑x ↑y) }) d) = d) } t) x✝ y✝ [PROOFSTEP] exact ⟨a, b, hx, hy, h Hs⟩ [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : MulOneClass M inst✝¹ : MulOneClass N inst✝ : MulOneClass P c : Con M x✝ y✝ : M f : N →* M x y : N ⊢ ↑c (↑f x) (↑f y) ↔ ↑(mk' c) (↑f x) = ↑(mk' c) (↑f y) [PROOFSTEP] rw [← c.eq] [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : MulOneClass M inst✝¹ : MulOneClass N inst✝ : MulOneClass P c : Con M x✝ y✝ : M f : N →* M x y : N ⊢ ↑(↑f x) = ↑(↑f y) ↔ ↑(mk' c) (↑f x) = ↑(mk' c) (↑f y) [PROOFSTEP] rfl [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : MulOneClass M inst✝¹ : MulOneClass N inst✝ : MulOneClass P c : Con M x y : M f : M →* P H : c ≤ ker f ⊢ (fun x => Con.liftOn x ↑f (_ : ∀ (x x_1 : M), ↑c x x_1 → ↑(ker f) x x_1)) 1 = 1 [PROOFSTEP] rw [← f.map_one] [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : MulOneClass M inst✝¹ : MulOneClass N inst✝ : MulOneClass P c : Con M x y : M f : M →* P H : c ≤ ker f ⊢ (fun x => Con.liftOn x ↑f (_ : ∀ (x x_1 : M), ↑c x x_1 → ↑(ker f) x x_1)) 1 = ↑f 1 [PROOFSTEP] rfl [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : MulOneClass M inst✝¹ : MulOneClass N inst✝ : MulOneClass P c : Con M x✝ y✝ : M f : M →* P H : c ≤ ker f x y : Con.Quotient c m n : M ⊢ OneHom.toFun { toFun := fun x => Con.liftOn x ↑f (_ : ∀ (x x_1 : M), ↑c x x_1 → ↑(ker f) x x_1), map_one' := (_ : (fun x => Con.liftOn x ↑f (_ : ∀ (x x_1 : M), ↑c x x_1 → ↑(ker f) x x_1)) 1 = 1) } (↑m * ↑n) = OneHom.toFun { toFun := fun x => Con.liftOn x ↑f (_ : ∀ (x x_1 : M), ↑c x x_1 → ↑(ker f) x x_1), map_one' := (_ : (fun x => Con.liftOn x ↑f (_ : ∀ (x x_1 : M), ↑c x x_1 → ↑(ker f) x x_1)) 1 = 1) } ↑m * OneHom.toFun { toFun := fun x => Con.liftOn x ↑f (_ : ∀ (x x_1 : M), ↑c x x_1 → ↑(ker f) x x_1), map_one' := (_ : (fun x => Con.liftOn x ↑f (_ : ∀ (x x_1 : M), ↑c x x_1 → ↑(ker f) x x_1)) 1 = 1) } ↑n [PROOFSTEP] dsimp only [← coe_mul, Con.liftOn_coe] [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : MulOneClass M inst✝¹ : MulOneClass N inst✝ : MulOneClass P c : Con M x✝ y✝ : M f : M →* P H : c ≤ ker f x y : Con.Quotient c m n : M ⊢ ↑f (m * n) = ↑f m * ↑f n [PROOFSTEP] rw [map_mul] [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : MulOneClass M inst✝¹ : MulOneClass N inst✝ : MulOneClass P c : Con M x y : M f : M →* P H : c ≤ ker f ⊢ MonoidHom.comp (lift c f H) (mk' c) = f [PROOFSTEP] ext [GOAL] case h M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : MulOneClass M inst✝¹ : MulOneClass N inst✝ : MulOneClass P c : Con M x y : M f : M →* P H : c ≤ ker f x✝ : M ⊢ ↑(MonoidHom.comp (lift c f H) (mk' c)) x✝ = ↑f x✝ [PROOFSTEP] rfl [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : MulOneClass M inst✝¹ : MulOneClass N inst✝ : MulOneClass P c : Con M x✝ y✝ : M f✝ : M →* P f : Con.Quotient c →* P x y : M h : ↑c x y ⊢ ↑f ↑x = ↑f ↑y [PROOFSTEP] rw [c.eq.2 h] [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : MulOneClass M inst✝¹ : MulOneClass N inst✝ : MulOneClass P c : Con M x y : M f✝ : M →* P f : Con.Quotient c →* P ⊢ lift c (MonoidHom.comp f (mk' c)) (_ : ∀ (x y : M), ↑c x y → ↑f ↑x = ↑f ↑y) = f [PROOFSTEP] ext x [GOAL] case h M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : MulOneClass M inst✝¹ : MulOneClass N inst✝ : MulOneClass P c : Con M x✝ y : M f✝ : M →* P f : Con.Quotient c →* P x : Con.Quotient c ⊢ ↑(lift c (MonoidHom.comp f (mk' c)) (_ : ∀ (x y : M), ↑c x y → ↑f ↑x = ↑f ↑y)) x = ↑f x [PROOFSTEP] rcases x with ⟨⟩ [GOAL] case h.mk M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : MulOneClass M inst✝¹ : MulOneClass N inst✝ : MulOneClass P c : Con M x✝ y : M f✝ : M →* P f : Con.Quotient c →* P x : Con.Quotient c a✝ : M ⊢ ↑(lift c (MonoidHom.comp f (mk' c)) (_ : ∀ (x y : M), ↑c x y → ↑f ↑x = ↑f ↑y)) (Quot.mk r a✝) = ↑f (Quot.mk r a✝) [PROOFSTEP] rfl [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : MulOneClass M inst✝¹ : MulOneClass N inst✝ : MulOneClass P c : Con M x y : M f✝ : M →* P f g : Con.Quotient c →* P h : ∀ (a : M), ↑f ↑a = ↑g ↑a ⊢ f = g [PROOFSTEP] rw [← lift_apply_mk' f, ← lift_apply_mk' g] [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : MulOneClass M inst✝¹ : MulOneClass N inst✝ : MulOneClass P c : Con M x y : M f✝ : M →* P f g : Con.Quotient c →* P h : ∀ (a : M), ↑f ↑a = ↑g ↑a ⊢ lift c (MonoidHom.comp f (mk' c)) (_ : ∀ (x y : M), ↑c x y → ↑f ↑x = ↑f ↑y) = lift c (MonoidHom.comp g (mk' c)) (_ : ∀ (x y : M), ↑c x y → ↑g ↑x = ↑g ↑y) [PROOFSTEP] congr 1 [GOAL] case e_f M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : MulOneClass M inst✝¹ : MulOneClass N inst✝ : MulOneClass P c : Con M x y : M f✝ : M →* P f g : Con.Quotient c →* P h : ∀ (a : M), ↑f ↑a = ↑g ↑a ⊢ MonoidHom.comp f (mk' c) = MonoidHom.comp g (mk' c) [PROOFSTEP] exact FunLike.ext_iff.2 h [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : MulOneClass M inst✝¹ : MulOneClass N inst✝ : MulOneClass P c : Con M x✝ y : M f : M →* P H : c ≤ ker f g : Con.Quotient c →* P Hg : MonoidHom.comp g (mk' c) = f x : M ⊢ ↑g ↑x = ↑(lift c f H) ↑x [PROOFSTEP] subst f [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : MulOneClass M inst✝¹ : MulOneClass N inst✝ : MulOneClass P c : Con M x✝ y : M g : Con.Quotient c →* P x : M H : c ≤ ker (MonoidHom.comp g (mk' c)) ⊢ ↑g ↑x = ↑(lift c (MonoidHom.comp g (mk' c)) H) ↑x [PROOFSTEP] rfl [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : MulOneClass M inst✝¹ : MulOneClass N inst✝ : MulOneClass P c : Con M x✝ y : M f : M →* P H : c ≤ ker f x : P ⊢ x ∈ MonoidHom.mrange (lift c f H) → x ∈ MonoidHom.mrange f [PROOFSTEP] rintro ⟨⟨y⟩, hy⟩ [GOAL] case intro.mk M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : MulOneClass M inst✝¹ : MulOneClass N inst✝ : MulOneClass P c : Con M x✝ y✝ : M f : M →* P H : c ≤ ker f x : P w✝ : Con.Quotient c y : M hy : ↑(lift c f H) (Quot.mk r y) = x ⊢ x ∈ MonoidHom.mrange f [PROOFSTEP] exact ⟨y, hy⟩ [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : MulOneClass M inst✝¹ : MulOneClass N inst✝ : MulOneClass P c : Con M x✝ y✝ : M f✝ f : M →* P x y : Con.Quotient (ker f) h : (fun x => ↑(MonoidHom.mrangeRestrict (kerLift f)) x) x = (fun x => ↑(MonoidHom.mrangeRestrict (kerLift f)) x) y ⊢ ↑(kerLift f) x = ↑(kerLift f) y [PROOFSTEP] rcases x with ⟨⟩ [GOAL] case mk M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : MulOneClass M inst✝¹ : MulOneClass N inst✝ : MulOneClass P c : Con M x✝ y✝ : M f✝ f : M →* P x y : Con.Quotient (ker f) a✝ : M h : (fun x => ↑(MonoidHom.mrangeRestrict (kerLift f)) x) (Quot.mk r a✝) = (fun x => ↑(MonoidHom.mrangeRestrict (kerLift f)) x) y ⊢ ↑(kerLift f) (Quot.mk r a✝) = ↑(kerLift f) y [PROOFSTEP] rcases y with ⟨⟩ [GOAL] case mk.mk M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : MulOneClass M inst✝¹ : MulOneClass N inst✝ : MulOneClass P c : Con M x✝ y✝ : M f✝ f : M →* P x y : Con.Quotient (ker f) a✝¹ a✝ : M h : (fun x => ↑(MonoidHom.mrangeRestrict (kerLift f)) x) (Quot.mk r a✝¹) = (fun x => ↑(MonoidHom.mrangeRestrict (kerLift f)) x) (Quot.mk r a✝) ⊢ ↑(kerLift f) (Quot.mk r a✝¹) = ↑(kerLift f) (Quot.mk r a✝) [PROOFSTEP] injections [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : MulOneClass M inst✝¹ : MulOneClass N inst✝ : MulOneClass P c : Con M x y : M f✝ f : M →* P x✝ : { x // x ∈ MonoidHom.mrange (kerLift f) } w : P z : Con.Quotient (ker f) hz : ↑(kerLift f) z = w ⊢ (fun x => ↑(MonoidHom.mrangeRestrict (kerLift f)) x) z = { val := w, property := (_ : ∃ y, ↑(kerLift f) y = w) } [PROOFSTEP] rcases hz with ⟨⟩ [GOAL] case refl M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : MulOneClass M inst✝¹ : MulOneClass N inst✝ : MulOneClass P c : Con M x y : M f✝ f : M →* P x✝ : { x // x ∈ MonoidHom.mrange (kerLift f) } z : Con.Quotient (ker f) ⊢ (fun x => ↑(MonoidHom.mrangeRestrict (kerLift f)) x) z = { val := ↑(kerLift f) z, property := (_ : ∃ y, ↑(kerLift f) y = ↑(kerLift f) z) } [PROOFSTEP] rfl [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : MulOneClass M inst✝¹ : MulOneClass N inst✝ : MulOneClass P c : Con M x✝ y : M f✝ f : M →* P g : P → M hf : Function.RightInverse g ↑f src✝ : Con.Quotient (ker f) →* P := kerLift f x : Con.Quotient (ker f) ⊢ ↑(kerLift f) ((toQuotient ∘ g) (↑(kerLift f) x)) = ↑(kerLift f) x [PROOFSTEP] rw [Function.comp_apply, kerLift_mk, hf] [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : MulOneClass M inst✝¹ : MulOneClass N inst✝ : MulOneClass P c : Con M x✝ y : M f✝ f : M →* P g : P → M hf : Function.RightInverse g ↑f src✝ : Con.Quotient (ker f) →* P := kerLift f x : P ⊢ ↑(kerLift f) ((toQuotient ∘ g) x) = x [PROOFSTEP] conv_rhs => rw [← hf x]; rfl [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : MulOneClass M inst✝¹ : MulOneClass N inst✝ : MulOneClass P c : Con M x✝ y : M f✝ f : M →* P g : P → M hf : Function.RightInverse g ↑f src✝ : Con.Quotient (ker f) →* P := kerLift f x : P | x [PROOFSTEP] rw [← hf x]; rfl [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : MulOneClass M inst✝¹ : MulOneClass N inst✝ : MulOneClass P c : Con M x✝ y : M f✝ f : M →* P g : P → M hf : Function.RightInverse g ↑f src✝ : Con.Quotient (ker f) →* P := kerLift f x : P | x [PROOFSTEP] rw [← hf x]; rfl [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : MulOneClass M inst✝¹ : MulOneClass N inst✝ : MulOneClass P c : Con M x✝ y : M f✝ f : M →* P g : P → M hf : Function.RightInverse g ↑f src✝ : Con.Quotient (ker f) →* P := kerLift f x : P | x [PROOFSTEP] rw [← hf x] [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : MulOneClass M inst✝¹ : MulOneClass N inst✝ : MulOneClass P c : Con M x✝ y : M f✝ f : M →* P g : P → M hf : Function.RightInverse g ↑f src✝ : Con.Quotient (ker f) →* P := kerLift f x : P | ↑f (g x) [PROOFSTEP] rfl [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : MulOneClass M inst✝¹ : MulOneClass N inst✝ : MulOneClass P c✝ : Con M x✝ y✝ : M f : M →* P c d : Con M h : c ≤ d src✝ : Quotient (Setoid.ker (Quot.mapRight h)) ≃ Quotient d.toSetoid := Setoid.quotientQuotientEquivQuotient c.toSetoid d.toSetoid h x y : Con.Quotient (ker (map c d h)) w z : Con.Quotient c a b : M ⊢ Equiv.toFun { toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) } (↑↑a * ↑↑b) = ↑(mk' d) a * ↑(mk' d) b [PROOFSTEP] rw [← d.mk'.map_mul] [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : MulOneClass M inst✝¹ : MulOneClass N inst✝ : MulOneClass P c✝ : Con M x✝ y✝ : M f : M →* P c d : Con M h : c ≤ d src✝ : Quotient (Setoid.ker (Quot.mapRight h)) ≃ Quotient d.toSetoid := Setoid.quotientQuotientEquivQuotient c.toSetoid d.toSetoid h x y : Con.Quotient (ker (map c d h)) w z : Con.Quotient c a b : M ⊢ Equiv.toFun { toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) } (↑↑a * ↑↑b) = ↑(mk' d) (a * b) [PROOFSTEP] rfl [GOAL] M✝ : Type u_1 N : Type u_2 P : Type u_3 M : Type u_4 inst✝ : Monoid M c : Con M w x : M x✝ : ↑c w x ⊢ ↑c (w ^ 0) (x ^ 0) [PROOFSTEP] simpa using c.refl _ [GOAL] M✝ : Type u_1 N : Type u_2 P : Type u_3 M : Type u_4 inst✝ : Monoid M c : Con M n : ℕ w x : M h : ↑c w x ⊢ ↑c (w ^ Nat.succ n) (x ^ Nat.succ n) [PROOFSTEP] simpa [pow_succ] using c.mul h (Con.pow c n h) [GOAL] M✝ : Type u_1 N : Type u_2 P : Type u_3 α : Type u_4 M : Type u_5 inst✝² : MulOneClass M inst✝¹ : SMul α M inst✝ : IsScalarTower α M M c : Con M a : α w x : M h : ↑c w x ⊢ ↑c (a • w) (a • x) [PROOFSTEP] simpa only [smul_one_mul] using c.mul (c.refl' (a • (1 : M) : M)) h [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Group M inst✝¹ : Group N inst✝ : Group P c : Con M x y : M h : ↑c x y ⊢ ↑c x⁻¹ y⁻¹ [PROOFSTEP] simpa using c.symm (c.mul (c.mul (c.refl x⁻¹) h) (c.refl y⁻¹)) [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Group M inst✝¹ : Group N inst✝ : Group P c : Con M w x y z : M h1 : ↑c w x h2 : ↑c y z ⊢ ↑c (w / y) (x / z) [PROOFSTEP] simpa only [div_eq_mul_inv] using c.mul h1 (c.inv h2) [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Group M inst✝¹ : Group N inst✝ : Group P c : Con M n : ℕ w x : M h : ↑c w x ⊢ ↑c (w ^ Int.ofNat n) (x ^ Int.ofNat n) [PROOFSTEP] simpa only [zpow_ofNat, Int.ofNat_eq_coe] using c.pow n h [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 inst✝² : Group M inst✝¹ : Group N inst✝ : Group P c : Con M n : ℕ w x : M h : ↑c w x ⊢ ↑c (w ^ Int.negSucc n) (x ^ Int.negSucc n) [PROOFSTEP] simpa only [zpow_negSucc] using c.inv (c.pow _ h) [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 α : Type u_4 inst✝ : Monoid M c : Con M u : (Con.Quotient c)ˣ f : (x y : M) → ↑c (x * y) 1 → ↑c (y * x) 1 → α Hf : ∀ (x y : M) (hxy : ↑c (x * y) 1) (hyx : ↑c (y * x) 1) (x' y' : M) (hxy' : ↑c (x' * y') 1) (hyx' : ↑c (y' * x') 1), ↑c x x' → ↑c y y' → f x y hxy hyx = f x' y' hxy' hyx' ⊢ α [PROOFSTEP] refine' @Con.hrecOn₂ M M _ _ c c (fun x y => x * y = 1 → y * x = 1 → α) (u : c.Quotient) (↑u⁻¹ : c.Quotient) (fun (x y : M) (hxy : (x * y : c.Quotient) = 1) (hyx : (y * x : c.Quotient) = 1) => f x y (c.eq.1 hxy) (c.eq.1 hyx)) (fun x y x' y' hx hy => _) u.3 u.4 [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 α : Type u_4 inst✝ : Monoid M c : Con M u : (Con.Quotient c)ˣ f : (x y : M) → ↑c (x * y) 1 → ↑c (y * x) 1 → α Hf : ∀ (x y : M) (hxy : ↑c (x * y) 1) (hyx : ↑c (y * x) 1) (x' y' : M) (hxy' : ↑c (x' * y') 1) (hyx' : ↑c (y' * x') 1), ↑c x x' → ↑c y y' → f x y hxy hyx = f x' y' hxy' hyx' x y x' y' : M hx : ↑c x x' hy : ↑c y y' ⊢ HEq ((fun x y hxy hyx => f x y (_ : ↑c (x * y) 1) (_ : ↑c (y * x) 1)) x y) ((fun x y hxy hyx => f x y (_ : ↑c (x * y) 1) (_ : ↑c (y * x) 1)) x' y') [PROOFSTEP] refine' Function.hfunext _ _ [GOAL] case refine'_1 M : Type u_1 N : Type u_2 P : Type u_3 α : Type u_4 inst✝ : Monoid M c : Con M u : (Con.Quotient c)ˣ f : (x y : M) → ↑c (x * y) 1 → ↑c (y * x) 1 → α Hf : ∀ (x y : M) (hxy : ↑c (x * y) 1) (hyx : ↑c (y * x) 1) (x' y' : M) (hxy' : ↑c (x' * y') 1) (hyx' : ↑c (y' * x') 1), ↑c x x' → ↑c y y' → f x y hxy hyx = f x' y' hxy' hyx' x y x' y' : M hx : ↑c x x' hy : ↑c y y' ⊢ (↑x * ↑y = 1) = (↑x' * ↑y' = 1) case refine'_2 M : Type u_1 N : Type u_2 P : Type u_3 α : Type u_4 inst✝ : Monoid M c : Con M u : (Con.Quotient c)ˣ f : (x y : M) → ↑c (x * y) 1 → ↑c (y * x) 1 → α Hf : ∀ (x y : M) (hxy : ↑c (x * y) 1) (hyx : ↑c (y * x) 1) (x' y' : M) (hxy' : ↑c (x' * y') 1) (hyx' : ↑c (y' * x') 1), ↑c x x' → ↑c y y' → f x y hxy hyx = f x' y' hxy' hyx' x y x' y' : M hx : ↑c x x' hy : ↑c y y' ⊢ ∀ (a : ↑x * ↑y = 1) (a' : ↑x' * ↑y' = 1), HEq a a' → HEq ((fun x y hxy hyx => f x y (_ : ↑c (x * y) 1) (_ : ↑c (y * x) 1)) x y a) ((fun x y hxy hyx => f x y (_ : ↑c (x * y) 1) (_ : ↑c (y * x) 1)) x' y' a') [PROOFSTEP] rw [c.eq.2 hx, c.eq.2 hy] [GOAL] case refine'_2 M : Type u_1 N : Type u_2 P : Type u_3 α : Type u_4 inst✝ : Monoid M c : Con M u : (Con.Quotient c)ˣ f : (x y : M) → ↑c (x * y) 1 → ↑c (y * x) 1 → α Hf : ∀ (x y : M) (hxy : ↑c (x * y) 1) (hyx : ↑c (y * x) 1) (x' y' : M) (hxy' : ↑c (x' * y') 1) (hyx' : ↑c (y' * x') 1), ↑c x x' → ↑c y y' → f x y hxy hyx = f x' y' hxy' hyx' x y x' y' : M hx : ↑c x x' hy : ↑c y y' ⊢ ∀ (a : ↑x * ↑y = 1) (a' : ↑x' * ↑y' = 1), HEq a a' → HEq ((fun x y hxy hyx => f x y (_ : ↑c (x * y) 1) (_ : ↑c (y * x) 1)) x y a) ((fun x y hxy hyx => f x y (_ : ↑c (x * y) 1) (_ : ↑c (y * x) 1)) x' y' a') [PROOFSTEP] rintro Hxy Hxy' - [GOAL] case refine'_2 M : Type u_1 N : Type u_2 P : Type u_3 α : Type u_4 inst✝ : Monoid M c : Con M u : (Con.Quotient c)ˣ f : (x y : M) → ↑c (x * y) 1 → ↑c (y * x) 1 → α Hf : ∀ (x y : M) (hxy : ↑c (x * y) 1) (hyx : ↑c (y * x) 1) (x' y' : M) (hxy' : ↑c (x' * y') 1) (hyx' : ↑c (y' * x') 1), ↑c x x' → ↑c y y' → f x y hxy hyx = f x' y' hxy' hyx' x y x' y' : M hx : ↑c x x' hy : ↑c y y' Hxy : ↑x * ↑y = 1 Hxy' : ↑x' * ↑y' = 1 ⊢ HEq ((fun x y hxy hyx => f x y (_ : ↑c (x * y) 1) (_ : ↑c (y * x) 1)) x y Hxy) ((fun x y hxy hyx => f x y (_ : ↑c (x * y) 1) (_ : ↑c (y * x) 1)) x' y' Hxy') [PROOFSTEP] refine' Function.hfunext _ _ [GOAL] case refine'_2.refine'_1 M : Type u_1 N : Type u_2 P : Type u_3 α : Type u_4 inst✝ : Monoid M c : Con M u : (Con.Quotient c)ˣ f : (x y : M) → ↑c (x * y) 1 → ↑c (y * x) 1 → α Hf : ∀ (x y : M) (hxy : ↑c (x * y) 1) (hyx : ↑c (y * x) 1) (x' y' : M) (hxy' : ↑c (x' * y') 1) (hyx' : ↑c (y' * x') 1), ↑c x x' → ↑c y y' → f x y hxy hyx = f x' y' hxy' hyx' x y x' y' : M hx : ↑c x x' hy : ↑c y y' Hxy : ↑x * ↑y = 1 Hxy' : ↑x' * ↑y' = 1 ⊢ (↑y * ↑x = 1) = (↑y' * ↑x' = 1) [PROOFSTEP] rw [c.eq.2 hx, c.eq.2 hy] [GOAL] case refine'_2.refine'_2 M : Type u_1 N : Type u_2 P : Type u_3 α : Type u_4 inst✝ : Monoid M c : Con M u : (Con.Quotient c)ˣ f : (x y : M) → ↑c (x * y) 1 → ↑c (y * x) 1 → α Hf : ∀ (x y : M) (hxy : ↑c (x * y) 1) (hyx : ↑c (y * x) 1) (x' y' : M) (hxy' : ↑c (x' * y') 1) (hyx' : ↑c (y' * x') 1), ↑c x x' → ↑c y y' → f x y hxy hyx = f x' y' hxy' hyx' x y x' y' : M hx : ↑c x x' hy : ↑c y y' Hxy : ↑x * ↑y = 1 Hxy' : ↑x' * ↑y' = 1 ⊢ ∀ (a : ↑y * ↑x = 1) (a' : ↑y' * ↑x' = 1), HEq a a' → HEq ((fun x y hxy hyx => f x y (_ : ↑c (x * y) 1) (_ : ↑c (y * x) 1)) x y Hxy a) ((fun x y hxy hyx => f x y (_ : ↑c (x * y) 1) (_ : ↑c (y * x) 1)) x' y' Hxy' a') [PROOFSTEP] rintro Hyx Hyx' - [GOAL] case refine'_2.refine'_2 M : Type u_1 N : Type u_2 P : Type u_3 α : Type u_4 inst✝ : Monoid M c : Con M u : (Con.Quotient c)ˣ f : (x y : M) → ↑c (x * y) 1 → ↑c (y * x) 1 → α Hf : ∀ (x y : M) (hxy : ↑c (x * y) 1) (hyx : ↑c (y * x) 1) (x' y' : M) (hxy' : ↑c (x' * y') 1) (hyx' : ↑c (y' * x') 1), ↑c x x' → ↑c y y' → f x y hxy hyx = f x' y' hxy' hyx' x y x' y' : M hx : ↑c x x' hy : ↑c y y' Hxy : ↑x * ↑y = 1 Hxy' : ↑x' * ↑y' = 1 Hyx : ↑y * ↑x = 1 Hyx' : ↑y' * ↑x' = 1 ⊢ HEq ((fun x y hxy hyx => f x y (_ : ↑c (x * y) 1) (_ : ↑c (y * x) 1)) x y Hxy Hyx) ((fun x y hxy hyx => f x y (_ : ↑c (x * y) 1) (_ : ↑c (y * x) 1)) x' y' Hxy' Hyx') [PROOFSTEP] exact heq_of_eq (Hf _ _ _ _ _ _ _ _ hx hy) [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 α : Type u_4 inst✝ : Monoid M c : Con M p : (Con.Quotient c)ˣ → Prop u : (Con.Quotient c)ˣ H : ∀ (x y : M) (hxy : ↑c (x * y) 1) (hyx : ↑c (y * x) 1), p { val := ↑x, inv := ↑y, val_inv := (_ : ↑((fun x x_1 => x * x_1) x y) = ↑1), inv_val := (_ : ↑((fun x x_1 => x * x_1) y x) = ↑1) } ⊢ p u [PROOFSTEP] rcases u with ⟨⟨x⟩, ⟨y⟩, h₁, h₂⟩ [GOAL] case mk.mk.mk M : Type u_1 N : Type u_2 P : Type u_3 α : Type u_4 inst✝ : Monoid M c : Con M p : (Con.Quotient c)ˣ → Prop H : ∀ (x y : M) (hxy : ↑c (x * y) 1) (hyx : ↑c (y * x) 1), p { val := ↑x, inv := ↑y, val_inv := (_ : ↑((fun x x_1 => x * x_1) x y) = ↑1), inv_val := (_ : ↑((fun x x_1 => x * x_1) y x) = ↑1) } val✝ inv✝ : Con.Quotient c x y : M h₁ : Quot.mk r x * Quot.mk r y = 1 h₂ : Quot.mk r y * Quot.mk r x = 1 ⊢ p { val := Quot.mk r x, inv := Quot.mk r y, val_inv := h₁, inv_val := h₂ } [PROOFSTEP] exact H x y (c.eq.1 h₁) (c.eq.1 h₂)
{"mathlib_filename": "Mathlib.GroupTheory.Congruence", "llama_tokens": 32233}
[GOAL] G : Type u inst✝ : Monoid G ⊢ ExponentExists G ↔ exponent G ≠ 0 [PROOFSTEP] rw [exponent] [GOAL] G : Type u inst✝ : Monoid G ⊢ ExponentExists G ↔ (if h : ExponentExists G then Nat.find h else 0) ≠ 0 [PROOFSTEP] split_ifs with h [GOAL] case pos G : Type u inst✝ : Monoid G h : ExponentExists G ⊢ ExponentExists G ↔ Nat.find h ≠ 0 [PROOFSTEP] simp [h, @not_lt_zero' ℕ] --if this isn't done this way, `to_additive` freaks [GOAL] case neg G : Type u inst✝ : Monoid G h : ¬ExponentExists G ⊢ ExponentExists G ↔ 0 ≠ 0 [PROOFSTEP] tauto [GOAL] G : Type u inst✝ : Monoid G ⊢ exponent G = 0 ↔ ¬ExponentExists G [PROOFSTEP] simp only [exponentExists_iff_ne_zero, Classical.not_not] [GOAL] G : Type u inst✝ : Monoid G g : G ⊢ g ^ exponent G = 1 [PROOFSTEP] by_cases ExponentExists G [GOAL] G : Type u inst✝ : Monoid G g : G ⊢ g ^ exponent G = 1 [PROOFSTEP] by_cases ExponentExists G [GOAL] case pos G : Type u inst✝ : Monoid G g : G h : ExponentExists G ⊢ g ^ exponent G = 1 [PROOFSTEP] simp_rw [exponent, dif_pos h] [GOAL] case pos G : Type u inst✝ : Monoid G g : G h : ExponentExists G ⊢ g ^ Nat.find h = 1 [PROOFSTEP] exact (Nat.find_spec h).2 g [GOAL] case neg G : Type u inst✝ : Monoid G g : G h : ¬ExponentExists G ⊢ g ^ exponent G = 1 [PROOFSTEP] simp_rw [exponent, dif_neg h, pow_zero] [GOAL] G : Type u inst✝ : Monoid G n : ℕ g : G ⊢ g ^ n = g ^ (n % exponent G + exponent G * (n / exponent G)) [PROOFSTEP] rw [Nat.mod_add_div] [GOAL] G : Type u inst✝ : Monoid G n : ℕ g : G ⊢ g ^ (n % exponent G + exponent G * (n / exponent G)) = g ^ (n % exponent G) [PROOFSTEP] simp [pow_add, pow_mul, pow_exponent_eq_one] [GOAL] G : Type u inst✝ : Monoid G n : ℕ hpos : 0 < n hG : ∀ (g : G), g ^ n = 1 ⊢ 0 < exponent G [PROOFSTEP] have h : ∃ n, 0 < n ∧ ∀ g : G, g ^ n = 1 := ⟨n, hpos, hG⟩ [GOAL] G : Type u inst✝ : Monoid G n : ℕ hpos : 0 < n hG : ∀ (g : G), g ^ n = 1 h : ∃ n, 0 < n ∧ ∀ (g : G), g ^ n = 1 ⊢ 0 < exponent G [PROOFSTEP] rw [exponent, dif_pos] [GOAL] G : Type u inst✝ : Monoid G n : ℕ hpos : 0 < n hG : ∀ (g : G), g ^ n = 1 h : ∃ n, 0 < n ∧ ∀ (g : G), g ^ n = 1 ⊢ 0 < Nat.find ?hc case hc G : Type u inst✝ : Monoid G n : ℕ hpos : 0 < n hG : ∀ (g : G), g ^ n = 1 h : ∃ n, 0 < n ∧ ∀ (g : G), g ^ n = 1 ⊢ ExponentExists G [PROOFSTEP] exact (Nat.find_spec h).1 [GOAL] G : Type u inst✝ : Monoid G n : ℕ hpos : 0 < n hG : ∀ (g : G), g ^ n = 1 ⊢ exponent G ≤ n [PROOFSTEP] rw [exponent, dif_pos] [GOAL] G : Type u inst✝ : Monoid G n : ℕ hpos : 0 < n hG : ∀ (g : G), g ^ n = 1 ⊢ Nat.find ?hc ≤ n [PROOFSTEP] apply Nat.find_min' [GOAL] case h G : Type u inst✝ : Monoid G n : ℕ hpos : 0 < n hG : ∀ (g : G), g ^ n = 1 ⊢ 0 < n ∧ ∀ (g : G), g ^ n = 1 [PROOFSTEP] exact ⟨hpos, hG⟩ [GOAL] case hc G : Type u inst✝ : Monoid G n : ℕ hpos : 0 < n hG : ∀ (g : G), g ^ n = 1 ⊢ ExponentExists G [PROOFSTEP] exact ⟨n, hpos, hG⟩ [GOAL] G : Type u inst✝ : Monoid G m : ℕ hpos : 0 < m hm : m < exponent G ⊢ ∃ g, g ^ m ≠ 1 [PROOFSTEP] by_contra' h [GOAL] G : Type u inst✝ : Monoid G m : ℕ hpos : 0 < m hm : m < exponent G h : ∀ (g : G), g ^ m = 1 ⊢ False [PROOFSTEP] have hcon : exponent G ≤ m := exponent_min' m hpos h [GOAL] G : Type u inst✝ : Monoid G m : ℕ hpos : 0 < m hm : m < exponent G h : ∀ (g : G), g ^ m = 1 hcon : exponent G ≤ m ⊢ False [PROOFSTEP] linarith [GOAL] G : Type u inst✝¹ : Monoid G inst✝ : Subsingleton G ⊢ exponent G = 1 [PROOFSTEP] apply le_antisymm [GOAL] case a G : Type u inst✝¹ : Monoid G inst✝ : Subsingleton G ⊢ exponent G ≤ 1 [PROOFSTEP] apply exponent_min' _ Nat.one_pos [GOAL] case a G : Type u inst✝¹ : Monoid G inst✝ : Subsingleton G ⊢ ∀ (g : G), g ^ 1 = 1 [PROOFSTEP] simp [GOAL] case a G : Type u inst✝¹ : Monoid G inst✝ : Subsingleton G ⊢ 1 ≤ exponent G [PROOFSTEP] apply Nat.succ_le_of_lt [GOAL] case a.h G : Type u inst✝¹ : Monoid G inst✝ : Subsingleton G ⊢ 0 < exponent G [PROOFSTEP] apply exponent_pos_of_exists 1 Nat.one_pos [GOAL] case a.h G : Type u inst✝¹ : Monoid G inst✝ : Subsingleton G ⊢ ∀ (g : G), g ^ 1 = 1 [PROOFSTEP] simp [GOAL] G✝ : Type u inst✝¹ : Monoid G✝ G : Type u_1 inst✝ : Monoid G n : ℕ hG : ∀ (g : G), g ^ n = 1 ⊢ exponent G ∣ n [PROOFSTEP] rcases n.eq_zero_or_pos with (rfl | hpos) [GOAL] case inl G✝ : Type u inst✝¹ : Monoid G✝ G : Type u_1 inst✝ : Monoid G hG : ∀ (g : G), g ^ 0 = 1 ⊢ exponent G ∣ 0 [PROOFSTEP] exact dvd_zero _ [GOAL] case inr G✝ : Type u inst✝¹ : Monoid G✝ G : Type u_1 inst✝ : Monoid G n : ℕ hG : ∀ (g : G), g ^ n = 1 hpos : n > 0 ⊢ exponent G ∣ n [PROOFSTEP] apply Nat.dvd_of_mod_eq_zero [GOAL] case inr.H G✝ : Type u inst✝¹ : Monoid G✝ G : Type u_1 inst✝ : Monoid G n : ℕ hG : ∀ (g : G), g ^ n = 1 hpos : n > 0 ⊢ n % exponent G = 0 [PROOFSTEP] by_contra h [GOAL] case inr.H G✝ : Type u inst✝¹ : Monoid G✝ G : Type u_1 inst✝ : Monoid G n : ℕ hG : ∀ (g : G), g ^ n = 1 hpos : n > 0 h : ¬n % exponent G = 0 ⊢ False [PROOFSTEP] have h₁ := Nat.pos_of_ne_zero h [GOAL] case inr.H G✝ : Type u inst✝¹ : Monoid G✝ G : Type u_1 inst✝ : Monoid G n : ℕ hG : ∀ (g : G), g ^ n = 1 hpos : n > 0 h : ¬n % exponent G = 0 h₁ : 0 < n % exponent G ⊢ False [PROOFSTEP] have h₂ : n % exponent G < exponent G := Nat.mod_lt _ (exponent_pos_of_exists n hpos hG) [GOAL] case inr.H G✝ : Type u inst✝¹ : Monoid G✝ G : Type u_1 inst✝ : Monoid G n : ℕ hG : ∀ (g : G), g ^ n = 1 hpos : n > 0 h : ¬n % exponent G = 0 h₁ : 0 < n % exponent G h₂ : n % exponent G < exponent G ⊢ False [PROOFSTEP] have h₃ : exponent G ≤ n % exponent G := by apply exponent_min' _ h₁ simp_rw [← pow_eq_mod_exponent] exact hG [GOAL] G✝ : Type u inst✝¹ : Monoid G✝ G : Type u_1 inst✝ : Monoid G n : ℕ hG : ∀ (g : G), g ^ n = 1 hpos : n > 0 h : ¬n % exponent G = 0 h₁ : 0 < n % exponent G h₂ : n % exponent G < exponent G ⊢ exponent G ≤ n % exponent G [PROOFSTEP] apply exponent_min' _ h₁ [GOAL] G✝ : Type u inst✝¹ : Monoid G✝ G : Type u_1 inst✝ : Monoid G n : ℕ hG : ∀ (g : G), g ^ n = 1 hpos : n > 0 h : ¬n % exponent G = 0 h₁ : 0 < n % exponent G h₂ : n % exponent G < exponent G ⊢ ∀ (g : G), g ^ (n % exponent G) = 1 [PROOFSTEP] simp_rw [← pow_eq_mod_exponent] [GOAL] G✝ : Type u inst✝¹ : Monoid G✝ G : Type u_1 inst✝ : Monoid G n : ℕ hG : ∀ (g : G), g ^ n = 1 hpos : n > 0 h : ¬n % exponent G = 0 h₁ : 0 < n % exponent G h₂ : n % exponent G < exponent G ⊢ ∀ (g : G), g ^ n = 1 [PROOFSTEP] exact hG [GOAL] case inr.H G✝ : Type u inst✝¹ : Monoid G✝ G : Type u_1 inst✝ : Monoid G n : ℕ hG : ∀ (g : G), g ^ n = 1 hpos : n > 0 h : ¬n % exponent G = 0 h₁ : 0 < n % exponent G h₂ : n % exponent G < exponent G h₃ : exponent G ≤ n % exponent G ⊢ False [PROOFSTEP] linarith [GOAL] G : Type u inst✝¹ : Monoid G inst✝ : Fintype G ⊢ Finset.lcm Finset.univ orderOf ∣ exponent G [PROOFSTEP] apply Finset.lcm_dvd [GOAL] case a G : Type u inst✝¹ : Monoid G inst✝ : Fintype G ⊢ ∀ (b : G), b ∈ Finset.univ → orderOf b ∣ exponent G [PROOFSTEP] intro g _ [GOAL] case a G : Type u inst✝¹ : Monoid G inst✝ : Fintype G g : G a✝ : g ∈ Finset.univ ⊢ orderOf g ∣ exponent G [PROOFSTEP] exact order_dvd_exponent g [GOAL] G : Type u inst✝ : Monoid G p : ℕ hp : Nat.Prime p ⊢ ∃ g, orderOf g = p ^ ↑(Nat.factorization (exponent G)) p [PROOFSTEP] haveI := Fact.mk hp [GOAL] G : Type u inst✝ : Monoid G p : ℕ hp : Nat.Prime p this : Fact (Nat.Prime p) ⊢ ∃ g, orderOf g = p ^ ↑(Nat.factorization (exponent G)) p [PROOFSTEP] rcases eq_or_ne ((exponent G).factorization p) 0 with (h | h) [GOAL] case inl G : Type u inst✝ : Monoid G p : ℕ hp : Nat.Prime p this : Fact (Nat.Prime p) h : ↑(Nat.factorization (exponent G)) p = 0 ⊢ ∃ g, orderOf g = p ^ ↑(Nat.factorization (exponent G)) p [PROOFSTEP] refine' ⟨1, by rw [h, pow_zero, orderOf_one]⟩ [GOAL] G : Type u inst✝ : Monoid G p : ℕ hp : Nat.Prime p this : Fact (Nat.Prime p) h : ↑(Nat.factorization (exponent G)) p = 0 ⊢ orderOf 1 = p ^ ↑(Nat.factorization (exponent G)) p [PROOFSTEP] rw [h, pow_zero, orderOf_one] [GOAL] case inr G : Type u inst✝ : Monoid G p : ℕ hp : Nat.Prime p this : Fact (Nat.Prime p) h : ↑(Nat.factorization (exponent G)) p ≠ 0 ⊢ ∃ g, orderOf g = p ^ ↑(Nat.factorization (exponent G)) p [PROOFSTEP] have he : 0 < exponent G := Ne.bot_lt fun ht => by rw [ht] at h apply h rw [bot_eq_zero, Nat.factorization_zero, Finsupp.zero_apply] [GOAL] G : Type u inst✝ : Monoid G p : ℕ hp : Nat.Prime p this : Fact (Nat.Prime p) h : ↑(Nat.factorization (exponent G)) p ≠ 0 ht : exponent G = ⊥ ⊢ False [PROOFSTEP] rw [ht] at h [GOAL] G : Type u inst✝ : Monoid G p : ℕ hp : Nat.Prime p this : Fact (Nat.Prime p) h : ↑(Nat.factorization ⊥) p ≠ 0 ht : exponent G = ⊥ ⊢ False [PROOFSTEP] apply h [GOAL] G : Type u inst✝ : Monoid G p : ℕ hp : Nat.Prime p this : Fact (Nat.Prime p) h : ↑(Nat.factorization ⊥) p ≠ 0 ht : exponent G = ⊥ ⊢ ↑(Nat.factorization ⊥) p = 0 [PROOFSTEP] rw [bot_eq_zero, Nat.factorization_zero, Finsupp.zero_apply] [GOAL] case inr G : Type u inst✝ : Monoid G p : ℕ hp : Nat.Prime p this : Fact (Nat.Prime p) h : ↑(Nat.factorization (exponent G)) p ≠ 0 he : 0 < exponent G ⊢ ∃ g, orderOf g = p ^ ↑(Nat.factorization (exponent G)) p [PROOFSTEP] rw [← Finsupp.mem_support_iff] at h [GOAL] case inr G : Type u inst✝ : Monoid G p : ℕ hp : Nat.Prime p this : Fact (Nat.Prime p) h : p ∈ (Nat.factorization (exponent G)).support he : 0 < exponent G ⊢ ∃ g, orderOf g = p ^ ↑(Nat.factorization (exponent G)) p [PROOFSTEP] obtain ⟨g, hg⟩ : ∃ g : G, g ^ (exponent G / p) ≠ 1 := by suffices key : ¬exponent G ∣ exponent G / p · simpa using mt (exponent_dvd_of_forall_pow_eq_one G (exponent G / p)) key exact fun hd => hp.one_lt.not_le ((mul_le_iff_le_one_left he).mp <| Nat.le_of_dvd he <| Nat.mul_dvd_of_dvd_div (Nat.dvd_of_mem_factorization h) hd) [GOAL] G : Type u inst✝ : Monoid G p : ℕ hp : Nat.Prime p this : Fact (Nat.Prime p) h : p ∈ (Nat.factorization (exponent G)).support he : 0 < exponent G ⊢ ∃ g, g ^ (exponent G / p) ≠ 1 [PROOFSTEP] suffices key : ¬exponent G ∣ exponent G / p [GOAL] G : Type u inst✝ : Monoid G p : ℕ hp : Nat.Prime p this : Fact (Nat.Prime p) h : p ∈ (Nat.factorization (exponent G)).support he : 0 < exponent G key : ¬exponent G ∣ exponent G / p ⊢ ∃ g, g ^ (exponent G / p) ≠ 1 [PROOFSTEP] simpa using mt (exponent_dvd_of_forall_pow_eq_one G (exponent G / p)) key [GOAL] case key G : Type u inst✝ : Monoid G p : ℕ hp : Nat.Prime p this : Fact (Nat.Prime p) h : p ∈ (Nat.factorization (exponent G)).support he : 0 < exponent G ⊢ ¬exponent G ∣ exponent G / p [PROOFSTEP] exact fun hd => hp.one_lt.not_le ((mul_le_iff_le_one_left he).mp <| Nat.le_of_dvd he <| Nat.mul_dvd_of_dvd_div (Nat.dvd_of_mem_factorization h) hd) [GOAL] case inr.intro G : Type u inst✝ : Monoid G p : ℕ hp : Nat.Prime p this : Fact (Nat.Prime p) h : p ∈ (Nat.factorization (exponent G)).support he : 0 < exponent G g : G hg : g ^ (exponent G / p) ≠ 1 ⊢ ∃ g, orderOf g = p ^ ↑(Nat.factorization (exponent G)) p [PROOFSTEP] obtain ⟨k, hk : exponent G = p ^ _ * k⟩ := Nat.ord_proj_dvd _ _ [GOAL] case inr.intro.intro G : Type u inst✝ : Monoid G p : ℕ hp : Nat.Prime p this : Fact (Nat.Prime p) h : p ∈ (Nat.factorization (exponent G)).support he : 0 < exponent G g : G hg : g ^ (exponent G / p) ≠ 1 k : ℕ hk : exponent G = p ^ ↑(Nat.factorization (exponent G)) p * k ⊢ ∃ g, orderOf g = p ^ ↑(Nat.factorization (exponent G)) p [PROOFSTEP] obtain ⟨t, ht⟩ := Nat.exists_eq_succ_of_ne_zero (Finsupp.mem_support_iff.mp h) [GOAL] case inr.intro.intro.intro G : Type u inst✝ : Monoid G p : ℕ hp : Nat.Prime p this : Fact (Nat.Prime p) h : p ∈ (Nat.factorization (exponent G)).support he : 0 < exponent G g : G hg : g ^ (exponent G / p) ≠ 1 k : ℕ hk : exponent G = p ^ ↑(Nat.factorization (exponent G)) p * k t : ℕ ht : ↑(Nat.factorization (exponent G)) p = Nat.succ t ⊢ ∃ g, orderOf g = p ^ ↑(Nat.factorization (exponent G)) p [PROOFSTEP] refine' ⟨g ^ k, _⟩ [GOAL] case inr.intro.intro.intro G : Type u inst✝ : Monoid G p : ℕ hp : Nat.Prime p this : Fact (Nat.Prime p) h : p ∈ (Nat.factorization (exponent G)).support he : 0 < exponent G g : G hg : g ^ (exponent G / p) ≠ 1 k : ℕ hk : exponent G = p ^ ↑(Nat.factorization (exponent G)) p * k t : ℕ ht : ↑(Nat.factorization (exponent G)) p = Nat.succ t ⊢ orderOf (g ^ k) = p ^ ↑(Nat.factorization (exponent G)) p [PROOFSTEP] rw [ht] [GOAL] case inr.intro.intro.intro G : Type u inst✝ : Monoid G p : ℕ hp : Nat.Prime p this : Fact (Nat.Prime p) h : p ∈ (Nat.factorization (exponent G)).support he : 0 < exponent G g : G hg : g ^ (exponent G / p) ≠ 1 k : ℕ hk : exponent G = p ^ ↑(Nat.factorization (exponent G)) p * k t : ℕ ht : ↑(Nat.factorization (exponent G)) p = Nat.succ t ⊢ orderOf (g ^ k) = p ^ Nat.succ t [PROOFSTEP] apply orderOf_eq_prime_pow [GOAL] case inr.intro.intro.intro.hnot G : Type u inst✝ : Monoid G p : ℕ hp : Nat.Prime p this : Fact (Nat.Prime p) h : p ∈ (Nat.factorization (exponent G)).support he : 0 < exponent G g : G hg : g ^ (exponent G / p) ≠ 1 k : ℕ hk : exponent G = p ^ ↑(Nat.factorization (exponent G)) p * k t : ℕ ht : ↑(Nat.factorization (exponent G)) p = Nat.succ t ⊢ ¬(g ^ k) ^ p ^ t = 1 [PROOFSTEP] rwa [hk, mul_comm, ht, pow_succ', ← mul_assoc, Nat.mul_div_cancel _ hp.pos, pow_mul] at hg [GOAL] case inr.intro.intro.intro.hfin G : Type u inst✝ : Monoid G p : ℕ hp : Nat.Prime p this : Fact (Nat.Prime p) h : p ∈ (Nat.factorization (exponent G)).support he : 0 < exponent G g : G hg : g ^ (exponent G / p) ≠ 1 k : ℕ hk : exponent G = p ^ ↑(Nat.factorization (exponent G)) p * k t : ℕ ht : ↑(Nat.factorization (exponent G)) p = Nat.succ t ⊢ (g ^ k) ^ p ^ (t + 1) = 1 [PROOFSTEP] rw [← Nat.succ_eq_add_one, ← ht, ← pow_mul, mul_comm, ← hk] [GOAL] case inr.intro.intro.intro.hfin G : Type u inst✝ : Monoid G p : ℕ hp : Nat.Prime p this : Fact (Nat.Prime p) h : p ∈ (Nat.factorization (exponent G)).support he : 0 < exponent G g : G hg : g ^ (exponent G / p) ≠ 1 k : ℕ hk : exponent G = p ^ ↑(Nat.factorization (exponent G)) p * k t : ℕ ht : ↑(Nat.factorization (exponent G)) p = Nat.succ t ⊢ g ^ exponent G = 1 [PROOFSTEP] exact pow_exponent_eq_one g [GOAL] G : Type u inst✝ : Monoid G h : ∀ (g : G), 0 < orderOf g ⊢ exponent G ≠ 0 ↔ Set.Finite (Set.range orderOf) [PROOFSTEP] refine' ⟨fun he => _, fun he => _⟩ [GOAL] case refine'_1 G : Type u inst✝ : Monoid G h : ∀ (g : G), 0 < orderOf g he : exponent G ≠ 0 ⊢ Set.Finite (Set.range orderOf) [PROOFSTEP] by_contra h [GOAL] case refine'_1 G : Type u inst✝ : Monoid G h✝ : ∀ (g : G), 0 < orderOf g he : exponent G ≠ 0 h : ¬Set.Finite (Set.range orderOf) ⊢ False [PROOFSTEP] obtain ⟨m, ⟨t, rfl⟩, het⟩ := Set.Infinite.exists_gt h (exponent G) [GOAL] case refine'_1.intro.intro.intro G : Type u inst✝ : Monoid G h✝ : ∀ (g : G), 0 < orderOf g he : exponent G ≠ 0 h : ¬Set.Finite (Set.range orderOf) t : G het : exponent G < orderOf t ⊢ False [PROOFSTEP] exact pow_ne_one_of_lt_orderOf' he het (pow_exponent_eq_one t) [GOAL] case refine'_2 G : Type u inst✝ : Monoid G h : ∀ (g : G), 0 < orderOf g he : Set.Finite (Set.range orderOf) ⊢ exponent G ≠ 0 [PROOFSTEP] lift Set.range (orderOf (G := G)) to Finset ℕ using he with t ht [GOAL] case refine'_2.intro G : Type u inst✝ : Monoid G h : ∀ (g : G), 0 < orderOf g t : Finset ℕ ht : ↑t = Set.range orderOf exponent_ne_zero_iff_range_orderOf_finite✝ exponent_ne_zero_iff_range_orderOf_finite : (∀ (g : G), 0 < orderOf g) → (exponent G ≠ 0 ↔ Set.Finite ↑t) ⊢ exponent G ≠ 0 [PROOFSTEP] have htpos : 0 < t.prod id := by refine' Finset.prod_pos fun a ha => _ rw [← Finset.mem_coe, ht] at ha obtain ⟨k, rfl⟩ := ha exact h k [GOAL] G : Type u inst✝ : Monoid G h : ∀ (g : G), 0 < orderOf g t : Finset ℕ ht : ↑t = Set.range orderOf exponent_ne_zero_iff_range_orderOf_finite✝ exponent_ne_zero_iff_range_orderOf_finite : (∀ (g : G), 0 < orderOf g) → (exponent G ≠ 0 ↔ Set.Finite ↑t) ⊢ 0 < Finset.prod t id [PROOFSTEP] refine' Finset.prod_pos fun a ha => _ [GOAL] G : Type u inst✝ : Monoid G h : ∀ (g : G), 0 < orderOf g t : Finset ℕ ht : ↑t = Set.range orderOf exponent_ne_zero_iff_range_orderOf_finite✝ exponent_ne_zero_iff_range_orderOf_finite : (∀ (g : G), 0 < orderOf g) → (exponent G ≠ 0 ↔ Set.Finite ↑t) a : ℕ ha : a ∈ t ⊢ 0 < id a [PROOFSTEP] rw [← Finset.mem_coe, ht] at ha [GOAL] G : Type u inst✝ : Monoid G h : ∀ (g : G), 0 < orderOf g t : Finset ℕ ht : ↑t = Set.range orderOf exponent_ne_zero_iff_range_orderOf_finite✝ exponent_ne_zero_iff_range_orderOf_finite : (∀ (g : G), 0 < orderOf g) → (exponent G ≠ 0 ↔ Set.Finite ↑t) a : ℕ ha : a ∈ Set.range orderOf ⊢ 0 < id a [PROOFSTEP] obtain ⟨k, rfl⟩ := ha [GOAL] case intro G : Type u inst✝ : Monoid G h : ∀ (g : G), 0 < orderOf g t : Finset ℕ ht : ↑t = Set.range orderOf exponent_ne_zero_iff_range_orderOf_finite✝ exponent_ne_zero_iff_range_orderOf_finite : (∀ (g : G), 0 < orderOf g) → (exponent G ≠ 0 ↔ Set.Finite ↑t) k : G ⊢ 0 < id (orderOf k) [PROOFSTEP] exact h k [GOAL] case refine'_2.intro G : Type u inst✝ : Monoid G h : ∀ (g : G), 0 < orderOf g t : Finset ℕ ht : ↑t = Set.range orderOf exponent_ne_zero_iff_range_orderOf_finite✝ exponent_ne_zero_iff_range_orderOf_finite : (∀ (g : G), 0 < orderOf g) → (exponent G ≠ 0 ↔ Set.Finite ↑t) htpos : 0 < Finset.prod t id ⊢ exponent G ≠ 0 [PROOFSTEP] suffices exponent G ∣ t.prod id by intro h rw [h, zero_dvd_iff] at this exact htpos.ne' this [GOAL] G : Type u inst✝ : Monoid G h : ∀ (g : G), 0 < orderOf g t : Finset ℕ ht : ↑t = Set.range orderOf exponent_ne_zero_iff_range_orderOf_finite✝ exponent_ne_zero_iff_range_orderOf_finite : (∀ (g : G), 0 < orderOf g) → (exponent G ≠ 0 ↔ Set.Finite ↑t) htpos : 0 < Finset.prod t id this : exponent G ∣ Finset.prod t id ⊢ exponent G ≠ 0 [PROOFSTEP] intro h [GOAL] G : Type u inst✝ : Monoid G h✝ : ∀ (g : G), 0 < orderOf g t : Finset ℕ ht : ↑t = Set.range orderOf exponent_ne_zero_iff_range_orderOf_finite✝ exponent_ne_zero_iff_range_orderOf_finite : (∀ (g : G), 0 < orderOf g) → (exponent G ≠ 0 ↔ Set.Finite ↑t) htpos : 0 < Finset.prod t id this : exponent G ∣ Finset.prod t id h : exponent G = 0 ⊢ False [PROOFSTEP] rw [h, zero_dvd_iff] at this [GOAL] G : Type u inst✝ : Monoid G h✝ : ∀ (g : G), 0 < orderOf g t : Finset ℕ ht : ↑t = Set.range orderOf exponent_ne_zero_iff_range_orderOf_finite✝ exponent_ne_zero_iff_range_orderOf_finite : (∀ (g : G), 0 < orderOf g) → (exponent G ≠ 0 ↔ Set.Finite ↑t) htpos : 0 < Finset.prod t id this : Finset.prod t id = 0 h : exponent G = 0 ⊢ False [PROOFSTEP] exact htpos.ne' this [GOAL] case refine'_2.intro G : Type u inst✝ : Monoid G h : ∀ (g : G), 0 < orderOf g t : Finset ℕ ht : ↑t = Set.range orderOf exponent_ne_zero_iff_range_orderOf_finite✝ exponent_ne_zero_iff_range_orderOf_finite : (∀ (g : G), 0 < orderOf g) → (exponent G ≠ 0 ↔ Set.Finite ↑t) htpos : 0 < Finset.prod t id ⊢ exponent G ∣ Finset.prod t id [PROOFSTEP] refine' exponent_dvd_of_forall_pow_eq_one _ _ fun g => _ [GOAL] case refine'_2.intro G : Type u inst✝ : Monoid G h : ∀ (g : G), 0 < orderOf g t : Finset ℕ ht : ↑t = Set.range orderOf exponent_ne_zero_iff_range_orderOf_finite✝ exponent_ne_zero_iff_range_orderOf_finite : (∀ (g : G), 0 < orderOf g) → (exponent G ≠ 0 ↔ Set.Finite ↑t) htpos : 0 < Finset.prod t id g : G ⊢ g ^ Finset.prod t id = 1 [PROOFSTEP] rw [pow_eq_mod_orderOf, Nat.mod_eq_zero_of_dvd, pow_zero g] [GOAL] case refine'_2.intro G : Type u inst✝ : Monoid G h : ∀ (g : G), 0 < orderOf g t : Finset ℕ ht : ↑t = Set.range orderOf exponent_ne_zero_iff_range_orderOf_finite✝ exponent_ne_zero_iff_range_orderOf_finite : (∀ (g : G), 0 < orderOf g) → (exponent G ≠ 0 ↔ Set.Finite ↑t) htpos : 0 < Finset.prod t id g : G ⊢ orderOf g ∣ Finset.prod t id [PROOFSTEP] apply Finset.dvd_prod_of_mem [GOAL] case refine'_2.intro.ha G : Type u inst✝ : Monoid G h : ∀ (g : G), 0 < orderOf g t : Finset ℕ ht : ↑t = Set.range orderOf exponent_ne_zero_iff_range_orderOf_finite✝ exponent_ne_zero_iff_range_orderOf_finite : (∀ (g : G), 0 < orderOf g) → (exponent G ≠ 0 ↔ Set.Finite ↑t) htpos : 0 < Finset.prod t id g : G ⊢ Function.minimalPeriod (fun x => g * x) 1 ∈ t [PROOFSTEP] rw [← Finset.mem_coe, ht] [GOAL] case refine'_2.intro.ha G : Type u inst✝ : Monoid G h : ∀ (g : G), 0 < orderOf g t : Finset ℕ ht : ↑t = Set.range orderOf exponent_ne_zero_iff_range_orderOf_finite✝ exponent_ne_zero_iff_range_orderOf_finite : (∀ (g : G), 0 < orderOf g) → (exponent G ≠ 0 ↔ Set.Finite ↑t) htpos : 0 < Finset.prod t id g : G ⊢ Function.minimalPeriod (fun x => g * x) 1 ∈ Set.range orderOf [PROOFSTEP] exact Set.mem_range_self g [GOAL] G : Type u inst✝ : Monoid G h : ∀ (g : G), 0 < orderOf g ⊢ exponent G = 0 ↔ Set.Infinite (Set.range orderOf) [PROOFSTEP] have := exponent_ne_zero_iff_range_orderOf_finite h [GOAL] G : Type u inst✝ : Monoid G h : ∀ (g : G), 0 < orderOf g this : exponent G ≠ 0 ↔ Set.Finite (Set.range orderOf) ⊢ exponent G = 0 ↔ Set.Infinite (Set.range orderOf) [PROOFSTEP] rwa [Ne.def, not_iff_comm, Iff.comm] at this [GOAL] G : Type u inst✝¹ : Monoid G inst✝ : Fintype G ⊢ Finset.lcm Finset.univ orderOf = exponent G [PROOFSTEP] apply Nat.dvd_antisymm (lcm_orderOf_dvd_exponent G) [GOAL] G : Type u inst✝¹ : Monoid G inst✝ : Fintype G ⊢ exponent G ∣ Finset.lcm Finset.univ orderOf [PROOFSTEP] refine' exponent_dvd_of_forall_pow_eq_one G _ fun g => _ [GOAL] G : Type u inst✝¹ : Monoid G inst✝ : Fintype G g : G ⊢ g ^ Finset.lcm Finset.univ orderOf = 1 [PROOFSTEP] obtain ⟨m, hm⟩ : orderOf g ∣ Finset.univ.lcm orderOf := Finset.dvd_lcm (Finset.mem_univ g) [GOAL] case intro G : Type u inst✝¹ : Monoid G inst✝ : Fintype G g : G m : ℕ hm : Finset.lcm Finset.univ orderOf = orderOf g * m ⊢ g ^ Finset.lcm Finset.univ orderOf = 1 [PROOFSTEP] rw [hm, pow_mul, pow_orderOf_eq_one, one_pow] [GOAL] G : Type u inst✝¹ : LeftCancelMonoid G inst✝ : Finite G ⊢ exponent G ≠ 0 [PROOFSTEP] cases nonempty_fintype G [GOAL] case intro G : Type u inst✝¹ : LeftCancelMonoid G inst✝ : Finite G val✝ : Fintype G ⊢ exponent G ≠ 0 [PROOFSTEP] simpa [← lcm_order_eq_exponent, Finset.lcm_eq_zero_iff] using fun x => (orderOf_pos x).ne' [GOAL] G : Type u inst✝ : CommMonoid G h : ∀ (g : G), 0 < orderOf g ⊢ exponent G = ⨆ (g : G), orderOf g [PROOFSTEP] rw [iSup] [GOAL] G : Type u inst✝ : CommMonoid G h : ∀ (g : G), 0 < orderOf g ⊢ exponent G = sSup (Set.range fun g => orderOf g) [PROOFSTEP] rcases eq_or_ne (exponent G) 0 with (he | he) [GOAL] case inl G : Type u inst✝ : CommMonoid G h : ∀ (g : G), 0 < orderOf g he : exponent G = 0 ⊢ exponent G = sSup (Set.range fun g => orderOf g) [PROOFSTEP] rw [he, Set.Infinite.Nat.sSup_eq_zero <| (exponent_eq_zero_iff_range_orderOf_infinite h).1 he] [GOAL] case inr G : Type u inst✝ : CommMonoid G h : ∀ (g : G), 0 < orderOf g he : exponent G ≠ 0 ⊢ exponent G = sSup (Set.range fun g => orderOf g) [PROOFSTEP] have hne : (Set.range (orderOf : G → ℕ)).Nonempty := ⟨1, 1, orderOf_one⟩ [GOAL] case inr G : Type u inst✝ : CommMonoid G h : ∀ (g : G), 0 < orderOf g he : exponent G ≠ 0 hne : Set.Nonempty (Set.range orderOf) ⊢ exponent G = sSup (Set.range fun g => orderOf g) [PROOFSTEP] have hfin : (Set.range (orderOf : G → ℕ)).Finite := by rwa [← exponent_ne_zero_iff_range_orderOf_finite h] [GOAL] G : Type u inst✝ : CommMonoid G h : ∀ (g : G), 0 < orderOf g he : exponent G ≠ 0 hne : Set.Nonempty (Set.range orderOf) ⊢ Set.Finite (Set.range orderOf) [PROOFSTEP] rwa [← exponent_ne_zero_iff_range_orderOf_finite h] [GOAL] case inr G : Type u inst✝ : CommMonoid G h : ∀ (g : G), 0 < orderOf g he : exponent G ≠ 0 hne : Set.Nonempty (Set.range orderOf) hfin : Set.Finite (Set.range orderOf) ⊢ exponent G = sSup (Set.range fun g => orderOf g) [PROOFSTEP] obtain ⟨t, ht⟩ := hne.cSup_mem hfin [GOAL] case inr.intro G : Type u inst✝ : CommMonoid G h : ∀ (g : G), 0 < orderOf g he : exponent G ≠ 0 hne : Set.Nonempty (Set.range orderOf) hfin : Set.Finite (Set.range orderOf) t : G ht : orderOf t = sSup (Set.range orderOf) ⊢ exponent G = sSup (Set.range fun g => orderOf g) [PROOFSTEP] apply Nat.dvd_antisymm _ [GOAL] case inr.intro G : Type u inst✝ : CommMonoid G h : ∀ (g : G), 0 < orderOf g he : exponent G ≠ 0 hne : Set.Nonempty (Set.range orderOf) hfin : Set.Finite (Set.range orderOf) t : G ht : orderOf t = sSup (Set.range orderOf) ⊢ sSup (Set.range fun g => orderOf g) ∣ exponent G [PROOFSTEP] rw [← ht] [GOAL] case inr.intro G : Type u inst✝ : CommMonoid G h : ∀ (g : G), 0 < orderOf g he : exponent G ≠ 0 hne : Set.Nonempty (Set.range orderOf) hfin : Set.Finite (Set.range orderOf) t : G ht : orderOf t = sSup (Set.range orderOf) ⊢ orderOf t ∣ exponent G [PROOFSTEP] apply order_dvd_exponent [GOAL] G : Type u inst✝ : CommMonoid G h : ∀ (g : G), 0 < orderOf g he : exponent G ≠ 0 hne : Set.Nonempty (Set.range orderOf) hfin : Set.Finite (Set.range orderOf) t : G ht : orderOf t = sSup (Set.range orderOf) ⊢ exponent G ∣ sSup (Set.range fun g => orderOf g) [PROOFSTEP] refine' Nat.dvd_of_factors_subperm he _ [GOAL] G : Type u inst✝ : CommMonoid G h : ∀ (g : G), 0 < orderOf g he : exponent G ≠ 0 hne : Set.Nonempty (Set.range orderOf) hfin : Set.Finite (Set.range orderOf) t : G ht : orderOf t = sSup (Set.range orderOf) ⊢ Nat.factors (exponent G) <+~ Nat.factors (sSup (Set.range fun g => orderOf g)) [PROOFSTEP] rw [List.subperm_ext_iff] [GOAL] G : Type u inst✝ : CommMonoid G h : ∀ (g : G), 0 < orderOf g he : exponent G ≠ 0 hne : Set.Nonempty (Set.range orderOf) hfin : Set.Finite (Set.range orderOf) t : G ht : orderOf t = sSup (Set.range orderOf) ⊢ ∀ (x : ℕ), x ∈ Nat.factors (exponent G) → List.count x (Nat.factors (exponent G)) ≤ List.count x (Nat.factors (sSup (Set.range fun g => orderOf g))) [PROOFSTEP] by_contra' h [GOAL] G : Type u inst✝ : CommMonoid G h✝ : ∀ (g : G), 0 < orderOf g he : exponent G ≠ 0 hne : Set.Nonempty (Set.range orderOf) hfin : Set.Finite (Set.range orderOf) t : G ht : orderOf t = sSup (Set.range orderOf) h : ∃ x, x ∈ Nat.factors (exponent G) ∧ List.count x (Nat.factors (sSup (Set.range fun g => orderOf g))) < List.count x (Nat.factors (exponent G)) ⊢ False [PROOFSTEP] obtain ⟨p, hp, hpe⟩ := h [GOAL] case intro.intro G : Type u inst✝ : CommMonoid G h : ∀ (g : G), 0 < orderOf g he : exponent G ≠ 0 hne : Set.Nonempty (Set.range orderOf) hfin : Set.Finite (Set.range orderOf) t : G ht : orderOf t = sSup (Set.range orderOf) p : ℕ hp : p ∈ Nat.factors (exponent G) hpe : List.count p (Nat.factors (sSup (Set.range fun g => orderOf g))) < List.count p (Nat.factors (exponent G)) ⊢ False [PROOFSTEP] replace hp := Nat.prime_of_mem_factors hp [GOAL] case intro.intro G : Type u inst✝ : CommMonoid G h : ∀ (g : G), 0 < orderOf g he : exponent G ≠ 0 hne : Set.Nonempty (Set.range orderOf) hfin : Set.Finite (Set.range orderOf) t : G ht : orderOf t = sSup (Set.range orderOf) p : ℕ hpe : List.count p (Nat.factors (sSup (Set.range fun g => orderOf g))) < List.count p (Nat.factors (exponent G)) hp : Nat.Prime p ⊢ False [PROOFSTEP] simp only [Nat.factors_count_eq] at hpe [GOAL] case intro.intro G : Type u inst✝ : CommMonoid G h : ∀ (g : G), 0 < orderOf g he : exponent G ≠ 0 hne : Set.Nonempty (Set.range orderOf) hfin : Set.Finite (Set.range orderOf) t : G ht : orderOf t = sSup (Set.range orderOf) p : ℕ hp : Nat.Prime p hpe : ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p < ↑(Nat.factorization (exponent G)) p ⊢ False [PROOFSTEP] set k := (orderOf t).factorization p with hk [GOAL] case intro.intro G : Type u inst✝ : CommMonoid G h : ∀ (g : G), 0 < orderOf g he : exponent G ≠ 0 hne : Set.Nonempty (Set.range orderOf) hfin : Set.Finite (Set.range orderOf) t : G ht : orderOf t = sSup (Set.range orderOf) p : ℕ hp : Nat.Prime p hpe : ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p < ↑(Nat.factorization (exponent G)) p k : ℕ := ↑(Nat.factorization (orderOf t)) p hk : k = ↑(Nat.factorization (orderOf t)) p ⊢ False [PROOFSTEP] obtain ⟨g, hg⟩ := hp.exists_orderOf_eq_pow_factorization_exponent G [GOAL] case intro.intro.intro G : Type u inst✝ : CommMonoid G h : ∀ (g : G), 0 < orderOf g he : exponent G ≠ 0 hne : Set.Nonempty (Set.range orderOf) hfin : Set.Finite (Set.range orderOf) t : G ht : orderOf t = sSup (Set.range orderOf) p : ℕ hp : Nat.Prime p hpe : ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p < ↑(Nat.factorization (exponent G)) p k : ℕ := ↑(Nat.factorization (orderOf t)) p hk : k = ↑(Nat.factorization (orderOf t)) p g : G hg : orderOf g = p ^ ↑(Nat.factorization (exponent G)) p ⊢ False [PROOFSTEP] suffices orderOf t < orderOf (t ^ p ^ k * g) by rw [ht] at this exact this.not_le (le_csSup hfin.bddAbove <| Set.mem_range_self _) [GOAL] G : Type u inst✝ : CommMonoid G h : ∀ (g : G), 0 < orderOf g he : exponent G ≠ 0 hne : Set.Nonempty (Set.range orderOf) hfin : Set.Finite (Set.range orderOf) t : G ht : orderOf t = sSup (Set.range orderOf) p : ℕ hp : Nat.Prime p hpe : ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p < ↑(Nat.factorization (exponent G)) p k : ℕ := ↑(Nat.factorization (orderOf t)) p hk : k = ↑(Nat.factorization (orderOf t)) p g : G hg : orderOf g = p ^ ↑(Nat.factorization (exponent G)) p this : orderOf t < orderOf (t ^ p ^ k * g) ⊢ False [PROOFSTEP] rw [ht] at this [GOAL] G : Type u inst✝ : CommMonoid G h : ∀ (g : G), 0 < orderOf g he : exponent G ≠ 0 hne : Set.Nonempty (Set.range orderOf) hfin : Set.Finite (Set.range orderOf) t : G ht : orderOf t = sSup (Set.range orderOf) p : ℕ hp : Nat.Prime p hpe : ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p < ↑(Nat.factorization (exponent G)) p k : ℕ := ↑(Nat.factorization (orderOf t)) p hk : k = ↑(Nat.factorization (orderOf t)) p g : G hg : orderOf g = p ^ ↑(Nat.factorization (exponent G)) p this : sSup (Set.range orderOf) < orderOf (t ^ p ^ k * g) ⊢ False [PROOFSTEP] exact this.not_le (le_csSup hfin.bddAbove <| Set.mem_range_self _) [GOAL] case intro.intro.intro G : Type u inst✝ : CommMonoid G h : ∀ (g : G), 0 < orderOf g he : exponent G ≠ 0 hne : Set.Nonempty (Set.range orderOf) hfin : Set.Finite (Set.range orderOf) t : G ht : orderOf t = sSup (Set.range orderOf) p : ℕ hp : Nat.Prime p hpe : ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p < ↑(Nat.factorization (exponent G)) p k : ℕ := ↑(Nat.factorization (orderOf t)) p hk : k = ↑(Nat.factorization (orderOf t)) p g : G hg : orderOf g = p ^ ↑(Nat.factorization (exponent G)) p ⊢ orderOf t < orderOf (t ^ p ^ k * g) [PROOFSTEP] have hpk : p ^ k ∣ orderOf t := Nat.ord_proj_dvd _ _ [GOAL] case intro.intro.intro G : Type u inst✝ : CommMonoid G h : ∀ (g : G), 0 < orderOf g he : exponent G ≠ 0 hne : Set.Nonempty (Set.range orderOf) hfin : Set.Finite (Set.range orderOf) t : G ht : orderOf t = sSup (Set.range orderOf) p : ℕ hp : Nat.Prime p hpe : ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p < ↑(Nat.factorization (exponent G)) p k : ℕ := ↑(Nat.factorization (orderOf t)) p hk : k = ↑(Nat.factorization (orderOf t)) p g : G hg : orderOf g = p ^ ↑(Nat.factorization (exponent G)) p hpk : p ^ k ∣ orderOf t ⊢ orderOf t < orderOf (t ^ p ^ k * g) [PROOFSTEP] have hpk' : orderOf (t ^ p ^ k) = orderOf t / p ^ k := by rw [orderOf_pow' t (pow_ne_zero k hp.ne_zero), Nat.gcd_eq_right hpk] [GOAL] G : Type u inst✝ : CommMonoid G h : ∀ (g : G), 0 < orderOf g he : exponent G ≠ 0 hne : Set.Nonempty (Set.range orderOf) hfin : Set.Finite (Set.range orderOf) t : G ht : orderOf t = sSup (Set.range orderOf) p : ℕ hp : Nat.Prime p hpe : ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p < ↑(Nat.factorization (exponent G)) p k : ℕ := ↑(Nat.factorization (orderOf t)) p hk : k = ↑(Nat.factorization (orderOf t)) p g : G hg : orderOf g = p ^ ↑(Nat.factorization (exponent G)) p hpk : p ^ k ∣ orderOf t ⊢ orderOf (t ^ p ^ k) = orderOf t / p ^ k [PROOFSTEP] rw [orderOf_pow' t (pow_ne_zero k hp.ne_zero), Nat.gcd_eq_right hpk] [GOAL] case intro.intro.intro G : Type u inst✝ : CommMonoid G h : ∀ (g : G), 0 < orderOf g he : exponent G ≠ 0 hne : Set.Nonempty (Set.range orderOf) hfin : Set.Finite (Set.range orderOf) t : G ht : orderOf t = sSup (Set.range orderOf) p : ℕ hp : Nat.Prime p hpe : ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p < ↑(Nat.factorization (exponent G)) p k : ℕ := ↑(Nat.factorization (orderOf t)) p hk : k = ↑(Nat.factorization (orderOf t)) p g : G hg : orderOf g = p ^ ↑(Nat.factorization (exponent G)) p hpk : p ^ k ∣ orderOf t hpk' : orderOf (t ^ p ^ k) = orderOf t / p ^ k ⊢ orderOf t < orderOf (t ^ p ^ k * g) [PROOFSTEP] obtain ⟨a, ha⟩ := Nat.exists_eq_add_of_lt hpe [GOAL] case intro.intro.intro.intro G : Type u inst✝ : CommMonoid G h : ∀ (g : G), 0 < orderOf g he : exponent G ≠ 0 hne : Set.Nonempty (Set.range orderOf) hfin : Set.Finite (Set.range orderOf) t : G ht : orderOf t = sSup (Set.range orderOf) p : ℕ hp : Nat.Prime p hpe : ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p < ↑(Nat.factorization (exponent G)) p k : ℕ := ↑(Nat.factorization (orderOf t)) p hk : k = ↑(Nat.factorization (orderOf t)) p g : G hg : orderOf g = p ^ ↑(Nat.factorization (exponent G)) p hpk : p ^ k ∣ orderOf t hpk' : orderOf (t ^ p ^ k) = orderOf t / p ^ k a : ℕ ha : ↑(Nat.factorization (exponent G)) p = ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p + a + 1 ⊢ orderOf t < orderOf (t ^ p ^ k * g) [PROOFSTEP] have hcoprime : (orderOf (t ^ p ^ k)).coprime (orderOf g) := by rw [hg, Nat.coprime_pow_right_iff (pos_of_gt hpe), Nat.coprime_comm] apply Or.resolve_right (Nat.coprime_or_dvd_of_prime hp _) nth_rw 1 [← pow_one p] have : 1 = (Nat.factorization (orderOf (t ^ p ^ k))) p + 1 := by rw [hpk', Nat.factorization_div hpk] simp [hp] rw [this] -- Porting note: convert made to_additive complain apply Nat.pow_succ_factorization_not_dvd (h <| t ^ p ^ k).ne' hp [GOAL] G : Type u inst✝ : CommMonoid G h : ∀ (g : G), 0 < orderOf g he : exponent G ≠ 0 hne : Set.Nonempty (Set.range orderOf) hfin : Set.Finite (Set.range orderOf) t : G ht : orderOf t = sSup (Set.range orderOf) p : ℕ hp : Nat.Prime p hpe : ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p < ↑(Nat.factorization (exponent G)) p k : ℕ := ↑(Nat.factorization (orderOf t)) p hk : k = ↑(Nat.factorization (orderOf t)) p g : G hg : orderOf g = p ^ ↑(Nat.factorization (exponent G)) p hpk : p ^ k ∣ orderOf t hpk' : orderOf (t ^ p ^ k) = orderOf t / p ^ k a : ℕ ha : ↑(Nat.factorization (exponent G)) p = ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p + a + 1 ⊢ Nat.coprime (orderOf (t ^ p ^ k)) (orderOf g) [PROOFSTEP] rw [hg, Nat.coprime_pow_right_iff (pos_of_gt hpe), Nat.coprime_comm] [GOAL] G : Type u inst✝ : CommMonoid G h : ∀ (g : G), 0 < orderOf g he : exponent G ≠ 0 hne : Set.Nonempty (Set.range orderOf) hfin : Set.Finite (Set.range orderOf) t : G ht : orderOf t = sSup (Set.range orderOf) p : ℕ hp : Nat.Prime p hpe : ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p < ↑(Nat.factorization (exponent G)) p k : ℕ := ↑(Nat.factorization (orderOf t)) p hk : k = ↑(Nat.factorization (orderOf t)) p g : G hg : orderOf g = p ^ ↑(Nat.factorization (exponent G)) p hpk : p ^ k ∣ orderOf t hpk' : orderOf (t ^ p ^ k) = orderOf t / p ^ k a : ℕ ha : ↑(Nat.factorization (exponent G)) p = ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p + a + 1 ⊢ Nat.coprime p (orderOf (t ^ p ^ k)) [PROOFSTEP] apply Or.resolve_right (Nat.coprime_or_dvd_of_prime hp _) [GOAL] G : Type u inst✝ : CommMonoid G h : ∀ (g : G), 0 < orderOf g he : exponent G ≠ 0 hne : Set.Nonempty (Set.range orderOf) hfin : Set.Finite (Set.range orderOf) t : G ht : orderOf t = sSup (Set.range orderOf) p : ℕ hp : Nat.Prime p hpe : ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p < ↑(Nat.factorization (exponent G)) p k : ℕ := ↑(Nat.factorization (orderOf t)) p hk : k = ↑(Nat.factorization (orderOf t)) p g : G hg : orderOf g = p ^ ↑(Nat.factorization (exponent G)) p hpk : p ^ k ∣ orderOf t hpk' : orderOf (t ^ p ^ k) = orderOf t / p ^ k a : ℕ ha : ↑(Nat.factorization (exponent G)) p = ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p + a + 1 ⊢ ¬p ∣ orderOf (t ^ p ^ k) [PROOFSTEP] nth_rw 1 [← pow_one p] [GOAL] G : Type u inst✝ : CommMonoid G h : ∀ (g : G), 0 < orderOf g he : exponent G ≠ 0 hne : Set.Nonempty (Set.range orderOf) hfin : Set.Finite (Set.range orderOf) t : G ht : orderOf t = sSup (Set.range orderOf) p : ℕ hp : Nat.Prime p hpe : ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p < ↑(Nat.factorization (exponent G)) p k : ℕ := ↑(Nat.factorization (orderOf t)) p hk : k = ↑(Nat.factorization (orderOf t)) p g : G hg : orderOf g = p ^ ↑(Nat.factorization (exponent G)) p hpk : p ^ k ∣ orderOf t hpk' : orderOf (t ^ p ^ k) = orderOf t / p ^ k a : ℕ ha : ↑(Nat.factorization (exponent G)) p = ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p + a + 1 ⊢ ¬p ^ 1 ∣ orderOf (t ^ p ^ k) [PROOFSTEP] have : 1 = (Nat.factorization (orderOf (t ^ p ^ k))) p + 1 := by rw [hpk', Nat.factorization_div hpk] simp [hp] [GOAL] G : Type u inst✝ : CommMonoid G h : ∀ (g : G), 0 < orderOf g he : exponent G ≠ 0 hne : Set.Nonempty (Set.range orderOf) hfin : Set.Finite (Set.range orderOf) t : G ht : orderOf t = sSup (Set.range orderOf) p : ℕ hp : Nat.Prime p hpe : ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p < ↑(Nat.factorization (exponent G)) p k : ℕ := ↑(Nat.factorization (orderOf t)) p hk : k = ↑(Nat.factorization (orderOf t)) p g : G hg : orderOf g = p ^ ↑(Nat.factorization (exponent G)) p hpk : p ^ k ∣ orderOf t hpk' : orderOf (t ^ p ^ k) = orderOf t / p ^ k a : ℕ ha : ↑(Nat.factorization (exponent G)) p = ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p + a + 1 ⊢ 1 = ↑(Nat.factorization (orderOf (t ^ p ^ k))) p + 1 [PROOFSTEP] rw [hpk', Nat.factorization_div hpk] [GOAL] G : Type u inst✝ : CommMonoid G h : ∀ (g : G), 0 < orderOf g he : exponent G ≠ 0 hne : Set.Nonempty (Set.range orderOf) hfin : Set.Finite (Set.range orderOf) t : G ht : orderOf t = sSup (Set.range orderOf) p : ℕ hp : Nat.Prime p hpe : ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p < ↑(Nat.factorization (exponent G)) p k : ℕ := ↑(Nat.factorization (orderOf t)) p hk : k = ↑(Nat.factorization (orderOf t)) p g : G hg : orderOf g = p ^ ↑(Nat.factorization (exponent G)) p hpk : p ^ k ∣ orderOf t hpk' : orderOf (t ^ p ^ k) = orderOf t / p ^ k a : ℕ ha : ↑(Nat.factorization (exponent G)) p = ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p + a + 1 ⊢ 1 = ↑(Nat.factorization (orderOf t) - Nat.factorization (p ^ k)) p + 1 [PROOFSTEP] simp [hp] [GOAL] G : Type u inst✝ : CommMonoid G h : ∀ (g : G), 0 < orderOf g he : exponent G ≠ 0 hne : Set.Nonempty (Set.range orderOf) hfin : Set.Finite (Set.range orderOf) t : G ht : orderOf t = sSup (Set.range orderOf) p : ℕ hp : Nat.Prime p hpe : ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p < ↑(Nat.factorization (exponent G)) p k : ℕ := ↑(Nat.factorization (orderOf t)) p hk : k = ↑(Nat.factorization (orderOf t)) p g : G hg : orderOf g = p ^ ↑(Nat.factorization (exponent G)) p hpk : p ^ k ∣ orderOf t hpk' : orderOf (t ^ p ^ k) = orderOf t / p ^ k a : ℕ ha : ↑(Nat.factorization (exponent G)) p = ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p + a + 1 this : 1 = ↑(Nat.factorization (orderOf (t ^ p ^ k))) p + 1 ⊢ ¬p ^ 1 ∣ orderOf (t ^ p ^ k) [PROOFSTEP] rw [this] -- Porting note: convert made to_additive complain [GOAL] G : Type u inst✝ : CommMonoid G h : ∀ (g : G), 0 < orderOf g he : exponent G ≠ 0 hne : Set.Nonempty (Set.range orderOf) hfin : Set.Finite (Set.range orderOf) t : G ht : orderOf t = sSup (Set.range orderOf) p : ℕ hp : Nat.Prime p hpe : ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p < ↑(Nat.factorization (exponent G)) p k : ℕ := ↑(Nat.factorization (orderOf t)) p hk : k = ↑(Nat.factorization (orderOf t)) p g : G hg : orderOf g = p ^ ↑(Nat.factorization (exponent G)) p hpk : p ^ k ∣ orderOf t hpk' : orderOf (t ^ p ^ k) = orderOf t / p ^ k a : ℕ ha : ↑(Nat.factorization (exponent G)) p = ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p + a + 1 this : 1 = ↑(Nat.factorization (orderOf (t ^ p ^ k))) p + 1 ⊢ ¬p ^ (↑(Nat.factorization (orderOf (t ^ p ^ k))) p + 1) ∣ orderOf (t ^ p ^ k) [PROOFSTEP] apply Nat.pow_succ_factorization_not_dvd (h <| t ^ p ^ k).ne' hp [GOAL] case intro.intro.intro.intro G : Type u inst✝ : CommMonoid G h : ∀ (g : G), 0 < orderOf g he : exponent G ≠ 0 hne : Set.Nonempty (Set.range orderOf) hfin : Set.Finite (Set.range orderOf) t : G ht : orderOf t = sSup (Set.range orderOf) p : ℕ hp : Nat.Prime p hpe : ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p < ↑(Nat.factorization (exponent G)) p k : ℕ := ↑(Nat.factorization (orderOf t)) p hk : k = ↑(Nat.factorization (orderOf t)) p g : G hg : orderOf g = p ^ ↑(Nat.factorization (exponent G)) p hpk : p ^ k ∣ orderOf t hpk' : orderOf (t ^ p ^ k) = orderOf t / p ^ k a : ℕ ha : ↑(Nat.factorization (exponent G)) p = ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p + a + 1 hcoprime : Nat.coprime (orderOf (t ^ p ^ k)) (orderOf g) ⊢ orderOf t < orderOf (t ^ p ^ k * g) [PROOFSTEP] rw [(Commute.all _ g).orderOf_mul_eq_mul_orderOf_of_coprime hcoprime, hpk', hg, ha, ← ht, ← hk, pow_add, pow_add, pow_one, ← mul_assoc, ← mul_assoc, Nat.div_mul_cancel, mul_assoc, lt_mul_iff_one_lt_right <| h t, ← pow_succ'] [GOAL] case intro.intro.intro.intro G : Type u inst✝ : CommMonoid G h : ∀ (g : G), 0 < orderOf g he : exponent G ≠ 0 hne : Set.Nonempty (Set.range orderOf) hfin : Set.Finite (Set.range orderOf) t : G ht : orderOf t = sSup (Set.range orderOf) p : ℕ hp : Nat.Prime p hpe : ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p < ↑(Nat.factorization (exponent G)) p k : ℕ := ↑(Nat.factorization (orderOf t)) p hk : k = ↑(Nat.factorization (orderOf t)) p g : G hg : orderOf g = p ^ ↑(Nat.factorization (exponent G)) p hpk : p ^ k ∣ orderOf t hpk' : orderOf (t ^ p ^ k) = orderOf t / p ^ k a : ℕ ha : ↑(Nat.factorization (exponent G)) p = ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p + a + 1 hcoprime : Nat.coprime (orderOf (t ^ p ^ k)) (orderOf g) ⊢ 1 < p ^ (a + 1) case intro.intro.intro.intro G : Type u inst✝ : CommMonoid G h : ∀ (g : G), 0 < orderOf g he : exponent G ≠ 0 hne : Set.Nonempty (Set.range orderOf) hfin : Set.Finite (Set.range orderOf) t : G ht : orderOf t = sSup (Set.range orderOf) p : ℕ hp : Nat.Prime p hpe : ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p < ↑(Nat.factorization (exponent G)) p k : ℕ := ↑(Nat.factorization (orderOf t)) p hk : k = ↑(Nat.factorization (orderOf t)) p g : G hg : orderOf g = p ^ ↑(Nat.factorization (exponent G)) p hpk : p ^ k ∣ orderOf t hpk' : orderOf (t ^ p ^ k) = orderOf t / p ^ k a : ℕ ha : ↑(Nat.factorization (exponent G)) p = ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p + a + 1 hcoprime : Nat.coprime (orderOf (t ^ p ^ k)) (orderOf g) ⊢ p ^ k ∣ orderOf t [PROOFSTEP] exact one_lt_pow hp.one_lt a.succ_ne_zero [GOAL] case intro.intro.intro.intro G : Type u inst✝ : CommMonoid G h : ∀ (g : G), 0 < orderOf g he : exponent G ≠ 0 hne : Set.Nonempty (Set.range orderOf) hfin : Set.Finite (Set.range orderOf) t : G ht : orderOf t = sSup (Set.range orderOf) p : ℕ hp : Nat.Prime p hpe : ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p < ↑(Nat.factorization (exponent G)) p k : ℕ := ↑(Nat.factorization (orderOf t)) p hk : k = ↑(Nat.factorization (orderOf t)) p g : G hg : orderOf g = p ^ ↑(Nat.factorization (exponent G)) p hpk : p ^ k ∣ orderOf t hpk' : orderOf (t ^ p ^ k) = orderOf t / p ^ k a : ℕ ha : ↑(Nat.factorization (exponent G)) p = ↑(Nat.factorization (sSup (Set.range fun g => orderOf g))) p + a + 1 hcoprime : Nat.coprime (orderOf (t ^ p ^ k)) (orderOf g) ⊢ p ^ k ∣ orderOf t [PROOFSTEP] exact hpk [GOAL] G : Type u inst✝ : CommMonoid G ⊢ exponent G = if ∃ g, orderOf g = 0 then 0 else ⨆ (g : G), orderOf g [PROOFSTEP] split_ifs with h [GOAL] case pos G : Type u inst✝ : CommMonoid G h : ∃ g, orderOf g = 0 ⊢ exponent G = 0 [PROOFSTEP] obtain ⟨g, hg⟩ := h [GOAL] case pos.intro G : Type u inst✝ : CommMonoid G g : G hg : orderOf g = 0 ⊢ exponent G = 0 [PROOFSTEP] exact exponent_eq_zero_of_order_zero hg [GOAL] case neg G : Type u inst✝ : CommMonoid G h : ¬∃ g, orderOf g = 0 ⊢ exponent G = ⨆ (g : G), orderOf g [PROOFSTEP] have := not_exists.mp h [GOAL] case neg G : Type u inst✝ : CommMonoid G h : ¬∃ g, orderOf g = 0 this : ∀ (x : G), ¬orderOf x = 0 ⊢ exponent G = ⨆ (g : G), orderOf g [PROOFSTEP] exact exponent_eq_iSup_orderOf fun g => Ne.bot_lt <| this g [GOAL] G : Type u inst✝¹ : CancelCommMonoid G inst✝ : Fintype G ⊢ 1 ∈ Finset.image orderOf Finset.univ [PROOFSTEP] simp [GOAL] G : Type u inst✝¹ : CancelCommMonoid G inst✝ : Fintype G ⊢ exponent G = Finset.max' (Finset.image orderOf Finset.univ) (_ : ∃ x, x ∈ Finset.image orderOf Finset.univ) [PROOFSTEP] rw [← Finset.Nonempty.cSup_eq_max', Finset.coe_image, Finset.coe_univ, Set.image_univ, ← iSup] [GOAL] G : Type u inst✝¹ : CancelCommMonoid G inst✝ : Fintype G ⊢ exponent G = iSup orderOf [PROOFSTEP] exact exponent_eq_iSup_orderOf orderOf_pos [GOAL] G : Type u inst✝¹ : CommGroup G inst✝ : Group.FG G ⊢ Nat.card G ∣ Monoid.exponent G ^ Group.rank G [PROOFSTEP] obtain ⟨S, hS1, hS2⟩ := Group.rank_spec G [GOAL] case intro.intro G : Type u inst✝¹ : CommGroup G inst✝ : Group.FG G S : Finset G hS1 : Finset.card S = Group.rank G hS2 : closure ↑S = ⊤ ⊢ Nat.card G ∣ Monoid.exponent G ^ Group.rank G [PROOFSTEP] rw [← hS1, ← Fintype.card_coe, ← Finset.card_univ, ← Finset.prod_const] [GOAL] case intro.intro G : Type u inst✝¹ : CommGroup G inst✝ : Group.FG G S : Finset G hS1 : Finset.card S = Group.rank G hS2 : closure ↑S = ⊤ ⊢ Nat.card G ∣ ∏ _x : { x // x ∈ S }, Monoid.exponent G [PROOFSTEP] let f : (∀ g : S, zpowers (g : G)) →* G := noncommPiCoprod fun s t _ x y _ _ => mul_comm x _ [GOAL] case intro.intro G : Type u inst✝¹ : CommGroup G inst✝ : Group.FG G S : Finset G hS1 : Finset.card S = Group.rank G hS2 : closure ↑S = ⊤ f : ((g : { x // x ∈ S }) → { x // x ∈ zpowers ↑g }) →* G := noncommPiCoprod (_ : ∀ (s t : { x // x ∈ S }), s ≠ t → ∀ (x y : G), x ∈ zpowers ↑s → y ∈ zpowers ↑t → x * y = y * x) ⊢ Nat.card G ∣ ∏ _x : { x // x ∈ S }, Monoid.exponent G [PROOFSTEP] have hf : Function.Surjective f := by rw [← MonoidHom.range_top_iff_surjective, eq_top_iff, ← hS2, closure_le] exact fun g hg => ⟨Pi.mulSingle ⟨g, hg⟩ ⟨g, mem_zpowers g⟩, noncommPiCoprod_mulSingle _ _⟩ [GOAL] G : Type u inst✝¹ : CommGroup G inst✝ : Group.FG G S : Finset G hS1 : Finset.card S = Group.rank G hS2 : closure ↑S = ⊤ f : ((g : { x // x ∈ S }) → { x // x ∈ zpowers ↑g }) →* G := noncommPiCoprod (_ : ∀ (s t : { x // x ∈ S }), s ≠ t → ∀ (x y : G), x ∈ zpowers ↑s → y ∈ zpowers ↑t → x * y = y * x) ⊢ Function.Surjective ↑f [PROOFSTEP] rw [← MonoidHom.range_top_iff_surjective, eq_top_iff, ← hS2, closure_le] [GOAL] G : Type u inst✝¹ : CommGroup G inst✝ : Group.FG G S : Finset G hS1 : Finset.card S = Group.rank G hS2 : closure ↑S = ⊤ f : ((g : { x // x ∈ S }) → { x // x ∈ zpowers ↑g }) →* G := noncommPiCoprod (_ : ∀ (s t : { x // x ∈ S }), s ≠ t → ∀ (x y : G), x ∈ zpowers ↑s → y ∈ zpowers ↑t → x * y = y * x) ⊢ ↑S ⊆ ↑(MonoidHom.range f) [PROOFSTEP] exact fun g hg => ⟨Pi.mulSingle ⟨g, hg⟩ ⟨g, mem_zpowers g⟩, noncommPiCoprod_mulSingle _ _⟩ [GOAL] case intro.intro G : Type u inst✝¹ : CommGroup G inst✝ : Group.FG G S : Finset G hS1 : Finset.card S = Group.rank G hS2 : closure ↑S = ⊤ f : ((g : { x // x ∈ S }) → { x // x ∈ zpowers ↑g }) →* G := noncommPiCoprod (_ : ∀ (s t : { x // x ∈ S }), s ≠ t → ∀ (x y : G), x ∈ zpowers ↑s → y ∈ zpowers ↑t → x * y = y * x) hf : Function.Surjective ↑f ⊢ Nat.card G ∣ ∏ _x : { x // x ∈ S }, Monoid.exponent G [PROOFSTEP] replace hf := nat_card_dvd_of_surjective f hf [GOAL] case intro.intro G : Type u inst✝¹ : CommGroup G inst✝ : Group.FG G S : Finset G hS1 : Finset.card S = Group.rank G hS2 : closure ↑S = ⊤ f : ((g : { x // x ∈ S }) → { x // x ∈ zpowers ↑g }) →* G := noncommPiCoprod (_ : ∀ (s t : { x // x ∈ S }), s ≠ t → ∀ (x y : G), x ∈ zpowers ↑s → y ∈ zpowers ↑t → x * y = y * x) hf : Nat.card G ∣ Nat.card ((g : { x // x ∈ S }) → { x // x ∈ zpowers ↑g }) ⊢ Nat.card G ∣ ∏ _x : { x // x ∈ S }, Monoid.exponent G [PROOFSTEP] rw [Nat.card_pi] at hf [GOAL] case intro.intro G : Type u inst✝¹ : CommGroup G inst✝ : Group.FG G S : Finset G hS1 : Finset.card S = Group.rank G hS2 : closure ↑S = ⊤ f : ((g : { x // x ∈ S }) → { x // x ∈ zpowers ↑g }) →* G := noncommPiCoprod (_ : ∀ (s t : { x // x ∈ S }), s ≠ t → ∀ (x y : G), x ∈ zpowers ↑s → y ∈ zpowers ↑t → x * y = y * x) hf✝ : Nat.card G ∣ Nat.card ((g : { x // x ∈ S }) → { x // x ∈ zpowers ↑g }) hf : Nat.card G ∣ ∏ a : { x // x ∈ S }, Nat.card { x // x ∈ zpowers ↑a } ⊢ Nat.card G ∣ ∏ _x : { x // x ∈ S }, Monoid.exponent G [PROOFSTEP] refine' hf.trans (Finset.prod_dvd_prod_of_dvd _ _ fun g _ => _) [GOAL] case intro.intro G : Type u inst✝¹ : CommGroup G inst✝ : Group.FG G S : Finset G hS1 : Finset.card S = Group.rank G hS2 : closure ↑S = ⊤ f : ((g : { x // x ∈ S }) → { x // x ∈ zpowers ↑g }) →* G := noncommPiCoprod (_ : ∀ (s t : { x // x ∈ S }), s ≠ t → ∀ (x y : G), x ∈ zpowers ↑s → y ∈ zpowers ↑t → x * y = y * x) hf✝ : Nat.card G ∣ Nat.card ((g : { x // x ∈ S }) → { x // x ∈ zpowers ↑g }) hf : Nat.card G ∣ ∏ a : { x // x ∈ S }, Nat.card { x // x ∈ zpowers ↑a } g : { x // x ∈ S } x✝ : g ∈ Finset.univ ⊢ Nat.card { x // x ∈ zpowers ↑g } ∣ Monoid.exponent G [PROOFSTEP] rw [← order_eq_card_zpowers'] [GOAL] case intro.intro G : Type u inst✝¹ : CommGroup G inst✝ : Group.FG G S : Finset G hS1 : Finset.card S = Group.rank G hS2 : closure ↑S = ⊤ f : ((g : { x // x ∈ S }) → { x // x ∈ zpowers ↑g }) →* G := noncommPiCoprod (_ : ∀ (s t : { x // x ∈ S }), s ≠ t → ∀ (x y : G), x ∈ zpowers ↑s → y ∈ zpowers ↑t → x * y = y * x) hf✝ : Nat.card G ∣ Nat.card ((g : { x // x ∈ S }) → { x // x ∈ zpowers ↑g }) hf : Nat.card G ∣ ∏ a : { x // x ∈ S }, Nat.card { x // x ∈ zpowers ↑a } g : { x // x ∈ S } x✝ : g ∈ Finset.univ ⊢ orderOf ↑g ∣ Monoid.exponent G [PROOFSTEP] exact Monoid.order_dvd_exponent (g : G)
{"mathlib_filename": "Mathlib.GroupTheory.Exponent", "llama_tokens": 23559}
[GOAL] G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H K : Subgroup G a b : G hb : b ∈ doset a ↑H ↑K ⊢ doset b ↑H ↑K = doset a ↑H ↑K [PROOFSTEP] obtain ⟨_, k, ⟨h, a, hh, rfl : _ = _, rfl⟩, hk, rfl⟩ := hb [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H K : Subgroup G k h a : G hh : h ∈ ↑H hk : k ∈ ↑K ⊢ doset ((fun x x_1 => x * x_1) ((fun x x_1 => x * x_1) h a) k) ↑H ↑K = doset a ↑H ↑K [PROOFSTEP] rw [doset, doset, ← Set.singleton_mul_singleton, ← Set.singleton_mul_singleton, mul_assoc, mul_assoc, Subgroup.singleton_mul_subgroup hk, ← mul_assoc, ← mul_assoc, Subgroup.subgroup_mul_singleton hh] [GOAL] G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H K : Subgroup G a b : G h : ¬Disjoint (doset a ↑H ↑K) (doset b ↑H ↑K) ⊢ b ∈ doset a ↑H ↑K [PROOFSTEP] rw [Set.not_disjoint_iff] at h [GOAL] G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H K : Subgroup G a b : G h : ∃ x, x ∈ doset a ↑H ↑K ∧ x ∈ doset b ↑H ↑K ⊢ b ∈ doset a ↑H ↑K [PROOFSTEP] simp only [mem_doset] at * [GOAL] G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H K : Subgroup G a b : G h : ∃ x, (∃ x_1, x_1 ∈ ↑H ∧ ∃ y, y ∈ ↑K ∧ x = x_1 * a * y) ∧ ∃ x_1, x_1 ∈ ↑H ∧ ∃ y, y ∈ ↑K ∧ x = x_1 * b * y ⊢ ∃ x, x ∈ ↑H ∧ ∃ y, y ∈ ↑K ∧ b = x * a * y [PROOFSTEP] obtain ⟨x, ⟨l, hl, r, hr, hrx⟩, y, hy, ⟨r', hr', rfl⟩⟩ := h [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H K : Subgroup G a b l : G hl : l ∈ ↑H r : G hr : r ∈ ↑K y : G hy : y ∈ ↑H r' : G hr' : r' ∈ ↑K hrx : y * b * r' = l * a * r ⊢ ∃ x, x ∈ ↑H ∧ ∃ y, y ∈ ↑K ∧ b = x * a * y [PROOFSTEP] refine' ⟨y⁻¹ * l, H.mul_mem (H.inv_mem hy) hl, r * r'⁻¹, K.mul_mem hr (K.inv_mem hr'), _⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H K : Subgroup G a b l : G hl : l ∈ ↑H r : G hr : r ∈ ↑K y : G hy : y ∈ ↑H r' : G hr' : r' ∈ ↑K hrx : y * b * r' = l * a * r ⊢ b = y⁻¹ * l * a * (r * r'⁻¹) [PROOFSTEP] rwa [mul_assoc, mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc, eq_mul_inv_iff_mul_eq] [GOAL] G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H K : Subgroup G a b : G h : ¬Disjoint (doset a ↑H ↑K) (doset b ↑H ↑K) ⊢ doset a ↑H ↑K = doset b ↑H ↑K [PROOFSTEP] rw [disjoint_comm] at h [GOAL] G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H K : Subgroup G a b : G h : ¬Disjoint (doset b ↑H ↑K) (doset a ↑H ↑K) ⊢ doset a ↑H ↑K = doset b ↑H ↑K [PROOFSTEP] have ha : a ∈ doset b H K := mem_doset_of_not_disjoint h [GOAL] G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H K : Subgroup G a b : G h : ¬Disjoint (doset b ↑H ↑K) (doset a ↑H ↑K) ha : a ∈ doset b ↑H ↑K ⊢ doset a ↑H ↑K = doset b ↑H ↑K [PROOFSTEP] apply doset_eq_of_mem ha [GOAL] G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H : Subgroup G ⊢ Setoid.Rel (setoid ↑⊥ ↑H) = Setoid.Rel (QuotientGroup.leftRel H) [PROOFSTEP] ext a b [GOAL] case h.h.a G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H : Subgroup G a b : G ⊢ Setoid.Rel (setoid ↑⊥ ↑H) a b ↔ Setoid.Rel (QuotientGroup.leftRel H) a b [PROOFSTEP] rw [rel_iff, Setoid.Rel, QuotientGroup.leftRel_apply] [GOAL] case h.h.a G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H : Subgroup G a b : G ⊢ (∃ a_1, a_1 ∈ ⊥ ∧ ∃ b_1, b_1 ∈ H ∧ b = a_1 * a * b_1) ↔ a⁻¹ * b ∈ H [PROOFSTEP] constructor [GOAL] case h.h.a.mp G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H : Subgroup G a b : G ⊢ (∃ a_1, a_1 ∈ ⊥ ∧ ∃ b_1, b_1 ∈ H ∧ b = a_1 * a * b_1) → a⁻¹ * b ∈ H [PROOFSTEP] rintro ⟨a, rfl : a = 1, b, hb, rfl⟩ [GOAL] case h.h.a.mp.intro.intro.intro.intro G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H : Subgroup G a b : G hb : b ∈ H ⊢ a⁻¹ * (1 * a * b) ∈ H [PROOFSTEP] change a⁻¹ * (1 * a * b) ∈ H [GOAL] case h.h.a.mp.intro.intro.intro.intro G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H : Subgroup G a b : G hb : b ∈ H ⊢ a⁻¹ * (1 * a * b) ∈ H [PROOFSTEP] rwa [one_mul, inv_mul_cancel_left] [GOAL] case h.h.a.mpr G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H : Subgroup G a b : G ⊢ a⁻¹ * b ∈ H → ∃ a_2, a_2 ∈ ⊥ ∧ ∃ b_1, b_1 ∈ H ∧ b = a_2 * a * b_1 [PROOFSTEP] rintro (h : a⁻¹ * b ∈ H) [GOAL] case h.h.a.mpr G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H : Subgroup G a b : G h : a⁻¹ * b ∈ H ⊢ ∃ a_1, a_1 ∈ ⊥ ∧ ∃ b_1, b_1 ∈ H ∧ b = a_1 * a * b_1 [PROOFSTEP] exact ⟨1, rfl, a⁻¹ * b, h, by rw [one_mul, mul_inv_cancel_left]⟩ [GOAL] G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H : Subgroup G a b : G h : a⁻¹ * b ∈ H ⊢ b = 1 * a * (a⁻¹ * b) [PROOFSTEP] rw [one_mul, mul_inv_cancel_left] [GOAL] G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H : Subgroup G ⊢ Setoid.Rel (setoid ↑H ↑⊥) = Setoid.Rel (QuotientGroup.rightRel H) [PROOFSTEP] ext a b [GOAL] case h.h.a G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H : Subgroup G a b : G ⊢ Setoid.Rel (setoid ↑H ↑⊥) a b ↔ Setoid.Rel (QuotientGroup.rightRel H) a b [PROOFSTEP] rw [rel_iff, Setoid.Rel, QuotientGroup.rightRel_apply] [GOAL] case h.h.a G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H : Subgroup G a b : G ⊢ (∃ a_1, a_1 ∈ H ∧ ∃ b_1, b_1 ∈ ⊥ ∧ b = a_1 * a * b_1) ↔ b * a⁻¹ ∈ H [PROOFSTEP] constructor [GOAL] case h.h.a.mp G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H : Subgroup G a b : G ⊢ (∃ a_1, a_1 ∈ H ∧ ∃ b_1, b_1 ∈ ⊥ ∧ b = a_1 * a * b_1) → b * a⁻¹ ∈ H [PROOFSTEP] rintro ⟨b, hb, a, rfl : a = 1, rfl⟩ [GOAL] case h.h.a.mp.intro.intro.intro.intro G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H : Subgroup G a b : G hb : b ∈ H ⊢ b * a * 1 * a⁻¹ ∈ H [PROOFSTEP] change b * a * 1 * a⁻¹ ∈ H [GOAL] case h.h.a.mp.intro.intro.intro.intro G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H : Subgroup G a b : G hb : b ∈ H ⊢ b * a * 1 * a⁻¹ ∈ H [PROOFSTEP] rwa [mul_one, mul_inv_cancel_right] [GOAL] case h.h.a.mpr G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H : Subgroup G a b : G ⊢ b * a⁻¹ ∈ H → ∃ a_2, a_2 ∈ H ∧ ∃ b_1, b_1 ∈ ⊥ ∧ b = a_2 * a * b_1 [PROOFSTEP] rintro (h : b * a⁻¹ ∈ H) [GOAL] case h.h.a.mpr G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H : Subgroup G a b : G h : b * a⁻¹ ∈ H ⊢ ∃ a_1, a_1 ∈ H ∧ ∃ b_1, b_1 ∈ ⊥ ∧ b = a_1 * a * b_1 [PROOFSTEP] exact ⟨b * a⁻¹, h, 1, rfl, by rw [mul_one, inv_mul_cancel_right]⟩ [GOAL] G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H : Subgroup G a b : G h : b * a⁻¹ ∈ H ⊢ b = b * a⁻¹ * a * 1 [PROOFSTEP] rw [mul_one, inv_mul_cancel_right] [GOAL] G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H K : Subgroup G a b : G ⊢ mk H K a = mk H K b ↔ ∃ h, h ∈ H ∧ ∃ k, k ∈ K ∧ b = h * a * k [PROOFSTEP] rw [Quotient.eq''] [GOAL] G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H K : Subgroup G a b : G ⊢ Setoid.r a b ↔ ∃ h, h ∈ H ∧ ∃ k, k ∈ K ∧ b = h * a * k [PROOFSTEP] apply rel_iff [GOAL] G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g✝ : G H K : Subgroup G g : G ⊢ ∃ h k, h ∈ H ∧ k ∈ K ∧ Quotient.out' (mk H K g) = h * g * k [PROOFSTEP] have := eq H K (mk H K g : Quotient ↑H ↑K).out' g [GOAL] G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g✝ : G H K : Subgroup G g : G this : mk H K (Quotient.out' (mk H K g)) = mk H K g ↔ ∃ h, h ∈ H ∧ ∃ k, k ∈ K ∧ g = h * Quotient.out' (mk H K g) * k ⊢ ∃ h k, h ∈ H ∧ k ∈ K ∧ Quotient.out' (mk H K g) = h * g * k [PROOFSTEP] rw [out_eq'] at this [GOAL] G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g✝ : G H K : Subgroup G g : G this : mk H K g = mk H K g ↔ ∃ h, h ∈ H ∧ ∃ k, k ∈ K ∧ g = h * Quotient.out' (mk H K g) * k ⊢ ∃ h k, h ∈ H ∧ k ∈ K ∧ Quotient.out' (mk H K g) = h * g * k [PROOFSTEP] obtain ⟨h, h_h, k, hk, T⟩ := this.1 rfl [GOAL] case intro.intro.intro.intro G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g✝ : G H K : Subgroup G g : G this : mk H K g = mk H K g ↔ ∃ h, h ∈ H ∧ ∃ k, k ∈ K ∧ g = h * Quotient.out' (mk H K g) * k h : G h_h : h ∈ H k : G hk : k ∈ K T : g = h * Quotient.out' (mk H K g) * k ⊢ ∃ h k, h ∈ H ∧ k ∈ K ∧ Quotient.out' (mk H K g) = h * g * k [PROOFSTEP] refine' ⟨h⁻¹, k⁻¹, H.inv_mem h_h, K.inv_mem hk, eq_mul_inv_of_mul_eq (eq_inv_mul_of_mul_eq _)⟩ [GOAL] case intro.intro.intro.intro G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g✝ : G H K : Subgroup G g : G this : mk H K g = mk H K g ↔ ∃ h, h ∈ H ∧ ∃ k, k ∈ K ∧ g = h * Quotient.out' (mk H K g) * k h : G h_h : h ∈ H k : G hk : k ∈ K T : g = h * Quotient.out' (mk H K g) * k ⊢ h * (Quotient.out' (mk H K g) * k) = g [PROOFSTEP] rw [← mul_assoc, ← T] [GOAL] G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H K : Subgroup G a b : G h : doset a ↑H ↑K = doset b ↑H ↑K ⊢ mk H K a = mk H K b [PROOFSTEP] rw [eq] [GOAL] G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H K : Subgroup G a b : G h : doset a ↑H ↑K = doset b ↑H ↑K ⊢ ∃ h, h ∈ H ∧ ∃ k, k ∈ K ∧ b = h * a * k [PROOFSTEP] exact mem_doset.mp (h.symm ▸ mem_doset_self H K b) [GOAL] G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H K : Subgroup G a b : Quotient ↑H.toSubmonoid ↑K ⊢ a ≠ b → Disjoint (doset (Quotient.out' a) ↑H ↑K) (doset (Quotient.out' b) ↑H ↑K) [PROOFSTEP] contrapose! [GOAL] G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H K : Subgroup G a b : Quotient ↑H.toSubmonoid ↑K ⊢ ¬Disjoint (doset (Quotient.out' a) ↑H ↑K) (doset (Quotient.out' b) ↑H ↑K) → a = b [PROOFSTEP] intro h [GOAL] G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H K : Subgroup G a b : Quotient ↑H.toSubmonoid ↑K h : ¬Disjoint (doset (Quotient.out' a) ↑H ↑K) (doset (Quotient.out' b) ↑H ↑K) ⊢ a = b [PROOFSTEP] simpa [out_eq'] using mk_eq_of_doset_eq (eq_of_not_disjoint h) [GOAL] G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H K : Subgroup G ⊢ ⋃ (q : Quotient ↑H ↑K), quotToDoset H K q = Set.univ [PROOFSTEP] ext x [GOAL] case h G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H K : Subgroup G x : G ⊢ x ∈ ⋃ (q : Quotient ↑H ↑K), quotToDoset H K q ↔ x ∈ Set.univ [PROOFSTEP] simp only [Set.mem_iUnion, quotToDoset, mem_doset, SetLike.mem_coe, exists_prop, Set.mem_univ, iff_true_iff] [GOAL] case h G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H K : Subgroup G x : G ⊢ ∃ i x_1, x_1 ∈ H ∧ ∃ y, y ∈ K ∧ x = x_1 * Quotient.out' i * y [PROOFSTEP] use mk H K x [GOAL] case h G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H K : Subgroup G x : G ⊢ ∃ x_1, x_1 ∈ H ∧ ∃ y, y ∈ K ∧ x = x_1 * Quotient.out' (mk H K x) * y [PROOFSTEP] obtain ⟨h, k, h3, h4, h5⟩ := mk_out'_eq_mul H K x [GOAL] case h.intro.intro.intro.intro G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H K : Subgroup G x h k : G h3 : h ∈ H h4 : k ∈ K h5 : Quotient.out' (mk H K x) = h * x * k ⊢ ∃ x_1, x_1 ∈ H ∧ ∃ y, y ∈ K ∧ x = x_1 * Quotient.out' (mk H K x) * y [PROOFSTEP] refine' ⟨h⁻¹, H.inv_mem h3, k⁻¹, K.inv_mem h4, _⟩ [GOAL] case h.intro.intro.intro.intro G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H K : Subgroup G x h k : G h3 : h ∈ H h4 : k ∈ K h5 : Quotient.out' (mk H K x) = h * x * k ⊢ x = h⁻¹ * Quotient.out' (mk H K x) * k⁻¹ [PROOFSTEP] simp only [h5, Subgroup.coe_mk, ← mul_assoc, one_mul, mul_left_inv, mul_inv_cancel_right] [GOAL] G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H K : Subgroup G a : G ⊢ ⋃ (k : { x // x ∈ K }), rightCoset (↑H) (a * ↑k) = doset a ↑H ↑K [PROOFSTEP] ext x [GOAL] case h G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H K : Subgroup G a x : G ⊢ x ∈ ⋃ (k : { x // x ∈ K }), rightCoset (↑H) (a * ↑k) ↔ x ∈ doset a ↑H ↑K [PROOFSTEP] simp only [mem_rightCoset_iff, exists_prop, mul_inv_rev, Set.mem_iUnion, mem_doset, Subgroup.mem_carrier, SetLike.mem_coe] [GOAL] case h G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H K : Subgroup G a x : G ⊢ (∃ i, x * ((↑i)⁻¹ * a⁻¹) ∈ H) ↔ ∃ x_1, x_1 ∈ H ∧ ∃ y, y ∈ K ∧ x = x_1 * a * y [PROOFSTEP] constructor [GOAL] case h.mp G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H K : Subgroup G a x : G ⊢ (∃ i, x * ((↑i)⁻¹ * a⁻¹) ∈ H) → ∃ x_1, x_1 ∈ H ∧ ∃ y, y ∈ K ∧ x = x_1 * a * y [PROOFSTEP] rintro ⟨y, h_h⟩ [GOAL] case h.mp.intro G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H K : Subgroup G a x : G y : { x // x ∈ K } h_h : x * ((↑y)⁻¹ * a⁻¹) ∈ H ⊢ ∃ x_1, x_1 ∈ H ∧ ∃ y, y ∈ K ∧ x = x_1 * a * y [PROOFSTEP] refine' ⟨x * (y⁻¹ * a⁻¹), h_h, y, y.2, _⟩ [GOAL] case h.mp.intro G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H K : Subgroup G a x : G y : { x // x ∈ K } h_h : x * ((↑y)⁻¹ * a⁻¹) ∈ H ⊢ x = x * (↑y⁻¹ * a⁻¹) * a * ↑y [PROOFSTEP] simp only [← mul_assoc, Subgroup.coe_mk, inv_mul_cancel_right, SubgroupClass.coe_inv] [GOAL] case h.mpr G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H K : Subgroup G a x : G ⊢ (∃ x_1, x_1 ∈ H ∧ ∃ y, y ∈ K ∧ x = x_1 * a * y) → ∃ i, x * ((↑i)⁻¹ * a⁻¹) ∈ H [PROOFSTEP] rintro ⟨x, hx, y, hy, hxy⟩ [GOAL] case h.mpr.intro.intro.intro.intro G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H K : Subgroup G a x✝ x : G hx : x ∈ H y : G hy : y ∈ K hxy : x✝ = x * a * y ⊢ ∃ i, x✝ * ((↑i)⁻¹ * a⁻¹) ∈ H [PROOFSTEP] refine' ⟨⟨y, hy⟩, _⟩ [GOAL] case h.mpr.intro.intro.intro.intro G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H K : Subgroup G a x✝ x : G hx : x ∈ H y : G hy : y ∈ K hxy : x✝ = x * a * y ⊢ x✝ * ((↑{ val := y, property := hy })⁻¹ * a⁻¹) ∈ H [PROOFSTEP] simp only [hxy, ← mul_assoc, hx, mul_inv_cancel_right, Subgroup.coe_mk] [GOAL] G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H K : Subgroup G a : G ⊢ ⋃ (h : { x // x ∈ H }), leftCoset (↑h * a) ↑K = doset a ↑H ↑K [PROOFSTEP] ext x [GOAL] case h G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H K : Subgroup G a x : G ⊢ x ∈ ⋃ (h : { x // x ∈ H }), leftCoset (↑h * a) ↑K ↔ x ∈ doset a ↑H ↑K [PROOFSTEP] simp only [mem_leftCoset_iff, mul_inv_rev, Set.mem_iUnion, mem_doset] [GOAL] case h G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H K : Subgroup G a x : G ⊢ (∃ i, a⁻¹ * (↑i)⁻¹ * x ∈ ↑K) ↔ ∃ x_1, x_1 ∈ ↑H ∧ ∃ y, y ∈ ↑K ∧ x = x_1 * a * y [PROOFSTEP] constructor [GOAL] case h.mp G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H K : Subgroup G a x : G ⊢ (∃ i, a⁻¹ * (↑i)⁻¹ * x ∈ ↑K) → ∃ x_1, x_1 ∈ ↑H ∧ ∃ y, y ∈ ↑K ∧ x = x_1 * a * y [PROOFSTEP] rintro ⟨y, h_h⟩ [GOAL] case h.mp.intro G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H K : Subgroup G a x : G y : { x // x ∈ H } h_h : a⁻¹ * (↑y)⁻¹ * x ∈ ↑K ⊢ ∃ x_1, x_1 ∈ ↑H ∧ ∃ y, y ∈ ↑K ∧ x = x_1 * a * y [PROOFSTEP] refine' ⟨y, y.2, a⁻¹ * y⁻¹ * x, h_h, _⟩ [GOAL] case h.mp.intro G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H K : Subgroup G a x : G y : { x // x ∈ H } h_h : a⁻¹ * (↑y)⁻¹ * x ∈ ↑K ⊢ x = ↑y * a * (a⁻¹ * ↑y⁻¹ * x) [PROOFSTEP] simp only [← mul_assoc, one_mul, mul_right_inv, mul_inv_cancel_right, SubgroupClass.coe_inv] [GOAL] case h.mpr G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H K : Subgroup G a x : G ⊢ (∃ x_1, x_1 ∈ ↑H ∧ ∃ y, y ∈ ↑K ∧ x = x_1 * a * y) → ∃ i, a⁻¹ * (↑i)⁻¹ * x ∈ ↑K [PROOFSTEP] rintro ⟨x, hx, y, hy, hxy⟩ [GOAL] case h.mpr.intro.intro.intro.intro G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H K : Subgroup G a x✝ x : G hx : x ∈ ↑H y : G hy : y ∈ ↑K hxy : x✝ = x * a * y ⊢ ∃ i, a⁻¹ * (↑i)⁻¹ * x✝ ∈ ↑K [PROOFSTEP] refine' ⟨⟨x, hx⟩, _⟩ [GOAL] case h.mpr.intro.intro.intro.intro G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H K : Subgroup G a x✝ x : G hx : x ∈ ↑H y : G hy : y ∈ ↑K hxy : x✝ = x * a * y ⊢ a⁻¹ * (↑{ val := x, property := hx })⁻¹ * x✝ ∈ ↑K [PROOFSTEP] simp only [hxy, ← mul_assoc, hy, one_mul, mul_left_inv, Subgroup.coe_mk, inv_mul_cancel_right] [GOAL] G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H : Subgroup G ⊢ Quotient ↑⊥.toSubmonoid ↑H = (G ⧸ H) [PROOFSTEP] unfold Quotient [GOAL] G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H : Subgroup G ⊢ _root_.Quotient (setoid ↑⊥.toSubmonoid ↑H) = (G ⧸ H) [PROOFSTEP] congr [GOAL] case e_s G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H : Subgroup G ⊢ setoid ↑⊥.toSubmonoid ↑H = QuotientGroup.leftRel H [PROOFSTEP] ext [GOAL] case e_s.H G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H : Subgroup G a✝ b✝ : G ⊢ Setoid.Rel (setoid ↑⊥.toSubmonoid ↑H) a✝ b✝ ↔ Setoid.Rel (QuotientGroup.leftRel H) a✝ b✝ [PROOFSTEP] simp_rw [← bot_rel_eq_leftRel H] [GOAL] case e_s.H G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H : Subgroup G a✝ b✝ : G ⊢ Setoid.Rel (setoid ↑⊥.toSubmonoid ↑H) a✝ b✝ ↔ Setoid.Rel (setoid ↑⊥ ↑H) a✝ b✝ [PROOFSTEP] rfl [GOAL] G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H : Subgroup G ⊢ Quotient ↑H.toSubmonoid ↑⊥ = _root_.Quotient (QuotientGroup.rightRel H) [PROOFSTEP] unfold Quotient [GOAL] G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H : Subgroup G ⊢ _root_.Quotient (setoid ↑H.toSubmonoid ↑⊥) = _root_.Quotient (QuotientGroup.rightRel H) [PROOFSTEP] congr [GOAL] case e_s G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H : Subgroup G ⊢ setoid ↑H.toSubmonoid ↑⊥ = QuotientGroup.rightRel H [PROOFSTEP] ext [GOAL] case e_s.H G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H : Subgroup G a✝ b✝ : G ⊢ Setoid.Rel (setoid ↑H.toSubmonoid ↑⊥) a✝ b✝ ↔ Setoid.Rel (QuotientGroup.rightRel H) a✝ b✝ [PROOFSTEP] simp_rw [← rel_bot_eq_right_group_rel H] [GOAL] case e_s.H G : Type u_1 inst✝¹ : Group G α : Type u_2 inst✝ : Mul α J : Subgroup G g : G H : Subgroup G a✝ b✝ : G ⊢ Setoid.Rel (setoid ↑H.toSubmonoid ↑⊥) a✝ b✝ ↔ Setoid.Rel (setoid ↑H ↑⊥) a✝ b✝ [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.GroupTheory.DoubleCoset", "llama_tokens": 10599}
[GOAL] α : Type u L L₁ L₂ L₃ L₄ L1 L2 : List (α × Bool) x : α b : Bool ⊢ List.length (L1 ++ L2) + 2 = List.length (L1 ++ (x, b) :: (x, !b) :: L2) [PROOFSTEP] rw [List.length_append, List.length_append] [GOAL] α : Type u L L₁ L₂ L₃ L₄ L1 L2 : List (α × Bool) x : α b : Bool ⊢ List.length L1 + List.length L2 + 2 = List.length L1 + List.length ((x, b) :: (x, !b) :: L2) [PROOFSTEP] rfl [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) x : α b : Bool ⊢ Step (L₁ ++ (x, !b) :: (x, b) :: L₂) (L₁ ++ L₂) [PROOFSTEP] cases b [GOAL] case false α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) x : α ⊢ Step (L₁ ++ (x, !false) :: (x, false) :: L₂) (L₁ ++ L₂) [PROOFSTEP] exact Step.not [GOAL] case true α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) x : α ⊢ Step (L₁ ++ (x, !true) :: (x, true) :: L₂) (L₁ ++ L₂) [PROOFSTEP] exact Step.not [GOAL] α : Type u L L₁ L₂ L₃ L₄ x✝¹ L₁✝ L₂✝ : List (α × Bool) x✝ : α b✝ : Bool ⊢ Step (x✝¹ ++ (L₁✝ ++ (x✝, b✝) :: (x✝, !b✝) :: L₂✝)) (x✝¹ ++ (L₁✝ ++ L₂✝)) [PROOFSTEP] rw [← List.append_assoc, ← List.append_assoc] [GOAL] α : Type u L L₁ L₂ L₃ L₄ x✝¹ L₁✝ L₂✝ : List (α × Bool) x✝ : α b✝ : Bool ⊢ Step (x✝¹ ++ L₁✝ ++ (x✝, b✝) :: (x✝, !b✝) :: L₂✝) (x✝¹ ++ L₁✝ ++ L₂✝) [PROOFSTEP] constructor [GOAL] α : Type u L L₁ L₂ L₃ L₄ x✝¹ L₁✝ L₂✝ : List (α × Bool) x✝ : α b✝ : Bool ⊢ Step (L₁✝ ++ (x✝, b✝) :: (x✝, !b✝) :: L₂✝ ++ x✝¹) (L₁✝ ++ L₂✝ ++ x✝¹) [PROOFSTEP] simp [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) ⊢ ¬Step [] L [PROOFSTEP] generalize h' : [] = L' [GOAL] α : Type u L L₁ L₂ L₃ L₄ L' : List (α × Bool) h' : [] = L' ⊢ ¬Step L' L [PROOFSTEP] intro h [GOAL] α : Type u L L₁ L₂ L₃ L₄ L' : List (α × Bool) h' : [] = L' h : Step L' L ⊢ False [PROOFSTEP] cases' h with L₁ L₂ [GOAL] case not α : Type u L₁✝ L₂✝ L₃ L₄ L₁ L₂ : List (α × Bool) x✝ : α b✝ : Bool h' : [] = L₁ ++ (x✝, b✝) :: (x✝, !b✝) :: L₂ ⊢ False [PROOFSTEP] simp [List.nil_eq_append] at h' [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) a : α b : Bool ⊢ Step ((a, b) :: L₁) L₂ ↔ (∃ L, Step L₁ L ∧ L₂ = (a, b) :: L) ∨ L₁ = (a, !b) :: L₂ [PROOFSTEP] constructor [GOAL] case mp α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) a : α b : Bool ⊢ Step ((a, b) :: L₁) L₂ → (∃ L, Step L₁ L ∧ L₂ = (a, b) :: L) ∨ L₁ = (a, !b) :: L₂ [PROOFSTEP] generalize hL : ((a, b) :: L₁ : List _) = L [GOAL] case mp α : Type u L✝ L₁ L₂ L₃ L₄ : List (α × Bool) a : α b : Bool L : List (α × Bool) hL : (a, b) :: L₁ = L ⊢ Step L L₂ → (∃ L, Step L₁ L ∧ L₂ = (a, b) :: L) ∨ L₁ = (a, !b) :: L₂ [PROOFSTEP] rintro @⟨_ | ⟨p, s'⟩, e, a', b'⟩ [GOAL] case mp.not.nil α : Type u L L₁ L₃ L₄ : List (α × Bool) a : α b : Bool e : List (α × Bool) a' : α b' : Bool hL : (a, b) :: L₁ = [] ++ (a', b') :: (a', !b') :: e ⊢ (∃ L, Step L₁ L ∧ [] ++ e = (a, b) :: L) ∨ L₁ = (a, !b) :: ([] ++ e) [PROOFSTEP] simp at hL [GOAL] case mp.not.nil α : Type u L L₁ L₃ L₄ : List (α × Bool) a : α b : Bool e : List (α × Bool) a' : α b' : Bool hL : (a = a' ∧ b = b') ∧ L₁ = (a', !b') :: e ⊢ (∃ L, Step L₁ L ∧ [] ++ e = (a, b) :: L) ∨ L₁ = (a, !b) :: ([] ++ e) [PROOFSTEP] simp [*] [GOAL] case mp.not.cons α : Type u L L₁ L₃ L₄ : List (α × Bool) a : α b : Bool e : List (α × Bool) a' : α b' : Bool p : α × Bool s' : List (α × Bool) hL : (a, b) :: L₁ = p :: s' ++ (a', b') :: (a', !b') :: e ⊢ (∃ L, Step L₁ L ∧ p :: s' ++ e = (a, b) :: L) ∨ L₁ = (a, !b) :: (p :: s' ++ e) [PROOFSTEP] simp at hL [GOAL] case mp.not.cons α : Type u L L₁ L₃ L₄ : List (α × Bool) a : α b : Bool e : List (α × Bool) a' : α b' : Bool p : α × Bool s' : List (α × Bool) hL : (a, b) = p ∧ L₁ = s' ++ (a', b') :: (a', !b') :: e ⊢ (∃ L, Step L₁ L ∧ p :: s' ++ e = (a, b) :: L) ∨ L₁ = (a, !b) :: (p :: s' ++ e) [PROOFSTEP] rcases hL with ⟨rfl, rfl⟩ [GOAL] case mp.not.cons.intro α : Type u L L₃ L₄ : List (α × Bool) a : α b : Bool e : List (α × Bool) a' : α b' : Bool s' : List (α × Bool) ⊢ (∃ L, Step (s' ++ (a', b') :: (a', !b') :: e) L ∧ (a, b) :: s' ++ e = (a, b) :: L) ∨ s' ++ (a', b') :: (a', !b') :: e = (a, !b) :: ((a, b) :: s' ++ e) [PROOFSTEP] refine' Or.inl ⟨s' ++ e, Step.not, _⟩ [GOAL] case mp.not.cons.intro α : Type u L L₃ L₄ : List (α × Bool) a : α b : Bool e : List (α × Bool) a' : α b' : Bool s' : List (α × Bool) ⊢ (a, b) :: s' ++ e = (a, b) :: (s' ++ e) [PROOFSTEP] simp [GOAL] case mpr α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) a : α b : Bool ⊢ (∃ L, Step L₁ L ∧ L₂ = (a, b) :: L) ∨ L₁ = (a, !b) :: L₂ → Step ((a, b) :: L₁) L₂ [PROOFSTEP] rintro (⟨L, h, rfl⟩ | rfl) [GOAL] case mpr.inl.intro.intro α : Type u L✝ L₁ L₃ L₄ : List (α × Bool) a : α b : Bool L : List (α × Bool) h : Step L₁ L ⊢ Step ((a, b) :: L₁) ((a, b) :: L) [PROOFSTEP] exact Step.cons h [GOAL] case mpr.inr α : Type u L L₂ L₃ L₄ : List (α × Bool) a : α b : Bool ⊢ Step ((a, b) :: (a, !b) :: L₂) L₂ [PROOFSTEP] exact Step.cons_not [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) a : α b : Bool ⊢ ¬Step [(a, b)] L [PROOFSTEP] simp [Step.cons_left_iff, not_step_nil] [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) ⊢ ∀ {p : α × Bool}, Step (p :: L₁) (p :: L₂) ↔ Step L₁ L₂ [PROOFSTEP] simp (config := { contextual := true }) [Step.cons_left_iff, iff_def, or_imp] [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) ⊢ Step ([] ++ L₁) ([] ++ L₂) ↔ Step L₁ L₂ [PROOFSTEP] simp [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) p : α × Bool l : List (α × Bool) ⊢ Step (p :: l ++ L₁) (p :: l ++ L₂) ↔ Step L₁ L₂ [PROOFSTEP] simp [Step.append_left_iff l, Step.cons_cons_iff] [GOAL] α : Type u L L₁ L₂ L₃ L₄ x✝⁵ x✝⁴ : List (α × Bool) x✝³ : α x✝² : Bool x✝¹ : α x✝ : Bool H : [] ++ (x✝³, x✝²) :: (x✝³, !x✝²) :: x✝⁵ = [] ++ (x✝¹, x✝) :: (x✝¹, !x✝) :: x✝⁴ ⊢ [] ++ x✝⁵ = [] ++ x✝⁴ ∨ ∃ L₅, Step ([] ++ x✝⁵) L₅ ∧ Step ([] ++ x✝⁴) L₅ [PROOFSTEP] injections [GOAL] α : Type u L L₁ L₂ L₃ L₄ x✝⁵ x✝⁴ : List (α × Bool) x✝³ : α x✝² : Bool x✝¹ : α x✝ : Bool fst_eq✝¹ : x✝³ = x✝¹ snd_eq✝¹ : x✝² = x✝ tail_eq✝ : x✝⁵ = x✝⁴ fst_eq✝ : x✝³ = x✝¹ snd_eq✝ : (!x✝²) = !x✝ ⊢ [] ++ x✝⁵ = [] ++ x✝⁴ ∨ ∃ L₅, Step ([] ++ x✝⁵) L₅ ∧ Step ([] ++ x✝⁴) L₅ [PROOFSTEP] subst_vars [GOAL] α : Type u L L₁ L₂ L₃ L₄ x✝² : List (α × Bool) x✝¹ : α x✝ : Bool fst_eq✝ : x✝¹ = x✝¹ snd_eq✝ : (!x✝) = !x✝ ⊢ [] ++ x✝² = [] ++ x✝² ∨ ∃ L₅, Step ([] ++ x✝²) L₅ ∧ Step ([] ++ x✝²) L₅ [PROOFSTEP] simp [GOAL] α : Type u L L₁ L₂ L₃ L₄ x✝⁵ : List (α × Bool) x3 : α b3 : Bool x✝⁴ : List (α × Bool) x✝³ : α x✝² : Bool x✝¹ : α x✝ : Bool H : [] ++ (x✝³, x✝²) :: (x✝³, !x✝²) :: x✝⁵ = [(x3, b3)] ++ (x✝¹, x✝) :: (x✝¹, !x✝) :: x✝⁴ ⊢ [] ++ x✝⁵ = [(x3, b3)] ++ x✝⁴ ∨ ∃ L₅, Step ([] ++ x✝⁵) L₅ ∧ Step ([(x3, b3)] ++ x✝⁴) L₅ [PROOFSTEP] injections [GOAL] α : Type u L L₁ L₂ L₃ L₄ x✝⁵ : List (α × Bool) x3 : α b3 : Bool x✝⁴ : List (α × Bool) x✝³ : α x✝² : Bool x✝¹ : α x✝ : Bool fst_eq✝¹ : x✝³ = x3 snd_eq✝¹ : x✝² = b3 tail_eq✝ : x✝⁵ = (x✝¹, !x✝) :: x✝⁴ fst_eq✝ : x✝³ = x✝¹ snd_eq✝ : (!x✝²) = x✝ ⊢ [] ++ x✝⁵ = [(x3, b3)] ++ x✝⁴ ∨ ∃ L₅, Step ([] ++ x✝⁵) L₅ ∧ Step ([(x3, b3)] ++ x✝⁴) L₅ [PROOFSTEP] subst_vars [GOAL] α : Type u L L₁ L₂ L₃ L₄ x✝² : List (α × Bool) x✝¹ : Bool x✝ : α ⊢ [] ++ (x✝, !!x✝¹) :: x✝² = [(x✝, x✝¹)] ++ x✝² ∨ ∃ L₅, Step ([] ++ (x✝, !!x✝¹) :: x✝²) L₅ ∧ Step ([(x✝, x✝¹)] ++ x✝²) L₅ [PROOFSTEP] simp [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) x3 : α b3 : Bool x✝⁵ x✝⁴ : List (α × Bool) x✝³ : α x✝² : Bool x✝¹ : α x✝ : Bool H : [(x3, b3)] ++ (x✝³, x✝²) :: (x✝³, !x✝²) :: x✝⁵ = [] ++ (x✝¹, x✝) :: (x✝¹, !x✝) :: x✝⁴ ⊢ [(x3, b3)] ++ x✝⁵ = [] ++ x✝⁴ ∨ ∃ L₅, Step ([(x3, b3)] ++ x✝⁵) L₅ ∧ Step ([] ++ x✝⁴) L₅ [PROOFSTEP] injections [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) x3 : α b3 : Bool x✝⁵ x✝⁴ : List (α × Bool) x✝³ : α x✝² : Bool x✝¹ : α x✝ : Bool fst_eq✝¹ : x3 = x✝¹ snd_eq✝¹ : b3 = x✝ tail_eq✝ : (x✝³, !x✝²) :: x✝⁵ = x✝⁴ fst_eq✝ : x✝³ = x✝¹ snd_eq✝ : x✝² = !x✝ ⊢ [(x3, b3)] ++ x✝⁵ = [] ++ x✝⁴ ∨ ∃ L₅, Step ([(x3, b3)] ++ x✝⁵) L₅ ∧ Step ([] ++ x✝⁴) L₅ [PROOFSTEP] subst_vars [GOAL] α : Type u L L₁ L₂ L₃ L₄ x✝² : List (α × Bool) x✝¹ : α x✝ : Bool ⊢ [(x✝¹, x✝)] ++ x✝² = [] ++ (x✝¹, !!x✝) :: x✝² ∨ ∃ L₅, Step ([(x✝¹, x✝)] ++ x✝²) L₅ ∧ Step ([] ++ (x✝¹, !!x✝) :: x✝²) L₅ [PROOFSTEP] simp [GOAL] α : Type u L L₁ L₂ L₃ L₄ x✝⁵ : List (α × Bool) x3 : α b3 : Bool x4 : α b4 : Bool tl x✝⁴ : List (α × Bool) x✝³ : α x✝² : Bool x✝¹ : α x✝ : Bool H : [] ++ (x✝³, x✝²) :: (x✝³, !x✝²) :: x✝⁵ = (x3, b3) :: (x4, b4) :: tl ++ (x✝¹, x✝) :: (x✝¹, !x✝) :: x✝⁴ ⊢ [] ++ x✝⁵ = (x3, b3) :: (x4, b4) :: tl ++ x✝⁴ ∨ ∃ L₅, Step ([] ++ x✝⁵) L₅ ∧ Step ((x3, b3) :: (x4, b4) :: tl ++ x✝⁴) L₅ [PROOFSTEP] injections [GOAL] α : Type u L L₁ L₂ L₃ L₄ x✝⁵ : List (α × Bool) x3 : α b3 : Bool x4 : α b4 : Bool tl x✝⁴ : List (α × Bool) x✝³ : α x✝² : Bool x✝¹ : α x✝ : Bool fst_eq✝¹ : x✝³ = x3 snd_eq✝¹ : x✝² = b3 tail_eq✝ : x✝⁵ = List.append tl ((x✝¹, x✝) :: (x✝¹, !x✝) :: x✝⁴) fst_eq✝ : x✝³ = x4 snd_eq✝ : (!x✝²) = b4 ⊢ [] ++ x✝⁵ = (x3, b3) :: (x4, b4) :: tl ++ x✝⁴ ∨ ∃ L₅, Step ([] ++ x✝⁵) L₅ ∧ Step ((x3, b3) :: (x4, b4) :: tl ++ x✝⁴) L₅ [PROOFSTEP] subst_vars [GOAL] α : Type u L L₁ L₂ L₃ L₄ tl x✝⁴ : List (α × Bool) x✝³ : α x✝² : Bool x✝¹ : α x✝ : Bool ⊢ [] ++ List.append tl ((x✝¹, x✝) :: (x✝¹, !x✝) :: x✝⁴) = (x✝³, x✝²) :: (x✝³, !x✝²) :: tl ++ x✝⁴ ∨ ∃ L₅, Step ([] ++ List.append tl ((x✝¹, x✝) :: (x✝¹, !x✝) :: x✝⁴)) L₅ ∧ Step ((x✝³, x✝²) :: (x✝³, !x✝²) :: tl ++ x✝⁴) L₅ [PROOFSTEP] simp [GOAL] α : Type u L L₁ L₂ L₃ L₄ tl x✝⁴ : List (α × Bool) x✝³ : α x✝² : Bool x✝¹ : α x✝ : Bool ⊢ tl ++ (x✝¹, x✝) :: (x✝¹, !x✝) :: x✝⁴ = (x✝³, x✝²) :: (x✝³, !x✝²) :: (tl ++ x✝⁴) ∨ ∃ L₅, Step (tl ++ (x✝¹, x✝) :: (x✝¹, !x✝) :: x✝⁴) L₅ ∧ Step ((x✝³, x✝²) :: (x✝³, !x✝²) :: (tl ++ x✝⁴)) L₅ [PROOFSTEP] right [GOAL] case h α : Type u L L₁ L₂ L₃ L₄ tl x✝⁴ : List (α × Bool) x✝³ : α x✝² : Bool x✝¹ : α x✝ : Bool ⊢ ∃ L₅, Step (tl ++ (x✝¹, x✝) :: (x✝¹, !x✝) :: x✝⁴) L₅ ∧ Step ((x✝³, x✝²) :: (x✝³, !x✝²) :: (tl ++ x✝⁴)) L₅ [PROOFSTEP] exact ⟨_, Red.Step.not, Red.Step.cons_not⟩ [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) x3 : α b3 : Bool x4 : α b4 : Bool tl x✝⁵ x✝⁴ : List (α × Bool) x✝³ : α x✝² : Bool x✝¹ : α x✝ : Bool H : (x3, b3) :: (x4, b4) :: tl ++ (x✝³, x✝²) :: (x✝³, !x✝²) :: x✝⁵ = [] ++ (x✝¹, x✝) :: (x✝¹, !x✝) :: x✝⁴ ⊢ (x3, b3) :: (x4, b4) :: tl ++ x✝⁵ = [] ++ x✝⁴ ∨ ∃ L₅, Step ((x3, b3) :: (x4, b4) :: tl ++ x✝⁵) L₅ ∧ Step ([] ++ x✝⁴) L₅ [PROOFSTEP] injections [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) x3 : α b3 : Bool x4 : α b4 : Bool tl x✝⁵ x✝⁴ : List (α × Bool) x✝³ : α x✝² : Bool x✝¹ : α x✝ : Bool fst_eq✝¹ : x3 = x✝¹ snd_eq✝¹ : b3 = x✝ tail_eq✝ : List.append tl ((x✝³, x✝²) :: (x✝³, !x✝²) :: x✝⁵) = x✝⁴ fst_eq✝ : x4 = x✝¹ snd_eq✝ : b4 = !x✝ ⊢ (x3, b3) :: (x4, b4) :: tl ++ x✝⁵ = [] ++ x✝⁴ ∨ ∃ L₅, Step ((x3, b3) :: (x4, b4) :: tl ++ x✝⁵) L₅ ∧ Step ([] ++ x✝⁴) L₅ [PROOFSTEP] subst_vars [GOAL] α : Type u L L₁ L₂ L₃ L₄ tl x✝⁴ : List (α × Bool) x✝³ : α x✝² : Bool x✝¹ : α x✝ : Bool ⊢ (x✝¹, x✝) :: (x✝¹, !x✝) :: tl ++ x✝⁴ = [] ++ List.append tl ((x✝³, x✝²) :: (x✝³, !x✝²) :: x✝⁴) ∨ ∃ L₅, Step ((x✝¹, x✝) :: (x✝¹, !x✝) :: tl ++ x✝⁴) L₅ ∧ Step ([] ++ List.append tl ((x✝³, x✝²) :: (x✝³, !x✝²) :: x✝⁴)) L₅ [PROOFSTEP] simp [GOAL] α : Type u L L₁ L₂ L₃ L₄ tl x✝⁴ : List (α × Bool) x✝³ : α x✝² : Bool x✝¹ : α x✝ : Bool ⊢ (x✝¹, x✝) :: (x✝¹, !x✝) :: (tl ++ x✝⁴) = tl ++ (x✝³, x✝²) :: (x✝³, !x✝²) :: x✝⁴ ∨ ∃ L₅, Step ((x✝¹, x✝) :: (x✝¹, !x✝) :: (tl ++ x✝⁴)) L₅ ∧ Step (tl ++ (x✝³, x✝²) :: (x✝³, !x✝²) :: x✝⁴) L₅ [PROOFSTEP] right [GOAL] case h α : Type u L L₁ L₂ L₃ L₄ tl x✝⁴ : List (α × Bool) x✝³ : α x✝² : Bool x✝¹ : α x✝ : Bool ⊢ ∃ L₅, Step ((x✝¹, x✝) :: (x✝¹, !x✝) :: (tl ++ x✝⁴)) L₅ ∧ Step (tl ++ (x✝³, x✝²) :: (x✝³, !x✝²) :: x✝⁴) L₅ [PROOFSTEP] exact ⟨_, Red.Step.cons_not, Red.Step.not⟩ [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) x3 : α b3 : Bool tl x✝⁵ : List (α × Bool) x4 : α b4 : Bool tl2 x✝⁴ : List (α × Bool) x✝³ : α x✝² : Bool x✝¹ : α x✝ : Bool H : (x3, b3) :: tl ++ (x✝³, x✝²) :: (x✝³, !x✝²) :: x✝⁵ = (x4, b4) :: tl2 ++ (x✝¹, x✝) :: (x✝¹, !x✝) :: x✝⁴ H1 : (x3, b3) = (x4, b4) H2 : List.append tl ((x✝³, x✝²) :: (x✝³, !x✝²) :: x✝⁵) = List.append tl2 ((x✝¹, x✝) :: (x✝¹, !x✝) :: x✝⁴) H3 : tl ++ x✝⁵ = tl2 ++ x✝⁴ ⊢ (x3, b3) :: tl ++ x✝⁵ = (x4, b4) :: tl2 ++ x✝⁴ [PROOFSTEP] simp [H1, H3] [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) x3 : α b3 : Bool tl x✝⁵ : List (α × Bool) x4 : α b4 : Bool tl2 x✝⁴ : List (α × Bool) x✝³ : α x✝² : Bool x✝¹ : α x✝ : Bool H : (x3, b3) :: tl ++ (x✝³, x✝²) :: (x✝³, !x✝²) :: x✝⁵ = (x4, b4) :: tl2 ++ (x✝¹, x✝) :: (x✝¹, !x✝) :: x✝⁴ H1 : (x3, b3) = (x4, b4) H2 : List.append tl ((x✝³, x✝²) :: (x✝³, !x✝²) :: x✝⁵) = List.append tl2 ((x✝¹, x✝) :: (x✝¹, !x✝) :: x✝⁴) L₅ : List (α × Bool) H3 : Step (tl ++ x✝⁵) L₅ H4 : Step (tl2 ++ x✝⁴) L₅ ⊢ Step ((x4, b4) :: tl2 ++ x✝⁴) ((x3, b3) :: L₅) [PROOFSTEP] simpa [H1] using Step.cons H4 [GOAL] α : Type u L L₁ L₂ L₃ L₄ a b✝ c b : List (α × Bool) hab hac : Step a b ⊢ ReflGen Step b b [PROOFSTEP] rfl [GOAL] α : Type u L L₁ L₂ L₃ L₄ a b✝ c b : List (α × Bool) hab hac : Step a b ⊢ ReflTransGen Step b b [PROOFSTEP] rfl [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) p : α × Bool ⊢ Red (p :: L₁) (p :: L₂) → Red L₁ L₂ [PROOFSTEP] generalize eq₁ : (p :: L₁ : List _) = LL₁ [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) p : α × Bool LL₁ : List (α × Bool) eq₁ : p :: L₁ = LL₁ ⊢ Red LL₁ (p :: L₂) → Red L₁ L₂ [PROOFSTEP] generalize eq₂ : (p :: L₂ : List _) = LL₂ [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) p : α × Bool LL₁ : List (α × Bool) eq₁ : p :: L₁ = LL₁ LL₂ : List (α × Bool) eq₂ : p :: L₂ = LL₂ ⊢ Red LL₁ LL₂ → Red L₁ L₂ [PROOFSTEP] intro h [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) p : α × Bool LL₁ : List (α × Bool) eq₁ : p :: L₁ = LL₁ LL₂ : List (α × Bool) eq₂ : p :: L₂ = LL₂ h : Red LL₁ LL₂ ⊢ Red L₁ L₂ [PROOFSTEP] induction' h using Relation.ReflTransGen.head_induction_on with L₁ L₂ h₁₂ h ih generalizing L₁ L₂ [GOAL] case refl α : Type u L L₁✝ L₂✝ L₃ L₄ : List (α × Bool) p : α × Bool LL₁ : List (α × Bool) eq₁✝ : p :: L₁✝ = LL₁ LL₂ : List (α × Bool) eq₂✝ : p :: L₂✝ = LL₂ L₁ L₂ : List (α × Bool) eq₁ : p :: L₁ = LL₂ eq₂ : p :: L₂ = LL₂ ⊢ Red L₁ L₂ [PROOFSTEP] subst_vars [GOAL] case refl α : Type u L L₁✝ L₂✝ L₃ L₄ : List (α × Bool) p : α × Bool L₁ L₂ : List (α × Bool) eq₁ : p :: L₁ = p :: L₂✝ eq₂ : p :: L₂ = p :: L₂✝ ⊢ Red L₁ L₂ [PROOFSTEP] cases eq₂ [GOAL] case refl.refl α : Type u L L₁✝ L₂ L₃ L₄ : List (α × Bool) p : α × Bool L₁ : List (α × Bool) eq₁ : p :: L₁ = p :: L₂ ⊢ Red L₁ L₂ [PROOFSTEP] cases eq₁ [GOAL] case refl.refl.refl α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) p : α × Bool ⊢ Red L₂ L₂ [PROOFSTEP] constructor [GOAL] case head α : Type u L L₁✝¹ L₂✝¹ L₃ L₄ : List (α × Bool) p : α × Bool LL₁ : List (α × Bool) eq₁✝ : p :: L₁✝¹ = LL₁ LL₂ : List (α × Bool) eq₂✝ : p :: L₂✝¹ = LL₂ L₁✝ L₂✝ : List (α × Bool) h₁₂ : Step L₁✝ L₂✝ h : ReflTransGen Step L₂✝ LL₂ ih : ∀ {L₁ L₂ : List (α × Bool)}, p :: L₁ = L₂✝ → p :: L₂ = LL₂ → Red L₁ L₂ L₁ L₂ : List (α × Bool) eq₁ : p :: L₁ = L₁✝ eq₂ : p :: L₂ = LL₂ ⊢ Red L₁ L₂ [PROOFSTEP] subst_vars [GOAL] case head α : Type u L L₁✝ L₂✝¹ L₃ L₄ : List (α × Bool) p : α × Bool L₂✝ L₁ L₂ : List (α × Bool) h : ReflTransGen Step L₂✝ (p :: L₂✝¹) ih : ∀ {L₁ L₂ : List (α × Bool)}, p :: L₁ = L₂✝ → p :: L₂ = p :: L₂✝¹ → Red L₁ L₂ eq₂ : p :: L₂ = p :: L₂✝¹ h₁₂ : Step (p :: L₁) L₂✝ ⊢ Red L₁ L₂ [PROOFSTEP] cases eq₂ [GOAL] case head.refl α : Type u L L₁✝ L₂✝ L₃ L₄ : List (α × Bool) p : α × Bool L₂ L₁ : List (α × Bool) h : ReflTransGen Step L₂ (p :: L₂✝) ih : ∀ {L₁ L₂_1 : List (α × Bool)}, p :: L₁ = L₂ → p :: L₂_1 = p :: L₂✝ → Red L₁ L₂_1 h₁₂ : Step (p :: L₁) L₂ ⊢ Red L₁ L₂✝ [PROOFSTEP] cases' p with a b [GOAL] case head.refl.mk α : Type u L L₁✝ L₂✝ L₃ L₄ L₂ L₁ : List (α × Bool) a : α b : Bool h : ReflTransGen Step L₂ ((a, b) :: L₂✝) ih : ∀ {L₁ L₂_1 : List (α × Bool)}, (a, b) :: L₁ = L₂ → (a, b) :: L₂_1 = (a, b) :: L₂✝ → Red L₁ L₂_1 h₁₂ : Step ((a, b) :: L₁) L₂ ⊢ Red L₁ L₂✝ [PROOFSTEP] rw [Step.cons_left_iff] at h₁₂ [GOAL] case head.refl.mk α : Type u L L₁✝ L₂✝ L₃ L₄ L₂ L₁ : List (α × Bool) a : α b : Bool h : ReflTransGen Step L₂ ((a, b) :: L₂✝) ih : ∀ {L₁ L₂_1 : List (α × Bool)}, (a, b) :: L₁ = L₂ → (a, b) :: L₂_1 = (a, b) :: L₂✝ → Red L₁ L₂_1 h₁₂ : (∃ L, Step L₁ L ∧ L₂ = (a, b) :: L) ∨ L₁ = (a, !b) :: L₂ ⊢ Red L₁ L₂✝ [PROOFSTEP] rcases h₁₂ with (⟨L, h₁₂, rfl⟩ | rfl) [GOAL] case head.refl.mk.inl.intro.intro α : Type u L✝ L₁✝ L₂ L₃ L₄ L₁ : List (α × Bool) a : α b : Bool L : List (α × Bool) h₁₂ : Step L₁ L h : ReflTransGen Step ((a, b) :: L) ((a, b) :: L₂) ih : ∀ {L₁ L₂_1 : List (α × Bool)}, (a, b) :: L₁ = (a, b) :: L → (a, b) :: L₂_1 = (a, b) :: L₂ → Red L₁ L₂_1 ⊢ Red L₁ L₂ [PROOFSTEP] exact (ih rfl rfl).head h₁₂ [GOAL] case head.refl.mk.inr α : Type u L L₁ L₂✝ L₃ L₄ L₂ : List (α × Bool) a : α b : Bool h : ReflTransGen Step L₂ ((a, b) :: L₂✝) ih : ∀ {L₁ L₂_1 : List (α × Bool)}, (a, b) :: L₁ = L₂ → (a, b) :: L₂_1 = (a, b) :: L₂✝ → Red L₁ L₂_1 ⊢ Red ((a, !b) :: L₂) L₂✝ [PROOFSTEP] exact (cons_cons h).tail Step.cons_not_rev [GOAL] α : Type u L✝ L₁ L₂ L₃ L₄ : List (α × Bool) p : α × Bool L : List (α × Bool) ⊢ Red (p :: L ++ L₁) (p :: L ++ L₂) ↔ Red L₁ L₂ [PROOFSTEP] simp [append_append_left_iff L, cons_cons_iff] [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) ⊢ Red L (L₁ ++ L₂) → ∃ L₃ L₄, L = L₃ ++ L₄ ∧ Red L₃ L₁ ∧ Red L₄ L₂ [PROOFSTEP] generalize eq : L₁ ++ L₂ = L₁₂ [GOAL] α : Type u L L₁ L₂ L₃ L₄ L₁₂ : List (α × Bool) eq : L₁ ++ L₂ = L₁₂ ⊢ Red L L₁₂ → ∃ L₃ L₄, L = L₃ ++ L₄ ∧ Red L₃ L₁ ∧ Red L₄ L₂ [PROOFSTEP] intro h [GOAL] α : Type u L L₁ L₂ L₃ L₄ L₁₂ : List (α × Bool) eq : L₁ ++ L₂ = L₁₂ h : Red L L₁₂ ⊢ ∃ L₃ L₄, L = L₃ ++ L₄ ∧ Red L₃ L₁ ∧ Red L₄ L₂ [PROOFSTEP] induction' h with L' L₁₂ hLL' h ih generalizing L₁ L₂ [GOAL] case refl α : Type u L L₁✝ L₂✝ L₃ L₄ L₁₂ : List (α × Bool) eq✝ : L₁✝ ++ L₂✝ = L₁₂ L₁ L₂ : List (α × Bool) eq : L₁ ++ L₂ = L ⊢ ∃ L₃ L₄, L = L₃ ++ L₄ ∧ Red L₃ L₁ ∧ Red L₄ L₂ [PROOFSTEP] exact ⟨_, _, eq.symm, by rfl, by rfl⟩ [GOAL] α : Type u L L₁✝ L₂✝ L₃ L₄ L₁₂ : List (α × Bool) eq✝ : L₁✝ ++ L₂✝ = L₁₂ L₁ L₂ : List (α × Bool) eq : L₁ ++ L₂ = L ⊢ Red L₁ L₁ [PROOFSTEP] rfl [GOAL] α : Type u L L₁✝ L₂✝ L₃ L₄ L₁₂ : List (α × Bool) eq✝ : L₁✝ ++ L₂✝ = L₁₂ L₁ L₂ : List (α × Bool) eq : L₁ ++ L₂ = L ⊢ Red L₂ L₂ [PROOFSTEP] rfl [GOAL] case tail α : Type u L L₁✝ L₂✝ L₃ L₄ L₁₂✝ : List (α × Bool) eq✝ : L₁✝ ++ L₂✝ = L₁₂✝ L' L₁₂ : List (α × Bool) hLL' : ReflTransGen Step L L' h : Step L' L₁₂ ih : ∀ {L₁ L₂ : List (α × Bool)}, L₁ ++ L₂ = L' → ∃ L₃ L₄, L = L₃ ++ L₄ ∧ Red L₃ L₁ ∧ Red L₄ L₂ L₁ L₂ : List (α × Bool) eq : L₁ ++ L₂ = L₁₂ ⊢ ∃ L₃ L₄, L = L₃ ++ L₄ ∧ Red L₃ L₁ ∧ Red L₄ L₂ [PROOFSTEP] cases' h with s e a b [GOAL] case tail.not α : Type u L L₁✝ L₂✝ L₃ L₄ L₁₂ : List (α × Bool) eq✝ : L₁✝ ++ L₂✝ = L₁₂ L₁ L₂ s e : List (α × Bool) a : α b : Bool hLL' : ReflTransGen Step L (s ++ (a, b) :: (a, !b) :: e) ih : ∀ {L₁ L₂ : List (α × Bool)}, L₁ ++ L₂ = s ++ (a, b) :: (a, !b) :: e → ∃ L₃ L₄, L = L₃ ++ L₄ ∧ Red L₃ L₁ ∧ Red L₄ L₂ eq : L₁ ++ L₂ = s ++ e ⊢ ∃ L₃ L₄, L = L₃ ++ L₄ ∧ Red L₃ L₁ ∧ Red L₄ L₂ [PROOFSTEP] rcases List.append_eq_append_iff.1 eq with (⟨s', rfl, rfl⟩ | ⟨e', rfl, rfl⟩) [GOAL] case tail.not.inl.intro.intro α : Type u L L₁✝ L₂ L₃ L₄ L₁₂ : List (α × Bool) eq✝ : L₁✝ ++ L₂ = L₁₂ L₁ e : List (α × Bool) a : α b : Bool s' : List (α × Bool) hLL' : ReflTransGen Step L (L₁ ++ s' ++ (a, b) :: (a, !b) :: e) ih : ∀ {L₁_1 L₂ : List (α × Bool)}, L₁_1 ++ L₂ = L₁ ++ s' ++ (a, b) :: (a, !b) :: e → ∃ L₃ L₄, L = L₃ ++ L₄ ∧ Red L₃ L₁_1 ∧ Red L₄ L₂ eq : L₁ ++ (s' ++ e) = L₁ ++ s' ++ e ⊢ ∃ L₃ L₄, L = L₃ ++ L₄ ∧ Red L₃ L₁ ∧ Red L₄ (s' ++ e) [PROOFSTEP] have : L₁ ++ (s' ++ (a, b) :: (a, not b) :: e) = L₁ ++ s' ++ (a, b) :: (a, not b) :: e := by simp [GOAL] α : Type u L L₁✝ L₂ L₃ L₄ L₁₂ : List (α × Bool) eq✝ : L₁✝ ++ L₂ = L₁₂ L₁ e : List (α × Bool) a : α b : Bool s' : List (α × Bool) hLL' : ReflTransGen Step L (L₁ ++ s' ++ (a, b) :: (a, !b) :: e) ih : ∀ {L₁_1 L₂ : List (α × Bool)}, L₁_1 ++ L₂ = L₁ ++ s' ++ (a, b) :: (a, !b) :: e → ∃ L₃ L₄, L = L₃ ++ L₄ ∧ Red L₃ L₁_1 ∧ Red L₄ L₂ eq : L₁ ++ (s' ++ e) = L₁ ++ s' ++ e ⊢ L₁ ++ (s' ++ (a, b) :: (a, !b) :: e) = L₁ ++ s' ++ (a, b) :: (a, !b) :: e [PROOFSTEP] simp [GOAL] case tail.not.inl.intro.intro α : Type u L L₁✝ L₂ L₃ L₄ L₁₂ : List (α × Bool) eq✝ : L₁✝ ++ L₂ = L₁₂ L₁ e : List (α × Bool) a : α b : Bool s' : List (α × Bool) hLL' : ReflTransGen Step L (L₁ ++ s' ++ (a, b) :: (a, !b) :: e) ih : ∀ {L₁_1 L₂ : List (α × Bool)}, L₁_1 ++ L₂ = L₁ ++ s' ++ (a, b) :: (a, !b) :: e → ∃ L₃ L₄, L = L₃ ++ L₄ ∧ Red L₃ L₁_1 ∧ Red L₄ L₂ eq : L₁ ++ (s' ++ e) = L₁ ++ s' ++ e this : L₁ ++ (s' ++ (a, b) :: (a, !b) :: e) = L₁ ++ s' ++ (a, b) :: (a, !b) :: e ⊢ ∃ L₃ L₄, L = L₃ ++ L₄ ∧ Red L₃ L₁ ∧ Red L₄ (s' ++ e) [PROOFSTEP] rcases ih this with ⟨w₁, w₂, rfl, h₁, h₂⟩ [GOAL] case tail.not.inl.intro.intro.intro.intro.intro.intro α : Type u L₁✝ L₂ L₃ L₄ L₁₂ : List (α × Bool) eq✝ : L₁✝ ++ L₂ = L₁₂ L₁ e : List (α × Bool) a : α b : Bool s' : List (α × Bool) eq : L₁ ++ (s' ++ e) = L₁ ++ s' ++ e this : L₁ ++ (s' ++ (a, b) :: (a, !b) :: e) = L₁ ++ s' ++ (a, b) :: (a, !b) :: e w₁ w₂ : List (α × Bool) hLL' : ReflTransGen Step (w₁ ++ w₂) (L₁ ++ s' ++ (a, b) :: (a, !b) :: e) ih : ∀ {L₁_1 L₂ : List (α × Bool)}, L₁_1 ++ L₂ = L₁ ++ s' ++ (a, b) :: (a, !b) :: e → ∃ L₃ L₄, w₁ ++ w₂ = L₃ ++ L₄ ∧ Red L₃ L₁_1 ∧ Red L₄ L₂ h₁ : Red w₁ L₁ h₂ : Red w₂ (s' ++ (a, b) :: (a, !b) :: e) ⊢ ∃ L₃ L₄, w₁ ++ w₂ = L₃ ++ L₄ ∧ Red L₃ L₁ ∧ Red L₄ (s' ++ e) [PROOFSTEP] exact ⟨w₁, w₂, rfl, h₁, h₂.tail Step.not⟩ [GOAL] case tail.not.inr.intro.intro α : Type u L L₁ L₂✝ L₃ L₄ L₁₂ : List (α × Bool) eq✝ : L₁ ++ L₂✝ = L₁₂ L₂ s : List (α × Bool) a : α b : Bool e' : List (α × Bool) hLL' : ReflTransGen Step L (s ++ (a, b) :: (a, !b) :: (e' ++ L₂)) ih : ∀ {L₁ L₂_1 : List (α × Bool)}, L₁ ++ L₂_1 = s ++ (a, b) :: (a, !b) :: (e' ++ L₂) → ∃ L₃ L₄, L = L₃ ++ L₄ ∧ Red L₃ L₁ ∧ Red L₄ L₂_1 eq : s ++ e' ++ L₂ = s ++ (e' ++ L₂) ⊢ ∃ L₃ L₄, L = L₃ ++ L₄ ∧ Red L₃ (s ++ e') ∧ Red L₄ L₂ [PROOFSTEP] have : s ++ (a, b) :: (a, not b) :: e' ++ L₂ = s ++ (a, b) :: (a, not b) :: (e' ++ L₂) := by simp [GOAL] α : Type u L L₁ L₂✝ L₃ L₄ L₁₂ : List (α × Bool) eq✝ : L₁ ++ L₂✝ = L₁₂ L₂ s : List (α × Bool) a : α b : Bool e' : List (α × Bool) hLL' : ReflTransGen Step L (s ++ (a, b) :: (a, !b) :: (e' ++ L₂)) ih : ∀ {L₁ L₂_1 : List (α × Bool)}, L₁ ++ L₂_1 = s ++ (a, b) :: (a, !b) :: (e' ++ L₂) → ∃ L₃ L₄, L = L₃ ++ L₄ ∧ Red L₃ L₁ ∧ Red L₄ L₂_1 eq : s ++ e' ++ L₂ = s ++ (e' ++ L₂) ⊢ s ++ (a, b) :: (a, !b) :: e' ++ L₂ = s ++ (a, b) :: (a, !b) :: (e' ++ L₂) [PROOFSTEP] simp [GOAL] case tail.not.inr.intro.intro α : Type u L L₁ L₂✝ L₃ L₄ L₁₂ : List (α × Bool) eq✝ : L₁ ++ L₂✝ = L₁₂ L₂ s : List (α × Bool) a : α b : Bool e' : List (α × Bool) hLL' : ReflTransGen Step L (s ++ (a, b) :: (a, !b) :: (e' ++ L₂)) ih : ∀ {L₁ L₂_1 : List (α × Bool)}, L₁ ++ L₂_1 = s ++ (a, b) :: (a, !b) :: (e' ++ L₂) → ∃ L₃ L₄, L = L₃ ++ L₄ ∧ Red L₃ L₁ ∧ Red L₄ L₂_1 eq : s ++ e' ++ L₂ = s ++ (e' ++ L₂) this : s ++ (a, b) :: (a, !b) :: e' ++ L₂ = s ++ (a, b) :: (a, !b) :: (e' ++ L₂) ⊢ ∃ L₃ L₄, L = L₃ ++ L₄ ∧ Red L₃ (s ++ e') ∧ Red L₄ L₂ [PROOFSTEP] rcases ih this with ⟨w₁, w₂, rfl, h₁, h₂⟩ [GOAL] case tail.not.inr.intro.intro.intro.intro.intro.intro α : Type u L₁ L₂✝ L₃ L₄ L₁₂ : List (α × Bool) eq✝ : L₁ ++ L₂✝ = L₁₂ L₂ s : List (α × Bool) a : α b : Bool e' : List (α × Bool) eq : s ++ e' ++ L₂ = s ++ (e' ++ L₂) this : s ++ (a, b) :: (a, !b) :: e' ++ L₂ = s ++ (a, b) :: (a, !b) :: (e' ++ L₂) w₁ w₂ : List (α × Bool) hLL' : ReflTransGen Step (w₁ ++ w₂) (s ++ (a, b) :: (a, !b) :: (e' ++ L₂)) ih : ∀ {L₁ L₂_1 : List (α × Bool)}, L₁ ++ L₂_1 = s ++ (a, b) :: (a, !b) :: (e' ++ L₂) → ∃ L₃ L₄, w₁ ++ w₂ = L₃ ++ L₄ ∧ Red L₃ L₁ ∧ Red L₄ L₂_1 h₁ : Red w₁ (s ++ (a, b) :: (a, !b) :: e') h₂ : Red w₂ L₂ ⊢ ∃ L₃ L₄, w₁ ++ w₂ = L₃ ++ L₄ ∧ Red L₃ (s ++ e') ∧ Red L₄ L₂ [PROOFSTEP] exact ⟨w₁, w₂, rfl, h₁.tail Step.not, h₂⟩ [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) x : α b : Bool h : Red ((x, b) :: L) [] ⊢ Red L [(x, !b)] [PROOFSTEP] have h₁ : Red ((x, not b) :: (x, b) :: L) [(x, not b)] := cons_cons h [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) x : α b : Bool h : Red ((x, b) :: L) [] h₁ : Red ((x, !b) :: (x, b) :: L) [(x, !b)] ⊢ Red L [(x, !b)] [PROOFSTEP] have h₂ : Red ((x, not b) :: (x, b) :: L) L := ReflTransGen.single Step.cons_not_rev [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) x : α b : Bool h : Red ((x, b) :: L) [] h₁ : Red ((x, !b) :: (x, b) :: L) [(x, !b)] h₂ : Red ((x, !b) :: (x, b) :: L) L ⊢ Red L [(x, !b)] [PROOFSTEP] let ⟨L', h₁, h₂⟩ := church_rosser h₁ h₂ [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) x : α b : Bool h : Red ((x, b) :: L) [] h₁✝ : Red ((x, !b) :: (x, b) :: L) [(x, !b)] h₂✝ : Red ((x, !b) :: (x, b) :: L) L L' : List (α × Bool) h₁ : Red [(x, !b)] L' h₂ : Red L L' ⊢ Red L [(x, !b)] [PROOFSTEP] rw [singleton_iff] at h₁ [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) x : α b : Bool h : Red ((x, b) :: L) [] h₁✝ : Red ((x, !b) :: (x, b) :: L) [(x, !b)] h₂✝ : Red ((x, !b) :: (x, b) :: L) L L' : List (α × Bool) h₁ : L' = [(x, !b)] h₂ : Red L L' ⊢ Red L [(x, !b)] [PROOFSTEP] subst L' [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) x : α b : Bool h : Red ((x, b) :: L) [] h₁ : Red ((x, !b) :: (x, b) :: L) [(x, !b)] h₂✝ : Red ((x, !b) :: (x, b) :: L) L h₂ : Red L [(x, !b)] ⊢ Red L [(x, !b)] [PROOFSTEP] assumption [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) x1 : α b1 : Bool x2 : α b2 : Bool h : (x1, b1) ≠ (x2, b2) ⊢ Red [(x1, !b1), (x2, b2)] L ↔ L = [(x1, !b1), (x2, b2)] [PROOFSTEP] apply reflTransGen_iff_eq [GOAL] case h α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) x1 : α b1 : Bool x2 : α b2 : Bool h : (x1, b1) ≠ (x2, b2) ⊢ ∀ (b : List (α × Bool)), ¬Step [(x1, !b1), (x2, b2)] b [PROOFSTEP] generalize eq : [(x1, not b1), (x2, b2)] = L' [GOAL] case h α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) x1 : α b1 : Bool x2 : α b2 : Bool h : (x1, b1) ≠ (x2, b2) L' : List (α × Bool) eq : [(x1, !b1), (x2, b2)] = L' ⊢ ∀ (b : List (α × Bool)), ¬Step L' b [PROOFSTEP] intro L h' [GOAL] case h α : Type u L✝ L₁ L₂ L₃ L₄ : List (α × Bool) x1 : α b1 : Bool x2 : α b2 : Bool h : (x1, b1) ≠ (x2, b2) L' : List (α × Bool) eq : [(x1, !b1), (x2, b2)] = L' L : List (α × Bool) h' : Step L' L ⊢ False [PROOFSTEP] cases h' [GOAL] case h.not α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) x1 : α b1 : Bool x2 : α b2 : Bool h : (x1, b1) ≠ (x2, b2) L₁✝ L₂✝ : List (α × Bool) x✝ : α b✝ : Bool eq : [(x1, !b1), (x2, b2)] = L₁✝ ++ (x✝, b✝) :: (x✝, !b✝) :: L₂✝ ⊢ False [PROOFSTEP] simp [List.cons_eq_append_iff, List.nil_eq_append] at eq [GOAL] case h.not α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) x1 : α b1 : Bool x2 : α b2 : Bool h : (x1, b1) ≠ (x2, b2) L₁✝ L₂✝ : List (α × Bool) x✝ : α b✝ : Bool eq : L₁✝ = [] ∧ (x✝ = x1 ∧ b✝ = !b1) ∧ (x✝ = x2 ∧ (!b✝) = b2) ∧ L₂✝ = [] ⊢ False [PROOFSTEP] rcases eq with ⟨rfl, ⟨rfl, rfl⟩, ⟨rfl, rfl⟩, rfl⟩ [GOAL] case h.not.intro.intro.intro.intro.intro α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) b1 : Bool x✝ : α h : (x✝, b1) ≠ (x✝, !!b1) ⊢ False [PROOFSTEP] subst_vars [GOAL] case h.not.intro.intro.intro.intro.intro α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) b1 : Bool x✝ : α h : (x✝, b1) ≠ (x✝, !!b1) ⊢ False [PROOFSTEP] simp at h [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) x1 : α b1 : Bool x2 : α b2 : Bool H1 : (x1, b1) ≠ (x2, b2) H2 : Red ((x1, b1) :: L₁) ((x2, b2) :: L₂) ⊢ Red L₁ ((x1, !b1) :: (x2, b2) :: L₂) [PROOFSTEP] have : Red ((x1, b1) :: L₁) ([(x2, b2)] ++ L₂) := H2 [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) x1 : α b1 : Bool x2 : α b2 : Bool H1 : (x1, b1) ≠ (x2, b2) H2 : Red ((x1, b1) :: L₁) ((x2, b2) :: L₂) this : Red ((x1, b1) :: L₁) ([(x2, b2)] ++ L₂) ⊢ Red L₁ ((x1, !b1) :: (x2, b2) :: L₂) [PROOFSTEP] rcases to_append_iff.1 this with ⟨_ | ⟨p, L₃⟩, L₄, eq, h₁, h₂⟩ [GOAL] case intro.nil.intro.intro.intro α : Type u L L₁ L₂ L₃ L₄✝ : List (α × Bool) x1 : α b1 : Bool x2 : α b2 : Bool H1 : (x1, b1) ≠ (x2, b2) H2 : Red ((x1, b1) :: L₁) ((x2, b2) :: L₂) this : Red ((x1, b1) :: L₁) ([(x2, b2)] ++ L₂) L₄ : List (α × Bool) eq : (x1, b1) :: L₁ = [] ++ L₄ h₁ : Red [] [(x2, b2)] h₂ : Red L₄ L₂ ⊢ Red L₁ ((x1, !b1) :: (x2, b2) :: L₂) [PROOFSTEP] simp [nil_iff] at h₁ [GOAL] case intro.cons.intro.intro.intro α : Type u L L₁ L₂ L₃✝ L₄✝ : List (α × Bool) x1 : α b1 : Bool x2 : α b2 : Bool H1 : (x1, b1) ≠ (x2, b2) H2 : Red ((x1, b1) :: L₁) ((x2, b2) :: L₂) this : Red ((x1, b1) :: L₁) ([(x2, b2)] ++ L₂) p : α × Bool L₃ L₄ : List (α × Bool) eq : (x1, b1) :: L₁ = p :: L₃ ++ L₄ h₁ : Red (p :: L₃) [(x2, b2)] h₂ : Red L₄ L₂ ⊢ Red L₁ ((x1, !b1) :: (x2, b2) :: L₂) [PROOFSTEP] cases eq [GOAL] case intro.cons.intro.intro.intro.refl α : Type u L L₂ L₃✝ L₄✝ : List (α × Bool) x1 : α b1 : Bool x2 : α b2 : Bool H1 : (x1, b1) ≠ (x2, b2) L₃ L₄ : List (α × Bool) h₂ : Red L₄ L₂ h₁ : Red ((x1, b1) :: L₃) [(x2, b2)] H2 : Red ((x1, b1) :: List.append L₃ L₄) ((x2, b2) :: L₂) this : Red ((x1, b1) :: List.append L₃ L₄) ([(x2, b2)] ++ L₂) ⊢ Red (List.append L₃ L₄) ((x1, !b1) :: (x2, b2) :: L₂) [PROOFSTEP] show Red (L₃ ++ L₄) ([(x1, not b1), (x2, b2)] ++ L₂) [GOAL] case intro.cons.intro.intro.intro.refl α : Type u L L₂ L₃✝ L₄✝ : List (α × Bool) x1 : α b1 : Bool x2 : α b2 : Bool H1 : (x1, b1) ≠ (x2, b2) L₃ L₄ : List (α × Bool) h₂ : Red L₄ L₂ h₁ : Red ((x1, b1) :: L₃) [(x2, b2)] H2 : Red ((x1, b1) :: List.append L₃ L₄) ((x2, b2) :: L₂) this : Red ((x1, b1) :: List.append L₃ L₄) ([(x2, b2)] ++ L₂) ⊢ Red (L₃ ++ L₄) ([(x1, !b1), (x2, b2)] ++ L₂) [PROOFSTEP] apply append_append _ h₂ [GOAL] α : Type u L L₂ L₃✝ L₄✝ : List (α × Bool) x1 : α b1 : Bool x2 : α b2 : Bool H1 : (x1, b1) ≠ (x2, b2) L₃ L₄ : List (α × Bool) h₂ : Red L₄ L₂ h₁ : Red ((x1, b1) :: L₃) [(x2, b2)] H2 : Red ((x1, b1) :: List.append L₃ L₄) ((x2, b2) :: L₂) this : Red ((x1, b1) :: List.append L₃ L₄) ([(x2, b2)] ++ L₂) ⊢ Red L₃ [(x1, !b1), (x2, b2)] [PROOFSTEP] have h₁ : Red ((x1, not b1) :: (x1, b1) :: L₃) [(x1, not b1), (x2, b2)] := cons_cons h₁ [GOAL] α : Type u L L₂ L₃✝ L₄✝ : List (α × Bool) x1 : α b1 : Bool x2 : α b2 : Bool H1 : (x1, b1) ≠ (x2, b2) L₃ L₄ : List (α × Bool) h₂ : Red L₄ L₂ h₁✝ : Red ((x1, b1) :: L₃) [(x2, b2)] H2 : Red ((x1, b1) :: List.append L₃ L₄) ((x2, b2) :: L₂) this : Red ((x1, b1) :: List.append L₃ L₄) ([(x2, b2)] ++ L₂) h₁ : Red ((x1, !b1) :: (x1, b1) :: L₃) [(x1, !b1), (x2, b2)] ⊢ Red L₃ [(x1, !b1), (x2, b2)] [PROOFSTEP] have h₂ : Red ((x1, not b1) :: (x1, b1) :: L₃) L₃ := Step.cons_not_rev.to_red [GOAL] α : Type u L L₂ L₃✝ L₄✝ : List (α × Bool) x1 : α b1 : Bool x2 : α b2 : Bool H1 : (x1, b1) ≠ (x2, b2) L₃ L₄ : List (α × Bool) h₂✝ : Red L₄ L₂ h₁✝ : Red ((x1, b1) :: L₃) [(x2, b2)] H2 : Red ((x1, b1) :: List.append L₃ L₄) ((x2, b2) :: L₂) this : Red ((x1, b1) :: List.append L₃ L₄) ([(x2, b2)] ++ L₂) h₁ : Red ((x1, !b1) :: (x1, b1) :: L₃) [(x1, !b1), (x2, b2)] h₂ : Red ((x1, !b1) :: (x1, b1) :: L₃) L₃ ⊢ Red L₃ [(x1, !b1), (x2, b2)] [PROOFSTEP] rcases church_rosser h₁ h₂ with ⟨L', h₁, h₂⟩ [GOAL] case intro.intro α : Type u L L₂ L₃✝ L₄✝ : List (α × Bool) x1 : α b1 : Bool x2 : α b2 : Bool H1 : (x1, b1) ≠ (x2, b2) L₃ L₄ : List (α × Bool) h₂✝¹ : Red L₄ L₂ h₁✝¹ : Red ((x1, b1) :: L₃) [(x2, b2)] H2 : Red ((x1, b1) :: List.append L₃ L₄) ((x2, b2) :: L₂) this : Red ((x1, b1) :: List.append L₃ L₄) ([(x2, b2)] ++ L₂) h₁✝ : Red ((x1, !b1) :: (x1, b1) :: L₃) [(x1, !b1), (x2, b2)] h₂✝ : Red ((x1, !b1) :: (x1, b1) :: L₃) L₃ L' : List (α × Bool) h₁ : Red [(x1, !b1), (x2, b2)] L' h₂ : Red L₃ L' ⊢ Red L₃ [(x1, !b1), (x2, b2)] [PROOFSTEP] rw [red_iff_irreducible H1] at h₁ [GOAL] case intro.intro α : Type u L L₂ L₃✝ L₄✝ : List (α × Bool) x1 : α b1 : Bool x2 : α b2 : Bool H1 : (x1, b1) ≠ (x2, b2) L₃ L₄ : List (α × Bool) h₂✝¹ : Red L₄ L₂ h₁✝¹ : Red ((x1, b1) :: L₃) [(x2, b2)] H2 : Red ((x1, b1) :: List.append L₃ L₄) ((x2, b2) :: L₂) this : Red ((x1, b1) :: List.append L₃ L₄) ([(x2, b2)] ++ L₂) h₁✝ : Red ((x1, !b1) :: (x1, b1) :: L₃) [(x1, !b1), (x2, b2)] h₂✝ : Red ((x1, !b1) :: (x1, b1) :: L₃) L₃ L' : List (α × Bool) h₁ : L' = [(x1, !b1), (x2, b2)] h₂ : Red L₃ L' ⊢ Red L₃ [(x1, !b1), (x2, b2)] [PROOFSTEP] rwa [h₁] at h₂ [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) H : Step L₁ L₂ ⊢ L₂ <+ L₁ [PROOFSTEP] cases H [GOAL] case not α : Type u L L₃ L₄ L₁✝ L₂✝ : List (α × Bool) x✝ : α b✝ : Bool ⊢ L₁✝ ++ L₂✝ <+ L₁✝ ++ (x✝, b✝) :: (x✝, !b✝) :: L₂✝ [PROOFSTEP] simp [GOAL] case not α : Type u L L₃ L₄ L₁✝ L₂✝ : List (α × Bool) x✝ : α b✝ : Bool ⊢ L₂✝ <+ (x✝, b✝) :: (x✝, !b✝) :: L₂✝ [PROOFSTEP] constructor [GOAL] case not.a α : Type u L L₃ L₄ L₁✝ L₂✝ : List (α × Bool) x✝ : α b✝ : Bool ⊢ L₂✝ <+ (x✝, !b✝) :: L₂✝ [PROOFSTEP] constructor [GOAL] case not.a.a α : Type u L L₃ L₄ L₁✝ L₂✝ : List (α × Bool) x✝ : α b✝ : Bool ⊢ L₂✝ <+ L₂✝ [PROOFSTEP] rfl [GOAL] α : Type u L L₁ L₂ L₃ L₄ L1 L2 : List (α × Bool) x : α b : Bool ⊢ sizeOf (L1 ++ L2) < sizeOf (L1 ++ (x, b) :: (x, !b) :: L2) [PROOFSTEP] induction' L1 with hd tl ih [GOAL] case nil α : Type u L L₁ L₂ L₃ L₄ L2 : List (α × Bool) x : α b : Bool ⊢ sizeOf ([] ++ L2) < sizeOf ([] ++ (x, b) :: (x, !b) :: L2) case cons α : Type u L L₁ L₂ L₃ L₄ L2 : List (α × Bool) x : α b : Bool hd : α × Bool tl : List (α × Bool) ih : sizeOf (tl ++ L2) < sizeOf (tl ++ (x, b) :: (x, !b) :: L2) ⊢ sizeOf (hd :: tl ++ L2) < sizeOf (hd :: tl ++ (x, b) :: (x, !b) :: L2) [PROOFSTEP] case nil => -- dsimp [sizeOf] dsimp simp only [Bool.sizeOf_eq_one] have H : 1 + (1 + 1) + (1 + (1 + 1) + sizeOf L2) = sizeOf L2 + (1 + ((1 + 1) + (1 + 1) + 1)) := by ac_rfl rw [H] apply Nat.lt_add_of_pos_right apply Nat.lt_add_right apply Nat.zero_lt_one [GOAL] α : Type u L L₁ L₂ L₃ L₄ L2 : List (α × Bool) x : α b : Bool ⊢ sizeOf ([] ++ L2) < sizeOf ([] ++ (x, b) :: (x, !b) :: L2) [PROOFSTEP] case nil => -- dsimp [sizeOf] dsimp simp only [Bool.sizeOf_eq_one] have H : 1 + (1 + 1) + (1 + (1 + 1) + sizeOf L2) = sizeOf L2 + (1 + ((1 + 1) + (1 + 1) + 1)) := by ac_rfl rw [H] apply Nat.lt_add_of_pos_right apply Nat.lt_add_right apply Nat.zero_lt_one [GOAL] α : Type u L L₁ L₂ L₃ L₄ L2 : List (α × Bool) x : α b : Bool ⊢ sizeOf ([] ++ L2) < sizeOf ([] ++ (x, b) :: (x, !b) :: L2) [PROOFSTEP] dsimp [GOAL] α : Type u L L₁ L₂ L₃ L₄ L2 : List (α × Bool) x : α b : Bool ⊢ sizeOf L2 < 1 + (1 + sizeOf b) + (1 + (1 + sizeOf !b) + sizeOf L2) [PROOFSTEP] simp only [Bool.sizeOf_eq_one] [GOAL] α : Type u L L₁ L₂ L₃ L₄ L2 : List (α × Bool) x : α b : Bool ⊢ sizeOf L2 < 1 + (1 + 1) + (1 + (1 + 1) + sizeOf L2) [PROOFSTEP] have H : 1 + (1 + 1) + (1 + (1 + 1) + sizeOf L2) = sizeOf L2 + (1 + ((1 + 1) + (1 + 1) + 1)) := by ac_rfl [GOAL] α : Type u L L₁ L₂ L₃ L₄ L2 : List (α × Bool) x : α b : Bool ⊢ 1 + (1 + 1) + (1 + (1 + 1) + sizeOf L2) = sizeOf L2 + (1 + (1 + 1 + (1 + 1) + 1)) [PROOFSTEP] ac_rfl [GOAL] α : Type u L L₁ L₂ L₃ L₄ L2 : List (α × Bool) x : α b : Bool H : 1 + (1 + 1) + (1 + (1 + 1) + sizeOf L2) = sizeOf L2 + (1 + (1 + 1 + (1 + 1) + 1)) ⊢ sizeOf L2 < 1 + (1 + 1) + (1 + (1 + 1) + sizeOf L2) [PROOFSTEP] rw [H] [GOAL] α : Type u L L₁ L₂ L₃ L₄ L2 : List (α × Bool) x : α b : Bool H : 1 + (1 + 1) + (1 + (1 + 1) + sizeOf L2) = sizeOf L2 + (1 + (1 + 1 + (1 + 1) + 1)) ⊢ sizeOf L2 < sizeOf L2 + (1 + (1 + 1 + (1 + 1) + 1)) [PROOFSTEP] apply Nat.lt_add_of_pos_right [GOAL] case h α : Type u L L₁ L₂ L₃ L₄ L2 : List (α × Bool) x : α b : Bool H : 1 + (1 + 1) + (1 + (1 + 1) + sizeOf L2) = sizeOf L2 + (1 + (1 + 1 + (1 + 1) + 1)) ⊢ 0 < 1 + (1 + 1 + (1 + 1) + 1) [PROOFSTEP] apply Nat.lt_add_right [GOAL] case h.h α : Type u L L₁ L₂ L₃ L₄ L2 : List (α × Bool) x : α b : Bool H : 1 + (1 + 1) + (1 + (1 + 1) + sizeOf L2) = sizeOf L2 + (1 + (1 + 1 + (1 + 1) + 1)) ⊢ 0 < 1 [PROOFSTEP] apply Nat.zero_lt_one [GOAL] case cons α : Type u L L₁ L₂ L₃ L₄ L2 : List (α × Bool) x : α b : Bool hd : α × Bool tl : List (α × Bool) ih : sizeOf (tl ++ L2) < sizeOf (tl ++ (x, b) :: (x, !b) :: L2) ⊢ sizeOf (hd :: tl ++ L2) < sizeOf (hd :: tl ++ (x, b) :: (x, !b) :: L2) [PROOFSTEP] case cons => dsimp exact Nat.add_lt_add_left ih _ [GOAL] α : Type u L L₁ L₂ L₃ L₄ L2 : List (α × Bool) x : α b : Bool hd : α × Bool tl : List (α × Bool) ih : sizeOf (tl ++ L2) < sizeOf (tl ++ (x, b) :: (x, !b) :: L2) ⊢ sizeOf (hd :: tl ++ L2) < sizeOf (hd :: tl ++ (x, b) :: (x, !b) :: L2) [PROOFSTEP] case cons => dsimp exact Nat.add_lt_add_left ih _ [GOAL] α : Type u L L₁ L₂ L₃ L₄ L2 : List (α × Bool) x : α b : Bool hd : α × Bool tl : List (α × Bool) ih : sizeOf (tl ++ L2) < sizeOf (tl ++ (x, b) :: (x, !b) :: L2) ⊢ sizeOf (hd :: tl ++ L2) < sizeOf (hd :: tl ++ (x, b) :: (x, !b) :: L2) [PROOFSTEP] dsimp [GOAL] α : Type u L L₁ L₂ L₃ L₄ L2 : List (α × Bool) x : α b : Bool hd : α × Bool tl : List (α × Bool) ih : sizeOf (tl ++ L2) < sizeOf (tl ++ (x, b) :: (x, !b) :: L2) ⊢ 1 + sizeOf hd + sizeOf (tl ++ L2) < 1 + sizeOf hd + sizeOf (tl ++ (x, b) :: (x, !b) :: L2) [PROOFSTEP] exact Nat.add_lt_add_left ih _ [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) h : Red L₁ L₂ ⊢ ∃ n, List.length L₁ = List.length L₂ + 2 * n [PROOFSTEP] induction' h with L₂ L₃ _h₁₂ h₂₃ ih [GOAL] case refl α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) ⊢ ∃ n, List.length L₁ = List.length L₁ + 2 * n [PROOFSTEP] exact ⟨0, rfl⟩ [GOAL] case tail α : Type u L L₁ L₂✝ L₃✝ L₄ L₂ L₃ : List (α × Bool) _h₁₂ : ReflTransGen Step L₁ L₂ h₂₃ : Step L₂ L₃ ih : ∃ n, List.length L₁ = List.length L₂ + 2 * n ⊢ ∃ n, List.length L₁ = List.length L₃ + 2 * n [PROOFSTEP] rcases ih with ⟨n, eq⟩ [GOAL] case tail.intro α : Type u L L₁ L₂✝ L₃✝ L₄ L₂ L₃ : List (α × Bool) _h₁₂ : ReflTransGen Step L₁ L₂ h₂₃ : Step L₂ L₃ n : ℕ eq : List.length L₁ = List.length L₂ + 2 * n ⊢ ∃ n, List.length L₁ = List.length L₃ + 2 * n [PROOFSTEP] exists 1 + n [GOAL] case tail.intro α : Type u L L₁ L₂✝ L₃✝ L₄ L₂ L₃ : List (α × Bool) _h₁₂ : ReflTransGen Step L₁ L₂ h₂₃ : Step L₂ L₃ n : ℕ eq : List.length L₁ = List.length L₂ + 2 * n ⊢ List.length L₁ = List.length L₃ + 2 * (1 + n) [PROOFSTEP] simp [mul_add, eq, (Step.length h₂₃).symm, add_assoc] [GOAL] α : Type u L L₁ L₂ L₃ L₄ a b✝ c b : List (α × Bool) hab hac : Red.Step a b ⊢ ReflGen Red.Step b b [PROOFSTEP] rfl [GOAL] α : Type u L L₁ L₂ L₃ L₄ a b✝ c b : List (α × Bool) hab hac : Red.Step a b ⊢ ReflTransGen Red.Step b b [PROOFSTEP] rfl [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) ⊢ List.length (invRev L₁) = List.length L₁ [PROOFSTEP] simp [invRev] [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) ⊢ invRev (invRev L₁) = L₁ [PROOFSTEP] simp [invRev, List.map_reverse, (· ∘ ·)] [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) ⊢ (Red.Step ⇒ Red.Step) invRev invRev [PROOFSTEP] intro a b h [GOAL] α : Type u L L₁ L₂ L₃ L₄ a b : List (α × Bool) h : Red.Step a b ⊢ Red.Step (invRev a) (invRev b) [PROOFSTEP] cases h [GOAL] case not α : Type u L L₁ L₂ L₃ L₄ L₁✝ L₂✝ : List (α × Bool) x✝ : α b✝ : Bool ⊢ Red.Step (invRev (L₁✝ ++ (x✝, b✝) :: (x✝, !b✝) :: L₂✝)) (invRev (L₁✝ ++ L₂✝)) [PROOFSTEP] simp [invRev] [GOAL] α : Type u L L₁✝ L₂✝ L₃ L₄ L₁ L₂ : List (α × Bool) h : Step L₁ L₂ ⊢ Step (FreeGroup.invRev L₁) (FreeGroup.invRev L₂) [PROOFSTEP] cases' h with a b x y [GOAL] case not α : Type u L L₁ L₂ L₃ L₄ a b : List (α × Bool) x : α y : Bool ⊢ Step (FreeGroup.invRev (a ++ (x, y) :: (x, !y) :: b)) (FreeGroup.invRev (a ++ b)) [PROOFSTEP] simp [FreeGroup.invRev] [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) h : Step (FreeGroup.invRev L₁) (FreeGroup.invRev L₂) ⊢ Step L₁ L₂ [PROOFSTEP] simpa only [invRev_invRev] using h.invRev [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) h : Red (invRev L₁) (invRev L₂) ⊢ Red L₁ L₂ [PROOFSTEP] simpa only [invRev_invRev] using h.invRev [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) ⊢ ∀ (a b c : FreeGroup α), a * b * c = a * (b * c) [PROOFSTEP] rintro ⟨L₁⟩ ⟨L₂⟩ ⟨L₃⟩ [GOAL] case mk.mk.mk α : Type u L L₁✝ L₂✝ L₃✝ L₄ : List (α × Bool) a✝ : FreeGroup α L₁ : List (α × Bool) b✝ : FreeGroup α L₂ : List (α × Bool) c✝ : FreeGroup α L₃ : List (α × Bool) ⊢ Quot.mk Red.Step L₁ * Quot.mk Red.Step L₂ * Quot.mk Red.Step L₃ = Quot.mk Red.Step L₁ * (Quot.mk Red.Step L₂ * Quot.mk Red.Step L₃) [PROOFSTEP] simp [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) ⊢ ∀ (a : FreeGroup α), 1 * a = a [PROOFSTEP] rintro ⟨L⟩ [GOAL] case mk α : Type u L✝ L₁ L₂ L₃ L₄ : List (α × Bool) a✝ : FreeGroup α L : List (α × Bool) ⊢ 1 * Quot.mk Red.Step L = Quot.mk Red.Step L [PROOFSTEP] rfl [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) ⊢ ∀ (a : FreeGroup α), a * 1 = a [PROOFSTEP] rintro ⟨L⟩ [GOAL] case mk α : Type u L✝ L₁ L₂ L₃ L₄ : List (α × Bool) a✝ : FreeGroup α L : List (α × Bool) ⊢ Quot.mk Red.Step L * 1 = Quot.mk Red.Step L [PROOFSTEP] simp [one_eq_mk] [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) ⊢ ∀ (a : FreeGroup α), a⁻¹ * a = 1 [PROOFSTEP] rintro ⟨L⟩ [GOAL] case mk α : Type u L✝ L₁ L₂ L₃ L₄ : List (α × Bool) a✝ : FreeGroup α L : List (α × Bool) ⊢ (Quot.mk Red.Step L)⁻¹ * Quot.mk Red.Step L = 1 [PROOFSTEP] exact List.recOn L rfl fun ⟨x, b⟩ tl ih => Eq.trans (Quot.sound <| by simp [invRev, one_eq_mk]) ih [GOAL] α : Type u L✝ L₁ L₂ L₃ L₄ : List (α × Bool) a✝ : FreeGroup α L : List (α × Bool) x✝ : α × Bool tl : List (α × Bool) ih : (Quot.mk Red.Step tl)⁻¹ * Quot.mk Red.Step tl = 1 x : α b : Bool ⊢ Red.Step (invRev ((x, b) :: tl) ++ (x, b) :: tl) (invRev tl ++ tl) [PROOFSTEP] simp [invRev, one_eq_mk] [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) x✝¹ x✝ : α H : of x✝¹ = of x✝ ⊢ x✝¹ = x✝ [PROOFSTEP] let ⟨L₁, hx, hy⟩ := Red.exact.1 H [GOAL] α : Type u L L₁✝ L₂ L₃ L₄ : List (α × Bool) x✝¹ x✝ : α H : of x✝¹ = of x✝ L₁ : List (α × Bool) hx : Red [(x✝¹, true)] L₁ hy : Red [(x✝, true)] L₁ ⊢ x✝¹ = x✝ [PROOFSTEP] simp [Red.singleton_iff] at hx hy [GOAL] α : Type u L L₁✝ L₂ L₃ L₄ : List (α × Bool) x✝¹ x✝ : α H : of x✝¹ = of x✝ L₁ : List (α × Bool) hx : L₁ = [(x✝¹, true)] hy : L₁ = [(x✝, true)] ⊢ x✝¹ = x✝ [PROOFSTEP] aesop [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) β : Type v inst✝ : Group β f✝ : α → β x y : FreeGroup α f : α → β H : Step L₁ L₂ ⊢ Lift.aux f L₁ = Lift.aux f L₂ [PROOFSTEP] cases' H with _ _ _ b [GOAL] case not α : Type u L L₃ L₄ : List (α × Bool) β : Type v inst✝ : Group β f✝ : α → β x y : FreeGroup α f : α → β L₁✝ L₂✝ : List (α × Bool) x✝ : α b : Bool ⊢ Lift.aux f (L₁✝ ++ (x✝, b) :: (x✝, !b) :: L₂✝) = Lift.aux f (L₁✝ ++ L₂✝) [PROOFSTEP] cases b [GOAL] case not.false α : Type u L L₃ L₄ : List (α × Bool) β : Type v inst✝ : Group β f✝ : α → β x y : FreeGroup α f : α → β L₁✝ L₂✝ : List (α × Bool) x✝ : α ⊢ Lift.aux f (L₁✝ ++ (x✝, false) :: (x✝, !false) :: L₂✝) = Lift.aux f (L₁✝ ++ L₂✝) [PROOFSTEP] simp [Lift.aux] [GOAL] case not.true α : Type u L L₃ L₄ : List (α × Bool) β : Type v inst✝ : Group β f✝ : α → β x y : FreeGroup α f : α → β L₁✝ L₂✝ : List (α × Bool) x✝ : α ⊢ Lift.aux f (L₁✝ ++ (x✝, true) :: (x✝, !true) :: L₂✝) = Lift.aux f (L₁✝ ++ L₂✝) [PROOFSTEP] simp [Lift.aux] [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) β : Type v inst✝ : Group β f✝ : α → β x y : FreeGroup α f : α → β ⊢ ∀ (a b : FreeGroup α), Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) (a * b) = Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) a * Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) b [PROOFSTEP] rintro ⟨L₁⟩ ⟨L₂⟩ [GOAL] case mk.mk α : Type u L L₁✝ L₂✝ L₃ L₄ : List (α × Bool) β : Type v inst✝ : Group β f✝ : α → β x y : FreeGroup α f : α → β a✝ : FreeGroup α L₁ : List (α × Bool) b✝ : FreeGroup α L₂ : List (α × Bool) ⊢ Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) (Quot.mk Red.Step L₁ * Quot.mk Red.Step L₂) = Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) (Quot.mk Red.Step L₁) * Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) (Quot.mk Red.Step L₂) [PROOFSTEP] simp [Lift.aux] [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) β : Type v inst✝ : Group β f : α → β x y : FreeGroup α g : FreeGroup α →* β ⊢ ∀ (x : FreeGroup α), ↑((fun f => MonoidHom.mk' (Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂)) (_ : ∀ (a b : FreeGroup α), Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) (a * b) = Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) a * Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) b)) ((fun g => ↑g ∘ of) g)) x = ↑g x [PROOFSTEP] rintro ⟨L⟩ [GOAL] case mk α : Type u L✝ L₁ L₂ L₃ L₄ : List (α × Bool) β : Type v inst✝ : Group β f : α → β x y : FreeGroup α g : FreeGroup α →* β x✝ : FreeGroup α L : List (α × Bool) ⊢ ↑((fun f => MonoidHom.mk' (Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂)) (_ : ∀ (a b : FreeGroup α), Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) (a * b) = Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) a * Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) b)) ((fun g => ↑g ∘ of) g)) (Quot.mk Red.Step L) = ↑g (Quot.mk Red.Step L) [PROOFSTEP] exact List.recOn L (g.map_one.symm) (by rintro ⟨x, _ | _⟩ t (ih : _ = g (mk t)) · show _ = g ((of x)⁻¹ * mk t) simpa [Lift.aux] using ih · show _ = g (of x * mk t) simpa [Lift.aux] using ih) [GOAL] α : Type u L✝ L₁ L₂ L₃ L₄ : List (α × Bool) β : Type v inst✝ : Group β f : α → β x y : FreeGroup α g : FreeGroup α →* β x✝ : FreeGroup α L : List (α × Bool) ⊢ ∀ (head : α × Bool) (tail : List (α × Bool)), ↑((fun f => MonoidHom.mk' (Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂)) (_ : ∀ (a b : FreeGroup α), Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) (a * b) = Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) a * Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) b)) ((fun g => ↑g ∘ of) g)) (Quot.mk Red.Step tail) = ↑g (Quot.mk Red.Step tail) → ↑((fun f => MonoidHom.mk' (Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂)) (_ : ∀ (a b : FreeGroup α), Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) (a * b) = Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) a * Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) b)) ((fun g => ↑g ∘ of) g)) (Quot.mk Red.Step (head :: tail)) = ↑g (Quot.mk Red.Step (head :: tail)) [PROOFSTEP] rintro ⟨x, _ | _⟩ t (ih : _ = g (mk t)) [GOAL] case mk.false α : Type u L✝ L₁ L₂ L₃ L₄ : List (α × Bool) β : Type v inst✝ : Group β f : α → β x✝¹ y : FreeGroup α g : FreeGroup α →* β x✝ : FreeGroup α L : List (α × Bool) x : α t : List (α × Bool) ih : ↑((fun f => MonoidHom.mk' (Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂)) (_ : ∀ (a b : FreeGroup α), Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) (a * b) = Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) a * Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) b)) ((fun g => ↑g ∘ of) g)) (Quot.mk Red.Step t) = ↑g (mk t) ⊢ ↑((fun f => MonoidHom.mk' (Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂)) (_ : ∀ (a b : FreeGroup α), Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) (a * b) = Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) a * Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) b)) ((fun g => ↑g ∘ of) g)) (Quot.mk Red.Step ((x, false) :: t)) = ↑g (Quot.mk Red.Step ((x, false) :: t)) [PROOFSTEP] show _ = g ((of x)⁻¹ * mk t) [GOAL] case mk.false α : Type u L✝ L₁ L₂ L₃ L₄ : List (α × Bool) β : Type v inst✝ : Group β f : α → β x✝¹ y : FreeGroup α g : FreeGroup α →* β x✝ : FreeGroup α L : List (α × Bool) x : α t : List (α × Bool) ih : ↑((fun f => MonoidHom.mk' (Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂)) (_ : ∀ (a b : FreeGroup α), Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) (a * b) = Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) a * Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) b)) ((fun g => ↑g ∘ of) g)) (Quot.mk Red.Step t) = ↑g (mk t) ⊢ ↑((fun f => MonoidHom.mk' (Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂)) (_ : ∀ (a b : FreeGroup α), Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) (a * b) = Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) a * Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) b)) ((fun g => ↑g ∘ of) g)) (Quot.mk Red.Step ((x, false) :: t)) = ↑g ((of x)⁻¹ * mk t) [PROOFSTEP] simpa [Lift.aux] using ih [GOAL] case mk.true α : Type u L✝ L₁ L₂ L₃ L₄ : List (α × Bool) β : Type v inst✝ : Group β f : α → β x✝¹ y : FreeGroup α g : FreeGroup α →* β x✝ : FreeGroup α L : List (α × Bool) x : α t : List (α × Bool) ih : ↑((fun f => MonoidHom.mk' (Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂)) (_ : ∀ (a b : FreeGroup α), Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) (a * b) = Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) a * Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) b)) ((fun g => ↑g ∘ of) g)) (Quot.mk Red.Step t) = ↑g (mk t) ⊢ ↑((fun f => MonoidHom.mk' (Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂)) (_ : ∀ (a b : FreeGroup α), Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) (a * b) = Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) a * Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) b)) ((fun g => ↑g ∘ of) g)) (Quot.mk Red.Step ((x, true) :: t)) = ↑g (Quot.mk Red.Step ((x, true) :: t)) [PROOFSTEP] show _ = g (of x * mk t) [GOAL] case mk.true α : Type u L✝ L₁ L₂ L₃ L₄ : List (α × Bool) β : Type v inst✝ : Group β f : α → β x✝¹ y : FreeGroup α g : FreeGroup α →* β x✝ : FreeGroup α L : List (α × Bool) x : α t : List (α × Bool) ih : ↑((fun f => MonoidHom.mk' (Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂)) (_ : ∀ (a b : FreeGroup α), Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) (a * b) = Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) a * Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) b)) ((fun g => ↑g ∘ of) g)) (Quot.mk Red.Step t) = ↑g (mk t) ⊢ ↑((fun f => MonoidHom.mk' (Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂)) (_ : ∀ (a b : FreeGroup α), Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) (a * b) = Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) a * Quot.lift (Lift.aux f) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Lift.aux f L₁ = Lift.aux f L₂) b)) ((fun g => ↑g ∘ of) g)) (Quot.mk Red.Step ((x, true) :: t)) = ↑g (of x * mk t) [PROOFSTEP] simpa [Lift.aux] using ih [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) β : Type v inst✝ : Group β f : α → β x y : FreeGroup α s : Subgroup β H : Set.range f ⊆ ↑s ⊢ MonoidHom.range (↑lift f) ≤ s [PROOFSTEP] rintro _ ⟨⟨L⟩, rfl⟩ [GOAL] case intro.mk α : Type u L✝ L₁ L₂ L₃ L₄ : List (α × Bool) β : Type v inst✝ : Group β f : α → β x y : FreeGroup α s : Subgroup β H : Set.range f ⊆ ↑s w✝ : FreeGroup α L : List (α × Bool) ⊢ ↑(↑lift f) (Quot.mk Red.Step L) ∈ s [PROOFSTEP] exact List.recOn L s.one_mem fun ⟨x, b⟩ tl ih => Bool.recOn b (by simp at ih ⊢; exact s.mul_mem (s.inv_mem <| H ⟨x, rfl⟩) ih) (by simp at ih ⊢; exact s.mul_mem (H ⟨x, rfl⟩) ih) [GOAL] α : Type u L✝ L₁ L₂ L₃ L₄ : List (α × Bool) β : Type v inst✝ : Group β f : α → β x✝¹ y : FreeGroup α s : Subgroup β H : Set.range f ⊆ ↑s w✝ : FreeGroup α L : List (α × Bool) x✝ : α × Bool tl : List (α × Bool) ih : ↑(↑lift f) (Quot.mk Red.Step tl) ∈ s x : α b : Bool ⊢ ↑(↑lift f) (Quot.mk Red.Step ((x, false) :: tl)) ∈ s [PROOFSTEP] simp at ih ⊢ [GOAL] α : Type u L✝ L₁ L₂ L₃ L₄ : List (α × Bool) β : Type v inst✝ : Group β f : α → β x✝¹ y : FreeGroup α s : Subgroup β H : Set.range f ⊆ ↑s w✝ : FreeGroup α L : List (α × Bool) x✝ : α × Bool tl : List (α × Bool) ih : List.prod (List.map (fun x => bif x.snd then f x.fst else (f x.fst)⁻¹) tl) ∈ s x : α b : Bool ⊢ (f x)⁻¹ * List.prod (List.map (fun x => bif x.snd then f x.fst else (f x.fst)⁻¹) tl) ∈ s [PROOFSTEP] exact s.mul_mem (s.inv_mem <| H ⟨x, rfl⟩) ih [GOAL] α : Type u L✝ L₁ L₂ L₃ L₄ : List (α × Bool) β : Type v inst✝ : Group β f : α → β x✝¹ y : FreeGroup α s : Subgroup β H : Set.range f ⊆ ↑s w✝ : FreeGroup α L : List (α × Bool) x✝ : α × Bool tl : List (α × Bool) ih : ↑(↑lift f) (Quot.mk Red.Step tl) ∈ s x : α b : Bool ⊢ ↑(↑lift f) (Quot.mk Red.Step ((x, true) :: tl)) ∈ s [PROOFSTEP] simp at ih ⊢ [GOAL] α : Type u L✝ L₁ L₂ L₃ L₄ : List (α × Bool) β : Type v inst✝ : Group β f : α → β x✝¹ y : FreeGroup α s : Subgroup β H : Set.range f ⊆ ↑s w✝ : FreeGroup α L : List (α × Bool) x✝ : α × Bool tl : List (α × Bool) ih : List.prod (List.map (fun x => bif x.snd then f x.fst else (f x.fst)⁻¹) tl) ∈ s x : α b : Bool ⊢ f x * List.prod (List.map (fun x => bif x.snd then f x.fst else (f x.fst)⁻¹) tl) ∈ s [PROOFSTEP] exact s.mul_mem (H ⟨x, rfl⟩) ih [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) β : Type v inst✝ : Group β f : α → β x y : FreeGroup α ⊢ MonoidHom.range (↑lift f) = Subgroup.closure (Set.range f) [PROOFSTEP] apply le_antisymm (lift.range_le Subgroup.subset_closure) [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) β : Type v inst✝ : Group β f : α → β x y : FreeGroup α ⊢ Subgroup.closure (Set.range f) ≤ MonoidHom.range (↑lift f) [PROOFSTEP] rw [Subgroup.closure_le] [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) β : Type v inst✝ : Group β f : α → β x y : FreeGroup α ⊢ Set.range f ⊆ ↑(MonoidHom.range (↑lift f)) [PROOFSTEP] rintro _ ⟨a, rfl⟩ [GOAL] case intro α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) β : Type v inst✝ : Group β f : α → β x y : FreeGroup α a : α ⊢ f a ∈ ↑(MonoidHom.range (↑lift f)) [PROOFSTEP] exact ⟨FreeGroup.of a, by simp only [lift.of]⟩ [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) β : Type v inst✝ : Group β f : α → β x y : FreeGroup α a : α ⊢ ↑(↑lift f) (FreeGroup.of a) = f a [PROOFSTEP] simp only [lift.of] [GOAL] α : Type u L L₁✝ L₂✝ L₃ L₄ : List (α × Bool) β : Type v f : α → β x y : FreeGroup α L₁ L₂ : List (α × Bool) H : Red.Step L₁ L₂ ⊢ Red.Step (List.map (fun x => (f x.fst, x.snd)) L₁) (List.map (fun x => (f x.fst, x.snd)) L₂) [PROOFSTEP] cases H [GOAL] case not α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) β : Type v f : α → β x y : FreeGroup α L₁✝ L₂✝ : List (α × Bool) x✝ : α b✝ : Bool ⊢ Red.Step (List.map (fun x => (f x.fst, x.snd)) (L₁✝ ++ (x✝, b✝) :: (x✝, !b✝) :: L₂✝)) (List.map (fun x => (f x.fst, x.snd)) (L₁✝ ++ L₂✝)) [PROOFSTEP] simp [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) β : Type v f : α → β x y : FreeGroup α ⊢ ∀ (a b : FreeGroup α), Quot.map (List.map fun x => (f x.fst, x.snd)) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Red.Step (List.map (fun x => (f x.fst, x.snd)) L₁) (List.map (fun x => (f x.fst, x.snd)) L₂)) (a * b) = Quot.map (List.map fun x => (f x.fst, x.snd)) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Red.Step (List.map (fun x => (f x.fst, x.snd)) L₁) (List.map (fun x => (f x.fst, x.snd)) L₂)) a * Quot.map (List.map fun x => (f x.fst, x.snd)) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Red.Step (List.map (fun x => (f x.fst, x.snd)) L₁) (List.map (fun x => (f x.fst, x.snd)) L₂)) b [PROOFSTEP] rintro ⟨L₁⟩ ⟨L₂⟩ [GOAL] case mk.mk α : Type u L L₁✝ L₂✝ L₃ L₄ : List (α × Bool) β : Type v f : α → β x y a✝ : FreeGroup α L₁ : List (α × Bool) b✝ : FreeGroup α L₂ : List (α × Bool) ⊢ Quot.map (List.map fun x => (f x.fst, x.snd)) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Red.Step (List.map (fun x => (f x.fst, x.snd)) L₁) (List.map (fun x => (f x.fst, x.snd)) L₂)) (Quot.mk Red.Step L₁ * Quot.mk Red.Step L₂) = Quot.map (List.map fun x => (f x.fst, x.snd)) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Red.Step (List.map (fun x => (f x.fst, x.snd)) L₁) (List.map (fun x => (f x.fst, x.snd)) L₂)) (Quot.mk Red.Step L₁) * Quot.map (List.map fun x => (f x.fst, x.snd)) (_ : ∀ (L₁ L₂ : List (α × Bool)), Red.Step L₁ L₂ → Red.Step (List.map (fun x => (f x.fst, x.snd)) L₁) (List.map (fun x => (f x.fst, x.snd)) L₂)) (Quot.mk Red.Step L₂) [PROOFSTEP] simp [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) β : Type v f : α → β x✝ y x : FreeGroup α ⊢ ↑(map _root_.id) x = x [PROOFSTEP] rcases x with ⟨L⟩ [GOAL] case mk α : Type u L✝ L₁ L₂ L₃ L₄ : List (α × Bool) β : Type v f : α → β x✝ y x : FreeGroup α L : List (α × Bool) ⊢ ↑(map _root_.id) (Quot.mk Red.Step L) = Quot.mk Red.Step L [PROOFSTEP] simp [List.map_id'] [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) β : Type v f✝ : α → β x✝ y : FreeGroup α γ : Type w f : α → β g : β → γ x : FreeGroup α ⊢ ↑(map g) (↑(map f) x) = ↑(map (g ∘ f)) x [PROOFSTEP] rcases x with ⟨L⟩ [GOAL] case mk α : Type u L✝ L₁ L₂ L₃ L₄ : List (α × Bool) β : Type v f✝ : α → β x✝ y : FreeGroup α γ : Type w f : α → β g : β → γ x : FreeGroup α L : List (α × Bool) ⊢ ↑(map g) (↑(map f) (Quot.mk Red.Step L)) = ↑(map (g ∘ f)) (Quot.mk Red.Step L) [PROOFSTEP] simp [(· ∘ ·)] [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) β : Type v f : α → β x y : FreeGroup α g : FreeGroup α →* FreeGroup β hg : ∀ (x : α), ↑g (FreeGroup.of x) = FreeGroup.of (f x) ⊢ ∀ {x : FreeGroup α}, ↑g x = ↑(map f) x [PROOFSTEP] rintro ⟨L⟩ [GOAL] case mk α : Type u L✝ L₁ L₂ L₃ L₄ : List (α × Bool) β : Type v f : α → β x y : FreeGroup α g : FreeGroup α →* FreeGroup β hg : ∀ (x : α), ↑g (FreeGroup.of x) = FreeGroup.of (f x) x✝ : FreeGroup α L : List (α × Bool) ⊢ ↑g (Quot.mk Red.Step L) = ↑(map f) (Quot.mk Red.Step L) [PROOFSTEP] exact List.recOn L g.map_one fun ⟨x, b⟩ t (ih : g (FreeGroup.mk t) = map f (FreeGroup.mk t)) => Bool.recOn b (show g ((FreeGroup.of x)⁻¹ * FreeGroup.mk t) = FreeGroup.map f ((FreeGroup.of x)⁻¹ * FreeGroup.mk t) by simp [g.map_mul, g.map_inv, hg, ih]) (show g (FreeGroup.of x * FreeGroup.mk t) = FreeGroup.map f (FreeGroup.of x * FreeGroup.mk t) by simp [g.map_mul, hg, ih]) [GOAL] α : Type u L✝ L₁ L₂ L₃ L₄ : List (α × Bool) β : Type v f : α → β x✝² y : FreeGroup α g : FreeGroup α →* FreeGroup β hg : ∀ (x : α), ↑g (FreeGroup.of x) = FreeGroup.of (f x) x✝¹ : FreeGroup α L : List (α × Bool) x✝ : α × Bool t : List (α × Bool) ih : ↑g (FreeGroup.mk t) = ↑(map f) (FreeGroup.mk t) x : α b : Bool ⊢ ↑g ((FreeGroup.of x)⁻¹ * FreeGroup.mk t) = ↑(map f) ((FreeGroup.of x)⁻¹ * FreeGroup.mk t) [PROOFSTEP] simp [g.map_mul, g.map_inv, hg, ih] [GOAL] α : Type u L✝ L₁ L₂ L₃ L₄ : List (α × Bool) β : Type v f : α → β x✝² y : FreeGroup α g : FreeGroup α →* FreeGroup β hg : ∀ (x : α), ↑g (FreeGroup.of x) = FreeGroup.of (f x) x✝¹ : FreeGroup α L : List (α × Bool) x✝ : α × Bool t : List (α × Bool) ih : ↑g (FreeGroup.mk t) = ↑(map f) (FreeGroup.mk t) x : α b : Bool ⊢ ↑g (FreeGroup.of x * FreeGroup.mk t) = ↑(map f) (FreeGroup.of x * FreeGroup.mk t) [PROOFSTEP] simp [g.map_mul, hg, ih] [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) β : Type v f : α → β x✝ y : FreeGroup α x : α ⊢ ↑(↑lift (of ∘ f)) (of x) = of (f x) [PROOFSTEP] simp [GOAL] α✝ : Type u L L₁ L₂ L₃ L₄ : List (α✝ × Bool) β✝ : Type v f : α✝ → β✝ x✝ y : FreeGroup α✝ α : Type ?u.99493 β : Type ?u.99494 e : α ≃ β x : FreeGroup α ⊢ ↑(map ↑e.symm) (↑(map ↑e) x) = x [PROOFSTEP] simp [Function.comp, map.comp] [GOAL] α✝ : Type u L L₁ L₂ L₃ L₄ : List (α✝ × Bool) β✝ : Type v f : α✝ → β✝ x✝ y : FreeGroup α✝ α : Type ?u.99493 β : Type ?u.99494 e : α ≃ β x : FreeGroup β ⊢ ↑(map ↑e) (↑(map ↑e.symm) x) = x [PROOFSTEP] simp [Function.comp, map.comp] [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) β : Type v inst✝ : Group β f : α → β x : FreeGroup α ⊢ ↑(↑lift f) x = ↑prod (↑(map f) x) [PROOFSTEP] rw [← lift.unique (prod.comp (map f))] [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) β : Type v inst✝ : Group β f : α → β x : FreeGroup α ⊢ ↑(MonoidHom.comp prod (map f)) x = ↑prod (↑(map f) x) [PROOFSTEP] rfl [GOAL] case hg α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) β : Type v inst✝ : Group β f : α → β x : FreeGroup α ⊢ ∀ (x : α), ↑(MonoidHom.comp prod (map f)) (of x) = f x [PROOFSTEP] simp [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) ⊢ Function.LeftInverse (fun x => 1) fun x => () [PROOFSTEP] rintro ⟨_ | ⟨⟨⟨⟩, _⟩, _⟩⟩ [GOAL] case mk.nil α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) x✝ : FreeGroup Empty ⊢ (fun x => 1) ((fun x => ()) (Quot.mk Red.Step [])) = Quot.mk Red.Step [] [PROOFSTEP] rfl [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) x : FreeGroup Unit ⊢ FreeGroup ℤ [PROOFSTEP] revert x [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) ⊢ FreeGroup Unit → FreeGroup ℤ [PROOFSTEP] change (FreeGroup Unit →* FreeGroup ℤ) [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) ⊢ FreeGroup Unit →* FreeGroup ℤ [PROOFSTEP] apply map fun _ => (1 : ℤ) [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) ⊢ Function.LeftInverse (fun x => of () ^ x) fun x => sum ((let_fun this := map fun x => 1; ↑this) x) [PROOFSTEP] rintro ⟨L⟩ [GOAL] case mk α : Type u L✝ L₁ L₂ L₃ L₄ : List (α × Bool) x✝ : FreeGroup Unit L : List (Unit × Bool) ⊢ (fun x => of () ^ x) ((fun x => sum ((let_fun this := map fun x => 1; ↑this) x)) (Quot.mk Red.Step L)) = Quot.mk Red.Step L [PROOFSTEP] simp only [quot_mk_eq_mk, map.mk, sum_mk, List.map_map] [GOAL] case mk α : Type u L✝ L₁ L₂ L₃ L₄ : List (α × Bool) x✝ : FreeGroup Unit L : List (Unit × Bool) ⊢ of () ^ List.sum (List.map ((fun x => bif x.snd then x.fst else -x.fst) ∘ fun x => (1, x.snd)) L) = mk L [PROOFSTEP] exact List.recOn L (by rfl) (fun ⟨⟨⟩, b⟩ tl ih => by cases b <;> simp [zpow_add] at ih ⊢ <;> rw [ih] <;> rfl) [GOAL] α : Type u L✝ L₁ L₂ L₃ L₄ : List (α × Bool) x✝ : FreeGroup Unit L : List (Unit × Bool) ⊢ of () ^ List.sum (List.map ((fun x => bif x.snd then x.fst else -x.fst) ∘ fun x => (1, x.snd)) []) = mk [] [PROOFSTEP] rfl [GOAL] α : Type u L✝ L₁ L₂ L₃ L₄ : List (α × Bool) x✝¹ : FreeGroup Unit L : List (Unit × Bool) x✝ : Unit × Bool tl : List (Unit × Bool) ih : of () ^ List.sum (List.map ((fun x => bif x.snd then x.fst else -x.fst) ∘ fun x => (1, x.snd)) tl) = mk tl b : Bool ⊢ of () ^ List.sum (List.map ((fun x => bif x.snd then x.fst else -x.fst) ∘ fun x => (1, x.snd)) ((PUnit.unit, b) :: tl)) = mk ((PUnit.unit, b) :: tl) [PROOFSTEP] cases b [GOAL] case false α : Type u L✝ L₁ L₂ L₃ L₄ : List (α × Bool) x✝¹ : FreeGroup Unit L : List (Unit × Bool) x✝ : Unit × Bool tl : List (Unit × Bool) ih : of () ^ List.sum (List.map ((fun x => bif x.snd then x.fst else -x.fst) ∘ fun x => (1, x.snd)) tl) = mk tl ⊢ of () ^ List.sum (List.map ((fun x => bif x.snd then x.fst else -x.fst) ∘ fun x => (1, x.snd)) ((PUnit.unit, false) :: tl)) = mk ((PUnit.unit, false) :: tl) [PROOFSTEP] simp [zpow_add] at ih ⊢ [GOAL] case true α : Type u L✝ L₁ L₂ L₃ L₄ : List (α × Bool) x✝¹ : FreeGroup Unit L : List (Unit × Bool) x✝ : Unit × Bool tl : List (Unit × Bool) ih : of () ^ List.sum (List.map ((fun x => bif x.snd then x.fst else -x.fst) ∘ fun x => (1, x.snd)) tl) = mk tl ⊢ of () ^ List.sum (List.map ((fun x => bif x.snd then x.fst else -x.fst) ∘ fun x => (1, x.snd)) ((PUnit.unit, true) :: tl)) = mk ((PUnit.unit, true) :: tl) [PROOFSTEP] simp [zpow_add] at ih ⊢ [GOAL] case false α : Type u L✝ L₁ L₂ L₃ L₄ : List (α × Bool) x✝¹ : FreeGroup Unit L : List (Unit × Bool) x✝ : Unit × Bool tl : List (Unit × Bool) ih : of () ^ List.sum (List.map ((fun x => bif x.snd then x.fst else -x.fst) ∘ fun x => (1, x.snd)) tl) = mk tl ⊢ (of ())⁻¹ * of () ^ List.sum (List.map ((fun x => bif x.snd then x.fst else -x.fst) ∘ fun x => (1, x.snd)) tl) = mk ((PUnit.unit, false) :: tl) [PROOFSTEP] rw [ih] [GOAL] case true α : Type u L✝ L₁ L₂ L₃ L₄ : List (α × Bool) x✝¹ : FreeGroup Unit L : List (Unit × Bool) x✝ : Unit × Bool tl : List (Unit × Bool) ih : of () ^ List.sum (List.map ((fun x => bif x.snd then x.fst else -x.fst) ∘ fun x => (1, x.snd)) tl) = mk tl ⊢ of () * of () ^ List.sum (List.map ((fun x => bif x.snd then x.fst else -x.fst) ∘ fun x => (1, x.snd)) tl) = mk ((PUnit.unit, true) :: tl) [PROOFSTEP] rw [ih] [GOAL] case false α : Type u L✝ L₁ L₂ L₃ L₄ : List (α × Bool) x✝¹ : FreeGroup Unit L : List (Unit × Bool) x✝ : Unit × Bool tl : List (Unit × Bool) ih : of () ^ List.sum (List.map ((fun x => bif x.snd then x.fst else -x.fst) ∘ fun x => (1, x.snd)) tl) = mk tl ⊢ (of ())⁻¹ * mk tl = mk ((PUnit.unit, false) :: tl) [PROOFSTEP] rfl [GOAL] case true α : Type u L✝ L₁ L₂ L₃ L₄ : List (α × Bool) x✝¹ : FreeGroup Unit L : List (Unit × Bool) x✝ : Unit × Bool tl : List (Unit × Bool) ih : of () ^ List.sum (List.map ((fun x => bif x.snd then x.fst else -x.fst) ∘ fun x => (1, x.snd)) tl) = mk tl ⊢ of () * mk tl = mk ((PUnit.unit, true) :: tl) [PROOFSTEP] rfl [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) x : ℤ ⊢ (fun x => sum ((let_fun this := map fun x => 1; ↑this) x)) ((fun x => of () ^ x) 0) = 0 [PROOFSTEP] simp [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) x : ℤ i : ℕ ih : (fun x => sum ((let_fun this := map fun x => 1; ↑this) x)) ((fun x => of () ^ x) ↑i) = ↑i ⊢ (fun x => sum ((let_fun this := map fun x => 1; ↑this) x)) ((fun x => of () ^ x) (↑i + 1)) = ↑i + 1 [PROOFSTEP] simp only [zpow_coe_nat, map_pow, map.of] at ih [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) x : ℤ i : ℕ ih : sum (of 1 ^ i) = ↑i ⊢ (fun x => sum ((let_fun this := map fun x => 1; ↑this) x)) ((fun x => of () ^ x) (↑i + 1)) = ↑i + 1 [PROOFSTEP] simp [zpow_add, ih] [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) x : ℤ i : ℕ ih : (fun x => sum ((let_fun this := map fun x => 1; ↑this) x)) ((fun x => of () ^ x) (-↑i)) = -↑i ⊢ (fun x => sum ((let_fun this := map fun x => 1; ↑this) x)) ((fun x => of () ^ x) (-↑i - 1)) = -↑i - 1 [PROOFSTEP] simp only [zpow_neg, zpow_coe_nat, map_inv, map_pow, map.of, sum.map_inv, neg_inj] at ih [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) x : ℤ i : ℕ ih : sum (of 1 ^ i) = ↑i ⊢ (fun x => sum ((let_fun this := map fun x => 1; ↑this) x)) ((fun x => of () ^ x) (-↑i - 1)) = -↑i - 1 [PROOFSTEP] simp [zpow_add, ih, sub_eq_add_neg] [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) β α✝ : Type u x✝ : FreeGroup α✝ x : α✝ ih : id <$> pure x = pure x ⊢ id <$> (pure x)⁻¹ = (pure x)⁻¹ [PROOFSTEP] rw [map_inv, ih] [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) β α✝ : Type u x✝ x y : FreeGroup α✝ ihx : id <$> x = x ihy : id <$> y = y ⊢ id <$> (x * y) = x * y [PROOFSTEP] rw [map_mul, ihx, ihy] [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) β α✝ β✝ γ✝ : Type u x : FreeGroup α✝ ⊢ ∀ (f : α✝ → FreeGroup β✝) (g : β✝ → FreeGroup γ✝), 1 >>= f >>= g = 1 >>= fun x => f x >>= g [PROOFSTEP] intros [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) β α✝ β✝ γ✝ : Type u x : FreeGroup α✝ f✝ : α✝ → FreeGroup β✝ g✝ : β✝ → FreeGroup γ✝ ⊢ 1 >>= f✝ >>= g✝ = 1 >>= fun x => f✝ x >>= g✝ [PROOFSTEP] iterate 3 rw [one_bind] [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) β α✝ β✝ γ✝ : Type u x : FreeGroup α✝ f✝ : α✝ → FreeGroup β✝ g✝ : β✝ → FreeGroup γ✝ ⊢ 1 >>= f✝ >>= g✝ = 1 >>= fun x => f✝ x >>= g✝ [PROOFSTEP] rw [one_bind] [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) β α✝ β✝ γ✝ : Type u x : FreeGroup α✝ f✝ : α✝ → FreeGroup β✝ g✝ : β✝ → FreeGroup γ✝ ⊢ 1 >>= g✝ = 1 >>= fun x => f✝ x >>= g✝ [PROOFSTEP] rw [one_bind] [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) β α✝ β✝ γ✝ : Type u x : FreeGroup α✝ f✝ : α✝ → FreeGroup β✝ g✝ : β✝ → FreeGroup γ✝ ⊢ 1 = 1 >>= fun x => f✝ x >>= g✝ [PROOFSTEP] rw [one_bind] [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) β α✝ β✝ γ✝ : Type u x✝ : FreeGroup α✝ x : α✝ ⊢ ∀ (f : α✝ → FreeGroup β✝) (g : β✝ → FreeGroup γ✝), pure x >>= f >>= g = pure x >>= fun x => f x >>= g [PROOFSTEP] intros [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) β α✝ β✝ γ✝ : Type u x✝ : FreeGroup α✝ x : α✝ f✝ : α✝ → FreeGroup β✝ g✝ : β✝ → FreeGroup γ✝ ⊢ pure x >>= f✝ >>= g✝ = pure x >>= fun x => f✝ x >>= g✝ [PROOFSTEP] iterate 2 rw [pure_bind] [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) β α✝ β✝ γ✝ : Type u x✝ : FreeGroup α✝ x : α✝ f✝ : α✝ → FreeGroup β✝ g✝ : β✝ → FreeGroup γ✝ ⊢ pure x >>= f✝ >>= g✝ = pure x >>= fun x => f✝ x >>= g✝ [PROOFSTEP] rw [pure_bind] [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) β α✝ β✝ γ✝ : Type u x✝ : FreeGroup α✝ x : α✝ f✝ : α✝ → FreeGroup β✝ g✝ : β✝ → FreeGroup γ✝ ⊢ f✝ x >>= g✝ = pure x >>= fun x => f✝ x >>= g✝ [PROOFSTEP] rw [pure_bind] [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) β α✝ β✝ γ✝ : Type u x✝ : FreeGroup α✝ x : α✝ ih : ∀ (f : α✝ → FreeGroup β✝) (g : β✝ → FreeGroup γ✝), pure x >>= f >>= g = pure x >>= fun x => f x >>= g ⊢ ∀ (f : α✝ → FreeGroup β✝) (g : β✝ → FreeGroup γ✝), (pure x)⁻¹ >>= f >>= g = (pure x)⁻¹ >>= fun x => f x >>= g [PROOFSTEP] intros [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) β α✝ β✝ γ✝ : Type u x✝ : FreeGroup α✝ x : α✝ ih : ∀ (f : α✝ → FreeGroup β✝) (g : β✝ → FreeGroup γ✝), pure x >>= f >>= g = pure x >>= fun x => f x >>= g f✝ : α✝ → FreeGroup β✝ g✝ : β✝ → FreeGroup γ✝ ⊢ (pure x)⁻¹ >>= f✝ >>= g✝ = (pure x)⁻¹ >>= fun x => f✝ x >>= g✝ [PROOFSTEP] iterate 3 rw [inv_bind] [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) β α✝ β✝ γ✝ : Type u x✝ : FreeGroup α✝ x : α✝ ih : ∀ (f : α✝ → FreeGroup β✝) (g : β✝ → FreeGroup γ✝), pure x >>= f >>= g = pure x >>= fun x => f x >>= g f✝ : α✝ → FreeGroup β✝ g✝ : β✝ → FreeGroup γ✝ ⊢ (pure x)⁻¹ >>= f✝ >>= g✝ = (pure x)⁻¹ >>= fun x => f✝ x >>= g✝ [PROOFSTEP] rw [inv_bind] [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) β α✝ β✝ γ✝ : Type u x✝ : FreeGroup α✝ x : α✝ ih : ∀ (f : α✝ → FreeGroup β✝) (g : β✝ → FreeGroup γ✝), pure x >>= f >>= g = pure x >>= fun x => f x >>= g f✝ : α✝ → FreeGroup β✝ g✝ : β✝ → FreeGroup γ✝ ⊢ (pure x >>= f✝)⁻¹ >>= g✝ = (pure x)⁻¹ >>= fun x => f✝ x >>= g✝ [PROOFSTEP] rw [inv_bind] [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) β α✝ β✝ γ✝ : Type u x✝ : FreeGroup α✝ x : α✝ ih : ∀ (f : α✝ → FreeGroup β✝) (g : β✝ → FreeGroup γ✝), pure x >>= f >>= g = pure x >>= fun x => f x >>= g f✝ : α✝ → FreeGroup β✝ g✝ : β✝ → FreeGroup γ✝ ⊢ (pure x >>= f✝ >>= g✝)⁻¹ = (pure x)⁻¹ >>= fun x => f✝ x >>= g✝ [PROOFSTEP] rw [inv_bind] [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) β α✝ β✝ γ✝ : Type u x✝ : FreeGroup α✝ x : α✝ ih : ∀ (f : α✝ → FreeGroup β✝) (g : β✝ → FreeGroup γ✝), pure x >>= f >>= g = pure x >>= fun x => f x >>= g f✝ : α✝ → FreeGroup β✝ g✝ : β✝ → FreeGroup γ✝ ⊢ (pure x >>= f✝ >>= g✝)⁻¹ = (pure x >>= fun x => f✝ x >>= g✝)⁻¹ [PROOFSTEP] rw [ih] [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) β α✝ β✝ γ✝ : Type u x✝ x y : FreeGroup α✝ ihx : ∀ (f : α✝ → FreeGroup β✝) (g : β✝ → FreeGroup γ✝), x >>= f >>= g = x >>= fun x => f x >>= g ihy : ∀ (f : α✝ → FreeGroup β✝) (g : β✝ → FreeGroup γ✝), y >>= f >>= g = y >>= fun x => f x >>= g ⊢ ∀ (f : α✝ → FreeGroup β✝) (g : β✝ → FreeGroup γ✝), x * y >>= f >>= g = x * y >>= fun x => f x >>= g [PROOFSTEP] intros [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) β α✝ β✝ γ✝ : Type u x✝ x y : FreeGroup α✝ ihx : ∀ (f : α✝ → FreeGroup β✝) (g : β✝ → FreeGroup γ✝), x >>= f >>= g = x >>= fun x => f x >>= g ihy : ∀ (f : α✝ → FreeGroup β✝) (g : β✝ → FreeGroup γ✝), y >>= f >>= g = y >>= fun x => f x >>= g f✝ : α✝ → FreeGroup β✝ g✝ : β✝ → FreeGroup γ✝ ⊢ x * y >>= f✝ >>= g✝ = x * y >>= fun x => f✝ x >>= g✝ [PROOFSTEP] iterate 3 rw [mul_bind] [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) β α✝ β✝ γ✝ : Type u x✝ x y : FreeGroup α✝ ihx : ∀ (f : α✝ → FreeGroup β✝) (g : β✝ → FreeGroup γ✝), x >>= f >>= g = x >>= fun x => f x >>= g ihy : ∀ (f : α✝ → FreeGroup β✝) (g : β✝ → FreeGroup γ✝), y >>= f >>= g = y >>= fun x => f x >>= g f✝ : α✝ → FreeGroup β✝ g✝ : β✝ → FreeGroup γ✝ ⊢ x * y >>= f✝ >>= g✝ = x * y >>= fun x => f✝ x >>= g✝ [PROOFSTEP] rw [mul_bind] [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) β α✝ β✝ γ✝ : Type u x✝ x y : FreeGroup α✝ ihx : ∀ (f : α✝ → FreeGroup β✝) (g : β✝ → FreeGroup γ✝), x >>= f >>= g = x >>= fun x => f x >>= g ihy : ∀ (f : α✝ → FreeGroup β✝) (g : β✝ → FreeGroup γ✝), y >>= f >>= g = y >>= fun x => f x >>= g f✝ : α✝ → FreeGroup β✝ g✝ : β✝ → FreeGroup γ✝ ⊢ (x >>= f✝) * (y >>= f✝) >>= g✝ = x * y >>= fun x => f✝ x >>= g✝ [PROOFSTEP] rw [mul_bind] [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) β α✝ β✝ γ✝ : Type u x✝ x y : FreeGroup α✝ ihx : ∀ (f : α✝ → FreeGroup β✝) (g : β✝ → FreeGroup γ✝), x >>= f >>= g = x >>= fun x => f x >>= g ihy : ∀ (f : α✝ → FreeGroup β✝) (g : β✝ → FreeGroup γ✝), y >>= f >>= g = y >>= fun x => f x >>= g f✝ : α✝ → FreeGroup β✝ g✝ : β✝ → FreeGroup γ✝ ⊢ (x >>= f✝ >>= g✝) * (y >>= f✝ >>= g✝) = x * y >>= fun x => f✝ x >>= g✝ [PROOFSTEP] rw [mul_bind] [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) β α✝ β✝ γ✝ : Type u x✝ x y : FreeGroup α✝ ihx : ∀ (f : α✝ → FreeGroup β✝) (g : β✝ → FreeGroup γ✝), x >>= f >>= g = x >>= fun x => f x >>= g ihy : ∀ (f : α✝ → FreeGroup β✝) (g : β✝ → FreeGroup γ✝), y >>= f >>= g = y >>= fun x => f x >>= g f✝ : α✝ → FreeGroup β✝ g✝ : β✝ → FreeGroup γ✝ ⊢ (x >>= f✝ >>= g✝) * (y >>= f✝ >>= g✝) = (x >>= fun x => f✝ x >>= g✝) * (y >>= fun x => f✝ x >>= g✝) [PROOFSTEP] rw [ihx, ihy] [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) β α✝ β✝ : Type u f : α✝ → β✝ x : FreeGroup α✝ ⊢ (do let y ← 1 pure (f y)) = f <$> 1 [PROOFSTEP] rw [one_bind, map_one] [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) β α✝ β✝ : Type u f : α✝ → β✝ x✝ : FreeGroup α✝ x : α✝ ⊢ (do let y ← pure x pure (f y)) = f <$> pure x [PROOFSTEP] rw [pure_bind, map_pure] [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) β α✝ β✝ : Type u f : α✝ → β✝ x✝ : FreeGroup α✝ x : α✝ ih : (do let y ← pure x pure (f y)) = f <$> pure x ⊢ (do let y ← (pure x)⁻¹ pure (f y)) = f <$> (pure x)⁻¹ [PROOFSTEP] rw [inv_bind, map_inv, ih] [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) β α✝ β✝ : Type u f : α✝ → β✝ x✝ x y : FreeGroup α✝ ihx : (do let y ← x pure (f y)) = f <$> x ihy : (do let y ← y pure (f y)) = f <$> y ⊢ (do let y ← x * y pure (f y)) = f <$> (x * y) [PROOFSTEP] rw [mul_bind, map_mul, ihx, ihy] [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α ⊢ Red L (reduce L) [PROOFSTEP] induction' L with hd1 tl1 ih [GOAL] case nil α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α ⊢ Red [] (reduce []) case cons α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α hd1 : α × Bool tl1 : List (α × Bool) ih : Red tl1 (reduce tl1) ⊢ Red (hd1 :: tl1) (reduce (hd1 :: tl1)) [PROOFSTEP] case nil => constructor [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α ⊢ Red [] (reduce []) [PROOFSTEP] case nil => constructor [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α ⊢ Red [] (reduce []) [PROOFSTEP] constructor [GOAL] case cons α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α hd1 : α × Bool tl1 : List (α × Bool) ih : Red tl1 (reduce tl1) ⊢ Red (hd1 :: tl1) (reduce (hd1 :: tl1)) [PROOFSTEP] case cons => dsimp revert ih generalize htl : reduce tl1 = TL intro ih cases' TL with hd2 tl2 case nil => exact Red.cons_cons ih case cons => dsimp only split_ifs with h · trans · cases hd1 cases hd2 cases h dsimp at * subst_vars apply Red.trans (Red.cons_cons ih) exact Red.Step.cons_not_rev.to_red · exact Red.cons_cons ih [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α hd1 : α × Bool tl1 : List (α × Bool) ih : Red tl1 (reduce tl1) ⊢ Red (hd1 :: tl1) (reduce (hd1 :: tl1)) [PROOFSTEP] case cons => dsimp revert ih generalize htl : reduce tl1 = TL intro ih cases' TL with hd2 tl2 case nil => exact Red.cons_cons ih case cons => dsimp only split_ifs with h · trans · cases hd1 cases hd2 cases h dsimp at * subst_vars apply Red.trans (Red.cons_cons ih) exact Red.Step.cons_not_rev.to_red · exact Red.cons_cons ih [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α hd1 : α × Bool tl1 : List (α × Bool) ih : Red tl1 (reduce tl1) ⊢ Red (hd1 :: tl1) (reduce (hd1 :: tl1)) [PROOFSTEP] dsimp [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α hd1 : α × Bool tl1 : List (α × Bool) ih : Red tl1 (reduce tl1) ⊢ Red (hd1 :: tl1) (List.rec [hd1] (fun head tail tail_ih => if hd1.fst = head.fst ∧ hd1.snd = !head.snd then tail else hd1 :: head :: tail) (reduce tl1)) [PROOFSTEP] revert ih [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α hd1 : α × Bool tl1 : List (α × Bool) ⊢ Red tl1 (reduce tl1) → Red (hd1 :: tl1) (List.rec [hd1] (fun head tail tail_ih => if hd1.fst = head.fst ∧ hd1.snd = !head.snd then tail else hd1 :: head :: tail) (reduce tl1)) [PROOFSTEP] generalize htl : reduce tl1 = TL [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α hd1 : α × Bool tl1 TL : List (α × Bool) htl : reduce tl1 = TL ⊢ Red tl1 TL → Red (hd1 :: tl1) (List.rec [hd1] (fun head tail tail_ih => if hd1.fst = head.fst ∧ hd1.snd = !head.snd then tail else hd1 :: head :: tail) TL) [PROOFSTEP] intro ih [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α hd1 : α × Bool tl1 TL : List (α × Bool) htl : reduce tl1 = TL ih : Red tl1 TL ⊢ Red (hd1 :: tl1) (List.rec [hd1] (fun head tail tail_ih => if hd1.fst = head.fst ∧ hd1.snd = !head.snd then tail else hd1 :: head :: tail) TL) [PROOFSTEP] cases' TL with hd2 tl2 [GOAL] case nil α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α hd1 : α × Bool tl1 : List (α × Bool) htl : reduce tl1 = [] ih : Red tl1 [] ⊢ Red (hd1 :: tl1) (List.rec [hd1] (fun head tail tail_ih => if hd1.fst = head.fst ∧ hd1.snd = !head.snd then tail else hd1 :: head :: tail) []) case cons α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α hd1 : α × Bool tl1 : List (α × Bool) hd2 : α × Bool tl2 : List (α × Bool) htl : reduce tl1 = hd2 :: tl2 ih : Red tl1 (hd2 :: tl2) ⊢ Red (hd1 :: tl1) (List.rec [hd1] (fun head tail tail_ih => if hd1.fst = head.fst ∧ hd1.snd = !head.snd then tail else hd1 :: head :: tail) (hd2 :: tl2)) [PROOFSTEP] case nil => exact Red.cons_cons ih [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α hd1 : α × Bool tl1 : List (α × Bool) htl : reduce tl1 = [] ih : Red tl1 [] ⊢ Red (hd1 :: tl1) (List.rec [hd1] (fun head tail tail_ih => if hd1.fst = head.fst ∧ hd1.snd = !head.snd then tail else hd1 :: head :: tail) []) [PROOFSTEP] case nil => exact Red.cons_cons ih [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α hd1 : α × Bool tl1 : List (α × Bool) htl : reduce tl1 = [] ih : Red tl1 [] ⊢ Red (hd1 :: tl1) (List.rec [hd1] (fun head tail tail_ih => if hd1.fst = head.fst ∧ hd1.snd = !head.snd then tail else hd1 :: head :: tail) []) [PROOFSTEP] exact Red.cons_cons ih [GOAL] case cons α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α hd1 : α × Bool tl1 : List (α × Bool) hd2 : α × Bool tl2 : List (α × Bool) htl : reduce tl1 = hd2 :: tl2 ih : Red tl1 (hd2 :: tl2) ⊢ Red (hd1 :: tl1) (List.rec [hd1] (fun head tail tail_ih => if hd1.fst = head.fst ∧ hd1.snd = !head.snd then tail else hd1 :: head :: tail) (hd2 :: tl2)) [PROOFSTEP] case cons => dsimp only split_ifs with h · trans · cases hd1 cases hd2 cases h dsimp at * subst_vars apply Red.trans (Red.cons_cons ih) exact Red.Step.cons_not_rev.to_red · exact Red.cons_cons ih [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α hd1 : α × Bool tl1 : List (α × Bool) hd2 : α × Bool tl2 : List (α × Bool) htl : reduce tl1 = hd2 :: tl2 ih : Red tl1 (hd2 :: tl2) ⊢ Red (hd1 :: tl1) (List.rec [hd1] (fun head tail tail_ih => if hd1.fst = head.fst ∧ hd1.snd = !head.snd then tail else hd1 :: head :: tail) (hd2 :: tl2)) [PROOFSTEP] case cons => dsimp only split_ifs with h · trans · cases hd1 cases hd2 cases h dsimp at * subst_vars apply Red.trans (Red.cons_cons ih) exact Red.Step.cons_not_rev.to_red · exact Red.cons_cons ih [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α hd1 : α × Bool tl1 : List (α × Bool) hd2 : α × Bool tl2 : List (α × Bool) htl : reduce tl1 = hd2 :: tl2 ih : Red tl1 (hd2 :: tl2) ⊢ Red (hd1 :: tl1) (List.rec [hd1] (fun head tail tail_ih => if hd1.fst = head.fst ∧ hd1.snd = !head.snd then tail else hd1 :: head :: tail) (hd2 :: tl2)) [PROOFSTEP] dsimp only [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α hd1 : α × Bool tl1 : List (α × Bool) hd2 : α × Bool tl2 : List (α × Bool) htl : reduce tl1 = hd2 :: tl2 ih : Red tl1 (hd2 :: tl2) ⊢ Red (hd1 :: tl1) (if hd1.fst = hd2.fst ∧ hd1.snd = !hd2.snd then tl2 else hd1 :: hd2 :: tl2) [PROOFSTEP] split_ifs with h [GOAL] case pos α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α hd1 : α × Bool tl1 : List (α × Bool) hd2 : α × Bool tl2 : List (α × Bool) htl : reduce tl1 = hd2 :: tl2 ih : Red tl1 (hd2 :: tl2) h : hd1.fst = hd2.fst ∧ hd1.snd = !hd2.snd ⊢ Red (hd1 :: tl1) tl2 [PROOFSTEP] trans [GOAL] case pos α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α hd1 : α × Bool tl1 : List (α × Bool) hd2 : α × Bool tl2 : List (α × Bool) htl : reduce tl1 = hd2 :: tl2 ih : Red tl1 (hd2 :: tl2) h : hd1.fst = hd2.fst ∧ hd1.snd = !hd2.snd ⊢ Red (hd1 :: tl1) tl2 [PROOFSTEP] cases hd1 [GOAL] case pos.mk α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α tl1 : List (α × Bool) hd2 : α × Bool tl2 : List (α × Bool) htl : reduce tl1 = hd2 :: tl2 ih : Red tl1 (hd2 :: tl2) fst✝ : α snd✝ : Bool h : (fst✝, snd✝).fst = hd2.fst ∧ (fst✝, snd✝).snd = !hd2.snd ⊢ Red ((fst✝, snd✝) :: tl1) tl2 [PROOFSTEP] cases hd2 [GOAL] case pos.mk.mk α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α tl1 tl2 : List (α × Bool) fst✝¹ : α snd✝¹ : Bool fst✝ : α snd✝ : Bool htl : reduce tl1 = (fst✝, snd✝) :: tl2 ih : Red tl1 ((fst✝, snd✝) :: tl2) h : (fst✝¹, snd✝¹).fst = (fst✝, snd✝).fst ∧ (fst✝¹, snd✝¹).snd = !(fst✝, snd✝).snd ⊢ Red ((fst✝¹, snd✝¹) :: tl1) tl2 [PROOFSTEP] cases h [GOAL] case pos.mk.mk.intro α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α tl1 tl2 : List (α × Bool) fst✝¹ : α snd✝¹ : Bool fst✝ : α snd✝ : Bool htl : reduce tl1 = (fst✝, snd✝) :: tl2 ih : Red tl1 ((fst✝, snd✝) :: tl2) left✝ : (fst✝¹, snd✝¹).fst = (fst✝, snd✝).fst right✝ : (fst✝¹, snd✝¹).snd = !(fst✝, snd✝).snd ⊢ Red ((fst✝¹, snd✝¹) :: tl1) tl2 [PROOFSTEP] dsimp at * [GOAL] case pos.mk.mk.intro α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α tl1 tl2 : List (α × Bool) fst✝¹ : α snd✝¹ : Bool fst✝ : α snd✝ : Bool htl : reduce tl1 = (fst✝, snd✝) :: tl2 ih : Red tl1 ((fst✝, snd✝) :: tl2) left✝ : fst✝¹ = fst✝ right✝ : snd✝¹ = !snd✝ ⊢ Red ((fst✝¹, snd✝¹) :: tl1) tl2 [PROOFSTEP] subst_vars [GOAL] case pos.mk.mk.intro α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α tl1 tl2 : List (α × Bool) fst✝ : α snd✝ : Bool htl : reduce tl1 = (fst✝, snd✝) :: tl2 ih : Red tl1 ((fst✝, snd✝) :: tl2) ⊢ Red ((fst✝, !snd✝) :: tl1) tl2 [PROOFSTEP] apply Red.trans (Red.cons_cons ih) [GOAL] case pos.mk.mk.intro α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α tl1 tl2 : List (α × Bool) fst✝ : α snd✝ : Bool htl : reduce tl1 = (fst✝, snd✝) :: tl2 ih : Red tl1 ((fst✝, snd✝) :: tl2) ⊢ Red ((fst✝, !snd✝) :: (fst✝, snd✝) :: tl2) tl2 [PROOFSTEP] exact Red.Step.cons_not_rev.to_red [GOAL] case neg α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α hd1 : α × Bool tl1 : List (α × Bool) hd2 : α × Bool tl2 : List (α × Bool) htl : reduce tl1 = hd2 :: tl2 ih : Red tl1 (hd2 :: tl2) h : ¬(hd1.fst = hd2.fst ∧ hd1.snd = !hd2.snd) ⊢ Red (hd1 :: tl1) (hd1 :: hd2 :: tl2) [PROOFSTEP] exact Red.cons_cons ih [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α p : Prop L2 L3 : List (α × Bool) x✝¹ : α x✝ : Bool h : reduce [] = L2 ++ (x✝¹, x✝) :: (x✝¹, !x✝) :: L3 ⊢ p [PROOFSTEP] cases L2 [GOAL] case nil α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α p : Prop L3 : List (α × Bool) x✝¹ : α x✝ : Bool h : reduce [] = [] ++ (x✝¹, x✝) :: (x✝¹, !x✝) :: L3 ⊢ p [PROOFSTEP] injections [GOAL] case cons α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α p : Prop L3 : List (α × Bool) x✝¹ : α x✝ : Bool head✝ : α × Bool tail✝ : List (α × Bool) h : reduce [] = head✝ :: tail✝ ++ (x✝¹, x✝) :: (x✝¹, !x✝) :: L3 ⊢ p [PROOFSTEP] injections [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α p : Prop x : α b : Bool L1 L2 L3 : List (α × Bool) x' : α b' : Bool ⊢ reduce ((x, b) :: L1) = L2 ++ (x', b') :: (x', !b') :: L3 → p [PROOFSTEP] dsimp [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α p : Prop x : α b : Bool L1 L2 L3 : List (α × Bool) x' : α b' : Bool ⊢ List.rec [(x, b)] (fun head tail tail_ih => if x = head.fst ∧ b = !head.snd then tail else (x, b) :: head :: tail) (reduce L1) = L2 ++ (x', b') :: (x', !b') :: L3 → p [PROOFSTEP] cases r : reduce L1 with | nil => dsimp intro h exfalso have := congr_arg List.length h simp [List.length] at this rw [add_comm, add_assoc, add_assoc, add_comm, <- add_assoc] at this simp [Nat.one_eq_succ_zero, Nat.succ_add] at this cases this | cons hd tail => cases' hd with y c dsimp only split_ifs with h <;> intro H · rw [H] at r exact @reduce.not _ L1 ((y, c) :: L2) L3 x' b' r · rcases L2 with (_ | ⟨a, L2⟩) · injections subst_vars simp at h · refine' @reduce.not _ L1 L2 L3 x' b' _ injection H with _ H rw [r, H] rfl [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α p : Prop x : α b : Bool L1 L2 L3 : List (α × Bool) x' : α b' : Bool x✝ : List (α × Bool) r : reduce L1 = x✝ ⊢ List.rec [(x, b)] (fun head tail tail_ih => if x = head.fst ∧ b = !head.snd then tail else (x, b) :: head :: tail) x✝ = L2 ++ (x', b') :: (x', !b') :: L3 → p [PROOFSTEP] cases r : reduce L1 with | nil => dsimp intro h exfalso have := congr_arg List.length h simp [List.length] at this rw [add_comm, add_assoc, add_assoc, add_comm, <- add_assoc] at this simp [Nat.one_eq_succ_zero, Nat.succ_add] at this cases this | cons hd tail => cases' hd with y c dsimp only split_ifs with h <;> intro H · rw [H] at r exact @reduce.not _ L1 ((y, c) :: L2) L3 x' b' r · rcases L2 with (_ | ⟨a, L2⟩) · injections subst_vars simp at h · refine' @reduce.not _ L1 L2 L3 x' b' _ injection H with _ H rw [r, H] rfl [GOAL] case nil α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α p : Prop x : α b : Bool L1 L2 L3 : List (α × Bool) x' : α b' : Bool r : reduce L1 = [] ⊢ List.rec [(x, b)] (fun head tail tail_ih => if x = head.fst ∧ b = !head.snd then tail else (x, b) :: head :: tail) [] = L2 ++ (x', b') :: (x', !b') :: L3 → p [PROOFSTEP] | nil => dsimp intro h exfalso have := congr_arg List.length h simp [List.length] at this rw [add_comm, add_assoc, add_assoc, add_comm, <- add_assoc] at this simp [Nat.one_eq_succ_zero, Nat.succ_add] at this cases this [GOAL] case nil α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α p : Prop x : α b : Bool L1 L2 L3 : List (α × Bool) x' : α b' : Bool r : reduce L1 = [] ⊢ List.rec [(x, b)] (fun head tail tail_ih => if x = head.fst ∧ b = !head.snd then tail else (x, b) :: head :: tail) [] = L2 ++ (x', b') :: (x', !b') :: L3 → p [PROOFSTEP] dsimp [GOAL] case nil α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α p : Prop x : α b : Bool L1 L2 L3 : List (α × Bool) x' : α b' : Bool r : reduce L1 = [] ⊢ [(x, b)] = L2 ++ (x', b') :: (x', !b') :: L3 → p [PROOFSTEP] intro h [GOAL] case nil α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α p : Prop x : α b : Bool L1 L2 L3 : List (α × Bool) x' : α b' : Bool r : reduce L1 = [] h : [(x, b)] = L2 ++ (x', b') :: (x', !b') :: L3 ⊢ p [PROOFSTEP] exfalso [GOAL] case nil.h α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α p : Prop x : α b : Bool L1 L2 L3 : List (α × Bool) x' : α b' : Bool r : reduce L1 = [] h : [(x, b)] = L2 ++ (x', b') :: (x', !b') :: L3 ⊢ False [PROOFSTEP] have := congr_arg List.length h [GOAL] case nil.h α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α p : Prop x : α b : Bool L1 L2 L3 : List (α × Bool) x' : α b' : Bool r : reduce L1 = [] h : [(x, b)] = L2 ++ (x', b') :: (x', !b') :: L3 this : List.length [(x, b)] = List.length (L2 ++ (x', b') :: (x', !b') :: L3) ⊢ False [PROOFSTEP] simp [List.length] at this [GOAL] case nil.h α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α p : Prop x : α b : Bool L1 L2 L3 : List (α × Bool) x' : α b' : Bool r : reduce L1 = [] h : [(x, b)] = L2 ++ (x', b') :: (x', !b') :: L3 this : 1 = List.length L2 + (List.length L3 + 1 + 1) ⊢ False [PROOFSTEP] rw [add_comm, add_assoc, add_assoc, add_comm, <- add_assoc] at this [GOAL] case nil.h α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α p : Prop x : α b : Bool L1 L2 L3 : List (α × Bool) x' : α b' : Bool r : reduce L1 = [] h : [(x, b)] = L2 ++ (x', b') :: (x', !b') :: L3 this : 1 = 1 + 1 + List.length L2 + List.length L3 ⊢ False [PROOFSTEP] simp [Nat.one_eq_succ_zero, Nat.succ_add] at this [GOAL] case nil.h α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α p : Prop x : α b : Bool L1 L2 L3 : List (α × Bool) x' : α b' : Bool r : reduce L1 = [] h : [(x, b)] = L2 ++ (x', b') :: (x', !b') :: L3 this : 0 = List.length L2 + List.length L3 + Nat.succ 0 ⊢ False [PROOFSTEP] cases this [GOAL] case cons α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α p : Prop x : α b : Bool L1 L2 L3 : List (α × Bool) x' : α b' : Bool hd : α × Bool tail : List (α × Bool) r : reduce L1 = hd :: tail ⊢ List.rec [(x, b)] (fun head tail tail_ih => if x = head.fst ∧ b = !head.snd then tail else (x, b) :: head :: tail) (hd :: tail) = L2 ++ (x', b') :: (x', !b') :: L3 → p [PROOFSTEP] | cons hd tail => cases' hd with y c dsimp only split_ifs with h <;> intro H · rw [H] at r exact @reduce.not _ L1 ((y, c) :: L2) L3 x' b' r · rcases L2 with (_ | ⟨a, L2⟩) · injections subst_vars simp at h · refine' @reduce.not _ L1 L2 L3 x' b' _ injection H with _ H rw [r, H] rfl [GOAL] case cons α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α p : Prop x : α b : Bool L1 L2 L3 : List (α × Bool) x' : α b' : Bool hd : α × Bool tail : List (α × Bool) r : reduce L1 = hd :: tail ⊢ List.rec [(x, b)] (fun head tail tail_ih => if x = head.fst ∧ b = !head.snd then tail else (x, b) :: head :: tail) (hd :: tail) = L2 ++ (x', b') :: (x', !b') :: L3 → p [PROOFSTEP] cases' hd with y c [GOAL] case cons.mk α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α p : Prop x : α b : Bool L1 L2 L3 : List (α × Bool) x' : α b' : Bool tail : List (α × Bool) y : α c : Bool r : reduce L1 = (y, c) :: tail ⊢ List.rec [(x, b)] (fun head tail tail_ih => if x = head.fst ∧ b = !head.snd then tail else (x, b) :: head :: tail) ((y, c) :: tail) = L2 ++ (x', b') :: (x', !b') :: L3 → p [PROOFSTEP] dsimp only [GOAL] case cons.mk α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α p : Prop x : α b : Bool L1 L2 L3 : List (α × Bool) x' : α b' : Bool tail : List (α × Bool) y : α c : Bool r : reduce L1 = (y, c) :: tail ⊢ (if x = y ∧ b = !c then tail else (x, b) :: (y, c) :: tail) = L2 ++ (x', b') :: (x', !b') :: L3 → p [PROOFSTEP] split_ifs with h [GOAL] case pos α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α p : Prop x : α b : Bool L1 L2 L3 : List (α × Bool) x' : α b' : Bool tail : List (α × Bool) y : α c : Bool r : reduce L1 = (y, c) :: tail h : x = y ∧ b = !c ⊢ tail = L2 ++ (x', b') :: (x', !b') :: L3 → p [PROOFSTEP] intro H [GOAL] case neg α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α p : Prop x : α b : Bool L1 L2 L3 : List (α × Bool) x' : α b' : Bool tail : List (α × Bool) y : α c : Bool r : reduce L1 = (y, c) :: tail h : ¬(x = y ∧ b = !c) ⊢ (x, b) :: (y, c) :: tail = L2 ++ (x', b') :: (x', !b') :: L3 → p [PROOFSTEP] intro H [GOAL] case pos α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α p : Prop x : α b : Bool L1 L2 L3 : List (α × Bool) x' : α b' : Bool tail : List (α × Bool) y : α c : Bool r : reduce L1 = (y, c) :: tail h : x = y ∧ b = !c H : tail = L2 ++ (x', b') :: (x', !b') :: L3 ⊢ p [PROOFSTEP] rw [H] at r [GOAL] case pos α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α p : Prop x : α b : Bool L1 L2 L3 : List (α × Bool) x' : α b' : Bool tail : List (α × Bool) y : α c : Bool r : reduce L1 = (y, c) :: (L2 ++ (x', b') :: (x', !b') :: L3) h : x = y ∧ b = !c H : tail = L2 ++ (x', b') :: (x', !b') :: L3 ⊢ p [PROOFSTEP] exact @reduce.not _ L1 ((y, c) :: L2) L3 x' b' r [GOAL] case neg α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α p : Prop x : α b : Bool L1 L2 L3 : List (α × Bool) x' : α b' : Bool tail : List (α × Bool) y : α c : Bool r : reduce L1 = (y, c) :: tail h : ¬(x = y ∧ b = !c) H : (x, b) :: (y, c) :: tail = L2 ++ (x', b') :: (x', !b') :: L3 ⊢ p [PROOFSTEP] rcases L2 with (_ | ⟨a, L2⟩) [GOAL] case neg.nil α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α p : Prop x : α b : Bool L1 L3 : List (α × Bool) x' : α b' : Bool tail : List (α × Bool) y : α c : Bool r : reduce L1 = (y, c) :: tail h : ¬(x = y ∧ b = !c) H : (x, b) :: (y, c) :: tail = [] ++ (x', b') :: (x', !b') :: L3 ⊢ p [PROOFSTEP] injections [GOAL] case neg.nil α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α p : Prop x : α b : Bool L1 L3 : List (α × Bool) x' : α b' : Bool tail : List (α × Bool) y : α c : Bool r : reduce L1 = (y, c) :: tail h : ¬(x = y ∧ b = !c) fst_eq✝¹ : x = x' snd_eq✝¹ : b = b' tail_eq✝ : tail = L3 fst_eq✝ : y = x' snd_eq✝ : c = !b' ⊢ p [PROOFSTEP] subst_vars [GOAL] case neg.nil α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α p : Prop L1 : List (α × Bool) b' : Bool tail : List (α × Bool) y : α r : reduce L1 = (y, !b') :: tail h : ¬(y = y ∧ b' = !!b') ⊢ p [PROOFSTEP] simp at h [GOAL] case neg.cons α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α p : Prop x : α b : Bool L1 L3 : List (α × Bool) x' : α b' : Bool tail : List (α × Bool) y : α c : Bool r : reduce L1 = (y, c) :: tail h : ¬(x = y ∧ b = !c) a : α × Bool L2 : List (α × Bool) H : (x, b) :: (y, c) :: tail = a :: L2 ++ (x', b') :: (x', !b') :: L3 ⊢ p [PROOFSTEP] refine' @reduce.not _ L1 L2 L3 x' b' _ [GOAL] case neg.cons α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α p : Prop x : α b : Bool L1 L3 : List (α × Bool) x' : α b' : Bool tail : List (α × Bool) y : α c : Bool r : reduce L1 = (y, c) :: tail h : ¬(x = y ∧ b = !c) a : α × Bool L2 : List (α × Bool) H : (x, b) :: (y, c) :: tail = a :: L2 ++ (x', b') :: (x', !b') :: L3 ⊢ reduce L1 = L2 ++ (x', b') :: (x', !b') :: L3 [PROOFSTEP] injection H with _ H [GOAL] case neg.cons α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α p : Prop x : α b : Bool L1 L3 : List (α × Bool) x' : α b' : Bool tail : List (α × Bool) y : α c : Bool r : reduce L1 = (y, c) :: tail h : ¬(x = y ∧ b = !c) a : α × Bool L2 : List (α × Bool) head_eq✝ : (x, b) = a H : (y, c) :: tail = List.append L2 ((x', b') :: (x', !b') :: L3) ⊢ reduce L1 = L2 ++ (x', b') :: (x', !b') :: L3 [PROOFSTEP] rw [r, H] [GOAL] case neg.cons α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α p : Prop x : α b : Bool L1 L3 : List (α × Bool) x' : α b' : Bool tail : List (α × Bool) y : α c : Bool r : reduce L1 = (y, c) :: tail h : ¬(x = y ∧ b = !c) a : α × Bool L2 : List (α × Bool) head_eq✝ : (x, b) = a H : (y, c) :: tail = List.append L2 ((x', b') :: (x', !b') :: L3) ⊢ List.append L2 ((x', b') :: (x', !b') :: L3) = L2 ++ (x', b') :: (x', !b') :: L3 [PROOFSTEP] rfl [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α H : Red (reduce L₁) L₂ ⊢ reduce L₁ = L₂ [PROOFSTEP] induction' H with L1 L' L2 H1 H2 ih [GOAL] case refl α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α ⊢ reduce L₁ = reduce L₁ [PROOFSTEP] rfl [GOAL] case tail α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α L1 L' : List (α × Bool) L2 : ReflTransGen Red.Step (reduce L₁) L1 H1 : Red.Step L1 L' H2 : reduce L₁ = L1 ⊢ reduce L₁ = L' [PROOFSTEP] cases' H1 with L4 L5 x b [GOAL] case tail.not α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α L4 L5 : List (α × Bool) x : α b : Bool L2 : ReflTransGen Red.Step (reduce L₁) (L4 ++ (x, b) :: (x, !b) :: L5) H2 : reduce L₁ = L4 ++ (x, b) :: (x, !b) :: L5 ⊢ reduce L₁ = L4 ++ L5 [PROOFSTEP] exact reduce.not H2 [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α ⊢ ∀ {x : FreeGroup α}, mk (toWord x) = x [PROOFSTEP] rintro ⟨L⟩ [GOAL] case mk α : Type u L✝ L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α x✝ : FreeGroup α L : List (α × Bool) ⊢ mk (toWord (Quot.mk Red.Step L)) = Quot.mk Red.Step L [PROOFSTEP] exact reduce.self [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α ⊢ Function.Injective toWord [PROOFSTEP] rintro ⟨L₁⟩ ⟨L₂⟩ [GOAL] case mk.mk α : Type u L L₁✝ L₂✝ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α a₁✝ : FreeGroup α L₁ : List (α × Bool) a₂✝ : FreeGroup α L₂ : List (α × Bool) ⊢ toWord (Quot.mk Red.Step L₁) = toWord (Quot.mk Red.Step L₂) → Quot.mk Red.Step L₁ = Quot.mk Red.Step L₂ [PROOFSTEP] exact reduce.exact [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α ⊢ ∀ (x : FreeGroup α), reduce (toWord x) = toWord x [PROOFSTEP] rintro ⟨L⟩ [GOAL] case mk α : Type u L✝ L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α x✝ : FreeGroup α L : List (α × Bool) ⊢ reduce (toWord (Quot.mk Red.Step L)) = toWord (Quot.mk Red.Step L) [PROOFSTEP] exact reduce.idem [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α w : List (α × Bool) ⊢ reduce (invRev w) = invRev (reduce w) [PROOFSTEP] apply reduce.min [GOAL] case H α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α w : List (α × Bool) ⊢ Red (reduce (invRev w)) (invRev (reduce w)) [PROOFSTEP] rw [← red_invRev_iff, invRev_invRev] [GOAL] case H α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α w : List (α × Bool) ⊢ Red (invRev (reduce (invRev w))) (reduce w) [PROOFSTEP] apply Red.reduce_left [GOAL] case H.h α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α w : List (α × Bool) ⊢ Red w (invRev (reduce (invRev w))) [PROOFSTEP] have : Red (invRev (invRev w)) (invRev (reduce (invRev w))) := reduce.red.invRev [GOAL] case H.h α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α w : List (α × Bool) this : Red (invRev (invRev w)) (invRev (reduce (invRev w))) ⊢ Red w (invRev (reduce (invRev w))) [PROOFSTEP] rwa [invRev_invRev] at this [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α x : FreeGroup α ⊢ toWord x⁻¹ = invRev (toWord x) [PROOFSTEP] rcases x with ⟨L⟩ [GOAL] case mk α : Type u L✝ L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α x : FreeGroup α L : List (α × Bool) ⊢ toWord (Quot.mk Red.Step L)⁻¹ = invRev (toWord (Quot.mk Red.Step L)) [PROOFSTEP] rw [quot_mk_eq_mk, inv_mk, toWord_mk, toWord_mk, reduce_invRev] [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α x : FreeGroup α ⊢ norm x⁻¹ = norm x [PROOFSTEP] simp only [norm, toWord_inv, invRev_length] [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α x : FreeGroup α ⊢ norm x = 0 ↔ x = 1 [PROOFSTEP] simp only [norm, List.length_eq_zero, toWord_eq_nil_iff] [GOAL] α : Type u L L₁ L₂ L₃ L₄ : List (α × Bool) inst✝ : DecidableEq α x y : FreeGroup α ⊢ norm (x * y) = norm (mk (toWord x ++ toWord y)) [PROOFSTEP] rw [← mul_mk, mk_toWord, mk_toWord]
{"mathlib_filename": "Mathlib.GroupTheory.FreeGroup", "llama_tokens": 56005}
[GOAL] X : Type u_1 x : X ⊢ AddMonoidHom.comp toFreeAbelianGroup (singleAddHom x) = ↑(AddMonoidHom.flip (smulAddHom ℤ (FreeAbelianGroup X))) (of x) [PROOFSTEP] ext [GOAL] case h1 X : Type u_1 x : X ⊢ ↑(AddMonoidHom.comp toFreeAbelianGroup (singleAddHom x)) 1 = ↑(↑(AddMonoidHom.flip (smulAddHom ℤ (FreeAbelianGroup X))) (of x)) 1 [PROOFSTEP] simp only [AddMonoidHom.coe_comp, Finsupp.singleAddHom_apply, Function.comp_apply, one_smul, toFreeAbelianGroup, Finsupp.liftAddHom_apply_single] [GOAL] X : Type u_1 ⊢ AddMonoidHom.comp toFinsupp toFreeAbelianGroup = AddMonoidHom.id (X →₀ ℤ) [PROOFSTEP] ext x y [GOAL] case H.h1.h X : Type u_1 x y : X ⊢ ↑(↑(AddMonoidHom.comp (AddMonoidHom.comp toFinsupp toFreeAbelianGroup) (singleAddHom x)) 1) y = ↑(↑(AddMonoidHom.comp (AddMonoidHom.id (X →₀ ℤ)) (singleAddHom x)) 1) y [PROOFSTEP] simp only [AddMonoidHom.id_comp] [GOAL] case H.h1.h X : Type u_1 x y : X ⊢ ↑(↑(AddMonoidHom.comp (AddMonoidHom.comp toFinsupp toFreeAbelianGroup) (singleAddHom x)) 1) y = ↑(↑(singleAddHom x) 1) y [PROOFSTEP] rw [AddMonoidHom.comp_assoc, Finsupp.toFreeAbelianGroup_comp_singleAddHom] [GOAL] case H.h1.h X : Type u_1 x y : X ⊢ ↑(↑(AddMonoidHom.comp toFinsupp (↑(AddMonoidHom.flip (smulAddHom ℤ (FreeAbelianGroup X))) (of x))) 1) y = ↑(↑(singleAddHom x) 1) y [PROOFSTEP] simp only [toFinsupp, AddMonoidHom.coe_comp, Finsupp.singleAddHom_apply, Function.comp_apply, one_smul, lift.of, AddMonoidHom.flip_apply, smulAddHom_apply, AddMonoidHom.id_apply] [GOAL] X : Type u_1 ⊢ AddMonoidHom.comp toFreeAbelianGroup toFinsupp = AddMonoidHom.id (FreeAbelianGroup X) [PROOFSTEP] ext [GOAL] case H X : Type u_1 x✝ : X ⊢ ↑(AddMonoidHom.comp toFreeAbelianGroup toFinsupp) (of x✝) = ↑(AddMonoidHom.id (FreeAbelianGroup X)) (of x✝) [PROOFSTEP] rw [toFreeAbelianGroup, toFinsupp, AddMonoidHom.comp_apply, lift.of, liftAddHom_apply_single, AddMonoidHom.flip_apply, smulAddHom_apply, one_smul, AddMonoidHom.id_apply] [GOAL] X✝ : Type u_1 X : Type u_2 x : FreeAbelianGroup X ⊢ ↑toFreeAbelianGroup (↑toFinsupp x) = x [PROOFSTEP] rw [← AddMonoidHom.comp_apply, Finsupp.toFreeAbelianGroup_comp_toFinsupp, AddMonoidHom.id_apply] [GOAL] X : Type u_1 x : X ⊢ ↑toFinsupp (of x) = single x 1 [PROOFSTEP] simp only [toFinsupp, lift.of] [GOAL] X : Type u_1 f : X →₀ ℤ ⊢ ↑toFinsupp (↑toFreeAbelianGroup f) = f [PROOFSTEP] rw [← AddMonoidHom.comp_apply, toFinsupp_comp_toFreeAbelianGroup, AddMonoidHom.id_apply] [GOAL] X : Type u_1 x : X a : FreeAbelianGroup X ⊢ x ∈ support a ↔ ↑(coeff x) a ≠ 0 [PROOFSTEP] rw [support, Finsupp.mem_support_iff] [GOAL] X : Type u_1 x : X a : FreeAbelianGroup X ⊢ ↑(↑toFinsupp a) x ≠ 0 ↔ ↑(coeff x) a ≠ 0 [PROOFSTEP] exact Iff.rfl [GOAL] X : Type u_1 x : X a : FreeAbelianGroup X ⊢ ¬x ∈ support a ↔ ↑(coeff x) a = 0 [PROOFSTEP] rw [support, Finsupp.not_mem_support_iff] [GOAL] X : Type u_1 x : X a : FreeAbelianGroup X ⊢ ↑(↑toFinsupp a) x = 0 ↔ ↑(coeff x) a = 0 [PROOFSTEP] exact Iff.rfl [GOAL] X : Type u_1 ⊢ support 0 = ∅ [PROOFSTEP] simp only [support, Finsupp.support_zero, AddMonoidHom.map_zero] [GOAL] X : Type u_1 x : X ⊢ support (of x) = {x} [PROOFSTEP] rw [support, toFinsupp_of, Finsupp.support_single_ne_zero _ one_ne_zero] [GOAL] X : Type u_1 a : FreeAbelianGroup X ⊢ support (-a) = support a [PROOFSTEP] simp only [support, AddMonoidHom.map_neg, Finsupp.support_neg] [GOAL] X : Type u_1 k : ℤ h : k ≠ 0 a : FreeAbelianGroup X ⊢ support (k • a) = support a [PROOFSTEP] ext x [GOAL] case a X : Type u_1 k : ℤ h : k ≠ 0 a : FreeAbelianGroup X x : X ⊢ x ∈ support (k • a) ↔ x ∈ support a [PROOFSTEP] simp only [mem_support_iff, AddMonoidHom.map_zsmul] [GOAL] case a X : Type u_1 k : ℤ h : k ≠ 0 a : FreeAbelianGroup X x : X ⊢ k • ↑(coeff x) a ≠ 0 ↔ ↑(coeff x) a ≠ 0 [PROOFSTEP] simp only [h, zsmul_int_int, false_or_iff, Ne.def, mul_eq_zero] [GOAL] X : Type u_1 k : ℕ h : k ≠ 0 a : FreeAbelianGroup X ⊢ support (k • a) = support a [PROOFSTEP] apply support_zsmul k _ a [GOAL] X : Type u_1 k : ℕ h : k ≠ 0 a : FreeAbelianGroup X ⊢ ↑k ≠ 0 [PROOFSTEP] exact_mod_cast h [GOAL] X : Type u_1 a b : FreeAbelianGroup X ⊢ support (a + b) ⊆ support a ∪ support b [PROOFSTEP] simp only [support, AddMonoidHom.map_add] [GOAL] X : Type u_1 a b : FreeAbelianGroup X ⊢ (↑toFinsupp a + ↑toFinsupp b).support ⊆ (↑toFinsupp a).support ∪ (↑toFinsupp b).support [PROOFSTEP] apply Finsupp.support_add
{"mathlib_filename": "Mathlib.GroupTheory.FreeAbelianGroupFinsupp", "llama_tokens": 2091}
[GOAL] M : Type u_1 N : Type u_2 P : Type u_3 α : Type u_4 β : Type u_5 γ : Type u_6 inst✝³ : SMul M α inst✝² : SMul M β inst✝¹ : SMul N α inst✝ : SMul N β a : M b : α c : β x : α ⊕ β ⊢ swap (a • x) = a • swap x [PROOFSTEP] cases x [GOAL] case inl M : Type u_1 N : Type u_2 P : Type u_3 α : Type u_4 β : Type u_5 γ : Type u_6 inst✝³ : SMul M α inst✝² : SMul M β inst✝¹ : SMul N α inst✝ : SMul N β a : M b : α c : β val✝ : α ⊢ swap (a • inl val✝) = a • swap (inl val✝) [PROOFSTEP] rfl [GOAL] case inr M : Type u_1 N : Type u_2 P : Type u_3 α : Type u_4 β : Type u_5 γ : Type u_6 inst✝³ : SMul M α inst✝² : SMul M β inst✝¹ : SMul N α inst✝ : SMul N β a : M b : α c val✝ : β ⊢ swap (a • inr val✝) = a • swap (inr val✝) [PROOFSTEP] rfl [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 α : Type u_4 β : Type u_5 γ : Type u_6 inst✝⁶ : SMul M α inst✝⁵ : SMul M β inst✝⁴ : SMul N α inst✝³ : SMul N β a✝ : M b✝ : α c : β x✝ : α ⊕ β inst✝² : SMul M N inst✝¹ : IsScalarTower M N α inst✝ : IsScalarTower M N β a : M b : N x : α ⊕ β ⊢ (a • b) • x = a • b • x [PROOFSTEP] cases x [GOAL] case inl M : Type u_1 N : Type u_2 P : Type u_3 α : Type u_4 β : Type u_5 γ : Type u_6 inst✝⁶ : SMul M α inst✝⁵ : SMul M β inst✝⁴ : SMul N α inst✝³ : SMul N β a✝ : M b✝ : α c : β x : α ⊕ β inst✝² : SMul M N inst✝¹ : IsScalarTower M N α inst✝ : IsScalarTower M N β a : M b : N val✝ : α ⊢ (a • b) • inl val✝ = a • b • inl val✝ case inr M : Type u_1 N : Type u_2 P : Type u_3 α : Type u_4 β : Type u_5 γ : Type u_6 inst✝⁶ : SMul M α inst✝⁵ : SMul M β inst✝⁴ : SMul N α inst✝³ : SMul N β a✝ : M b✝ : α c : β x : α ⊕ β inst✝² : SMul M N inst✝¹ : IsScalarTower M N α inst✝ : IsScalarTower M N β a : M b : N val✝ : β ⊢ (a • b) • inr val✝ = a • b • inr val✝ [PROOFSTEP] exacts [congr_arg inl (smul_assoc _ _ _), congr_arg inr (smul_assoc _ _ _)] [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 α : Type u_4 β : Type u_5 γ : Type u_6 inst✝⁵ : SMul M α inst✝⁴ : SMul M β inst✝³ : SMul N α inst✝² : SMul N β a✝ : M b✝ : α c : β x✝ : α ⊕ β inst✝¹ : SMulCommClass M N α inst✝ : SMulCommClass M N β a : M b : N x : α ⊕ β ⊢ a • b • x = b • a • x [PROOFSTEP] cases x [GOAL] case inl M : Type u_1 N : Type u_2 P : Type u_3 α : Type u_4 β : Type u_5 γ : Type u_6 inst✝⁵ : SMul M α inst✝⁴ : SMul M β inst✝³ : SMul N α inst✝² : SMul N β a✝ : M b✝ : α c : β x : α ⊕ β inst✝¹ : SMulCommClass M N α inst✝ : SMulCommClass M N β a : M b : N val✝ : α ⊢ a • b • inl val✝ = b • a • inl val✝ case inr M : Type u_1 N : Type u_2 P : Type u_3 α : Type u_4 β : Type u_5 γ : Type u_6 inst✝⁵ : SMul M α inst✝⁴ : SMul M β inst✝³ : SMul N α inst✝² : SMul N β a✝ : M b✝ : α c : β x : α ⊕ β inst✝¹ : SMulCommClass M N α inst✝ : SMulCommClass M N β a : M b : N val✝ : β ⊢ a • b • inr val✝ = b • a • inr val✝ [PROOFSTEP] exacts [congr_arg inl (smul_comm _ _ _), congr_arg inr (smul_comm _ _ _)] [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 α : Type u_4 β : Type u_5 γ : Type u_6 inst✝⁷ : SMul M α inst✝⁶ : SMul M β inst✝⁵ : SMul N α inst✝⁴ : SMul N β a✝ : M b : α c : β x✝ : α ⊕ β inst✝³ : SMul Mᵐᵒᵖ α inst✝² : SMul Mᵐᵒᵖ β inst✝¹ : IsCentralScalar M α inst✝ : IsCentralScalar M β a : M x : α ⊕ β ⊢ MulOpposite.op a • x = a • x [PROOFSTEP] cases x [GOAL] case inl M : Type u_1 N : Type u_2 P : Type u_3 α : Type u_4 β : Type u_5 γ : Type u_6 inst✝⁷ : SMul M α inst✝⁶ : SMul M β inst✝⁵ : SMul N α inst✝⁴ : SMul N β a✝ : M b : α c : β x : α ⊕ β inst✝³ : SMul Mᵐᵒᵖ α inst✝² : SMul Mᵐᵒᵖ β inst✝¹ : IsCentralScalar M α inst✝ : IsCentralScalar M β a : M val✝ : α ⊢ MulOpposite.op a • inl val✝ = a • inl val✝ case inr M : Type u_1 N : Type u_2 P : Type u_3 α : Type u_4 β : Type u_5 γ : Type u_6 inst✝⁷ : SMul M α inst✝⁶ : SMul M β inst✝⁵ : SMul N α inst✝⁴ : SMul N β a✝ : M b : α c : β x : α ⊕ β inst✝³ : SMul Mᵐᵒᵖ α inst✝² : SMul Mᵐᵒᵖ β inst✝¹ : IsCentralScalar M α inst✝ : IsCentralScalar M β a : M val✝ : β ⊢ MulOpposite.op a • inr val✝ = a • inr val✝ [PROOFSTEP] exacts [congr_arg inl (op_smul_eq_smul _ _), congr_arg inr (op_smul_eq_smul _ _)] [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 α : Type u_4 β : Type u_5 γ : Type u_6 inst✝⁴ : SMul M α inst✝³ : SMul M β inst✝² : SMul N α inst✝¹ : SMul N β a✝ : M b : α c : β x : α ⊕ β inst✝ : FaithfulSMul M α m₁✝ m₂✝ : M h : ∀ (a : α ⊕ β), m₁✝ • a = m₂✝ • a a : α ⊢ m₁✝ • a = m₂✝ • a [PROOFSTEP] injection h (inl a) [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 α : Type u_4 β : Type u_5 γ : Type u_6 inst✝⁴ : SMul M α inst✝³ : SMul M β inst✝² : SMul N α inst✝¹ : SMul N β a : M b✝ : α c : β x : α ⊕ β inst✝ : FaithfulSMul M β m₁✝ m₂✝ : M h : ∀ (a : α ⊕ β), m₁✝ • a = m₂✝ • a b : β ⊢ m₁✝ • b = m₂✝ • b [PROOFSTEP] injection h (inr b) [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 α : Type u_4 β : Type u_5 γ : Type u_6 m : Monoid M inst✝¹ : MulAction M α inst✝ : MulAction M β x : α ⊕ β ⊢ 1 • x = x [PROOFSTEP] cases x [GOAL] case inl M : Type u_1 N : Type u_2 P : Type u_3 α : Type u_4 β : Type u_5 γ : Type u_6 m : Monoid M inst✝¹ : MulAction M α inst✝ : MulAction M β val✝ : α ⊢ 1 • inl val✝ = inl val✝ case inr M : Type u_1 N : Type u_2 P : Type u_3 α : Type u_4 β : Type u_5 γ : Type u_6 m : Monoid M inst✝¹ : MulAction M α inst✝ : MulAction M β val✝ : β ⊢ 1 • inr val✝ = inr val✝ [PROOFSTEP] exacts [congr_arg inl (one_smul _ _), congr_arg inr (one_smul _ _)] [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 α : Type u_4 β : Type u_5 γ : Type u_6 m : Monoid M inst✝¹ : MulAction M α inst✝ : MulAction M β a b : M x : α ⊕ β ⊢ (a * b) • x = a • b • x [PROOFSTEP] cases x [GOAL] case inl M : Type u_1 N : Type u_2 P : Type u_3 α : Type u_4 β : Type u_5 γ : Type u_6 m : Monoid M inst✝¹ : MulAction M α inst✝ : MulAction M β a b : M val✝ : α ⊢ (a * b) • inl val✝ = a • b • inl val✝ case inr M : Type u_1 N : Type u_2 P : Type u_3 α : Type u_4 β : Type u_5 γ : Type u_6 m : Monoid M inst✝¹ : MulAction M α inst✝ : MulAction M β a b : M val✝ : β ⊢ (a * b) • inr val✝ = a • b • inr val✝ [PROOFSTEP] exacts [congr_arg inl (mul_smul _ _ _), congr_arg inr (mul_smul _ _ _)]
{"mathlib_filename": "Mathlib.GroupTheory.GroupAction.Sum", "llama_tokens": 3571}
[GOAL] G : Type u_1 inst✝ : Group G H : Subgroup G ⊢ Commensurable H H [PROOFSTEP] simp [Commensurable] [GOAL] G : Type u_1 inst✝ : Group G H K : Subgroup G g : ConjAct G a b : { x // x ∈ K } ⊢ Setoid.r a b ↔ Setoid.r (↑(Subgroup.equivSMul g K).toEquiv a) (↑(Subgroup.equivSMul g K).toEquiv b) [PROOFSTEP] dsimp [GOAL] G : Type u_1 inst✝ : Group G H K : Subgroup G g : ConjAct G a b : { x // x ∈ K } ⊢ Setoid.r a b ↔ Setoid.r (↑(Subgroup.equivSMul g K) a) (↑(Subgroup.equivSMul g K) b) [PROOFSTEP] rw [← Quotient.eq'', ← Quotient.eq'', QuotientGroup.eq', QuotientGroup.eq', Subgroup.mem_subgroupOf, Subgroup.mem_subgroupOf, ← MulEquiv.map_inv, ← MulEquiv.map_mul, Subgroup.equivSMul_apply_coe] [GOAL] G : Type u_1 inst✝ : Group G H K : Subgroup G g : ConjAct G a b : { x // x ∈ K } ⊢ ↑(a⁻¹ * b) ∈ H ↔ g • ↑(a⁻¹ * b) ∈ g • H [PROOFSTEP] exact Subgroup.smul_mem_pointwise_smul_iff.symm [GOAL] G : Type u_1 inst✝ : Group G H : Subgroup G g : ConjAct G ⊢ Commensurable (g • H) H ↔ Commensurable H (g⁻¹ • H) [PROOFSTEP] rw [commensurable_conj, inv_smul_smul] [GOAL] G : Type u_1 inst✝ : Group G H : Subgroup G a✝ b✝ : ConjAct G ha : a✝ ∈ {g | Commensurable (g • H) H} hb : b✝ ∈ {g | Commensurable (g • H) H} ⊢ a✝ * b✝ ∈ {g | Commensurable (g • H) H} [PROOFSTEP] rw [Set.mem_setOf_eq, mul_smul] [GOAL] G : Type u_1 inst✝ : Group G H : Subgroup G a✝ b✝ : ConjAct G ha : a✝ ∈ {g | Commensurable (g • H) H} hb : b✝ ∈ {g | Commensurable (g • H) H} ⊢ Commensurable (a✝ • b✝ • H) H [PROOFSTEP] exact trans ((commensurable_conj _).mp hb) ha [GOAL] G : Type u_1 inst✝ : Group G H : Subgroup G ⊢ 1 ∈ { carrier := {g | Commensurable (g • H) H}, mul_mem' := (_ : ∀ {a b : ConjAct G}, a ∈ {g | Commensurable (g • H) H} → b ∈ {g | Commensurable (g • H) H} → a * b ∈ {g | Commensurable (g • H) H}) }.carrier [PROOFSTEP] rw [Set.mem_setOf_eq, one_smul] [GOAL] G : Type u_1 inst✝ : Group G H : Subgroup G x✝¹ : ConjAct G x✝ : x✝¹ ∈ { toSubsemigroup := { carrier := {g | Commensurable (g • H) H}, mul_mem' := (_ : ∀ {a b : ConjAct G}, a ∈ {g | Commensurable (g • H) H} → b ∈ {g | Commensurable (g • H) H} → a * b ∈ {g | Commensurable (g • H) H}) }, one_mem' := (_ : 1 ∈ { carrier := {g | Commensurable (g • H) H}, mul_mem' := (_ : ∀ {a b : ConjAct G}, a ∈ {g | Commensurable (g • H) H} → b ∈ {g | Commensurable (g • H) H} → a * b ∈ {g | Commensurable (g • H) H}) }.carrier) }.toSubsemigroup.carrier ⊢ x✝¹⁻¹ ∈ { toSubsemigroup := { carrier := {g | Commensurable (g • H) H}, mul_mem' := (_ : ∀ {a b : ConjAct G}, a ∈ {g | Commensurable (g • H) H} → b ∈ {g | Commensurable (g • H) H} → a * b ∈ {g | Commensurable (g • H) H}) }, one_mem' := (_ : 1 ∈ { carrier := {g | Commensurable (g • H) H}, mul_mem' := (_ : ∀ {a b : ConjAct G}, a ∈ {g | Commensurable (g • H) H} → b ∈ {g | Commensurable (g • H) H} → a * b ∈ {g | Commensurable (g • H) H}) }.carrier) }.toSubsemigroup.carrier [PROOFSTEP] rwa [Set.mem_setOf_eq, comm, ← commensurable_inv]
{"mathlib_filename": "Mathlib.GroupTheory.Commensurable", "llama_tokens": 1535}
[GOAL] G : Type u_1 inst✝ : Group G ι : Type u_2 s : Finset ι f : ι → G comm : Set.Pairwise ↑s fun a b => Commute (f a) (f b) K : ι → Subgroup G hind : CompleteLattice.Independent K hmem : ∀ (x : ι), x ∈ s → f x ∈ K x heq1 : Finset.noncommProd s f comm = 1 ⊢ ∀ (i : ι), i ∈ s → f i = 1 [PROOFSTEP] classical revert heq1 induction' s using Finset.induction_on with i s hnmem ih · simp · have hcomm := comm.mono (Finset.coe_subset.2 <| Finset.subset_insert _ _) simp only [Finset.forall_mem_insert] at hmem have hmem_bsupr : s.noncommProd f hcomm ∈ ⨆ i ∈ (s : Set ι), K i := by refine' Subgroup.noncommProd_mem _ _ _ intro x hx have : K x ≤ ⨆ i ∈ (s : Set ι), K i := le_iSup₂ (f := fun i _ => K i) x hx exact this (hmem.2 x hx) intro heq1 rw [Finset.noncommProd_insert_of_not_mem _ _ _ _ hnmem] at heq1 have hnmem' : i ∉ (s : Set ι) := by simpa obtain ⟨heq1i : f i = 1, heq1S : s.noncommProd f _ = 1⟩ := Subgroup.disjoint_iff_mul_eq_one.mp (hind.disjoint_biSup hnmem') hmem.1 hmem_bsupr heq1 intro i h simp only [Finset.mem_insert] at h rcases h with (rfl | h) · exact heq1i · refine' ih hcomm hmem.2 heq1S _ h [GOAL] G : Type u_1 inst✝ : Group G ι : Type u_2 s : Finset ι f : ι → G comm : Set.Pairwise ↑s fun a b => Commute (f a) (f b) K : ι → Subgroup G hind : CompleteLattice.Independent K hmem : ∀ (x : ι), x ∈ s → f x ∈ K x heq1 : Finset.noncommProd s f comm = 1 ⊢ ∀ (i : ι), i ∈ s → f i = 1 [PROOFSTEP] revert heq1 [GOAL] G : Type u_1 inst✝ : Group G ι : Type u_2 s : Finset ι f : ι → G comm : Set.Pairwise ↑s fun a b => Commute (f a) (f b) K : ι → Subgroup G hind : CompleteLattice.Independent K hmem : ∀ (x : ι), x ∈ s → f x ∈ K x ⊢ Finset.noncommProd s f comm = 1 → ∀ (i : ι), i ∈ s → f i = 1 [PROOFSTEP] induction' s using Finset.induction_on with i s hnmem ih [GOAL] case empty G : Type u_1 inst✝ : Group G ι : Type u_2 s : Finset ι f : ι → G comm✝ : Set.Pairwise ↑s fun a b => Commute (f a) (f b) K : ι → Subgroup G hind : CompleteLattice.Independent K hmem✝ : ∀ (x : ι), x ∈ s → f x ∈ K x comm : Set.Pairwise ↑∅ fun a b => Commute (f a) (f b) hmem : ∀ (x : ι), x ∈ ∅ → f x ∈ K x ⊢ Finset.noncommProd ∅ f comm = 1 → ∀ (i : ι), i ∈ ∅ → f i = 1 [PROOFSTEP] simp [GOAL] case insert G : Type u_1 inst✝ : Group G ι : Type u_2 s✝ : Finset ι f : ι → G comm✝ : Set.Pairwise ↑s✝ fun a b => Commute (f a) (f b) K : ι → Subgroup G hind : CompleteLattice.Independent K hmem✝ : ∀ (x : ι), x ∈ s✝ → f x ∈ K x i : ι s : Finset ι hnmem : ¬i ∈ s ih : ∀ (comm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)), (∀ (x : ι), x ∈ s → f x ∈ K x) → Finset.noncommProd s f comm = 1 → ∀ (i : ι), i ∈ s → f i = 1 comm : Set.Pairwise ↑(insert i s) fun a b => Commute (f a) (f b) hmem : ∀ (x : ι), x ∈ insert i s → f x ∈ K x ⊢ Finset.noncommProd (insert i s) f comm = 1 → ∀ (i_1 : ι), i_1 ∈ insert i s → f i_1 = 1 [PROOFSTEP] have hcomm := comm.mono (Finset.coe_subset.2 <| Finset.subset_insert _ _) [GOAL] case insert G : Type u_1 inst✝ : Group G ι : Type u_2 s✝ : Finset ι f : ι → G comm✝ : Set.Pairwise ↑s✝ fun a b => Commute (f a) (f b) K : ι → Subgroup G hind : CompleteLattice.Independent K hmem✝ : ∀ (x : ι), x ∈ s✝ → f x ∈ K x i : ι s : Finset ι hnmem : ¬i ∈ s ih : ∀ (comm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)), (∀ (x : ι), x ∈ s → f x ∈ K x) → Finset.noncommProd s f comm = 1 → ∀ (i : ι), i ∈ s → f i = 1 comm : Set.Pairwise ↑(insert i s) fun a b => Commute (f a) (f b) hmem : ∀ (x : ι), x ∈ insert i s → f x ∈ K x hcomm : Set.Pairwise ↑s fun a b => Commute (f a) (f b) ⊢ Finset.noncommProd (insert i s) f comm = 1 → ∀ (i_1 : ι), i_1 ∈ insert i s → f i_1 = 1 [PROOFSTEP] simp only [Finset.forall_mem_insert] at hmem [GOAL] case insert G : Type u_1 inst✝ : Group G ι : Type u_2 s✝ : Finset ι f : ι → G comm✝ : Set.Pairwise ↑s✝ fun a b => Commute (f a) (f b) K : ι → Subgroup G hind : CompleteLattice.Independent K hmem✝ : ∀ (x : ι), x ∈ s✝ → f x ∈ K x i : ι s : Finset ι hnmem : ¬i ∈ s ih : ∀ (comm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)), (∀ (x : ι), x ∈ s → f x ∈ K x) → Finset.noncommProd s f comm = 1 → ∀ (i : ι), i ∈ s → f i = 1 comm : Set.Pairwise ↑(insert i s) fun a b => Commute (f a) (f b) hcomm : Set.Pairwise ↑s fun a b => Commute (f a) (f b) hmem : f i ∈ K i ∧ ∀ (x : ι), x ∈ s → f x ∈ K x ⊢ Finset.noncommProd (insert i s) f comm = 1 → ∀ (i_1 : ι), i_1 ∈ insert i s → f i_1 = 1 [PROOFSTEP] have hmem_bsupr : s.noncommProd f hcomm ∈ ⨆ i ∈ (s : Set ι), K i := by refine' Subgroup.noncommProd_mem _ _ _ intro x hx have : K x ≤ ⨆ i ∈ (s : Set ι), K i := le_iSup₂ (f := fun i _ => K i) x hx exact this (hmem.2 x hx) [GOAL] G : Type u_1 inst✝ : Group G ι : Type u_2 s✝ : Finset ι f : ι → G comm✝ : Set.Pairwise ↑s✝ fun a b => Commute (f a) (f b) K : ι → Subgroup G hind : CompleteLattice.Independent K hmem✝ : ∀ (x : ι), x ∈ s✝ → f x ∈ K x i : ι s : Finset ι hnmem : ¬i ∈ s ih : ∀ (comm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)), (∀ (x : ι), x ∈ s → f x ∈ K x) → Finset.noncommProd s f comm = 1 → ∀ (i : ι), i ∈ s → f i = 1 comm : Set.Pairwise ↑(insert i s) fun a b => Commute (f a) (f b) hcomm : Set.Pairwise ↑s fun a b => Commute (f a) (f b) hmem : f i ∈ K i ∧ ∀ (x : ι), x ∈ s → f x ∈ K x ⊢ Finset.noncommProd s f hcomm ∈ ⨆ (i : ι) (_ : i ∈ ↑s), K i [PROOFSTEP] refine' Subgroup.noncommProd_mem _ _ _ [GOAL] G : Type u_1 inst✝ : Group G ι : Type u_2 s✝ : Finset ι f : ι → G comm✝ : Set.Pairwise ↑s✝ fun a b => Commute (f a) (f b) K : ι → Subgroup G hind : CompleteLattice.Independent K hmem✝ : ∀ (x : ι), x ∈ s✝ → f x ∈ K x i : ι s : Finset ι hnmem : ¬i ∈ s ih : ∀ (comm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)), (∀ (x : ι), x ∈ s → f x ∈ K x) → Finset.noncommProd s f comm = 1 → ∀ (i : ι), i ∈ s → f i = 1 comm : Set.Pairwise ↑(insert i s) fun a b => Commute (f a) (f b) hcomm : Set.Pairwise ↑s fun a b => Commute (f a) (f b) hmem : f i ∈ K i ∧ ∀ (x : ι), x ∈ s → f x ∈ K x ⊢ ∀ (c : ι), c ∈ s → f c ∈ ⨆ (i : ι) (_ : i ∈ ↑s), K i [PROOFSTEP] intro x hx [GOAL] G : Type u_1 inst✝ : Group G ι : Type u_2 s✝ : Finset ι f : ι → G comm✝ : Set.Pairwise ↑s✝ fun a b => Commute (f a) (f b) K : ι → Subgroup G hind : CompleteLattice.Independent K hmem✝ : ∀ (x : ι), x ∈ s✝ → f x ∈ K x i : ι s : Finset ι hnmem : ¬i ∈ s ih : ∀ (comm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)), (∀ (x : ι), x ∈ s → f x ∈ K x) → Finset.noncommProd s f comm = 1 → ∀ (i : ι), i ∈ s → f i = 1 comm : Set.Pairwise ↑(insert i s) fun a b => Commute (f a) (f b) hcomm : Set.Pairwise ↑s fun a b => Commute (f a) (f b) hmem : f i ∈ K i ∧ ∀ (x : ι), x ∈ s → f x ∈ K x x : ι hx : x ∈ s ⊢ f x ∈ ⨆ (i : ι) (_ : i ∈ ↑s), K i [PROOFSTEP] have : K x ≤ ⨆ i ∈ (s : Set ι), K i := le_iSup₂ (f := fun i _ => K i) x hx [GOAL] G : Type u_1 inst✝ : Group G ι : Type u_2 s✝ : Finset ι f : ι → G comm✝ : Set.Pairwise ↑s✝ fun a b => Commute (f a) (f b) K : ι → Subgroup G hind : CompleteLattice.Independent K hmem✝ : ∀ (x : ι), x ∈ s✝ → f x ∈ K x i : ι s : Finset ι hnmem : ¬i ∈ s ih : ∀ (comm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)), (∀ (x : ι), x ∈ s → f x ∈ K x) → Finset.noncommProd s f comm = 1 → ∀ (i : ι), i ∈ s → f i = 1 comm : Set.Pairwise ↑(insert i s) fun a b => Commute (f a) (f b) hcomm : Set.Pairwise ↑s fun a b => Commute (f a) (f b) hmem : f i ∈ K i ∧ ∀ (x : ι), x ∈ s → f x ∈ K x x : ι hx : x ∈ s this : K x ≤ ⨆ (i : ι) (_ : i ∈ ↑s), K i ⊢ f x ∈ ⨆ (i : ι) (_ : i ∈ ↑s), K i [PROOFSTEP] exact this (hmem.2 x hx) [GOAL] case insert G : Type u_1 inst✝ : Group G ι : Type u_2 s✝ : Finset ι f : ι → G comm✝ : Set.Pairwise ↑s✝ fun a b => Commute (f a) (f b) K : ι → Subgroup G hind : CompleteLattice.Independent K hmem✝ : ∀ (x : ι), x ∈ s✝ → f x ∈ K x i : ι s : Finset ι hnmem : ¬i ∈ s ih : ∀ (comm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)), (∀ (x : ι), x ∈ s → f x ∈ K x) → Finset.noncommProd s f comm = 1 → ∀ (i : ι), i ∈ s → f i = 1 comm : Set.Pairwise ↑(insert i s) fun a b => Commute (f a) (f b) hcomm : Set.Pairwise ↑s fun a b => Commute (f a) (f b) hmem : f i ∈ K i ∧ ∀ (x : ι), x ∈ s → f x ∈ K x hmem_bsupr : Finset.noncommProd s f hcomm ∈ ⨆ (i : ι) (_ : i ∈ ↑s), K i ⊢ Finset.noncommProd (insert i s) f comm = 1 → ∀ (i_1 : ι), i_1 ∈ insert i s → f i_1 = 1 [PROOFSTEP] intro heq1 [GOAL] case insert G : Type u_1 inst✝ : Group G ι : Type u_2 s✝ : Finset ι f : ι → G comm✝ : Set.Pairwise ↑s✝ fun a b => Commute (f a) (f b) K : ι → Subgroup G hind : CompleteLattice.Independent K hmem✝ : ∀ (x : ι), x ∈ s✝ → f x ∈ K x i : ι s : Finset ι hnmem : ¬i ∈ s ih : ∀ (comm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)), (∀ (x : ι), x ∈ s → f x ∈ K x) → Finset.noncommProd s f comm = 1 → ∀ (i : ι), i ∈ s → f i = 1 comm : Set.Pairwise ↑(insert i s) fun a b => Commute (f a) (f b) hcomm : Set.Pairwise ↑s fun a b => Commute (f a) (f b) hmem : f i ∈ K i ∧ ∀ (x : ι), x ∈ s → f x ∈ K x hmem_bsupr : Finset.noncommProd s f hcomm ∈ ⨆ (i : ι) (_ : i ∈ ↑s), K i heq1 : Finset.noncommProd (insert i s) f comm = 1 ⊢ ∀ (i_1 : ι), i_1 ∈ insert i s → f i_1 = 1 [PROOFSTEP] rw [Finset.noncommProd_insert_of_not_mem _ _ _ _ hnmem] at heq1 [GOAL] case insert G : Type u_1 inst✝ : Group G ι : Type u_2 s✝ : Finset ι f : ι → G comm✝ : Set.Pairwise ↑s✝ fun a b => Commute (f a) (f b) K : ι → Subgroup G hind : CompleteLattice.Independent K hmem✝ : ∀ (x : ι), x ∈ s✝ → f x ∈ K x i : ι s : Finset ι hnmem : ¬i ∈ s ih : ∀ (comm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)), (∀ (x : ι), x ∈ s → f x ∈ K x) → Finset.noncommProd s f comm = 1 → ∀ (i : ι), i ∈ s → f i = 1 comm : Set.Pairwise ↑(insert i s) fun a b => Commute (f a) (f b) hcomm : Set.Pairwise ↑s fun a b => Commute (f a) (f b) hmem : f i ∈ K i ∧ ∀ (x : ι), x ∈ s → f x ∈ K x hmem_bsupr : Finset.noncommProd s f hcomm ∈ ⨆ (i : ι) (_ : i ∈ ↑s), K i heq1 : f i * Finset.noncommProd s f (_ : Set.Pairwise ↑s fun a b => Commute (f a) (f b)) = 1 ⊢ ∀ (i_1 : ι), i_1 ∈ insert i s → f i_1 = 1 [PROOFSTEP] have hnmem' : i ∉ (s : Set ι) := by simpa [GOAL] G : Type u_1 inst✝ : Group G ι : Type u_2 s✝ : Finset ι f : ι → G comm✝ : Set.Pairwise ↑s✝ fun a b => Commute (f a) (f b) K : ι → Subgroup G hind : CompleteLattice.Independent K hmem✝ : ∀ (x : ι), x ∈ s✝ → f x ∈ K x i : ι s : Finset ι hnmem : ¬i ∈ s ih : ∀ (comm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)), (∀ (x : ι), x ∈ s → f x ∈ K x) → Finset.noncommProd s f comm = 1 → ∀ (i : ι), i ∈ s → f i = 1 comm : Set.Pairwise ↑(insert i s) fun a b => Commute (f a) (f b) hcomm : Set.Pairwise ↑s fun a b => Commute (f a) (f b) hmem : f i ∈ K i ∧ ∀ (x : ι), x ∈ s → f x ∈ K x hmem_bsupr : Finset.noncommProd s f hcomm ∈ ⨆ (i : ι) (_ : i ∈ ↑s), K i heq1 : f i * Finset.noncommProd s f (_ : Set.Pairwise ↑s fun a b => Commute (f a) (f b)) = 1 ⊢ ¬i ∈ ↑s [PROOFSTEP] simpa [GOAL] case insert G : Type u_1 inst✝ : Group G ι : Type u_2 s✝ : Finset ι f : ι → G comm✝ : Set.Pairwise ↑s✝ fun a b => Commute (f a) (f b) K : ι → Subgroup G hind : CompleteLattice.Independent K hmem✝ : ∀ (x : ι), x ∈ s✝ → f x ∈ K x i : ι s : Finset ι hnmem : ¬i ∈ s ih : ∀ (comm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)), (∀ (x : ι), x ∈ s → f x ∈ K x) → Finset.noncommProd s f comm = 1 → ∀ (i : ι), i ∈ s → f i = 1 comm : Set.Pairwise ↑(insert i s) fun a b => Commute (f a) (f b) hcomm : Set.Pairwise ↑s fun a b => Commute (f a) (f b) hmem : f i ∈ K i ∧ ∀ (x : ι), x ∈ s → f x ∈ K x hmem_bsupr : Finset.noncommProd s f hcomm ∈ ⨆ (i : ι) (_ : i ∈ ↑s), K i heq1 : f i * Finset.noncommProd s f (_ : Set.Pairwise ↑s fun a b => Commute (f a) (f b)) = 1 hnmem' : ¬i ∈ ↑s ⊢ ∀ (i_1 : ι), i_1 ∈ insert i s → f i_1 = 1 [PROOFSTEP] obtain ⟨heq1i : f i = 1, heq1S : s.noncommProd f _ = 1⟩ := Subgroup.disjoint_iff_mul_eq_one.mp (hind.disjoint_biSup hnmem') hmem.1 hmem_bsupr heq1 [GOAL] case insert.intro G : Type u_1 inst✝ : Group G ι : Type u_2 s✝ : Finset ι f : ι → G comm✝ : Set.Pairwise ↑s✝ fun a b => Commute (f a) (f b) K : ι → Subgroup G hind : CompleteLattice.Independent K hmem✝ : ∀ (x : ι), x ∈ s✝ → f x ∈ K x i : ι s : Finset ι hnmem : ¬i ∈ s ih : ∀ (comm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)), (∀ (x : ι), x ∈ s → f x ∈ K x) → Finset.noncommProd s f comm = 1 → ∀ (i : ι), i ∈ s → f i = 1 comm : Set.Pairwise ↑(insert i s) fun a b => Commute (f a) (f b) hcomm : Set.Pairwise ↑s fun a b => Commute (f a) (f b) hmem : f i ∈ K i ∧ ∀ (x : ι), x ∈ s → f x ∈ K x hmem_bsupr : Finset.noncommProd s f hcomm ∈ ⨆ (i : ι) (_ : i ∈ ↑s), K i heq1 : f i * Finset.noncommProd s f (_ : Set.Pairwise ↑s fun a b => Commute (f a) (f b)) = 1 hnmem' : ¬i ∈ ↑s heq1i : f i = 1 heq1S : Finset.noncommProd s f hcomm = 1 ⊢ ∀ (i_1 : ι), i_1 ∈ insert i s → f i_1 = 1 [PROOFSTEP] intro i h [GOAL] case insert.intro G : Type u_1 inst✝ : Group G ι : Type u_2 s✝ : Finset ι f : ι → G comm✝ : Set.Pairwise ↑s✝ fun a b => Commute (f a) (f b) K : ι → Subgroup G hind : CompleteLattice.Independent K hmem✝ : ∀ (x : ι), x ∈ s✝ → f x ∈ K x i✝ : ι s : Finset ι hnmem : ¬i✝ ∈ s ih : ∀ (comm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)), (∀ (x : ι), x ∈ s → f x ∈ K x) → Finset.noncommProd s f comm = 1 → ∀ (i : ι), i ∈ s → f i = 1 comm : Set.Pairwise ↑(insert i✝ s) fun a b => Commute (f a) (f b) hcomm : Set.Pairwise ↑s fun a b => Commute (f a) (f b) hmem : f i✝ ∈ K i✝ ∧ ∀ (x : ι), x ∈ s → f x ∈ K x hmem_bsupr : Finset.noncommProd s f hcomm ∈ ⨆ (i : ι) (_ : i ∈ ↑s), K i heq1 : f i✝ * Finset.noncommProd s f (_ : Set.Pairwise ↑s fun a b => Commute (f a) (f b)) = 1 hnmem' : ¬i✝ ∈ ↑s heq1i : f i✝ = 1 heq1S : Finset.noncommProd s f hcomm = 1 i : ι h : i ∈ insert i✝ s ⊢ f i = 1 [PROOFSTEP] simp only [Finset.mem_insert] at h [GOAL] case insert.intro G : Type u_1 inst✝ : Group G ι : Type u_2 s✝ : Finset ι f : ι → G comm✝ : Set.Pairwise ↑s✝ fun a b => Commute (f a) (f b) K : ι → Subgroup G hind : CompleteLattice.Independent K hmem✝ : ∀ (x : ι), x ∈ s✝ → f x ∈ K x i✝ : ι s : Finset ι hnmem : ¬i✝ ∈ s ih : ∀ (comm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)), (∀ (x : ι), x ∈ s → f x ∈ K x) → Finset.noncommProd s f comm = 1 → ∀ (i : ι), i ∈ s → f i = 1 comm : Set.Pairwise ↑(insert i✝ s) fun a b => Commute (f a) (f b) hcomm : Set.Pairwise ↑s fun a b => Commute (f a) (f b) hmem : f i✝ ∈ K i✝ ∧ ∀ (x : ι), x ∈ s → f x ∈ K x hmem_bsupr : Finset.noncommProd s f hcomm ∈ ⨆ (i : ι) (_ : i ∈ ↑s), K i heq1 : f i✝ * Finset.noncommProd s f (_ : Set.Pairwise ↑s fun a b => Commute (f a) (f b)) = 1 hnmem' : ¬i✝ ∈ ↑s heq1i : f i✝ = 1 heq1S : Finset.noncommProd s f hcomm = 1 i : ι h : i = i✝ ∨ i ∈ s ⊢ f i = 1 [PROOFSTEP] rcases h with (rfl | h) [GOAL] case insert.intro.inl G : Type u_1 inst✝ : Group G ι : Type u_2 s✝ : Finset ι f : ι → G comm✝ : Set.Pairwise ↑s✝ fun a b => Commute (f a) (f b) K : ι → Subgroup G hind : CompleteLattice.Independent K hmem✝ : ∀ (x : ι), x ∈ s✝ → f x ∈ K x s : Finset ι ih : ∀ (comm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)), (∀ (x : ι), x ∈ s → f x ∈ K x) → Finset.noncommProd s f comm = 1 → ∀ (i : ι), i ∈ s → f i = 1 hcomm : Set.Pairwise ↑s fun a b => Commute (f a) (f b) hmem_bsupr : Finset.noncommProd s f hcomm ∈ ⨆ (i : ι) (_ : i ∈ ↑s), K i heq1S : Finset.noncommProd s f hcomm = 1 i : ι hnmem : ¬i ∈ s comm : Set.Pairwise ↑(insert i s) fun a b => Commute (f a) (f b) hmem : f i ∈ K i ∧ ∀ (x : ι), x ∈ s → f x ∈ K x heq1 : f i * Finset.noncommProd s f (_ : Set.Pairwise ↑s fun a b => Commute (f a) (f b)) = 1 hnmem' : ¬i ∈ ↑s heq1i : f i = 1 ⊢ f i = 1 [PROOFSTEP] exact heq1i [GOAL] case insert.intro.inr G : Type u_1 inst✝ : Group G ι : Type u_2 s✝ : Finset ι f : ι → G comm✝ : Set.Pairwise ↑s✝ fun a b => Commute (f a) (f b) K : ι → Subgroup G hind : CompleteLattice.Independent K hmem✝ : ∀ (x : ι), x ∈ s✝ → f x ∈ K x i✝ : ι s : Finset ι hnmem : ¬i✝ ∈ s ih : ∀ (comm : Set.Pairwise ↑s fun a b => Commute (f a) (f b)), (∀ (x : ι), x ∈ s → f x ∈ K x) → Finset.noncommProd s f comm = 1 → ∀ (i : ι), i ∈ s → f i = 1 comm : Set.Pairwise ↑(insert i✝ s) fun a b => Commute (f a) (f b) hcomm : Set.Pairwise ↑s fun a b => Commute (f a) (f b) hmem : f i✝ ∈ K i✝ ∧ ∀ (x : ι), x ∈ s → f x ∈ K x hmem_bsupr : Finset.noncommProd s f hcomm ∈ ⨆ (i : ι) (_ : i ∈ ↑s), K i heq1 : f i✝ * Finset.noncommProd s f (_ : Set.Pairwise ↑s fun a b => Commute (f a) (f b)) = 1 hnmem' : ¬i✝ ∈ ↑s heq1i : f i✝ = 1 heq1S : Finset.noncommProd s f hcomm = 1 i : ι h : i ∈ s ⊢ f i = 1 [PROOFSTEP] refine' ih hcomm hmem.2 heq1S _ h [GOAL] M : Type u_1 inst✝² : Monoid M ι : Type u_2 hdec : DecidableEq ι inst✝¹ : Fintype ι N : ι → Type u_3 inst✝ : (i : ι) → Monoid (N i) ϕ : (i : ι) → N i →* M hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f g : (i : ι) → N i ⊢ (fun f => Finset.noncommProd Finset.univ (fun i => ↑(ϕ i) (f i)) (_ : ∀ (i : ι), i ∈ ↑Finset.univ → ∀ (j : ι), j ∈ ↑Finset.univ → i ≠ j → Commute (↑(ϕ i) (f i)) (↑(ϕ j) (f j)))) 1 = 1 [PROOFSTEP] apply (Finset.noncommProd_eq_pow_card _ _ _ _ _).trans (one_pow _) [GOAL] M : Type u_1 inst✝² : Monoid M ι : Type u_2 hdec : DecidableEq ι inst✝¹ : Fintype ι N : ι → Type u_3 inst✝ : (i : ι) → Monoid (N i) ϕ : (i : ι) → N i →* M hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f g : (i : ι) → N i ⊢ ∀ (x : ι), x ∈ Finset.univ → ↑(ϕ x) (OfNat.ofNat 1 x) = 1 [PROOFSTEP] simp [GOAL] M : Type u_1 inst✝² : Monoid M ι : Type u_2 hdec : DecidableEq ι inst✝¹ : Fintype ι N : ι → Type u_3 inst✝ : (i : ι) → Monoid (N i) ϕ : (i : ι) → N i →* M hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f✝ g✝ f g : (i : ι) → N i ⊢ OneHom.toFun { toFun := fun f => Finset.noncommProd Finset.univ (fun i => ↑(ϕ i) (f i)) (_ : ∀ (i : ι), i ∈ ↑Finset.univ → ∀ (j : ι), j ∈ ↑Finset.univ → i ≠ j → Commute (↑(ϕ i) (f i)) (↑(ϕ j) (f j))), map_one' := (_ : Finset.noncommProd Finset.univ (fun i => ↑(ϕ i) (OfNat.ofNat 1 i)) (_ : ∀ (i : ι), i ∈ ↑Finset.univ → ∀ (j : ι), j ∈ ↑Finset.univ → i ≠ j → Commute (↑(ϕ i) (OfNat.ofNat 1 i)) (↑(ϕ j) (OfNat.ofNat 1 j))) = 1) } (f * g) = OneHom.toFun { toFun := fun f => Finset.noncommProd Finset.univ (fun i => ↑(ϕ i) (f i)) (_ : ∀ (i : ι), i ∈ ↑Finset.univ → ∀ (j : ι), j ∈ ↑Finset.univ → i ≠ j → Commute (↑(ϕ i) (f i)) (↑(ϕ j) (f j))), map_one' := (_ : Finset.noncommProd Finset.univ (fun i => ↑(ϕ i) (OfNat.ofNat 1 i)) (_ : ∀ (i : ι), i ∈ ↑Finset.univ → ∀ (j : ι), j ∈ ↑Finset.univ → i ≠ j → Commute (↑(ϕ i) (OfNat.ofNat 1 i)) (↑(ϕ j) (OfNat.ofNat 1 j))) = 1) } f * OneHom.toFun { toFun := fun f => Finset.noncommProd Finset.univ (fun i => ↑(ϕ i) (f i)) (_ : ∀ (i : ι), i ∈ ↑Finset.univ → ∀ (j : ι), j ∈ ↑Finset.univ → i ≠ j → Commute (↑(ϕ i) (f i)) (↑(ϕ j) (f j))), map_one' := (_ : Finset.noncommProd Finset.univ (fun i => ↑(ϕ i) (OfNat.ofNat 1 i)) (_ : ∀ (i : ι), i ∈ ↑Finset.univ → ∀ (j : ι), j ∈ ↑Finset.univ → i ≠ j → Commute (↑(ϕ i) (OfNat.ofNat 1 i)) (↑(ϕ j) (OfNat.ofNat 1 j))) = 1) } g [PROOFSTEP] classical simp only convert @Finset.noncommProd_mul_distrib _ _ _ _ (fun i => ϕ i (f i)) (fun i => ϕ i (g i)) _ _ _ · exact map_mul _ _ _ · rintro i - j - h exact hcomm h _ _ [GOAL] M : Type u_1 inst✝² : Monoid M ι : Type u_2 hdec : DecidableEq ι inst✝¹ : Fintype ι N : ι → Type u_3 inst✝ : (i : ι) → Monoid (N i) ϕ : (i : ι) → N i →* M hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f✝ g✝ f g : (i : ι) → N i ⊢ OneHom.toFun { toFun := fun f => Finset.noncommProd Finset.univ (fun i => ↑(ϕ i) (f i)) (_ : ∀ (i : ι), i ∈ ↑Finset.univ → ∀ (j : ι), j ∈ ↑Finset.univ → i ≠ j → Commute (↑(ϕ i) (f i)) (↑(ϕ j) (f j))), map_one' := (_ : Finset.noncommProd Finset.univ (fun i => ↑(ϕ i) (OfNat.ofNat 1 i)) (_ : ∀ (i : ι), i ∈ ↑Finset.univ → ∀ (j : ι), j ∈ ↑Finset.univ → i ≠ j → Commute (↑(ϕ i) (OfNat.ofNat 1 i)) (↑(ϕ j) (OfNat.ofNat 1 j))) = 1) } (f * g) = OneHom.toFun { toFun := fun f => Finset.noncommProd Finset.univ (fun i => ↑(ϕ i) (f i)) (_ : ∀ (i : ι), i ∈ ↑Finset.univ → ∀ (j : ι), j ∈ ↑Finset.univ → i ≠ j → Commute (↑(ϕ i) (f i)) (↑(ϕ j) (f j))), map_one' := (_ : Finset.noncommProd Finset.univ (fun i => ↑(ϕ i) (OfNat.ofNat 1 i)) (_ : ∀ (i : ι), i ∈ ↑Finset.univ → ∀ (j : ι), j ∈ ↑Finset.univ → i ≠ j → Commute (↑(ϕ i) (OfNat.ofNat 1 i)) (↑(ϕ j) (OfNat.ofNat 1 j))) = 1) } f * OneHom.toFun { toFun := fun f => Finset.noncommProd Finset.univ (fun i => ↑(ϕ i) (f i)) (_ : ∀ (i : ι), i ∈ ↑Finset.univ → ∀ (j : ι), j ∈ ↑Finset.univ → i ≠ j → Commute (↑(ϕ i) (f i)) (↑(ϕ j) (f j))), map_one' := (_ : Finset.noncommProd Finset.univ (fun i => ↑(ϕ i) (OfNat.ofNat 1 i)) (_ : ∀ (i : ι), i ∈ ↑Finset.univ → ∀ (j : ι), j ∈ ↑Finset.univ → i ≠ j → Commute (↑(ϕ i) (OfNat.ofNat 1 i)) (↑(ϕ j) (OfNat.ofNat 1 j))) = 1) } g [PROOFSTEP] simp only [GOAL] M : Type u_1 inst✝² : Monoid M ι : Type u_2 hdec : DecidableEq ι inst✝¹ : Fintype ι N : ι → Type u_3 inst✝ : (i : ι) → Monoid (N i) ϕ : (i : ι) → N i →* M hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f✝ g✝ f g : (i : ι) → N i ⊢ Finset.noncommProd Finset.univ (fun x => ↑(ϕ x) ((f * g) x)) (_ : ∀ (x : ι), x ∈ ↑Finset.univ → ∀ (y : ι), y ∈ ↑Finset.univ → x ≠ y → (fun a b => Commute (↑(ϕ a) ((f * g) a)) (↑(ϕ b) ((f * g) b))) x y) = Finset.noncommProd Finset.univ (fun x => ↑(ϕ x) (f x)) (_ : ∀ (x : ι), x ∈ ↑Finset.univ → ∀ (y : ι), y ∈ ↑Finset.univ → x ≠ y → (fun a b => Commute (↑(ϕ a) (f a)) (↑(ϕ b) (f b))) x y) * Finset.noncommProd Finset.univ (fun x => ↑(ϕ x) (g x)) (_ : ∀ (x : ι), x ∈ ↑Finset.univ → ∀ (y : ι), y ∈ ↑Finset.univ → x ≠ y → (fun a b => Commute (↑(ϕ a) (g a)) (↑(ϕ b) (g b))) x y) [PROOFSTEP] convert @Finset.noncommProd_mul_distrib _ _ _ _ (fun i => ϕ i (f i)) (fun i => ϕ i (g i)) _ _ _ [GOAL] case h.e'_2.h₂ M : Type u_1 inst✝² : Monoid M ι : Type u_2 hdec : DecidableEq ι inst✝¹ : Fintype ι N : ι → Type u_3 inst✝ : (i : ι) → Monoid (N i) ϕ : (i : ι) → N i →* M hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f✝ g✝ f g : (i : ι) → N i x✝ : ι a✝ : x✝ ∈ Finset.univ ⊢ ↑(ϕ x✝) ((f * g) x✝) = ((fun i => ↑(ϕ i) (f i)) * fun i => ↑(ϕ i) (g i)) x✝ [PROOFSTEP] exact map_mul _ _ _ [GOAL] case convert_4 M : Type u_1 inst✝² : Monoid M ι : Type u_2 hdec : DecidableEq ι inst✝¹ : Fintype ι N : ι → Type u_3 inst✝ : (i : ι) → Monoid (N i) ϕ : (i : ι) → N i →* M hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f✝ g✝ f g : (i : ι) → N i ⊢ Set.Pairwise ↑Finset.univ fun x y => Commute ((fun i => ↑(ϕ i) (g i)) x) ((fun i => ↑(ϕ i) (f i)) y) [PROOFSTEP] rintro i - j - h [GOAL] case convert_4 M : Type u_1 inst✝² : Monoid M ι : Type u_2 hdec : DecidableEq ι inst✝¹ : Fintype ι N : ι → Type u_3 inst✝ : (i : ι) → Monoid (N i) ϕ : (i : ι) → N i →* M hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f✝ g✝ f g : (i : ι) → N i i j : ι h : i ≠ j ⊢ Commute ((fun i => ↑(ϕ i) (g i)) i) ((fun i => ↑(ϕ i) (f i)) j) [PROOFSTEP] exact hcomm h _ _ [GOAL] M : Type u_1 inst✝² : Monoid M ι : Type u_2 hdec : DecidableEq ι inst✝¹ : Fintype ι N : ι → Type u_3 inst✝ : (i : ι) → Monoid (N i) ϕ : (i : ι) → N i →* M hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f g : (i : ι) → N i i : ι y : N i ⊢ ↑(noncommPiCoprod ϕ hcomm) (Pi.mulSingle i y) = ↑(ϕ i) y [PROOFSTEP] change Finset.univ.noncommProd (fun j => ϕ j (Pi.mulSingle i y j)) (fun _ _ _ _ h => hcomm h _ _) = ϕ i y [GOAL] M : Type u_1 inst✝² : Monoid M ι : Type u_2 hdec : DecidableEq ι inst✝¹ : Fintype ι N : ι → Type u_3 inst✝ : (i : ι) → Monoid (N i) ϕ : (i : ι) → N i →* M hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f g : (i : ι) → N i i : ι y : N i ⊢ Finset.noncommProd Finset.univ (fun j => ↑(ϕ j) (Pi.mulSingle i y j)) (_ : ∀ (x : ι), x ∈ ↑Finset.univ → ∀ (x_2 : ι), x_2 ∈ ↑Finset.univ → x ≠ x_2 → Commute (↑(ϕ x) (Pi.mulSingle i y x)) (↑(ϕ x_2) (Pi.mulSingle i y x_2))) = ↑(ϕ i) y [PROOFSTEP] simp (config := { singlePass := true }) only [← Finset.insert_erase (Finset.mem_univ i)] [GOAL] M : Type u_1 inst✝² : Monoid M ι : Type u_2 hdec : DecidableEq ι inst✝¹ : Fintype ι N : ι → Type u_3 inst✝ : (i : ι) → Monoid (N i) ϕ : (i : ι) → N i →* M hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f g : (i : ι) → N i i : ι y : N i ⊢ Finset.noncommProd (insert i (Finset.erase Finset.univ i)) (fun x => ↑(ϕ x) (Pi.mulSingle i y x)) (_ : ∀ (x : ι), x ∈ ↑(insert i (Finset.erase Finset.univ i)) → ∀ (y_1 : ι), y_1 ∈ ↑(insert i (Finset.erase Finset.univ i)) → x ≠ y_1 → (fun a b => Commute (↑(ϕ a) (Pi.mulSingle i y a)) (↑(ϕ b) (Pi.mulSingle i y b))) x y_1) = ↑(ϕ i) y [PROOFSTEP] rw [Finset.noncommProd_insert_of_not_mem _ _ _ _ (Finset.not_mem_erase i _)] [GOAL] M : Type u_1 inst✝² : Monoid M ι : Type u_2 hdec : DecidableEq ι inst✝¹ : Fintype ι N : ι → Type u_3 inst✝ : (i : ι) → Monoid (N i) ϕ : (i : ι) → N i →* M hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f g : (i : ι) → N i i : ι y : N i ⊢ ↑(ϕ i) (Pi.mulSingle i y i) * Finset.noncommProd (Finset.erase Finset.univ i) (fun x => ↑(ϕ x) (Pi.mulSingle i y x)) (_ : Set.Pairwise ↑(Finset.erase Finset.univ i) fun a b => Commute (↑(ϕ a) (Pi.mulSingle i y a)) (↑(ϕ b) (Pi.mulSingle i y b))) = ↑(ϕ i) y [PROOFSTEP] rw [Pi.mulSingle_eq_same] [GOAL] M : Type u_1 inst✝² : Monoid M ι : Type u_2 hdec : DecidableEq ι inst✝¹ : Fintype ι N : ι → Type u_3 inst✝ : (i : ι) → Monoid (N i) ϕ : (i : ι) → N i →* M hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f g : (i : ι) → N i i : ι y : N i ⊢ ↑(ϕ i) y * Finset.noncommProd (Finset.erase Finset.univ i) (fun x => ↑(ϕ x) (Pi.mulSingle i y x)) (_ : Set.Pairwise ↑(Finset.erase Finset.univ i) fun a b => Commute (↑(ϕ a) (Pi.mulSingle i y a)) (↑(ϕ b) (Pi.mulSingle i y b))) = ↑(ϕ i) y [PROOFSTEP] rw [Finset.noncommProd_eq_pow_card] [GOAL] M : Type u_1 inst✝² : Monoid M ι : Type u_2 hdec : DecidableEq ι inst✝¹ : Fintype ι N : ι → Type u_3 inst✝ : (i : ι) → Monoid (N i) ϕ : (i : ι) → N i →* M hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f g : (i : ι) → N i i : ι y : N i ⊢ ↑(ϕ i) y * ?m ^ Finset.card (Finset.erase Finset.univ i) = ↑(ϕ i) y [PROOFSTEP] rw [one_pow] [GOAL] M : Type u_1 inst✝² : Monoid M ι : Type u_2 hdec : DecidableEq ι inst✝¹ : Fintype ι N : ι → Type u_3 inst✝ : (i : ι) → Monoid (N i) ϕ : (i : ι) → N i →* M hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f g : (i : ι) → N i i : ι y : N i ⊢ ↑(ϕ i) y * 1 = ↑(ϕ i) y [PROOFSTEP] exact mul_one _ [GOAL] case h M : Type u_1 inst✝² : Monoid M ι : Type u_2 hdec : DecidableEq ι inst✝¹ : Fintype ι N : ι → Type u_3 inst✝ : (i : ι) → Monoid (N i) ϕ : (i : ι) → N i →* M hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f g : (i : ι) → N i i : ι y : N i ⊢ ∀ (x : ι), x ∈ Finset.erase Finset.univ i → ↑(ϕ x) (Pi.mulSingle i y x) = 1 [PROOFSTEP] intro j hj [GOAL] case h M : Type u_1 inst✝² : Monoid M ι : Type u_2 hdec : DecidableEq ι inst✝¹ : Fintype ι N : ι → Type u_3 inst✝ : (i : ι) → Monoid (N i) ϕ : (i : ι) → N i →* M hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f g : (i : ι) → N i i : ι y : N i j : ι hj : j ∈ Finset.erase Finset.univ i ⊢ ↑(ϕ j) (Pi.mulSingle i y j) = 1 [PROOFSTEP] simp only [Finset.mem_erase] at hj [GOAL] case h M : Type u_1 inst✝² : Monoid M ι : Type u_2 hdec : DecidableEq ι inst✝¹ : Fintype ι N : ι → Type u_3 inst✝ : (i : ι) → Monoid (N i) ϕ : (i : ι) → N i →* M hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f g : (i : ι) → N i i : ι y : N i j : ι hj : j ≠ i ∧ j ∈ Finset.univ ⊢ ↑(ϕ j) (Pi.mulSingle i y j) = 1 [PROOFSTEP] simp [hj] [GOAL] M : Type u_1 inst✝² : Monoid M ι : Type u_2 hdec : DecidableEq ι inst✝¹ : Fintype ι N : ι → Type u_3 inst✝ : (i : ι) → Monoid (N i) ϕ✝ : (i : ι) → N i →* M hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ✝ i) x) (↑(ϕ✝ j) y) f g : (i : ι) → N i ϕ : { ϕ // Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y) } ⊢ (fun f => { val := fun i => comp f (single N i), property := (_ : ∀ (i j : ι), i ≠ j → ∀ (x : N i) (y : N j), Commute (↑f (Pi.mulSingle i x)) (↑f (Pi.mulSingle j y))) }) ((fun ϕ => noncommPiCoprod ↑ϕ (_ : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(↑ϕ i) x) (↑(↑ϕ j) y))) ϕ) = ϕ [PROOFSTEP] ext [GOAL] case a.h.h M : Type u_1 inst✝² : Monoid M ι : Type u_2 hdec : DecidableEq ι inst✝¹ : Fintype ι N : ι → Type u_3 inst✝ : (i : ι) → Monoid (N i) ϕ✝ : (i : ι) → N i →* M hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ✝ i) x) (↑(ϕ✝ j) y) f g : (i : ι) → N i ϕ : { ϕ // Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y) } x✝¹ : ι x✝ : N x✝¹ ⊢ ↑(↑((fun f => { val := fun i => comp f (single N i), property := (_ : ∀ (i j : ι), i ≠ j → ∀ (x : N i) (y : N j), Commute (↑f (Pi.mulSingle i x)) (↑f (Pi.mulSingle j y))) }) ((fun ϕ => noncommPiCoprod ↑ϕ (_ : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(↑ϕ i) x) (↑(↑ϕ j) y))) ϕ)) x✝¹) x✝ = ↑(↑ϕ x✝¹) x✝ [PROOFSTEP] simp [GOAL] M : Type u_1 inst✝² : Monoid M ι : Type u_2 hdec : DecidableEq ι inst✝¹ : Fintype ι N : ι → Type u_3 inst✝ : (i : ι) → Monoid (N i) ϕ : (i : ι) → N i →* M hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f✝ g : (i : ι) → N i f : ((i : ι) → N i) →* M i : ι x : N i ⊢ ↑((fun ϕ => noncommPiCoprod ↑ϕ (_ : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(↑ϕ i) x) (↑(↑ϕ j) y))) ((fun f => { val := fun i => comp f (single N i), property := (_ : ∀ (i j : ι), i ≠ j → ∀ (x : N i) (y : N j), Commute (↑f (Pi.mulSingle i x)) (↑f (Pi.mulSingle j y))) }) f)) (Pi.mulSingle i x) = ↑f (Pi.mulSingle i x) [PROOFSTEP] simp [GOAL] M : Type u_1 inst✝² : Monoid M ι : Type u_2 hdec : DecidableEq ι inst✝¹ : Fintype ι N : ι → Type u_3 inst✝ : (i : ι) → Monoid (N i) ϕ : (i : ι) → N i →* M hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f g : (i : ι) → N i ⊢ mrange (noncommPiCoprod ϕ hcomm) = ⨆ (i : ι), mrange (ϕ i) [PROOFSTEP] classical apply le_antisymm · rintro x ⟨f, rfl⟩ refine Submonoid.noncommProd_mem _ _ _ (fun _ _ _ _ h => hcomm h _ _) (fun i _ => ?_) apply Submonoid.mem_sSup_of_mem · use i simp · refine' iSup_le _ rintro i x ⟨y, rfl⟩ refine' ⟨Pi.mulSingle i y, noncommPiCoprod_mulSingle _ _ _⟩ [GOAL] M : Type u_1 inst✝² : Monoid M ι : Type u_2 hdec : DecidableEq ι inst✝¹ : Fintype ι N : ι → Type u_3 inst✝ : (i : ι) → Monoid (N i) ϕ : (i : ι) → N i →* M hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f g : (i : ι) → N i ⊢ mrange (noncommPiCoprod ϕ hcomm) = ⨆ (i : ι), mrange (ϕ i) [PROOFSTEP] apply le_antisymm [GOAL] case a M : Type u_1 inst✝² : Monoid M ι : Type u_2 hdec : DecidableEq ι inst✝¹ : Fintype ι N : ι → Type u_3 inst✝ : (i : ι) → Monoid (N i) ϕ : (i : ι) → N i →* M hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f g : (i : ι) → N i ⊢ mrange (noncommPiCoprod ϕ hcomm) ≤ ⨆ (i : ι), mrange (ϕ i) [PROOFSTEP] rintro x ⟨f, rfl⟩ [GOAL] case a.intro M : Type u_1 inst✝² : Monoid M ι : Type u_2 hdec : DecidableEq ι inst✝¹ : Fintype ι N : ι → Type u_3 inst✝ : (i : ι) → Monoid (N i) ϕ : (i : ι) → N i →* M hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f✝ g f : (i : ι) → N i ⊢ ↑(noncommPiCoprod ϕ hcomm) f ∈ ⨆ (i : ι), mrange (ϕ i) [PROOFSTEP] refine Submonoid.noncommProd_mem _ _ _ (fun _ _ _ _ h => hcomm h _ _) (fun i _ => ?_) [GOAL] case a.intro M : Type u_1 inst✝² : Monoid M ι : Type u_2 hdec : DecidableEq ι inst✝¹ : Fintype ι N : ι → Type u_3 inst✝ : (i : ι) → Monoid (N i) ϕ : (i : ι) → N i →* M hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f✝ g f : (i : ι) → N i i : ι x✝ : i ∈ Finset.univ ⊢ ↑(ϕ i) (f i) ∈ ⨆ (i : ι), mrange (ϕ i) [PROOFSTEP] apply Submonoid.mem_sSup_of_mem [GOAL] case a.intro.hs M : Type u_1 inst✝² : Monoid M ι : Type u_2 hdec : DecidableEq ι inst✝¹ : Fintype ι N : ι → Type u_3 inst✝ : (i : ι) → Monoid (N i) ϕ : (i : ι) → N i →* M hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f✝ g f : (i : ι) → N i i : ι x✝ : i ∈ Finset.univ ⊢ ?a.intro.s✝ ∈ Set.range fun i => mrange (ϕ i) [PROOFSTEP] use i [GOAL] case a.intro.a M : Type u_1 inst✝² : Monoid M ι : Type u_2 hdec : DecidableEq ι inst✝¹ : Fintype ι N : ι → Type u_3 inst✝ : (i : ι) → Monoid (N i) ϕ : (i : ι) → N i →* M hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f✝ g f : (i : ι) → N i i : ι x✝ : i ∈ Finset.univ ⊢ ↑(ϕ i) (f i) ∈ (fun i => mrange (ϕ i)) i [PROOFSTEP] simp [GOAL] case a M : Type u_1 inst✝² : Monoid M ι : Type u_2 hdec : DecidableEq ι inst✝¹ : Fintype ι N : ι → Type u_3 inst✝ : (i : ι) → Monoid (N i) ϕ : (i : ι) → N i →* M hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f g : (i : ι) → N i ⊢ ⨆ (i : ι), mrange (ϕ i) ≤ mrange (noncommPiCoprod ϕ hcomm) [PROOFSTEP] refine' iSup_le _ [GOAL] case a M : Type u_1 inst✝² : Monoid M ι : Type u_2 hdec : DecidableEq ι inst✝¹ : Fintype ι N : ι → Type u_3 inst✝ : (i : ι) → Monoid (N i) ϕ : (i : ι) → N i →* M hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f g : (i : ι) → N i ⊢ ∀ (i : ι), mrange (ϕ i) ≤ mrange (noncommPiCoprod ϕ hcomm) [PROOFSTEP] rintro i x ⟨y, rfl⟩ [GOAL] case a.intro M : Type u_1 inst✝² : Monoid M ι : Type u_2 hdec : DecidableEq ι inst✝¹ : Fintype ι N : ι → Type u_3 inst✝ : (i : ι) → Monoid (N i) ϕ : (i : ι) → N i →* M hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f g : (i : ι) → N i i : ι y : N i ⊢ ↑(ϕ i) y ∈ mrange (noncommPiCoprod ϕ hcomm) [PROOFSTEP] refine' ⟨Pi.mulSingle i y, noncommPiCoprod_mulSingle _ _ _⟩ [GOAL] G : Type u_1 inst✝¹ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Type u_3 inst✝ : (i : ι) → Group (H i) ϕ : (i : ι) → H i →* G hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f g : (i : ι) → H i ⊢ range (noncommPiCoprod ϕ hcomm) = ⨆ (i : ι), range (ϕ i) [PROOFSTEP] classical apply le_antisymm · rintro x ⟨f, rfl⟩ refine Subgroup.noncommProd_mem _ (fun _ _ _ _ h => hcomm _ _ h _ _) ?_ intro i _hi apply Subgroup.mem_sSup_of_mem · use i simp · refine' iSup_le _ rintro i x ⟨y, rfl⟩ refine' ⟨Pi.mulSingle i y, noncommPiCoprod_mulSingle _ _ _⟩ [GOAL] G : Type u_1 inst✝¹ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Type u_3 inst✝ : (i : ι) → Group (H i) ϕ : (i : ι) → H i →* G hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f g : (i : ι) → H i ⊢ range (noncommPiCoprod ϕ hcomm) = ⨆ (i : ι), range (ϕ i) [PROOFSTEP] apply le_antisymm [GOAL] case a G : Type u_1 inst✝¹ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Type u_3 inst✝ : (i : ι) → Group (H i) ϕ : (i : ι) → H i →* G hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f g : (i : ι) → H i ⊢ range (noncommPiCoprod ϕ hcomm) ≤ ⨆ (i : ι), range (ϕ i) [PROOFSTEP] rintro x ⟨f, rfl⟩ [GOAL] case a.intro G : Type u_1 inst✝¹ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Type u_3 inst✝ : (i : ι) → Group (H i) ϕ : (i : ι) → H i →* G hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f✝ g f : (i : ι) → H i ⊢ ↑(noncommPiCoprod ϕ hcomm) f ∈ ⨆ (i : ι), range (ϕ i) [PROOFSTEP] refine Subgroup.noncommProd_mem _ (fun _ _ _ _ h => hcomm _ _ h _ _) ?_ [GOAL] case a.intro G : Type u_1 inst✝¹ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Type u_3 inst✝ : (i : ι) → Group (H i) ϕ : (i : ι) → H i →* G hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f✝ g f : (i : ι) → H i ⊢ ∀ (c : ι), c ∈ Finset.univ → ↑(ϕ c) (f c) ∈ ⨆ (i : ι), range (ϕ i) [PROOFSTEP] intro i _hi [GOAL] case a.intro G : Type u_1 inst✝¹ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Type u_3 inst✝ : (i : ι) → Group (H i) ϕ : (i : ι) → H i →* G hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f✝ g f : (i : ι) → H i i : ι _hi : i ∈ Finset.univ ⊢ ↑(ϕ i) (f i) ∈ ⨆ (i : ι), range (ϕ i) [PROOFSTEP] apply Subgroup.mem_sSup_of_mem [GOAL] case a.intro.hs G : Type u_1 inst✝¹ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Type u_3 inst✝ : (i : ι) → Group (H i) ϕ : (i : ι) → H i →* G hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f✝ g f : (i : ι) → H i i : ι _hi : i ∈ Finset.univ ⊢ ?a.intro.s✝ ∈ Set.range fun i => range (ϕ i) [PROOFSTEP] use i [GOAL] case a.intro.a G : Type u_1 inst✝¹ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Type u_3 inst✝ : (i : ι) → Group (H i) ϕ : (i : ι) → H i →* G hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f✝ g f : (i : ι) → H i i : ι _hi : i ∈ Finset.univ ⊢ ↑(ϕ i) (f i) ∈ (fun i => range (ϕ i)) i [PROOFSTEP] simp [GOAL] case a G : Type u_1 inst✝¹ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Type u_3 inst✝ : (i : ι) → Group (H i) ϕ : (i : ι) → H i →* G hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f g : (i : ι) → H i ⊢ ⨆ (i : ι), range (ϕ i) ≤ range (noncommPiCoprod ϕ hcomm) [PROOFSTEP] refine' iSup_le _ [GOAL] case a G : Type u_1 inst✝¹ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Type u_3 inst✝ : (i : ι) → Group (H i) ϕ : (i : ι) → H i →* G hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f g : (i : ι) → H i ⊢ ∀ (i : ι), range (ϕ i) ≤ range (noncommPiCoprod ϕ hcomm) [PROOFSTEP] rintro i x ⟨y, rfl⟩ [GOAL] case a.intro G : Type u_1 inst✝¹ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Type u_3 inst✝ : (i : ι) → Group (H i) ϕ : (i : ι) → H i →* G hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f g : (i : ι) → H i i : ι y : H i ⊢ ↑(ϕ i) y ∈ range (noncommPiCoprod ϕ hcomm) [PROOFSTEP] refine' ⟨Pi.mulSingle i y, noncommPiCoprod_mulSingle _ _ _⟩ [GOAL] G : Type u_1 inst✝¹ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Type u_3 inst✝ : (i : ι) → Group (H i) ϕ : (i : ι) → H i →* G hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f g : (i : ι) → H i hind : CompleteLattice.Independent fun i => range (ϕ i) hinj : ∀ (i : ι), Function.Injective ↑(ϕ i) ⊢ Function.Injective ↑(noncommPiCoprod ϕ hcomm) [PROOFSTEP] classical apply (MonoidHom.ker_eq_bot_iff _).mp apply eq_bot_iff.mpr intro f heq1 have : ∀ i, i ∈ Finset.univ → ϕ i (f i) = 1 := Subgroup.eq_one_of_noncommProd_eq_one_of_independent _ _ (fun _ _ _ _ h => hcomm _ _ h _ _) _ hind (by simp) heq1 ext i apply hinj simp [this i (Finset.mem_univ i)] [GOAL] G : Type u_1 inst✝¹ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Type u_3 inst✝ : (i : ι) → Group (H i) ϕ : (i : ι) → H i →* G hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f g : (i : ι) → H i hind : CompleteLattice.Independent fun i => range (ϕ i) hinj : ∀ (i : ι), Function.Injective ↑(ϕ i) ⊢ Function.Injective ↑(noncommPiCoprod ϕ hcomm) [PROOFSTEP] apply (MonoidHom.ker_eq_bot_iff _).mp [GOAL] G : Type u_1 inst✝¹ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Type u_3 inst✝ : (i : ι) → Group (H i) ϕ : (i : ι) → H i →* G hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f g : (i : ι) → H i hind : CompleteLattice.Independent fun i => range (ϕ i) hinj : ∀ (i : ι), Function.Injective ↑(ϕ i) ⊢ ker (noncommPiCoprod ϕ hcomm) = ⊥ [PROOFSTEP] apply eq_bot_iff.mpr [GOAL] G : Type u_1 inst✝¹ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Type u_3 inst✝ : (i : ι) → Group (H i) ϕ : (i : ι) → H i →* G hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f g : (i : ι) → H i hind : CompleteLattice.Independent fun i => range (ϕ i) hinj : ∀ (i : ι), Function.Injective ↑(ϕ i) ⊢ ker (noncommPiCoprod ϕ hcomm) ≤ ⊥ [PROOFSTEP] intro f heq1 [GOAL] G : Type u_1 inst✝¹ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Type u_3 inst✝ : (i : ι) → Group (H i) ϕ : (i : ι) → H i →* G hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f✝ g : (i : ι) → H i hind : CompleteLattice.Independent fun i => range (ϕ i) hinj : ∀ (i : ι), Function.Injective ↑(ϕ i) f : (i : ι) → H i heq1 : f ∈ ker (noncommPiCoprod ϕ hcomm) ⊢ f ∈ ⊥ [PROOFSTEP] have : ∀ i, i ∈ Finset.univ → ϕ i (f i) = 1 := Subgroup.eq_one_of_noncommProd_eq_one_of_independent _ _ (fun _ _ _ _ h => hcomm _ _ h _ _) _ hind (by simp) heq1 [GOAL] G : Type u_1 inst✝¹ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Type u_3 inst✝ : (i : ι) → Group (H i) ϕ : (i : ι) → H i →* G hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f✝ g : (i : ι) → H i hind : CompleteLattice.Independent fun i => range (ϕ i) hinj : ∀ (i : ι), Function.Injective ↑(ϕ i) f : (i : ι) → H i heq1 : f ∈ ker (noncommPiCoprod ϕ hcomm) ⊢ ∀ (x : ι), x ∈ Finset.univ → ↑(ϕ x) (f x) ∈ range (ϕ x) [PROOFSTEP] simp [GOAL] G : Type u_1 inst✝¹ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Type u_3 inst✝ : (i : ι) → Group (H i) ϕ : (i : ι) → H i →* G hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f✝ g : (i : ι) → H i hind : CompleteLattice.Independent fun i => range (ϕ i) hinj : ∀ (i : ι), Function.Injective ↑(ϕ i) f : (i : ι) → H i heq1 : f ∈ ker (noncommPiCoprod ϕ hcomm) this : ∀ (i : ι), i ∈ Finset.univ → ↑(ϕ i) (f i) = 1 ⊢ f ∈ ⊥ [PROOFSTEP] ext i [GOAL] case h G : Type u_1 inst✝¹ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Type u_3 inst✝ : (i : ι) → Group (H i) ϕ : (i : ι) → H i →* G hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f✝ g : (i : ι) → H i hind : CompleteLattice.Independent fun i => range (ϕ i) hinj : ∀ (i : ι), Function.Injective ↑(ϕ i) f : (i : ι) → H i heq1 : f ∈ ker (noncommPiCoprod ϕ hcomm) this : ∀ (i : ι), i ∈ Finset.univ → ↑(ϕ i) (f i) = 1 i : ι ⊢ f i = OfNat.ofNat 1 i [PROOFSTEP] apply hinj [GOAL] case h.a G : Type u_1 inst✝¹ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Type u_3 inst✝ : (i : ι) → Group (H i) ϕ : (i : ι) → H i →* G hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f✝ g : (i : ι) → H i hind : CompleteLattice.Independent fun i => range (ϕ i) hinj : ∀ (i : ι), Function.Injective ↑(ϕ i) f : (i : ι) → H i heq1 : f ∈ ker (noncommPiCoprod ϕ hcomm) this : ∀ (i : ι), i ∈ Finset.univ → ↑(ϕ i) (f i) = 1 i : ι ⊢ ↑(ϕ i) (f i) = ↑(ϕ i) (OfNat.ofNat 1 i) [PROOFSTEP] simp [this i (Finset.mem_univ i)] [GOAL] G : Type u_1 inst✝³ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Type u_3 inst✝² : (i : ι) → Group (H i) ϕ : (i : ι) → H i →* G hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f g : (i : ι) → H i inst✝¹ : Finite ι inst✝ : (i : ι) → Fintype (H i) hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j)) ⊢ CompleteLattice.Independent fun i => range (ϕ i) [PROOFSTEP] cases nonempty_fintype ι [GOAL] case intro G : Type u_1 inst✝³ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Type u_3 inst✝² : (i : ι) → Group (H i) ϕ : (i : ι) → H i →* G hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f g : (i : ι) → H i inst✝¹ : Finite ι inst✝ : (i : ι) → Fintype (H i) hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j)) val✝ : Fintype ι ⊢ CompleteLattice.Independent fun i => range (ϕ i) [PROOFSTEP] classical rintro i rw [disjoint_iff_inf_le] rintro f ⟨hxi, hxp⟩ dsimp at hxi hxp rw [iSup_subtype', ← noncommPiCoprod_range] at hxp rotate_left · intro _ _ hj apply hcomm exact hj ∘ Subtype.ext cases' hxp with g hgf cases' hxi with g' hg'f have hxi : orderOf f ∣ Fintype.card (H i) := by rw [← hg'f] exact (orderOf_map_dvd _ _).trans orderOf_dvd_card_univ have hxp : orderOf f ∣ ∏ j : { j // j ≠ i }, Fintype.card (H j) := by rw [← hgf, ← Fintype.card_pi] exact (orderOf_map_dvd _ _).trans orderOf_dvd_card_univ change f = 1 rw [← pow_one f, ← orderOf_dvd_iff_pow_eq_one] -- porting note: ouch, had to replace an ugly `convert` obtain ⟨c, hc⟩ := Nat.dvd_gcd hxp hxi use c rw [← hc] symm rw [← Nat.coprime_iff_gcd_eq_one] apply Nat.coprime_prod_left intro j _ apply hcoprime exact j.2 [GOAL] case intro G : Type u_1 inst✝³ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Type u_3 inst✝² : (i : ι) → Group (H i) ϕ : (i : ι) → H i →* G hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f g : (i : ι) → H i inst✝¹ : Finite ι inst✝ : (i : ι) → Fintype (H i) hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j)) val✝ : Fintype ι ⊢ CompleteLattice.Independent fun i => range (ϕ i) [PROOFSTEP] rintro i [GOAL] case intro G : Type u_1 inst✝³ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Type u_3 inst✝² : (i : ι) → Group (H i) ϕ : (i : ι) → H i →* G hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f g : (i : ι) → H i inst✝¹ : Finite ι inst✝ : (i : ι) → Fintype (H i) hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j)) val✝ : Fintype ι i : ι ⊢ Disjoint ((fun i => range (ϕ i)) i) (⨆ (j : ι) (_ : j ≠ i), (fun i => range (ϕ i)) j) [PROOFSTEP] rw [disjoint_iff_inf_le] [GOAL] case intro G : Type u_1 inst✝³ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Type u_3 inst✝² : (i : ι) → Group (H i) ϕ : (i : ι) → H i →* G hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f g : (i : ι) → H i inst✝¹ : Finite ι inst✝ : (i : ι) → Fintype (H i) hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j)) val✝ : Fintype ι i : ι ⊢ (fun i => range (ϕ i)) i ⊓ ⨆ (j : ι) (_ : j ≠ i), (fun i => range (ϕ i)) j ≤ ⊥ [PROOFSTEP] rintro f ⟨hxi, hxp⟩ [GOAL] case intro.intro G : Type u_1 inst✝³ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Type u_3 inst✝² : (i : ι) → Group (H i) ϕ : (i : ι) → H i →* G hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f✝ g : (i : ι) → H i inst✝¹ : Finite ι inst✝ : (i : ι) → Fintype (H i) hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j)) val✝ : Fintype ι i : ι f : G hxi : f ∈ ↑((fun i => range (ϕ i)) i).toSubmonoid hxp : f ∈ ↑(⨆ (j : ι) (_ : j ≠ i), (fun i => range (ϕ i)) j).toSubmonoid ⊢ f ∈ ⊥ [PROOFSTEP] dsimp at hxi hxp [GOAL] case intro.intro G : Type u_1 inst✝³ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Type u_3 inst✝² : (i : ι) → Group (H i) ϕ : (i : ι) → H i →* G hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f✝ g : (i : ι) → H i inst✝¹ : Finite ι inst✝ : (i : ι) → Fintype (H i) hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j)) val✝ : Fintype ι i : ι f : G hxi : f ∈ Set.range ↑(ϕ i) hxp : f ∈ ↑(⨆ (j : ι) (_ : ¬j = i), range (ϕ j)) ⊢ f ∈ ⊥ [PROOFSTEP] rw [iSup_subtype', ← noncommPiCoprod_range] at hxp [GOAL] case intro.intro G : Type u_1 inst✝³ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Type u_3 inst✝² : (i : ι) → Group (H i) ϕ : (i : ι) → H i →* G hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f✝ g : (i : ι) → H i inst✝¹ : Finite ι inst✝ : (i : ι) → Fintype (H i) hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j)) val✝ : Fintype ι i : ι f : G hxi : f ∈ Set.range ↑(ϕ i) hxp✝ : f ∈ ↑(⨆ (x : { j // ¬j = i }), range (ϕ ↑x)) hxp : f ∈ ↑(range (noncommPiCoprod (fun x => ϕ ↑x) ?intro.intro.hcomm)) ⊢ f ∈ ⊥ case intro.intro.hcomm G : Type u_1 inst✝³ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Type u_3 inst✝² : (i : ι) → Group (H i) ϕ : (i : ι) → H i →* G hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f✝ g : (i : ι) → H i inst✝¹ : Finite ι inst✝ : (i : ι) → Fintype (H i) hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j)) val✝ : Fintype ι i : ι f : G hxi : f ∈ Set.range ↑(ϕ i) hxp : f ∈ ↑(⨆ (x : { j // ¬j = i }), range (ϕ ↑x)) ⊢ ∀ (i_1 j : { j // ¬j = i }), i_1 ≠ j → ∀ (x : H ↑i_1) (y : H ↑j), Commute (↑(ϕ ↑i_1) x) (↑(ϕ ↑j) y) [PROOFSTEP] rotate_left [GOAL] case intro.intro.hcomm G : Type u_1 inst✝³ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Type u_3 inst✝² : (i : ι) → Group (H i) ϕ : (i : ι) → H i →* G hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f✝ g : (i : ι) → H i inst✝¹ : Finite ι inst✝ : (i : ι) → Fintype (H i) hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j)) val✝ : Fintype ι i : ι f : G hxi : f ∈ Set.range ↑(ϕ i) hxp : f ∈ ↑(⨆ (x : { j // ¬j = i }), range (ϕ ↑x)) ⊢ ∀ (i_1 j : { j // ¬j = i }), i_1 ≠ j → ∀ (x : H ↑i_1) (y : H ↑j), Commute (↑(ϕ ↑i_1) x) (↑(ϕ ↑j) y) [PROOFSTEP] intro _ _ hj [GOAL] case intro.intro.hcomm G : Type u_1 inst✝³ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Type u_3 inst✝² : (i : ι) → Group (H i) ϕ : (i : ι) → H i →* G hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f✝ g : (i : ι) → H i inst✝¹ : Finite ι inst✝ : (i : ι) → Fintype (H i) hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j)) val✝ : Fintype ι i : ι f : G hxi : f ∈ Set.range ↑(ϕ i) hxp : f ∈ ↑(⨆ (x : { j // ¬j = i }), range (ϕ ↑x)) i✝ j✝ : { j // ¬j = i } hj : i✝ ≠ j✝ ⊢ ∀ (x : H ↑i✝) (y : H ↑j✝), Commute (↑(ϕ ↑i✝) x) (↑(ϕ ↑j✝) y) [PROOFSTEP] apply hcomm [GOAL] case intro.intro.hcomm.a G : Type u_1 inst✝³ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Type u_3 inst✝² : (i : ι) → Group (H i) ϕ : (i : ι) → H i →* G hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f✝ g : (i : ι) → H i inst✝¹ : Finite ι inst✝ : (i : ι) → Fintype (H i) hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j)) val✝ : Fintype ι i : ι f : G hxi : f ∈ Set.range ↑(ϕ i) hxp : f ∈ ↑(⨆ (x : { j // ¬j = i }), range (ϕ ↑x)) i✝ j✝ : { j // ¬j = i } hj : i✝ ≠ j✝ ⊢ ↑i✝ ≠ ↑j✝ [PROOFSTEP] exact hj ∘ Subtype.ext [GOAL] case intro.intro G : Type u_1 inst✝³ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Type u_3 inst✝² : (i : ι) → Group (H i) ϕ : (i : ι) → H i →* G hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f✝ g : (i : ι) → H i inst✝¹ : Finite ι inst✝ : (i : ι) → Fintype (H i) hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j)) val✝ : Fintype ι i : ι f : G hxi : f ∈ Set.range ↑(ϕ i) hxp✝ : f ∈ ↑(⨆ (x : { j // ¬j = i }), range (ϕ ↑x)) hxp : f ∈ ↑(range (noncommPiCoprod (fun x => ϕ ↑x) (_ : ∀ (i_1 j : { j // ¬j = i }), i_1 ≠ j → ∀ (x : H ↑i_1) (y : H ↑j), Commute (↑(ϕ ↑i_1) x) (↑(ϕ ↑j) y)))) ⊢ f ∈ ⊥ [PROOFSTEP] cases' hxp with g hgf [GOAL] case intro.intro.intro G : Type u_1 inst✝³ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Type u_3 inst✝² : (i : ι) → Group (H i) ϕ : (i : ι) → H i →* G hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f✝ g✝ : (i : ι) → H i inst✝¹ : Finite ι inst✝ : (i : ι) → Fintype (H i) hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j)) val✝ : Fintype ι i : ι f : G hxi : f ∈ Set.range ↑(ϕ i) hxp : f ∈ ↑(⨆ (x : { j // ¬j = i }), range (ϕ ↑x)) g : (i_1 : { j // ¬j = i }) → H ↑i_1 hgf : ↑(noncommPiCoprod (fun x => ϕ ↑x) (_ : ∀ (i_1 j : { j // ¬j = i }), i_1 ≠ j → ∀ (x : H ↑i_1) (y : H ↑j), Commute (↑(ϕ ↑i_1) x) (↑(ϕ ↑j) y))) g = f ⊢ f ∈ ⊥ [PROOFSTEP] cases' hxi with g' hg'f [GOAL] case intro.intro.intro.intro G : Type u_1 inst✝³ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Type u_3 inst✝² : (i : ι) → Group (H i) ϕ : (i : ι) → H i →* G hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f✝ g✝ : (i : ι) → H i inst✝¹ : Finite ι inst✝ : (i : ι) → Fintype (H i) hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j)) val✝ : Fintype ι i : ι f : G hxp : f ∈ ↑(⨆ (x : { j // ¬j = i }), range (ϕ ↑x)) g : (i_1 : { j // ¬j = i }) → H ↑i_1 hgf : ↑(noncommPiCoprod (fun x => ϕ ↑x) (_ : ∀ (i_1 j : { j // ¬j = i }), i_1 ≠ j → ∀ (x : H ↑i_1) (y : H ↑j), Commute (↑(ϕ ↑i_1) x) (↑(ϕ ↑j) y))) g = f g' : H i hg'f : ↑(ϕ i) g' = f ⊢ f ∈ ⊥ [PROOFSTEP] have hxi : orderOf f ∣ Fintype.card (H i) := by rw [← hg'f] exact (orderOf_map_dvd _ _).trans orderOf_dvd_card_univ [GOAL] G : Type u_1 inst✝³ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Type u_3 inst✝² : (i : ι) → Group (H i) ϕ : (i : ι) → H i →* G hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f✝ g✝ : (i : ι) → H i inst✝¹ : Finite ι inst✝ : (i : ι) → Fintype (H i) hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j)) val✝ : Fintype ι i : ι f : G hxp : f ∈ ↑(⨆ (x : { j // ¬j = i }), range (ϕ ↑x)) g : (i_1 : { j // ¬j = i }) → H ↑i_1 hgf : ↑(noncommPiCoprod (fun x => ϕ ↑x) (_ : ∀ (i_1 j : { j // ¬j = i }), i_1 ≠ j → ∀ (x : H ↑i_1) (y : H ↑j), Commute (↑(ϕ ↑i_1) x) (↑(ϕ ↑j) y))) g = f g' : H i hg'f : ↑(ϕ i) g' = f ⊢ orderOf f ∣ Fintype.card (H i) [PROOFSTEP] rw [← hg'f] [GOAL] G : Type u_1 inst✝³ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Type u_3 inst✝² : (i : ι) → Group (H i) ϕ : (i : ι) → H i →* G hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f✝ g✝ : (i : ι) → H i inst✝¹ : Finite ι inst✝ : (i : ι) → Fintype (H i) hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j)) val✝ : Fintype ι i : ι f : G hxp : f ∈ ↑(⨆ (x : { j // ¬j = i }), range (ϕ ↑x)) g : (i_1 : { j // ¬j = i }) → H ↑i_1 hgf : ↑(noncommPiCoprod (fun x => ϕ ↑x) (_ : ∀ (i_1 j : { j // ¬j = i }), i_1 ≠ j → ∀ (x : H ↑i_1) (y : H ↑j), Commute (↑(ϕ ↑i_1) x) (↑(ϕ ↑j) y))) g = f g' : H i hg'f : ↑(ϕ i) g' = f ⊢ orderOf (↑(ϕ i) g') ∣ Fintype.card (H i) [PROOFSTEP] exact (orderOf_map_dvd _ _).trans orderOf_dvd_card_univ [GOAL] case intro.intro.intro.intro G : Type u_1 inst✝³ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Type u_3 inst✝² : (i : ι) → Group (H i) ϕ : (i : ι) → H i →* G hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f✝ g✝ : (i : ι) → H i inst✝¹ : Finite ι inst✝ : (i : ι) → Fintype (H i) hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j)) val✝ : Fintype ι i : ι f : G hxp : f ∈ ↑(⨆ (x : { j // ¬j = i }), range (ϕ ↑x)) g : (i_1 : { j // ¬j = i }) → H ↑i_1 hgf : ↑(noncommPiCoprod (fun x => ϕ ↑x) (_ : ∀ (i_1 j : { j // ¬j = i }), i_1 ≠ j → ∀ (x : H ↑i_1) (y : H ↑j), Commute (↑(ϕ ↑i_1) x) (↑(ϕ ↑j) y))) g = f g' : H i hg'f : ↑(ϕ i) g' = f hxi : orderOf f ∣ Fintype.card (H i) ⊢ f ∈ ⊥ [PROOFSTEP] have hxp : orderOf f ∣ ∏ j : { j // j ≠ i }, Fintype.card (H j) := by rw [← hgf, ← Fintype.card_pi] exact (orderOf_map_dvd _ _).trans orderOf_dvd_card_univ [GOAL] G : Type u_1 inst✝³ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Type u_3 inst✝² : (i : ι) → Group (H i) ϕ : (i : ι) → H i →* G hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f✝ g✝ : (i : ι) → H i inst✝¹ : Finite ι inst✝ : (i : ι) → Fintype (H i) hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j)) val✝ : Fintype ι i : ι f : G hxp : f ∈ ↑(⨆ (x : { j // ¬j = i }), range (ϕ ↑x)) g : (i_1 : { j // ¬j = i }) → H ↑i_1 hgf : ↑(noncommPiCoprod (fun x => ϕ ↑x) (_ : ∀ (i_1 j : { j // ¬j = i }), i_1 ≠ j → ∀ (x : H ↑i_1) (y : H ↑j), Commute (↑(ϕ ↑i_1) x) (↑(ϕ ↑j) y))) g = f g' : H i hg'f : ↑(ϕ i) g' = f hxi : orderOf f ∣ Fintype.card (H i) ⊢ orderOf f ∣ ∏ j : { j // j ≠ i }, Fintype.card (H ↑j) [PROOFSTEP] rw [← hgf, ← Fintype.card_pi] [GOAL] G : Type u_1 inst✝³ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Type u_3 inst✝² : (i : ι) → Group (H i) ϕ : (i : ι) → H i →* G hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f✝ g✝ : (i : ι) → H i inst✝¹ : Finite ι inst✝ : (i : ι) → Fintype (H i) hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j)) val✝ : Fintype ι i : ι f : G hxp : f ∈ ↑(⨆ (x : { j // ¬j = i }), range (ϕ ↑x)) g : (i_1 : { j // ¬j = i }) → H ↑i_1 hgf : ↑(noncommPiCoprod (fun x => ϕ ↑x) (_ : ∀ (i_1 j : { j // ¬j = i }), i_1 ≠ j → ∀ (x : H ↑i_1) (y : H ↑j), Commute (↑(ϕ ↑i_1) x) (↑(ϕ ↑j) y))) g = f g' : H i hg'f : ↑(ϕ i) g' = f hxi : orderOf f ∣ Fintype.card (H i) ⊢ orderOf (↑(noncommPiCoprod (fun x => ϕ ↑x) (_ : ∀ (i_1 j : { j // ¬j = i }), i_1 ≠ j → ∀ (x : H ↑i_1) (y : H ↑j), Commute (↑(ϕ ↑i_1) x) (↑(ϕ ↑j) y))) g) ∣ Fintype.card ((a : { j // j ≠ i }) → H ↑a) [PROOFSTEP] exact (orderOf_map_dvd _ _).trans orderOf_dvd_card_univ [GOAL] case intro.intro.intro.intro G : Type u_1 inst✝³ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Type u_3 inst✝² : (i : ι) → Group (H i) ϕ : (i : ι) → H i →* G hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f✝ g✝ : (i : ι) → H i inst✝¹ : Finite ι inst✝ : (i : ι) → Fintype (H i) hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j)) val✝ : Fintype ι i : ι f : G hxp✝ : f ∈ ↑(⨆ (x : { j // ¬j = i }), range (ϕ ↑x)) g : (i_1 : { j // ¬j = i }) → H ↑i_1 hgf : ↑(noncommPiCoprod (fun x => ϕ ↑x) (_ : ∀ (i_1 j : { j // ¬j = i }), i_1 ≠ j → ∀ (x : H ↑i_1) (y : H ↑j), Commute (↑(ϕ ↑i_1) x) (↑(ϕ ↑j) y))) g = f g' : H i hg'f : ↑(ϕ i) g' = f hxi : orderOf f ∣ Fintype.card (H i) hxp : orderOf f ∣ ∏ j : { j // j ≠ i }, Fintype.card (H ↑j) ⊢ f ∈ ⊥ [PROOFSTEP] change f = 1 [GOAL] case intro.intro.intro.intro G : Type u_1 inst✝³ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Type u_3 inst✝² : (i : ι) → Group (H i) ϕ : (i : ι) → H i →* G hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f✝ g✝ : (i : ι) → H i inst✝¹ : Finite ι inst✝ : (i : ι) → Fintype (H i) hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j)) val✝ : Fintype ι i : ι f : G hxp✝ : f ∈ ↑(⨆ (x : { j // ¬j = i }), range (ϕ ↑x)) g : (i_1 : { j // ¬j = i }) → H ↑i_1 hgf : ↑(noncommPiCoprod (fun x => ϕ ↑x) (_ : ∀ (i_1 j : { j // ¬j = i }), i_1 ≠ j → ∀ (x : H ↑i_1) (y : H ↑j), Commute (↑(ϕ ↑i_1) x) (↑(ϕ ↑j) y))) g = f g' : H i hg'f : ↑(ϕ i) g' = f hxi : orderOf f ∣ Fintype.card (H i) hxp : orderOf f ∣ ∏ j : { j // j ≠ i }, Fintype.card (H ↑j) ⊢ f = 1 [PROOFSTEP] rw [← pow_one f, ← orderOf_dvd_iff_pow_eq_one] -- porting note: ouch, had to replace an ugly `convert` [GOAL] case intro.intro.intro.intro G : Type u_1 inst✝³ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Type u_3 inst✝² : (i : ι) → Group (H i) ϕ : (i : ι) → H i →* G hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f✝ g✝ : (i : ι) → H i inst✝¹ : Finite ι inst✝ : (i : ι) → Fintype (H i) hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j)) val✝ : Fintype ι i : ι f : G hxp✝ : f ∈ ↑(⨆ (x : { j // ¬j = i }), range (ϕ ↑x)) g : (i_1 : { j // ¬j = i }) → H ↑i_1 hgf : ↑(noncommPiCoprod (fun x => ϕ ↑x) (_ : ∀ (i_1 j : { j // ¬j = i }), i_1 ≠ j → ∀ (x : H ↑i_1) (y : H ↑j), Commute (↑(ϕ ↑i_1) x) (↑(ϕ ↑j) y))) g = f g' : H i hg'f : ↑(ϕ i) g' = f hxi : orderOf f ∣ Fintype.card (H i) hxp : orderOf f ∣ ∏ j : { j // j ≠ i }, Fintype.card (H ↑j) ⊢ orderOf f ∣ 1 [PROOFSTEP] obtain ⟨c, hc⟩ := Nat.dvd_gcd hxp hxi [GOAL] case intro.intro.intro.intro.intro G : Type u_1 inst✝³ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Type u_3 inst✝² : (i : ι) → Group (H i) ϕ : (i : ι) → H i →* G hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f✝ g✝ : (i : ι) → H i inst✝¹ : Finite ι inst✝ : (i : ι) → Fintype (H i) hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j)) val✝ : Fintype ι i : ι f : G hxp✝ : f ∈ ↑(⨆ (x : { j // ¬j = i }), range (ϕ ↑x)) g : (i_1 : { j // ¬j = i }) → H ↑i_1 hgf : ↑(noncommPiCoprod (fun x => ϕ ↑x) (_ : ∀ (i_1 j : { j // ¬j = i }), i_1 ≠ j → ∀ (x : H ↑i_1) (y : H ↑j), Commute (↑(ϕ ↑i_1) x) (↑(ϕ ↑j) y))) g = f g' : H i hg'f : ↑(ϕ i) g' = f hxi : orderOf f ∣ Fintype.card (H i) hxp : orderOf f ∣ ∏ j : { j // j ≠ i }, Fintype.card (H ↑j) c : ℕ hc : Nat.gcd (∏ j : { j // j ≠ i }, Fintype.card (H ↑j)) (Fintype.card (H i)) = orderOf f * c ⊢ orderOf f ∣ 1 [PROOFSTEP] use c [GOAL] case h G : Type u_1 inst✝³ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Type u_3 inst✝² : (i : ι) → Group (H i) ϕ : (i : ι) → H i →* G hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f✝ g✝ : (i : ι) → H i inst✝¹ : Finite ι inst✝ : (i : ι) → Fintype (H i) hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j)) val✝ : Fintype ι i : ι f : G hxp✝ : f ∈ ↑(⨆ (x : { j // ¬j = i }), range (ϕ ↑x)) g : (i_1 : { j // ¬j = i }) → H ↑i_1 hgf : ↑(noncommPiCoprod (fun x => ϕ ↑x) (_ : ∀ (i_1 j : { j // ¬j = i }), i_1 ≠ j → ∀ (x : H ↑i_1) (y : H ↑j), Commute (↑(ϕ ↑i_1) x) (↑(ϕ ↑j) y))) g = f g' : H i hg'f : ↑(ϕ i) g' = f hxi : orderOf f ∣ Fintype.card (H i) hxp : orderOf f ∣ ∏ j : { j // j ≠ i }, Fintype.card (H ↑j) c : ℕ hc : Nat.gcd (∏ j : { j // j ≠ i }, Fintype.card (H ↑j)) (Fintype.card (H i)) = orderOf f * c ⊢ 1 = orderOf f * c [PROOFSTEP] rw [← hc] [GOAL] case h G : Type u_1 inst✝³ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Type u_3 inst✝² : (i : ι) → Group (H i) ϕ : (i : ι) → H i →* G hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f✝ g✝ : (i : ι) → H i inst✝¹ : Finite ι inst✝ : (i : ι) → Fintype (H i) hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j)) val✝ : Fintype ι i : ι f : G hxp✝ : f ∈ ↑(⨆ (x : { j // ¬j = i }), range (ϕ ↑x)) g : (i_1 : { j // ¬j = i }) → H ↑i_1 hgf : ↑(noncommPiCoprod (fun x => ϕ ↑x) (_ : ∀ (i_1 j : { j // ¬j = i }), i_1 ≠ j → ∀ (x : H ↑i_1) (y : H ↑j), Commute (↑(ϕ ↑i_1) x) (↑(ϕ ↑j) y))) g = f g' : H i hg'f : ↑(ϕ i) g' = f hxi : orderOf f ∣ Fintype.card (H i) hxp : orderOf f ∣ ∏ j : { j // j ≠ i }, Fintype.card (H ↑j) c : ℕ hc : Nat.gcd (∏ j : { j // j ≠ i }, Fintype.card (H ↑j)) (Fintype.card (H i)) = orderOf f * c ⊢ 1 = Nat.gcd (∏ j : { j // j ≠ i }, Fintype.card (H ↑j)) (Fintype.card (H i)) [PROOFSTEP] symm [GOAL] case h G : Type u_1 inst✝³ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Type u_3 inst✝² : (i : ι) → Group (H i) ϕ : (i : ι) → H i →* G hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f✝ g✝ : (i : ι) → H i inst✝¹ : Finite ι inst✝ : (i : ι) → Fintype (H i) hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j)) val✝ : Fintype ι i : ι f : G hxp✝ : f ∈ ↑(⨆ (x : { j // ¬j = i }), range (ϕ ↑x)) g : (i_1 : { j // ¬j = i }) → H ↑i_1 hgf : ↑(noncommPiCoprod (fun x => ϕ ↑x) (_ : ∀ (i_1 j : { j // ¬j = i }), i_1 ≠ j → ∀ (x : H ↑i_1) (y : H ↑j), Commute (↑(ϕ ↑i_1) x) (↑(ϕ ↑j) y))) g = f g' : H i hg'f : ↑(ϕ i) g' = f hxi : orderOf f ∣ Fintype.card (H i) hxp : orderOf f ∣ ∏ j : { j // j ≠ i }, Fintype.card (H ↑j) c : ℕ hc : Nat.gcd (∏ j : { j // j ≠ i }, Fintype.card (H ↑j)) (Fintype.card (H i)) = orderOf f * c ⊢ Nat.gcd (∏ j : { j // j ≠ i }, Fintype.card (H ↑j)) (Fintype.card (H i)) = 1 [PROOFSTEP] rw [← Nat.coprime_iff_gcd_eq_one] [GOAL] case h G : Type u_1 inst✝³ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Type u_3 inst✝² : (i : ι) → Group (H i) ϕ : (i : ι) → H i →* G hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f✝ g✝ : (i : ι) → H i inst✝¹ : Finite ι inst✝ : (i : ι) → Fintype (H i) hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j)) val✝ : Fintype ι i : ι f : G hxp✝ : f ∈ ↑(⨆ (x : { j // ¬j = i }), range (ϕ ↑x)) g : (i_1 : { j // ¬j = i }) → H ↑i_1 hgf : ↑(noncommPiCoprod (fun x => ϕ ↑x) (_ : ∀ (i_1 j : { j // ¬j = i }), i_1 ≠ j → ∀ (x : H ↑i_1) (y : H ↑j), Commute (↑(ϕ ↑i_1) x) (↑(ϕ ↑j) y))) g = f g' : H i hg'f : ↑(ϕ i) g' = f hxi : orderOf f ∣ Fintype.card (H i) hxp : orderOf f ∣ ∏ j : { j // j ≠ i }, Fintype.card (H ↑j) c : ℕ hc : Nat.gcd (∏ j : { j // j ≠ i }, Fintype.card (H ↑j)) (Fintype.card (H i)) = orderOf f * c ⊢ Nat.coprime (∏ j : { j // j ≠ i }, Fintype.card (H ↑j)) (Fintype.card (H i)) [PROOFSTEP] apply Nat.coprime_prod_left [GOAL] case h.a G : Type u_1 inst✝³ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Type u_3 inst✝² : (i : ι) → Group (H i) ϕ : (i : ι) → H i →* G hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f✝ g✝ : (i : ι) → H i inst✝¹ : Finite ι inst✝ : (i : ι) → Fintype (H i) hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j)) val✝ : Fintype ι i : ι f : G hxp✝ : f ∈ ↑(⨆ (x : { j // ¬j = i }), range (ϕ ↑x)) g : (i_1 : { j // ¬j = i }) → H ↑i_1 hgf : ↑(noncommPiCoprod (fun x => ϕ ↑x) (_ : ∀ (i_1 j : { j // ¬j = i }), i_1 ≠ j → ∀ (x : H ↑i_1) (y : H ↑j), Commute (↑(ϕ ↑i_1) x) (↑(ϕ ↑j) y))) g = f g' : H i hg'f : ↑(ϕ i) g' = f hxi : orderOf f ∣ Fintype.card (H i) hxp : orderOf f ∣ ∏ j : { j // j ≠ i }, Fintype.card (H ↑j) c : ℕ hc : Nat.gcd (∏ j : { j // j ≠ i }, Fintype.card (H ↑j)) (Fintype.card (H i)) = orderOf f * c ⊢ ∀ (i_1 : { j // j ≠ i }), i_1 ∈ Finset.univ → Nat.coprime (Fintype.card (H ↑i_1)) (Fintype.card (H i)) [PROOFSTEP] intro j _ [GOAL] case h.a G : Type u_1 inst✝³ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Type u_3 inst✝² : (i : ι) → Group (H i) ϕ : (i : ι) → H i →* G hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f✝ g✝ : (i : ι) → H i inst✝¹ : Finite ι inst✝ : (i : ι) → Fintype (H i) hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j)) val✝ : Fintype ι i : ι f : G hxp✝ : f ∈ ↑(⨆ (x : { j // ¬j = i }), range (ϕ ↑x)) g : (i_1 : { j // ¬j = i }) → H ↑i_1 hgf : ↑(noncommPiCoprod (fun x => ϕ ↑x) (_ : ∀ (i_1 j : { j // ¬j = i }), i_1 ≠ j → ∀ (x : H ↑i_1) (y : H ↑j), Commute (↑(ϕ ↑i_1) x) (↑(ϕ ↑j) y))) g = f g' : H i hg'f : ↑(ϕ i) g' = f hxi : orderOf f ∣ Fintype.card (H i) hxp : orderOf f ∣ ∏ j : { j // j ≠ i }, Fintype.card (H ↑j) c : ℕ hc : Nat.gcd (∏ j : { j // j ≠ i }, Fintype.card (H ↑j)) (Fintype.card (H i)) = orderOf f * c j : { j // j ≠ i } a✝ : j ∈ Finset.univ ⊢ Nat.coprime (Fintype.card (H ↑j)) (Fintype.card (H i)) [PROOFSTEP] apply hcoprime [GOAL] case h.a.a G : Type u_1 inst✝³ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Type u_3 inst✝² : (i : ι) → Group (H i) ϕ : (i : ι) → H i →* G hcomm : ∀ (i j : ι), i ≠ j → ∀ (x : H i) (y : H j), Commute (↑(ϕ i) x) (↑(ϕ j) y) f✝ g✝ : (i : ι) → H i inst✝¹ : Finite ι inst✝ : (i : ι) → Fintype (H i) hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card (H i)) (Fintype.card (H j)) val✝ : Fintype ι i : ι f : G hxp✝ : f ∈ ↑(⨆ (x : { j // ¬j = i }), range (ϕ ↑x)) g : (i_1 : { j // ¬j = i }) → H ↑i_1 hgf : ↑(noncommPiCoprod (fun x => ϕ ↑x) (_ : ∀ (i_1 j : { j // ¬j = i }), i_1 ≠ j → ∀ (x : H ↑i_1) (y : H ↑j), Commute (↑(ϕ ↑i_1) x) (↑(ϕ ↑j) y))) g = f g' : H i hg'f : ↑(ϕ i) g' = f hxi : orderOf f ∣ Fintype.card (H i) hxp : orderOf f ∣ ∏ j : { j // j ≠ i }, Fintype.card (H ↑j) c : ℕ hc : Nat.gcd (∏ j : { j // j ≠ i }, Fintype.card (H ↑j)) (Fintype.card (H i)) = orderOf f * c j : { j // j ≠ i } a✝ : j ∈ Finset.univ ⊢ ↑j ≠ i [PROOFSTEP] exact j.2 [GOAL] G : Type u_1 inst✝ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Subgroup G f g : (i : ι) → { x // x ∈ H i } hcomm : ∀ (i j : ι), i ≠ j → ∀ (x y : G), x ∈ H i → y ∈ H j → Commute x y i j : ι hne : i ≠ j ⊢ ∀ (x : { x // x ∈ H i }) (y : { x // x ∈ H j }), Commute (↑(Subgroup.subtype (H i)) x) (↑(Subgroup.subtype (H j)) y) [PROOFSTEP] rintro ⟨x, hx⟩ ⟨y, hy⟩ [GOAL] case mk.mk G : Type u_1 inst✝ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Subgroup G f g : (i : ι) → { x // x ∈ H i } hcomm : ∀ (i j : ι), i ≠ j → ∀ (x y : G), x ∈ H i → y ∈ H j → Commute x y i j : ι hne : i ≠ j x : G hx : x ∈ H i y : G hy : y ∈ H j ⊢ Commute (↑(Subgroup.subtype (H i)) { val := x, property := hx }) (↑(Subgroup.subtype (H j)) { val := y, property := hy }) [PROOFSTEP] exact hcomm i j hne x y hx hy [GOAL] G : Type u_1 inst✝ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Subgroup G f g : (i : ι) → { x // x ∈ H i } hcomm : ∀ (i j : ι), i ≠ j → ∀ (x y : G), x ∈ H i → y ∈ H j → Commute x y i : ι y : { x // x ∈ H i } ⊢ ↑(noncommPiCoprod hcomm) (Pi.mulSingle i y) = ↑y [PROOFSTEP] apply MonoidHom.noncommPiCoprod_mulSingle [GOAL] G : Type u_1 inst✝ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Subgroup G f g : (i : ι) → { x // x ∈ H i } hcomm : ∀ (i j : ι), i ≠ j → ∀ (x y : G), x ∈ H i → y ∈ H j → Commute x y ⊢ MonoidHom.range (noncommPiCoprod hcomm) = ⨆ (i : ι), H i [PROOFSTEP] simp [noncommPiCoprod, MonoidHom.noncommPiCoprod_range] [GOAL] G : Type u_1 inst✝ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Subgroup G f g : (i : ι) → { x // x ∈ H i } hcomm : ∀ (i j : ι), i ≠ j → ∀ (x y : G), x ∈ H i → y ∈ H j → Commute x y hind : CompleteLattice.Independent H ⊢ Function.Injective ↑(noncommPiCoprod hcomm) [PROOFSTEP] apply MonoidHom.injective_noncommPiCoprod_of_independent [GOAL] case hind G : Type u_1 inst✝ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Subgroup G f g : (i : ι) → { x // x ∈ H i } hcomm : ∀ (i j : ι), i ≠ j → ∀ (x y : G), x ∈ H i → y ∈ H j → Commute x y hind : CompleteLattice.Independent H ⊢ CompleteLattice.Independent fun i => MonoidHom.range (Subgroup.subtype ((fun i => H i) i)) [PROOFSTEP] simpa using hind [GOAL] case hinj G : Type u_1 inst✝ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Subgroup G f g : (i : ι) → { x // x ∈ H i } hcomm : ∀ (i j : ι), i ≠ j → ∀ (x y : G), x ∈ H i → y ∈ H j → Commute x y hind : CompleteLattice.Independent H ⊢ ∀ (i : ι), Function.Injective ↑(Subgroup.subtype ((fun i => H i) i)) [PROOFSTEP] intro i [GOAL] case hinj G : Type u_1 inst✝ : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Subgroup G f g : (i : ι) → { x // x ∈ H i } hcomm : ∀ (i j : ι), i ≠ j → ∀ (x y : G), x ∈ H i → y ∈ H j → Commute x y hind : CompleteLattice.Independent H i : ι ⊢ Function.Injective ↑(Subgroup.subtype ((fun i => H i) i)) [PROOFSTEP] exact Subtype.coe_injective [GOAL] G : Type u_1 inst✝² : Group G ι : Type u_2 hdec : DecidableEq ι hfin : Fintype ι H : ι → Subgroup G f g : (i : ι) → { x // x ∈ H i } hcomm : ∀ (i j : ι), i ≠ j → ∀ (x y : G), x ∈ H i → y ∈ H j → Commute x y inst✝¹ : Finite ι inst✝ : (i : ι) → Fintype { x // x ∈ H i } hcoprime : ∀ (i j : ι), i ≠ j → Nat.coprime (Fintype.card { x // x ∈ H i }) (Fintype.card { x // x ∈ H j }) ⊢ CompleteLattice.Independent H [PROOFSTEP] simpa using MonoidHom.independent_range_of_coprime_order (fun i => (H i).subtype) (commute_subtype_of_commute hcomm) hcoprime
{"mathlib_filename": "Mathlib.GroupTheory.NoncommPiCoprod", "llama_tokens": 40346}
[GOAL] ι : Type u_1 M : Type u_2 N : Type u_3 α : ι → Type u_4 inst✝³ : (i : ι) → SMul M (α i) inst✝² : (i : ι) → SMul N (α i) a✝ : M i : ι b✝ : α i x✝ : (i : ι) × α i inst✝¹ : SMul M N inst✝ : ∀ (i : ι), IsScalarTower M N (α i) a : M b : N x : (i : ι) × α i ⊢ (a • b) • x = a • b • x [PROOFSTEP] cases x [GOAL] case mk ι : Type u_1 M : Type u_2 N : Type u_3 α : ι → Type u_4 inst✝³ : (i : ι) → SMul M (α i) inst✝² : (i : ι) → SMul N (α i) a✝ : M i : ι b✝ : α i x : (i : ι) × α i inst✝¹ : SMul M N inst✝ : ∀ (i : ι), IsScalarTower M N (α i) a : M b : N fst✝ : ι snd✝ : α fst✝ ⊢ (a • b) • { fst := fst✝, snd := snd✝ } = a • b • { fst := fst✝, snd := snd✝ } [PROOFSTEP] rw [smul_mk, smul_mk, smul_mk, smul_assoc] [GOAL] ι : Type u_1 M : Type u_2 N : Type u_3 α : ι → Type u_4 inst✝² : (i : ι) → SMul M (α i) inst✝¹ : (i : ι) → SMul N (α i) a✝ : M i : ι b✝ : α i x✝ : (i : ι) × α i inst✝ : ∀ (i : ι), SMulCommClass M N (α i) a : M b : N x : (i : ι) × α i ⊢ a • b • x = b • a • x [PROOFSTEP] cases x [GOAL] case mk ι : Type u_1 M : Type u_2 N : Type u_3 α : ι → Type u_4 inst✝² : (i : ι) → SMul M (α i) inst✝¹ : (i : ι) → SMul N (α i) a✝ : M i : ι b✝ : α i x : (i : ι) × α i inst✝ : ∀ (i : ι), SMulCommClass M N (α i) a : M b : N fst✝ : ι snd✝ : α fst✝ ⊢ a • b • { fst := fst✝, snd := snd✝ } = b • a • { fst := fst✝, snd := snd✝ } [PROOFSTEP] rw [smul_mk, smul_mk, smul_mk, smul_mk, smul_comm] [GOAL] ι : Type u_1 M : Type u_2 N : Type u_3 α : ι → Type u_4 inst✝³ : (i : ι) → SMul M (α i) inst✝² : (i : ι) → SMul N (α i) a✝ : M i : ι b : α i x✝ : (i : ι) × α i inst✝¹ : (i : ι) → SMul Mᵐᵒᵖ (α i) inst✝ : ∀ (i : ι), IsCentralScalar M (α i) a : M x : (i : ι) × α i ⊢ MulOpposite.op a • x = a • x [PROOFSTEP] cases x [GOAL] case mk ι : Type u_1 M : Type u_2 N : Type u_3 α : ι → Type u_4 inst✝³ : (i : ι) → SMul M (α i) inst✝² : (i : ι) → SMul N (α i) a✝ : M i : ι b : α i x : (i : ι) × α i inst✝¹ : (i : ι) → SMul Mᵐᵒᵖ (α i) inst✝ : ∀ (i : ι), IsCentralScalar M (α i) a : M fst✝ : ι snd✝ : α fst✝ ⊢ MulOpposite.op a • { fst := fst✝, snd := snd✝ } = a • { fst := fst✝, snd := snd✝ } [PROOFSTEP] rw [smul_mk, smul_mk, op_smul_eq_smul] [GOAL] ι : Type u_1 M : Type u_2 N : Type u_3 α : ι → Type u_4 m : Monoid M inst✝ : (i : ι) → MulAction M (α i) x : (i : ι) × α i ⊢ 1 • x = x [PROOFSTEP] cases x [GOAL] case mk ι : Type u_1 M : Type u_2 N : Type u_3 α : ι → Type u_4 m : Monoid M inst✝ : (i : ι) → MulAction M (α i) fst✝ : ι snd✝ : α fst✝ ⊢ 1 • { fst := fst✝, snd := snd✝ } = { fst := fst✝, snd := snd✝ } [PROOFSTEP] rw [smul_mk, one_smul] [GOAL] ι : Type u_1 M : Type u_2 N : Type u_3 α : ι → Type u_4 m : Monoid M inst✝ : (i : ι) → MulAction M (α i) a b : M x : (i : ι) × α i ⊢ (a * b) • x = a • b • x [PROOFSTEP] cases x [GOAL] case mk ι : Type u_1 M : Type u_2 N : Type u_3 α : ι → Type u_4 m : Monoid M inst✝ : (i : ι) → MulAction M (α i) a b : M fst✝ : ι snd✝ : α fst✝ ⊢ (a * b) • { fst := fst✝, snd := snd✝ } = a • b • { fst := fst✝, snd := snd✝ } [PROOFSTEP] rw [smul_mk, smul_mk, smul_mk, mul_smul]
{"mathlib_filename": "Mathlib.GroupTheory.GroupAction.Sigma", "llama_tokens": 1883}
[GOAL] G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G h : IsComplement' H K ⊢ IsComplement' K H [PROOFSTEP] let ϕ : H × K ≃ K × H := Equiv.mk (fun x => ⟨x.2⁻¹, x.1⁻¹⟩) (fun x => ⟨x.2⁻¹, x.1⁻¹⟩) (fun x => Prod.ext (inv_inv _) (inv_inv _)) fun x => Prod.ext (inv_inv _) (inv_inv _) [GOAL] G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G h : IsComplement' H K ϕ : { x // x ∈ H } × { x // x ∈ K } ≃ { x // x ∈ K } × { x // x ∈ H } := { toFun := fun x => (x.snd⁻¹, x.fst⁻¹), invFun := fun x => (x.snd⁻¹, x.fst⁻¹), left_inv := (_ : ∀ (x : { x // x ∈ H } × { x // x ∈ K }), (fun x => (x.snd⁻¹, x.fst⁻¹)) ((fun x => (x.snd⁻¹, x.fst⁻¹)) x) = x), right_inv := (_ : ∀ (x : { x // x ∈ K } × { x // x ∈ H }), (fun x => (x.snd⁻¹, x.fst⁻¹)) ((fun x => (x.snd⁻¹, x.fst⁻¹)) x) = x) } ⊢ IsComplement' K H [PROOFSTEP] let ψ : G ≃ G := Equiv.mk (fun g : G => g⁻¹) (fun g : G => g⁻¹) inv_inv inv_inv [GOAL] G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G h : IsComplement' H K ϕ : { x // x ∈ H } × { x // x ∈ K } ≃ { x // x ∈ K } × { x // x ∈ H } := { toFun := fun x => (x.snd⁻¹, x.fst⁻¹), invFun := fun x => (x.snd⁻¹, x.fst⁻¹), left_inv := (_ : ∀ (x : { x // x ∈ H } × { x // x ∈ K }), (fun x => (x.snd⁻¹, x.fst⁻¹)) ((fun x => (x.snd⁻¹, x.fst⁻¹)) x) = x), right_inv := (_ : ∀ (x : { x // x ∈ K } × { x // x ∈ H }), (fun x => (x.snd⁻¹, x.fst⁻¹)) ((fun x => (x.snd⁻¹, x.fst⁻¹)) x) = x) } ψ : G ≃ G := { toFun := fun g => g⁻¹, invFun := fun g => g⁻¹, left_inv := (_ : ∀ (a : G), a⁻¹⁻¹ = a), right_inv := (_ : ∀ (a : G), a⁻¹⁻¹ = a) } ⊢ IsComplement' K H [PROOFSTEP] suffices hf : (ψ ∘ fun x : H × K => x.1.1 * x.2.1) = (fun x : K × H => x.1.1 * x.2.1) ∘ ϕ by rw [isComplement'_def, IsComplement, ← Equiv.bijective_comp ϕ] apply (congr_arg Function.Bijective hf).mp rwa [ψ.comp_bijective] [GOAL] G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G h : IsComplement' H K ϕ : { x // x ∈ H } × { x // x ∈ K } ≃ { x // x ∈ K } × { x // x ∈ H } := { toFun := fun x => (x.snd⁻¹, x.fst⁻¹), invFun := fun x => (x.snd⁻¹, x.fst⁻¹), left_inv := (_ : ∀ (x : { x // x ∈ H } × { x // x ∈ K }), (fun x => (x.snd⁻¹, x.fst⁻¹)) ((fun x => (x.snd⁻¹, x.fst⁻¹)) x) = x), right_inv := (_ : ∀ (x : { x // x ∈ K } × { x // x ∈ H }), (fun x => (x.snd⁻¹, x.fst⁻¹)) ((fun x => (x.snd⁻¹, x.fst⁻¹)) x) = x) } ψ : G ≃ G := { toFun := fun g => g⁻¹, invFun := fun g => g⁻¹, left_inv := (_ : ∀ (a : G), a⁻¹⁻¹ = a), right_inv := (_ : ∀ (a : G), a⁻¹⁻¹ = a) } hf : (↑ψ ∘ fun x => ↑x.fst * ↑x.snd) = (fun x => ↑x.fst * ↑x.snd) ∘ ↑ϕ ⊢ IsComplement' K H [PROOFSTEP] rw [isComplement'_def, IsComplement, ← Equiv.bijective_comp ϕ] [GOAL] G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G h : IsComplement' H K ϕ : { x // x ∈ H } × { x // x ∈ K } ≃ { x // x ∈ K } × { x // x ∈ H } := { toFun := fun x => (x.snd⁻¹, x.fst⁻¹), invFun := fun x => (x.snd⁻¹, x.fst⁻¹), left_inv := (_ : ∀ (x : { x // x ∈ H } × { x // x ∈ K }), (fun x => (x.snd⁻¹, x.fst⁻¹)) ((fun x => (x.snd⁻¹, x.fst⁻¹)) x) = x), right_inv := (_ : ∀ (x : { x // x ∈ K } × { x // x ∈ H }), (fun x => (x.snd⁻¹, x.fst⁻¹)) ((fun x => (x.snd⁻¹, x.fst⁻¹)) x) = x) } ψ : G ≃ G := { toFun := fun g => g⁻¹, invFun := fun g => g⁻¹, left_inv := (_ : ∀ (a : G), a⁻¹⁻¹ = a), right_inv := (_ : ∀ (a : G), a⁻¹⁻¹ = a) } hf : (↑ψ ∘ fun x => ↑x.fst * ↑x.snd) = (fun x => ↑x.fst * ↑x.snd) ∘ ↑ϕ ⊢ Function.Bijective ((fun x => ↑x.fst * ↑x.snd) ∘ ↑ϕ) [PROOFSTEP] apply (congr_arg Function.Bijective hf).mp [GOAL] G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G h : IsComplement' H K ϕ : { x // x ∈ H } × { x // x ∈ K } ≃ { x // x ∈ K } × { x // x ∈ H } := { toFun := fun x => (x.snd⁻¹, x.fst⁻¹), invFun := fun x => (x.snd⁻¹, x.fst⁻¹), left_inv := (_ : ∀ (x : { x // x ∈ H } × { x // x ∈ K }), (fun x => (x.snd⁻¹, x.fst⁻¹)) ((fun x => (x.snd⁻¹, x.fst⁻¹)) x) = x), right_inv := (_ : ∀ (x : { x // x ∈ K } × { x // x ∈ H }), (fun x => (x.snd⁻¹, x.fst⁻¹)) ((fun x => (x.snd⁻¹, x.fst⁻¹)) x) = x) } ψ : G ≃ G := { toFun := fun g => g⁻¹, invFun := fun g => g⁻¹, left_inv := (_ : ∀ (a : G), a⁻¹⁻¹ = a), right_inv := (_ : ∀ (a : G), a⁻¹⁻¹ = a) } hf : (↑ψ ∘ fun x => ↑x.fst * ↑x.snd) = (fun x => ↑x.fst * ↑x.snd) ∘ ↑ϕ ⊢ Function.Bijective (↑ψ ∘ fun x => ↑x.fst * ↑x.snd) [PROOFSTEP] rwa [ψ.comp_bijective] [GOAL] G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G h : IsComplement' H K ϕ : { x // x ∈ H } × { x // x ∈ K } ≃ { x // x ∈ K } × { x // x ∈ H } := { toFun := fun x => (x.snd⁻¹, x.fst⁻¹), invFun := fun x => (x.snd⁻¹, x.fst⁻¹), left_inv := (_ : ∀ (x : { x // x ∈ H } × { x // x ∈ K }), (fun x => (x.snd⁻¹, x.fst⁻¹)) ((fun x => (x.snd⁻¹, x.fst⁻¹)) x) = x), right_inv := (_ : ∀ (x : { x // x ∈ K } × { x // x ∈ H }), (fun x => (x.snd⁻¹, x.fst⁻¹)) ((fun x => (x.snd⁻¹, x.fst⁻¹)) x) = x) } ψ : G ≃ G := { toFun := fun g => g⁻¹, invFun := fun g => g⁻¹, left_inv := (_ : ∀ (a : G), a⁻¹⁻¹ = a), right_inv := (_ : ∀ (a : G), a⁻¹⁻¹ = a) } ⊢ (↑ψ ∘ fun x => ↑x.fst * ↑x.snd) = (fun x => ↑x.fst * ↑x.snd) ∘ ↑ϕ [PROOFSTEP] exact funext fun x => mul_inv_rev _ _ [GOAL] G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G g : G ⊢ IsComplement {g} S ↔ S = ⊤ [PROOFSTEP] refine' ⟨fun h => top_le_iff.mp fun x _ => _, fun h => (congr_arg _ h).mpr isComplement_singleton_top⟩ [GOAL] G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G g : G h : IsComplement {g} S x : G x✝ : x ∈ ⊤ ⊢ x ∈ S [PROOFSTEP] obtain ⟨⟨⟨z, rfl : z = g⟩, y, _⟩, hy⟩ := h.2 (g * x) [GOAL] case intro.mk.mk.mk G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G x : G x✝ : x ∈ ⊤ z : G h : IsComplement {z} S y : G property✝ : y ∈ S hy : (fun x => ↑x.fst * ↑x.snd) ({ val := z, property := (_ : z = z) }, { val := y, property := property✝ }) = z * x ⊢ x ∈ S [PROOFSTEP] rwa [← mul_left_cancel hy] [GOAL] G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G g : G ⊢ IsComplement S {g} ↔ S = ⊤ [PROOFSTEP] refine' ⟨fun h => top_le_iff.mp fun x _ => _, fun h => h ▸ isComplement_top_singleton⟩ [GOAL] G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G g : G h : IsComplement S {g} x : G x✝ : x ∈ ⊤ ⊢ x ∈ S [PROOFSTEP] obtain ⟨y, hy⟩ := h.2 (x * g) [GOAL] case intro G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G g : G h : IsComplement S {g} x : G x✝ : x ∈ ⊤ y : ↑S × ↑{g} hy : (fun x => ↑x.fst * ↑x.snd) y = x * g ⊢ x ∈ S [PROOFSTEP] conv_rhs at hy => rw [← show y.2.1 = g from y.2.2] [GOAL] G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G g : G h : IsComplement S {g} x : G x✝ : x ∈ ⊤ y : ↑S × ↑{g} hy : (fun x => ↑x.fst * ↑x.snd) y = x * g | x * g [PROOFSTEP] rw [← show y.2.1 = g from y.2.2] [GOAL] G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G g : G h : IsComplement S {g} x : G x✝ : x ∈ ⊤ y : ↑S × ↑{g} hy : (fun x => ↑x.fst * ↑x.snd) y = x * g | x * g [PROOFSTEP] rw [← show y.2.1 = g from y.2.2] [GOAL] G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G g : G h : IsComplement S {g} x : G x✝ : x ∈ ⊤ y : ↑S × ↑{g} hy : (fun x => ↑x.fst * ↑x.snd) y = x * g | x * g [PROOFSTEP] rw [← show y.2.1 = g from y.2.2] [GOAL] case intro G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G g : G h : IsComplement S {g} x : G x✝ : x ∈ ⊤ y : ↑S × ↑{g} hy : (fun x => ↑x.fst * ↑x.snd) y = x * ↑y.snd ⊢ x ∈ S [PROOFSTEP] rw [← mul_right_cancel hy] [GOAL] case intro G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G g : G h : IsComplement S {g} x : G x✝ : x ∈ ⊤ y : ↑S × ↑{g} hy : (fun x => ↑x.fst * ↑x.snd) y = x * ↑y.snd ⊢ ↑y.fst ∈ S [PROOFSTEP] exact y.1.2 [GOAL] G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G ⊢ IsComplement ⊤ S ↔ ∃ g, S = {g} [PROOFSTEP] refine' ⟨fun h => Set.exists_eq_singleton_iff_nonempty_subsingleton.mpr ⟨_, fun a ha b hb => _⟩, _⟩ [GOAL] case refine'_1 G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G h : IsComplement ⊤ S ⊢ Set.Nonempty S [PROOFSTEP] obtain ⟨a, _⟩ := h.2 1 [GOAL] case refine'_1.intro G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G h : IsComplement ⊤ S a : ↑⊤ × ↑S h✝ : (fun x => ↑x.fst * ↑x.snd) a = 1 ⊢ Set.Nonempty S [PROOFSTEP] exact ⟨a.2.1, a.2.2⟩ [GOAL] case refine'_2 G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G h : IsComplement ⊤ S a : G ha : a ∈ S b : G hb : b ∈ S ⊢ a = b [PROOFSTEP] have : (⟨⟨_, mem_top a⁻¹⟩, ⟨a, ha⟩⟩ : (⊤ : Set G) × S) = ⟨⟨_, mem_top b⁻¹⟩, ⟨b, hb⟩⟩ := h.1 ((inv_mul_self a).trans (inv_mul_self b).symm) [GOAL] case refine'_2 G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G h : IsComplement ⊤ S a : G ha : a ∈ S b : G hb : b ∈ S this : ({ val := a⁻¹, property := (_ : a⁻¹ ∈ ⊤) }, { val := a, property := ha }) = ({ val := b⁻¹, property := (_ : b⁻¹ ∈ ⊤) }, { val := b, property := hb }) ⊢ a = b [PROOFSTEP] exact Subtype.ext_iff.mp (Prod.ext_iff.mp this).2 [GOAL] case refine'_3 G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G ⊢ (∃ g, S = {g}) → IsComplement ⊤ S [PROOFSTEP] rintro ⟨g, rfl⟩ [GOAL] case refine'_3.intro G : Type u_1 inst✝ : Group G H K : Subgroup G T : Set G g : G ⊢ IsComplement ⊤ {g} [PROOFSTEP] exact isComplement_top_singleton [GOAL] G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G ⊢ IsComplement S ⊤ ↔ ∃ g, S = {g} [PROOFSTEP] refine' ⟨fun h => Set.exists_eq_singleton_iff_nonempty_subsingleton.mpr ⟨_, fun a ha b hb => _⟩, _⟩ [GOAL] case refine'_1 G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G h : IsComplement S ⊤ ⊢ Set.Nonempty S [PROOFSTEP] obtain ⟨a, _⟩ := h.2 1 [GOAL] case refine'_1.intro G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G h : IsComplement S ⊤ a : ↑S × ↑⊤ h✝ : (fun x => ↑x.fst * ↑x.snd) a = 1 ⊢ Set.Nonempty S [PROOFSTEP] exact ⟨a.1.1, a.1.2⟩ [GOAL] case refine'_2 G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G h : IsComplement S ⊤ a : G ha : a ∈ S b : G hb : b ∈ S ⊢ a = b [PROOFSTEP] have : (⟨⟨a, ha⟩, ⟨_, mem_top a⁻¹⟩⟩ : S × (⊤ : Set G)) = ⟨⟨b, hb⟩, ⟨_, mem_top b⁻¹⟩⟩ := h.1 ((mul_inv_self a).trans (mul_inv_self b).symm) [GOAL] case refine'_2 G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G h : IsComplement S ⊤ a : G ha : a ∈ S b : G hb : b ∈ S this : ({ val := a, property := ha }, { val := a⁻¹, property := (_ : a⁻¹ ∈ ⊤) }) = ({ val := b, property := hb }, { val := b⁻¹, property := (_ : b⁻¹ ∈ ⊤) }) ⊢ a = b [PROOFSTEP] exact Subtype.ext_iff.mp (Prod.ext_iff.mp this).1 [GOAL] case refine'_3 G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G ⊢ (∃ g, S = {g}) → IsComplement S ⊤ [PROOFSTEP] rintro ⟨g, rfl⟩ [GOAL] case refine'_3.intro G : Type u_1 inst✝ : Group G H K : Subgroup G T : Set G g : G ⊢ IsComplement {g} ⊤ [PROOFSTEP] exact isComplement_singleton_top [GOAL] G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G ⊢ S ∈ leftTransversals T ↔ ∀ (g : G), ∃! s, (↑s)⁻¹ * g ∈ T [PROOFSTEP] rw [leftTransversals, Set.mem_setOf_eq, isComplement_iff_existsUnique] [GOAL] G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G ⊢ (∀ (g : G), ∃! x, ↑x.fst * ↑x.snd = g) ↔ ∀ (g : G), ∃! s, (↑s)⁻¹ * g ∈ T [PROOFSTEP] refine' ⟨fun h g => _, fun h g => _⟩ [GOAL] case refine'_1 G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G h : ∀ (g : G), ∃! x, ↑x.fst * ↑x.snd = g g : G ⊢ ∃! s, (↑s)⁻¹ * g ∈ T [PROOFSTEP] obtain ⟨x, h1, h2⟩ := h g [GOAL] case refine'_1.intro.intro G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G h : ∀ (g : G), ∃! x, ↑x.fst * ↑x.snd = g g : G x : ↑S × ↑T h1 : ↑x.fst * ↑x.snd = g h2 : ∀ (y : ↑S × ↑T), (fun x => ↑x.fst * ↑x.snd = g) y → y = x ⊢ ∃! s, (↑s)⁻¹ * g ∈ T [PROOFSTEP] exact ⟨x.1, (congr_arg (· ∈ T) (eq_inv_mul_of_mul_eq h1)).mp x.2.2, fun y hy => (Prod.ext_iff.mp (h2 ⟨y, (↑y)⁻¹ * g, hy⟩ (mul_inv_cancel_left (↑y) g))).1⟩ [GOAL] case refine'_2 G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G h : ∀ (g : G), ∃! s, (↑s)⁻¹ * g ∈ T g : G ⊢ ∃! x, ↑x.fst * ↑x.snd = g [PROOFSTEP] obtain ⟨x, h1, h2⟩ := h g [GOAL] case refine'_2.intro.intro G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G h : ∀ (g : G), ∃! s, (↑s)⁻¹ * g ∈ T g : G x : ↑S h1 : (↑x)⁻¹ * g ∈ T h2 : ∀ (y : ↑S), (fun s => (↑s)⁻¹ * g ∈ T) y → y = x ⊢ ∃! x, ↑x.fst * ↑x.snd = g [PROOFSTEP] refine' ⟨⟨x, (↑x)⁻¹ * g, h1⟩, mul_inv_cancel_left (↑x) g, fun y hy => _⟩ [GOAL] case refine'_2.intro.intro G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G h : ∀ (g : G), ∃! s, (↑s)⁻¹ * g ∈ T g : G x : ↑S h1 : (↑x)⁻¹ * g ∈ T h2 : ∀ (y : ↑S), (fun s => (↑s)⁻¹ * g ∈ T) y → y = x y : ↑S × ↑T hy : (fun x => ↑x.fst * ↑x.snd = g) y ⊢ y = (x, { val := (↑x)⁻¹ * g, property := h1 }) [PROOFSTEP] have hf := h2 y.1 ((congr_arg (· ∈ T) (eq_inv_mul_of_mul_eq hy)).mp y.2.2) [GOAL] case refine'_2.intro.intro G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G h : ∀ (g : G), ∃! s, (↑s)⁻¹ * g ∈ T g : G x : ↑S h1 : (↑x)⁻¹ * g ∈ T h2 : ∀ (y : ↑S), (fun s => (↑s)⁻¹ * g ∈ T) y → y = x y : ↑S × ↑T hy : (fun x => ↑x.fst * ↑x.snd = g) y hf : y.fst = x ⊢ y = (x, { val := (↑x)⁻¹ * g, property := h1 }) [PROOFSTEP] exact Prod.ext hf (Subtype.ext (eq_inv_mul_of_mul_eq (hf ▸ hy))) [GOAL] G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G ⊢ S ∈ rightTransversals T ↔ ∀ (g : G), ∃! s, g * (↑s)⁻¹ ∈ T [PROOFSTEP] rw [rightTransversals, Set.mem_setOf_eq, isComplement_iff_existsUnique] [GOAL] G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G ⊢ (∀ (g : G), ∃! x, ↑x.fst * ↑x.snd = g) ↔ ∀ (g : G), ∃! s, g * (↑s)⁻¹ ∈ T [PROOFSTEP] refine' ⟨fun h g => _, fun h g => _⟩ [GOAL] case refine'_1 G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G h : ∀ (g : G), ∃! x, ↑x.fst * ↑x.snd = g g : G ⊢ ∃! s, g * (↑s)⁻¹ ∈ T [PROOFSTEP] obtain ⟨x, h1, h2⟩ := h g [GOAL] case refine'_1.intro.intro G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G h : ∀ (g : G), ∃! x, ↑x.fst * ↑x.snd = g g : G x : ↑T × ↑S h1 : ↑x.fst * ↑x.snd = g h2 : ∀ (y : ↑T × ↑S), (fun x => ↑x.fst * ↑x.snd = g) y → y = x ⊢ ∃! s, g * (↑s)⁻¹ ∈ T [PROOFSTEP] exact ⟨x.2, (congr_arg (· ∈ T) (eq_mul_inv_of_mul_eq h1)).mp x.1.2, fun y hy => (Prod.ext_iff.mp (h2 ⟨⟨g * (↑y)⁻¹, hy⟩, y⟩ (inv_mul_cancel_right g y))).2⟩ [GOAL] case refine'_2 G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G h : ∀ (g : G), ∃! s, g * (↑s)⁻¹ ∈ T g : G ⊢ ∃! x, ↑x.fst * ↑x.snd = g [PROOFSTEP] obtain ⟨x, h1, h2⟩ := h g [GOAL] case refine'_2.intro.intro G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G h : ∀ (g : G), ∃! s, g * (↑s)⁻¹ ∈ T g : G x : ↑S h1 : g * (↑x)⁻¹ ∈ T h2 : ∀ (y : ↑S), (fun s => g * (↑s)⁻¹ ∈ T) y → y = x ⊢ ∃! x, ↑x.fst * ↑x.snd = g [PROOFSTEP] refine' ⟨⟨⟨g * (↑x)⁻¹, h1⟩, x⟩, inv_mul_cancel_right g x, fun y hy => _⟩ [GOAL] case refine'_2.intro.intro G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G h : ∀ (g : G), ∃! s, g * (↑s)⁻¹ ∈ T g : G x : ↑S h1 : g * (↑x)⁻¹ ∈ T h2 : ∀ (y : ↑S), (fun s => g * (↑s)⁻¹ ∈ T) y → y = x y : ↑T × ↑S hy : (fun x => ↑x.fst * ↑x.snd = g) y ⊢ y = ({ val := g * (↑x)⁻¹, property := h1 }, x) [PROOFSTEP] have hf := h2 y.2 ((congr_arg (· ∈ T) (eq_mul_inv_of_mul_eq hy)).mp y.1.2) [GOAL] case refine'_2.intro.intro G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G h : ∀ (g : G), ∃! s, g * (↑s)⁻¹ ∈ T g : G x : ↑S h1 : g * (↑x)⁻¹ ∈ T h2 : ∀ (y : ↑S), (fun s => g * (↑s)⁻¹ ∈ T) y → y = x y : ↑T × ↑S hy : (fun x => ↑x.fst * ↑x.snd = g) y hf : y.snd = x ⊢ y = ({ val := g * (↑x)⁻¹, property := h1 }, x) [PROOFSTEP] exact Prod.ext (Subtype.ext (eq_mul_inv_of_mul_eq (hf ▸ hy))) hf [GOAL] G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G ⊢ S ∈ leftTransversals ↑H ↔ ∀ (q : Quotient (QuotientGroup.leftRel H)), ∃! s, Quotient.mk'' ↑s = q [PROOFSTEP] simp_rw [mem_leftTransversals_iff_existsUnique_inv_mul_mem, SetLike.mem_coe, ← QuotientGroup.eq'] [GOAL] G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G ⊢ (∀ (g : G), ∃! s, ↑↑s = ↑g) ↔ ∀ (q : Quotient (QuotientGroup.leftRel H)), ∃! s, Quotient.mk'' ↑s = q [PROOFSTEP] exact ⟨fun h q => Quotient.inductionOn' q h, fun h g => h (Quotient.mk'' g)⟩ [GOAL] G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G ⊢ S ∈ rightTransversals ↑H ↔ ∀ (q : Quotient (QuotientGroup.rightRel H)), ∃! s, Quotient.mk'' ↑s = q [PROOFSTEP] simp_rw [mem_rightTransversals_iff_existsUnique_mul_inv_mem, SetLike.mem_coe, ← QuotientGroup.rightRel_apply, ← Quotient.eq''] [GOAL] G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G ⊢ (∀ (g : G), ∃! s, Quotient.mk'' ↑s = Quotient.mk'' g) ↔ ∀ (q : Quotient (QuotientGroup.rightRel H)), ∃! s, Quotient.mk'' ↑s = q [PROOFSTEP] exact ⟨fun h q => Quotient.inductionOn' q h, fun h g => h (Quotient.mk'' g)⟩ [GOAL] G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G f : G ⧸ H → G hf : ∀ (q : G ⧸ H), ↑(f q) = q ⊢ Function.Injective (Set.restrict (Set.range f) Quotient.mk'') [PROOFSTEP] rintro ⟨-, q₁, rfl⟩ ⟨-, q₂, rfl⟩ h [GOAL] case mk.intro.mk.intro G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G f : G ⧸ H → G hf : ∀ (q : G ⧸ H), ↑(f q) = q q₁ q₂ : G ⧸ H h : Set.restrict (Set.range f) Quotient.mk'' { val := f q₁, property := (_ : ∃ y, f y = f q₁) } = Set.restrict (Set.range f) Quotient.mk'' { val := f q₂, property := (_ : ∃ y, f y = f q₂) } ⊢ { val := f q₁, property := (_ : ∃ y, f y = f q₁) } = { val := f q₂, property := (_ : ∃ y, f y = f q₂) } [PROOFSTEP] exact Subtype.ext $ congr_arg f $ ((hf q₁).symm.trans h).trans (hf q₂) [GOAL] G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G f : Quotient (QuotientGroup.rightRel H) → G hf : ∀ (q : Quotient (QuotientGroup.rightRel H)), Quotient.mk'' (f q) = q ⊢ Function.Injective (Set.restrict (Set.range f) Quotient.mk'') [PROOFSTEP] rintro ⟨-, q₁, rfl⟩ ⟨-, q₂, rfl⟩ h [GOAL] case mk.intro.mk.intro G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G f : Quotient (QuotientGroup.rightRel H) → G hf : ∀ (q : Quotient (QuotientGroup.rightRel H)), Quotient.mk'' (f q) = q q₁ q₂ : Quotient (QuotientGroup.rightRel H) h : Set.restrict (Set.range f) Quotient.mk'' { val := f q₁, property := (_ : ∃ y, f y = f q₁) } = Set.restrict (Set.range f) Quotient.mk'' { val := f q₂, property := (_ : ∃ y, f y = f q₂) } ⊢ { val := f q₁, property := (_ : ∃ y, f y = f q₁) } = { val := f q₂, property := (_ : ∃ y, f y = f q₂) } [PROOFSTEP] exact Subtype.ext $ congr_arg f $ ((hf q₁).symm.trans h).trans (hf q₂) [GOAL] G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G g : G ⊢ ∃ S, S ∈ leftTransversals ↑H ∧ g ∈ S [PROOFSTEP] classical refine' ⟨Set.range (Function.update Quotient.out' _ g), range_mem_leftTransversals fun q => _, Quotient.mk'' g, Function.update_same (Quotient.mk'' g) g Quotient.out'⟩ by_cases hq : q = Quotient.mk'' g · exact hq.symm ▸ congr_arg _ (Function.update_same (Quotient.mk'' g) g Quotient.out') · refine' (Function.update_noteq _ g Quotient.out') ▸ q.out_eq' exact hq [GOAL] G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G g : G ⊢ ∃ S, S ∈ leftTransversals ↑H ∧ g ∈ S [PROOFSTEP] refine' ⟨Set.range (Function.update Quotient.out' _ g), range_mem_leftTransversals fun q => _, Quotient.mk'' g, Function.update_same (Quotient.mk'' g) g Quotient.out'⟩ [GOAL] G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G g : G q : G ⧸ H ⊢ ↑(Function.update Quotient.out' (Quotient.mk'' g) g q) = q [PROOFSTEP] by_cases hq : q = Quotient.mk'' g [GOAL] case pos G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G g : G q : G ⧸ H hq : q = Quotient.mk'' g ⊢ ↑(Function.update Quotient.out' (Quotient.mk'' g) g q) = q [PROOFSTEP] exact hq.symm ▸ congr_arg _ (Function.update_same (Quotient.mk'' g) g Quotient.out') [GOAL] case neg G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G g : G q : G ⧸ H hq : ¬q = Quotient.mk'' g ⊢ ↑(Function.update Quotient.out' (Quotient.mk'' g) g q) = q [PROOFSTEP] refine' (Function.update_noteq _ g Quotient.out') ▸ q.out_eq' [GOAL] case neg G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G g : G q : G ⧸ H hq : ¬q = Quotient.mk'' g ⊢ q ≠ Quotient.mk'' g [PROOFSTEP] exact hq [GOAL] G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G g : G ⊢ ∃ S, S ∈ rightTransversals ↑H ∧ g ∈ S [PROOFSTEP] classical refine' ⟨Set.range (Function.update Quotient.out' _ g), range_mem_rightTransversals fun q => _, Quotient.mk'' g, Function.update_same (Quotient.mk'' g) g Quotient.out'⟩ by_cases hq : q = Quotient.mk'' g · exact hq.symm ▸ congr_arg _ (Function.update_same (Quotient.mk'' g) g Quotient.out') · exact Eq.trans (congr_arg _ (Function.update_noteq hq g Quotient.out')) q.out_eq' [GOAL] G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G g : G ⊢ ∃ S, S ∈ rightTransversals ↑H ∧ g ∈ S [PROOFSTEP] refine' ⟨Set.range (Function.update Quotient.out' _ g), range_mem_rightTransversals fun q => _, Quotient.mk'' g, Function.update_same (Quotient.mk'' g) g Quotient.out'⟩ [GOAL] G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G g : G q : Quotient (QuotientGroup.rightRel H) ⊢ Quotient.mk'' (Function.update Quotient.out' (Quotient.mk'' g) g q) = q [PROOFSTEP] by_cases hq : q = Quotient.mk'' g [GOAL] case pos G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G g : G q : Quotient (QuotientGroup.rightRel H) hq : q = Quotient.mk'' g ⊢ Quotient.mk'' (Function.update Quotient.out' (Quotient.mk'' g) g q) = q [PROOFSTEP] exact hq.symm ▸ congr_arg _ (Function.update_same (Quotient.mk'' g) g Quotient.out') [GOAL] case neg G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G g : G q : Quotient (QuotientGroup.rightRel H) hq : ¬q = Quotient.mk'' g ⊢ Quotient.mk'' (Function.update Quotient.out' (Quotient.mk'' g) g q) = q [PROOFSTEP] exact Eq.trans (congr_arg _ (Function.update_noteq hq g Quotient.out')) q.out_eq' [GOAL] G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G f : G ⧸ H → G hf : ∀ (q : G ⧸ H), ↑(f q) = q q : G ⧸ H ⊢ ↑(↑(toEquiv (_ : (Set.range fun q => f q) ∈ leftTransversals ↑H)) q) = f q [PROOFSTEP] refine' (Subtype.ext_iff.mp _).trans (Subtype.coe_mk (f q) ⟨q, rfl⟩) [GOAL] G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G f : G ⧸ H → G hf : ∀ (q : G ⧸ H), ↑(f q) = q q : G ⧸ H ⊢ ↑(toEquiv (_ : (Set.range fun q => f q) ∈ leftTransversals ↑H)) q = { val := f q, property := (_ : ∃ y, (fun q => f q) y = f q) } [PROOFSTEP] exact (toEquiv (range_mem_leftTransversals hf)).apply_eq_iff_eq_symm_apply.mpr (hf q).symm [GOAL] G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G hS : S ∈ leftTransversals ↑H g : G ⊢ ((↑(toFun hS g))⁻¹ * g)⁻¹ = g⁻¹ * ↑(toFun hS g) [PROOFSTEP] rw [mul_inv_rev, inv_inv] [GOAL] G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G f : Quotient (QuotientGroup.rightRel H) → G hf : ∀ (q : Quotient (QuotientGroup.rightRel H)), Quotient.mk'' (f q) = q q : Quotient (QuotientGroup.rightRel H) ⊢ ↑(↑(toEquiv (_ : (Set.range fun q => f q) ∈ rightTransversals ↑H)) q) = f q [PROOFSTEP] refine' (Subtype.ext_iff.mp _).trans (Subtype.coe_mk (f q) ⟨q, rfl⟩) [GOAL] G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G f : Quotient (QuotientGroup.rightRel H) → G hf : ∀ (q : Quotient (QuotientGroup.rightRel H)), Quotient.mk'' (f q) = q q : Quotient (QuotientGroup.rightRel H) ⊢ ↑(toEquiv (_ : (Set.range fun q => f q) ∈ rightTransversals ↑H)) q = { val := f q, property := (_ : ∃ y, (fun q => f q) y = f q) } [PROOFSTEP] exact (toEquiv (range_mem_rightTransversals hf)).apply_eq_iff_eq_symm_apply.mpr (hf q).symm [GOAL] G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G hS : S ∈ rightTransversals ↑H g : G ⊢ (g * (↑(toFun hS g))⁻¹)⁻¹ = ↑(toFun hS g) * g⁻¹ [PROOFSTEP] rw [mul_inv_rev, inv_inv] [GOAL] G : Type u_1 inst✝³ : Group G H K : Subgroup G S T✝ : Set G F : Type u_2 inst✝² : Group F inst✝¹ : MulAction F G inst✝ : QuotientAction F H f : F T : ↑(leftTransversals ↑H) ⊢ f • ↑T ∈ leftTransversals ↑H [PROOFSTEP] refine' mem_leftTransversals_iff_existsUnique_inv_mul_mem.mpr fun g => _ [GOAL] G : Type u_1 inst✝³ : Group G H K : Subgroup G S T✝ : Set G F : Type u_2 inst✝² : Group F inst✝¹ : MulAction F G inst✝ : QuotientAction F H f : F T : ↑(leftTransversals ↑H) g : G ⊢ ∃! s, (↑s)⁻¹ * g ∈ ↑H [PROOFSTEP] obtain ⟨t, ht1, ht2⟩ := mem_leftTransversals_iff_existsUnique_inv_mul_mem.mp T.2 (f⁻¹ • g) [GOAL] case intro.intro G : Type u_1 inst✝³ : Group G H K : Subgroup G S T✝ : Set G F : Type u_2 inst✝² : Group F inst✝¹ : MulAction F G inst✝ : QuotientAction F H f : F T : ↑(leftTransversals ↑H) g : G t : ↑↑T ht1 : (↑t)⁻¹ * f⁻¹ • g ∈ ↑H ht2 : ∀ (y : ↑↑T), (fun s => (↑s)⁻¹ * f⁻¹ • g ∈ ↑H) y → y = t ⊢ ∃! s, (↑s)⁻¹ * g ∈ ↑H [PROOFSTEP] refine' ⟨⟨f • (t : G), Set.smul_mem_smul_set t.2⟩, _, _⟩ [GOAL] case intro.intro.refine'_1 G : Type u_1 inst✝³ : Group G H K : Subgroup G S T✝ : Set G F : Type u_2 inst✝² : Group F inst✝¹ : MulAction F G inst✝ : QuotientAction F H f : F T : ↑(leftTransversals ↑H) g : G t : ↑↑T ht1 : (↑t)⁻¹ * f⁻¹ • g ∈ ↑H ht2 : ∀ (y : ↑↑T), (fun s => (↑s)⁻¹ * f⁻¹ • g ∈ ↑H) y → y = t ⊢ (fun s => (↑s)⁻¹ * g ∈ ↑H) { val := f • ↑t, property := (_ : f • ↑t ∈ f • ↑T) } [PROOFSTEP] exact smul_inv_smul f g ▸ QuotientAction.inv_mul_mem f ht1 [GOAL] case intro.intro.refine'_2 G : Type u_1 inst✝³ : Group G H K : Subgroup G S T✝ : Set G F : Type u_2 inst✝² : Group F inst✝¹ : MulAction F G inst✝ : QuotientAction F H f : F T : ↑(leftTransversals ↑H) g : G t : ↑↑T ht1 : (↑t)⁻¹ * f⁻¹ • g ∈ ↑H ht2 : ∀ (y : ↑↑T), (fun s => (↑s)⁻¹ * f⁻¹ • g ∈ ↑H) y → y = t ⊢ ∀ (y : ↑(f • ↑T)), (fun s => (↑s)⁻¹ * g ∈ ↑H) y → y = { val := f • ↑t, property := (_ : f • ↑t ∈ f • ↑T) } [PROOFSTEP] rintro ⟨-, t', ht', rfl⟩ h [GOAL] case intro.intro.refine'_2.mk.intro.intro G : Type u_1 inst✝³ : Group G H K : Subgroup G S T✝ : Set G F : Type u_2 inst✝² : Group F inst✝¹ : MulAction F G inst✝ : QuotientAction F H f : F T : ↑(leftTransversals ↑H) g : G t : ↑↑T ht1 : (↑t)⁻¹ * f⁻¹ • g ∈ ↑H ht2 : ∀ (y : ↑↑T), (fun s => (↑s)⁻¹ * f⁻¹ • g ∈ ↑H) y → y = t t' : G ht' : t' ∈ ↑T h : (↑{ val := (fun x => f • x) t', property := (_ : ∃ a, a ∈ ↑T ∧ (fun x => f • x) a = (fun x => f • x) t') })⁻¹ * g ∈ ↑H ⊢ { val := (fun x => f • x) t', property := (_ : ∃ a, a ∈ ↑T ∧ (fun x => f • x) a = (fun x => f • x) t') } = { val := f • ↑t, property := (_ : f • ↑t ∈ f • ↑T) } [PROOFSTEP] replace h := QuotientAction.inv_mul_mem f⁻¹ h [GOAL] case intro.intro.refine'_2.mk.intro.intro G : Type u_1 inst✝³ : Group G H K : Subgroup G S T✝ : Set G F : Type u_2 inst✝² : Group F inst✝¹ : MulAction F G inst✝ : QuotientAction F H f : F T : ↑(leftTransversals ↑H) g : G t : ↑↑T ht1 : (↑t)⁻¹ * f⁻¹ • g ∈ ↑H ht2 : ∀ (y : ↑↑T), (fun s => (↑s)⁻¹ * f⁻¹ • g ∈ ↑H) y → y = t t' : G ht' : t' ∈ ↑T h : (f⁻¹ • ↑{ val := (fun x => f • x) t', property := (_ : ∃ a, a ∈ ↑T ∧ (fun x => f • x) a = (fun x => f • x) t') })⁻¹ * f⁻¹ • g ∈ H ⊢ { val := (fun x => f • x) t', property := (_ : ∃ a, a ∈ ↑T ∧ (fun x => f • x) a = (fun x => f • x) t') } = { val := f • ↑t, property := (_ : f • ↑t ∈ f • ↑T) } [PROOFSTEP] simp only [Subtype.ext_iff, Subtype.coe_mk, smul_left_cancel_iff, inv_smul_smul] at h ⊢ [GOAL] case intro.intro.refine'_2.mk.intro.intro G : Type u_1 inst✝³ : Group G H K : Subgroup G S T✝ : Set G F : Type u_2 inst✝² : Group F inst✝¹ : MulAction F G inst✝ : QuotientAction F H f : F T : ↑(leftTransversals ↑H) g : G t : ↑↑T ht1 : (↑t)⁻¹ * f⁻¹ • g ∈ ↑H ht2 : ∀ (y : ↑↑T), (fun s => (↑s)⁻¹ * f⁻¹ • g ∈ ↑H) y → y = t t' : G ht' : t' ∈ ↑T h : t'⁻¹ * f⁻¹ • g ∈ H ⊢ t' = ↑t [PROOFSTEP] exact Subtype.ext_iff.mp (ht2 ⟨t', ht'⟩ h) [GOAL] G : Type u_1 inst✝³ : Group G H K : Subgroup G S T✝ : Set G F : Type u_2 inst✝² : Group F inst✝¹ : MulAction F G inst✝ : QuotientAction F H f : F T : ↑(leftTransversals ↑H) q : G ⧸ H ⊢ ↑(↑(toEquiv (_ : ↑(f • T) ∈ leftTransversals ↑H)) q) = f • ↑(↑(toEquiv (_ : ↑T ∈ leftTransversals ↑H)) (f⁻¹ • q)) [PROOFSTEP] rw [smul_toEquiv, smul_inv_smul] [GOAL] G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G h : IsComplement' H K ⊢ IsCompl H K [PROOFSTEP] refine' ⟨disjoint_iff_inf_le.mpr fun g ⟨p, q⟩ => let x : H × K := ⟨⟨g, p⟩, 1⟩ let y : H × K := ⟨1, g, q⟩ Subtype.ext_iff.mp (Prod.ext_iff.mp (show x = y from h.1 ((mul_one g).trans (one_mul g).symm))).1, codisjoint_iff_le_sup.mpr fun g _ => _⟩ [GOAL] G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G h : IsComplement' H K g : G x✝ : g ∈ ⊤ ⊢ g ∈ H ⊔ K [PROOFSTEP] obtain ⟨⟨h, k⟩, rfl⟩ := h.2 g [GOAL] case intro.mk G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G h✝ : IsComplement' H K h : ↑↑H k : ↑↑K x✝ : (fun x => ↑x.fst * ↑x.snd) (h, k) ∈ ⊤ ⊢ (fun x => ↑x.fst * ↑x.snd) (h, k) ∈ H ⊔ K [PROOFSTEP] exact Subgroup.mul_mem_sup h.2 k.2 [GOAL] G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G h1 : Disjoint H K h2 : ↑H * ↑K = Set.univ ⊢ IsComplement' H K [PROOFSTEP] refine' ⟨mul_injective_of_disjoint h1, fun g => _⟩ [GOAL] G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G h1 : Disjoint H K h2 : ↑H * ↑K = Set.univ g : G ⊢ ∃ a, (fun x => ↑x.fst * ↑x.snd) a = g [PROOFSTEP] obtain ⟨h, k, hh, hk, hg⟩ := Set.eq_univ_iff_forall.mp h2 g [GOAL] case intro.intro.intro.intro G : Type u_1 inst✝ : Group G H K : Subgroup G S T : Set G h1 : Disjoint H K h2 : ↑H * ↑K = Set.univ g h k : G hh : h ∈ ↑H hk : k ∈ ↑K hg : (fun x x_1 => x * x_1) h k = g ⊢ ∃ a, (fun x => ↑x.fst * ↑x.snd) a = g [PROOFSTEP] exact ⟨(⟨h, hh⟩, ⟨k, hk⟩), hg⟩ [GOAL] G : Type u_1 inst✝¹ : Group G H K : Subgroup G S T : Set G α : Type u_2 inst✝ : MulAction G α a : α h1 : ∀ (h : { x // x ∈ H }), h • a = a → h = 1 h2 : ∀ (g : G), ∃ h, h • g • a = a ⊢ IsComplement' H (MulAction.stabilizer G a) [PROOFSTEP] refine' isComplement_iff_existsUnique.mpr fun g => _ [GOAL] G : Type u_1 inst✝¹ : Group G H K : Subgroup G S T : Set G α : Type u_2 inst✝ : MulAction G α a : α h1 : ∀ (h : { x // x ∈ H }), h • a = a → h = 1 h2 : ∀ (g : G), ∃ h, h • g • a = a g : G ⊢ ∃! x, ↑x.fst * ↑x.snd = g [PROOFSTEP] obtain ⟨h, hh⟩ := h2 g [GOAL] case intro G : Type u_1 inst✝¹ : Group G H K : Subgroup G S T : Set G α : Type u_2 inst✝ : MulAction G α a : α h1 : ∀ (h : { x // x ∈ H }), h • a = a → h = 1 h2 : ∀ (g : G), ∃ h, h • g • a = a g : G h : { x // x ∈ H } hh : h • g • a = a ⊢ ∃! x, ↑x.fst * ↑x.snd = g [PROOFSTEP] have hh' : (↑h * g) • a = a := by rwa [mul_smul] [GOAL] G : Type u_1 inst✝¹ : Group G H K : Subgroup G S T : Set G α : Type u_2 inst✝ : MulAction G α a : α h1 : ∀ (h : { x // x ∈ H }), h • a = a → h = 1 h2 : ∀ (g : G), ∃ h, h • g • a = a g : G h : { x // x ∈ H } hh : h • g • a = a ⊢ (↑h * g) • a = a [PROOFSTEP] rwa [mul_smul] [GOAL] case intro G : Type u_1 inst✝¹ : Group G H K : Subgroup G S T : Set G α : Type u_2 inst✝ : MulAction G α a : α h1 : ∀ (h : { x // x ∈ H }), h • a = a → h = 1 h2 : ∀ (g : G), ∃ h, h • g • a = a g : G h : { x // x ∈ H } hh : h • g • a = a hh' : (↑h * g) • a = a ⊢ ∃! x, ↑x.fst * ↑x.snd = g [PROOFSTEP] refine' ⟨⟨h⁻¹, h * g, hh'⟩, inv_mul_cancel_left (↑h) g, _⟩ [GOAL] case intro G : Type u_1 inst✝¹ : Group G H K : Subgroup G S T : Set G α : Type u_2 inst✝ : MulAction G α a : α h1 : ∀ (h : { x // x ∈ H }), h • a = a → h = 1 h2 : ∀ (g : G), ∃ h, h • g • a = a g : G h : { x // x ∈ H } hh : h • g • a = a hh' : (↑h * g) • a = a ⊢ ∀ (y : ↑↑H × ↑↑(MulAction.stabilizer G a)), (fun x => ↑x.fst * ↑x.snd = g) y → y = (h⁻¹, { val := ↑h * g, property := hh' }) [PROOFSTEP] rintro ⟨h', g, hg : g • a = a⟩ rfl [GOAL] case intro.mk.mk G : Type u_1 inst✝¹ : Group G H K : Subgroup G S T : Set G α : Type u_2 inst✝ : MulAction G α a : α h1 : ∀ (h : { x // x ∈ H }), h • a = a → h = 1 h2 : ∀ (g : G), ∃ h, h • g • a = a h : { x // x ∈ H } h' : ↑↑H g : G hg : g • a = a hh : h • (↑(h', { val := g, property := hg }).fst * ↑(h', { val := g, property := hg }).snd) • a = a hh' : (↑h * (↑(h', { val := g, property := hg }).fst * ↑(h', { val := g, property := hg }).snd)) • a = a ⊢ (h', { val := g, property := hg }) = (h⁻¹, { val := ↑h * (↑(h', { val := g, property := hg }).fst * ↑(h', { val := g, property := hg }).snd), property := hh' }) [PROOFSTEP] specialize h1 (h * h') (by rwa [mul_smul, smul_def h', ← hg, ← mul_smul, hg]) [GOAL] G : Type u_1 inst✝¹ : Group G H K : Subgroup G S T : Set G α : Type u_2 inst✝ : MulAction G α a : α h1 : ∀ (h : { x // x ∈ H }), h • a = a → h = 1 h2 : ∀ (g : G), ∃ h, h • g • a = a h : { x // x ∈ H } h' : ↑↑H g : G hg : g • a = a hh : h • (↑(h', { val := g, property := hg }).fst * ↑(h', { val := g, property := hg }).snd) • a = a hh' : (↑h * (↑(h', { val := g, property := hg }).fst * ↑(h', { val := g, property := hg }).snd)) • a = a ⊢ (h * h') • a = a [PROOFSTEP] rwa [mul_smul, smul_def h', ← hg, ← mul_smul, hg] [GOAL] case intro.mk.mk G : Type u_1 inst✝¹ : Group G H K : Subgroup G S T : Set G α : Type u_2 inst✝ : MulAction G α a : α h2 : ∀ (g : G), ∃ h, h • g • a = a h : { x // x ∈ H } h' : ↑↑H g : G hg : g • a = a hh : h • (↑(h', { val := g, property := hg }).fst * ↑(h', { val := g, property := hg }).snd) • a = a hh' : (↑h * (↑(h', { val := g, property := hg }).fst * ↑(h', { val := g, property := hg }).snd)) • a = a h1 : h * h' = 1 ⊢ (h', { val := g, property := hg }) = (h⁻¹, { val := ↑h * (↑(h', { val := g, property := hg }).fst * ↑(h', { val := g, property := hg }).snd), property := hh' }) [PROOFSTEP] refine' Prod.ext (eq_inv_of_mul_eq_one_right h1) (Subtype.ext _) [GOAL] case intro.mk.mk G : Type u_1 inst✝¹ : Group G H K : Subgroup G S T : Set G α : Type u_2 inst✝ : MulAction G α a : α h2 : ∀ (g : G), ∃ h, h • g • a = a h : { x // x ∈ H } h' : ↑↑H g : G hg : g • a = a hh : h • (↑(h', { val := g, property := hg }).fst * ↑(h', { val := g, property := hg }).snd) • a = a hh' : (↑h * (↑(h', { val := g, property := hg }).fst * ↑(h', { val := g, property := hg }).snd)) • a = a h1 : h * h' = 1 ⊢ ↑(h', { val := g, property := hg }).snd = ↑(h⁻¹, { val := ↑h * (↑(h', { val := g, property := hg }).fst * ↑(h', { val := g, property := hg }).snd), property := hh' }).snd [PROOFSTEP] rwa [Subtype.ext_iff, coe_one, coe_mul, ← self_eq_mul_left, mul_assoc (↑h) (↑h') g] at h1 [GOAL] G : Type u inst✝ : Group G H : Subgroup G g : G q : orbitRel.Quotient { x // x ∈ zpowers g } (G ⧸ H) k : ℤ ⊢ ↑(quotientEquivSigmaZMod H g) (g ^ k • Quotient.out' q) = { fst := q, snd := ↑k } [PROOFSTEP] rw [apply_eq_iff_eq_symm_apply, quotientEquivSigmaZMod_symm_apply, ZMod.coe_int_cast, zpow_smul_mod_minimalPeriod] [GOAL] G : Type u inst✝ : Group G H : Subgroup G g : G q : G ⧸ H ⊢ ↑(transferFunction H g q) = q [PROOFSTEP] rw [transferFunction_apply, ← smul_eq_mul, Quotient.coe_smul_out', ← quotientEquivSigmaZMod_symm_apply, Sigma.eta, symm_apply_apply] [GOAL] G : Type u inst✝ : Group G H : Subgroup G g : G q : orbitRel.Quotient { x // x ∈ zpowers g } (G ⧸ H) k : ZMod (minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q)) ⊢ ↑(↑(toEquiv (_ : ↑(transferTransversal H g) ∈ leftTransversals ↑H)) (g ^ ↑k • Quotient.out' q)) = g ^ ↑k * Quotient.out' (Quotient.out' q) [PROOFSTEP] rw [transferTransversal_apply, transferFunction_apply, ← quotientEquivSigmaZMod_symm_apply, apply_symm_apply] [GOAL] G : Type u inst✝ : Group G H : Subgroup G g : G q : orbitRel.Quotient { x // x ∈ zpowers g } (G ⧸ H) k : ZMod (minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q)) ⊢ ↑(↑(toEquiv (_ : ↑(g • transferTransversal H g) ∈ leftTransversals ↑H)) (g ^ ↑k • Quotient.out' q)) = if k = 0 then g ^ minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q) * Quotient.out' (Quotient.out' q) else g ^ ↑k * Quotient.out' (Quotient.out' q) [PROOFSTEP] rw [smul_apply_eq_smul_apply_inv_smul, transferTransversal_apply, transferFunction_apply, ← mul_smul, ← zpow_neg_one, ← zpow_add, quotientEquivSigmaZMod_apply, smul_eq_mul, ← mul_assoc, ← zpow_one_add, Int.cast_add, Int.cast_neg, Int.cast_one, int_cast_cast, cast_id', id.def, ← sub_eq_neg_add, cast_sub_one, add_sub_cancel'_right] [GOAL] G : Type u inst✝ : Group G H : Subgroup G g : G q : orbitRel.Quotient { x // x ∈ zpowers g } (G ⧸ H) k : ZMod (minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q)) ⊢ (g ^ if k = 0 then ↑(minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' { fst := q, snd := k - 1 }.fst)) else ↑k) * Quotient.out' (Quotient.out' { fst := q, snd := k - 1 }.fst) = if k = 0 then g ^ minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q) * Quotient.out' (Quotient.out' q) else g ^ ↑k * Quotient.out' (Quotient.out' q) [PROOFSTEP] by_cases hk : k = 0 [GOAL] case pos G : Type u inst✝ : Group G H : Subgroup G g : G q : orbitRel.Quotient { x // x ∈ zpowers g } (G ⧸ H) k : ZMod (minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q)) hk : k = 0 ⊢ (g ^ if k = 0 then ↑(minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' { fst := q, snd := k - 1 }.fst)) else ↑k) * Quotient.out' (Quotient.out' { fst := q, snd := k - 1 }.fst) = if k = 0 then g ^ minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q) * Quotient.out' (Quotient.out' q) else g ^ ↑k * Quotient.out' (Quotient.out' q) [PROOFSTEP] rw [if_pos hk, if_pos hk, zpow_ofNat] [GOAL] case neg G : Type u inst✝ : Group G H : Subgroup G g : G q : orbitRel.Quotient { x // x ∈ zpowers g } (G ⧸ H) k : ZMod (minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q)) hk : ¬k = 0 ⊢ (g ^ if k = 0 then ↑(minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' { fst := q, snd := k - 1 }.fst)) else ↑k) * Quotient.out' (Quotient.out' { fst := q, snd := k - 1 }.fst) = if k = 0 then g ^ minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q) * Quotient.out' (Quotient.out' q) else g ^ ↑k * Quotient.out' (Quotient.out' q) [PROOFSTEP] rw [if_neg hk, if_neg hk]
{"mathlib_filename": "Mathlib.GroupTheory.Complement", "llama_tokens": 19595}
[GOAL] α : Type u_1 M : Type ?u.8804 N : Type ?u.8800 inst✝² : Mul N inst✝¹ : SMul M N inst✝ : IsScalarTower M N N x : M y : Nᵐᵒᵖ z : N ⊢ x • y • z = y • x • z [PROOFSTEP] induction y using MulOpposite.rec' [GOAL] case h α : Type u_1 M : Type ?u.8804 N : Type ?u.8800 inst✝² : Mul N inst✝¹ : SMul M N inst✝ : IsScalarTower M N N x : M z X✝ : N ⊢ x • op X✝ • z = op X✝ • x • z [PROOFSTEP] simp only [smul_mul_assoc, MulOpposite.smul_eq_mul_unop]
{"mathlib_filename": "Mathlib.GroupTheory.GroupAction.Opposite", "llama_tokens": 260}
[GOAL] M : Type u_1 N : Type u_2 α : Type u_3 inst✝³ : SMul M α inst✝² : SMul N α a✝ : M b✝ : α x✝ : Option α inst✝¹ : SMul M N inst✝ : IsScalarTower M N α a : M b : N x : Option α ⊢ (a • b) • x = a • b • x [PROOFSTEP] cases x [GOAL] case none M : Type u_1 N : Type u_2 α : Type u_3 inst✝³ : SMul M α inst✝² : SMul N α a✝ : M b✝ : α x : Option α inst✝¹ : SMul M N inst✝ : IsScalarTower M N α a : M b : N ⊢ (a • b) • none = a • b • none case some M : Type u_1 N : Type u_2 α : Type u_3 inst✝³ : SMul M α inst✝² : SMul N α a✝ : M b✝ : α x : Option α inst✝¹ : SMul M N inst✝ : IsScalarTower M N α a : M b : N val✝ : α ⊢ (a • b) • some val✝ = a • b • some val✝ [PROOFSTEP] exacts [rfl, congr_arg some (smul_assoc _ _ _)] [GOAL] M : Type u_1 N : Type u_2 α : Type u_3 inst✝³ : SMul M α inst✝² : SMul N α a✝ : M b : α x✝ : Option α inst✝¹ : SMul Mᵐᵒᵖ α inst✝ : IsCentralScalar M α a : M x : Option α ⊢ MulOpposite.op a • x = a • x [PROOFSTEP] cases x [GOAL] case none M : Type u_1 N : Type u_2 α : Type u_3 inst✝³ : SMul M α inst✝² : SMul N α a✝ : M b : α x : Option α inst✝¹ : SMul Mᵐᵒᵖ α inst✝ : IsCentralScalar M α a : M ⊢ MulOpposite.op a • none = a • none case some M : Type u_1 N : Type u_2 α : Type u_3 inst✝³ : SMul M α inst✝² : SMul N α a✝ : M b : α x : Option α inst✝¹ : SMul Mᵐᵒᵖ α inst✝ : IsCentralScalar M α a : M val✝ : α ⊢ MulOpposite.op a • some val✝ = a • some val✝ [PROOFSTEP] exacts [rfl, congr_arg some (op_smul_eq_smul _ _)] [GOAL] M : Type u_1 N : Type u_2 α : Type u_3 inst✝² : SMul M α inst✝¹ : SMul N α a : M b✝ : α x : Option α inst✝ : FaithfulSMul M α m₁✝ m₂✝ : M h : ∀ (a : Option α), m₁✝ • a = m₂✝ • a b : α ⊢ m₁✝ • b = m₂✝ • b [PROOFSTEP] injection h (some b) [GOAL] M : Type u_1 N : Type u_2 α : Type u_3 inst✝¹ : Monoid M inst✝ : MulAction M α b : Option α ⊢ 1 • b = b [PROOFSTEP] cases b [GOAL] case none M : Type u_1 N : Type u_2 α : Type u_3 inst✝¹ : Monoid M inst✝ : MulAction M α ⊢ 1 • none = none case some M : Type u_1 N : Type u_2 α : Type u_3 inst✝¹ : Monoid M inst✝ : MulAction M α val✝ : α ⊢ 1 • some val✝ = some val✝ [PROOFSTEP] exacts [rfl, congr_arg some (one_smul _ _)] [GOAL] M : Type u_1 N : Type u_2 α : Type u_3 inst✝¹ : Monoid M inst✝ : MulAction M α a₁ a₂ : M b : Option α ⊢ (a₁ * a₂) • b = a₁ • a₂ • b [PROOFSTEP] cases b [GOAL] case none M : Type u_1 N : Type u_2 α : Type u_3 inst✝¹ : Monoid M inst✝ : MulAction M α a₁ a₂ : M ⊢ (a₁ * a₂) • none = a₁ • a₂ • none case some M : Type u_1 N : Type u_2 α : Type u_3 inst✝¹ : Monoid M inst✝ : MulAction M α a₁ a₂ : M val✝ : α ⊢ (a₁ * a₂) • some val✝ = a₁ • a₂ • some val✝ [PROOFSTEP] exacts [rfl, congr_arg some (mul_smul _ _ _)]
{"mathlib_filename": "Mathlib.GroupTheory.GroupAction.Option", "llama_tokens": 1475}
[GOAL] G : Type u_1 H : Type u_2 M : Type u_3 N : Type u_4 α : Type u_5 inst✝⁴ : Group G inst✝³ : Monoid M inst✝² : MulAction G M inst✝¹ : SMulCommClass G M M inst✝ : IsScalarTower G M M g : G m : Mˣ ⊢ g • ↑m * g⁻¹ • ↑m⁻¹ = 1 [PROOFSTEP] rw [smul_mul_smul, Units.mul_inv, mul_right_inv, one_smul] [GOAL] G : Type u_1 H : Type u_2 M : Type u_3 N : Type u_4 α : Type u_5 inst✝⁴ : Group G inst✝³ : Monoid M inst✝² : MulAction G M inst✝¹ : SMulCommClass G M M inst✝ : IsScalarTower G M M g : G m : Mˣ ⊢ g⁻¹ • ↑m⁻¹ * g • ↑m = 1 [PROOFSTEP] rw [smul_mul_smul, Units.inv_mul, mul_left_inv, one_smul]
{"mathlib_filename": "Mathlib.GroupTheory.GroupAction.Units", "llama_tokens": 326}
{"mathlib_filename": "Mathlib.GroupTheory.GroupAction.BigOperators", "llama_tokens": 0}
[GOAL] M : Type u_1 N : Type u_2 P : Type u_3 E : Type u_4 α✝ : Type u_5 β : Type u_6 inst✝⁶ : SMul M α✝ inst✝⁵ : SMul M β inst✝⁴ : SMul N α✝ inst✝³ : SMul N β a✝ : M x : α✝ × β α : Type u_7 inst✝² : Monoid M inst✝¹ : AddMonoid α inst✝ : DistribMulAction M α a : M c : β ⊢ a • (0, c) = (0, a • c) [PROOFSTEP] rw [Prod.smul_mk, smul_zero] [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 E : Type u_4 α : Type u_5 β✝ : Type u_6 inst✝⁶ : SMul M α inst✝⁵ : SMul M β✝ inst✝⁴ : SMul N α inst✝³ : SMul N β✝ a✝ : M x : α × β✝ β : Type u_7 inst✝² : Monoid M inst✝¹ : AddMonoid β inst✝ : DistribMulAction M β a : M b : α ⊢ a • (b, 0) = (a • b, 0) [PROOFSTEP] rw [Prod.smul_mk, smul_zero] [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 E : Type u_4 α : Type u_5 β : Type u_6 inst✝⁷ : SMul M α inst✝⁶ : SMul M β inst✝⁵ : SMul N α inst✝⁴ : SMul N β a✝ : M x : α × β inst✝³ : Pow α E inst✝² : Pow β E inst✝¹ : FaithfulSMul M α inst✝ : Nonempty β m₁✝ m₂✝ : M h : ∀ (a : α × β), m₁✝ • a = m₂✝ • a b : β a : α ⊢ m₁✝ • a = m₂✝ • a [PROOFSTEP] injection h (a, b) [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 E : Type u_4 α : Type u_5 β : Type u_6 inst✝⁷ : SMul M α inst✝⁶ : SMul M β inst✝⁵ : SMul N α inst✝⁴ : SMul N β a✝ : M x : α × β inst✝³ : Pow α E inst✝² : Pow β E inst✝¹ : Nonempty α inst✝ : FaithfulSMul M β m₁✝ m₂✝ : M h : ∀ (a : α × β), m₁✝ • a = m₂✝ • a a : α b : β ⊢ m₁✝ • b = m₂✝ • b [PROOFSTEP] injection h (a, b) [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 E : Type u_4 α : Type u_5 β : Type u_6 inst✝⁵ : Mul N inst✝⁴ : Mul P inst✝³ : SMul M N inst✝² : SMul M P inst✝¹ : SMulCommClass M N N inst✝ : SMulCommClass M P P c : M x y : N × P ⊢ c • x • y = x • c • y [PROOFSTEP] simp [smul_def, mul_def, mul_smul_comm] [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 E : Type u_4 α : Type u_5 β : Type u_6 inst✝⁵ : Mul N inst✝⁴ : Mul P inst✝³ : SMul M N inst✝² : SMul M P inst✝¹ : IsScalarTower M N N inst✝ : IsScalarTower M P P c : M x y : N × P ⊢ (c • x) • y = c • x • y [PROOFSTEP] simp [smul_def, mul_def, smul_mul_assoc]
{"mathlib_filename": "Mathlib.GroupTheory.GroupAction.Prod", "llama_tokens": 1225}
[GOAL] G : Type u_1 inst✝² : Group G H : Subgroup G A : Type u_2 inst✝¹ : CommGroup A ϕ : { x // x ∈ H } →* A R S T : ↑(leftTransversals ↑H) inst✝ : FiniteIndex H q : G ⧸ H x✝ : q ∈ univ ⊢ { val := (↑(↑(MemLeftTransversals.toEquiv (_ : ↑R ∈ leftTransversals ↑H)) q))⁻¹ * ↑(↑(MemLeftTransversals.toEquiv (_ : ↑S ∈ leftTransversals ↑H)) q), property := (_ : (↑(↑(MemLeftTransversals.toEquiv (_ : ↑R ∈ leftTransversals ↑H)) q))⁻¹ * ↑(↑(MemLeftTransversals.toEquiv (_ : ↑S ∈ leftTransversals ↑H)) q) ∈ H) } * { val := (↑(↑(MemLeftTransversals.toEquiv (_ : ↑S ∈ leftTransversals ↑H)) q))⁻¹ * ↑(↑(MemLeftTransversals.toEquiv (_ : ↑T ∈ leftTransversals ↑H)) q), property := (_ : (↑(↑(MemLeftTransversals.toEquiv (_ : ↑S ∈ leftTransversals ↑H)) q))⁻¹ * ↑(↑(MemLeftTransversals.toEquiv (_ : ↑T ∈ leftTransversals ↑H)) q) ∈ H) } = { val := (↑(↑(MemLeftTransversals.toEquiv (_ : ↑R ∈ leftTransversals ↑H)) q))⁻¹ * ↑(↑(MemLeftTransversals.toEquiv (_ : ↑T ∈ leftTransversals ↑H)) q), property := (_ : (↑(↑(MemLeftTransversals.toEquiv (_ : ↑R ∈ leftTransversals ↑H)) q))⁻¹ * ↑(↑(MemLeftTransversals.toEquiv (_ : ↑T ∈ leftTransversals ↑H)) q) ∈ H) } [PROOFSTEP] simp_rw [Subtype.ext_iff, coe_mul, mul_assoc, mul_inv_cancel_left] [GOAL] G : Type u_1 inst✝² : Group G H : Subgroup G A : Type u_2 inst✝¹ : CommGroup A ϕ : { x // x ∈ H } →* A R S T : ↑(leftTransversals ↑H) inst✝ : FiniteIndex H g : G x✝² : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H x✝¹ : G ⧸ H x✝ : x✝¹ ∈ univ ⊢ { val := (↑(↑(MemLeftTransversals.toEquiv (_ : ↑(g • S) ∈ leftTransversals ↑H)) x✝¹))⁻¹ * ↑(↑(MemLeftTransversals.toEquiv (_ : ↑(g • T) ∈ leftTransversals ↑H)) x✝¹), property := (_ : (↑(↑(MemLeftTransversals.toEquiv (_ : ↑(g • S) ∈ leftTransversals ↑H)) x✝¹))⁻¹ * ↑(↑(MemLeftTransversals.toEquiv (_ : ↑(g • T) ∈ leftTransversals ↑H)) x✝¹) ∈ H) } = { val := (↑(↑(MemLeftTransversals.toEquiv (_ : ↑S ∈ leftTransversals ↑H)) ((fun q x => g⁻¹ • q) x✝¹ x✝)))⁻¹ * ↑(↑(MemLeftTransversals.toEquiv (_ : ↑T ∈ leftTransversals ↑H)) ((fun q x => g⁻¹ • q) x✝¹ x✝)), property := (_ : (↑(↑(MemLeftTransversals.toEquiv (_ : ↑S ∈ leftTransversals ↑H)) ((fun q x => g⁻¹ • q) x✝¹ x✝)))⁻¹ * ↑(↑(MemLeftTransversals.toEquiv (_ : ↑T ∈ leftTransversals ↑H)) ((fun q x => g⁻¹ • q) x✝¹ x✝)) ∈ H) } [PROOFSTEP] simp_rw [smul_apply_eq_smul_apply_inv_smul, smul_eq_mul, mul_inv_rev, mul_assoc, inv_mul_cancel_left] [GOAL] G : Type u_1 inst✝² : Group G H : Subgroup G A : Type u_2 inst✝¹ : CommGroup A ϕ : { x // x ∈ H } →* A inst✝ : FiniteIndex H T : ↑(leftTransversals ↑H) := default ⊢ (fun g => diff ϕ T (g • T)) 1 = 1 [PROOFSTEP] simp only [GOAL] G : Type u_1 inst✝² : Group G H : Subgroup G A : Type u_2 inst✝¹ : CommGroup A ϕ : { x // x ∈ H } →* A inst✝ : FiniteIndex H T : ↑(leftTransversals ↑H) := default ⊢ diff ϕ default (1 • default) = 1 [PROOFSTEP] rw [one_smul, diff_self] -- porting note: added `simp only` [GOAL] G : Type u_1 inst✝² : Group G H : Subgroup G A : Type u_2 inst✝¹ : CommGroup A ϕ : { x // x ∈ H } →* A inst✝ : FiniteIndex H T : ↑(leftTransversals ↑H) := default g h : G ⊢ OneHom.toFun { toFun := fun g => diff ϕ T (g • T), map_one' := (_ : (fun g => diff ϕ T (g • T)) 1 = 1) } (g * h) = OneHom.toFun { toFun := fun g => diff ϕ T (g • T), map_one' := (_ : (fun g => diff ϕ T (g • T)) 1 = 1) } g * OneHom.toFun { toFun := fun g => diff ϕ T (g • T), map_one' := (_ : (fun g => diff ϕ T (g • T)) 1 = 1) } h [PROOFSTEP] simp only [GOAL] G : Type u_1 inst✝² : Group G H : Subgroup G A : Type u_2 inst✝¹ : CommGroup A ϕ : { x // x ∈ H } →* A inst✝ : FiniteIndex H T : ↑(leftTransversals ↑H) := default g h : G ⊢ diff ϕ default ((g * h) • default) = diff ϕ default (g • default) * diff ϕ default (h • default) [PROOFSTEP] rw [mul_smul, ← diff_mul_diff, smul_diff_smul] [GOAL] G : Type u_1 inst✝² : Group G H : Subgroup G A : Type u_2 inst✝¹ : CommGroup A ϕ : { x // x ∈ H } →* A T : ↑(leftTransversals ↑H) inst✝ : FiniteIndex H g : G ⊢ ↑(transfer ϕ) g = diff ϕ T (g • T) [PROOFSTEP] rw [transfer, ← diff_mul_diff, ← smul_diff_smul, mul_comm, diff_mul_diff] [GOAL] G : Type u_1 inst✝² : Group G H : Subgroup G A : Type u_2 inst✝¹ : CommGroup A ϕ : { x // x ∈ H } →* A T : ↑(leftTransversals ↑H) inst✝ : FiniteIndex H g : G ⊢ ↑(let T := default; { toOneHom := { toFun := fun g => diff ϕ T (g • T), map_one' := (_ : (fun g => diff ϕ default (g • default)) 1 = 1) }, map_mul' := (_ : ∀ (g h : G), OneHom.toFun { toFun := fun g => diff ϕ default (g • default), map_one' := (_ : (fun g => diff ϕ default (g • default)) 1 = 1) } (g * h) = OneHom.toFun { toFun := fun g => diff ϕ default (g • default), map_one' := (_ : (fun g => diff ϕ default (g • default)) 1 = 1) } g * OneHom.toFun { toFun := fun g => diff ϕ default (g • default), map_one' := (_ : (fun g => diff ϕ default (g • default)) 1 = 1) } h) }) g = diff ϕ ?R (g • ?R) [PROOFSTEP] rfl [GOAL] G : Type u_1 inst✝³ : Group G H : Subgroup G A : Type u_2 inst✝² : CommGroup A ϕ : { x // x ∈ H } →* A T : ↑(leftTransversals ↑H) inst✝¹ : FiniteIndex H g : G inst✝ : Fintype (Quotient (orbitRel { x // x ∈ zpowers g } (G ⧸ H))) ⊢ ↑(transfer ϕ) g = ∏ q : Quotient (orbitRel { x // x ∈ zpowers g } (G ⧸ H)), ↑ϕ { val := (Quotient.out' (Quotient.out' q))⁻¹ * g ^ Function.minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q) * Quotient.out' (Quotient.out' q), property := (_ : (Quotient.out' (Quotient.out' q))⁻¹ * g ^ Function.minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q) * Quotient.out' (Quotient.out' q) ∈ H) } [PROOFSTEP] classical letI := H.fintypeQuotientOfFiniteIndex calc transfer ϕ g = ∏ q : G ⧸ H, _ := transfer_def ϕ (transferTransversal H g) g _ = _ := ((quotientEquivSigmaZMod H g).symm.prod_comp _).symm _ = _ := (Finset.prod_sigma _ _ _) _ = _ := by refine' Fintype.prod_congr _ _ (fun q => _) simp only [quotientEquivSigmaZMod_symm_apply, transferTransversal_apply', transferTransversal_apply''] rw [Fintype.prod_eq_single (0 : ZMod (Function.minimalPeriod ((· • ·) g) q.out')) _] · simp only [if_pos, ZMod.cast_zero, zpow_zero, one_mul, mul_assoc] · intro k hk simp only [if_neg hk, inv_mul_self] exact map_one ϕ [GOAL] G : Type u_1 inst✝³ : Group G H : Subgroup G A : Type u_2 inst✝² : CommGroup A ϕ : { x // x ∈ H } →* A T : ↑(leftTransversals ↑H) inst✝¹ : FiniteIndex H g : G inst✝ : Fintype (Quotient (orbitRel { x // x ∈ zpowers g } (G ⧸ H))) ⊢ ↑(transfer ϕ) g = ∏ q : Quotient (orbitRel { x // x ∈ zpowers g } (G ⧸ H)), ↑ϕ { val := (Quotient.out' (Quotient.out' q))⁻¹ * g ^ Function.minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q) * Quotient.out' (Quotient.out' q), property := (_ : (Quotient.out' (Quotient.out' q))⁻¹ * g ^ Function.minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q) * Quotient.out' (Quotient.out' q) ∈ H) } [PROOFSTEP] letI := H.fintypeQuotientOfFiniteIndex [GOAL] G : Type u_1 inst✝³ : Group G H : Subgroup G A : Type u_2 inst✝² : CommGroup A ϕ : { x // x ∈ H } →* A T : ↑(leftTransversals ↑H) inst✝¹ : FiniteIndex H g : G inst✝ : Fintype (Quotient (orbitRel { x // x ∈ zpowers g } (G ⧸ H))) this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H ⊢ ↑(transfer ϕ) g = ∏ q : Quotient (orbitRel { x // x ∈ zpowers g } (G ⧸ H)), ↑ϕ { val := (Quotient.out' (Quotient.out' q))⁻¹ * g ^ Function.minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q) * Quotient.out' (Quotient.out' q), property := (_ : (Quotient.out' (Quotient.out' q))⁻¹ * g ^ Function.minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q) * Quotient.out' (Quotient.out' q) ∈ H) } [PROOFSTEP] calc transfer ϕ g = ∏ q : G ⧸ H, _ := transfer_def ϕ (transferTransversal H g) g _ = _ := ((quotientEquivSigmaZMod H g).symm.prod_comp _).symm _ = _ := (Finset.prod_sigma _ _ _) _ = _ := by refine' Fintype.prod_congr _ _ (fun q => _) simp only [quotientEquivSigmaZMod_symm_apply, transferTransversal_apply', transferTransversal_apply''] rw [Fintype.prod_eq_single (0 : ZMod (Function.minimalPeriod ((· • ·) g) q.out')) _] · simp only [if_pos, ZMod.cast_zero, zpow_zero, one_mul, mul_assoc] · intro k hk simp only [if_neg hk, inv_mul_self] exact map_one ϕ [GOAL] G : Type u_1 inst✝³ : Group G H : Subgroup G A : Type u_2 inst✝² : CommGroup A ϕ : { x // x ∈ H } →* A T : ↑(leftTransversals ↑H) inst✝¹ : FiniteIndex H g : G inst✝ : Fintype (Quotient (orbitRel { x // x ∈ zpowers g } (G ⧸ H))) this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H ⊢ ∏ a : orbitRel.Quotient { x // x ∈ zpowers g } (G ⧸ H), ∏ s in (fun x => Finset.univ) a, ↑ϕ { val := (↑(↑(MemLeftTransversals.toEquiv (_ : ↑(transferTransversal H g) ∈ leftTransversals ↑H)) (↑(quotientEquivSigmaZMod H g).symm { fst := a, snd := s })))⁻¹ * ↑(↑(MemLeftTransversals.toEquiv (_ : ↑(g • transferTransversal H g) ∈ leftTransversals ↑H)) (↑(quotientEquivSigmaZMod H g).symm { fst := a, snd := s })), property := (_ : (↑(↑(MemLeftTransversals.toEquiv (_ : ↑(transferTransversal H g) ∈ leftTransversals ↑H)) (↑(quotientEquivSigmaZMod H g).symm { fst := a, snd := s })))⁻¹ * ↑(↑(MemLeftTransversals.toEquiv (_ : ↑(g • transferTransversal H g) ∈ leftTransversals ↑H)) (↑(quotientEquivSigmaZMod H g).symm { fst := a, snd := s })) ∈ H) } = ∏ q : Quotient (orbitRel { x // x ∈ zpowers g } (G ⧸ H)), ↑ϕ { val := (Quotient.out' (Quotient.out' q))⁻¹ * g ^ Function.minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q) * Quotient.out' (Quotient.out' q), property := (_ : (Quotient.out' (Quotient.out' q))⁻¹ * g ^ Function.minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q) * Quotient.out' (Quotient.out' q) ∈ H) } [PROOFSTEP] refine' Fintype.prod_congr _ _ (fun q => _) [GOAL] G : Type u_1 inst✝³ : Group G H : Subgroup G A : Type u_2 inst✝² : CommGroup A ϕ : { x // x ∈ H } →* A T : ↑(leftTransversals ↑H) inst✝¹ : FiniteIndex H g : G inst✝ : Fintype (Quotient (orbitRel { x // x ∈ zpowers g } (G ⧸ H))) this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H q : orbitRel.Quotient { x // x ∈ zpowers g } (G ⧸ H) ⊢ ∏ s in (fun x => Finset.univ) q, ↑ϕ { val := (↑(↑(MemLeftTransversals.toEquiv (_ : ↑(transferTransversal H g) ∈ leftTransversals ↑H)) (↑(quotientEquivSigmaZMod H g).symm { fst := q, snd := s })))⁻¹ * ↑(↑(MemLeftTransversals.toEquiv (_ : ↑(g • transferTransversal H g) ∈ leftTransversals ↑H)) (↑(quotientEquivSigmaZMod H g).symm { fst := q, snd := s })), property := (_ : (↑(↑(MemLeftTransversals.toEquiv (_ : ↑(transferTransversal H g) ∈ leftTransversals ↑H)) (↑(quotientEquivSigmaZMod H g).symm { fst := q, snd := s })))⁻¹ * ↑(↑(MemLeftTransversals.toEquiv (_ : ↑(g • transferTransversal H g) ∈ leftTransversals ↑H)) (↑(quotientEquivSigmaZMod H g).symm { fst := q, snd := s })) ∈ H) } = ↑ϕ { val := (Quotient.out' (Quotient.out' q))⁻¹ * g ^ Function.minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q) * Quotient.out' (Quotient.out' q), property := (_ : (Quotient.out' (Quotient.out' q))⁻¹ * g ^ Function.minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q) * Quotient.out' (Quotient.out' q) ∈ H) } [PROOFSTEP] simp only [quotientEquivSigmaZMod_symm_apply, transferTransversal_apply', transferTransversal_apply''] [GOAL] G : Type u_1 inst✝³ : Group G H : Subgroup G A : Type u_2 inst✝² : CommGroup A ϕ : { x // x ∈ H } →* A T : ↑(leftTransversals ↑H) inst✝¹ : FiniteIndex H g : G inst✝ : Fintype (Quotient (orbitRel { x // x ∈ zpowers g } (G ⧸ H))) this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H q : orbitRel.Quotient { x // x ∈ zpowers g } (G ⧸ H) ⊢ ∏ x : ZMod (Function.minimalPeriod (fun x => g • x) (Quotient.out' q)), ↑ϕ { val := (g ^ ↑x * Quotient.out' (Quotient.out' q))⁻¹ * if x = 0 then g ^ Function.minimalPeriod (fun x => g • x) (Quotient.out' q) * Quotient.out' (Quotient.out' q) else g ^ ↑x * Quotient.out' (Quotient.out' q), property := (_ : (fun x => x ∈ H) ((g ^ ↑x * Quotient.out' (Quotient.out' q))⁻¹ * if x = 0 then g ^ Function.minimalPeriod (fun x => g • x) (Quotient.out' q) * Quotient.out' (Quotient.out' q) else g ^ ↑x * Quotient.out' (Quotient.out' q))) } = ↑ϕ { val := (Quotient.out' (Quotient.out' q))⁻¹ * g ^ Function.minimalPeriod (fun x => g • x) (Quotient.out' q) * Quotient.out' (Quotient.out' q), property := (_ : (Quotient.out' (Quotient.out' q))⁻¹ * g ^ Function.minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q) * Quotient.out' (Quotient.out' q) ∈ H) } [PROOFSTEP] rw [Fintype.prod_eq_single (0 : ZMod (Function.minimalPeriod ((· • ·) g) q.out')) _] [GOAL] G : Type u_1 inst✝³ : Group G H : Subgroup G A : Type u_2 inst✝² : CommGroup A ϕ : { x // x ∈ H } →* A T : ↑(leftTransversals ↑H) inst✝¹ : FiniteIndex H g : G inst✝ : Fintype (Quotient (orbitRel { x // x ∈ zpowers g } (G ⧸ H))) this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H q : orbitRel.Quotient { x // x ∈ zpowers g } (G ⧸ H) ⊢ ↑ϕ { val := (g ^ ↑0 * Quotient.out' (Quotient.out' q))⁻¹ * if 0 = 0 then g ^ Function.minimalPeriod (fun x => g • x) (Quotient.out' q) * Quotient.out' (Quotient.out' q) else g ^ ↑0 * Quotient.out' (Quotient.out' q), property := (_ : (fun x => x ∈ H) ((g ^ ↑0 * Quotient.out' (Quotient.out' q))⁻¹ * if 0 = 0 then g ^ Function.minimalPeriod (fun x => g • x) (Quotient.out' q) * Quotient.out' (Quotient.out' q) else g ^ ↑0 * Quotient.out' (Quotient.out' q))) } = ↑ϕ { val := (Quotient.out' (Quotient.out' q))⁻¹ * g ^ Function.minimalPeriod (fun x => g • x) (Quotient.out' q) * Quotient.out' (Quotient.out' q), property := (_ : (Quotient.out' (Quotient.out' q))⁻¹ * g ^ Function.minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q) * Quotient.out' (Quotient.out' q) ∈ H) } [PROOFSTEP] simp only [if_pos, ZMod.cast_zero, zpow_zero, one_mul, mul_assoc] [GOAL] G : Type u_1 inst✝³ : Group G H : Subgroup G A : Type u_2 inst✝² : CommGroup A ϕ : { x // x ∈ H } →* A T : ↑(leftTransversals ↑H) inst✝¹ : FiniteIndex H g : G inst✝ : Fintype (Quotient (orbitRel { x // x ∈ zpowers g } (G ⧸ H))) this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H q : orbitRel.Quotient { x // x ∈ zpowers g } (G ⧸ H) ⊢ ∀ (x : ZMod (Function.minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q))), x ≠ 0 → ↑ϕ { val := (g ^ ↑x * Quotient.out' (Quotient.out' q))⁻¹ * if x = 0 then g ^ Function.minimalPeriod (fun x => g • x) (Quotient.out' q) * Quotient.out' (Quotient.out' q) else g ^ ↑x * Quotient.out' (Quotient.out' q), property := (_ : (fun x => x ∈ H) ((g ^ ↑x * Quotient.out' (Quotient.out' q))⁻¹ * if x = 0 then g ^ Function.minimalPeriod (fun x => g • x) (Quotient.out' q) * Quotient.out' (Quotient.out' q) else g ^ ↑x * Quotient.out' (Quotient.out' q))) } = 1 [PROOFSTEP] intro k hk [GOAL] G : Type u_1 inst✝³ : Group G H : Subgroup G A : Type u_2 inst✝² : CommGroup A ϕ : { x // x ∈ H } →* A T : ↑(leftTransversals ↑H) inst✝¹ : FiniteIndex H g : G inst✝ : Fintype (Quotient (orbitRel { x // x ∈ zpowers g } (G ⧸ H))) this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H q : orbitRel.Quotient { x // x ∈ zpowers g } (G ⧸ H) k : ZMod (Function.minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q)) hk : k ≠ 0 ⊢ ↑ϕ { val := (g ^ ↑k * Quotient.out' (Quotient.out' q))⁻¹ * if k = 0 then g ^ Function.minimalPeriod (fun x => g • x) (Quotient.out' q) * Quotient.out' (Quotient.out' q) else g ^ ↑k * Quotient.out' (Quotient.out' q), property := (_ : (fun x => x ∈ H) ((g ^ ↑k * Quotient.out' (Quotient.out' q))⁻¹ * if k = 0 then g ^ Function.minimalPeriod (fun x => g • x) (Quotient.out' q) * Quotient.out' (Quotient.out' q) else g ^ ↑k * Quotient.out' (Quotient.out' q))) } = 1 [PROOFSTEP] simp only [if_neg hk, inv_mul_self] [GOAL] G : Type u_1 inst✝³ : Group G H : Subgroup G A : Type u_2 inst✝² : CommGroup A ϕ : { x // x ∈ H } →* A T : ↑(leftTransversals ↑H) inst✝¹ : FiniteIndex H g : G inst✝ : Fintype (Quotient (orbitRel { x // x ∈ zpowers g } (G ⧸ H))) this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H q : orbitRel.Quotient { x // x ∈ zpowers g } (G ⧸ H) k : ZMod (Function.minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q)) hk : k ≠ 0 ⊢ ↑ϕ { val := 1, property := (_ : (fun x => x ∈ H) 1) } = 1 [PROOFSTEP] exact map_one ϕ [GOAL] G : Type u_1 inst✝¹ : Group G H : Subgroup G A : Type u_2 inst✝ : CommGroup A ϕ : { x // x ∈ H } →* A T : ↑(leftTransversals ↑H) g : G key : ∀ (k : ℕ) (g₀ : G), g₀⁻¹ * g ^ k * g₀ ∈ H → g₀⁻¹ * g ^ k * g₀ = g ^ k ⊢ g ^ index H ∈ H [PROOFSTEP] by_cases hH : H.index = 0 [GOAL] case pos G : Type u_1 inst✝¹ : Group G H : Subgroup G A : Type u_2 inst✝ : CommGroup A ϕ : { x // x ∈ H } →* A T : ↑(leftTransversals ↑H) g : G key : ∀ (k : ℕ) (g₀ : G), g₀⁻¹ * g ^ k * g₀ ∈ H → g₀⁻¹ * g ^ k * g₀ = g ^ k hH : index H = 0 ⊢ g ^ index H ∈ H [PROOFSTEP] rw [hH, pow_zero] [GOAL] case pos G : Type u_1 inst✝¹ : Group G H : Subgroup G A : Type u_2 inst✝ : CommGroup A ϕ : { x // x ∈ H } →* A T : ↑(leftTransversals ↑H) g : G key : ∀ (k : ℕ) (g₀ : G), g₀⁻¹ * g ^ k * g₀ ∈ H → g₀⁻¹ * g ^ k * g₀ = g ^ k hH : index H = 0 ⊢ 1 ∈ H [PROOFSTEP] exact H.one_mem [GOAL] case neg G : Type u_1 inst✝¹ : Group G H : Subgroup G A : Type u_2 inst✝ : CommGroup A ϕ : { x // x ∈ H } →* A T : ↑(leftTransversals ↑H) g : G key : ∀ (k : ℕ) (g₀ : G), g₀⁻¹ * g ^ k * g₀ ∈ H → g₀⁻¹ * g ^ k * g₀ = g ^ k hH : ¬index H = 0 ⊢ g ^ index H ∈ H [PROOFSTEP] letI := fintypeOfIndexNeZero hH [GOAL] case neg G : Type u_1 inst✝¹ : Group G H : Subgroup G A : Type u_2 inst✝ : CommGroup A ϕ : { x // x ∈ H } →* A T : ↑(leftTransversals ↑H) g : G key : ∀ (k : ℕ) (g₀ : G), g₀⁻¹ * g ^ k * g₀ ∈ H → g₀⁻¹ * g ^ k * g₀ = g ^ k hH : ¬index H = 0 this : Fintype (G ⧸ H) := fintypeOfIndexNeZero hH ⊢ g ^ index H ∈ H [PROOFSTEP] classical replace key : ∀ (k : ℕ) (g₀ : G), g₀⁻¹ * g ^ k * g₀ ∈ H → g ^ k ∈ H := fun k g₀ hk => (_root_.congr_arg (· ∈ H) (key k g₀ hk)).mp hk replace key : ∀ q : G ⧸ H, g ^ Function.minimalPeriod ((· • ·) g) q ∈ H := fun q => key (Function.minimalPeriod ((· • ·) g) q) q.out' (QuotientGroup.out'_conj_pow_minimalPeriod_mem H g q) let f : Quotient (orbitRel (zpowers g) (G ⧸ H)) → zpowers g := fun q => (⟨g, mem_zpowers g⟩ : zpowers g) ^ Function.minimalPeriod ((· • ·) g) q.out' have hf : ∀ q, f q ∈ H.subgroupOf (zpowers g) := fun q => key q.out' replace key := Subgroup.prod_mem (H.subgroupOf (zpowers g)) fun q (_ : q ∈ Finset.univ) => hf q simpa only [minimalPeriod_eq_card, Finset.prod_pow_eq_pow_sum, Fintype.card_sigma, Fintype.card_congr (selfEquivSigmaOrbits (zpowers g) (G ⧸ H)), index_eq_card] using key [GOAL] case neg G : Type u_1 inst✝¹ : Group G H : Subgroup G A : Type u_2 inst✝ : CommGroup A ϕ : { x // x ∈ H } →* A T : ↑(leftTransversals ↑H) g : G key : ∀ (k : ℕ) (g₀ : G), g₀⁻¹ * g ^ k * g₀ ∈ H → g₀⁻¹ * g ^ k * g₀ = g ^ k hH : ¬index H = 0 this : Fintype (G ⧸ H) := fintypeOfIndexNeZero hH ⊢ g ^ index H ∈ H [PROOFSTEP] replace key : ∀ (k : ℕ) (g₀ : G), g₀⁻¹ * g ^ k * g₀ ∈ H → g ^ k ∈ H := fun k g₀ hk => (_root_.congr_arg (· ∈ H) (key k g₀ hk)).mp hk [GOAL] case neg G : Type u_1 inst✝¹ : Group G H : Subgroup G A : Type u_2 inst✝ : CommGroup A ϕ : { x // x ∈ H } →* A T : ↑(leftTransversals ↑H) g : G hH : ¬index H = 0 this : Fintype (G ⧸ H) := fintypeOfIndexNeZero hH key : ∀ (k : ℕ) (g₀ : G), g₀⁻¹ * g ^ k * g₀ ∈ H → g ^ k ∈ H ⊢ g ^ index H ∈ H [PROOFSTEP] replace key : ∀ q : G ⧸ H, g ^ Function.minimalPeriod ((· • ·) g) q ∈ H := fun q => key (Function.minimalPeriod ((· • ·) g) q) q.out' (QuotientGroup.out'_conj_pow_minimalPeriod_mem H g q) [GOAL] case neg G : Type u_1 inst✝¹ : Group G H : Subgroup G A : Type u_2 inst✝ : CommGroup A ϕ : { x // x ∈ H } →* A T : ↑(leftTransversals ↑H) g : G hH : ¬index H = 0 this : Fintype (G ⧸ H) := fintypeOfIndexNeZero hH key : ∀ (q : G ⧸ H), g ^ Function.minimalPeriod ((fun x x_1 => x • x_1) g) q ∈ H ⊢ g ^ index H ∈ H [PROOFSTEP] let f : Quotient (orbitRel (zpowers g) (G ⧸ H)) → zpowers g := fun q => (⟨g, mem_zpowers g⟩ : zpowers g) ^ Function.minimalPeriod ((· • ·) g) q.out' [GOAL] case neg G : Type u_1 inst✝¹ : Group G H : Subgroup G A : Type u_2 inst✝ : CommGroup A ϕ : { x // x ∈ H } →* A T : ↑(leftTransversals ↑H) g : G hH : ¬index H = 0 this : Fintype (G ⧸ H) := fintypeOfIndexNeZero hH key : ∀ (q : G ⧸ H), g ^ Function.minimalPeriod ((fun x x_1 => x • x_1) g) q ∈ H f : Quotient (orbitRel { x // x ∈ zpowers g } (G ⧸ H)) → { x // x ∈ zpowers g } := fun q => { val := g, property := (_ : g ∈ zpowers g) } ^ Function.minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q) ⊢ g ^ index H ∈ H [PROOFSTEP] have hf : ∀ q, f q ∈ H.subgroupOf (zpowers g) := fun q => key q.out' [GOAL] case neg G : Type u_1 inst✝¹ : Group G H : Subgroup G A : Type u_2 inst✝ : CommGroup A ϕ : { x // x ∈ H } →* A T : ↑(leftTransversals ↑H) g : G hH : ¬index H = 0 this : Fintype (G ⧸ H) := fintypeOfIndexNeZero hH key : ∀ (q : G ⧸ H), g ^ Function.minimalPeriod ((fun x x_1 => x • x_1) g) q ∈ H f : Quotient (orbitRel { x // x ∈ zpowers g } (G ⧸ H)) → { x // x ∈ zpowers g } := fun q => { val := g, property := (_ : g ∈ zpowers g) } ^ Function.minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q) hf : ∀ (q : Quotient (orbitRel { x // x ∈ zpowers g } (G ⧸ H))), f q ∈ subgroupOf H (zpowers g) ⊢ g ^ index H ∈ H [PROOFSTEP] replace key := Subgroup.prod_mem (H.subgroupOf (zpowers g)) fun q (_ : q ∈ Finset.univ) => hf q [GOAL] case neg G : Type u_1 inst✝¹ : Group G H : Subgroup G A : Type u_2 inst✝ : CommGroup A ϕ : { x // x ∈ H } →* A T : ↑(leftTransversals ↑H) g : G hH : ¬index H = 0 this : Fintype (G ⧸ H) := fintypeOfIndexNeZero hH f : Quotient (orbitRel { x // x ∈ zpowers g } (G ⧸ H)) → { x // x ∈ zpowers g } := fun q => { val := g, property := (_ : g ∈ zpowers g) } ^ Function.minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q) hf : ∀ (q : Quotient (orbitRel { x // x ∈ zpowers g } (G ⧸ H))), f q ∈ subgroupOf H (zpowers g) key : ∏ c : Quotient (orbitRel { x // x ∈ zpowers g } (G ⧸ H)), f c ∈ subgroupOf H (zpowers g) ⊢ g ^ index H ∈ H [PROOFSTEP] simpa only [minimalPeriod_eq_card, Finset.prod_pow_eq_pow_sum, Fintype.card_sigma, Fintype.card_congr (selfEquivSigmaOrbits (zpowers g) (G ⧸ H)), index_eq_card] using key [GOAL] G : Type u_1 inst✝² : Group G H : Subgroup G A : Type u_2 inst✝¹ : CommGroup A ϕ : { x // x ∈ H } →* A T : ↑(leftTransversals ↑H) inst✝ : FiniteIndex H g : G key : ∀ (k : ℕ) (g₀ : G), g₀⁻¹ * g ^ k * g₀ ∈ H → g₀⁻¹ * g ^ k * g₀ = g ^ k ⊢ ↑(transfer ϕ) g = ↑ϕ { val := g ^ index H, property := (_ : g ^ index H ∈ H) } [PROOFSTEP] classical letI := H.fintypeQuotientOfFiniteIndex change ∀ (k g₀) (hk : g₀⁻¹ * g ^ k * g₀ ∈ H), ↑(⟨g₀⁻¹ * g ^ k * g₀, hk⟩ : H) = g ^ k at key rw [transfer_eq_prod_quotient_orbitRel_zpowers_quot, ← Finset.prod_to_list] refine' (List.prod_map_hom _ _ _).trans _ -- porting note: this used to be in the `rw` refine' congrArg ϕ (Subtype.coe_injective _) simp only -- porting note: added `simp only` rw [H.coe_mk, ← (zpowers g).coe_mk g (mem_zpowers g), ← (zpowers g).coe_pow, index_eq_card, Fintype.card_congr (selfEquivSigmaOrbits (zpowers g) (G ⧸ H)), Fintype.card_sigma, ← Finset.prod_pow_eq_pow_sum, ← Finset.prod_to_list] simp only [Subgroup.val_list_prod, List.map_map, ← minimalPeriod_eq_card] congr funext apply key [GOAL] G : Type u_1 inst✝² : Group G H : Subgroup G A : Type u_2 inst✝¹ : CommGroup A ϕ : { x // x ∈ H } →* A T : ↑(leftTransversals ↑H) inst✝ : FiniteIndex H g : G key : ∀ (k : ℕ) (g₀ : G), g₀⁻¹ * g ^ k * g₀ ∈ H → g₀⁻¹ * g ^ k * g₀ = g ^ k ⊢ ↑(transfer ϕ) g = ↑ϕ { val := g ^ index H, property := (_ : g ^ index H ∈ H) } [PROOFSTEP] letI := H.fintypeQuotientOfFiniteIndex [GOAL] G : Type u_1 inst✝² : Group G H : Subgroup G A : Type u_2 inst✝¹ : CommGroup A ϕ : { x // x ∈ H } →* A T : ↑(leftTransversals ↑H) inst✝ : FiniteIndex H g : G key : ∀ (k : ℕ) (g₀ : G), g₀⁻¹ * g ^ k * g₀ ∈ H → g₀⁻¹ * g ^ k * g₀ = g ^ k this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H ⊢ ↑(transfer ϕ) g = ↑ϕ { val := g ^ index H, property := (_ : g ^ index H ∈ H) } [PROOFSTEP] change ∀ (k g₀) (hk : g₀⁻¹ * g ^ k * g₀ ∈ H), ↑(⟨g₀⁻¹ * g ^ k * g₀, hk⟩ : H) = g ^ k at key [GOAL] G : Type u_1 inst✝² : Group G H : Subgroup G A : Type u_2 inst✝¹ : CommGroup A ϕ : { x // x ∈ H } →* A T : ↑(leftTransversals ↑H) inst✝ : FiniteIndex H g : G this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H key : ∀ (k : ℕ) (g₀ : G) (hk : g₀⁻¹ * g ^ k * g₀ ∈ H), ↑{ val := g₀⁻¹ * g ^ k * g₀, property := hk } = g ^ k ⊢ ↑(transfer ϕ) g = ↑ϕ { val := g ^ index H, property := (_ : g ^ index H ∈ H) } [PROOFSTEP] rw [transfer_eq_prod_quotient_orbitRel_zpowers_quot, ← Finset.prod_to_list] [GOAL] G : Type u_1 inst✝² : Group G H : Subgroup G A : Type u_2 inst✝¹ : CommGroup A ϕ : { x // x ∈ H } →* A T : ↑(leftTransversals ↑H) inst✝ : FiniteIndex H g : G this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H key : ∀ (k : ℕ) (g₀ : G) (hk : g₀⁻¹ * g ^ k * g₀ ∈ H), ↑{ val := g₀⁻¹ * g ^ k * g₀, property := hk } = g ^ k ⊢ List.prod (List.map (fun q => ↑ϕ { val := (Quotient.out' (Quotient.out' q))⁻¹ * g ^ Function.minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q) * Quotient.out' (Quotient.out' q), property := (_ : (Quotient.out' (Quotient.out' q))⁻¹ * g ^ Function.minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q) * Quotient.out' (Quotient.out' q) ∈ H) }) (Finset.toList Finset.univ)) = ↑ϕ { val := g ^ index H, property := (_ : g ^ index H ∈ H) } [PROOFSTEP] refine' (List.prod_map_hom _ _ _).trans _ -- porting note: this used to be in the `rw` [GOAL] G : Type u_1 inst✝² : Group G H : Subgroup G A : Type u_2 inst✝¹ : CommGroup A ϕ : { x // x ∈ H } →* A T : ↑(leftTransversals ↑H) inst✝ : FiniteIndex H g : G this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H key : ∀ (k : ℕ) (g₀ : G) (hk : g₀⁻¹ * g ^ k * g₀ ∈ H), ↑{ val := g₀⁻¹ * g ^ k * g₀, property := hk } = g ^ k ⊢ ↑ϕ (List.prod (List.map (fun q => { val := (Quotient.out' (Quotient.out' q))⁻¹ * g ^ Function.minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q) * Quotient.out' (Quotient.out' q), property := (_ : (Quotient.out' (Quotient.out' q))⁻¹ * g ^ Function.minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q) * Quotient.out' (Quotient.out' q) ∈ H) }) (Finset.toList Finset.univ))) = ↑ϕ { val := g ^ index H, property := (_ : g ^ index H ∈ H) } [PROOFSTEP] refine' congrArg ϕ (Subtype.coe_injective _) [GOAL] G : Type u_1 inst✝² : Group G H : Subgroup G A : Type u_2 inst✝¹ : CommGroup A ϕ : { x // x ∈ H } →* A T : ↑(leftTransversals ↑H) inst✝ : FiniteIndex H g : G this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H key : ∀ (k : ℕ) (g₀ : G) (hk : g₀⁻¹ * g ^ k * g₀ ∈ H), ↑{ val := g₀⁻¹ * g ^ k * g₀, property := hk } = g ^ k ⊢ (fun a => ↑a) (List.prod (List.map (fun q => { val := (Quotient.out' (Quotient.out' q))⁻¹ * g ^ Function.minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q) * Quotient.out' (Quotient.out' q), property := (_ : (Quotient.out' (Quotient.out' q))⁻¹ * g ^ Function.minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q) * Quotient.out' (Quotient.out' q) ∈ H) }) (Finset.toList Finset.univ))) = (fun a => ↑a) { val := g ^ index H, property := (_ : g ^ index H ∈ H) } [PROOFSTEP] simp only -- porting note: added `simp only` [GOAL] G : Type u_1 inst✝² : Group G H : Subgroup G A : Type u_2 inst✝¹ : CommGroup A ϕ : { x // x ∈ H } →* A T : ↑(leftTransversals ↑H) inst✝ : FiniteIndex H g : G this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H key : ∀ (k : ℕ) (g₀ : G) (hk : g₀⁻¹ * g ^ k * g₀ ∈ H), ↑{ val := g₀⁻¹ * g ^ k * g₀, property := hk } = g ^ k ⊢ ↑(List.prod (List.map (fun q => { val := (Quotient.out' (Quotient.out' q))⁻¹ * g ^ Function.minimalPeriod (fun x => g • x) (Quotient.out' q) * Quotient.out' (Quotient.out' q), property := (_ : (Quotient.out' (Quotient.out' q))⁻¹ * g ^ Function.minimalPeriod ((fun x x_1 => x • x_1) g) (Quotient.out' q) * Quotient.out' (Quotient.out' q) ∈ H) }) (Finset.toList Finset.univ))) = g ^ index H [PROOFSTEP] rw [H.coe_mk, ← (zpowers g).coe_mk g (mem_zpowers g), ← (zpowers g).coe_pow, index_eq_card, Fintype.card_congr (selfEquivSigmaOrbits (zpowers g) (G ⧸ H)), Fintype.card_sigma, ← Finset.prod_pow_eq_pow_sum, ← Finset.prod_to_list] [GOAL] G : Type u_1 inst✝² : Group G H : Subgroup G A : Type u_2 inst✝¹ : CommGroup A ϕ : { x // x ∈ H } →* A T : ↑(leftTransversals ↑H) inst✝ : FiniteIndex H g : G this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H key : ∀ (k : ℕ) (g₀ : G) (hk : g₀⁻¹ * g ^ k * g₀ ∈ H), ↑{ val := g₀⁻¹ * g ^ k * g₀, property := hk } = g ^ k ⊢ ↑(List.prod (List.map (fun q => { val := (Quotient.out' (Quotient.out' q))⁻¹ * ↑{ val := g, property := (_ : g ∈ zpowers g) } ^ Function.minimalPeriod (fun x => ↑{ val := g, property := (_ : g ∈ zpowers g) } • x) (Quotient.out' q) * Quotient.out' (Quotient.out' q), property := (_ : (Quotient.out' (Quotient.out' q))⁻¹ * ↑{ val := g, property := (_ : g ∈ zpowers g) } ^ Function.minimalPeriod ((fun x x_1 => x • x_1) ↑{ val := g, property := (_ : g ∈ zpowers g) }) (Quotient.out' q) * Quotient.out' (Quotient.out' q) ∈ H) }) (Finset.toList Finset.univ))) = ↑(List.prod (List.map (fun i => { val := g, property := (_ : g ∈ zpowers g) } ^ Fintype.card ↑(orbit { x // x ∈ zpowers g } (Quotient.out' i))) (Finset.toList Finset.univ))) [PROOFSTEP] simp only [Subgroup.val_list_prod, List.map_map, ← minimalPeriod_eq_card] [GOAL] G : Type u_1 inst✝² : Group G H : Subgroup G A : Type u_2 inst✝¹ : CommGroup A ϕ : { x // x ∈ H } →* A T : ↑(leftTransversals ↑H) inst✝ : FiniteIndex H g : G this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H key : ∀ (k : ℕ) (g₀ : G) (hk : g₀⁻¹ * g ^ k * g₀ ∈ H), ↑{ val := g₀⁻¹ * g ^ k * g₀, property := hk } = g ^ k ⊢ List.prod (List.map (Subtype.val ∘ fun q => { val := (Quotient.out' (Quotient.out' q))⁻¹ * g ^ Function.minimalPeriod (fun x => g • x) (Quotient.out' q) * Quotient.out' (Quotient.out' q), property := (_ : (Quotient.out' (Quotient.out' q))⁻¹ * ↑{ val := g, property := (_ : g ∈ zpowers g) } ^ Function.minimalPeriod ((fun x x_1 => x • x_1) ↑{ val := g, property := (_ : g ∈ zpowers g) }) (Quotient.out' q) * Quotient.out' (Quotient.out' q) ∈ H) }) (Finset.toList Finset.univ)) = List.prod (List.map (Subtype.val ∘ fun i => { val := g, property := (_ : g ∈ zpowers g) } ^ Function.minimalPeriod (fun x => g • x) (Quotient.out' i)) (Finset.toList Finset.univ)) [PROOFSTEP] congr [GOAL] case e_a.e_f G : Type u_1 inst✝² : Group G H : Subgroup G A : Type u_2 inst✝¹ : CommGroup A ϕ : { x // x ∈ H } →* A T : ↑(leftTransversals ↑H) inst✝ : FiniteIndex H g : G this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H key : ∀ (k : ℕ) (g₀ : G) (hk : g₀⁻¹ * g ^ k * g₀ ∈ H), ↑{ val := g₀⁻¹ * g ^ k * g₀, property := hk } = g ^ k ⊢ (Subtype.val ∘ fun q => { val := (Quotient.out' (Quotient.out' q))⁻¹ * g ^ Function.minimalPeriod (fun x => g • x) (Quotient.out' q) * Quotient.out' (Quotient.out' q), property := (_ : (Quotient.out' (Quotient.out' q))⁻¹ * ↑{ val := g, property := (_ : g ∈ zpowers g) } ^ Function.minimalPeriod ((fun x x_1 => x • x_1) ↑{ val := g, property := (_ : g ∈ zpowers g) }) (Quotient.out' q) * Quotient.out' (Quotient.out' q) ∈ H) }) = Subtype.val ∘ fun i => { val := g, property := (_ : g ∈ zpowers g) } ^ Function.minimalPeriod (fun x => g • x) (Quotient.out' i) [PROOFSTEP] funext [GOAL] case e_a.e_f.h G : Type u_1 inst✝² : Group G H : Subgroup G A : Type u_2 inst✝¹ : CommGroup A ϕ : { x // x ∈ H } →* A T : ↑(leftTransversals ↑H) inst✝ : FiniteIndex H g : G this : Fintype (G ⧸ H) := fintypeQuotientOfFiniteIndex H key : ∀ (k : ℕ) (g₀ : G) (hk : g₀⁻¹ * g ^ k * g₀ ∈ H), ↑{ val := g₀⁻¹ * g ^ k * g₀, property := hk } = g ^ k x✝ : Quotient (orbitRel { x // x ∈ zpowers g } (G ⧸ H)) ⊢ (Subtype.val ∘ fun q => { val := (Quotient.out' (Quotient.out' q))⁻¹ * g ^ Function.minimalPeriod (fun x => g • x) (Quotient.out' q) * Quotient.out' (Quotient.out' q), property := (_ : (Quotient.out' (Quotient.out' q))⁻¹ * ↑{ val := g, property := (_ : g ∈ zpowers g) } ^ Function.minimalPeriod ((fun x x_1 => x • x_1) ↑{ val := g, property := (_ : g ∈ zpowers g) }) (Quotient.out' q) * Quotient.out' (Quotient.out' q) ∈ H) }) x✝ = (Subtype.val ∘ fun i => { val := g, property := (_ : g ∈ zpowers g) } ^ Function.minimalPeriod (fun x => g • x) (Quotient.out' i)) x✝ [PROOFSTEP] apply key [GOAL] G : Type u_1 inst✝² : Group G H : Subgroup G A : Type u_2 inst✝¹ : CommGroup A ϕ : { x // x ∈ H } →* A T : ↑(leftTransversals ↑H) inst✝ : FiniteIndex (center G) g : G k : ℕ x✝ : G hk : x✝⁻¹ * g ^ k * x✝ ∈ center G ⊢ x✝⁻¹ * g ^ k * x✝ = g ^ k [PROOFSTEP] rw [← mul_right_inj, hk, mul_inv_cancel_right] [GOAL] G : Type u_1 inst✝² : Group G H : Subgroup G A : Type u_2 inst✝¹ : CommGroup A ϕ : { x // x ∈ H } →* A T : ↑(leftTransversals ↑H) inst✝ : FiniteIndex (center G) a b : G ⊢ OneHom.toFun { toFun := fun g => { val := g ^ index (center G), property := (_ : g ^ index (center G) ∈ center G) }, map_one' := (_ : (fun g => { val := g ^ index (center G), property := (_ : g ^ index (center G) ∈ center G) }) 1 = 1) } (a * b) = OneHom.toFun { toFun := fun g => { val := g ^ index (center G), property := (_ : g ^ index (center G) ∈ center G) }, map_one' := (_ : (fun g => { val := g ^ index (center G), property := (_ : g ^ index (center G) ∈ center G) }) 1 = 1) } a * OneHom.toFun { toFun := fun g => { val := g ^ index (center G), property := (_ : g ^ index (center G) ∈ center G) }, map_one' := (_ : (fun g => { val := g ^ index (center G), property := (_ : g ^ index (center G) ∈ center G) }) 1 = 1) } b [PROOFSTEP] simp_rw [← show ∀ _, (_ : center G) = _ from transfer_center_eq_pow, map_mul] [GOAL] G : Type u_1 inst✝³ : Group G H : Subgroup G A : Type u_2 inst✝² : CommGroup A ϕ : { x // x ∈ H } →* A T : ↑(leftTransversals ↑H) p : ℕ P : Sylow p G hP : normalizer ↑P ≤ centralizer ↑P inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) g : G hg : g ∈ P k : ℕ g₀ : G h : g₀⁻¹ * g ^ k * g₀ ∈ P ⊢ g₀⁻¹ * g ^ k * g₀ = g ^ k [PROOFSTEP] haveI : (P : Subgroup G).IsCommutative := ⟨⟨fun a b => Subtype.ext (hP (le_normalizer b.2) a a.2)⟩⟩ [GOAL] G : Type u_1 inst✝³ : Group G H : Subgroup G A : Type u_2 inst✝² : CommGroup A ϕ : { x // x ∈ H } →* A T : ↑(leftTransversals ↑H) p : ℕ P : Sylow p G hP : normalizer ↑P ≤ centralizer ↑P inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) g : G hg : g ∈ P k : ℕ g₀ : G h : g₀⁻¹ * g ^ k * g₀ ∈ P this : Subgroup.IsCommutative ↑P ⊢ g₀⁻¹ * g ^ k * g₀ = g ^ k [PROOFSTEP] replace hg := (P : Subgroup G).pow_mem hg k [GOAL] G : Type u_1 inst✝³ : Group G H : Subgroup G A : Type u_2 inst✝² : CommGroup A ϕ : { x // x ∈ H } →* A T : ↑(leftTransversals ↑H) p : ℕ P : Sylow p G hP : normalizer ↑P ≤ centralizer ↑P inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) g : G k : ℕ g₀ : G h : g₀⁻¹ * g ^ k * g₀ ∈ P this : Subgroup.IsCommutative ↑P hg : g ^ k ∈ ↑P ⊢ g₀⁻¹ * g ^ k * g₀ = g ^ k [PROOFSTEP] obtain ⟨n, hn, h⟩ := P.conj_eq_normalizer_conj_of_mem (g ^ k) g₀ hg h [GOAL] case intro.intro G : Type u_1 inst✝³ : Group G H : Subgroup G A : Type u_2 inst✝² : CommGroup A ϕ : { x // x ∈ H } →* A T : ↑(leftTransversals ↑H) p : ℕ P : Sylow p G hP : normalizer ↑P ≤ centralizer ↑P inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) g : G k : ℕ g₀ : G h✝ : g₀⁻¹ * g ^ k * g₀ ∈ P this : Subgroup.IsCommutative ↑P hg : g ^ k ∈ ↑P n : G hn : n ∈ normalizer ↑P h : g₀⁻¹ * g ^ k * g₀ = n⁻¹ * g ^ k * n ⊢ g₀⁻¹ * g ^ k * g₀ = g ^ k [PROOFSTEP] exact h.trans (Commute.inv_mul_cancel (hP hn (g ^ k) hg).symm) [GOAL] G : Type u_1 inst✝⁴ : Group G H : Subgroup G A : Type u_2 inst✝³ : CommGroup A ϕ : { x // x ∈ H } →* A T : ↑(leftTransversals ↑H) p : ℕ P : Sylow p G hP : normalizer ↑P ≤ centralizer ↑P inst✝² : Fact (Nat.Prime p) inst✝¹ : Finite (Sylow p G) inst✝ : FiniteIndex ↑P ⊢ IsComplement' (ker (transferSylow P hP)) ↑P [PROOFSTEP] have hf : Function.Bijective ((transferSylow P hP).restrict (P : Subgroup G)) := (transferSylow_restrict_eq_pow P hP).symm ▸ (P.2.powEquiv' (not_dvd_index_sylow P (mt index_eq_zero_of_relindex_eq_zero index_ne_zero_of_finite))).bijective [GOAL] G : Type u_1 inst✝⁴ : Group G H : Subgroup G A : Type u_2 inst✝³ : CommGroup A ϕ : { x // x ∈ H } →* A T : ↑(leftTransversals ↑H) p : ℕ P : Sylow p G hP : normalizer ↑P ≤ centralizer ↑P inst✝² : Fact (Nat.Prime p) inst✝¹ : Finite (Sylow p G) inst✝ : FiniteIndex ↑P hf : Function.Bijective ↑(restrict (transferSylow P hP) ↑P) ⊢ IsComplement' (ker (transferSylow P hP)) ↑P [PROOFSTEP] rw [Function.Bijective, ← range_top_iff_surjective, restrict_range] at hf [GOAL] G : Type u_1 inst✝⁴ : Group G H : Subgroup G A : Type u_2 inst✝³ : CommGroup A ϕ : { x // x ∈ H } →* A T : ↑(leftTransversals ↑H) p : ℕ P : Sylow p G hP : normalizer ↑P ≤ centralizer ↑P inst✝² : Fact (Nat.Prime p) inst✝¹ : Finite (Sylow p G) inst✝ : FiniteIndex ↑P hf : Function.Injective ↑(restrict (transferSylow P hP) ↑P) ∧ map (transferSylow P hP) ↑P = ⊤ ⊢ IsComplement' (ker (transferSylow P hP)) ↑P [PROOFSTEP] have := range_top_iff_surjective.mp (top_le_iff.mp (hf.2.ge.trans (map_le_range (transferSylow P hP) P))) [GOAL] G : Type u_1 inst✝⁴ : Group G H : Subgroup G A : Type u_2 inst✝³ : CommGroup A ϕ : { x // x ∈ H } →* A T : ↑(leftTransversals ↑H) p : ℕ P : Sylow p G hP : normalizer ↑P ≤ centralizer ↑P inst✝² : Fact (Nat.Prime p) inst✝¹ : Finite (Sylow p G) inst✝ : FiniteIndex ↑P hf : Function.Injective ↑(restrict (transferSylow P hP) ↑P) ∧ map (transferSylow P hP) ↑P = ⊤ this : Function.Surjective ↑(transferSylow P hP) ⊢ IsComplement' (ker (transferSylow P hP)) ↑P [PROOFSTEP] rw [← (comap_injective this).eq_iff, comap_top, comap_map_eq, sup_comm, SetLike.ext'_iff, normal_mul, ← ker_eq_bot_iff, ← (map_injective (P : Subgroup G).subtype_injective).eq_iff, ker_restrict, subgroupOf_map_subtype, Subgroup.map_bot, coe_top] at hf [GOAL] G : Type u_1 inst✝⁴ : Group G H : Subgroup G A : Type u_2 inst✝³ : CommGroup A ϕ : { x // x ∈ H } →* A T : ↑(leftTransversals ↑H) p : ℕ P : Sylow p G hP : normalizer ↑P ≤ centralizer ↑P inst✝² : Fact (Nat.Prime p) inst✝¹ : Finite (Sylow p G) inst✝ : FiniteIndex ↑P hf✝ : Function.Injective ↑(restrict (transferSylow P hP) ↑P) ∧ ker (transferSylow P hP) ⊔ ↑P = ⊤ hf : ker (transferSylow P hP) ⊓ ↑P = ⊥ ∧ ↑(ker (transferSylow P hP)) * ↑↑P = Set.univ this : Function.Surjective ↑(transferSylow P hP) ⊢ IsComplement' (ker (transferSylow P hP)) ↑P [PROOFSTEP] exact isComplement'_of_disjoint_and_mul_eq_univ (disjoint_iff.2 hf.1) hf.2
{"mathlib_filename": "Mathlib.GroupTheory.Transfer", "llama_tokens": 19076}
[GOAL] f g : CircleDeg1Lift x : ℝ ⊢ ↑f (1 + x) = 1 + ↑f x [PROOFSTEP] rw [add_comm, map_add_one, add_comm 1] [GOAL] f✝ g✝ f g : CircleDeg1Lift x : ℝ ⊢ OrderHom.toFun (OrderHom.comp f.toOrderHom g.toOrderHom) (x + 1) = OrderHom.toFun (OrderHom.comp f.toOrderHom g.toOrderHom) x + 1 [PROOFSTEP] simp [map_add_one] [GOAL] f✝ g : CircleDeg1Lift f : CircleDeg1Liftˣ x : ℝ ⊢ ↑↑f⁻¹ (↑↑f x) = x [PROOFSTEP] simp only [← mul_apply, f.inv_mul, coe_one, id] [GOAL] f✝ g : CircleDeg1Lift f : CircleDeg1Liftˣ x : ℝ ⊢ ↑↑f (↑↑f⁻¹ x) = x [PROOFSTEP] simp only [← mul_apply, f.mul_inv, coe_one, id] [GOAL] f✝ g : CircleDeg1Lift f : CircleDeg1Liftˣ a✝ b✝ : ℝ h : ↑{ toFun := ↑↑f, invFun := ↑↑f⁻¹, left_inv := (_ : ∀ (x : ℝ), ↑↑f⁻¹ (↑↑f x) = x), right_inv := (_ : ∀ (x : ℝ), ↑↑f (↑↑f⁻¹ x) = x) } a✝ ≤ ↑{ toFun := ↑↑f, invFun := ↑↑f⁻¹, left_inv := (_ : ∀ (x : ℝ), ↑↑f⁻¹ (↑↑f x) = x), right_inv := (_ : ∀ (x : ℝ), ↑↑f (↑↑f⁻¹ x) = x) } b✝ ⊢ a✝ ≤ b✝ [PROOFSTEP] simpa using mono (↑f⁻¹) h [GOAL] f✝ g f : CircleDeg1Lift h : Bijective ↑f x y : ℝ hxy : x ≤ y ⊢ ↑f (↑(Equiv.ofBijective (↑f) h).symm x) ≤ ↑f (↑(Equiv.ofBijective (↑f) h).symm y) [PROOFSTEP] simp only [Equiv.ofBijective_apply_symm_apply f h, hxy] [GOAL] f✝ g f : CircleDeg1Lift h : Bijective ↑f x : ℝ ⊢ ↑f (OrderHom.toFun { toFun := ↑(Equiv.ofBijective (↑f) h).symm, monotone' := (_ : ∀ (x y : ℝ), x ≤ y → ↑(Equiv.ofBijective (↑f) h).symm x ≤ ↑(Equiv.ofBijective (↑f) h).symm y) } (x + 1)) = ↑f (OrderHom.toFun { toFun := ↑(Equiv.ofBijective (↑f) h).symm, monotone' := (_ : ∀ (x y : ℝ), x ≤ y → ↑(Equiv.ofBijective (↑f) h).symm x ≤ ↑(Equiv.ofBijective (↑f) h).symm y) } x + 1) [PROOFSTEP] simp only [Equiv.ofBijective_apply_symm_apply f, f.map_add_one] [GOAL] f g : CircleDeg1Lift n : ℕ ⊢ ↑(f ^ (n + 1)) = (↑f)^[n + 1] [PROOFSTEP] ext x [GOAL] case h f g : CircleDeg1Lift n : ℕ x : ℝ ⊢ ↑(f ^ (n + 1)) x = (↑f)^[n + 1] x [PROOFSTEP] simp [coe_pow n, pow_succ'] [GOAL] f g : CircleDeg1Lift x : ℝ n : ℤ ⊢ ↑translate (↑Multiplicative.ofAdd x) ^ n = ↑translate (↑Multiplicative.ofAdd (↑n * x)) [PROOFSTEP] simp only [← zsmul_eq_mul, ofAdd_zsmul, MonoidHom.map_zpow] [GOAL] f g : CircleDeg1Lift x : ℝ n : ℕ ⊢ (↑↑(↑translate (↑Multiplicative.ofAdd x)))^[n] = ↑↑(↑translate (↑Multiplicative.ofAdd (↑n * x))) [PROOFSTEP] rw [← coe_pow, ← Units.val_pow_eq_pow_val, translate_pow] [GOAL] f g : CircleDeg1Lift n : ℕ ⊢ Function.Commute ↑f fun x => ↑n + x [PROOFSTEP] simpa only [nsmul_one, add_left_iterate] using Function.Commute.iterate_right f.map_one_add n [GOAL] f g : CircleDeg1Lift n : ℕ ⊢ Function.Commute ↑f fun x => x + ↑n [PROOFSTEP] simp only [add_comm _ (n : ℝ), f.commute_nat_add n] [GOAL] f g : CircleDeg1Lift n : ℕ ⊢ Function.Commute ↑f fun x => x - ↑n [PROOFSTEP] simpa only [sub_eq_add_neg] using (f.commute_add_nat n).inverses_right (Equiv.addRight _).right_inv (Equiv.addRight _).left_inv [GOAL] f g : CircleDeg1Lift n : ℕ ⊢ Function.Commute ↑f fun x => x + ↑-[n+1] [PROOFSTEP] simpa [sub_eq_add_neg] using f.commute_sub_nat (n + 1) [GOAL] f g : CircleDeg1Lift n : ℤ ⊢ Function.Commute ↑f fun x => ↑n + x [PROOFSTEP] simpa only [add_comm _ (n : ℝ)] using f.commute_add_int n [GOAL] f g : CircleDeg1Lift n : ℤ ⊢ Function.Commute ↑f fun x => x - ↑n [PROOFSTEP] simpa only [sub_eq_add_neg] using (f.commute_add_int n).inverses_right (Equiv.addRight _).right_inv (Equiv.addRight _).left_inv [GOAL] f g : CircleDeg1Lift n : ℤ ⊢ ↑f ↑n = ↑f 0 + ↑n [PROOFSTEP] rw [← f.map_add_int, zero_add] [GOAL] f g : CircleDeg1Lift x : ℝ ⊢ ↑f (fract x) - fract x = ↑f x - x [PROOFSTEP] rw [Int.fract, f.map_sub_int, sub_sub_sub_cancel_right] [GOAL] f✝ g✝ f g : CircleDeg1Lift x : ℝ ⊢ OrderHom.toFun { toFun := fun x => max (↑f x) (↑g x), monotone' := (_ : ∀ (x y : ℝ), x ≤ y → max (↑f x) (↑g x) ≤ max (↑f y) (↑g y)) } (x + 1) = OrderHom.toFun { toFun := fun x => max (↑f x) (↑g x), monotone' := (_ : ∀ (x y : ℝ), x ≤ y → max (↑f x) (↑g x) ≤ max (↑f y) (↑g y)) } x + 1 [PROOFSTEP] simp [max_add_add_right] [GOAL] f✝ g✝ f g : CircleDeg1Lift x : ℝ ⊢ OrderHom.toFun { toFun := fun x => min (↑f x) (↑g x), monotone' := (_ : ∀ (x y : ℝ), x ≤ y → min (↑f x) (↑g x) ≤ min (↑f y) (↑g y)) } (x + 1) = OrderHom.toFun { toFun := fun x => min (↑f x) (↑g x), monotone' := (_ : ∀ (x y : ℝ), x ≤ y → min (↑f x) (↑g x) ≤ min (↑f y) (↑g y)) } x + 1 [PROOFSTEP] simp [min_add_add_right] [GOAL] f✝ g✝ f g : CircleDeg1Lift h : f ≤ g n : ℕ x : ℝ ⊢ ↑(f ^ n) x ≤ ↑(g ^ n) x [PROOFSTEP] simp only [coe_pow, iterate_mono h n x] [GOAL] f g : CircleDeg1Lift ⊢ dist (↑f 0 + ↑g 0) (↑f (↑g 0)) < 1 [PROOFSTEP] rw [dist_comm, Real.dist_eq, abs_lt, lt_sub_iff_add_lt', sub_lt_iff_lt_add', ← sub_eq_add_neg] [GOAL] f g : CircleDeg1Lift ⊢ ↑f 0 + ↑g 0 - 1 < ↑f (↑g 0) ∧ ↑f (↑g 0) < ↑f 0 + ↑g 0 + 1 [PROOFSTEP] exact ⟨f.lt_map_map_zero g, f.map_map_zero_lt g⟩ [GOAL] f✝ g f g₁ g₂ : CircleDeg1Lift h : Semiconj ↑f ↑g₁ ↑g₂ ⊢ dist (↑g₁ 0) (↑f (↑g₁ 0) - ↑f 0) + dist (↑f (↑g₁ 0) - ↑f 0) (↑g₂ 0) = dist (↑f 0 + ↑g₁ 0) (↑f (↑g₁ 0)) + dist (↑g₂ 0 + ↑f 0) (↑g₂ (↑f 0)) [PROOFSTEP] simp only [h.eq, Real.dist_eq, sub_sub, add_comm (f 0), sub_sub_eq_add_sub, abs_sub_comm (g₂ (f 0))] [GOAL] f g : CircleDeg1Lift ⊢ Tendsto (fun x => x - 1) atTop atTop [PROOFSTEP] simpa [sub_eq_add_neg] using tendsto_atTop_add_const_right _ _ tendsto_id [GOAL] f g : CircleDeg1Lift x : ℝ m : ℤ h : ↑f x ≤ x + ↑m n : ℕ ⊢ (↑f)^[n] x ≤ x + ↑n * ↑m [PROOFSTEP] simpa only [nsmul_eq_mul, add_right_iterate] using (f.commute_add_int m).iterate_le_of_map_le f.monotone (monotone_id.add_const (m : ℝ)) h n [GOAL] f g : CircleDeg1Lift x : ℝ m : ℤ h : x + ↑m ≤ ↑f x n : ℕ ⊢ x + ↑n * ↑m ≤ (↑f)^[n] x [PROOFSTEP] simpa only [nsmul_eq_mul, add_right_iterate] using (f.commute_add_int m).symm.iterate_le_of_map_le (monotone_id.add_const (m : ℝ)) f.monotone h n [GOAL] f g : CircleDeg1Lift x : ℝ m : ℤ h : ↑f x = x + ↑m n : ℕ ⊢ (↑f)^[n] x = x + ↑n * ↑m [PROOFSTEP] simpa only [nsmul_eq_mul, add_right_iterate] using (f.commute_add_int m).iterate_eq_of_map_eq n h [GOAL] f g : CircleDeg1Lift x : ℝ m : ℤ n : ℕ hn : 0 < n ⊢ (↑f)^[n] x ≤ x + ↑n * ↑m ↔ ↑f x ≤ x + ↑m [PROOFSTEP] simpa only [nsmul_eq_mul, add_right_iterate] using (f.commute_add_int m).iterate_pos_le_iff_map_le f.monotone (strictMono_id.add_const (m : ℝ)) hn [GOAL] f g : CircleDeg1Lift x : ℝ m : ℤ n : ℕ hn : 0 < n ⊢ (↑f)^[n] x < x + ↑n * ↑m ↔ ↑f x < x + ↑m [PROOFSTEP] simpa only [nsmul_eq_mul, add_right_iterate] using (f.commute_add_int m).iterate_pos_lt_iff_map_lt f.monotone (strictMono_id.add_const (m : ℝ)) hn [GOAL] f g : CircleDeg1Lift x : ℝ m : ℤ n : ℕ hn : 0 < n ⊢ (↑f)^[n] x = x + ↑n * ↑m ↔ ↑f x = x + ↑m [PROOFSTEP] simpa only [nsmul_eq_mul, add_right_iterate] using (f.commute_add_int m).iterate_pos_eq_iff_map_eq f.monotone (strictMono_id.add_const (m : ℝ)) hn [GOAL] f g : CircleDeg1Lift x : ℝ m : ℤ n : ℕ hn : 0 < n ⊢ x + ↑n * ↑m ≤ (↑f)^[n] x ↔ x + ↑m ≤ ↑f x [PROOFSTEP] simpa only [not_lt] using not_congr (f.iterate_pos_lt_iff hn) [GOAL] f g : CircleDeg1Lift x : ℝ m : ℤ n : ℕ hn : 0 < n ⊢ x + ↑n * ↑m < (↑f)^[n] x ↔ x + ↑m < ↑f x [PROOFSTEP] simpa only [not_le] using not_congr (f.iterate_pos_le_iff hn) [GOAL] f g : CircleDeg1Lift n : ℕ ⊢ ↑n * ⌊↑f 0⌋ ≤ ⌊(↑f)^[n] 0⌋ [PROOFSTEP] rw [le_floor, Int.cast_mul, Int.cast_ofNat, ← zero_add ((n : ℝ) * _)] [GOAL] f g : CircleDeg1Lift n : ℕ ⊢ 0 + ↑n * ↑⌊↑f 0⌋ ≤ (↑f)^[n] 0 [PROOFSTEP] apply le_iterate_of_add_int_le_map [GOAL] case h f g : CircleDeg1Lift n : ℕ ⊢ 0 + ↑⌊↑f 0⌋ ≤ ↑f 0 [PROOFSTEP] simp [floor_le] [GOAL] f g : CircleDeg1Lift τ' : ℝ h : Tendsto (fun n => (↑f)^[n] 0 / ↑n) atTop (𝓝 τ') ⊢ Tendsto (transnumAuxSeq f) atTop (𝓝 τ') [PROOFSTEP] simpa [(· ∘ ·), transnumAuxSeq_def, coe_pow] using h.comp (Nat.tendsto_pow_atTop_atTop_of_one_lt one_lt_two) [GOAL] f g : CircleDeg1Lift τ' : ℝ h : Tendsto (fun n => (↑f)^[n + 1] 0 / (↑n + 1)) atTop (𝓝 τ') ⊢ Tendsto (fun n => (↑f)^[n + 1] 0 / ↑(n + 1)) atTop (𝓝 τ') [PROOFSTEP] exact_mod_cast h [GOAL] f g : CircleDeg1Lift ⊢ transnumAuxSeq f 0 = ↑f 0 [PROOFSTEP] simp [transnumAuxSeq] [GOAL] f g : CircleDeg1Lift n : ℕ ⊢ dist (transnumAuxSeq f n) (transnumAuxSeq f (n + 1)) < 1 / 2 / 2 ^ n [PROOFSTEP] have : 0 < (2 ^ (n + 1) : ℝ) := pow_pos zero_lt_two _ [GOAL] f g : CircleDeg1Lift n : ℕ this : 0 < 2 ^ (n + 1) ⊢ dist (transnumAuxSeq f n) (transnumAuxSeq f (n + 1)) < 1 / 2 / 2 ^ n [PROOFSTEP] rw [div_div, ← pow_succ, ← abs_of_pos this] [GOAL] f g : CircleDeg1Lift n : ℕ this : 0 < 2 ^ (n + 1) ⊢ dist (transnumAuxSeq f n) (transnumAuxSeq f (n + 1)) < 1 / |2 ^ (n + 1)| [PROOFSTEP] replace := abs_pos.2 (ne_of_gt this) [GOAL] f g : CircleDeg1Lift n : ℕ this : 0 < |2 ^ (n + 1)| ⊢ dist (transnumAuxSeq f n) (transnumAuxSeq f (n + 1)) < 1 / |2 ^ (n + 1)| [PROOFSTEP] convert (div_lt_div_right this).2 ((f ^ 2 ^ n).dist_map_map_zero_lt (f ^ 2 ^ n)) using 1 [GOAL] case h.e'_3 f g : CircleDeg1Lift n : ℕ this : 0 < |2 ^ (n + 1)| ⊢ dist (transnumAuxSeq f n) (transnumAuxSeq f (n + 1)) = dist (↑(f ^ 2 ^ n) 0 + ↑(f ^ 2 ^ n) 0) (↑(f ^ 2 ^ n) (↑(f ^ 2 ^ n) 0)) / |2 ^ (n + 1)| [PROOFSTEP] simp_rw [transnumAuxSeq, Real.dist_eq] [GOAL] case h.e'_3 f g : CircleDeg1Lift n : ℕ this : 0 < |2 ^ (n + 1)| ⊢ |↑(f ^ 2 ^ n) 0 / 2 ^ n - ↑(f ^ 2 ^ (n + 1)) 0 / 2 ^ (n + 1)| = |↑(f ^ 2 ^ n) 0 + ↑(f ^ 2 ^ n) 0 - ↑(f ^ 2 ^ n) (↑(f ^ 2 ^ n) 0)| / |2 ^ (n + 1)| [PROOFSTEP] rw [← abs_div, sub_div, pow_succ', pow_succ, ← two_mul, mul_div_mul_left _ _ (two_ne_zero' ℝ), pow_mul, sq, mul_apply] [GOAL] f g : CircleDeg1Lift x : ℕ → ℝ C : ℝ H : ∀ (n : ℕ), dist (↑(f ^ n) 0) (x n) ≤ C ⊢ Tendsto (fun n => x (2 ^ n) / 2 ^ n) atTop (𝓝 (τ f)) [PROOFSTEP] refine' f.tendsto_translationNumber_aux.congr_dist (squeeze_zero (fun _ => dist_nonneg) _ _) [GOAL] case refine'_1 f g : CircleDeg1Lift x : ℕ → ℝ C : ℝ H : ∀ (n : ℕ), dist (↑(f ^ n) 0) (x n) ≤ C ⊢ ℕ → ℝ [PROOFSTEP] exact fun n => C / 2 ^ n [GOAL] case refine'_2 f g : CircleDeg1Lift x : ℕ → ℝ C : ℝ H : ∀ (n : ℕ), dist (↑(f ^ n) 0) (x n) ≤ C ⊢ ∀ (t : ℕ), dist (transnumAuxSeq f t) (x (2 ^ t) / 2 ^ t) ≤ C / 2 ^ t [PROOFSTEP] intro n [GOAL] case refine'_2 f g : CircleDeg1Lift x : ℕ → ℝ C : ℝ H : ∀ (n : ℕ), dist (↑(f ^ n) 0) (x n) ≤ C n : ℕ ⊢ dist (transnumAuxSeq f n) (x (2 ^ n) / 2 ^ n) ≤ C / 2 ^ n [PROOFSTEP] have : 0 < (2 ^ n : ℝ) := pow_pos zero_lt_two _ [GOAL] case refine'_2 f g : CircleDeg1Lift x : ℕ → ℝ C : ℝ H : ∀ (n : ℕ), dist (↑(f ^ n) 0) (x n) ≤ C n : ℕ this : 0 < 2 ^ n ⊢ dist (transnumAuxSeq f n) (x (2 ^ n) / 2 ^ n) ≤ C / 2 ^ n [PROOFSTEP] convert (div_le_div_right this).2 (H (2 ^ n)) using 1 [GOAL] case h.e'_3 f g : CircleDeg1Lift x : ℕ → ℝ C : ℝ H : ∀ (n : ℕ), dist (↑(f ^ n) 0) (x n) ≤ C n : ℕ this : 0 < 2 ^ n ⊢ dist (transnumAuxSeq f n) (x (2 ^ n) / 2 ^ n) = dist (↑(f ^ 2 ^ n) 0) (x (2 ^ n)) / 2 ^ n [PROOFSTEP] rw [transnumAuxSeq, Real.dist_eq, ← sub_div, abs_div, abs_of_pos this, Real.dist_eq] [GOAL] case refine'_3 f g : CircleDeg1Lift x : ℕ → ℝ C : ℝ H : ∀ (n : ℕ), dist (↑(f ^ n) 0) (x n) ≤ C ⊢ Tendsto (fun n => C / 2 ^ n) atTop (𝓝 0) [PROOFSTEP] exact mul_zero C ▸ tendsto_const_nhds.mul <| tendsto_inv_atTop_zero.comp <| tendsto_pow_atTop_atTop_of_one_lt one_lt_two [GOAL] f g : CircleDeg1Lift ⊢ Tendsto (fun n => (↑1)^[n] 0 / ↑n) atTop (𝓝 0) [PROOFSTEP] simp [tendsto_const_nhds] [GOAL] f✝ g✝ f g : CircleDeg1Lift h : Commute f g ⊢ τ (f * g) = τ f + τ g [PROOFSTEP] refine tendsto_nhds_unique ?_ (f.tendsto_translationNumber_aux.add g.tendsto_translationNumber_aux) [GOAL] f✝ g✝ f g : CircleDeg1Lift h : Commute f g ⊢ Tendsto (fun x => transnumAuxSeq f x + transnumAuxSeq g x) atTop (𝓝 (τ (f * g))) [PROOFSTEP] simp only [transnumAuxSeq, ← add_div] [GOAL] f✝ g✝ f g : CircleDeg1Lift h : Commute f g ⊢ Tendsto (fun x => (↑(f ^ 2 ^ x) 0 + ↑(g ^ 2 ^ x) 0) / 2 ^ x) atTop (𝓝 (τ (f * g))) [PROOFSTEP] refine (f * g).tendsto_translationNumber_of_dist_bounded_aux (fun n ↦ (f ^ n) 0 + (g ^ n) 0) 1 fun n ↦ ?_ [GOAL] f✝ g✝ f g : CircleDeg1Lift h : Commute f g n : ℕ ⊢ dist (↑((f * g) ^ n) 0) ((fun n => ↑(f ^ n) 0 + ↑(g ^ n) 0) n) ≤ 1 [PROOFSTEP] rw [h.mul_pow, dist_comm] [GOAL] f✝ g✝ f g : CircleDeg1Lift h : Commute f g n : ℕ ⊢ dist ((fun n => ↑(f ^ n) 0 + ↑(g ^ n) 0) n) (↑(f ^ n * g ^ n) 0) ≤ 1 [PROOFSTEP] exact le_of_lt ((f ^ n).dist_map_map_zero_lt (g ^ n)) [GOAL] f✝ g : CircleDeg1Lift f : CircleDeg1Liftˣ ⊢ τ ↑f⁻¹ + τ ↑f = 0 [PROOFSTEP] simp [← translationNumber_mul_of_commute (Commute.refl _).units_inv_left] [GOAL] f g : CircleDeg1Lift ⊢ τ (f ^ 0) = ↑0 * τ f [PROOFSTEP] simp [GOAL] f g : CircleDeg1Lift n : ℕ ⊢ τ (f ^ (n + 1)) = ↑(n + 1) * τ f [PROOFSTEP] rw [pow_succ', translationNumber_mul_of_commute (Commute.pow_self f n), translationNumber_pow n, Nat.cast_add_one, add_mul, one_mul] [GOAL] f✝ g : CircleDeg1Lift f : CircleDeg1Liftˣ n : ℕ ⊢ τ ↑(f ^ ↑n) = ↑↑n * τ ↑f [PROOFSTEP] simp [translationNumber_pow f n] [GOAL] f✝ g : CircleDeg1Lift f : CircleDeg1Liftˣ n : ℕ ⊢ τ ↑(f ^ -[n+1]) = ↑-[n+1] * τ ↑f [PROOFSTEP] simp [GOAL] f✝ g : CircleDeg1Lift f : CircleDeg1Liftˣ n : ℕ ⊢ -((↑n + 1) * τ ↑f) = (-1 + -↑n) * τ ↑f [PROOFSTEP] ring [GOAL] f g : CircleDeg1Lift ⊢ Tendsto (fun n => ↑(f ^ (n + 1)) 0 / (↑n + 1)) atTop (𝓝 (τ f)) [PROOFSTEP] refine' tendsto_iff_dist_tendsto_zero.2 <| squeeze_zero (fun _ => dist_nonneg) (fun n => _) ((tendsto_const_div_atTop_nhds_0_nat 1).comp (tendsto_add_atTop_nat 1)) [GOAL] f g : CircleDeg1Lift n : ℕ ⊢ dist (↑(f ^ (n + 1)) 0 / (↑n + 1)) (τ f) ≤ ((fun n => 1 / ↑n) ∘ fun a => a + 1) n [PROOFSTEP] dsimp [GOAL] f g : CircleDeg1Lift n : ℕ ⊢ dist (↑(f ^ (n + 1)) 0 / (↑n + 1)) (τ f) ≤ 1 / ↑(n + 1) [PROOFSTEP] have : (0 : ℝ) < n + 1 := n.cast_add_one_pos [GOAL] f g : CircleDeg1Lift n : ℕ this : 0 < ↑n + 1 ⊢ dist (↑(f ^ (n + 1)) 0 / (↑n + 1)) (τ f) ≤ 1 / ↑(n + 1) [PROOFSTEP] rw [Real.dist_eq, div_sub' _ _ _ (ne_of_gt this), abs_div, ← Real.dist_eq, abs_of_pos this, Nat.cast_add_one, div_le_div_right this, ← Nat.cast_add_one] [GOAL] f g : CircleDeg1Lift n : ℕ this : 0 < ↑n + 1 ⊢ dist (↑(f ^ (n + 1)) 0) (↑(n + 1) * τ f) ≤ 1 [PROOFSTEP] apply dist_pow_map_zero_mul_translationNumber_le [GOAL] f g : CircleDeg1Lift ⊢ Tendsto (fun n => ↑(f ^ (n + 1)) 0 / ↑(n + 1)) atTop (𝓝 (τ f)) [PROOFSTEP] exact_mod_cast f.tendsto_translation_number₀' [GOAL] f g : CircleDeg1Lift x : ℝ ⊢ Tendsto (fun n => (↑(f ^ n) x - x) / ↑n) atTop (𝓝 (τ f)) [PROOFSTEP] rw [← translationNumber_conj_eq' (translate <| Multiplicative.ofAdd x)] [GOAL] f g : CircleDeg1Lift x : ℝ ⊢ Tendsto (fun n => (↑(f ^ n) x - x) / ↑n) atTop (𝓝 (τ (↑(↑translate (↑Multiplicative.ofAdd x))⁻¹ * f * ↑(↑translate (↑Multiplicative.ofAdd x))))) [PROOFSTEP] refine (tendsto_translation_number₀ _).congr fun n ↦ ?_ [GOAL] f g : CircleDeg1Lift x : ℝ n : ℕ ⊢ ↑((↑(↑translate (↑Multiplicative.ofAdd x))⁻¹ * f * ↑(↑translate (↑Multiplicative.ofAdd x))) ^ n) 0 / ↑n = (↑(f ^ n) x - x) / ↑n [PROOFSTEP] simp [sub_eq_neg_add, Units.conj_pow'] [GOAL] f g : CircleDeg1Lift x : ℝ ⊢ Tendsto (fun n => (↑(f ^ (n + 1)) x - x) / (↑n + 1)) atTop (𝓝 (τ f)) [PROOFSTEP] exact_mod_cast (tendsto_add_atTop_iff_nat 1).2 (f.tendsto_translationNumber x) [GOAL] f g : CircleDeg1Lift x : ℝ ⊢ Tendsto (fun n => (↑↑(↑translate (↑Multiplicative.ofAdd x)))^[n + 1] 0 / (↑n + 1)) atTop (𝓝 x) [PROOFSTEP] simp only [translate_iterate, translate_apply, add_zero, Nat.cast_succ, mul_div_cancel_left (G₀ := ℝ) _ (Nat.cast_add_one_ne_zero _), tendsto_const_nhds] [GOAL] f g : CircleDeg1Lift x : ℝ m : ℤ h : x + ↑m ≤ ↑f x n : ℕ ⊢ x + ↑m * (↑n + 1) ≤ ↑(f ^ (n + 1)) x [PROOFSTEP] simp only [coe_pow, mul_comm (m : ℝ), ← Nat.cast_add_one, f.le_iterate_of_add_int_le_map h] [GOAL] f g : CircleDeg1Lift x : ℝ ⊢ ↑f x < x + ↑⌊τ f⌋ + 1 [PROOFSTEP] rw [add_assoc] [GOAL] f g : CircleDeg1Lift x : ℝ ⊢ ↑f x < x + (↑⌊τ f⌋ + 1) [PROOFSTEP] norm_cast [GOAL] f g : CircleDeg1Lift x : ℝ ⊢ ↑f x < x + ↑(⌊τ f⌋ + 1) [PROOFSTEP] refine' map_lt_of_translationNumber_lt_int _ _ _ [GOAL] f g : CircleDeg1Lift x : ℝ ⊢ τ f < ↑(⌊τ f⌋ + 1) [PROOFSTEP] push_cast [GOAL] f g : CircleDeg1Lift x : ℝ ⊢ τ f < ↑⌊τ f⌋ + 1 [PROOFSTEP] exact lt_floor_add_one _ [GOAL] f g : CircleDeg1Lift x : ℝ ⊢ x + ↑⌊τ f⌋ + 1 ≤ x + τ f + 1 [PROOFSTEP] gcongr [GOAL] case bc.bc f g : CircleDeg1Lift x : ℝ ⊢ ↑⌊τ f⌋ ≤ τ f [PROOFSTEP] apply floor_le [GOAL] f g : CircleDeg1Lift x : ℝ n : ℕ m : ℤ h : ↑(f ^ n) x = x + ↑m hn : 0 < n ⊢ τ f = ↑m / ↑n [PROOFSTEP] have := (f ^ n).translationNumber_of_eq_add_int h [GOAL] f g : CircleDeg1Lift x : ℝ n : ℕ m : ℤ h : ↑(f ^ n) x = x + ↑m hn : 0 < n this : τ (f ^ n) = ↑m ⊢ τ f = ↑m / ↑n [PROOFSTEP] rwa [translationNumber_pow, mul_comm, ← eq_div_iff] at this [GOAL] f g : CircleDeg1Lift x : ℝ n : ℕ m : ℤ h : ↑(f ^ n) x = x + ↑m hn : 0 < n this : τ f * ↑n = ↑m ⊢ ↑n ≠ 0 [PROOFSTEP] exact Nat.cast_ne_zero.2 (ne_of_gt hn) [GOAL] f g : CircleDeg1Lift hf : Continuous ↑f z : ℝ hz : ∀ (x : ℝ), ↑f x < x + z ⊢ τ f < z [PROOFSTEP] obtain ⟨x, -, hx⟩ : ∃ x ∈ Icc (0 : ℝ) 1, ∀ y ∈ Icc (0 : ℝ) 1, f y - y ≤ f x - x := isCompact_Icc.exists_forall_ge (nonempty_Icc.2 zero_le_one) (hf.sub continuous_id).continuousOn [GOAL] case intro.intro f g : CircleDeg1Lift hf : Continuous ↑f z : ℝ hz : ∀ (x : ℝ), ↑f x < x + z x : ℝ hx : ∀ (y : ℝ), y ∈ Icc 0 1 → ↑f y - y ≤ ↑f x - x ⊢ τ f < z [PROOFSTEP] refine' lt_of_le_of_lt _ (sub_lt_iff_lt_add'.2 <| hz x) [GOAL] case intro.intro f g : CircleDeg1Lift hf : Continuous ↑f z : ℝ hz : ∀ (x : ℝ), ↑f x < x + z x : ℝ hx : ∀ (y : ℝ), y ∈ Icc 0 1 → ↑f y - y ≤ ↑f x - x ⊢ τ f ≤ ↑f x - x [PROOFSTEP] apply translationNumber_le_of_le_add [GOAL] case intro.intro.hz f g : CircleDeg1Lift hf : Continuous ↑f z : ℝ hz : ∀ (x : ℝ), ↑f x < x + z x : ℝ hx : ∀ (y : ℝ), y ∈ Icc 0 1 → ↑f y - y ≤ ↑f x - x ⊢ ∀ (x_1 : ℝ), ↑f x_1 ≤ x_1 + (↑f x - x) [PROOFSTEP] simp only [← sub_le_iff_le_add'] [GOAL] case intro.intro.hz f g : CircleDeg1Lift hf : Continuous ↑f z : ℝ hz : ∀ (x : ℝ), ↑f x < x + z x : ℝ hx : ∀ (y : ℝ), y ∈ Icc 0 1 → ↑f y - y ≤ ↑f x - x ⊢ ∀ (x_1 : ℝ), ↑f x_1 - x_1 ≤ ↑f x - x [PROOFSTEP] exact f.forall_map_sub_of_Icc (fun a => a ≤ f x - x) hx [GOAL] f g : CircleDeg1Lift hf : Continuous ↑f z : ℝ hz : ∀ (x : ℝ), x + z < ↑f x ⊢ z < τ f [PROOFSTEP] obtain ⟨x, -, hx⟩ : ∃ x ∈ Icc (0 : ℝ) 1, ∀ y ∈ Icc (0 : ℝ) 1, f x - x ≤ f y - y [GOAL] f g : CircleDeg1Lift hf : Continuous ↑f z : ℝ hz : ∀ (x : ℝ), x + z < ↑f x ⊢ ∃ x, x ∈ Icc 0 1 ∧ ∀ (y : ℝ), y ∈ Icc 0 1 → ↑f x - x ≤ ↑f y - y case intro.intro f g : CircleDeg1Lift hf : Continuous ↑f z : ℝ hz : ∀ (x : ℝ), x + z < ↑f x x : ℝ hx : ∀ (y : ℝ), y ∈ Icc 0 1 → ↑f x - x ≤ ↑f y - y ⊢ z < τ f [PROOFSTEP] exact isCompact_Icc.exists_forall_le (nonempty_Icc.2 zero_le_one) (hf.sub continuous_id).continuousOn [GOAL] case intro.intro f g : CircleDeg1Lift hf : Continuous ↑f z : ℝ hz : ∀ (x : ℝ), x + z < ↑f x x : ℝ hx : ∀ (y : ℝ), y ∈ Icc 0 1 → ↑f x - x ≤ ↑f y - y ⊢ z < τ f [PROOFSTEP] refine' lt_of_lt_of_le (lt_sub_iff_add_lt'.2 <| hz x) _ [GOAL] case intro.intro f g : CircleDeg1Lift hf : Continuous ↑f z : ℝ hz : ∀ (x : ℝ), x + z < ↑f x x : ℝ hx : ∀ (y : ℝ), y ∈ Icc 0 1 → ↑f x - x ≤ ↑f y - y ⊢ ↑f x - x ≤ τ f [PROOFSTEP] apply le_translationNumber_of_add_le [GOAL] case intro.intro.hz f g : CircleDeg1Lift hf : Continuous ↑f z : ℝ hz : ∀ (x : ℝ), x + z < ↑f x x : ℝ hx : ∀ (y : ℝ), y ∈ Icc 0 1 → ↑f x - x ≤ ↑f y - y ⊢ ∀ (x_1 : ℝ), x_1 + (↑f x - x) ≤ ↑f x_1 [PROOFSTEP] simp only [← le_sub_iff_add_le'] [GOAL] case intro.intro.hz f g : CircleDeg1Lift hf : Continuous ↑f z : ℝ hz : ∀ (x : ℝ), x + z < ↑f x x : ℝ hx : ∀ (y : ℝ), y ∈ Icc 0 1 → ↑f x - x ≤ ↑f y - y ⊢ ∀ (x_1 : ℝ), ↑f x - x ≤ ↑f x_1 - x_1 [PROOFSTEP] exact f.forall_map_sub_of_Icc _ hx [GOAL] f g : CircleDeg1Lift hf : Continuous ↑f ⊢ ∃ x, ↑f x = x + τ f [PROOFSTEP] obtain ⟨a, ha⟩ : ∃ x, f x ≤ x + τ f := by by_contra' H exact lt_irrefl _ (f.lt_translationNumber_of_forall_add_lt hf H) [GOAL] f g : CircleDeg1Lift hf : Continuous ↑f ⊢ ∃ x, ↑f x ≤ x + τ f [PROOFSTEP] by_contra' H [GOAL] f g : CircleDeg1Lift hf : Continuous ↑f H : ∀ (x : ℝ), x + τ f < ↑f x ⊢ False [PROOFSTEP] exact lt_irrefl _ (f.lt_translationNumber_of_forall_add_lt hf H) [GOAL] case intro f g : CircleDeg1Lift hf : Continuous ↑f a : ℝ ha : ↑f a ≤ a + τ f ⊢ ∃ x, ↑f x = x + τ f [PROOFSTEP] obtain ⟨b, hb⟩ : ∃ x, x + τ f ≤ f x := by by_contra' H exact lt_irrefl _ (f.translationNumber_lt_of_forall_lt_add hf H) [GOAL] f g : CircleDeg1Lift hf : Continuous ↑f a : ℝ ha : ↑f a ≤ a + τ f ⊢ ∃ x, x + τ f ≤ ↑f x [PROOFSTEP] by_contra' H [GOAL] f g : CircleDeg1Lift hf : Continuous ↑f a : ℝ ha : ↑f a ≤ a + τ f H : ∀ (x : ℝ), ↑f x < x + τ f ⊢ False [PROOFSTEP] exact lt_irrefl _ (f.translationNumber_lt_of_forall_lt_add hf H) [GOAL] case intro.intro f g : CircleDeg1Lift hf : Continuous ↑f a : ℝ ha : ↑f a ≤ a + τ f b : ℝ hb : b + τ f ≤ ↑f b ⊢ ∃ x, ↑f x = x + τ f [PROOFSTEP] exact intermediate_value_univ₂ hf (continuous_id.add continuous_const) ha hb [GOAL] f g : CircleDeg1Lift hf : Continuous ↑f m : ℤ ⊢ τ f = ↑m ↔ ∃ x, ↑f x = x + ↑m [PROOFSTEP] constructor [GOAL] case mp f g : CircleDeg1Lift hf : Continuous ↑f m : ℤ ⊢ τ f = ↑m → ∃ x, ↑f x = x + ↑m [PROOFSTEP] intro h [GOAL] case mp f g : CircleDeg1Lift hf : Continuous ↑f m : ℤ h : τ f = ↑m ⊢ ∃ x, ↑f x = x + ↑m [PROOFSTEP] simp only [← h] [GOAL] case mp f g : CircleDeg1Lift hf : Continuous ↑f m : ℤ h : τ f = ↑m ⊢ ∃ x, ↑f x = x + τ f [PROOFSTEP] exact f.exists_eq_add_translationNumber hf [GOAL] case mpr f g : CircleDeg1Lift hf : Continuous ↑f m : ℤ ⊢ (∃ x, ↑f x = x + ↑m) → τ f = ↑m [PROOFSTEP] rintro ⟨x, hx⟩ [GOAL] case mpr.intro f g : CircleDeg1Lift hf : Continuous ↑f m : ℤ x : ℝ hx : ↑f x = x + ↑m ⊢ τ f = ↑m [PROOFSTEP] exact f.translationNumber_of_eq_add_int hx [GOAL] f g : CircleDeg1Lift hf : Continuous ↑f n : ℕ ⊢ Continuous ↑(f ^ n) [PROOFSTEP] rw [coe_pow] [GOAL] f g : CircleDeg1Lift hf : Continuous ↑f n : ℕ ⊢ Continuous (↑f)^[n] [PROOFSTEP] exact hf.iterate n [GOAL] f g : CircleDeg1Lift hf : Continuous ↑f m : ℤ n : ℕ hn : 0 < n ⊢ τ f = ↑m / ↑n ↔ ∃ x, ↑(f ^ n) x = x + ↑m [PROOFSTEP] rw [eq_div_iff, mul_comm, ← translationNumber_pow] <;> [skip; exact ne_of_gt (Nat.cast_pos.2 hn)] [GOAL] f g : CircleDeg1Lift hf : Continuous ↑f m : ℤ n : ℕ hn : 0 < n ⊢ τ f = ↑m / ↑n ↔ ∃ x, ↑(f ^ n) x = x + ↑m [PROOFSTEP] rw [eq_div_iff, mul_comm, ← translationNumber_pow] [GOAL] f g : CircleDeg1Lift hf : Continuous ↑f m : ℤ n : ℕ hn : 0 < n ⊢ τ (f ^ n) = ↑m ↔ ∃ x, ↑(f ^ n) x = x + ↑m [PROOFSTEP] skip [GOAL] f g : CircleDeg1Lift hf : Continuous ↑f m : ℤ n : ℕ hn : 0 < n ⊢ ↑n ≠ 0 [PROOFSTEP] exact ne_of_gt (Nat.cast_pos.2 hn) [GOAL] f g : CircleDeg1Lift hf : Continuous ↑f m : ℤ n : ℕ hn : 0 < n ⊢ τ (f ^ n) = ↑m ↔ ∃ x, ↑(f ^ n) x = x + ↑m [PROOFSTEP] exact (f ^ n).translationNumber_eq_int_iff (f.continuous_pow hf n) [GOAL] f g : CircleDeg1Lift G : Type u_1 inst✝ : Group G f₁ f₂ : G →* CircleDeg1Lift h : ∀ (g : G), τ (↑f₁ g) = τ (↑f₂ g) ⊢ ∃ F, ∀ (g : G), Semiconj ↑F ↑(↑f₁ g) ↑(↑f₂ g) [PROOFSTEP] have : ∀ x, BddAbove (range fun g => f₂ g⁻¹ (f₁ g x)) := by refine' fun x => ⟨x + 2, _⟩ rintro _ ⟨g, rfl⟩ have : τ (f₂ g⁻¹) = -τ (f₂ g) := by rw [← MonoidHom.coe_toHomUnits, MonoidHom.map_inv, translationNumber_units_inv, MonoidHom.coe_toHomUnits] calc f₂ g⁻¹ (f₁ g x) ≤ f₂ g⁻¹ (x + τ (f₁ g) + 1) := mono _ (map_lt_add_translationNumber_add_one _ _).le _ = f₂ g⁻¹ (x + τ (f₂ g)) + 1 := by rw [h, map_add_one] _ ≤ x + τ (f₂ g) + τ (f₂ g⁻¹) + 1 + 1 := (add_le_add_right (map_lt_add_translationNumber_add_one _ _).le _) _ = x + 2 := by simp [this, add_assoc, one_add_one_eq_two] -- We have a theorem about actions by `OrderIso`, so we introduce auxiliary maps -- to `ℝ ≃o ℝ`. [GOAL] f g : CircleDeg1Lift G : Type u_1 inst✝ : Group G f₁ f₂ : G →* CircleDeg1Lift h : ∀ (g : G), τ (↑f₁ g) = τ (↑f₂ g) ⊢ ∀ (x : ℝ), BddAbove (range fun g => ↑(↑f₂ g⁻¹) (↑(↑f₁ g) x)) [PROOFSTEP] refine' fun x => ⟨x + 2, _⟩ [GOAL] f g : CircleDeg1Lift G : Type u_1 inst✝ : Group G f₁ f₂ : G →* CircleDeg1Lift h : ∀ (g : G), τ (↑f₁ g) = τ (↑f₂ g) x : ℝ ⊢ x + 2 ∈ upperBounds (range fun g => ↑(↑f₂ g⁻¹) (↑(↑f₁ g) x)) [PROOFSTEP] rintro _ ⟨g, rfl⟩ [GOAL] case intro f g✝ : CircleDeg1Lift G : Type u_1 inst✝ : Group G f₁ f₂ : G →* CircleDeg1Lift h : ∀ (g : G), τ (↑f₁ g) = τ (↑f₂ g) x : ℝ g : G ⊢ (fun g => ↑(↑f₂ g⁻¹) (↑(↑f₁ g) x)) g ≤ x + 2 [PROOFSTEP] have : τ (f₂ g⁻¹) = -τ (f₂ g) := by rw [← MonoidHom.coe_toHomUnits, MonoidHom.map_inv, translationNumber_units_inv, MonoidHom.coe_toHomUnits] [GOAL] f g✝ : CircleDeg1Lift G : Type u_1 inst✝ : Group G f₁ f₂ : G →* CircleDeg1Lift h : ∀ (g : G), τ (↑f₁ g) = τ (↑f₂ g) x : ℝ g : G ⊢ τ (↑f₂ g⁻¹) = -τ (↑f₂ g) [PROOFSTEP] rw [← MonoidHom.coe_toHomUnits, MonoidHom.map_inv, translationNumber_units_inv, MonoidHom.coe_toHomUnits] [GOAL] case intro f g✝ : CircleDeg1Lift G : Type u_1 inst✝ : Group G f₁ f₂ : G →* CircleDeg1Lift h : ∀ (g : G), τ (↑f₁ g) = τ (↑f₂ g) x : ℝ g : G this : τ (↑f₂ g⁻¹) = -τ (↑f₂ g) ⊢ (fun g => ↑(↑f₂ g⁻¹) (↑(↑f₁ g) x)) g ≤ x + 2 [PROOFSTEP] calc f₂ g⁻¹ (f₁ g x) ≤ f₂ g⁻¹ (x + τ (f₁ g) + 1) := mono _ (map_lt_add_translationNumber_add_one _ _).le _ = f₂ g⁻¹ (x + τ (f₂ g)) + 1 := by rw [h, map_add_one] _ ≤ x + τ (f₂ g) + τ (f₂ g⁻¹) + 1 + 1 := (add_le_add_right (map_lt_add_translationNumber_add_one _ _).le _) _ = x + 2 := by simp [this, add_assoc, one_add_one_eq_two] -- We have a theorem about actions by `OrderIso`, so we introduce auxiliary maps -- to `ℝ ≃o ℝ`. [GOAL] f g✝ : CircleDeg1Lift G : Type u_1 inst✝ : Group G f₁ f₂ : G →* CircleDeg1Lift h : ∀ (g : G), τ (↑f₁ g) = τ (↑f₂ g) x : ℝ g : G this : τ (↑f₂ g⁻¹) = -τ (↑f₂ g) ⊢ ↑(↑f₂ g⁻¹) (x + τ (↑f₁ g) + 1) = ↑(↑f₂ g⁻¹) (x + τ (↑f₂ g)) + 1 [PROOFSTEP] rw [h, map_add_one] [GOAL] f g✝ : CircleDeg1Lift G : Type u_1 inst✝ : Group G f₁ f₂ : G →* CircleDeg1Lift h : ∀ (g : G), τ (↑f₁ g) = τ (↑f₂ g) x : ℝ g : G this : τ (↑f₂ g⁻¹) = -τ (↑f₂ g) ⊢ x + τ (↑f₂ g) + τ (↑f₂ g⁻¹) + 1 + 1 = x + 2 [PROOFSTEP] simp [this, add_assoc, one_add_one_eq_two] -- We have a theorem about actions by `OrderIso`, so we introduce auxiliary maps -- to `ℝ ≃o ℝ`. [GOAL] f g : CircleDeg1Lift G : Type u_1 inst✝ : Group G f₁ f₂ : G →* CircleDeg1Lift h : ∀ (g : G), τ (↑f₁ g) = τ (↑f₂ g) this : ∀ (x : ℝ), BddAbove (range fun g => ↑(↑f₂ g⁻¹) (↑(↑f₁ g) x)) ⊢ ∃ F, ∀ (g : G), Semiconj ↑F ↑(↑f₁ g) ↑(↑f₂ g) [PROOFSTEP] set F₁ := toOrderIso.comp f₁.toHomUnits [GOAL] f g : CircleDeg1Lift G : Type u_1 inst✝ : Group G f₁ f₂ : G →* CircleDeg1Lift h : ∀ (g : G), τ (↑f₁ g) = τ (↑f₂ g) this : ∀ (x : ℝ), BddAbove (range fun g => ↑(↑f₂ g⁻¹) (↑(↑f₁ g) x)) F₁ : G →* ℝ ≃o ℝ := MonoidHom.comp toOrderIso (MonoidHom.toHomUnits f₁) ⊢ ∃ F, ∀ (g : G), Semiconj ↑F ↑(↑f₁ g) ↑(↑f₂ g) [PROOFSTEP] set F₂ := toOrderIso.comp f₂.toHomUnits [GOAL] f g : CircleDeg1Lift G : Type u_1 inst✝ : Group G f₁ f₂ : G →* CircleDeg1Lift h : ∀ (g : G), τ (↑f₁ g) = τ (↑f₂ g) this : ∀ (x : ℝ), BddAbove (range fun g => ↑(↑f₂ g⁻¹) (↑(↑f₁ g) x)) F₁ : G →* ℝ ≃o ℝ := MonoidHom.comp toOrderIso (MonoidHom.toHomUnits f₁) F₂ : G →* ℝ ≃o ℝ := MonoidHom.comp toOrderIso (MonoidHom.toHomUnits f₂) ⊢ ∃ F, ∀ (g : G), Semiconj ↑F ↑(↑f₁ g) ↑(↑f₂ g) [PROOFSTEP] have hF₁ : ∀ g, ⇑(F₁ g) = f₁ g := fun _ => rfl [GOAL] f g : CircleDeg1Lift G : Type u_1 inst✝ : Group G f₁ f₂ : G →* CircleDeg1Lift h : ∀ (g : G), τ (↑f₁ g) = τ (↑f₂ g) this : ∀ (x : ℝ), BddAbove (range fun g => ↑(↑f₂ g⁻¹) (↑(↑f₁ g) x)) F₁ : G →* ℝ ≃o ℝ := MonoidHom.comp toOrderIso (MonoidHom.toHomUnits f₁) F₂ : G →* ℝ ≃o ℝ := MonoidHom.comp toOrderIso (MonoidHom.toHomUnits f₂) hF₁ : ∀ (g : G), ↑(↑F₁ g) = ↑(↑f₁ g) ⊢ ∃ F, ∀ (g : G), Semiconj ↑F ↑(↑f₁ g) ↑(↑f₂ g) [PROOFSTEP] have hF₂ : ∀ g, ⇑(F₂ g) = f₂ g := fun _ => rfl [GOAL] f g : CircleDeg1Lift G : Type u_1 inst✝ : Group G f₁ f₂ : G →* CircleDeg1Lift h : ∀ (g : G), τ (↑f₁ g) = τ (↑f₂ g) this : ∀ (x : ℝ), BddAbove (range fun g => ↑(↑f₂ g⁻¹) (↑(↑f₁ g) x)) F₁ : G →* ℝ ≃o ℝ := MonoidHom.comp toOrderIso (MonoidHom.toHomUnits f₁) F₂ : G →* ℝ ≃o ℝ := MonoidHom.comp toOrderIso (MonoidHom.toHomUnits f₂) hF₁ : ∀ (g : G), ↑(↑F₁ g) = ↑(↑f₁ g) hF₂ : ∀ (g : G), ↑(↑F₂ g) = ↑(↑f₂ g) ⊢ ∃ F, ∀ (g : G), Semiconj ↑F ↑(↑f₁ g) ↑(↑f₂ g) [PROOFSTEP] refine' ⟨⟨⟨_, fun x y hxy => _⟩, fun x => _⟩, csSup_div_semiconj F₂ F₁ fun x => _⟩ [GOAL] case refine'_1 f g : CircleDeg1Lift G : Type u_1 inst✝ : Group G f₁ f₂ : G →* CircleDeg1Lift h : ∀ (g : G), τ (↑f₁ g) = τ (↑f₂ g) this : ∀ (x : ℝ), BddAbove (range fun g => ↑(↑f₂ g⁻¹) (↑(↑f₁ g) x)) F₁ : G →* ℝ ≃o ℝ := MonoidHom.comp toOrderIso (MonoidHom.toHomUnits f₁) F₂ : G →* ℝ ≃o ℝ := MonoidHom.comp toOrderIso (MonoidHom.toHomUnits f₂) hF₁ : ∀ (g : G), ↑(↑F₁ g) = ↑(↑f₁ g) hF₂ : ∀ (g : G), ↑(↑F₂ g) = ↑(↑f₂ g) x y : ℝ hxy : x ≤ y ⊢ sSup (range fun g' => ↑(↑F₂ g')⁻¹ (↑(↑F₁ g') x)) ≤ sSup (range fun g' => ↑(↑F₂ g')⁻¹ (↑(↑F₁ g') y)) [PROOFSTEP] simp only [hF₁, hF₂, ← map_inv, coe_mk] [GOAL] case refine'_2 f g : CircleDeg1Lift G : Type u_1 inst✝ : Group G f₁ f₂ : G →* CircleDeg1Lift h : ∀ (g : G), τ (↑f₁ g) = τ (↑f₂ g) this : ∀ (x : ℝ), BddAbove (range fun g => ↑(↑f₂ g⁻¹) (↑(↑f₁ g) x)) F₁ : G →* ℝ ≃o ℝ := MonoidHom.comp toOrderIso (MonoidHom.toHomUnits f₁) F₂ : G →* ℝ ≃o ℝ := MonoidHom.comp toOrderIso (MonoidHom.toHomUnits f₂) hF₁ : ∀ (g : G), ↑(↑F₁ g) = ↑(↑f₁ g) hF₂ : ∀ (g : G), ↑(↑F₂ g) = ↑(↑f₂ g) x : ℝ ⊢ OrderHom.toFun { toFun := fun x => sSup (range fun g' => ↑(↑F₂ g')⁻¹ (↑(↑F₁ g') x)), monotone' := (_ : ∀ (x y : ℝ), x ≤ y → sSup (range fun g' => ↑(↑F₂ g')⁻¹ (↑(↑F₁ g') x)) ≤ sSup (range fun g' => ↑(↑F₂ g')⁻¹ (↑(↑F₁ g') y))) } (x + 1) = OrderHom.toFun { toFun := fun x => sSup (range fun g' => ↑(↑F₂ g')⁻¹ (↑(↑F₁ g') x)), monotone' := (_ : ∀ (x y : ℝ), x ≤ y → sSup (range fun g' => ↑(↑F₂ g')⁻¹ (↑(↑F₁ g') x)) ≤ sSup (range fun g' => ↑(↑F₂ g')⁻¹ (↑(↑F₁ g') y))) } x + 1 [PROOFSTEP] simp only [hF₁, hF₂, ← map_inv, coe_mk] [GOAL] case refine'_3 f g : CircleDeg1Lift G : Type u_1 inst✝ : Group G f₁ f₂ : G →* CircleDeg1Lift h : ∀ (g : G), τ (↑f₁ g) = τ (↑f₂ g) this : ∀ (x : ℝ), BddAbove (range fun g => ↑(↑f₂ g⁻¹) (↑(↑f₁ g) x)) F₁ : G →* ℝ ≃o ℝ := MonoidHom.comp toOrderIso (MonoidHom.toHomUnits f₁) F₂ : G →* ℝ ≃o ℝ := MonoidHom.comp toOrderIso (MonoidHom.toHomUnits f₂) hF₁ : ∀ (g : G), ↑(↑F₁ g) = ↑(↑f₁ g) hF₂ : ∀ (g : G), ↑(↑F₂ g) = ↑(↑f₂ g) x : ℝ ⊢ BddAbove (range fun g => ↑(↑F₂ g)⁻¹ (↑(↑F₁ g) x)) [PROOFSTEP] simp only [hF₁, hF₂, ← map_inv, coe_mk] [GOAL] case refine'_1 f g : CircleDeg1Lift G : Type u_1 inst✝ : Group G f₁ f₂ : G →* CircleDeg1Lift h : ∀ (g : G), τ (↑f₁ g) = τ (↑f₂ g) this : ∀ (x : ℝ), BddAbove (range fun g => ↑(↑f₂ g⁻¹) (↑(↑f₁ g) x)) F₁ : G →* ℝ ≃o ℝ := MonoidHom.comp toOrderIso (MonoidHom.toHomUnits f₁) F₂ : G →* ℝ ≃o ℝ := MonoidHom.comp toOrderIso (MonoidHom.toHomUnits f₂) hF₁ : ∀ (g : G), ↑(↑F₁ g) = ↑(↑f₁ g) hF₂ : ∀ (g : G), ↑(↑F₂ g) = ↑(↑f₂ g) x y : ℝ hxy : x ≤ y ⊢ sSup (range fun g' => ↑(↑f₂ g'⁻¹) (↑(↑f₁ g') x)) ≤ sSup (range fun g' => ↑(↑f₂ g'⁻¹) (↑(↑f₁ g') y)) [PROOFSTEP] exact ciSup_mono (this y) fun g => mono _ (mono _ hxy) [GOAL] case refine'_2 f g : CircleDeg1Lift G : Type u_1 inst✝ : Group G f₁ f₂ : G →* CircleDeg1Lift h : ∀ (g : G), τ (↑f₁ g) = τ (↑f₂ g) this : ∀ (x : ℝ), BddAbove (range fun g => ↑(↑f₂ g⁻¹) (↑(↑f₁ g) x)) F₁ : G →* ℝ ≃o ℝ := MonoidHom.comp toOrderIso (MonoidHom.toHomUnits f₁) F₂ : G →* ℝ ≃o ℝ := MonoidHom.comp toOrderIso (MonoidHom.toHomUnits f₂) hF₁ : ∀ (g : G), ↑(↑F₁ g) = ↑(↑f₁ g) hF₂ : ∀ (g : G), ↑(↑F₂ g) = ↑(↑f₂ g) x : ℝ ⊢ sSup (range fun g' => ↑(↑f₂ g'⁻¹) (↑(↑f₁ g') (x + 1))) = sSup (range fun g' => ↑(↑f₂ g'⁻¹) (↑(↑f₁ g') x)) + 1 [PROOFSTEP] simp only [map_add_one] [GOAL] case refine'_2 f g : CircleDeg1Lift G : Type u_1 inst✝ : Group G f₁ f₂ : G →* CircleDeg1Lift h : ∀ (g : G), τ (↑f₁ g) = τ (↑f₂ g) this : ∀ (x : ℝ), BddAbove (range fun g => ↑(↑f₂ g⁻¹) (↑(↑f₁ g) x)) F₁ : G →* ℝ ≃o ℝ := MonoidHom.comp toOrderIso (MonoidHom.toHomUnits f₁) F₂ : G →* ℝ ≃o ℝ := MonoidHom.comp toOrderIso (MonoidHom.toHomUnits f₂) hF₁ : ∀ (g : G), ↑(↑F₁ g) = ↑(↑f₁ g) hF₂ : ∀ (g : G), ↑(↑F₂ g) = ↑(↑f₂ g) x : ℝ ⊢ sSup (range fun g' => ↑(↑f₂ g'⁻¹) (↑(↑f₁ g') x) + 1) = sSup (range fun g' => ↑(↑f₂ g'⁻¹) (↑(↑f₁ g') x)) + 1 [PROOFSTEP] exact (Monotone.map_ciSup_of_continuousAt (continuousAt_id.add continuousAt_const) (monotone_id.add_const (1 : ℝ)) (this x)).symm [GOAL] case refine'_3 f g : CircleDeg1Lift G : Type u_1 inst✝ : Group G f₁ f₂ : G →* CircleDeg1Lift h : ∀ (g : G), τ (↑f₁ g) = τ (↑f₂ g) this : ∀ (x : ℝ), BddAbove (range fun g => ↑(↑f₂ g⁻¹) (↑(↑f₁ g) x)) F₁ : G →* ℝ ≃o ℝ := MonoidHom.comp toOrderIso (MonoidHom.toHomUnits f₁) F₂ : G →* ℝ ≃o ℝ := MonoidHom.comp toOrderIso (MonoidHom.toHomUnits f₂) hF₁ : ∀ (g : G), ↑(↑F₁ g) = ↑(↑f₁ g) hF₂ : ∀ (g : G), ↑(↑F₂ g) = ↑(↑f₂ g) x : ℝ ⊢ BddAbove (range fun g => ↑(↑f₂ g⁻¹) (↑(↑f₁ g) x)) [PROOFSTEP] exact this x [GOAL] f g : CircleDeg1Lift f₁ f₂ : CircleDeg1Liftˣ h : τ ↑f₁ = τ ↑f₂ n : Multiplicative ℤ ⊢ τ (↑(MonoidHom.comp (Units.coeHom CircleDeg1Lift) (↑(zpowersHom CircleDeg1Liftˣ) f₁)) n) = τ (↑(MonoidHom.comp (Units.coeHom CircleDeg1Lift) (↑(zpowersHom CircleDeg1Liftˣ) f₂)) n) [PROOFSTEP] simp [h] [GOAL] f g : CircleDeg1Lift f₁ f₂ : CircleDeg1Liftˣ h : τ ↑f₁ = τ ↑f₂ this : ∀ (n : Multiplicative ℤ), τ (↑(MonoidHom.comp (Units.coeHom CircleDeg1Lift) (↑(zpowersHom CircleDeg1Liftˣ) f₁)) n) = τ (↑(MonoidHom.comp (Units.coeHom CircleDeg1Lift) (↑(zpowersHom CircleDeg1Liftˣ) f₂)) n) F : CircleDeg1Lift hF : ∀ (g : Multiplicative ℤ), Semiconj ↑F ↑(↑(MonoidHom.comp (Units.coeHom CircleDeg1Lift) (↑(zpowersHom CircleDeg1Liftˣ) f₁)) g) ↑(↑(MonoidHom.comp (Units.coeHom CircleDeg1Lift) (↑(zpowersHom CircleDeg1Liftˣ) f₂)) g) ⊢ Semiconj ↑F ↑↑f₁ ↑↑f₂ [PROOFSTEP] simpa using hF (Multiplicative.ofAdd 1) [GOAL] f g f₁ f₂ : CircleDeg1Lift h₁ : IsUnit f₁ h₂ : IsUnit f₂ h : τ f₁ = τ f₂ ⊢ ∃ F, Semiconj ↑F ↑f₁ ↑f₂ [PROOFSTEP] rcases h₁, h₂ with ⟨⟨f₁, rfl⟩, ⟨f₂, rfl⟩⟩ [GOAL] case intro.intro f g : CircleDeg1Lift f₁ f₂ : CircleDeg1Liftˣ h : τ ↑f₁ = τ ↑f₂ ⊢ ∃ F, Semiconj ↑F ↑↑f₁ ↑↑f₂ [PROOFSTEP] exact units_semiconj_of_translationNumber_eq h
{"mathlib_filename": "Mathlib.Dynamics.Circle.RotationNumber.TranslationNumber", "llama_tokens": 19112}
[GOAL] R : Type u_1 inst✝ : AddMonoidWithOne R n m : ℕ ⊢ IsNat n m → IsNat (↑n) m [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] case mk.refl R : Type u_1 inst✝ : AddMonoidWithOne R m : ℕ ⊢ IsNat (↑↑m) m [PROOFSTEP] exact ⟨rfl⟩ [GOAL] R : Type u_1 inst✝ : Ring R n : ℤ m : ℕ ⊢ IsNat n m → IsNat (↑n) m [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] case mk.refl R : Type u_1 inst✝ : Ring R m : ℕ ⊢ IsNat (↑↑m) m [PROOFSTEP] exact ⟨by simp⟩ [GOAL] R : Type u_1 inst✝ : Ring R m : ℕ ⊢ ↑↑m = ↑m [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝ : Ring R n m : ℤ ⊢ IsInt n m → IsInt (↑n) m [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] case mk.refl R : Type u_1 inst✝ : Ring R m : ℤ ⊢ IsInt (↑↑m) m [PROOFSTEP] exact ⟨rfl⟩ [GOAL] R : Type u_1 inst✝ : DivisionRing R n✝ : ℕ ⊢ ↑↑n✝ = ↑n✝ [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝ : DivisionRing R n✝ : ℤ ⊢ ↑↑n✝ = ↑n✝ [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹ : DivisionRing R inst✝ : CharZero R num✝ : ℤ denom✝ : ℕ qi : ℚ invOf_mul_self✝ : qi * ↑denom✝ = 1 mul_invOf_self✝ : ↑denom✝ * qi = 1 ⊢ ↑qi * ↑denom✝ = 1 [PROOFSTEP] norm_cast [GOAL] R : Type u_1 inst✝¹ : DivisionRing R inst✝ : CharZero R num✝ : ℤ denom✝ : ℕ qi : ℚ invOf_mul_self✝ : qi * ↑denom✝ = 1 mul_invOf_self✝ : ↑denom✝ * qi = 1 ⊢ ↑denom✝ * ↑qi = 1 [PROOFSTEP] norm_cast [GOAL] R : Type u_1 inst✝¹ : DivisionRing R inst✝ : CharZero R num✝ : ℤ denom✝ : ℕ qi : ℚ invOf_mul_self✝ : qi * ↑denom✝ = 1 mul_invOf_self✝ : ↑denom✝ * qi = 1 ⊢ ↑(↑num✝ * ⅟↑denom✝) = ↑num✝ * ⅟↑denom✝ [PROOFSTEP] simp only [] [GOAL] R : Type u_1 inst✝¹ : DivisionRing R inst✝ : CharZero R num✝ : ℤ denom✝ : ℕ qi : ℚ invOf_mul_self✝ : qi * ↑denom✝ = 1 mul_invOf_self✝ : ↑denom✝ * qi = 1 ⊢ ↑(↑num✝ * qi) = ↑num✝ * ↑qi [PROOFSTEP] norm_cast [GOAL] α : Type ?u.44519 inst✝ : Semiring α k : ℕ b c : α hc1 : c * (↑k * b) = 1 hc2 : ↑k * b * c = 1 ⊢ Invertible b [PROOFSTEP] rw [← mul_assoc] at hc1 [GOAL] α : Type ?u.44519 inst✝ : Semiring α k : ℕ b c : α hc1 : c * ↑k * b = 1 hc2 : ↑k * b * c = 1 ⊢ Invertible b [PROOFSTEP] rw [Nat.cast_commute k, mul_assoc, Nat.cast_commute k] at hc2 [GOAL] α : Type ?u.44519 inst✝ : Semiring α k : ℕ b c : α hc1 : c * ↑k * b = 1 hc2 : b * (c * ↑k) = 1 ⊢ Invertible b [PROOFSTEP] exact ⟨_, hc1, hc2⟩ [GOAL] α : Type ?u.46618 inst✝¹ : Semiring α a k b : ℕ inst✝ : Invertible ↑a h : a = k * b ⊢ ↑a = ↑k * ↑b [PROOFSTEP] simp [h] [GOAL] α : Type u_1 inst✝ : Ring α f : α → α → α a b : α na nb nc : ℤ da db dc k : ℕ ⊢ f = HAdd.hAdd → IsRat a na da → IsRat b nb db → Int.add (Int.mul na ↑db) (Int.mul nb ↑da) = Int.mul (↑k) nc → Nat.mul da db = Nat.mul k dc → IsRat (f a b) nc dc [PROOFSTEP] rintro rfl ⟨_, rfl⟩ ⟨_, rfl⟩ (h₁ : na * db + nb * da = k * nc) (h₂ : da * db = k * dc) [GOAL] case mk.mk α : Type u_1 inst✝ : Ring α na nb nc : ℤ da db dc k : ℕ inv✝¹ : Invertible ↑da inv✝ : Invertible ↑db h₁ : na * ↑db + nb * ↑da = ↑k * nc h₂ : da * db = k * dc ⊢ IsRat (↑na * ⅟↑da + ↑nb * ⅟↑db) nc dc [PROOFSTEP] have : Invertible (↑(da * db) : α) := by simpa using invertibleMul (da : α) db [GOAL] α : Type u_1 inst✝ : Ring α na nb nc : ℤ da db dc k : ℕ inv✝¹ : Invertible ↑da inv✝ : Invertible ↑db h₁ : na * ↑db + nb * ↑da = ↑k * nc h₂ : da * db = k * dc ⊢ Invertible ↑(da * db) [PROOFSTEP] simpa using invertibleMul (da : α) db [GOAL] case mk.mk α : Type u_1 inst✝ : Ring α na nb nc : ℤ da db dc k : ℕ inv✝¹ : Invertible ↑da inv✝ : Invertible ↑db h₁ : na * ↑db + nb * ↑da = ↑k * nc h₂ : da * db = k * dc this : Invertible ↑(da * db) ⊢ IsRat (↑na * ⅟↑da + ↑nb * ⅟↑db) nc dc [PROOFSTEP] have := invertibleOfMul' (α := α) h₂ [GOAL] case mk.mk α : Type u_1 inst✝ : Ring α na nb nc : ℤ da db dc k : ℕ inv✝¹ : Invertible ↑da inv✝ : Invertible ↑db h₁ : na * ↑db + nb * ↑da = ↑k * nc h₂ : da * db = k * dc this✝ : Invertible ↑(da * db) this : Invertible ↑dc ⊢ IsRat (↑na * ⅟↑da + ↑nb * ⅟↑db) nc dc [PROOFSTEP] use this [GOAL] case eq α : Type u_1 inst✝ : Ring α na nb nc : ℤ da db dc k : ℕ inv✝¹ : Invertible ↑da inv✝ : Invertible ↑db h₁ : na * ↑db + nb * ↑da = ↑k * nc h₂ : da * db = k * dc this✝ : Invertible ↑(da * db) this : Invertible ↑dc ⊢ ↑na * ⅟↑da + ↑nb * ⅟↑db = ↑nc * ⅟↑dc [PROOFSTEP] have H := (Nat.cast_commute (α := α) da db).invOf_left.invOf_right.right_comm [GOAL] case eq α : Type u_1 inst✝ : Ring α na nb nc : ℤ da db dc k : ℕ inv✝¹ : Invertible ↑da inv✝ : Invertible ↑db h₁ : na * ↑db + nb * ↑da = ↑k * nc h₂ : da * db = k * dc this✝ : Invertible ↑(da * db) this : Invertible ↑dc H : ∀ (a : α), a * ⅟↑da * ⅟↑db = a * ⅟↑db * ⅟↑da ⊢ ↑na * ⅟↑da + ↑nb * ⅟↑db = ↑nc * ⅟↑dc [PROOFSTEP] have h₁ := congr_arg (↑· * (⅟↑da * ⅟↑db : α)) h₁ [GOAL] case eq α : Type u_1 inst✝ : Ring α na nb nc : ℤ da db dc k : ℕ inv✝¹ : Invertible ↑da inv✝ : Invertible ↑db h₁✝ : na * ↑db + nb * ↑da = ↑k * nc h₂ : da * db = k * dc this✝ : Invertible ↑(da * db) this : Invertible ↑dc H : ∀ (a : α), a * ⅟↑da * ⅟↑db = a * ⅟↑db * ⅟↑da h₁ : (fun x => ↑x * (⅟↑da * ⅟↑db)) (na * ↑db + nb * ↑da) = (fun x => ↑x * (⅟↑da * ⅟↑db)) (↑k * nc) ⊢ ↑na * ⅟↑da + ↑nb * ⅟↑db = ↑nc * ⅟↑dc [PROOFSTEP] simp only [Int.cast_add, Int.cast_mul, Int.cast_ofNat, ← mul_assoc, add_mul, mul_mul_invOf_self_cancel] at h₁ [GOAL] case eq α : Type u_1 inst✝ : Ring α na nb nc : ℤ da db dc k : ℕ inv✝¹ : Invertible ↑da inv✝ : Invertible ↑db h₁✝ : na * ↑db + nb * ↑da = ↑k * nc h₂ : da * db = k * dc this✝ : Invertible ↑(da * db) this : Invertible ↑dc H : ∀ (a : α), a * ⅟↑da * ⅟↑db = a * ⅟↑db * ⅟↑da h₁ : ↑na * ↑db * ⅟↑da * ⅟↑db + ↑nb * ⅟↑db = ↑k * ↑nc * ⅟↑da * ⅟↑db ⊢ ↑na * ⅟↑da + ↑nb * ⅟↑db = ↑nc * ⅟↑dc [PROOFSTEP] have h₂ := congr_arg (↑nc * ↑· * (⅟↑da * ⅟↑db * ⅟↑dc : α)) h₂ [GOAL] case eq α : Type u_1 inst✝ : Ring α na nb nc : ℤ da db dc k : ℕ inv✝¹ : Invertible ↑da inv✝ : Invertible ↑db h₁✝ : na * ↑db + nb * ↑da = ↑k * nc h₂✝ : da * db = k * dc this✝ : Invertible ↑(da * db) this : Invertible ↑dc H : ∀ (a : α), a * ⅟↑da * ⅟↑db = a * ⅟↑db * ⅟↑da h₁ : ↑na * ↑db * ⅟↑da * ⅟↑db + ↑nb * ⅟↑db = ↑k * ↑nc * ⅟↑da * ⅟↑db h₂ : (fun x => ↑nc * ↑x * (⅟↑da * ⅟↑db * ⅟↑dc)) (da * db) = (fun x => ↑nc * ↑x * (⅟↑da * ⅟↑db * ⅟↑dc)) (k * dc) ⊢ ↑na * ⅟↑da + ↑nb * ⅟↑db = ↑nc * ⅟↑dc [PROOFSTEP] simp [← mul_assoc, H] at h₁ h₂ [GOAL] case eq α : Type u_1 inst✝ : Ring α na nb nc : ℤ da db dc k : ℕ inv✝¹ : Invertible ↑da inv✝ : Invertible ↑db h₁✝ : na * ↑db + nb * ↑da = ↑k * nc h₂✝ : da * db = k * dc this✝ : Invertible ↑(da * db) this : Invertible ↑dc H : ∀ (a : α), a * ⅟↑da * ⅟↑db = a * ⅟↑db * ⅟↑da h₁ : ↑na * ⅟↑da + ↑nb * ⅟↑db = ↑k * ↑nc * ⅟↑db * ⅟↑da h₂ : ↑nc * ⅟↑dc = ↑nc * ↑k * ↑dc * ⅟↑db * ⅟↑da * ⅟↑dc ⊢ ↑na * ⅟↑da + ↑nb * ⅟↑db = ↑nc * ⅟↑dc [PROOFSTEP] rw [h₁, h₂, Nat.cast_commute] [GOAL] case eq α : Type u_1 inst✝ : Ring α na nb nc : ℤ da db dc k : ℕ inv✝¹ : Invertible ↑da inv✝ : Invertible ↑db h₁✝ : na * ↑db + nb * ↑da = ↑k * nc h₂✝ : da * db = k * dc this✝ : Invertible ↑(da * db) this : Invertible ↑dc H : ∀ (a : α), a * ⅟↑da * ⅟↑db = a * ⅟↑db * ⅟↑da h₁ : ↑na * ⅟↑da + ↑nb * ⅟↑db = ↑k * ↑nc * ⅟↑db * ⅟↑da h₂ : ↑nc * ⅟↑dc = ↑nc * ↑k * ↑dc * ⅟↑db * ⅟↑da * ⅟↑dc ⊢ ↑nc * ↑k * ⅟↑db * ⅟↑da = ↑nc * ↑k * ↑dc * ⅟↑db * ⅟↑da * ⅟↑dc [PROOFSTEP] simp only [mul_mul_invOf_self_cancel, (Nat.cast_commute (α := α) da dc).invOf_left.invOf_right.right_comm, (Nat.cast_commute (α := α) db dc).invOf_left.invOf_right.right_comm] [GOAL] α : Type u_1 inst✝ : Ring α num✝ : ℤ denom✝ : ℕ h : Invertible ↑denom✝ ⊢ -(↑num✝ * ⅟↑denom✝) = ↑(Int.neg num✝) * ⅟↑denom✝ [PROOFSTEP] rw [← neg_mul, ← Int.cast_neg] [GOAL] α : Type u_1 inst✝ : Ring α num✝ : ℤ denom✝ : ℕ h : Invertible ↑denom✝ ⊢ ↑(-num✝) * ⅟↑denom✝ = ↑(Int.neg num✝) * ⅟↑denom✝ [PROOFSTEP] rfl [GOAL] α : Type u_1 inst✝ : Ring α f : α → α → α a b : α na nb nc : ℤ da db dc k : ℕ hf : f = HSub.hSub ra : IsRat a na da rb : IsRat b nb db h₁ : Int.sub (Int.mul na ↑db) (Int.mul nb ↑da) = Int.mul (↑k) nc h₂ : Nat.mul da db = Nat.mul k dc ⊢ IsRat (f a b) nc dc [PROOFSTEP] rw [hf, sub_eq_add_neg] [GOAL] α : Type u_1 inst✝ : Ring α f : α → α → α a b : α na nb nc : ℤ da db dc k : ℕ hf : f = HSub.hSub ra : IsRat a na da rb : IsRat b nb db h₁ : Int.sub (Int.mul na ↑db) (Int.mul nb ↑da) = Int.mul (↑k) nc h₂ : Nat.mul da db = Nat.mul k dc ⊢ IsRat (a + -b) nc dc [PROOFSTEP] refine isRat_add rfl ra (isRat_neg (n' := -nb) rfl rb rfl) (k := k) (nc := nc) ?_ h₂ [GOAL] α : Type u_1 inst✝ : Ring α f : α → α → α a b : α na nb nc : ℤ da db dc k : ℕ hf : f = HSub.hSub ra : IsRat a na da rb : IsRat b nb db h₁ : Int.sub (Int.mul na ↑db) (Int.mul nb ↑da) = Int.mul (↑k) nc h₂ : Nat.mul da db = Nat.mul k dc ⊢ Int.add (Int.mul na ↑db) (Int.mul (-nb) ↑da) = Int.mul (↑k) nc [PROOFSTEP] rw [show Int.mul (-nb) _ = _ from neg_mul ..] [GOAL] α : Type u_1 inst✝ : Ring α f : α → α → α a b : α na nb nc : ℤ da db dc k : ℕ hf : f = HSub.hSub ra : IsRat a na da rb : IsRat b nb db h₁ : Int.sub (Int.mul na ↑db) (Int.mul nb ↑da) = Int.mul (↑k) nc h₂ : Nat.mul da db = Nat.mul k dc ⊢ Int.add (Int.mul na ↑db) (-(nb * ↑da)) = Int.mul (↑k) nc [PROOFSTEP] exact h₁ [GOAL] α : Type u_1 inst✝ : Ring α f : α → α → α a b : α na nb nc : ℤ da db dc k : ℕ ⊢ f = HMul.hMul → IsRat a na da → IsRat b nb db → Int.mul na nb = Int.mul (↑k) nc → Nat.mul da db = Nat.mul k dc → IsRat (f a b) nc dc [PROOFSTEP] rintro rfl ⟨_, rfl⟩ ⟨_, rfl⟩ (h₁ : na * nb = k * nc) (h₂ : da * db = k * dc) [GOAL] case mk.mk α : Type u_1 inst✝ : Ring α na nb nc : ℤ da db dc k : ℕ inv✝¹ : Invertible ↑da inv✝ : Invertible ↑db h₁ : na * nb = ↑k * nc h₂ : da * db = k * dc ⊢ IsRat (↑na * ⅟↑da * (↑nb * ⅟↑db)) nc dc [PROOFSTEP] have : Invertible (↑(da * db) : α) := by simpa using invertibleMul (da : α) db [GOAL] α : Type u_1 inst✝ : Ring α na nb nc : ℤ da db dc k : ℕ inv✝¹ : Invertible ↑da inv✝ : Invertible ↑db h₁ : na * nb = ↑k * nc h₂ : da * db = k * dc ⊢ Invertible ↑(da * db) [PROOFSTEP] simpa using invertibleMul (da : α) db [GOAL] case mk.mk α : Type u_1 inst✝ : Ring α na nb nc : ℤ da db dc k : ℕ inv✝¹ : Invertible ↑da inv✝ : Invertible ↑db h₁ : na * nb = ↑k * nc h₂ : da * db = k * dc this : Invertible ↑(da * db) ⊢ IsRat (↑na * ⅟↑da * (↑nb * ⅟↑db)) nc dc [PROOFSTEP] have := invertibleOfMul' (α := α) h₂ [GOAL] case mk.mk α : Type u_1 inst✝ : Ring α na nb nc : ℤ da db dc k : ℕ inv✝¹ : Invertible ↑da inv✝ : Invertible ↑db h₁ : na * nb = ↑k * nc h₂ : da * db = k * dc this✝ : Invertible ↑(da * db) this : Invertible ↑dc ⊢ IsRat (↑na * ⅟↑da * (↑nb * ⅟↑db)) nc dc [PROOFSTEP] refine ⟨this, ?_⟩ [GOAL] case mk.mk α : Type u_1 inst✝ : Ring α na nb nc : ℤ da db dc k : ℕ inv✝¹ : Invertible ↑da inv✝ : Invertible ↑db h₁ : na * nb = ↑k * nc h₂ : da * db = k * dc this✝ : Invertible ↑(da * db) this : Invertible ↑dc ⊢ ↑na * ⅟↑da * (↑nb * ⅟↑db) = ↑nc * ⅟↑dc [PROOFSTEP] have H := (Nat.cast_commute (α := α) da db).invOf_left.invOf_right.right_comm [GOAL] case mk.mk α : Type u_1 inst✝ : Ring α na nb nc : ℤ da db dc k : ℕ inv✝¹ : Invertible ↑da inv✝ : Invertible ↑db h₁ : na * nb = ↑k * nc h₂ : da * db = k * dc this✝ : Invertible ↑(da * db) this : Invertible ↑dc H : ∀ (a : α), a * ⅟↑da * ⅟↑db = a * ⅟↑db * ⅟↑da ⊢ ↑na * ⅟↑da * (↑nb * ⅟↑db) = ↑nc * ⅟↑dc [PROOFSTEP] have h₁ := congr_arg (Int.cast (R := α)) h₁ [GOAL] case mk.mk α : Type u_1 inst✝ : Ring α na nb nc : ℤ da db dc k : ℕ inv✝¹ : Invertible ↑da inv✝ : Invertible ↑db h₁✝ : na * nb = ↑k * nc h₂ : da * db = k * dc this✝ : Invertible ↑(da * db) this : Invertible ↑dc H : ∀ (a : α), a * ⅟↑da * ⅟↑db = a * ⅟↑db * ⅟↑da h₁ : ↑(na * nb) = ↑(↑k * nc) ⊢ ↑na * ⅟↑da * (↑nb * ⅟↑db) = ↑nc * ⅟↑dc [PROOFSTEP] simp only [Int.cast_mul, Int.cast_ofNat] at h₁ [GOAL] case mk.mk α : Type u_1 inst✝ : Ring α na nb nc : ℤ da db dc k : ℕ inv✝¹ : Invertible ↑da inv✝ : Invertible ↑db h₁✝ : na * nb = ↑k * nc h₂ : da * db = k * dc this✝ : Invertible ↑(da * db) this : Invertible ↑dc H : ∀ (a : α), a * ⅟↑da * ⅟↑db = a * ⅟↑db * ⅟↑da h₁ : ↑na * ↑nb = ↑k * ↑nc ⊢ ↑na * ⅟↑da * (↑nb * ⅟↑db) = ↑nc * ⅟↑dc [PROOFSTEP] simp [← mul_assoc, (Nat.cast_commute (α := α) da nb).invOf_left.right_comm, h₁] [GOAL] case mk.mk α : Type u_1 inst✝ : Ring α na nb nc : ℤ da db dc k : ℕ inv✝¹ : Invertible ↑da inv✝ : Invertible ↑db h₁✝ : na * nb = ↑k * nc h₂ : da * db = k * dc this✝ : Invertible ↑(da * db) this : Invertible ↑dc H : ∀ (a : α), a * ⅟↑da * ⅟↑db = a * ⅟↑db * ⅟↑da h₁ : ↑na * ↑nb = ↑k * ↑nc ⊢ ↑k * ↑nc * ⅟↑da * ⅟↑db = ↑nc * ⅟↑dc [PROOFSTEP] have h₂ := congr_arg (↑nc * ↑· * (⅟↑da * ⅟↑db * ⅟↑dc : α)) h₂ [GOAL] case mk.mk α : Type u_1 inst✝ : Ring α na nb nc : ℤ da db dc k : ℕ inv✝¹ : Invertible ↑da inv✝ : Invertible ↑db h₁✝ : na * nb = ↑k * nc h₂✝ : da * db = k * dc this✝ : Invertible ↑(da * db) this : Invertible ↑dc H : ∀ (a : α), a * ⅟↑da * ⅟↑db = a * ⅟↑db * ⅟↑da h₁ : ↑na * ↑nb = ↑k * ↑nc h₂ : (fun x => ↑nc * ↑x * (⅟↑da * ⅟↑db * ⅟↑dc)) (da * db) = (fun x => ↑nc * ↑x * (⅟↑da * ⅟↑db * ⅟↑dc)) (k * dc) ⊢ ↑k * ↑nc * ⅟↑da * ⅟↑db = ↑nc * ⅟↑dc [PROOFSTEP] simp [← mul_assoc] at h₂ [GOAL] case mk.mk α : Type u_1 inst✝ : Ring α na nb nc : ℤ da db dc k : ℕ inv✝¹ : Invertible ↑da inv✝ : Invertible ↑db h₁✝ : na * nb = ↑k * nc h₂✝ : da * db = k * dc this✝ : Invertible ↑(da * db) this : Invertible ↑dc H : ∀ (a : α), a * ⅟↑da * ⅟↑db = a * ⅟↑db * ⅟↑da h₁ : ↑na * ↑nb = ↑k * ↑nc h₂ : ↑nc * ↑da * ↑db * ⅟↑da * ⅟↑db * ⅟↑dc = ↑nc * ↑k * ↑dc * ⅟↑da * ⅟↑db * ⅟↑dc ⊢ ↑k * ↑nc * ⅟↑da * ⅟↑db = ↑nc * ⅟↑dc [PROOFSTEP] rw [H] at h₂ [GOAL] case mk.mk α : Type u_1 inst✝ : Ring α na nb nc : ℤ da db dc k : ℕ inv✝¹ : Invertible ↑da inv✝ : Invertible ↑db h₁✝ : na * nb = ↑k * nc h₂✝ : da * db = k * dc this✝ : Invertible ↑(da * db) this : Invertible ↑dc H : ∀ (a : α), a * ⅟↑da * ⅟↑db = a * ⅟↑db * ⅟↑da h₁ : ↑na * ↑nb = ↑k * ↑nc h₂ : ↑nc * ↑da * ↑db * ⅟↑db * ⅟↑da * ⅟↑dc = ↑nc * ↑k * ↑dc * ⅟↑da * ⅟↑db * ⅟↑dc ⊢ ↑k * ↑nc * ⅟↑da * ⅟↑db = ↑nc * ⅟↑dc [PROOFSTEP] simp [mul_mul_invOf_self_cancel] at h₂ [GOAL] case mk.mk α : Type u_1 inst✝ : Ring α na nb nc : ℤ da db dc k : ℕ inv✝¹ : Invertible ↑da inv✝ : Invertible ↑db h₁✝ : na * nb = ↑k * nc h₂✝ : da * db = k * dc this✝ : Invertible ↑(da * db) this : Invertible ↑dc H : ∀ (a : α), a * ⅟↑da * ⅟↑db = a * ⅟↑db * ⅟↑da h₁ : ↑na * ↑nb = ↑k * ↑nc h₂ : ↑nc * ⅟↑dc = ↑nc * ↑k * ↑dc * ⅟↑da * ⅟↑db * ⅟↑dc ⊢ ↑k * ↑nc * ⅟↑da * ⅟↑db = ↑nc * ⅟↑dc [PROOFSTEP] rw [h₂, Nat.cast_commute] [GOAL] case mk.mk α : Type u_1 inst✝ : Ring α na nb nc : ℤ da db dc k : ℕ inv✝¹ : Invertible ↑da inv✝ : Invertible ↑db h₁✝ : na * nb = ↑k * nc h₂✝ : da * db = k * dc this✝ : Invertible ↑(da * db) this : Invertible ↑dc H : ∀ (a : α), a * ⅟↑da * ⅟↑db = a * ⅟↑db * ⅟↑da h₁ : ↑na * ↑nb = ↑k * ↑nc h₂ : ↑nc * ⅟↑dc = ↑nc * ↑k * ↑dc * ⅟↑da * ⅟↑db * ⅟↑dc ⊢ ↑nc * ↑k * ⅟↑da * ⅟↑db = ↑nc * ↑k * ↑dc * ⅟↑da * ⅟↑db * ⅟↑dc [PROOFSTEP] simp only [mul_mul_invOf_self_cancel, (Nat.cast_commute (α := α) da dc).invOf_left.invOf_right.right_comm, (Nat.cast_commute (α := α) db dc).invOf_left.invOf_right.right_comm] [GOAL] «$α» : Type u «$a» «$b» : «$α» «$sα» : Semiring «$α» «$f» : «$α» → «$α» → «$α» := HMul.hMul «$e» : «$α» := «$a» * «$b» «$mα'» : AddMonoidWithOne «$α» «$na» : ℕ «$pa» : IsNat «$a» «$na» «$mα» : AddMonoidWithOne «$α» «$nb» : ℕ «$pb» : IsNat «$b» «$nb» ⊢ AddMonoidWithOne «$α» [PROOFSTEP] clear! «$mα» «$mα'» [GOAL] «$α» : Type u «$a» «$b» : «$α» «$sα» : Semiring «$α» «$f» : «$α» → «$α» → «$α» := HMul.hMul «$e» : «$α» := «$a» * «$b» «$na» «$nb» : ℕ ⊢ AddMonoidWithOne «$α» [PROOFSTEP] apply AddCommMonoidWithOne.toAddMonoidWithOne [GOAL] a b : ℕ c : ℕ h1 : Nat.pow a b = c ⊢ Nat.pow a (2 * b) = Nat.mul c c [PROOFSTEP] simp [two_mul, pow_add, ← h1] [GOAL] a b : ℕ c : ℕ h1 : Nat.pow a b = c ⊢ Nat.pow a (2 * b + 1) = Nat.mul c (Nat.mul c a) [PROOFSTEP] simp [two_mul, pow_add, mul_assoc, ← h1] [GOAL] a✝ b✝ : Q(ℕ) depth : ℕ a b₀ c₀ b : Q(ℕ) p : Q(Prop) hp : «$p» =Q (Nat.pow «$a» «$b₀» = «$c₀») b' : ℕ := Expr.natLit! b d : ℕ := depth >>> 1 hi : Q(ℕ) ⊢ «$p» =Q (Nat.pow «$a» «$b₀» = «$c₀») [PROOFSTEP] exact hp [GOAL] a b : ℕ c : ℕ h1 : Nat.pow a b = c ⊢ Int.pow (Int.ofNat a) b = Int.ofNat c [PROOFSTEP] simp [← h1] [GOAL] a b' : ℕ c' b c : ℕ h1 : Nat.pow a b' = c' hb : 2 * b' = b hc : c' * c' = c ⊢ Int.pow (Int.negOfNat a) b = Int.ofNat c [PROOFSTEP] rw [← hb, Int.negOfNat_eq, pow_eq, pow_mul, neg_pow_two, ← pow_mul, two_mul, pow_add, ← hc, ← h1] [GOAL] a b' : ℕ c' b c : ℕ h1 : Nat.pow a b' = c' hb : 2 * b' = b hc : c' * c' = c ⊢ Int.ofNat a ^ b' * Int.ofNat a ^ b' = Int.ofNat (Nat.pow a b' * Nat.pow a b') [PROOFSTEP] simp [GOAL] a b' : ℕ c' b c : ℕ h1 : Nat.pow a b' = c' hb : 2 * b' + 1 = b hc : c' * (c' * a) = c ⊢ Int.pow (Int.negOfNat a) b = Int.negOfNat c [PROOFSTEP] rw [← hb, Int.negOfNat_eq, Int.negOfNat_eq, pow_eq, pow_succ, pow_mul, neg_pow_two, ← pow_mul, two_mul, pow_add, ← hc, ← h1] [GOAL] a b' : ℕ c' b c : ℕ h1 : Nat.pow a b' = c' hb : 2 * b' + 1 = b hc : c' * (c' * a) = c ⊢ -Int.ofNat a * (Int.ofNat a ^ b' * Int.ofNat a ^ b') = -Int.ofNat (Nat.pow a b' * (Nat.pow a b' * a)) [PROOFSTEP] simp [mul_assoc, mul_comm, mul_left_comm] [GOAL] α : Type u_1 inst✝ : Semiring α n✝¹ n✝ : ℕ ⊢ ↑n✝¹ ^ ↑n✝ = ↑(Nat.pow n✝¹ n✝) [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : Ring α n✝¹ : ℤ n✝ : ℕ ⊢ ↑n✝¹ ^ ↑n✝ = ↑(Int.pow n✝¹ n✝) [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : Ring α f : α → ℕ → α a : α an cn : ℤ ad b b' cd : ℕ ⊢ f = HPow.hPow → IsRat a an ad → IsNat b b' → Int.pow an b' = cn → Nat.pow ad b' = cd → IsRat (f a b) cn cd [PROOFSTEP] rintro rfl ⟨_, rfl⟩ ⟨rfl⟩ (rfl : an ^ b = _) (rfl : ad ^ b = _) [GOAL] case mk.mk α : Type u_1 inst✝ : Ring α an : ℤ ad b : ℕ inv✝ : Invertible ↑ad ⊢ IsRat ((↑an * ⅟↑ad) ^ b) (an ^ b) (ad ^ b) [PROOFSTEP] have := invertiblePow (ad : α) b [GOAL] case mk.mk α : Type u_1 inst✝ : Ring α an : ℤ ad b : ℕ inv✝ : Invertible ↑ad this : Invertible (↑ad ^ b) ⊢ IsRat ((↑an * ⅟↑ad) ^ b) (an ^ b) (ad ^ b) [PROOFSTEP] rw [← Nat.cast_pow] at this [GOAL] case mk.mk α : Type u_1 inst✝ : Ring α an : ℤ ad b : ℕ inv✝ : Invertible ↑ad this : Invertible ↑(ad ^ b) ⊢ IsRat ((↑an * ⅟↑ad) ^ b) (an ^ b) (ad ^ b) [PROOFSTEP] use this [GOAL] case eq α : Type u_1 inst✝ : Ring α an : ℤ ad b : ℕ inv✝ : Invertible ↑ad this : Invertible ↑(ad ^ b) ⊢ (↑an * ⅟↑ad) ^ b = ↑(an ^ b) * ⅟↑(ad ^ b) [PROOFSTEP] simp [invOf_pow, Commute.mul_pow] [GOAL] α : Type u_1 inst✝¹ : DivisionRing α inst✝ : CharZero α a : α n d : ℕ ⊢ IsRat a (Int.ofNat (Nat.succ n)) d → IsRat a⁻¹ (Int.ofNat d) (Nat.succ n) [PROOFSTEP] rintro ⟨_, rfl⟩ [GOAL] case mk α : Type u_1 inst✝¹ : DivisionRing α inst✝ : CharZero α n d : ℕ inv✝ : Invertible ↑d ⊢ IsRat (↑(Int.ofNat (Nat.succ n)) * ⅟↑d)⁻¹ (Int.ofNat d) (Nat.succ n) [PROOFSTEP] have := invertibleOfNonzero (α := α) (Nat.cast_ne_zero.2 (Nat.succ_ne_zero n)) [GOAL] case mk α : Type u_1 inst✝¹ : DivisionRing α inst✝ : CharZero α n d : ℕ inv✝ : Invertible ↑d this : Invertible ↑(Nat.succ n) ⊢ IsRat (↑(Int.ofNat (Nat.succ n)) * ⅟↑d)⁻¹ (Int.ofNat d) (Nat.succ n) [PROOFSTEP] refine ⟨this, by simp⟩ [GOAL] α : Type u_1 inst✝¹ : DivisionRing α inst✝ : CharZero α n d : ℕ inv✝ : Invertible ↑d this : Invertible ↑(Nat.succ n) ⊢ (↑(Int.ofNat (Nat.succ n)) * ⅟↑d)⁻¹ = ↑(Int.ofNat d) * ⅟↑(Nat.succ n) [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : DivisionRing α ⊢ (↑1)⁻¹ = ↑1 [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : DivisionRing α ⊢ (↑0)⁻¹ = ↑0 [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : DivisionRing α ⊢ (↑(Int.negOfNat 1))⁻¹ = ↑(Int.negOfNat 1) [PROOFSTEP] simp [inv_neg_one] [GOAL] α : Type u_1 inst✝¹ : DivisionRing α inst✝ : CharZero α a : α n d : ℕ ⊢ IsRat a (Int.negOfNat (Nat.succ n)) d → IsRat a⁻¹ (Int.negOfNat d) (Nat.succ n) [PROOFSTEP] rintro ⟨_, rfl⟩ [GOAL] case mk α : Type u_1 inst✝¹ : DivisionRing α inst✝ : CharZero α n d : ℕ inv✝ : Invertible ↑d ⊢ IsRat (↑(Int.negOfNat (Nat.succ n)) * ⅟↑d)⁻¹ (Int.negOfNat d) (Nat.succ n) [PROOFSTEP] simp only [Int.negOfNat_eq] [GOAL] case mk α : Type u_1 inst✝¹ : DivisionRing α inst✝ : CharZero α n d : ℕ inv✝ : Invertible ↑d ⊢ IsRat (↑(-Int.ofNat (Nat.succ n)) * ⅟↑d)⁻¹ (-Int.ofNat d) (Nat.succ n) [PROOFSTEP] have := invertibleOfNonzero (α := α) (Nat.cast_ne_zero.2 (Nat.succ_ne_zero n)) [GOAL] case mk α : Type u_1 inst✝¹ : DivisionRing α inst✝ : CharZero α n d : ℕ inv✝ : Invertible ↑d this : Invertible ↑(Nat.succ n) ⊢ IsRat (↑(-Int.ofNat (Nat.succ n)) * ⅟↑d)⁻¹ (-Int.ofNat d) (Nat.succ n) [PROOFSTEP] generalize Nat.succ n = n at * [GOAL] case mk α : Type u_1 inst✝¹ : DivisionRing α inst✝ : CharZero α n✝ d : ℕ inv✝ : Invertible ↑d n : ℕ this : Invertible ↑n ⊢ IsRat (↑(-Int.ofNat n) * ⅟↑d)⁻¹ (-Int.ofNat d) n [PROOFSTEP] use this [GOAL] case eq α : Type u_1 inst✝¹ : DivisionRing α inst✝ : CharZero α n✝ d : ℕ inv✝ : Invertible ↑d n : ℕ this : Invertible ↑n ⊢ (↑(-Int.ofNat n) * ⅟↑d)⁻¹ = ↑(-Int.ofNat d) * ⅟↑n [PROOFSTEP] simp only [Int.ofNat_eq_coe, Int.cast_neg, Int.cast_ofNat, invOf_eq_inv, inv_neg, neg_mul, mul_inv_rev, inv_inv] [GOAL] α : Type u_1 inst✝ : DivisionRing α x✝³ x✝² : α x✝¹ : ℤ x✝ : ℕ h : IsRat (x✝³ * x✝²⁻¹) x✝¹ x✝ ⊢ IsRat (x✝³ / x✝²) x✝¹ x✝ [PROOFSTEP] simp [div_eq_mul_inv] [GOAL] α : Type u_1 inst✝ : DivisionRing α x✝³ x✝² : α x✝¹ : ℤ x✝ : ℕ h : IsRat (x✝³ * x✝²⁻¹) x✝¹ x✝ ⊢ IsRat (x✝³ * x✝²⁻¹) x✝¹ x✝ [PROOFSTEP] exact h [GOAL] n✝¹ num✝ : ℤ n✝ denom✝ : ℕ inv✝ : Invertible ↑denom✝ h : ↑n✝¹ / ↑n✝ = ↑num✝ * ⅟↑denom✝ ⊢ IsRat (mkRat ↑n✝¹ ↑n✝) num✝ denom✝ [PROOFSTEP] rw [Rat.mkRat_eq_div] [GOAL] n✝¹ num✝ : ℤ n✝ denom✝ : ℕ inv✝ : Invertible ↑denom✝ h : ↑n✝¹ / ↑n✝ = ↑num✝ * ⅟↑denom✝ ⊢ IsRat (↑↑n✝¹ / ↑↑n✝) num✝ denom✝ [PROOFSTEP] exact ⟨_, h⟩ [GOAL] α : Type u_1 inst✝ : DivisionRing α σα : OfScientific α x✝¹ x✝ : ℕ num✝ : ℤ denom✝ : ℕ σh : OfScientific.ofScientific = fun m s e => ↑(Rat.ofScientific m s e) inv✝ : Invertible ↑denom✝ eq : ↑(mkRat (↑x✝¹) (10 ^ x✝)) = ↑num✝ * ⅟↑denom✝ ⊢ OfScientific.ofScientific x✝¹ true x✝ = ↑num✝ * ⅟↑denom✝ [PROOFSTEP] simp only [σh, Rat.ofScientific_true_def] [GOAL] α : Type u_1 inst✝ : DivisionRing α σα : OfScientific α x✝¹ x✝ : ℕ num✝ : ℤ denom✝ : ℕ σh : OfScientific.ofScientific = fun m s e => ↑(Rat.ofScientific m s e) inv✝ : Invertible ↑denom✝ eq : ↑(mkRat (↑x✝¹) (10 ^ x✝)) = ↑num✝ * ⅟↑denom✝ ⊢ ↑(mkRat (↑x✝¹) (10 ^ x✝)) = ↑num✝ * ⅟↑denom✝ [PROOFSTEP] exact eq [GOAL] α : Type u_1 inst✝ : DivisionRing α σα : OfScientific α n✝¹ n✝ x✝ : ℕ σh : OfScientific.ofScientific = fun m s e => ↑(Rat.ofScientific m s e) h : x✝ = Nat.mul n✝¹ (10 ^ n✝) ⊢ OfScientific.ofScientific (↑n✝¹) false ↑n✝ = ↑x✝ [PROOFSTEP] simp [σh, Rat.ofScientific_false_def, h] [GOAL] α : Type u_1 inst✝ : DivisionRing α σα : OfScientific α n✝¹ n✝ x✝ : ℕ σh : OfScientific.ofScientific = fun m s e => ↑(Rat.ofScientific m s e) h : x✝ = Nat.mul n✝¹ (10 ^ n✝) ⊢ ↑(↑n✝¹ * 10 ^ n✝) = ↑n✝¹ * 10 ^ n✝ [PROOFSTEP] norm_cast [GOAL] x y : ℕ ⊢ Nat.ble x y = false ↔ y < x [PROOFSTEP] rw [← Nat.not_le, ← Bool.not_eq_true, Nat.ble_eq] [GOAL] α : Type u_1 inst✝¹ : AddMonoidWithOne α inst✝ : CharZero α n✝¹ n✝ : ℕ h : Nat.beq n✝¹ n✝ = false ⊢ ¬↑n✝¹ = ↑n✝ [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝¹ : AddMonoidWithOne α inst✝ : CharZero α n✝¹ n✝ : ℕ h : Nat.beq n✝¹ n✝ = false ⊢ ¬n✝¹ = n✝ [PROOFSTEP] exact Nat.ne_of_beq_eq_false h [GOAL] α : Type u_1 inst✝¹ : Ring α inst✝ : CharZero α n✝¹ n✝ : ℤ h : decide (n✝¹ = n✝) = false ⊢ ¬↑n✝¹ = ↑n✝ [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝¹ : Ring α inst✝ : CharZero α n✝¹ n✝ : ℤ h : decide (n✝¹ = n✝) = false ⊢ ¬n✝¹ = n✝ [PROOFSTEP] exact of_decide_eq_false h [GOAL] α : Type u_1 inst✝² : Ring α n₁ n₂ : ℤ a₁ a₂ : α inst✝¹ : Invertible a₁ inst✝ : Invertible a₂ ⊢ ↑n₁ * ⅟a₁ = ↑n₂ * ⅟a₂ ↔ ↑n₁ * a₂ = ↑n₂ * a₁ [PROOFSTEP] rw [mul_invOf_eq_iff_eq_mul_right, ← Int.commute_cast, mul_assoc, ← mul_left_eq_iff_eq_invOf_mul, Int.commute_cast] [GOAL] α : Type u_1 inst✝ : Ring α num✝ : ℤ denom✝ : ℕ inv✝¹ inv✝ : Invertible ↑denom✝ ⊢ ↑num✝ * ⅟↑denom✝ = ↑num✝ * ⅟↑denom✝ [PROOFSTEP] congr [GOAL] case e_a.h.e_5.h α : Type u_1 inst✝ : Ring α num✝ : ℤ denom✝ : ℕ inv✝¹ inv✝ : Invertible ↑denom✝ ⊢ inv✝¹ = inv✝ [PROOFSTEP] apply Subsingleton.elim [GOAL] α : Type u_1 inst✝ : LinearOrderedRing α num✝¹ num✝ : ℤ da db : ℕ inv✝¹ : Invertible ↑da inv✝ : Invertible ↑db h : decide (Int.mul num✝¹ (Int.ofNat db) ≤ Int.mul num✝ (Int.ofNat da)) = true ⊢ ↑num✝¹ * ⅟↑da ≤ ↑num✝ * ⅟↑db [PROOFSTEP] have h := Int.cast_mono (α := α) <| of_decide_eq_true h [GOAL] α : Type u_1 inst✝ : LinearOrderedRing α num✝¹ num✝ : ℤ da db : ℕ inv✝¹ : Invertible ↑da inv✝ : Invertible ↑db h✝ : decide (Int.mul num✝¹ (Int.ofNat db) ≤ Int.mul num✝ (Int.ofNat da)) = true h : (fun x => ↑x) (Int.mul num✝¹ (Int.ofNat db)) ≤ (fun x => ↑x) (Int.mul num✝ (Int.ofNat da)) ⊢ ↑num✝¹ * ⅟↑da ≤ ↑num✝ * ⅟↑db [PROOFSTEP] have ha : 0 ≤ ⅟(da : α) := invOf_nonneg.mpr <| Nat.cast_nonneg da [GOAL] α : Type u_1 inst✝ : LinearOrderedRing α num✝¹ num✝ : ℤ da db : ℕ inv✝¹ : Invertible ↑da inv✝ : Invertible ↑db h✝ : decide (Int.mul num✝¹ (Int.ofNat db) ≤ Int.mul num✝ (Int.ofNat da)) = true h : (fun x => ↑x) (Int.mul num✝¹ (Int.ofNat db)) ≤ (fun x => ↑x) (Int.mul num✝ (Int.ofNat da)) ha : 0 ≤ ⅟↑da ⊢ ↑num✝¹ * ⅟↑da ≤ ↑num✝ * ⅟↑db [PROOFSTEP] have hb : 0 ≤ ⅟(db : α) := invOf_nonneg.mpr <| Nat.cast_nonneg db [GOAL] α : Type u_1 inst✝ : LinearOrderedRing α num✝¹ num✝ : ℤ da db : ℕ inv✝¹ : Invertible ↑da inv✝ : Invertible ↑db h✝ : decide (Int.mul num✝¹ (Int.ofNat db) ≤ Int.mul num✝ (Int.ofNat da)) = true h : (fun x => ↑x) (Int.mul num✝¹ (Int.ofNat db)) ≤ (fun x => ↑x) (Int.mul num✝ (Int.ofNat da)) ha : 0 ≤ ⅟↑da hb : 0 ≤ ⅟↑db ⊢ ↑num✝¹ * ⅟↑da ≤ ↑num✝ * ⅟↑db [PROOFSTEP] have h := (mul_le_mul_of_nonneg_left · hb) <| mul_le_mul_of_nonneg_right h ha [GOAL] α : Type u_1 inst✝ : LinearOrderedRing α num✝¹ num✝ : ℤ da db : ℕ inv✝¹ : Invertible ↑da inv✝ : Invertible ↑db h✝¹ : decide (Int.mul num✝¹ (Int.ofNat db) ≤ Int.mul num✝ (Int.ofNat da)) = true h✝ : (fun x => ↑x) (Int.mul num✝¹ (Int.ofNat db)) ≤ (fun x => ↑x) (Int.mul num✝ (Int.ofNat da)) ha : 0 ≤ ⅟↑da hb : 0 ≤ ⅟↑db h : ⅟↑db * ((fun x => ↑x) (Int.mul num✝¹ (Int.ofNat db)) * ⅟↑da) ≤ ⅟↑db * ((fun x => ↑x) (Int.mul num✝ (Int.ofNat da)) * ⅟↑da) ⊢ ↑num✝¹ * ⅟↑da ≤ ↑num✝ * ⅟↑db [PROOFSTEP] rw [← mul_assoc, Int.commute_cast] at h [GOAL] α : Type u_1 inst✝ : LinearOrderedRing α num✝¹ num✝ : ℤ da db : ℕ inv✝¹ : Invertible ↑da inv✝ : Invertible ↑db h✝¹ : decide (Int.mul num✝¹ (Int.ofNat db) ≤ Int.mul num✝ (Int.ofNat da)) = true h✝ : (fun x => ↑x) (Int.mul num✝¹ (Int.ofNat db)) ≤ (fun x => ↑x) (Int.mul num✝ (Int.ofNat da)) ha : 0 ≤ ⅟↑da hb : 0 ≤ ⅟↑db h : ↑(Int.mul num✝¹ (Int.ofNat db)) * ⅟↑db * ⅟↑da ≤ ⅟↑db * ((fun x => ↑x) (Int.mul num✝ (Int.ofNat da)) * ⅟↑da) ⊢ ↑num✝¹ * ⅟↑da ≤ ↑num✝ * ⅟↑db [PROOFSTEP] simp at h [GOAL] α : Type u_1 inst✝ : LinearOrderedRing α num✝¹ num✝ : ℤ da db : ℕ inv✝¹ : Invertible ↑da inv✝ : Invertible ↑db h✝¹ : decide (Int.mul num✝¹ (Int.ofNat db) ≤ Int.mul num✝ (Int.ofNat da)) = true h✝ : (fun x => ↑x) (Int.mul num✝¹ (Int.ofNat db)) ≤ (fun x => ↑x) (Int.mul num✝ (Int.ofNat da)) ha : 0 ≤ ⅟↑da hb : 0 ≤ ⅟↑db h : ↑num✝¹ * ⅟↑da ≤ ⅟↑db * ↑num✝ ⊢ ↑num✝¹ * ⅟↑da ≤ ↑num✝ * ⅟↑db [PROOFSTEP] rwa [Int.commute_cast] at h [GOAL] α : Type u_1 inst✝¹ : LinearOrderedRing α inst✝ : Nontrivial α num✝¹ num✝ : ℤ da db : ℕ inv✝¹ : Invertible ↑da inv✝ : Invertible ↑db h : decide (num✝¹ * ↑db < num✝ * ↑da) = true ⊢ ↑num✝¹ * ⅟↑da < ↑num✝ * ⅟↑db [PROOFSTEP] have h := Int.cast_strictMono (α := α) <| of_decide_eq_true h [GOAL] α : Type u_1 inst✝¹ : LinearOrderedRing α inst✝ : Nontrivial α num✝¹ num✝ : ℤ da db : ℕ inv✝¹ : Invertible ↑da inv✝ : Invertible ↑db h✝ : decide (num✝¹ * ↑db < num✝ * ↑da) = true h : (fun x => ↑x) (num✝¹ * ↑db) < (fun x => ↑x) (num✝ * ↑da) ⊢ ↑num✝¹ * ⅟↑da < ↑num✝ * ⅟↑db [PROOFSTEP] have ha : 0 < ⅟(da : α) := pos_invOf_of_invertible_cast da [GOAL] α : Type u_1 inst✝¹ : LinearOrderedRing α inst✝ : Nontrivial α num✝¹ num✝ : ℤ da db : ℕ inv✝¹ : Invertible ↑da inv✝ : Invertible ↑db h✝ : decide (num✝¹ * ↑db < num✝ * ↑da) = true h : (fun x => ↑x) (num✝¹ * ↑db) < (fun x => ↑x) (num✝ * ↑da) ha : 0 < ⅟↑da ⊢ ↑num✝¹ * ⅟↑da < ↑num✝ * ⅟↑db [PROOFSTEP] have hb : 0 < ⅟(db : α) := pos_invOf_of_invertible_cast db [GOAL] α : Type u_1 inst✝¹ : LinearOrderedRing α inst✝ : Nontrivial α num✝¹ num✝ : ℤ da db : ℕ inv✝¹ : Invertible ↑da inv✝ : Invertible ↑db h✝ : decide (num✝¹ * ↑db < num✝ * ↑da) = true h : (fun x => ↑x) (num✝¹ * ↑db) < (fun x => ↑x) (num✝ * ↑da) ha : 0 < ⅟↑da hb : 0 < ⅟↑db ⊢ ↑num✝¹ * ⅟↑da < ↑num✝ * ⅟↑db [PROOFSTEP] have h := (mul_lt_mul_of_pos_left · hb) <| mul_lt_mul_of_pos_right h ha [GOAL] α : Type u_1 inst✝¹ : LinearOrderedRing α inst✝ : Nontrivial α num✝¹ num✝ : ℤ da db : ℕ inv✝¹ : Invertible ↑da inv✝ : Invertible ↑db h✝¹ : decide (num✝¹ * ↑db < num✝ * ↑da) = true h✝ : (fun x => ↑x) (num✝¹ * ↑db) < (fun x => ↑x) (num✝ * ↑da) ha : 0 < ⅟↑da hb : 0 < ⅟↑db h : ⅟↑db * ((fun x => ↑x) (num✝¹ * ↑db) * ⅟↑da) < ⅟↑db * ((fun x => ↑x) (num✝ * ↑da) * ⅟↑da) ⊢ ↑num✝¹ * ⅟↑da < ↑num✝ * ⅟↑db [PROOFSTEP] rw [← mul_assoc, Int.commute_cast] at h [GOAL] α : Type u_1 inst✝¹ : LinearOrderedRing α inst✝ : Nontrivial α num✝¹ num✝ : ℤ da db : ℕ inv✝¹ : Invertible ↑da inv✝ : Invertible ↑db h✝¹ : decide (num✝¹ * ↑db < num✝ * ↑da) = true h✝ : (fun x => ↑x) (num✝¹ * ↑db) < (fun x => ↑x) (num✝ * ↑da) ha : 0 < ⅟↑da hb : 0 < ⅟↑db h : ↑(num✝¹ * ↑db) * ⅟↑db * ⅟↑da < ⅟↑db * ((fun x => ↑x) (num✝ * ↑da) * ⅟↑da) ⊢ ↑num✝¹ * ⅟↑da < ↑num✝ * ⅟↑db [PROOFSTEP] simp at h [GOAL] α : Type u_1 inst✝¹ : LinearOrderedRing α inst✝ : Nontrivial α num✝¹ num✝ : ℤ da db : ℕ inv✝¹ : Invertible ↑da inv✝ : Invertible ↑db h✝¹ : decide (num✝¹ * ↑db < num✝ * ↑da) = true h✝ : (fun x => ↑x) (num✝¹ * ↑db) < (fun x => ↑x) (num✝ * ↑da) ha : 0 < ⅟↑da hb : 0 < ⅟↑db h : ↑num✝¹ * ⅟↑da < ⅟↑db * ↑num✝ ⊢ ↑num✝¹ * ⅟↑da < ↑num✝ * ⅟↑db [PROOFSTEP] rwa [Int.commute_cast] at h [GOAL] α : Type u_1 inst✝¹ : Ring α inst✝ : CharZero α num✝¹ num✝ : ℤ denom✝¹ denom✝ : ℕ inv✝¹ : Invertible ↑denom✝¹ inv✝ : Invertible ↑denom✝ h : decide (Int.mul num✝¹ (Int.ofNat denom✝) = Int.mul num✝ (Int.ofNat denom✝¹)) = false ⊢ ¬↑num✝¹ * ⅟↑denom✝¹ = ↑num✝ * ⅟↑denom✝ [PROOFSTEP] rw [Rat.invOf_denom_swap] [GOAL] α : Type u_1 inst✝¹ : Ring α inst✝ : CharZero α num✝¹ num✝ : ℤ denom✝¹ denom✝ : ℕ inv✝¹ : Invertible ↑denom✝¹ inv✝ : Invertible ↑denom✝ h : decide (Int.mul num✝¹ (Int.ofNat denom✝) = Int.mul num✝ (Int.ofNat denom✝¹)) = false ⊢ ¬↑num✝¹ * ↑denom✝ = ↑num✝ * ↑denom✝¹ [PROOFSTEP] exact_mod_cast of_decide_eq_false h [GOAL] «$β» : Type := Prop «$e» : «$β» «$f» $a✝ $b✝ : Expr «$u» : Level «$α» : Type u «$a» «$b» : «$α» «$ra» : AddMonoidWithOne «$α» «$na» : ℕ «$pa» : IsNat «$a» «$na» «$rb» : AddMonoidWithOne «$α» «$nb» : ℕ «$pb» : IsNat «$b» «$nb» «$_i» : OrderedSemiring «$α» ⊢ AddMonoidWithOne «$α» [PROOFSTEP] clear! «$ra» «$rb» [GOAL] «$β» : Type := Prop «$e» : «$β» «$f» $a✝ $b✝ : Expr «$u» : Level «$α» : Type u «$a» «$b» : «$α» «$na» «$nb» : ℕ «$_i» : OrderedSemiring «$α» ⊢ AddMonoidWithOne «$α» [PROOFSTEP] infer_instance [GOAL] «$β» : Type := Prop «$e» : «$β» «$f» $a✝ $b✝ : Expr «$u» : Level «$α» : Type u «$a» «$b» : «$α» «$na» : ℕ «$rb» : AddMonoidWithOne «$α» «$nb» : ℕ «$pb» : IsNat «$b» «$nb» «$_i» : OrderedSemiring «$α» «$ra» : AddMonoidWithOne «$α» := inferInstance «$pa» : IsNat «$a» «$na» ⊢ AddMonoidWithOne «$α» [PROOFSTEP] clear! «$ra» «$rb» [GOAL] «$β» : Type := Prop «$e» : «$β» «$f» $a✝ $b✝ : Expr «$u» : Level «$α» : Type u «$a» «$b» : «$α» «$na» «$nb» : ℕ «$_i» : OrderedSemiring «$α» ⊢ AddMonoidWithOne «$α» [PROOFSTEP] infer_instance [GOAL] «$β» : Type := Prop «$e» : «$β» «$f» $a✝ $b✝ : Expr «$u» : Level «$α» : Type u «$a» «$b» : «$α» «$ra» : AddMonoidWithOne «$α» «$na» : ℕ «$pa» : IsNat «$a» «$na» «$rb» : AddMonoidWithOne «$α» «$nb» : ℕ «$pb» : IsNat «$b» «$nb» «$_i» : OrderedSemiring «$α» ⊢ AddMonoidWithOne «$α» [PROOFSTEP] clear! «$ra» «$rb» [GOAL] «$β» : Type := Prop «$e» : «$β» «$f» $a✝ $b✝ : Expr «$u» : Level «$α» : Type u «$a» «$b» : «$α» «$na» «$nb» : ℕ «$_i» : OrderedSemiring «$α» ⊢ AddMonoidWithOne «$α» [PROOFSTEP] infer_instance [GOAL] «$β» : Type := Prop «$e» : «$β» «$f» $a✝ $b✝ : Expr «$u» : Level «$α» : Type u «$a» «$b» : «$α» «$na» : ℕ «$rb» : AddMonoidWithOne «$α» «$nb» : ℕ «$pb» : IsNat «$b» «$nb» «$_i» : OrderedSemiring «$α» «$ra» : AddMonoidWithOne «$α» := inferInstance «$pa» : IsNat «$a» «$na» ⊢ AddMonoidWithOne «$α» [PROOFSTEP] clear! «$ra» «$rb» [GOAL] «$β» : Type := Prop «$e» : «$β» «$f» $a✝ $b✝ : Expr «$u» : Level «$α» : Type u «$a» «$b» : «$α» «$na» «$nb» : ℕ «$_i» : OrderedSemiring «$α» ⊢ AddMonoidWithOne «$α» [PROOFSTEP] infer_instance [GOAL] n✝ : ℕ ⊢ Nat.succ ↑n✝ = ↑(Nat.succ n✝) [PROOFSTEP] simp [GOAL] n✝¹ n✝ : ℕ ⊢ ↑n✝¹ - ↑n✝ = ↑(Nat.sub n✝¹ n✝) [PROOFSTEP] simp [GOAL] n✝¹ n✝ : ℕ ⊢ ↑n✝¹ % ↑n✝ = ↑(Nat.mod n✝¹ n✝) [PROOFSTEP] aesop [GOAL] n✝¹ n✝ : ℕ ⊢ ↑n✝¹ / ↑n✝ = ↑(Nat.div n✝¹ n✝) [PROOFSTEP] aesop
{"mathlib_filename": "Mathlib.Tactic.NormNum.Basic", "llama_tokens": 19960}
[GOAL] M : Type u inst✝² : AddCommGroup M inst✝¹ : Module ℤ M inst✝ : Finite ℤ M hM : IsTorsion ℤ M ⊢ _root_.Finite M [PROOFSTEP] rcases Module.equiv_directSum_of_isTorsion hM with ⟨ι, _, p, h, e, ⟨l⟩⟩ [GOAL] case intro.intro.intro.intro.intro.intro M : Type u inst✝² : AddCommGroup M inst✝¹ : Module ℤ M inst✝ : Finite ℤ M hM : IsTorsion ℤ M ι : Type w✝ : Fintype ι p : ι → ℤ h : ∀ (i : ι), Irreducible (p i) e : ι → ℕ l : M ≃ₗ[ℤ] ⨁ (i : ι), ℤ ⧸ Submodule.span ℤ {p i ^ e i} ⊢ _root_.Finite M [PROOFSTEP] haveI : ∀ i : ι, NeZero (p i ^ e i).natAbs := fun i => ⟨Int.natAbs_ne_zero.mpr <| pow_ne_zero (e i) (h i).ne_zero⟩ [GOAL] case intro.intro.intro.intro.intro.intro M : Type u inst✝² : AddCommGroup M inst✝¹ : Module ℤ M inst✝ : Finite ℤ M hM : IsTorsion ℤ M ι : Type w✝ : Fintype ι p : ι → ℤ h : ∀ (i : ι), Irreducible (p i) e : ι → ℕ l : M ≃ₗ[ℤ] ⨁ (i : ι), ℤ ⧸ Submodule.span ℤ {p i ^ e i} this : ∀ (i : ι), NeZero (Int.natAbs (p i ^ e i)) ⊢ _root_.Finite M [PROOFSTEP] haveI : ∀ i : ι, _root_.Finite <| ℤ ⧸ Submodule.span ℤ {p i ^ e i} := fun i => Finite.of_equiv _ (p i ^ e i).quotientSpanEquivZMod.symm.toEquiv [GOAL] case intro.intro.intro.intro.intro.intro M : Type u inst✝² : AddCommGroup M inst✝¹ : Module ℤ M inst✝ : Finite ℤ M hM : IsTorsion ℤ M ι : Type w✝ : Fintype ι p : ι → ℤ h : ∀ (i : ι), Irreducible (p i) e : ι → ℕ l : M ≃ₗ[ℤ] ⨁ (i : ι), ℤ ⧸ Submodule.span ℤ {p i ^ e i} this✝ : ∀ (i : ι), NeZero (Int.natAbs (p i ^ e i)) this : ∀ (i : ι), _root_.Finite (ℤ ⧸ Submodule.span ℤ {p i ^ e i}) ⊢ _root_.Finite M [PROOFSTEP] haveI : _root_.Finite (⨁ i, ℤ ⧸ (Submodule.span ℤ {p i ^ e i} : Submodule ℤ ℤ)) := Finite.of_equiv _ DFinsupp.equivFunOnFintype.symm [GOAL] case intro.intro.intro.intro.intro.intro M : Type u inst✝² : AddCommGroup M inst✝¹ : Module ℤ M inst✝ : Finite ℤ M hM : IsTorsion ℤ M ι : Type w✝ : Fintype ι p : ι → ℤ h : ∀ (i : ι), Irreducible (p i) e : ι → ℕ l : M ≃ₗ[ℤ] ⨁ (i : ι), ℤ ⧸ Submodule.span ℤ {p i ^ e i} this✝¹ : ∀ (i : ι), NeZero (Int.natAbs (p i ^ e i)) this✝ : ∀ (i : ι), _root_.Finite (ℤ ⧸ Submodule.span ℤ {p i ^ e i}) this : _root_.Finite (⨁ (i : ι), ℤ ⧸ Submodule.span ℤ {p i ^ e i}) ⊢ _root_.Finite M [PROOFSTEP] exact Finite.of_equiv _ l.symm.toEquiv [GOAL] G : Type u inst✝ : AddCommGroup G hG : AddGroup.FG G ⊢ ∃ n ι x p x e, Nonempty (G ≃+ (Fin n →₀ ℤ) × ⨁ (i : ι), ZMod (p i ^ e i)) [PROOFSTEP] obtain ⟨n, ι, fι, p, hp, e, ⟨f⟩⟩ := @Module.equiv_free_prod_directSum _ _ _ _ _ _ _ (Module.Finite.iff_addGroup_fg.mpr hG) [GOAL] case intro.intro.intro.intro.intro.intro.intro G : Type u inst✝ : AddCommGroup G hG : AddGroup.FG G n : ℕ ι : Type fι : Fintype ι p : ι → ℤ hp : ∀ (i : ι), Irreducible (p i) e : ι → ℕ f : G ≃ₗ[ℤ] (Fin n →₀ ℤ) × ⨁ (i : ι), ℤ ⧸ Submodule.span ℤ {p i ^ e i} ⊢ ∃ n ι x p x e, Nonempty (G ≃+ (Fin n →₀ ℤ) × ⨁ (i : ι), ZMod (p i ^ e i)) [PROOFSTEP] refine' ⟨n, ι, fι, fun i => (p i).natAbs, fun i => _, e, ⟨_⟩⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.refine'_1 G : Type u inst✝ : AddCommGroup G hG : AddGroup.FG G n : ℕ ι : Type fι : Fintype ι p : ι → ℤ hp : ∀ (i : ι), Irreducible (p i) e : ι → ℕ f : G ≃ₗ[ℤ] (Fin n →₀ ℤ) × ⨁ (i : ι), ℤ ⧸ Submodule.span ℤ {p i ^ e i} i : ι ⊢ Nat.Prime ((fun i => Int.natAbs (p i)) i) [PROOFSTEP] rw [← Int.prime_iff_natAbs_prime, ← GCDMonoid.irreducible_iff_prime] [GOAL] case intro.intro.intro.intro.intro.intro.intro.refine'_1 G : Type u inst✝ : AddCommGroup G hG : AddGroup.FG G n : ℕ ι : Type fι : Fintype ι p : ι → ℤ hp : ∀ (i : ι), Irreducible (p i) e : ι → ℕ f : G ≃ₗ[ℤ] (Fin n →₀ ℤ) × ⨁ (i : ι), ℤ ⧸ Submodule.span ℤ {p i ^ e i} i : ι ⊢ Irreducible (p i) [PROOFSTEP] exact hp i [GOAL] case intro.intro.intro.intro.intro.intro.intro.refine'_2 G : Type u inst✝ : AddCommGroup G hG : AddGroup.FG G n : ℕ ι : Type fι : Fintype ι p : ι → ℤ hp : ∀ (i : ι), Irreducible (p i) e : ι → ℕ f : G ≃ₗ[ℤ] (Fin n →₀ ℤ) × ⨁ (i : ι), ℤ ⧸ Submodule.span ℤ {p i ^ e i} ⊢ G ≃+ (Fin n →₀ ℤ) × ⨁ (i : ι), ZMod ((fun i => Int.natAbs (p i)) i ^ e i) [PROOFSTEP] exact f.toAddEquiv.trans ((AddEquiv.refl _).prodCongr <| DFinsupp.mapRange.addEquiv fun i => ((Int.quotientSpanEquivZMod _).trans <| ZMod.ringEquivCongr <| (p i).natAbs_pow _).toAddEquiv) [GOAL] G : Type u inst✝¹ : AddCommGroup G inst✝ : Finite G ⊢ ∃ ι x p x e, Nonempty (G ≃+ ⨁ (i : ι), ZMod (p i ^ e i)) [PROOFSTEP] cases nonempty_fintype G [GOAL] case intro G : Type u inst✝¹ : AddCommGroup G inst✝ : Finite G val✝ : Fintype G ⊢ ∃ ι x p x e, Nonempty (G ≃+ ⨁ (i : ι), ZMod (p i ^ e i)) [PROOFSTEP] obtain ⟨n, ι, fι, p, hp, e, ⟨f⟩⟩ := equiv_free_prod_directSum_zmod G [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro G : Type u inst✝¹ : AddCommGroup G inst✝ : Finite G val✝ : Fintype G n : ℕ ι : Type fι : Fintype ι p : ι → ℕ hp : ∀ (i : ι), Nat.Prime (p i) e : ι → ℕ f : G ≃+ (Fin n →₀ ℤ) × ⨁ (i : ι), ZMod (p i ^ e i) ⊢ ∃ ι x p x e, Nonempty (G ≃+ ⨁ (i : ι), ZMod (p i ^ e i)) [PROOFSTEP] cases' n with n [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.zero G : Type u inst✝¹ : AddCommGroup G inst✝ : Finite G val✝ : Fintype G ι : Type fι : Fintype ι p : ι → ℕ hp : ∀ (i : ι), Nat.Prime (p i) e : ι → ℕ f : G ≃+ (Fin Nat.zero →₀ ℤ) × ⨁ (i : ι), ZMod (p i ^ e i) ⊢ ∃ ι x p x e, Nonempty (G ≃+ ⨁ (i : ι), ZMod (p i ^ e i)) [PROOFSTEP] have : Unique (Fin Nat.zero →₀ ℤ) := { uniq := by simp only [Nat.zero_eq, eq_iff_true_of_subsingleton] } [GOAL] G : Type u inst✝¹ : AddCommGroup G inst✝ : Finite G val✝ : Fintype G ι : Type fι : Fintype ι p : ι → ℕ hp : ∀ (i : ι), Nat.Prime (p i) e : ι → ℕ f : G ≃+ (Fin Nat.zero →₀ ℤ) × ⨁ (i : ι), ZMod (p i ^ e i) ⊢ ∀ (a : Fin Nat.zero →₀ ℤ), a = default [PROOFSTEP] simp only [Nat.zero_eq, eq_iff_true_of_subsingleton] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.zero G : Type u inst✝¹ : AddCommGroup G inst✝ : Finite G val✝ : Fintype G ι : Type fι : Fintype ι p : ι → ℕ hp : ∀ (i : ι), Nat.Prime (p i) e : ι → ℕ f : G ≃+ (Fin Nat.zero →₀ ℤ) × ⨁ (i : ι), ZMod (p i ^ e i) this : Unique (Fin Nat.zero →₀ ℤ) ⊢ ∃ ι x p x e, Nonempty (G ≃+ ⨁ (i : ι), ZMod (p i ^ e i)) [PROOFSTEP] exact ⟨ι, fι, p, hp, e, ⟨f.trans AddEquiv.uniqueProd⟩⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.succ G : Type u inst✝¹ : AddCommGroup G inst✝ : Finite G val✝ : Fintype G ι : Type fι : Fintype ι p : ι → ℕ hp : ∀ (i : ι), Nat.Prime (p i) e : ι → ℕ n : ℕ f : G ≃+ (Fin (Nat.succ n) →₀ ℤ) × ⨁ (i : ι), ZMod (p i ^ e i) ⊢ ∃ ι x p x e, Nonempty (G ≃+ ⨁ (i : ι), ZMod (p i ^ e i)) [PROOFSTEP] haveI := @Fintype.prodLeft _ _ _ (Fintype.ofEquiv G f.toEquiv) _ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.succ G : Type u inst✝¹ : AddCommGroup G inst✝ : Finite G val✝ : Fintype G ι : Type fι : Fintype ι p : ι → ℕ hp : ∀ (i : ι), Nat.Prime (p i) e : ι → ℕ n : ℕ f : G ≃+ (Fin (Nat.succ n) →₀ ℤ) × ⨁ (i : ι), ZMod (p i ^ e i) this : Fintype (Fin (Nat.succ n) →₀ ℤ) ⊢ ∃ ι x p x e, Nonempty (G ≃+ ⨁ (i : ι), ZMod (p i ^ e i)) [PROOFSTEP] exact (Fintype.ofSurjective (fun f : Fin n.succ →₀ ℤ => f 0) fun a => ⟨Finsupp.single 0 a, Finsupp.single_eq_same⟩).false.elim
{"mathlib_filename": "Mathlib.GroupTheory.FiniteAbelian", "llama_tokens": 3807}
[GOAL] G : Type u_1 G' : Type u_2 inst✝¹ : Group G inst✝ : Group G' f : G →* G' n : ℕ ⊢ Normal (derivedSeries G n) [PROOFSTEP] induction' n with n ih [GOAL] case zero G : Type u_1 G' : Type u_2 inst✝¹ : Group G inst✝ : Group G' f : G →* G' ⊢ Normal (derivedSeries G Nat.zero) [PROOFSTEP] exact (⊤ : Subgroup G).normal_of_characteristic [GOAL] case succ G : Type u_1 G' : Type u_2 inst✝¹ : Group G inst✝ : Group G' f : G →* G' n : ℕ ih : Normal (derivedSeries G n) ⊢ Normal (derivedSeries G (Nat.succ n)) [PROOFSTEP] exact @Subgroup.commutator_normal G _ (derivedSeries G n) (derivedSeries G n) ih ih [GOAL] G : Type u_1 G' : Type u_2 inst✝¹ : Group G inst✝ : Group G' f : G →* G' n : ℕ ⊢ map f (derivedSeries G n) ≤ derivedSeries G' n [PROOFSTEP] induction' n with n ih [GOAL] case zero G : Type u_1 G' : Type u_2 inst✝¹ : Group G inst✝ : Group G' f : G →* G' ⊢ map f (derivedSeries G Nat.zero) ≤ derivedSeries G' Nat.zero [PROOFSTEP] exact le_top [GOAL] case succ G : Type u_1 G' : Type u_2 inst✝¹ : Group G inst✝ : Group G' f : G →* G' n : ℕ ih : map f (derivedSeries G n) ≤ derivedSeries G' n ⊢ map f (derivedSeries G (Nat.succ n)) ≤ derivedSeries G' (Nat.succ n) [PROOFSTEP] simp only [derivedSeries_succ, map_commutator, commutator_mono, ih] [GOAL] G : Type u_1 G' : Type u_2 inst✝¹ : Group G inst✝ : Group G' f : G →* G' hf : Function.Surjective ↑f n : ℕ ⊢ derivedSeries G' n ≤ map f (derivedSeries G n) [PROOFSTEP] induction' n with n ih [GOAL] case zero G : Type u_1 G' : Type u_2 inst✝¹ : Group G inst✝ : Group G' f : G →* G' hf : Function.Surjective ↑f ⊢ derivedSeries G' Nat.zero ≤ map f (derivedSeries G Nat.zero) [PROOFSTEP] exact (map_top_of_surjective f hf).ge [GOAL] case succ G : Type u_1 G' : Type u_2 inst✝¹ : Group G inst✝ : Group G' f : G →* G' hf : Function.Surjective ↑f n : ℕ ih : derivedSeries G' n ≤ map f (derivedSeries G n) ⊢ derivedSeries G' (Nat.succ n) ≤ map f (derivedSeries G (Nat.succ n)) [PROOFSTEP] exact commutator_le_map_commutator ih ih [GOAL] G✝ : Type u_1 G' : Type u_2 inst✝¹ : Group G✝ inst✝ : Group G' f : G✝ →* G' G : Type u_3 hG : Group G h : ∀ (a b : G), a * b = b * a ⊢ IsSolvable G [PROOFSTEP] letI hG' : CommGroup G := { hG with mul_comm := h } [GOAL] G✝ : Type u_1 G' : Type u_2 inst✝¹ : Group G✝ inst✝ : Group G' f : G✝ →* G' G : Type u_3 hG : Group G h : ∀ (a b : G), a * b = b * a hG' : CommGroup G := CommGroup.mk h ⊢ IsSolvable G [PROOFSTEP] cases hG [GOAL] case mk G✝ : Type u_1 G' : Type u_2 inst✝¹ : Group G✝ inst✝ : Group G' f : G✝ →* G' G : Type u_3 toDivInvMonoid✝ : DivInvMonoid G mul_left_inv✝ : ∀ (a : G), a⁻¹ * a = 1 h : ∀ (a b : G), a * b = b * a hG' : CommGroup G := CommGroup.mk h ⊢ IsSolvable G [PROOFSTEP] exact CommGroup.isSolvable [GOAL] G : Type u_1 G' : Type u_2 inst✝² : Group G inst✝¹ : Group G' f : G →* G' inst✝ : Subsingleton G ⊢ ⊤ = ⊥ [PROOFSTEP] simp [GOAL] G : Type u_1 G'✝ : Type u_2 inst✝³ : Group G inst✝² : Group G'✝ f✝ : G →* G'✝ G' : Type u_3 G'' : Type u_4 inst✝¹ : Group G' inst✝ : Group G'' f : G' →* G g : G →* G'' hfg : MonoidHom.ker g ≤ MonoidHom.range f hG' : IsSolvable G' hG'' : IsSolvable G'' ⊢ IsSolvable G [PROOFSTEP] obtain ⟨n, hn⟩ := id hG'' [GOAL] case mk.intro G : Type u_1 G'✝ : Type u_2 inst✝³ : Group G inst✝² : Group G'✝ f✝ : G →* G'✝ G' : Type u_3 G'' : Type u_4 inst✝¹ : Group G' inst✝ : Group G'' f : G' →* G g : G →* G'' hfg : MonoidHom.ker g ≤ MonoidHom.range f hG' : IsSolvable G' hG'' : IsSolvable G'' n : ℕ hn : derivedSeries G'' n = ⊥ ⊢ IsSolvable G [PROOFSTEP] obtain ⟨m, hm⟩ := id hG' [GOAL] case mk.intro.mk.intro G : Type u_1 G'✝ : Type u_2 inst✝³ : Group G inst✝² : Group G'✝ f✝ : G →* G'✝ G' : Type u_3 G'' : Type u_4 inst✝¹ : Group G' inst✝ : Group G'' f : G' →* G g : G →* G'' hfg : MonoidHom.ker g ≤ MonoidHom.range f hG' : IsSolvable G' hG'' : IsSolvable G'' n : ℕ hn : derivedSeries G'' n = ⊥ m : ℕ hm : derivedSeries G' m = ⊥ ⊢ IsSolvable G [PROOFSTEP] refine' ⟨⟨n + m, le_bot_iff.mp (map_bot f ▸ hm ▸ _)⟩⟩ [GOAL] case mk.intro.mk.intro G : Type u_1 G'✝ : Type u_2 inst✝³ : Group G inst✝² : Group G'✝ f✝ : G →* G'✝ G' : Type u_3 G'' : Type u_4 inst✝¹ : Group G' inst✝ : Group G'' f : G' →* G g : G →* G'' hfg : MonoidHom.ker g ≤ MonoidHom.range f hG' : IsSolvable G' hG'' : IsSolvable G'' n : ℕ hn : derivedSeries G'' n = ⊥ m : ℕ hm : derivedSeries G' m = ⊥ ⊢ derivedSeries G (n + m) ≤ map f (derivedSeries G' m) [PROOFSTEP] clear hm [GOAL] case mk.intro.mk.intro G : Type u_1 G'✝ : Type u_2 inst✝³ : Group G inst✝² : Group G'✝ f✝ : G →* G'✝ G' : Type u_3 G'' : Type u_4 inst✝¹ : Group G' inst✝ : Group G'' f : G' →* G g : G →* G'' hfg : MonoidHom.ker g ≤ MonoidHom.range f hG' : IsSolvable G' hG'' : IsSolvable G'' n : ℕ hn : derivedSeries G'' n = ⊥ m : ℕ ⊢ derivedSeries G (n + m) ≤ map f (derivedSeries G' m) [PROOFSTEP] induction' m with m hm [GOAL] case mk.intro.mk.intro.zero G : Type u_1 G'✝ : Type u_2 inst✝³ : Group G inst✝² : Group G'✝ f✝ : G →* G'✝ G' : Type u_3 G'' : Type u_4 inst✝¹ : Group G' inst✝ : Group G'' f : G' →* G g : G →* G'' hfg : MonoidHom.ker g ≤ MonoidHom.range f hG' : IsSolvable G' hG'' : IsSolvable G'' n : ℕ hn : derivedSeries G'' n = ⊥ ⊢ derivedSeries G (n + Nat.zero) ≤ map f (derivedSeries G' Nat.zero) [PROOFSTEP] exact f.range_eq_map ▸ ((derivedSeries G n).map_eq_bot_iff.mp (le_bot_iff.mp ((map_derivedSeries_le_derivedSeries g n).trans hn.le))).trans hfg [GOAL] case mk.intro.mk.intro.succ G : Type u_1 G'✝ : Type u_2 inst✝³ : Group G inst✝² : Group G'✝ f✝ : G →* G'✝ G' : Type u_3 G'' : Type u_4 inst✝¹ : Group G' inst✝ : Group G'' f : G' →* G g : G →* G'' hfg : MonoidHom.ker g ≤ MonoidHom.range f hG' : IsSolvable G' hG'' : IsSolvable G'' n : ℕ hn : derivedSeries G'' n = ⊥ m : ℕ hm : derivedSeries G (n + m) ≤ map f (derivedSeries G' m) ⊢ derivedSeries G (n + Nat.succ m) ≤ map f (derivedSeries G' (Nat.succ m)) [PROOFSTEP] exact commutator_le_map_commutator hm hm [GOAL] G : Type u_1 G' : Type u_2 inst✝² : Group G inst✝¹ : Group G' f : G →* G' inst✝ : IsSimpleGroup G n : ℕ ⊢ derivedSeries G (Nat.succ n) = _root_.commutator G [PROOFSTEP] induction' n with n ih [GOAL] case zero G : Type u_1 G' : Type u_2 inst✝² : Group G inst✝¹ : Group G' f : G →* G' inst✝ : IsSimpleGroup G ⊢ derivedSeries G (Nat.succ Nat.zero) = _root_.commutator G [PROOFSTEP] exact derivedSeries_one G [GOAL] case succ G : Type u_1 G' : Type u_2 inst✝² : Group G inst✝¹ : Group G' f : G →* G' inst✝ : IsSimpleGroup G n : ℕ ih : derivedSeries G (Nat.succ n) = _root_.commutator G ⊢ derivedSeries G (Nat.succ (Nat.succ n)) = _root_.commutator G [PROOFSTEP] rw [_root_.derivedSeries_succ, ih, _root_.commutator] [GOAL] case succ G : Type u_1 G' : Type u_2 inst✝² : Group G inst✝¹ : Group G' f : G →* G' inst✝ : IsSimpleGroup G n : ℕ ih : derivedSeries G (Nat.succ n) = _root_.commutator G ⊢ ⁅⁅⊤, ⊤⁆, ⁅⊤, ⊤⁆⁆ = ⁅⊤, ⊤⁆ [PROOFSTEP] cases' (commutator_normal (⊤ : Subgroup G) (⊤ : Subgroup G)).eq_bot_or_eq_top with h h [GOAL] case succ.inl G : Type u_1 G' : Type u_2 inst✝² : Group G inst✝¹ : Group G' f : G →* G' inst✝ : IsSimpleGroup G n : ℕ ih : derivedSeries G (Nat.succ n) = _root_.commutator G h : ⁅⊤, ⊤⁆ = ⊥ ⊢ ⁅⁅⊤, ⊤⁆, ⁅⊤, ⊤⁆⁆ = ⁅⊤, ⊤⁆ [PROOFSTEP] rw [h, commutator_bot_left] [GOAL] case succ.inr G : Type u_1 G' : Type u_2 inst✝² : Group G inst✝¹ : Group G' f : G →* G' inst✝ : IsSimpleGroup G n : ℕ ih : derivedSeries G (Nat.succ n) = _root_.commutator G h : ⁅⊤, ⊤⁆ = ⊤ ⊢ ⁅⁅⊤, ⊤⁆, ⁅⊤, ⊤⁆⁆ = ⁅⊤, ⊤⁆ [PROOFSTEP] rwa [h] [GOAL] G : Type u_1 G' : Type u_2 inst✝² : Group G inst✝¹ : Group G' f : G →* G' inst✝ : IsSimpleGroup G x✝ : IsSolvable G n : ℕ hn : derivedSeries G n = ⊥ ⊢ ∀ (a b : G), a * b = b * a [PROOFSTEP] cases n [GOAL] case zero G : Type u_1 G' : Type u_2 inst✝² : Group G inst✝¹ : Group G' f : G →* G' inst✝ : IsSimpleGroup G x✝ : IsSolvable G hn : derivedSeries G Nat.zero = ⊥ ⊢ ∀ (a b : G), a * b = b * a [PROOFSTEP] intro a b [GOAL] case zero G : Type u_1 G' : Type u_2 inst✝² : Group G inst✝¹ : Group G' f : G →* G' inst✝ : IsSimpleGroup G x✝ : IsSolvable G hn : derivedSeries G Nat.zero = ⊥ a b : G ⊢ a * b = b * a [PROOFSTEP] refine' (mem_bot.1 _).trans (mem_bot.1 _).symm [GOAL] case zero.refine'_1 G : Type u_1 G' : Type u_2 inst✝² : Group G inst✝¹ : Group G' f : G →* G' inst✝ : IsSimpleGroup G x✝ : IsSolvable G hn : derivedSeries G Nat.zero = ⊥ a b : G ⊢ a * b ∈ ⊥ [PROOFSTEP] rw [← hn] [GOAL] case zero.refine'_1 G : Type u_1 G' : Type u_2 inst✝² : Group G inst✝¹ : Group G' f : G →* G' inst✝ : IsSimpleGroup G x✝ : IsSolvable G hn : derivedSeries G Nat.zero = ⊥ a b : G ⊢ a * b ∈ derivedSeries G Nat.zero [PROOFSTEP] exact mem_top _ [GOAL] case zero.refine'_2 G : Type u_1 G' : Type u_2 inst✝² : Group G inst✝¹ : Group G' f : G →* G' inst✝ : IsSimpleGroup G x✝ : IsSolvable G hn : derivedSeries G Nat.zero = ⊥ a b : G ⊢ b * a ∈ ⊥ [PROOFSTEP] rw [← hn] [GOAL] case zero.refine'_2 G : Type u_1 G' : Type u_2 inst✝² : Group G inst✝¹ : Group G' f : G →* G' inst✝ : IsSimpleGroup G x✝ : IsSolvable G hn : derivedSeries G Nat.zero = ⊥ a b : G ⊢ b * a ∈ derivedSeries G Nat.zero [PROOFSTEP] exact mem_top _ [GOAL] case succ G : Type u_1 G' : Type u_2 inst✝² : Group G inst✝¹ : Group G' f : G →* G' inst✝ : IsSimpleGroup G x✝ : IsSolvable G n✝ : ℕ hn : derivedSeries G (Nat.succ n✝) = ⊥ ⊢ ∀ (a b : G), a * b = b * a [PROOFSTEP] rw [IsSimpleGroup.derivedSeries_succ] at hn [GOAL] case succ G : Type u_1 G' : Type u_2 inst✝² : Group G inst✝¹ : Group G' f : G →* G' inst✝ : IsSimpleGroup G x✝ : IsSolvable G n✝ : ℕ hn : _root_.commutator G = ⊥ ⊢ ∀ (a b : G), a * b = b * a [PROOFSTEP] intro a b [GOAL] case succ G : Type u_1 G' : Type u_2 inst✝² : Group G inst✝¹ : Group G' f : G →* G' inst✝ : IsSimpleGroup G x✝ : IsSolvable G n✝ : ℕ hn : _root_.commutator G = ⊥ a b : G ⊢ a * b = b * a [PROOFSTEP] rw [← mul_inv_eq_one, mul_inv_rev, ← mul_assoc, ← mem_bot, ← hn, commutator_eq_closure] [GOAL] case succ G : Type u_1 G' : Type u_2 inst✝² : Group G inst✝¹ : Group G' f : G →* G' inst✝ : IsSimpleGroup G x✝ : IsSolvable G n✝ : ℕ hn : _root_.commutator G = ⊥ a b : G ⊢ a * b * a⁻¹ * b⁻¹ ∈ closure (commutatorSet G) [PROOFSTEP] exact subset_closure ⟨a, b, rfl⟩ [GOAL] G : Type u_1 G' : Type u_2 inst✝¹ : Group G inst✝ : Group G' f : G →* G' ⊢ ¬IsSolvable (Perm (Fin 5)) [PROOFSTEP] let x : Equiv.Perm (Fin 5) := ⟨![1, 2, 0, 3, 4], ![2, 0, 1, 3, 4], by decide, by decide⟩ [GOAL] G : Type u_1 G' : Type u_2 inst✝¹ : Group G inst✝ : Group G' f : G →* G' ⊢ Function.LeftInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4] [PROOFSTEP] decide [GOAL] G : Type u_1 G' : Type u_2 inst✝¹ : Group G inst✝ : Group G' f : G →* G' ⊢ Function.RightInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4] [PROOFSTEP] decide [GOAL] G : Type u_1 G' : Type u_2 inst✝¹ : Group G inst✝ : Group G' f : G →* G' x : Perm (Fin 5) := { toFun := ![1, 2, 0, 3, 4], invFun := ![2, 0, 1, 3, 4], left_inv := (_ : Function.LeftInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]), right_inv := (_ : Function.RightInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]) } ⊢ ¬IsSolvable (Perm (Fin 5)) [PROOFSTEP] let y : Equiv.Perm (Fin 5) := ⟨![3, 4, 2, 0, 1], ![3, 4, 2, 0, 1], by decide, by decide⟩ [GOAL] G : Type u_1 G' : Type u_2 inst✝¹ : Group G inst✝ : Group G' f : G →* G' x : Perm (Fin 5) := { toFun := ![1, 2, 0, 3, 4], invFun := ![2, 0, 1, 3, 4], left_inv := (_ : Function.LeftInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]), right_inv := (_ : Function.RightInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]) } ⊢ Function.LeftInverse ![3, 4, 2, 0, 1] ![3, 4, 2, 0, 1] [PROOFSTEP] decide [GOAL] G : Type u_1 G' : Type u_2 inst✝¹ : Group G inst✝ : Group G' f : G →* G' x : Perm (Fin 5) := { toFun := ![1, 2, 0, 3, 4], invFun := ![2, 0, 1, 3, 4], left_inv := (_ : Function.LeftInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]), right_inv := (_ : Function.RightInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]) } ⊢ Function.RightInverse ![3, 4, 2, 0, 1] ![3, 4, 2, 0, 1] [PROOFSTEP] decide [GOAL] G : Type u_1 G' : Type u_2 inst✝¹ : Group G inst✝ : Group G' f : G →* G' x : Perm (Fin 5) := { toFun := ![1, 2, 0, 3, 4], invFun := ![2, 0, 1, 3, 4], left_inv := (_ : Function.LeftInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]), right_inv := (_ : Function.RightInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]) } y : Perm (Fin 5) := { toFun := ![3, 4, 2, 0, 1], invFun := ![3, 4, 2, 0, 1], left_inv := (_ : Function.LeftInverse ![3, 4, 2, 0, 1] ![3, 4, 2, 0, 1]), right_inv := (_ : Function.RightInverse ![3, 4, 2, 0, 1] ![3, 4, 2, 0, 1]) } ⊢ ¬IsSolvable (Perm (Fin 5)) [PROOFSTEP] let z : Equiv.Perm (Fin 5) := ⟨![0, 3, 2, 1, 4], ![0, 3, 2, 1, 4], by decide, by decide⟩ [GOAL] G : Type u_1 G' : Type u_2 inst✝¹ : Group G inst✝ : Group G' f : G →* G' x : Perm (Fin 5) := { toFun := ![1, 2, 0, 3, 4], invFun := ![2, 0, 1, 3, 4], left_inv := (_ : Function.LeftInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]), right_inv := (_ : Function.RightInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]) } y : Perm (Fin 5) := { toFun := ![3, 4, 2, 0, 1], invFun := ![3, 4, 2, 0, 1], left_inv := (_ : Function.LeftInverse ![3, 4, 2, 0, 1] ![3, 4, 2, 0, 1]), right_inv := (_ : Function.RightInverse ![3, 4, 2, 0, 1] ![3, 4, 2, 0, 1]) } ⊢ Function.LeftInverse ![0, 3, 2, 1, 4] ![0, 3, 2, 1, 4] [PROOFSTEP] decide [GOAL] G : Type u_1 G' : Type u_2 inst✝¹ : Group G inst✝ : Group G' f : G →* G' x : Perm (Fin 5) := { toFun := ![1, 2, 0, 3, 4], invFun := ![2, 0, 1, 3, 4], left_inv := (_ : Function.LeftInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]), right_inv := (_ : Function.RightInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]) } y : Perm (Fin 5) := { toFun := ![3, 4, 2, 0, 1], invFun := ![3, 4, 2, 0, 1], left_inv := (_ : Function.LeftInverse ![3, 4, 2, 0, 1] ![3, 4, 2, 0, 1]), right_inv := (_ : Function.RightInverse ![3, 4, 2, 0, 1] ![3, 4, 2, 0, 1]) } ⊢ Function.RightInverse ![0, 3, 2, 1, 4] ![0, 3, 2, 1, 4] [PROOFSTEP] decide [GOAL] G : Type u_1 G' : Type u_2 inst✝¹ : Group G inst✝ : Group G' f : G →* G' x : Perm (Fin 5) := { toFun := ![1, 2, 0, 3, 4], invFun := ![2, 0, 1, 3, 4], left_inv := (_ : Function.LeftInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]), right_inv := (_ : Function.RightInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]) } y : Perm (Fin 5) := { toFun := ![3, 4, 2, 0, 1], invFun := ![3, 4, 2, 0, 1], left_inv := (_ : Function.LeftInverse ![3, 4, 2, 0, 1] ![3, 4, 2, 0, 1]), right_inv := (_ : Function.RightInverse ![3, 4, 2, 0, 1] ![3, 4, 2, 0, 1]) } z : Perm (Fin 5) := { toFun := ![0, 3, 2, 1, 4], invFun := ![0, 3, 2, 1, 4], left_inv := (_ : Function.LeftInverse ![0, 3, 2, 1, 4] ![0, 3, 2, 1, 4]), right_inv := (_ : Function.RightInverse ![0, 3, 2, 1, 4] ![0, 3, 2, 1, 4]) } ⊢ ¬IsSolvable (Perm (Fin 5)) [PROOFSTEP] have key : x = z * ⁅x, y * x * y⁻¹⁆ * z⁻¹ := by decide [GOAL] G : Type u_1 G' : Type u_2 inst✝¹ : Group G inst✝ : Group G' f : G →* G' x : Perm (Fin 5) := { toFun := ![1, 2, 0, 3, 4], invFun := ![2, 0, 1, 3, 4], left_inv := (_ : Function.LeftInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]), right_inv := (_ : Function.RightInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]) } y : Perm (Fin 5) := { toFun := ![3, 4, 2, 0, 1], invFun := ![3, 4, 2, 0, 1], left_inv := (_ : Function.LeftInverse ![3, 4, 2, 0, 1] ![3, 4, 2, 0, 1]), right_inv := (_ : Function.RightInverse ![3, 4, 2, 0, 1] ![3, 4, 2, 0, 1]) } z : Perm (Fin 5) := { toFun := ![0, 3, 2, 1, 4], invFun := ![0, 3, 2, 1, 4], left_inv := (_ : Function.LeftInverse ![0, 3, 2, 1, 4] ![0, 3, 2, 1, 4]), right_inv := (_ : Function.RightInverse ![0, 3, 2, 1, 4] ![0, 3, 2, 1, 4]) } ⊢ x = z * ⁅x, y * x * y⁻¹⁆ * z⁻¹ [PROOFSTEP] decide [GOAL] G : Type u_1 G' : Type u_2 inst✝¹ : Group G inst✝ : Group G' f : G →* G' x : Perm (Fin 5) := { toFun := ![1, 2, 0, 3, 4], invFun := ![2, 0, 1, 3, 4], left_inv := (_ : Function.LeftInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]), right_inv := (_ : Function.RightInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]) } y : Perm (Fin 5) := { toFun := ![3, 4, 2, 0, 1], invFun := ![3, 4, 2, 0, 1], left_inv := (_ : Function.LeftInverse ![3, 4, 2, 0, 1] ![3, 4, 2, 0, 1]), right_inv := (_ : Function.RightInverse ![3, 4, 2, 0, 1] ![3, 4, 2, 0, 1]) } z : Perm (Fin 5) := { toFun := ![0, 3, 2, 1, 4], invFun := ![0, 3, 2, 1, 4], left_inv := (_ : Function.LeftInverse ![0, 3, 2, 1, 4] ![0, 3, 2, 1, 4]), right_inv := (_ : Function.RightInverse ![0, 3, 2, 1, 4] ![0, 3, 2, 1, 4]) } key : x = z * ⁅x, y * x * y⁻¹⁆ * z⁻¹ ⊢ ¬IsSolvable (Perm (Fin 5)) [PROOFSTEP] refine' not_solvable_of_mem_derivedSeries (show x ≠ 1 by decide) fun n => _ [GOAL] G : Type u_1 G' : Type u_2 inst✝¹ : Group G inst✝ : Group G' f : G →* G' x : Perm (Fin 5) := { toFun := ![1, 2, 0, 3, 4], invFun := ![2, 0, 1, 3, 4], left_inv := (_ : Function.LeftInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]), right_inv := (_ : Function.RightInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]) } y : Perm (Fin 5) := { toFun := ![3, 4, 2, 0, 1], invFun := ![3, 4, 2, 0, 1], left_inv := (_ : Function.LeftInverse ![3, 4, 2, 0, 1] ![3, 4, 2, 0, 1]), right_inv := (_ : Function.RightInverse ![3, 4, 2, 0, 1] ![3, 4, 2, 0, 1]) } z : Perm (Fin 5) := { toFun := ![0, 3, 2, 1, 4], invFun := ![0, 3, 2, 1, 4], left_inv := (_ : Function.LeftInverse ![0, 3, 2, 1, 4] ![0, 3, 2, 1, 4]), right_inv := (_ : Function.RightInverse ![0, 3, 2, 1, 4] ![0, 3, 2, 1, 4]) } key : x = z * ⁅x, y * x * y⁻¹⁆ * z⁻¹ ⊢ x ≠ 1 [PROOFSTEP] decide [GOAL] G : Type u_1 G' : Type u_2 inst✝¹ : Group G inst✝ : Group G' f : G →* G' x : Perm (Fin 5) := { toFun := ![1, 2, 0, 3, 4], invFun := ![2, 0, 1, 3, 4], left_inv := (_ : Function.LeftInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]), right_inv := (_ : Function.RightInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]) } y : Perm (Fin 5) := { toFun := ![3, 4, 2, 0, 1], invFun := ![3, 4, 2, 0, 1], left_inv := (_ : Function.LeftInverse ![3, 4, 2, 0, 1] ![3, 4, 2, 0, 1]), right_inv := (_ : Function.RightInverse ![3, 4, 2, 0, 1] ![3, 4, 2, 0, 1]) } z : Perm (Fin 5) := { toFun := ![0, 3, 2, 1, 4], invFun := ![0, 3, 2, 1, 4], left_inv := (_ : Function.LeftInverse ![0, 3, 2, 1, 4] ![0, 3, 2, 1, 4]), right_inv := (_ : Function.RightInverse ![0, 3, 2, 1, 4] ![0, 3, 2, 1, 4]) } key : x = z * ⁅x, y * x * y⁻¹⁆ * z⁻¹ n : ℕ ⊢ x ∈ derivedSeries (Perm (Fin 5)) n [PROOFSTEP] induction' n with n ih [GOAL] case zero G : Type u_1 G' : Type u_2 inst✝¹ : Group G inst✝ : Group G' f : G →* G' x : Perm (Fin 5) := { toFun := ![1, 2, 0, 3, 4], invFun := ![2, 0, 1, 3, 4], left_inv := (_ : Function.LeftInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]), right_inv := (_ : Function.RightInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]) } y : Perm (Fin 5) := { toFun := ![3, 4, 2, 0, 1], invFun := ![3, 4, 2, 0, 1], left_inv := (_ : Function.LeftInverse ![3, 4, 2, 0, 1] ![3, 4, 2, 0, 1]), right_inv := (_ : Function.RightInverse ![3, 4, 2, 0, 1] ![3, 4, 2, 0, 1]) } z : Perm (Fin 5) := { toFun := ![0, 3, 2, 1, 4], invFun := ![0, 3, 2, 1, 4], left_inv := (_ : Function.LeftInverse ![0, 3, 2, 1, 4] ![0, 3, 2, 1, 4]), right_inv := (_ : Function.RightInverse ![0, 3, 2, 1, 4] ![0, 3, 2, 1, 4]) } key : x = z * ⁅x, y * x * y⁻¹⁆ * z⁻¹ ⊢ x ∈ derivedSeries (Perm (Fin 5)) Nat.zero [PROOFSTEP] exact mem_top x [GOAL] case succ G : Type u_1 G' : Type u_2 inst✝¹ : Group G inst✝ : Group G' f : G →* G' x : Perm (Fin 5) := { toFun := ![1, 2, 0, 3, 4], invFun := ![2, 0, 1, 3, 4], left_inv := (_ : Function.LeftInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]), right_inv := (_ : Function.RightInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]) } y : Perm (Fin 5) := { toFun := ![3, 4, 2, 0, 1], invFun := ![3, 4, 2, 0, 1], left_inv := (_ : Function.LeftInverse ![3, 4, 2, 0, 1] ![3, 4, 2, 0, 1]), right_inv := (_ : Function.RightInverse ![3, 4, 2, 0, 1] ![3, 4, 2, 0, 1]) } z : Perm (Fin 5) := { toFun := ![0, 3, 2, 1, 4], invFun := ![0, 3, 2, 1, 4], left_inv := (_ : Function.LeftInverse ![0, 3, 2, 1, 4] ![0, 3, 2, 1, 4]), right_inv := (_ : Function.RightInverse ![0, 3, 2, 1, 4] ![0, 3, 2, 1, 4]) } key : x = z * ⁅x, y * x * y⁻¹⁆ * z⁻¹ n : ℕ ih : x ∈ derivedSeries (Perm (Fin 5)) n ⊢ x ∈ derivedSeries (Perm (Fin 5)) (Nat.succ n) [PROOFSTEP] rw [key, (derivedSeries_normal _ _).mem_comm_iff, inv_mul_cancel_left] [GOAL] case succ G : Type u_1 G' : Type u_2 inst✝¹ : Group G inst✝ : Group G' f : G →* G' x : Perm (Fin 5) := { toFun := ![1, 2, 0, 3, 4], invFun := ![2, 0, 1, 3, 4], left_inv := (_ : Function.LeftInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]), right_inv := (_ : Function.RightInverse ![2, 0, 1, 3, 4] ![1, 2, 0, 3, 4]) } y : Perm (Fin 5) := { toFun := ![3, 4, 2, 0, 1], invFun := ![3, 4, 2, 0, 1], left_inv := (_ : Function.LeftInverse ![3, 4, 2, 0, 1] ![3, 4, 2, 0, 1]), right_inv := (_ : Function.RightInverse ![3, 4, 2, 0, 1] ![3, 4, 2, 0, 1]) } z : Perm (Fin 5) := { toFun := ![0, 3, 2, 1, 4], invFun := ![0, 3, 2, 1, 4], left_inv := (_ : Function.LeftInverse ![0, 3, 2, 1, 4] ![0, 3, 2, 1, 4]), right_inv := (_ : Function.RightInverse ![0, 3, 2, 1, 4] ![0, 3, 2, 1, 4]) } key : x = z * ⁅x, y * x * y⁻¹⁆ * z⁻¹ n : ℕ ih : x ∈ derivedSeries (Perm (Fin 5)) n ⊢ ⁅x, y * x * y⁻¹⁆ ∈ derivedSeries (Perm (Fin 5)) (Nat.succ n) [PROOFSTEP] exact commutator_mem_commutator ih ((derivedSeries_normal _ _).conj_mem _ ih _) [GOAL] G : Type u_1 G' : Type u_2 inst✝¹ : Group G inst✝ : Group G' f : G →* G' X : Type u_3 hX : 5 ≤ Cardinal.mk X ⊢ ¬IsSolvable (Perm X) [PROOFSTEP] intro h [GOAL] G : Type u_1 G' : Type u_2 inst✝¹ : Group G inst✝ : Group G' f : G →* G' X : Type u_3 hX : 5 ≤ Cardinal.mk X h : IsSolvable (Perm X) ⊢ False [PROOFSTEP] have key : Nonempty (Fin 5 ↪ X) := by rwa [← Cardinal.lift_mk_le, Cardinal.mk_fin, Cardinal.lift_natCast, Cardinal.lift_id] [GOAL] G : Type u_1 G' : Type u_2 inst✝¹ : Group G inst✝ : Group G' f : G →* G' X : Type u_3 hX : 5 ≤ Cardinal.mk X h : IsSolvable (Perm X) ⊢ Nonempty (Fin 5 ↪ X) [PROOFSTEP] rwa [← Cardinal.lift_mk_le, Cardinal.mk_fin, Cardinal.lift_natCast, Cardinal.lift_id] [GOAL] G : Type u_1 G' : Type u_2 inst✝¹ : Group G inst✝ : Group G' f : G →* G' X : Type u_3 hX : 5 ≤ Cardinal.mk X h : IsSolvable (Perm X) key : Nonempty (Fin 5 ↪ X) ⊢ False [PROOFSTEP] exact Equiv.Perm.fin_5_not_solvable (solvable_of_solvable_injective (Equiv.Perm.viaEmbeddingHom_injective (Nonempty.some key)))
{"mathlib_filename": "Mathlib.GroupTheory.Solvable", "llama_tokens": 12293}
[GOAL] M : Type u_1 N : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 inst✝⁴ : SMul M α inst✝³ : SMul N α inst✝² : SMul M β inst✝¹ : SMul N β inst✝ : SMulCommClass M N β f : α → β hf : Injective f h₁ : ∀ (c : M) (x : α), f (c • x) = c • f x h₂ : ∀ (c : N) (x : α), f (c • x) = c • f x c₁ : M c₂ : N x : α ⊢ f (c₁ • c₂ • x) = f (c₂ • c₁ • x) [PROOFSTEP] simp only [h₁, h₂, smul_comm c₁ c₂ (f x)] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 inst✝⁴ : SMul M α inst✝³ : SMul N α inst✝² : SMul M β inst✝¹ : SMul N β inst✝ : SMulCommClass M N α f : α → β hf : Surjective f h₁ : ∀ (c : M) (x : α), f (c • x) = c • f x h₂ : ∀ (c : N) (x : α), f (c • x) = c • f x c₁ : M c₂ : N x : α ⊢ c₁ • c₂ • f x = c₂ • c₁ • f x [PROOFSTEP] simp only [← h₁, ← h₂, smul_comm c₁ c₂ x] [GOAL] M✝ : Type u_1 N : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α✝ : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 M : Type u_10 α : Type u_11 inst✝¹ : CommMonoid M inst✝ : MulAction M α a a' : M b : α ⊢ a • a' • b = a' • a • b [PROOFSTEP] rw [← mul_smul, mul_comm, mul_smul] [GOAL] M✝ : Type u_1 N : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α✝ : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 M : Type u_10 α : Type u_11 inst✝² : SMul M α inst✝¹ : SMul Mᵐᵒᵖ α inst✝ : IsCentralScalar M α m : Mᵐᵒᵖ a : α ⊢ MulOpposite.unop m • a = m • a [PROOFSTEP] induction m using MulOpposite.rec' [GOAL] case h M✝ : Type u_1 N : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α✝ : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 M : Type u_10 α : Type u_11 inst✝² : SMul M α inst✝¹ : SMul Mᵐᵒᵖ α inst✝ : IsCentralScalar M α a : α X✝ : M ⊢ MulOpposite.unop (MulOpposite.op X✝) • a = MulOpposite.op X✝ • a [PROOFSTEP] exact (IsCentralScalar.op_smul_eq_smul _ a).symm [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 inst✝⁴ : SMul M α inst✝³ : SMul Mᵐᵒᵖ α inst✝² : IsCentralScalar M α inst✝¹ : SMul N α inst✝ : SMulCommClass M N α m : Mᵐᵒᵖ n : N a : α ⊢ m • n • a = n • m • a [PROOFSTEP] rw [← unop_smul_eq_smul m (n • a), ← unop_smul_eq_smul m a, smul_comm] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 inst✝⁴ : SMul M α inst✝³ : SMul N α inst✝² : SMul Nᵐᵒᵖ α inst✝¹ : IsCentralScalar N α inst✝ : SMulCommClass M N α m : M n : Nᵐᵒᵖ a : α ⊢ m • n • a = n • m • a [PROOFSTEP] rw [← unop_smul_eq_smul n (m • a), ← unop_smul_eq_smul n a, smul_comm] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 inst✝⁷ : SMul M α inst✝⁶ : SMul Mᵐᵒᵖ α inst✝⁵ : IsCentralScalar M α inst✝⁴ : SMul M N inst✝³ : SMul Mᵐᵒᵖ N inst✝² : IsCentralScalar M N inst✝¹ : SMul N α inst✝ : IsScalarTower M N α m : Mᵐᵒᵖ n : N a : α ⊢ (m • n) • a = m • n • a [PROOFSTEP] rw [← unop_smul_eq_smul m (n • a), ← unop_smul_eq_smul m n, smul_assoc] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 inst✝⁵ : SMul M α inst✝⁴ : SMul M N inst✝³ : SMul N α inst✝² : SMul Nᵐᵒᵖ α inst✝¹ : IsCentralScalar N α inst✝ : IsScalarTower M N α m : M n : Nᵐᵒᵖ a : α ⊢ (m • n) • a = m • n • a [PROOFSTEP] rw [← unop_smul_eq_smul n a, ← unop_smul_eq_smul (m • n) a, MulOpposite.unop_smul, smul_assoc] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 inst✝³ : SMul M α inst✝² : SMul M β inst✝¹ : SMul α β inst✝ : IsScalarTower M α β g : N → M ⊢ Sort ?u.10323 [PROOFSTEP] haveI := comp α g [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 inst✝³ : SMul M α inst✝² : SMul M β inst✝¹ : SMul α β inst✝ : IsScalarTower M α β g : N → M this : SMul N α ⊢ Sort ?u.10323 [PROOFSTEP] haveI := comp β g [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 inst✝³ : SMul M α inst✝² : SMul M β inst✝¹ : SMul α β inst✝ : IsScalarTower M α β g : N → M this✝ : SMul N α this : SMul N β ⊢ Sort ?u.10323 [PROOFSTEP] exact IsScalarTower N α β [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 inst✝⁷ : SMul α β inst✝⁶ : SMul α γ inst✝⁵ : SMul β δ inst✝⁴ : SMul α δ inst✝³ : SMul γ δ inst✝² : IsScalarTower α β δ inst✝¹ : IsScalarTower α γ δ inst✝ : SMulCommClass β γ δ a : α b : β c : γ d : δ ⊢ (a • b) • c • d = (a • c) • b • d [PROOFSTEP] rw [smul_assoc, smul_assoc, smul_comm b] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 inst✝¹ : SMul M α p : Prop inst✝ : Decidable p a₁ a₂ : M b : α ⊢ (if p then a₁ else a₂) • b = if p then a₁ • b else a₂ • b [PROOFSTEP] split_ifs [GOAL] case pos M : Type u_1 N : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 inst✝¹ : SMul M α p : Prop inst✝ : Decidable p a₁ a₂ : M b : α h✝ : p ⊢ a₁ • b = a₁ • b [PROOFSTEP] rfl [GOAL] case neg M : Type u_1 N : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 inst✝¹ : SMul M α p : Prop inst✝ : Decidable p a₁ a₂ : M b : α h✝ : ¬p ⊢ a₂ • b = a₂ • b [PROOFSTEP] rfl [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 inst✝¹ : SMul M α p : Prop inst✝ : Decidable p a : M b₁ b₂ : α ⊢ (a • if p then b₁ else b₂) = if p then a • b₁ else a • b₂ [PROOFSTEP] split_ifs [GOAL] case pos M : Type u_1 N : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 inst✝¹ : SMul M α p : Prop inst✝ : Decidable p a : M b₁ b₂ : α h✝ : p ⊢ a • b₁ = a • b₁ [PROOFSTEP] rfl [GOAL] case neg M : Type u_1 N : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 inst✝¹ : SMul M α p : Prop inst✝ : Decidable p a : M b₁ b₂ : α h✝ : ¬p ⊢ a • b₂ = a • b₂ [PROOFSTEP] rfl [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 inst✝² : Monoid M inst✝¹ : MulAction M α inst✝ : SMul M β f : β → α hf : Injective f smul : ∀ (c : M) (x : β), f (c • x) = c • f x c₁ c₂ : M x : β ⊢ f ((c₁ * c₂) • x) = f (c₁ • c₂ • x) [PROOFSTEP] simp only [smul, mul_smul] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 inst✝² : Monoid M inst✝¹ : MulAction M α inst✝ : SMul M β f : α → β hf : Surjective f smul : ∀ (c : M) (x : α), f (c • x) = c • f x y : β ⊢ 1 • y = y [PROOFSTEP] rcases hf y with ⟨x, rfl⟩ [GOAL] case intro M : Type u_1 N : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 inst✝² : Monoid M inst✝¹ : MulAction M α inst✝ : SMul M β f : α → β hf : Surjective f smul : ∀ (c : M) (x : α), f (c • x) = c • f x x : α ⊢ 1 • f x = f x [PROOFSTEP] rw [← smul, one_smul] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 inst✝² : Monoid M inst✝¹ : MulAction M α inst✝ : SMul M β f : α → β hf : Surjective f smul : ∀ (c : M) (x : α), f (c • x) = c • f x c₁ c₂ : M y : β ⊢ (c₁ * c₂) • y = c₁ • c₂ • y [PROOFSTEP] rcases hf y with ⟨x, rfl⟩ [GOAL] case intro M : Type u_1 N : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 inst✝² : Monoid M inst✝¹ : MulAction M α inst✝ : SMul M β f : α → β hf : Surjective f smul : ∀ (c : M) (x : α), f (c • x) = c • f x c₁ c₂ : M x : α ⊢ (c₁ * c₂) • f x = c₁ • c₂ • f x [PROOFSTEP] simp only [← smul, mul_smul] [GOAL] M✝ : Type u_1 N : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 inst✝⁵ : Monoid M✝ inst✝⁴ : MulAction M✝ α R : Type u_10 S : Type u_11 M : Type u_12 inst✝³ : Monoid R inst✝² : MulAction R M inst✝¹ : Monoid S inst✝ : SMul S M f : R →* S hf : Surjective ↑f hsmul : ∀ (c : R) (x : M), ↑f c • x = c • x b : M ⊢ 1 • b = b [PROOFSTEP] rw [← f.map_one, hsmul, one_smul] [GOAL] M✝ : Type u_1 N : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 inst✝⁵ : Monoid M✝ inst✝⁴ : MulAction M✝ α R : Type u_10 S : Type u_11 M : Type u_12 inst✝³ : Monoid R inst✝² : MulAction R M inst✝¹ : Monoid S inst✝ : SMul S M f : R →* S hf : Surjective ↑f hsmul : ∀ (c : R) (x : M), ↑f c • x = c • x a b : R x : M ⊢ (↑f a * ↑f b) • x = ↑f a • ↑f b • x [PROOFSTEP] simp only [← f.map_mul, hsmul, mul_smul] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 inst✝⁴ : Monoid M inst✝³ : MulAction M α inst✝² : Mul α r s : M x y : α inst✝¹ : IsScalarTower M α α inst✝ : SMulCommClass M α α ⊢ r • x * s • y = (r * s) • (x * y) [PROOFSTEP] rw [smul_mul_assoc, mul_smul_comm, ← smul_assoc, smul_eq_mul] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 inst✝¹ : Monoid M inst✝ : MulAction M α y₁ y₂ : α H : (fun y x => x • y) y₁ = (fun y x => x • y) y₂ ⊢ 1 • y₁ = 1 • y₂ [PROOFSTEP] convert congr_fun H 1 [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 inst✝² : Monoid M inst✝¹ : MulAction M α inst✝ : Monoid N g : N →* M x✝ : α ⊢ 1 • x✝ = x✝ [PROOFSTEP] simp [(· • ·)] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 inst✝² : Monoid M inst✝¹ : MulAction M α inst✝ : Monoid N g : N →* M x✝ : α ⊢ SMul.smul 1 x✝ = x✝ [PROOFSTEP] apply MulAction.one_smul [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 inst✝² : Monoid M inst✝¹ : MulAction M α inst✝ : Monoid N g : N →* M x✝² x✝¹ : N x✝ : α ⊢ (x✝² * x✝¹) • x✝ = x✝² • x✝¹ • x✝ [PROOFSTEP] simp [(· • ·)] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 inst✝² : Monoid M inst✝¹ : MulAction M α inst✝ : Monoid N g : N →* M x✝² x✝¹ : N x✝ : α ⊢ SMul.smul (↑g x✝² * ↑g x✝¹) x✝ = SMul.smul (↑g x✝²) (SMul.smul (↑g x✝¹) x✝) [PROOFSTEP] apply MulAction.mul_smul [GOAL] M✝ : Type u_1 N✝ : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 M : Type u_10 N : Type u_11 inst✝⁴ : Monoid N inst✝³ : SMul M N inst✝² : MulAction N α inst✝¹ : SMul M α inst✝ : IsScalarTower M N α x : M y : α ⊢ (x • 1) • y = x • y [PROOFSTEP] rw [smul_assoc, one_smul] [GOAL] M✝ : Type u_1 N✝ : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 M : Type u_10 N : Type u_11 inst✝² : MulOneClass N inst✝¹ : SMul M N inst✝ : IsScalarTower M N N x : M y : N ⊢ x • 1 * y = x • y [PROOFSTEP] rw [smul_mul_assoc, one_mul] [GOAL] M✝ : Type u_1 N✝ : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 M : Type u_10 N : Type u_11 inst✝² : MulOneClass N inst✝¹ : SMul M N inst✝ : SMulCommClass M N N x : M y : N ⊢ y * x • 1 = x • y [PROOFSTEP] rw [← smul_eq_mul, ← smul_comm, smul_eq_mul, mul_one] [GOAL] M✝ : Type u_1 N✝ : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 M : Type u_10 N : Type u_11 inst✝¹ : Monoid N inst✝ : SMul M N h : ∀ (x : M) (y : N), x • 1 * y = x • y x : M y z : N ⊢ (x • y) • z = x • y • z [PROOFSTEP] rw [← h, smul_eq_mul, mul_assoc, h, smul_eq_mul] [GOAL] M✝ : Type u_1 N✝ : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 M : Type u_10 N : Type u_11 inst✝¹ : Monoid N inst✝ : SMul M N H : ∀ (x : M) (y : N), y * x • 1 = x • y x : M y z : N ⊢ x • y • z = y • x • z [PROOFSTEP] rw [← H x z, smul_eq_mul, ← H, smul_eq_mul, mul_assoc] [GOAL] M✝ : Type u_1 N✝ : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 M : Type ?u.30564 N : Type ?u.30567 inst✝³ : Monoid M inst✝² : Monoid N inst✝¹ : MulAction M N inst✝ : IsScalarTower M N N x y : M ⊢ OneHom.toFun { toFun := fun x => x • 1, map_one' := (_ : 1 • 1 = 1) } (x * y) = OneHom.toFun { toFun := fun x => x • 1, map_one' := (_ : 1 • 1 = 1) } x * OneHom.toFun { toFun := fun x => x • 1, map_one' := (_ : 1 • 1 = 1) } y [PROOFSTEP] rw [smul_one_mul, smul_smul] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 inst✝³ : Zero A inst✝² : SMulZeroClass M A inst✝¹ : Zero B inst✝ : SMul M B f : ZeroHom B A hf : Injective ↑f smul : ∀ (c : M) (x : B), ↑f (c • x) = c • ↑f x c : M ⊢ ↑f (c • 0) = ↑f 0 [PROOFSTEP] simp only [smul, map_zero, smul_zero] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 inst✝³ : Zero A inst✝² : SMulZeroClass M A inst✝¹ : Zero B inst✝ : SMul M B f : ZeroHom A B smul : ∀ (c : M) (x : A), ↑f (c • x) = c • ↑f x c : M ⊢ c • 0 = 0 [PROOFSTEP] rw [← map_zero f, ← smul, smul_zero] [GOAL] M✝ : Type u_1 N : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 inst✝⁴ : Zero A inst✝³ : SMulZeroClass M✝ A R : Type u_10 S : Type u_11 M : Type u_12 inst✝² : Zero M inst✝¹ : SMulZeroClass R M inst✝ : SMul S M f : R → S hf : Surjective f hsmul : ∀ (c : R) (x : M), f c • x = c • x c : R ⊢ f c • 0 = 0 [PROOFSTEP] rw [hsmul, smul_zero] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 inst✝² : AddZeroClass A inst✝¹ : DistribSMul M A inst✝ : AddZeroClass B r : M f : B →+ A ⊢ (fun a => r • ↑f a) 0 = 0 [PROOFSTEP] simp only [map_zero, smul_zero] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 inst✝² : AddZeroClass A inst✝¹ : DistribSMul M A inst✝ : AddZeroClass B r : M f : B →+ A x y : B ⊢ ZeroHom.toFun { toFun := fun a => r • ↑f a, map_zero' := (_ : r • ↑f 0 = 0) } (x + y) = ZeroHom.toFun { toFun := fun a => r • ↑f a, map_zero' := (_ : r • ↑f 0 = 0) } x + ZeroHom.toFun { toFun := fun a => r • ↑f a, map_zero' := (_ : r • ↑f 0 = 0) } y [PROOFSTEP] simp only [map_add, smul_add] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 inst✝³ : AddZeroClass A inst✝² : DistribSMul M A inst✝¹ : AddZeroClass B inst✝ : SMul M B f : B →+ A hf : Injective ↑f smul : ∀ (c : M) (x : B), ↑f (c • x) = c • ↑f x src✝ : SMulZeroClass M B := Injective.smulZeroClass (↑f) hf smul c : M x y : B ⊢ ↑f (c • (x + y)) = ↑f (c • x + c • y) [PROOFSTEP] simp only [smul, map_add, smul_add] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 inst✝³ : AddZeroClass A inst✝² : DistribSMul M A inst✝¹ : AddZeroClass B inst✝ : SMul M B f : A →+ B hf : Surjective ↑f smul : ∀ (c : M) (x : A), ↑f (c • x) = c • ↑f x src✝ : SMulZeroClass M B := ZeroHom.smulZeroClass (↑f) smul c : M x y : B ⊢ c • (x + y) = c • x + c • y [PROOFSTEP] rcases hf x with ⟨x, rfl⟩ [GOAL] case intro M : Type u_1 N : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 inst✝³ : AddZeroClass A inst✝² : DistribSMul M A inst✝¹ : AddZeroClass B inst✝ : SMul M B f : A →+ B hf : Surjective ↑f smul : ∀ (c : M) (x : A), ↑f (c • x) = c • ↑f x src✝ : SMulZeroClass M B := ZeroHom.smulZeroClass (↑f) smul c : M y : B x : A ⊢ c • (↑f x + y) = c • ↑f x + c • y [PROOFSTEP] rcases hf y with ⟨y, rfl⟩ [GOAL] case intro.intro M : Type u_1 N : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 inst✝³ : AddZeroClass A inst✝² : DistribSMul M A inst✝¹ : AddZeroClass B inst✝ : SMul M B f : A →+ B hf : Surjective ↑f smul : ∀ (c : M) (x : A), ↑f (c • x) = c • ↑f x src✝ : SMulZeroClass M B := ZeroHom.smulZeroClass (↑f) smul c : M x y : A ⊢ c • (↑f x + ↑f y) = c • ↑f x + c • ↑f y [PROOFSTEP] simp only [smul_add, ← smul, ← map_add] [GOAL] M✝ : Type u_1 N : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 inst✝⁴ : AddZeroClass A inst✝³ : DistribSMul M✝ A R : Type u_10 S : Type u_11 M : Type u_12 inst✝² : AddZeroClass M inst✝¹ : DistribSMul R M inst✝ : SMul S M f : R → S hf : Surjective f hsmul : ∀ (c : R) (x : M), f c • x = c • x src✝ : SMulZeroClass S M := smulZeroClassLeft f hf hsmul c : R x y : M ⊢ f c • (x + y) = f c • x + f c • y [PROOFSTEP] simp only [hsmul, smul_add] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 inst✝² : Monoid M inst✝¹ : AddGroup A inst✝ : DistribMulAction M A r : M x : A ⊢ r • -x + r • x = 0 [PROOFSTEP] rw [← smul_add, neg_add_self, smul_zero] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 inst✝² : Monoid M inst✝¹ : AddGroup A inst✝ : DistribMulAction M A r : M x y : A ⊢ r • (x - y) = r • x - r • y [PROOFSTEP] rw [sub_eq_add_neg, sub_eq_add_neg, smul_add, smul_neg] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 inst✝⁴ : Monoid M inst✝³ : Monoid A inst✝² : MulDistribMulAction M A inst✝¹ : Monoid B inst✝ : SMul M B f : B →* A hf : Injective ↑f smul : ∀ (c : M) (x : B), ↑f (c • x) = c • ↑f x src✝ : MulAction M B := Injective.mulAction (↑f) hf smul c : M x y : B ⊢ ↑f (c • (x * y)) = ↑f (c • x * c • y) [PROOFSTEP] simp only [smul, f.map_mul, smul_mul'] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 inst✝⁴ : Monoid M inst✝³ : Monoid A inst✝² : MulDistribMulAction M A inst✝¹ : Monoid B inst✝ : SMul M B f : B →* A hf : Injective ↑f smul : ∀ (c : M) (x : B), ↑f (c • x) = c • ↑f x src✝ : MulAction M B := Injective.mulAction (↑f) hf smul c : M ⊢ ↑f (c • 1) = ↑f 1 [PROOFSTEP] simp only [smul, f.map_one, smul_one] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 inst✝⁴ : Monoid M inst✝³ : Monoid A inst✝² : MulDistribMulAction M A inst✝¹ : Monoid B inst✝ : SMul M B f : A →* B hf : Surjective ↑f smul : ∀ (c : M) (x : A), ↑f (c • x) = c • ↑f x src✝ : MulAction M B := Surjective.mulAction (↑f) hf smul c : M x y : B ⊢ c • (x * y) = c • x * c • y [PROOFSTEP] rcases hf x with ⟨x, rfl⟩ [GOAL] case intro M : Type u_1 N : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 inst✝⁴ : Monoid M inst✝³ : Monoid A inst✝² : MulDistribMulAction M A inst✝¹ : Monoid B inst✝ : SMul M B f : A →* B hf : Surjective ↑f smul : ∀ (c : M) (x : A), ↑f (c • x) = c • ↑f x src✝ : MulAction M B := Surjective.mulAction (↑f) hf smul c : M y : B x : A ⊢ c • (↑f x * y) = c • ↑f x * c • y [PROOFSTEP] rcases hf y with ⟨y, rfl⟩ [GOAL] case intro.intro M : Type u_1 N : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 inst✝⁴ : Monoid M inst✝³ : Monoid A inst✝² : MulDistribMulAction M A inst✝¹ : Monoid B inst✝ : SMul M B f : A →* B hf : Surjective ↑f smul : ∀ (c : M) (x : A), ↑f (c • x) = c • ↑f x src✝ : MulAction M B := Surjective.mulAction (↑f) hf smul c : M x y : A ⊢ c • (↑f x * ↑f y) = c • ↑f x * c • ↑f y [PROOFSTEP] simp only [smul_mul', ← smul, ← f.map_mul] [GOAL] M : Type u_1 N : Type u_2 G : Type u_3 A : Type u_4 B : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 δ : Type u_9 inst✝⁴ : Monoid M inst✝³ : Monoid A inst✝² : MulDistribMulAction M A inst✝¹ : Monoid B inst✝ : SMul M B f : A →* B hf : Surjective ↑f smul : ∀ (c : M) (x : A), ↑f (c • x) = c • ↑f x src✝ : MulAction M B := Surjective.mulAction (↑f) hf smul c : M ⊢ c • 1 = 1 [PROOFSTEP] rw [← f.map_one, ← smul, smul_one]
{"mathlib_filename": "Mathlib.GroupTheory.GroupAction.Defs", "llama_tokens": 11331}
[GOAL] α : Type u_1 M : Type u_2 G : Type u_3 G₀ : Type u_4 R : Type u_5 K : Type u_6 inst✝ : Monoid M ⊢ ∀ (b : M), 1 • b = b [PROOFSTEP] simp only [units_smul_def, ofConjAct_one, Units.val_one, one_mul, inv_one, mul_one, forall_const] [GOAL] α : Type u_1 M : Type u_2 G : Type u_3 G₀ : Type u_4 R : Type u_5 K : Type u_6 inst✝ : Monoid M ⊢ ∀ (x y : ConjAct Mˣ) (b : M), (x * y) • b = x • y • b [PROOFSTEP] simp only [units_smul_def] [GOAL] α : Type u_1 M : Type u_2 G : Type u_3 G₀ : Type u_4 R : Type u_5 K : Type u_6 inst✝ : Monoid M ⊢ ∀ (x y : ConjAct Mˣ) (b : M), ↑(↑ofConjAct (x * y)) * b * ↑(↑ofConjAct (x * y))⁻¹ = ↑(↑ofConjAct x) * (↑(↑ofConjAct y) * b * ↑(↑ofConjAct y)⁻¹) * ↑(↑ofConjAct x)⁻¹ [PROOFSTEP] simp only [map_mul, Units.val_mul, mul_assoc, mul_inv_rev, forall_const, forall] [GOAL] α : Type u_1 M : Type u_2 G : Type u_3 G₀ : Type u_4 R : Type u_5 K : Type u_6 inst✝ : Monoid M ⊢ ∀ (r : ConjAct Mˣ) (x y : M), r • (x * y) = r • x * r • y [PROOFSTEP] simp only [units_smul_def] [GOAL] α : Type u_1 M : Type u_2 G : Type u_3 G₀ : Type u_4 R : Type u_5 K : Type u_6 inst✝ : Monoid M ⊢ ∀ (r : ConjAct Mˣ) (x y : M), ↑(↑ofConjAct r) * (x * y) * ↑(↑ofConjAct r)⁻¹ = ↑(↑ofConjAct r) * x * ↑(↑ofConjAct r)⁻¹ * (↑(↑ofConjAct r) * y * ↑(↑ofConjAct r)⁻¹) [PROOFSTEP] simp only [mul_assoc, Units.inv_mul_cancel_left, forall_const, forall] [GOAL] α : Type u_1 M : Type u_2 G : Type u_3 G₀ : Type u_4 R : Type u_5 K : Type u_6 inst✝ : Monoid M ⊢ ∀ (r : ConjAct Mˣ), r • 1 = 1 [PROOFSTEP] simp [units_smul_def, mul_one, Units.mul_inv, forall, forall_const] [GOAL] α : Type u_1 M : Type u_2 G : Type u_3 G₀ : Type u_4 R : Type u_5 K : Type u_6 inst✝³ : Monoid M inst✝² : SMul α M inst✝¹ : SMulCommClass α M M inst✝ : IsScalarTower α M M a : α um : ConjAct Mˣ m : M ⊢ a • um • m = um • a • m [PROOFSTEP] rw [units_smul_def, units_smul_def, mul_smul_comm, smul_mul_assoc] [GOAL] α : Type u_1 M : Type u_2 G : Type u_3 G₀ : Type u_4 R : Type u_5 K : Type u_6 inst✝ : Semiring R src✝ : MulDistribMulAction (ConjAct Rˣ) R := unitsMulDistribMulAction ⊢ ∀ (a : ConjAct Rˣ), a • 0 = 0 [PROOFSTEP] simp only [units_smul_def, mul_zero, zero_mul, forall, forall_const] [GOAL] α : Type u_1 M : Type u_2 G : Type u_3 G₀ : Type u_4 R : Type u_5 K : Type u_6 inst✝ : Semiring R src✝ : MulDistribMulAction (ConjAct Rˣ) R := unitsMulDistribMulAction ⊢ ∀ (a : ConjAct Rˣ) (x y : R), a • (x + y) = a • x + a • y [PROOFSTEP] simp only [units_smul_def] [GOAL] α : Type u_1 M : Type u_2 G : Type u_3 G₀ : Type u_4 R : Type u_5 K : Type u_6 inst✝ : Semiring R src✝ : MulDistribMulAction (ConjAct Rˣ) R := unitsMulDistribMulAction ⊢ ∀ (a : ConjAct Rˣ) (x y : R), ↑(↑ofConjAct a) * (x + y) * ↑(↑ofConjAct a)⁻¹ = ↑(↑ofConjAct a) * x * ↑(↑ofConjAct a)⁻¹ + ↑(↑ofConjAct a) * y * ↑(↑ofConjAct a)⁻¹ [PROOFSTEP] simp only [mul_add, add_mul, forall_const, forall] [GOAL] α : Type u_1 M : Type u_2 G : Type u_3 G₀ : Type u_4 R : Type u_5 K : Type u_6 inst✝ : GroupWithZero G₀ ⊢ ∀ (b : G₀), 1 • b = b [PROOFSTEP] simp only [smul_def] [GOAL] α : Type u_1 M : Type u_2 G : Type u_3 G₀ : Type u_4 R : Type u_5 K : Type u_6 inst✝ : GroupWithZero G₀ ⊢ ∀ (b : G₀), ↑ofConjAct 1 * b * (↑ofConjAct 1)⁻¹ = b [PROOFSTEP] simp only [map_one, one_mul, inv_one, mul_one, forall_const] [GOAL] α : Type u_1 M : Type u_2 G : Type u_3 G₀ : Type u_4 R : Type u_5 K : Type u_6 inst✝ : GroupWithZero G₀ ⊢ ∀ (x y : ConjAct G₀) (b : G₀), (x * y) • b = x • y • b [PROOFSTEP] simp only [smul_def] [GOAL] α : Type u_1 M : Type u_2 G : Type u_3 G₀ : Type u_4 R : Type u_5 K : Type u_6 inst✝ : GroupWithZero G₀ ⊢ ∀ (x y : ConjAct G₀) (b : G₀), ↑ofConjAct (x * y) * b * (↑ofConjAct (x * y))⁻¹ = ↑ofConjAct x * (↑ofConjAct y * b * (↑ofConjAct y)⁻¹) * (↑ofConjAct x)⁻¹ [PROOFSTEP] simp only [map_mul, mul_assoc, mul_inv_rev, forall_const, forall] [GOAL] α : Type u_1 M : Type u_2 G : Type u_3 G₀ : Type u_4 R : Type u_5 K : Type u_6 inst✝³ : GroupWithZero G₀ inst✝² : SMul α G₀ inst✝¹ : SMulCommClass α G₀ G₀ inst✝ : IsScalarTower α G₀ G₀ a : α ug : ConjAct G₀ g : G₀ ⊢ a • ug • g = ug • a • g [PROOFSTEP] rw [smul_def, smul_def, mul_smul_comm, smul_mul_assoc] [GOAL] α : Type u_1 M : Type u_2 G : Type u_3 G₀ : Type u_4 R : Type u_5 K : Type u_6 inst✝ : DivisionRing K src✝ : MulAction (ConjAct K) K := mulAction₀ ⊢ ∀ (a : ConjAct K), a • 0 = 0 [PROOFSTEP] simp only [smul_def] [GOAL] α : Type u_1 M : Type u_2 G : Type u_3 G₀ : Type u_4 R : Type u_5 K : Type u_6 inst✝ : DivisionRing K src✝ : MulAction (ConjAct K) K := mulAction₀ ⊢ ∀ (a : ConjAct K), ↑ofConjAct a * 0 * (↑ofConjAct a)⁻¹ = 0 [PROOFSTEP] simp only [mul_zero, zero_mul, forall, forall_const] [GOAL] α : Type u_1 M : Type u_2 G : Type u_3 G₀ : Type u_4 R : Type u_5 K : Type u_6 inst✝ : DivisionRing K src✝ : MulAction (ConjAct K) K := mulAction₀ ⊢ ∀ (a : ConjAct K) (x y : K), a • (x + y) = a • x + a • y [PROOFSTEP] simp only [smul_def] [GOAL] α : Type u_1 M : Type u_2 G : Type u_3 G₀ : Type u_4 R : Type u_5 K : Type u_6 inst✝ : DivisionRing K src✝ : MulAction (ConjAct K) K := mulAction₀ ⊢ ∀ (a : ConjAct K) (x y : K), ↑ofConjAct a * (x + y) * (↑ofConjAct a)⁻¹ = ↑ofConjAct a * x * (↑ofConjAct a)⁻¹ + ↑ofConjAct a * y * (↑ofConjAct a)⁻¹ [PROOFSTEP] simp only [mul_add, add_mul, forall_const, forall] [GOAL] α : Type u_1 M : Type u_2 G : Type u_3 G₀ : Type u_4 R : Type u_5 K : Type u_6 inst✝ : Group G ⊢ ∀ (b : G), 1 • b = b [PROOFSTEP] simp only [smul_def, ofConjAct_one, one_mul, inv_one, mul_one, forall_const] [GOAL] α : Type u_1 M : Type u_2 G : Type u_3 G₀ : Type u_4 R : Type u_5 K : Type u_6 inst✝ : Group G ⊢ ∀ (x y : ConjAct G) (b : G), (x * y) • b = x • y • b [PROOFSTEP] simp only [smul_def] [GOAL] α : Type u_1 M : Type u_2 G : Type u_3 G₀ : Type u_4 R : Type u_5 K : Type u_6 inst✝ : Group G ⊢ ∀ (x y : ConjAct G) (b : G), ↑ofConjAct (x * y) * b * (↑ofConjAct (x * y))⁻¹ = ↑ofConjAct x * (↑ofConjAct y * b * (↑ofConjAct y)⁻¹) * (↑ofConjAct x)⁻¹ [PROOFSTEP] simp only [map_mul, mul_assoc, mul_inv_rev, forall_const, forall] [GOAL] α : Type u_1 M : Type u_2 G : Type u_3 G₀ : Type u_4 R : Type u_5 K : Type u_6 inst✝ : Group G ⊢ ∀ (r : ConjAct G) (x y : G), r • (x * y) = r • x * r • y [PROOFSTEP] simp only [smul_def] [GOAL] α : Type u_1 M : Type u_2 G : Type u_3 G₀ : Type u_4 R : Type u_5 K : Type u_6 inst✝ : Group G ⊢ ∀ (r : ConjAct G) (x y : G), ↑ofConjAct r * (x * y) * (↑ofConjAct r)⁻¹ = ↑ofConjAct r * x * (↑ofConjAct r)⁻¹ * (↑ofConjAct r * y * (↑ofConjAct r)⁻¹) [PROOFSTEP] simp only [mul_assoc, inv_mul_cancel_left, forall_const, forall] [GOAL] α : Type u_1 M : Type u_2 G : Type u_3 G₀ : Type u_4 R : Type u_5 K : Type u_6 inst✝ : Group G ⊢ ∀ (r : ConjAct G), r • 1 = 1 [PROOFSTEP] simp only [smul_def, mul_one, mul_right_inv, forall, forall_const] [GOAL] α : Type u_1 M : Type u_2 G : Type u_3 G₀ : Type u_4 R : Type u_5 K : Type u_6 inst✝³ : Group G inst✝² : SMul α G inst✝¹ : SMulCommClass α G G inst✝ : IsScalarTower α G G a : α ug : ConjAct G g : G ⊢ a • ug • g = ug • a • g [PROOFSTEP] rw [smul_def, smul_def, mul_smul_comm, smul_mul_assoc] [GOAL] α : Type u_1 M : Type u_2 G : Type u_3 G₀ : Type u_4 R : Type u_5 K : Type u_6 inst✝ : Group G ⊢ fixedPoints (ConjAct G) G = ↑(center G) [PROOFSTEP] ext x [GOAL] case h α : Type u_1 M : Type u_2 G : Type u_3 G₀ : Type u_4 R : Type u_5 K : Type u_6 inst✝ : Group G x : G ⊢ x ∈ fixedPoints (ConjAct G) G ↔ x ∈ ↑(center G) [PROOFSTEP] simp [mem_center_iff, smul_def, mul_inv_eq_iff_eq_mul] [GOAL] α : Type u_1 M : Type u_2 G : Type u_3 G₀ : Type u_4 R : Type u_5 K : Type u_6 inst✝ : Group G g h : G ⊢ g ∈ orbit (ConjAct G) h ↔ IsConj g h [PROOFSTEP] rw [isConj_comm, isConj_iff, mem_orbit_iff] [GOAL] α : Type u_1 M : Type u_2 G : Type u_3 G₀ : Type u_4 R : Type u_5 K : Type u_6 inst✝ : Group G g h : G ⊢ (∃ x, x • h = g) ↔ ∃ c, c * h * c⁻¹ = g [PROOFSTEP] rfl [GOAL] α : Type u_1 M : Type u_2 G : Type u_3 G₀ : Type u_4 R : Type u_5 K : Type u_6 inst✝ : Group G g h : G ⊢ Setoid.Rel (orbitRel (ConjAct G) G) g h = IsConj g h [PROOFSTEP] rw [orbitRel_apply, mem_orbit_conjAct] [GOAL] α : Type u_1 M : Type u_2 G : Type u_3 G₀ : Type u_4 R : Type u_5 K : Type u_6 inst✝¹ inst✝ : Group G g : G ⊢ orbit (ConjAct G) g = ConjClasses.carrier (ConjClasses.mk g) [PROOFSTEP] ext h [GOAL] case h α : Type u_1 M : Type u_2 G : Type u_3 G₀ : Type u_4 R : Type u_5 K : Type u_6 inst✝¹ inst✝ : Group G g h : G ⊢ h ∈ orbit (ConjAct G) g ↔ h ∈ ConjClasses.carrier (ConjClasses.mk g) [PROOFSTEP] rw [ConjClasses.mem_carrier_iff_mk_eq, ConjClasses.mk_eq_mk_iff_isConj, mem_orbit_conjAct] [GOAL] α : Type u_1 M : Type u_2 G : Type u_3 G₀ : Type u_4 R : Type u_5 K : Type u_6 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H g : G h : { x // x ∈ H } ⊢ ↑(↑(MulEquiv.symm (↑MulAut.conjNormal g)) h) = g⁻¹ * ↑h * g [PROOFSTEP] change _ * _⁻¹⁻¹ = _ [GOAL] α : Type u_1 M : Type u_2 G : Type u_3 G₀ : Type u_4 R : Type u_5 K : Type u_6 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H g : G h : { x // x ∈ H } ⊢ ↑ofConjAct (↑(MulEquiv.toMonoidHom toConjAct) g)⁻¹ * ↑h * (↑(MulEquiv.toMonoidHom toConjAct) g)⁻¹⁻¹ = g⁻¹ * ↑h * g [PROOFSTEP] rw [inv_inv] [GOAL] α : Type u_1 M : Type u_2 G : Type u_3 G₀ : Type u_4 R : Type u_5 K : Type u_6 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H g : G h : { x // x ∈ H } ⊢ ↑ofConjAct (↑(MulEquiv.toMonoidHom toConjAct) g)⁻¹ * ↑h * ↑(MulEquiv.toMonoidHom toConjAct) g = g⁻¹ * ↑h * g [PROOFSTEP] rfl [GOAL] α : Type u_1 M : Type u_2 G : Type u_3 G₀ : Type u_4 R : Type u_5 K✝ : Type u_6 inst✝ : Group G H : Subgroup G hH : Normal H K : Subgroup { x // x ∈ H } h : Characteristic K a : G ha : a ∈ map (Subgroup.subtype H) K b : G ⊢ b * a * b⁻¹ ∈ map (Subgroup.subtype H) K [PROOFSTEP] obtain ⟨a, ha, rfl⟩ := ha [GOAL] case intro.intro α : Type u_1 M : Type u_2 G : Type u_3 G₀ : Type u_4 R : Type u_5 K✝ : Type u_6 inst✝ : Group G H : Subgroup G hH : Normal H K : Subgroup { x // x ∈ H } h : Characteristic K b : G a : { x // x ∈ H } ha : a ∈ ↑K ⊢ b * ↑(Subgroup.subtype H) a * b⁻¹ ∈ map (Subgroup.subtype H) K [PROOFSTEP] exact K.apply_coe_mem_map H.subtype ⟨_, (SetLike.ext_iff.mp (h.fixed (MulAut.conjNormal b)) a).mpr ha⟩
{"mathlib_filename": "Mathlib.GroupTheory.GroupAction.ConjAct", "llama_tokens": 5282}
[GOAL] M : Type u_1 α : Type u_2 inst✝¹ : Monoid M inst✝ : MulAction M α s : Set α x y : M hx : x ∈ {ϕ | ∀ (x : ↑s), ϕ • ↑x = ↑x} hy : y ∈ {ϕ | ∀ (x : ↑s), ϕ • ↑x = ↑x} z : ↑s ⊢ (x * y) • ↑z = ↑z [PROOFSTEP] rw [mul_smul, hy z, hx z] [GOAL] M : Type u_1 α : Type u_2 inst✝¹ : Group M inst✝ : MulAction M α s : Set α src✝ : Submonoid M := fixingSubmonoid M s x✝ : M hx : x✝ ∈ { toSubsemigroup := src✝.toSubsemigroup, one_mem' := (_ : 1 ∈ src✝.carrier) }.toSubsemigroup.carrier z : ↑s ⊢ x✝⁻¹ • ↑z = ↑z [PROOFSTEP] rw [inv_smul_eq_iff, hx z]
{"mathlib_filename": "Mathlib.GroupTheory.GroupAction.FixingSubgroup", "llama_tokens": 322}
[GOAL] N : Type u_1 G : Type u_2 H : Type u_3 inst✝² : Group N inst✝¹ : Group G inst✝ : Group H φ : G →* MulAut N a b c : N ⋊[φ] G ⊢ (a * b * c).left = (a * (b * c)).left [PROOFSTEP] simp [mul_assoc] [GOAL] N : Type u_1 G : Type u_2 H : Type u_3 inst✝² : Group N inst✝¹ : Group G inst✝ : Group H φ : G →* MulAut N a b c : N ⋊[φ] G ⊢ (a * b * c).right = (a * (b * c)).right [PROOFSTEP] simp [mul_assoc] [GOAL] N : Type u_1 G : Type u_2 H : Type u_3 inst✝² : Group N inst✝¹ : Group G inst✝ : Group H φ : G →* MulAut N a : N ⋊[φ] G ⊢ (1 * a).left = a.left [PROOFSTEP] simp [GOAL] N : Type u_1 G : Type u_2 H : Type u_3 inst✝² : Group N inst✝¹ : Group G inst✝ : Group H φ : G →* MulAut N a : N ⋊[φ] G ⊢ (a * 1).left = a.left [PROOFSTEP] simp [GOAL] N : Type u_1 G : Type u_2 H : Type u_3 inst✝² : Group N inst✝¹ : Group G inst✝ : Group H φ : G →* MulAut N a : N ⋊[φ] G ⊢ (a⁻¹ * a).left = 1.left [PROOFSTEP] simp [GOAL] N : Type u_1 G : Type u_2 H : Type u_3 inst✝² : Group N inst✝¹ : Group G inst✝ : Group H φ : G →* MulAut N a : N ⋊[φ] G ⊢ (a⁻¹ * a).right = 1.right [PROOFSTEP] simp [GOAL] N : Type u_1 G : Type u_2 H : Type u_3 inst✝² : Group N inst✝¹ : Group G inst✝ : Group H φ : G →* MulAut N ⊢ ∀ (x y : N), OneHom.toFun { toFun := fun n => { left := n, right := 1 }, map_one' := (_ : (fun n => { left := n, right := 1 }) 1 = (fun n => { left := n, right := 1 }) 1) } (x * y) = OneHom.toFun { toFun := fun n => { left := n, right := 1 }, map_one' := (_ : (fun n => { left := n, right := 1 }) 1 = (fun n => { left := n, right := 1 }) 1) } x * OneHom.toFun { toFun := fun n => { left := n, right := 1 }, map_one' := (_ : (fun n => { left := n, right := 1 }) 1 = (fun n => { left := n, right := 1 }) 1) } y [PROOFSTEP] intros [GOAL] N : Type u_1 G : Type u_2 H : Type u_3 inst✝² : Group N inst✝¹ : Group G inst✝ : Group H φ : G →* MulAut N x✝ y✝ : N ⊢ OneHom.toFun { toFun := fun n => { left := n, right := 1 }, map_one' := (_ : (fun n => { left := n, right := 1 }) 1 = (fun n => { left := n, right := 1 }) 1) } (x✝ * y✝) = OneHom.toFun { toFun := fun n => { left := n, right := 1 }, map_one' := (_ : (fun n => { left := n, right := 1 }) 1 = (fun n => { left := n, right := 1 }) 1) } x✝ * OneHom.toFun { toFun := fun n => { left := n, right := 1 }, map_one' := (_ : (fun n => { left := n, right := 1 }) 1 = (fun n => { left := n, right := 1 }) 1) } y✝ [PROOFSTEP] ext [GOAL] case left N : Type u_1 G : Type u_2 H : Type u_3 inst✝² : Group N inst✝¹ : Group G inst✝ : Group H φ : G →* MulAut N x✝ y✝ : N ⊢ (OneHom.toFun { toFun := fun n => { left := n, right := 1 }, map_one' := (_ : (fun n => { left := n, right := 1 }) 1 = (fun n => { left := n, right := 1 }) 1) } (x✝ * y✝)).left = (OneHom.toFun { toFun := fun n => { left := n, right := 1 }, map_one' := (_ : (fun n => { left := n, right := 1 }) 1 = (fun n => { left := n, right := 1 }) 1) } x✝ * OneHom.toFun { toFun := fun n => { left := n, right := 1 }, map_one' := (_ : (fun n => { left := n, right := 1 }) 1 = (fun n => { left := n, right := 1 }) 1) } y✝).left [PROOFSTEP] simp only [mul_left, map_one, MulAut.one_apply, mul_right, mul_one] [GOAL] case right N : Type u_1 G : Type u_2 H : Type u_3 inst✝² : Group N inst✝¹ : Group G inst✝ : Group H φ : G →* MulAut N x✝ y✝ : N ⊢ (OneHom.toFun { toFun := fun n => { left := n, right := 1 }, map_one' := (_ : (fun n => { left := n, right := 1 }) 1 = (fun n => { left := n, right := 1 }) 1) } (x✝ * y✝)).right = (OneHom.toFun { toFun := fun n => { left := n, right := 1 }, map_one' := (_ : (fun n => { left := n, right := 1 }) 1 = (fun n => { left := n, right := 1 }) 1) } x✝ * OneHom.toFun { toFun := fun n => { left := n, right := 1 }, map_one' := (_ : (fun n => { left := n, right := 1 }) 1 = (fun n => { left := n, right := 1 }) 1) } y✝).right [PROOFSTEP] simp only [mul_left, map_one, MulAut.one_apply, mul_right, mul_one] [GOAL] N : Type u_1 G : Type u_2 H : Type u_3 inst✝² : Group N inst✝¹ : Group G inst✝ : Group H φ : G →* MulAut N ⊢ ∀ (x y : G), OneHom.toFun { toFun := fun g => { left := 1, right := g }, map_one' := (_ : (fun g => { left := 1, right := g }) 1 = (fun g => { left := 1, right := g }) 1) } (x * y) = OneHom.toFun { toFun := fun g => { left := 1, right := g }, map_one' := (_ : (fun g => { left := 1, right := g }) 1 = (fun g => { left := 1, right := g }) 1) } x * OneHom.toFun { toFun := fun g => { left := 1, right := g }, map_one' := (_ : (fun g => { left := 1, right := g }) 1 = (fun g => { left := 1, right := g }) 1) } y [PROOFSTEP] intros [GOAL] N : Type u_1 G : Type u_2 H : Type u_3 inst✝² : Group N inst✝¹ : Group G inst✝ : Group H φ : G →* MulAut N x✝ y✝ : G ⊢ OneHom.toFun { toFun := fun g => { left := 1, right := g }, map_one' := (_ : (fun g => { left := 1, right := g }) 1 = (fun g => { left := 1, right := g }) 1) } (x✝ * y✝) = OneHom.toFun { toFun := fun g => { left := 1, right := g }, map_one' := (_ : (fun g => { left := 1, right := g }) 1 = (fun g => { left := 1, right := g }) 1) } x✝ * OneHom.toFun { toFun := fun g => { left := 1, right := g }, map_one' := (_ : (fun g => { left := 1, right := g }) 1 = (fun g => { left := 1, right := g }) 1) } y✝ [PROOFSTEP] ext [GOAL] case left N : Type u_1 G : Type u_2 H : Type u_3 inst✝² : Group N inst✝¹ : Group G inst✝ : Group H φ : G →* MulAut N x✝ y✝ : G ⊢ (OneHom.toFun { toFun := fun g => { left := 1, right := g }, map_one' := (_ : (fun g => { left := 1, right := g }) 1 = (fun g => { left := 1, right := g }) 1) } (x✝ * y✝)).left = (OneHom.toFun { toFun := fun g => { left := 1, right := g }, map_one' := (_ : (fun g => { left := 1, right := g }) 1 = (fun g => { left := 1, right := g }) 1) } x✝ * OneHom.toFun { toFun := fun g => { left := 1, right := g }, map_one' := (_ : (fun g => { left := 1, right := g }) 1 = (fun g => { left := 1, right := g }) 1) } y✝).left [PROOFSTEP] simp [GOAL] case right N : Type u_1 G : Type u_2 H : Type u_3 inst✝² : Group N inst✝¹ : Group G inst✝ : Group H φ : G →* MulAut N x✝ y✝ : G ⊢ (OneHom.toFun { toFun := fun g => { left := 1, right := g }, map_one' := (_ : (fun g => { left := 1, right := g }) 1 = (fun g => { left := 1, right := g }) 1) } (x✝ * y✝)).right = (OneHom.toFun { toFun := fun g => { left := 1, right := g }, map_one' := (_ : (fun g => { left := 1, right := g }) 1 = (fun g => { left := 1, right := g }) 1) } x✝ * OneHom.toFun { toFun := fun g => { left := 1, right := g }, map_one' := (_ : (fun g => { left := 1, right := g }) 1 = (fun g => { left := 1, right := g }) 1) } y✝).right [PROOFSTEP] simp [GOAL] N : Type u_1 G : Type u_2 H : Type u_3 inst✝² : Group N inst✝¹ : Group G inst✝ : Group H φ : G →* MulAut N g : G n : N ⊢ ↑inl (↑(↑φ g) n) = ↑inr g * ↑inl n * ↑inr g⁻¹ [PROOFSTEP] ext [GOAL] case left N : Type u_1 G : Type u_2 H : Type u_3 inst✝² : Group N inst✝¹ : Group G inst✝ : Group H φ : G →* MulAut N g : G n : N ⊢ (↑inl (↑(↑φ g) n)).left = (↑inr g * ↑inl n * ↑inr g⁻¹).left [PROOFSTEP] simp [GOAL] case right N : Type u_1 G : Type u_2 H : Type u_3 inst✝² : Group N inst✝¹ : Group G inst✝ : Group H φ : G →* MulAut N g : G n : N ⊢ (↑inl (↑(↑φ g) n)).right = (↑inr g * ↑inl n * ↑inr g⁻¹).right [PROOFSTEP] simp [GOAL] N : Type u_1 G : Type u_2 H : Type u_3 inst✝² : Group N inst✝¹ : Group G inst✝ : Group H φ : G →* MulAut N g : G n : N ⊢ ↑inl (↑(↑φ g)⁻¹ n) = ↑inr g⁻¹ * ↑inl n * ↑inr g [PROOFSTEP] rw [← MonoidHom.map_inv, inl_aut, inv_inv] [GOAL] N : Type u_1 G : Type u_2 H : Type u_3 inst✝² : Group N inst✝¹ : Group G inst✝ : Group H φ : G →* MulAut N g : G n : N ⊢ { left := n, right := g } = ↑inl n * ↑inr g [PROOFSTEP] ext [GOAL] case left N : Type u_1 G : Type u_2 H : Type u_3 inst✝² : Group N inst✝¹ : Group G inst✝ : Group H φ : G →* MulAut N g : G n : N ⊢ { left := n, right := g }.left = (↑inl n * ↑inr g).left [PROOFSTEP] simp [GOAL] case right N : Type u_1 G : Type u_2 H : Type u_3 inst✝² : Group N inst✝¹ : Group G inst✝ : Group H φ : G →* MulAut N g : G n : N ⊢ { left := n, right := g }.right = (↑inl n * ↑inr g).right [PROOFSTEP] simp [GOAL] N : Type u_1 G : Type u_2 H : Type u_3 inst✝² : Group N inst✝¹ : Group G inst✝ : Group H φ : G →* MulAut N x : N ⋊[φ] G ⊢ ↑inl x.left * ↑inr x.right = x [PROOFSTEP] ext [GOAL] case left N : Type u_1 G : Type u_2 H : Type u_3 inst✝² : Group N inst✝¹ : Group G inst✝ : Group H φ : G →* MulAut N x : N ⋊[φ] G ⊢ (↑inl x.left * ↑inr x.right).left = x.left [PROOFSTEP] simp [GOAL] case right N : Type u_1 G : Type u_2 H : Type u_3 inst✝² : Group N inst✝¹ : Group G inst✝ : Group H φ : G →* MulAut N x : N ⋊[φ] G ⊢ (↑inl x.left * ↑inr x.right).right = x.right [PROOFSTEP] simp [GOAL] N : Type u_1 G : Type u_2 H : Type u_3 inst✝² : Group N inst✝¹ : Group G inst✝ : Group H φ : G →* MulAut N ⊢ MonoidHom.comp rightHom inl = 1 [PROOFSTEP] ext [GOAL] case h N : Type u_1 G : Type u_2 H : Type u_3 inst✝² : Group N inst✝¹ : Group G inst✝ : Group H φ : G →* MulAut N x✝ : N ⊢ ↑(MonoidHom.comp rightHom inl) x✝ = ↑1 x✝ [PROOFSTEP] simp [rightHom] [GOAL] N : Type u_1 G : Type u_2 H : Type u_3 inst✝² : Group N inst✝¹ : Group G inst✝ : Group H φ : G →* MulAut N ⊢ MonoidHom.comp rightHom inr = MonoidHom.id G [PROOFSTEP] ext [GOAL] case h N : Type u_1 G : Type u_2 H : Type u_3 inst✝² : Group N inst✝¹ : Group G inst✝ : Group H φ : G →* MulAut N x✝ : G ⊢ ↑(MonoidHom.comp rightHom inr) x✝ = ↑(MonoidHom.id G) x✝ [PROOFSTEP] simp [rightHom] [GOAL] N : Type u_1 G : Type u_2 H : Type u_3 inst✝² : Group N inst✝¹ : Group G inst✝ : Group H φ : G →* MulAut N n : N ⊢ ↑rightHom (↑inl n) = 1 [PROOFSTEP] simp [rightHom] [GOAL] N : Type u_1 G : Type u_2 H : Type u_3 inst✝² : Group N inst✝¹ : Group G inst✝ : Group H φ : G →* MulAut N g : G ⊢ ↑rightHom (↑inr g) = g [PROOFSTEP] simp [rightHom] [GOAL] N : Type u_1 G : Type u_2 H : Type u_3 inst✝² : Group N inst✝¹ : Group G inst✝ : Group H φ : G →* MulAut N x✝ : N ⋊[φ] G ⊢ x✝ ∈ MonoidHom.range inl → x✝ ∈ MonoidHom.ker rightHom [PROOFSTEP] simp (config := { contextual := true }) [MonoidHom.mem_ker, eq_comm] [GOAL] N : Type u_1 G : Type u_2 H : Type u_3 inst✝² : Group N inst✝¹ : Group G inst✝ : Group H φ : G →* MulAut N x : N ⋊[φ] G hx : x ∈ MonoidHom.ker rightHom ⊢ ↑inl x.left = x [PROOFSTEP] ext [GOAL] case left N : Type u_1 G : Type u_2 H : Type u_3 inst✝² : Group N inst✝¹ : Group G inst✝ : Group H φ : G →* MulAut N x : N ⋊[φ] G hx : x ∈ MonoidHom.ker rightHom ⊢ (↑inl x.left).left = x.left [PROOFSTEP] simp_all [MonoidHom.mem_ker] [GOAL] case right N : Type u_1 G : Type u_2 H : Type u_3 inst✝² : Group N inst✝¹ : Group G inst✝ : Group H φ : G →* MulAut N x : N ⋊[φ] G hx : x ∈ MonoidHom.ker rightHom ⊢ (↑inl x.left).right = x.right [PROOFSTEP] simp_all [MonoidHom.mem_ker] [GOAL] N : Type u_1 G : Type u_2 H : Type u_3 inst✝² : Group N inst✝¹ : Group G inst✝ : Group H φ : G →* MulAut N f₁✝ : N →* H f₂✝ : G →* H h✝ : ∀ (g : G), MonoidHom.comp f₁✝ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑f₂✝ g))) f₁✝ f₁ : N →* H f₂ : G →* H h : ∀ (g : G), MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑f₂ g))) f₁ ⊢ (fun a => ↑f₁ a.left * ↑f₂ a.right) 1 = 1 [PROOFSTEP] simp [GOAL] N : Type u_1 G : Type u_2 H : Type u_3 inst✝² : Group N inst✝¹ : Group G inst✝ : Group H φ : G →* MulAut N f₁✝ : N →* H f₂✝ : G →* H h✝ : ∀ (g : G), MonoidHom.comp f₁✝ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑f₂✝ g))) f₁✝ f₁ : N →* H f₂ : G →* H h : ∀ (g : G), MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑f₂ g))) f₁ a b : N ⋊[φ] G ⊢ OneHom.toFun { toFun := fun a => ↑f₁ a.left * ↑f₂ a.right, map_one' := (_ : ↑f₁ 1 * ↑f₂ 1 = 1) } (a * b) = OneHom.toFun { toFun := fun a => ↑f₁ a.left * ↑f₂ a.right, map_one' := (_ : ↑f₁ 1 * ↑f₂ 1 = 1) } a * OneHom.toFun { toFun := fun a => ↑f₁ a.left * ↑f₂ a.right, map_one' := (_ : ↑f₁ 1 * ↑f₂ 1 = 1) } b [PROOFSTEP] have := fun n g ↦ FunLike.ext_iff.1 (h n) g [GOAL] N : Type u_1 G : Type u_2 H : Type u_3 inst✝² : Group N inst✝¹ : Group G inst✝ : Group H φ : G →* MulAut N f₁✝ : N →* H f₂✝ : G →* H h✝ : ∀ (g : G), MonoidHom.comp f₁✝ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑f₂✝ g))) f₁✝ f₁ : N →* H f₂ : G →* H h : ∀ (g : G), MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑f₂ g))) f₁ a b : N ⋊[φ] G this : ∀ (n : G) (g : N), ↑(MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ n))) g = ↑(MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑f₂ n))) f₁) g ⊢ OneHom.toFun { toFun := fun a => ↑f₁ a.left * ↑f₂ a.right, map_one' := (_ : ↑f₁ 1 * ↑f₂ 1 = 1) } (a * b) = OneHom.toFun { toFun := fun a => ↑f₁ a.left * ↑f₂ a.right, map_one' := (_ : ↑f₁ 1 * ↑f₂ 1 = 1) } a * OneHom.toFun { toFun := fun a => ↑f₁ a.left * ↑f₂ a.right, map_one' := (_ : ↑f₁ 1 * ↑f₂ 1 = 1) } b [PROOFSTEP] simp only [MulAut.conj_apply, MonoidHom.comp_apply, MulEquiv.coe_toMonoidHom] at this [GOAL] N : Type u_1 G : Type u_2 H : Type u_3 inst✝² : Group N inst✝¹ : Group G inst✝ : Group H φ : G →* MulAut N f₁✝ : N →* H f₂✝ : G →* H h✝ : ∀ (g : G), MonoidHom.comp f₁✝ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑f₂✝ g))) f₁✝ f₁ : N →* H f₂ : G →* H h : ∀ (g : G), MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑f₂ g))) f₁ a b : N ⋊[φ] G this : ∀ (n : G) (g : N), ↑f₁ (↑(↑φ n) g) = ↑f₂ n * ↑f₁ g * (↑f₂ n)⁻¹ ⊢ OneHom.toFun { toFun := fun a => ↑f₁ a.left * ↑f₂ a.right, map_one' := (_ : ↑f₁ 1 * ↑f₂ 1 = 1) } (a * b) = OneHom.toFun { toFun := fun a => ↑f₁ a.left * ↑f₂ a.right, map_one' := (_ : ↑f₁ 1 * ↑f₂ 1 = 1) } a * OneHom.toFun { toFun := fun a => ↑f₁ a.left * ↑f₂ a.right, map_one' := (_ : ↑f₁ 1 * ↑f₂ 1 = 1) } b [PROOFSTEP] simp only [mul_left, mul_right, map_mul, this, mul_assoc, inv_mul_cancel_left] [GOAL] N : Type u_1 G : Type u_2 H : Type u_3 inst✝² : Group N inst✝¹ : Group G inst✝ : Group H φ : G →* MulAut N f₁ : N →* H f₂ : G →* H h : ∀ (g : G), MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑f₂ g))) f₁ n : N ⊢ ↑(lift f₁ f₂ h) (↑inl n) = ↑f₁ n [PROOFSTEP] simp [lift] [GOAL] N : Type u_1 G : Type u_2 H : Type u_3 inst✝² : Group N inst✝¹ : Group G inst✝ : Group H φ : G →* MulAut N f₁ : N →* H f₂ : G →* H h : ∀ (g : G), MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑f₂ g))) f₁ ⊢ MonoidHom.comp (lift f₁ f₂ h) inl = f₁ [PROOFSTEP] ext [GOAL] case h N : Type u_1 G : Type u_2 H : Type u_3 inst✝² : Group N inst✝¹ : Group G inst✝ : Group H φ : G →* MulAut N f₁ : N →* H f₂ : G →* H h : ∀ (g : G), MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑f₂ g))) f₁ x✝ : N ⊢ ↑(MonoidHom.comp (lift f₁ f₂ h) inl) x✝ = ↑f₁ x✝ [PROOFSTEP] simp [GOAL] N : Type u_1 G : Type u_2 H : Type u_3 inst✝² : Group N inst✝¹ : Group G inst✝ : Group H φ : G →* MulAut N f₁ : N →* H f₂ : G →* H h : ∀ (g : G), MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑f₂ g))) f₁ g : G ⊢ ↑(lift f₁ f₂ h) (↑inr g) = ↑f₂ g [PROOFSTEP] simp [lift] [GOAL] N : Type u_1 G : Type u_2 H : Type u_3 inst✝² : Group N inst✝¹ : Group G inst✝ : Group H φ : G →* MulAut N f₁ : N →* H f₂ : G →* H h : ∀ (g : G), MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑f₂ g))) f₁ ⊢ MonoidHom.comp (lift f₁ f₂ h) inr = f₂ [PROOFSTEP] ext [GOAL] case h N : Type u_1 G : Type u_2 H : Type u_3 inst✝² : Group N inst✝¹ : Group G inst✝ : Group H φ : G →* MulAut N f₁ : N →* H f₂ : G →* H h : ∀ (g : G), MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑f₂ g))) f₁ x✝ : G ⊢ ↑(MonoidHom.comp (lift f₁ f₂ h) inr) x✝ = ↑f₂ x✝ [PROOFSTEP] simp [GOAL] N : Type u_1 G : Type u_2 H : Type u_3 inst✝² : Group N inst✝¹ : Group G inst✝ : Group H φ : G →* MulAut N f₁ : N →* H f₂ : G →* H h : ∀ (g : G), MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑f₂ g))) f₁ F : N ⋊[φ] G →* H x✝ : G ⊢ MonoidHom.comp (MonoidHom.comp F inl) (MulEquiv.toMonoidHom (↑φ x✝)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑(MonoidHom.comp F inr) x✝))) (MonoidHom.comp F inl) [PROOFSTEP] ext [GOAL] case h N : Type u_1 G : Type u_2 H : Type u_3 inst✝² : Group N inst✝¹ : Group G inst✝ : Group H φ : G →* MulAut N f₁ : N →* H f₂ : G →* H h : ∀ (g : G), MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑f₂ g))) f₁ F : N ⋊[φ] G →* H x✝¹ : G x✝ : N ⊢ ↑(MonoidHom.comp (MonoidHom.comp F inl) (MulEquiv.toMonoidHom (↑φ x✝¹))) x✝ = ↑(MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑(MonoidHom.comp F inr) x✝¹))) (MonoidHom.comp F inl)) x✝ [PROOFSTEP] simp [inl_aut] [GOAL] N : Type u_1 G : Type u_2 H : Type u_3 inst✝² : Group N inst✝¹ : Group G inst✝ : Group H φ : G →* MulAut N f₁ : N →* H f₂ : G →* H h : ∀ (g : G), MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑f₂ g))) f₁ F : N ⋊[φ] G →* H ⊢ F = lift (MonoidHom.comp F inl) (MonoidHom.comp F inr) (_ : ∀ (x : G), MonoidHom.comp (MonoidHom.comp F inl) (MulEquiv.toMonoidHom (↑φ x)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑(MonoidHom.comp F inr) x))) (MonoidHom.comp F inl)) [PROOFSTEP] rw [FunLike.ext_iff] [GOAL] N : Type u_1 G : Type u_2 H : Type u_3 inst✝² : Group N inst✝¹ : Group G inst✝ : Group H φ : G →* MulAut N f₁ : N →* H f₂ : G →* H h : ∀ (g : G), MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑f₂ g))) f₁ F : N ⋊[φ] G →* H ⊢ ∀ (x : N ⋊[φ] G), ↑F x = ↑(lift (MonoidHom.comp F inl) (MonoidHom.comp F inr) (_ : ∀ (x : G), MonoidHom.comp (MonoidHom.comp F inl) (MulEquiv.toMonoidHom (↑φ x)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑(MonoidHom.comp F inr) x))) (MonoidHom.comp F inl))) x [PROOFSTEP] simp only [lift, MonoidHom.comp_apply, MonoidHom.coe_mk, OneHom.coe_mk, ← map_mul, inl_left_mul_inr_right, forall_const] [GOAL] N : Type u_1 G : Type u_2 H : Type u_3 inst✝² : Group N inst✝¹ : Group G inst✝ : Group H φ : G →* MulAut N f₁ : N →* H f₂ : G →* H h : ∀ (g : G), MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑f₂ g))) f₁ f g : N ⋊[φ] G →* H hl : MonoidHom.comp f inl = MonoidHom.comp g inl hr : MonoidHom.comp f inr = MonoidHom.comp g inr ⊢ f = g [PROOFSTEP] rw [lift_unique f, lift_unique g] [GOAL] N : Type u_1 G : Type u_2 H : Type u_3 inst✝² : Group N inst✝¹ : Group G inst✝ : Group H φ : G →* MulAut N f₁ : N →* H f₂ : G →* H h : ∀ (g : G), MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑f₂ g))) f₁ f g : N ⋊[φ] G →* H hl : MonoidHom.comp f inl = MonoidHom.comp g inl hr : MonoidHom.comp f inr = MonoidHom.comp g inr ⊢ lift (MonoidHom.comp f inl) (MonoidHom.comp f inr) (_ : ∀ (x : G), MonoidHom.comp (MonoidHom.comp f inl) (MulEquiv.toMonoidHom (↑φ x)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑(MonoidHom.comp f inr) x))) (MonoidHom.comp f inl)) = lift (MonoidHom.comp g inl) (MonoidHom.comp g inr) (_ : ∀ (x : G), MonoidHom.comp (MonoidHom.comp g inl) (MulEquiv.toMonoidHom (↑φ x)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑(MonoidHom.comp g inr) x))) (MonoidHom.comp g inl)) [PROOFSTEP] simp only [*] [GOAL] N : Type u_1 G : Type u_2 H : Type u_3 inst✝⁴ : Group N inst✝³ : Group G inst✝² : Group H φ : G →* MulAut N N₁ : Type u_4 G₁ : Type u_5 inst✝¹ : Group N₁ inst✝ : Group G₁ φ₁ : G₁ →* MulAut N₁ f₁ : N →* N₁ f₂ : G →* G₁ h : ∀ (g : G), MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑φ₁ (↑f₂ g))) f₁ ⊢ (fun x => { left := ↑f₁ x.left, right := ↑f₂ x.right }) 1 = 1 [PROOFSTEP] simp [GOAL] N : Type u_1 G : Type u_2 H : Type u_3 inst✝⁴ : Group N inst✝³ : Group G inst✝² : Group H φ : G →* MulAut N N₁ : Type u_4 G₁ : Type u_5 inst✝¹ : Group N₁ inst✝ : Group G₁ φ₁ : G₁ →* MulAut N₁ f₁ : N →* N₁ f₂ : G →* G₁ h : ∀ (g : G), MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑φ₁ (↑f₂ g))) f₁ x y : N ⋊[φ] G ⊢ OneHom.toFun { toFun := fun x => { left := ↑f₁ x.left, right := ↑f₂ x.right }, map_one' := (_ : { left := ↑f₁ 1, right := ↑f₂ 1 } = 1) } (x * y) = OneHom.toFun { toFun := fun x => { left := ↑f₁ x.left, right := ↑f₂ x.right }, map_one' := (_ : { left := ↑f₁ 1, right := ↑f₂ 1 } = 1) } x * OneHom.toFun { toFun := fun x => { left := ↑f₁ x.left, right := ↑f₂ x.right }, map_one' := (_ : { left := ↑f₁ 1, right := ↑f₂ 1 } = 1) } y [PROOFSTEP] replace h := FunLike.ext_iff.1 (h x.right) y.left [GOAL] N : Type u_1 G : Type u_2 H : Type u_3 inst✝⁴ : Group N inst✝³ : Group G inst✝² : Group H φ : G →* MulAut N N₁ : Type u_4 G₁ : Type u_5 inst✝¹ : Group N₁ inst✝ : Group G₁ φ₁ : G₁ →* MulAut N₁ f₁ : N →* N₁ f₂ : G →* G₁ x y : N ⋊[φ] G h : ↑(MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ x.right))) y.left = ↑(MonoidHom.comp (MulEquiv.toMonoidHom (↑φ₁ (↑f₂ x.right))) f₁) y.left ⊢ OneHom.toFun { toFun := fun x => { left := ↑f₁ x.left, right := ↑f₂ x.right }, map_one' := (_ : { left := ↑f₁ 1, right := ↑f₂ 1 } = 1) } (x * y) = OneHom.toFun { toFun := fun x => { left := ↑f₁ x.left, right := ↑f₂ x.right }, map_one' := (_ : { left := ↑f₁ 1, right := ↑f₂ 1 } = 1) } x * OneHom.toFun { toFun := fun x => { left := ↑f₁ x.left, right := ↑f₂ x.right }, map_one' := (_ : { left := ↑f₁ 1, right := ↑f₂ 1 } = 1) } y [PROOFSTEP] ext [GOAL] case left N : Type u_1 G : Type u_2 H : Type u_3 inst✝⁴ : Group N inst✝³ : Group G inst✝² : Group H φ : G →* MulAut N N₁ : Type u_4 G₁ : Type u_5 inst✝¹ : Group N₁ inst✝ : Group G₁ φ₁ : G₁ →* MulAut N₁ f₁ : N →* N₁ f₂ : G →* G₁ x y : N ⋊[φ] G h : ↑(MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ x.right))) y.left = ↑(MonoidHom.comp (MulEquiv.toMonoidHom (↑φ₁ (↑f₂ x.right))) f₁) y.left ⊢ (OneHom.toFun { toFun := fun x => { left := ↑f₁ x.left, right := ↑f₂ x.right }, map_one' := (_ : { left := ↑f₁ 1, right := ↑f₂ 1 } = 1) } (x * y)).left = (OneHom.toFun { toFun := fun x => { left := ↑f₁ x.left, right := ↑f₂ x.right }, map_one' := (_ : { left := ↑f₁ 1, right := ↑f₂ 1 } = 1) } x * OneHom.toFun { toFun := fun x => { left := ↑f₁ x.left, right := ↑f₂ x.right }, map_one' := (_ : { left := ↑f₁ 1, right := ↑f₂ 1 } = 1) } y).left [PROOFSTEP] simp_all [GOAL] case right N : Type u_1 G : Type u_2 H : Type u_3 inst✝⁴ : Group N inst✝³ : Group G inst✝² : Group H φ : G →* MulAut N N₁ : Type u_4 G₁ : Type u_5 inst✝¹ : Group N₁ inst✝ : Group G₁ φ₁ : G₁ →* MulAut N₁ f₁ : N →* N₁ f₂ : G →* G₁ x y : N ⋊[φ] G h : ↑(MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ x.right))) y.left = ↑(MonoidHom.comp (MulEquiv.toMonoidHom (↑φ₁ (↑f₂ x.right))) f₁) y.left ⊢ (OneHom.toFun { toFun := fun x => { left := ↑f₁ x.left, right := ↑f₂ x.right }, map_one' := (_ : { left := ↑f₁ 1, right := ↑f₂ 1 } = 1) } (x * y)).right = (OneHom.toFun { toFun := fun x => { left := ↑f₁ x.left, right := ↑f₂ x.right }, map_one' := (_ : { left := ↑f₁ 1, right := ↑f₂ 1 } = 1) } x * OneHom.toFun { toFun := fun x => { left := ↑f₁ x.left, right := ↑f₂ x.right }, map_one' := (_ : { left := ↑f₁ 1, right := ↑f₂ 1 } = 1) } y).right [PROOFSTEP] simp_all [GOAL] N : Type u_1 G : Type u_2 H : Type u_3 inst✝⁴ : Group N inst✝³ : Group G inst✝² : Group H φ : G →* MulAut N N₁ : Type u_4 G₁ : Type u_5 inst✝¹ : Group N₁ inst✝ : Group G₁ φ₁ : G₁ →* MulAut N₁ f₁ : N →* N₁ f₂ : G →* G₁ h : ∀ (g : G), MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑φ₁ (↑f₂ g))) f₁ n : N ⊢ ↑(map f₁ f₂ h) (↑inl n) = ↑inl (↑f₁ n) [PROOFSTEP] simp [map] [GOAL] N : Type u_1 G : Type u_2 H : Type u_3 inst✝⁴ : Group N inst✝³ : Group G inst✝² : Group H φ : G →* MulAut N N₁ : Type u_4 G₁ : Type u_5 inst✝¹ : Group N₁ inst✝ : Group G₁ φ₁ : G₁ →* MulAut N₁ f₁ : N →* N₁ f₂ : G →* G₁ h : ∀ (g : G), MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑φ₁ (↑f₂ g))) f₁ ⊢ MonoidHom.comp (map f₁ f₂ h) inl = MonoidHom.comp inl f₁ [PROOFSTEP] ext [GOAL] case h.left N : Type u_1 G : Type u_2 H : Type u_3 inst✝⁴ : Group N inst✝³ : Group G inst✝² : Group H φ : G →* MulAut N N₁ : Type u_4 G₁ : Type u_5 inst✝¹ : Group N₁ inst✝ : Group G₁ φ₁ : G₁ →* MulAut N₁ f₁ : N →* N₁ f₂ : G →* G₁ h : ∀ (g : G), MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑φ₁ (↑f₂ g))) f₁ x✝ : N ⊢ (↑(MonoidHom.comp (map f₁ f₂ h) inl) x✝).left = (↑(MonoidHom.comp inl f₁) x✝).left [PROOFSTEP] simp [GOAL] case h.right N : Type u_1 G : Type u_2 H : Type u_3 inst✝⁴ : Group N inst✝³ : Group G inst✝² : Group H φ : G →* MulAut N N₁ : Type u_4 G₁ : Type u_5 inst✝¹ : Group N₁ inst✝ : Group G₁ φ₁ : G₁ →* MulAut N₁ f₁ : N →* N₁ f₂ : G →* G₁ h : ∀ (g : G), MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑φ₁ (↑f₂ g))) f₁ x✝ : N ⊢ (↑(MonoidHom.comp (map f₁ f₂ h) inl) x✝).right = (↑(MonoidHom.comp inl f₁) x✝).right [PROOFSTEP] simp [GOAL] N : Type u_1 G : Type u_2 H : Type u_3 inst✝⁴ : Group N inst✝³ : Group G inst✝² : Group H φ : G →* MulAut N N₁ : Type u_4 G₁ : Type u_5 inst✝¹ : Group N₁ inst✝ : Group G₁ φ₁ : G₁ →* MulAut N₁ f₁ : N →* N₁ f₂ : G →* G₁ h : ∀ (g : G), MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑φ₁ (↑f₂ g))) f₁ g : G ⊢ ↑(map f₁ f₂ h) (↑inr g) = ↑inr (↑f₂ g) [PROOFSTEP] simp [map] [GOAL] N : Type u_1 G : Type u_2 H : Type u_3 inst✝⁴ : Group N inst✝³ : Group G inst✝² : Group H φ : G →* MulAut N N₁ : Type u_4 G₁ : Type u_5 inst✝¹ : Group N₁ inst✝ : Group G₁ φ₁ : G₁ →* MulAut N₁ f₁ : N →* N₁ f₂ : G →* G₁ h : ∀ (g : G), MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑φ₁ (↑f₂ g))) f₁ ⊢ MonoidHom.comp (map f₁ f₂ h) inr = MonoidHom.comp inr f₂ [PROOFSTEP] ext [GOAL] case h.left N : Type u_1 G : Type u_2 H : Type u_3 inst✝⁴ : Group N inst✝³ : Group G inst✝² : Group H φ : G →* MulAut N N₁ : Type u_4 G₁ : Type u_5 inst✝¹ : Group N₁ inst✝ : Group G₁ φ₁ : G₁ →* MulAut N₁ f₁ : N →* N₁ f₂ : G →* G₁ h : ∀ (g : G), MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑φ₁ (↑f₂ g))) f₁ x✝ : G ⊢ (↑(MonoidHom.comp (map f₁ f₂ h) inr) x✝).left = (↑(MonoidHom.comp inr f₂) x✝).left [PROOFSTEP] simp [map] [GOAL] case h.right N : Type u_1 G : Type u_2 H : Type u_3 inst✝⁴ : Group N inst✝³ : Group G inst✝² : Group H φ : G →* MulAut N N₁ : Type u_4 G₁ : Type u_5 inst✝¹ : Group N₁ inst✝ : Group G₁ φ₁ : G₁ →* MulAut N₁ f₁ : N →* N₁ f₂ : G →* G₁ h : ∀ (g : G), MonoidHom.comp f₁ (MulEquiv.toMonoidHom (↑φ g)) = MonoidHom.comp (MulEquiv.toMonoidHom (↑φ₁ (↑f₂ g))) f₁ x✝ : G ⊢ (↑(MonoidHom.comp (map f₁ f₂ h) inr) x✝).right = (↑(MonoidHom.comp inr f₂) x✝).right [PROOFSTEP] simp [map]
{"mathlib_filename": "Mathlib.GroupTheory.SemidirectProduct", "llama_tokens": 14341}
[GOAL] I : Type u f : I → Type v x y : (i : I) → f i i✝ : I α : Type u_1 inst✝² : (i : I) → SMul α (f i) inst✝¹ : ∀ (i : I), Nonempty (f i) i : I inst✝ : FaithfulSMul α (f i) m₁✝ m₂✝ : α h : ∀ (a : (i : I) → f i), m₁✝ • a = m₂✝ • a a : f i ⊢ m₁✝ • a = m₂✝ • a [PROOFSTEP] classical have := congr_fun (h <| Function.update (fun j => Classical.choice (‹∀ i, Nonempty (f i)› j)) i a) i simpa using this [GOAL] I : Type u f : I → Type v x y : (i : I) → f i i✝ : I α : Type u_1 inst✝² : (i : I) → SMul α (f i) inst✝¹ : ∀ (i : I), Nonempty (f i) i : I inst✝ : FaithfulSMul α (f i) m₁✝ m₂✝ : α h : ∀ (a : (i : I) → f i), m₁✝ • a = m₂✝ • a a : f i ⊢ m₁✝ • a = m₂✝ • a [PROOFSTEP] have := congr_fun (h <| Function.update (fun j => Classical.choice (‹∀ i, Nonempty (f i)› j)) i a) i [GOAL] I : Type u f : I → Type v x y : (i : I) → f i i✝ : I α : Type u_1 inst✝² : (i : I) → SMul α (f i) inst✝¹ : ∀ (i : I), Nonempty (f i) i : I inst✝ : FaithfulSMul α (f i) m₁✝ m₂✝ : α h : ∀ (a : (i : I) → f i), m₁✝ • a = m₂✝ • a a : f i this : (m₁✝ • Function.update (fun j => Classical.choice (_ : Nonempty (f j))) i a) i = (m₂✝ • Function.update (fun j => Classical.choice (_ : Nonempty (f j))) i a) i ⊢ m₁✝ • a = m₂✝ • a [PROOFSTEP] simpa using this [GOAL] I : Type u f : I → Type v x y : (i : I) → f i i : I g : I → Type u_1 n : (i : I) → Zero (g i) inst✝ : (i : I) → SMulZeroClass (f i) (g i) ⊢ ∀ (a : (i : I) → f i), a • 0 = 0 [PROOFSTEP] intros [GOAL] I : Type u f : I → Type v x y : (i : I) → f i i : I g : I → Type u_1 n : (i : I) → Zero (g i) inst✝ : (i : I) → SMulZeroClass (f i) (g i) a✝ : (i : I) → f i ⊢ a✝ • 0 = 0 [PROOFSTEP] ext x [GOAL] case h I : Type u f : I → Type v x✝ y : (i : I) → f i i : I g : I → Type u_1 n : (i : I) → Zero (g i) inst✝ : (i : I) → SMulZeroClass (f i) (g i) a✝ : (i : I) → f i x : I ⊢ (a✝ • 0) x = OfNat.ofNat 0 x [PROOFSTEP] exact smul_zero _ [GOAL] I : Type u f : I → Type v x y : (i : I) → f i i : I g : I → Type u_1 n : (i : I) → AddZeroClass (g i) inst✝ : (i : I) → DistribSMul (f i) (g i) ⊢ ∀ (a : (i : I) → f i), a • 0 = 0 [PROOFSTEP] intros [GOAL] I : Type u f : I → Type v x y : (i : I) → f i i : I g : I → Type u_1 n : (i : I) → AddZeroClass (g i) inst✝ : (i : I) → DistribSMul (f i) (g i) a✝ : (i : I) → f i ⊢ a✝ • 0 = 0 [PROOFSTEP] ext x [GOAL] case h I : Type u f : I → Type v x✝ y : (i : I) → f i i : I g : I → Type u_1 n : (i : I) → AddZeroClass (g i) inst✝ : (i : I) → DistribSMul (f i) (g i) a✝ : (i : I) → f i x : I ⊢ (a✝ • 0) x = OfNat.ofNat 0 x [PROOFSTEP] exact smul_zero _ [GOAL] I : Type u f : I → Type v x y : (i : I) → f i i : I g : I → Type u_1 n : (i : I) → AddZeroClass (g i) inst✝ : (i : I) → DistribSMul (f i) (g i) ⊢ ∀ (a : (i : I) → f i) (x y : (i : I) → g i), a • (x + y) = a • x + a • y [PROOFSTEP] intros [GOAL] I : Type u f : I → Type v x y : (i : I) → f i i : I g : I → Type u_1 n : (i : I) → AddZeroClass (g i) inst✝ : (i : I) → DistribSMul (f i) (g i) a✝ : (i : I) → f i x✝ y✝ : (i : I) → g i ⊢ a✝ • (x✝ + y✝) = a✝ • x✝ + a✝ • y✝ [PROOFSTEP] ext x [GOAL] case h I : Type u f : I → Type v x✝¹ y : (i : I) → f i i : I g : I → Type u_1 n : (i : I) → AddZeroClass (g i) inst✝ : (i : I) → DistribSMul (f i) (g i) a✝ : (i : I) → f i x✝ y✝ : (i : I) → g i x : I ⊢ (a✝ • (x✝ + y✝)) x = (a✝ • x✝ + a✝ • y✝) x [PROOFSTEP] exact smul_add _ _ _ [GOAL] I : Type u f : I → Type v x y : (i : I) → f i i : I g : I → Type u_1 m : (i : I) → Monoid (f i) n : (i : I) → Monoid (g i) inst✝ : (i : I) → MulDistribMulAction (f i) (g i) ⊢ ∀ (r : (i : I) → f i) (x y : (i : I) → g i), r • (x * y) = r • x * r • y [PROOFSTEP] intros [GOAL] I : Type u f : I → Type v x y : (i : I) → f i i : I g : I → Type u_1 m : (i : I) → Monoid (f i) n : (i : I) → Monoid (g i) inst✝ : (i : I) → MulDistribMulAction (f i) (g i) r✝ : (i : I) → f i x✝ y✝ : (i : I) → g i ⊢ r✝ • (x✝ * y✝) = r✝ • x✝ * r✝ • y✝ [PROOFSTEP] ext x [GOAL] case h I : Type u f : I → Type v x✝¹ y : (i : I) → f i i : I g : I → Type u_1 m : (i : I) → Monoid (f i) n : (i : I) → Monoid (g i) inst✝ : (i : I) → MulDistribMulAction (f i) (g i) r✝ : (i : I) → f i x✝ y✝ : (i : I) → g i x : I ⊢ (r✝ • (x✝ * y✝)) x = (r✝ • x✝ * r✝ • y✝) x [PROOFSTEP] apply smul_mul' [GOAL] I : Type u f : I → Type v x y : (i : I) → f i i : I g : I → Type u_1 m : (i : I) → Monoid (f i) n : (i : I) → Monoid (g i) inst✝ : (i : I) → MulDistribMulAction (f i) (g i) ⊢ ∀ (r : (i : I) → f i), r • 1 = 1 [PROOFSTEP] intros [GOAL] I : Type u f : I → Type v x y : (i : I) → f i i : I g : I → Type u_1 m : (i : I) → Monoid (f i) n : (i : I) → Monoid (g i) inst✝ : (i : I) → MulDistribMulAction (f i) (g i) r✝ : (i : I) → f i ⊢ r✝ • 1 = 1 [PROOFSTEP] ext x [GOAL] case h I : Type u f : I → Type v x✝ y : (i : I) → f i i : I g : I → Type u_1 m : (i : I) → Monoid (f i) n : (i : I) → Monoid (g i) inst✝ : (i : I) → MulDistribMulAction (f i) (g i) r✝ : (i : I) → f i x : I ⊢ (r✝ • 1) x = OfNat.ofNat 1 x [PROOFSTEP] apply smul_one [GOAL] I : Type u f✝ : I → Type v x✝ y : (i : I) → f✝ i i : I R : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : SMul R γ r : R f : α → β g : α → γ e : β → γ x : β ⊢ extend f (r • g) (r • e) x = (r • extend f g e) x [PROOFSTEP] haveI : Decidable (∃ a : α, f a = x) := Classical.propDecidable _ [GOAL] I : Type u f✝ : I → Type v x✝ y : (i : I) → f✝ i i : I R : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : SMul R γ r : R f : α → β g : α → γ e : β → γ x : β this : Decidable (∃ a, f a = x) ⊢ extend f (r • g) (r • e) x = (r • extend f g e) x [PROOFSTEP] rw [extend_def, Pi.smul_apply, Pi.smul_apply, extend_def] [GOAL] I : Type u f✝ : I → Type v x✝ y : (i : I) → f✝ i i : I R : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : SMul R γ r : R f : α → β g : α → γ e : β → γ x : β this : Decidable (∃ a, f a = x) ⊢ (if h : ∃ a, f a = x then (r • g) (Classical.choose h) else r • e x) = r • if h : ∃ a, f a = x then g (Classical.choose h) else e x [PROOFSTEP] split_ifs [GOAL] case pos I : Type u f✝ : I → Type v x✝ y : (i : I) → f✝ i i : I R : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : SMul R γ r : R f : α → β g : α → γ e : β → γ x : β this : Decidable (∃ a, f a = x) h✝ : ∃ a, f a = x ⊢ (r • g) (Classical.choose h✝) = r • g (Classical.choose h✝) [PROOFSTEP] rfl -- convert (apply_dite (fun c : γ => r • c) _ _ _).symm [GOAL] case neg I : Type u f✝ : I → Type v x✝ y : (i : I) → f✝ i i : I R : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : SMul R γ r : R f : α → β g : α → γ e : β → γ x : β this : Decidable (∃ a, f a = x) h✝ : ¬∃ a, f a = x ⊢ r • e x = r • e x [PROOFSTEP] rfl -- convert (apply_dite (fun c : γ => r • c) _ _ _).symm
{"mathlib_filename": "Mathlib.GroupTheory.GroupAction.Pi", "llama_tokens": 3831}
[GOAL] G : Type u_1 H : Type u_2 α : Type u_3 β : Type u_4 inst✝⁶ : Group H inst✝⁵ : SMul G α inst✝⁴ : SMul G β inst✝³ : MulAction H α inst✝² : SMul H β inst✝¹ : SMulCommClass G H β inst✝ : SMulCommClass G H α s t : Set α b : β g : H h : Supports G s b ⊢ Supports G (g • s) (g • b) [PROOFSTEP] rintro g' hg' [GOAL] G : Type u_1 H : Type u_2 α : Type u_3 β : Type u_4 inst✝⁶ : Group H inst✝⁵ : SMul G α inst✝⁴ : SMul G β inst✝³ : MulAction H α inst✝² : SMul H β inst✝¹ : SMulCommClass G H β inst✝ : SMulCommClass G H α s t : Set α b : β g : H h : Supports G s b g' : G hg' : ∀ ⦃a : α⦄, a ∈ g • s → g' • a = a ⊢ g' • g • b = g • b [PROOFSTEP] rw [smul_comm, h] [GOAL] case a G : Type u_1 H : Type u_2 α : Type u_3 β : Type u_4 inst✝⁶ : Group H inst✝⁵ : SMul G α inst✝⁴ : SMul G β inst✝³ : MulAction H α inst✝² : SMul H β inst✝¹ : SMulCommClass G H β inst✝ : SMulCommClass G H α s t : Set α b : β g : H h : Supports G s b g' : G hg' : ∀ ⦃a : α⦄, a ∈ g • s → g' • a = a ⊢ ∀ ⦃a : α⦄, a ∈ s → g' • a = a [PROOFSTEP] rintro a ha [GOAL] case a G : Type u_1 H : Type u_2 α : Type u_3 β : Type u_4 inst✝⁶ : Group H inst✝⁵ : SMul G α inst✝⁴ : SMul G β inst✝³ : MulAction H α inst✝² : SMul H β inst✝¹ : SMulCommClass G H β inst✝ : SMulCommClass G H α s t : Set α b : β g : H h : Supports G s b g' : G hg' : ∀ ⦃a : α⦄, a ∈ g • s → g' • a = a a : α ha : a ∈ s ⊢ g' • a = a [PROOFSTEP] have := Set.ball_image_iff.1 hg' a ha [GOAL] case a G : Type u_1 H : Type u_2 α : Type u_3 β : Type u_4 inst✝⁶ : Group H inst✝⁵ : SMul G α inst✝⁴ : SMul G β inst✝³ : MulAction H α inst✝² : SMul H β inst✝¹ : SMulCommClass G H β inst✝ : SMulCommClass G H α s t : Set α b : β g : H h : Supports G s b g' : G hg' : ∀ ⦃a : α⦄, a ∈ g • s → g' • a = a a : α ha : a ∈ s this : g' • g • a = g • a ⊢ g' • a = a [PROOFSTEP] rwa [smul_comm, smul_left_cancel_iff] at this
{"mathlib_filename": "Mathlib.GroupTheory.GroupAction.Support", "llama_tokens": 1048}
[GOAL] M : Type u α : Type v inst✝¹ : Monoid M inst✝ : MulAction M α a : α ⊢ (fun m => m • a) 1 = a [PROOFSTEP] simp [MulAction.one_smul] [GOAL] M : Type u α : Type v inst✝¹ : Monoid M inst✝ : MulAction M α a : α m m' : M ha : m • a = a hb : m' • a = a ⊢ (m * m') • a = a [PROOFSTEP] rw [← smul_smul, hb, ha] [GOAL] M : Type u α : Type v inst✝² : Monoid M inst✝¹ : MulAction M α a : α inst✝ : Fintype ↑(orbit M a) ⊢ a ∈ fixedPoints M α ↔ Fintype.card ↑(orbit M a) = 1 [PROOFSTEP] rw [Fintype.card_eq_one_iff, mem_fixedPoints] [GOAL] M : Type u α : Type v inst✝² : Monoid M inst✝¹ : MulAction M α a : α inst✝ : Fintype ↑(orbit M a) ⊢ (∀ (m : M), m • a = a) ↔ ∃ x, ∀ (y : ↑(orbit M a)), y = x [PROOFSTEP] constructor [GOAL] case mp M : Type u α : Type v inst✝² : Monoid M inst✝¹ : MulAction M α a : α inst✝ : Fintype ↑(orbit M a) ⊢ (∀ (m : M), m • a = a) → ∃ x, ∀ (y : ↑(orbit M a)), y = x [PROOFSTEP] exact fun h => ⟨⟨a, mem_orbit_self _⟩, fun ⟨a, ⟨x, hx⟩⟩ => Subtype.eq <| by simp [h x, hx.symm]⟩ [GOAL] M : Type u α : Type v inst✝² : Monoid M inst✝¹ : MulAction M α a✝ : α inst✝ : Fintype ↑(orbit M a✝) h : ∀ (m : M), m • a✝ = a✝ x✝ : ↑(orbit M a✝) a : α x : M hx : (fun m => m • a✝) x = a ⊢ ↑{ val := a, property := (_ : ∃ y, (fun m => m • a✝) y = a) } = ↑{ val := a✝, property := (_ : a✝ ∈ orbit M a✝) } [PROOFSTEP] simp [h x, hx.symm] [GOAL] case mpr M : Type u α : Type v inst✝² : Monoid M inst✝¹ : MulAction M α a : α inst✝ : Fintype ↑(orbit M a) ⊢ (∃ x, ∀ (y : ↑(orbit M a)), y = x) → ∀ (m : M), m • a = a [PROOFSTEP] intro h x [GOAL] case mpr M : Type u α : Type v inst✝² : Monoid M inst✝¹ : MulAction M α a : α inst✝ : Fintype ↑(orbit M a) h : ∃ x, ∀ (y : ↑(orbit M a)), y = x x : M ⊢ x • a = a [PROOFSTEP] rcases h with ⟨⟨z, hz⟩, hz₁⟩ [GOAL] case mpr.intro.mk M : Type u α : Type v inst✝² : Monoid M inst✝¹ : MulAction M α a : α inst✝ : Fintype ↑(orbit M a) x : M z : α hz : z ∈ orbit M a hz₁ : ∀ (y : ↑(orbit M a)), y = { val := z, property := hz } ⊢ x • a = a [PROOFSTEP] calc x • a = z := Subtype.mk.inj (hz₁ ⟨x • a, mem_orbit _ _⟩) _ = a := (Subtype.mk.inj (hz₁ ⟨a, mem_orbit_self _⟩)).symm [GOAL] G : Type u α : Type v inst✝¹ : Group G inst✝ : MulAction G α a : α src✝ : Submonoid G := Stabilizer.submonoid G a m : G ha : m • a = a ⊢ m⁻¹ • a = a [PROOFSTEP] rw [inv_smul_eq_iff, ha] [GOAL] G : Type u α : Type v inst✝¹ : Group G inst✝ : MulAction G α g : G a : α ⊢ orbit G a = orbit G (g⁻¹ • g • a) [PROOFSTEP] rw [inv_smul_smul] [GOAL] G : Type u α : Type v inst✝¹ : Group G inst✝ : MulAction G α a : α ⊢ ∀ (x y : ↑(orbit G a)), ∃ g, g • x = y [PROOFSTEP] rintro ⟨_, g, rfl⟩ ⟨_, h, rfl⟩ [GOAL] case mk.intro.mk.intro G : Type u α : Type v inst✝¹ : Group G inst✝ : MulAction G α a : α g h : G ⊢ ∃ g_1, g_1 • { val := (fun m => m • a) g, property := (_ : ∃ y, (fun m => m • a) y = (fun m => m • a) g) } = { val := (fun m => m • a) h, property := (_ : ∃ y, (fun m => m • a) y = (fun m => m • a) h) } [PROOFSTEP] use h * g⁻¹ [GOAL] case h G : Type u α : Type v inst✝¹ : Group G inst✝ : MulAction G α a : α g h : G ⊢ (h * g⁻¹) • { val := (fun m => m • a) g, property := (_ : ∃ y, (fun m => m • a) y = (fun m => m • a) g) } = { val := (fun m => m • a) h, property := (_ : ∃ y, (fun m => m • a) y = (fun m => m • a) h) } [PROOFSTEP] ext1 [GOAL] case h.a G : Type u α : Type v inst✝¹ : Group G inst✝ : MulAction G α a : α g h : G ⊢ ↑((h * g⁻¹) • { val := (fun m => m • a) g, property := (_ : ∃ y, (fun m => m • a) y = (fun m => m • a) g) }) = ↑{ val := (fun m => m • a) h, property := (_ : ∃ y, (fun m => m • a) y = (fun m => m • a) h) } [PROOFSTEP] simp [mul_smul] [GOAL] G : Type u α : Type v inst✝¹ : Group G inst✝ : MulAction G α g : G a : α ⊢ a ∈ orbit G (g • a) [PROOFSTEP] simp only [orbit_smul, mem_orbit_self] [GOAL] G : Type u α : Type v inst✝¹ : Group G inst✝ : MulAction G α g h : G a : α ⊢ g • a ∈ orbit G (h • a) [PROOFSTEP] simp only [orbit_smul, mem_orbit] [GOAL] G : Type u α : Type v inst✝¹ : Group G inst✝ : MulAction G α a b : α ⊢ a ∈ orbit G b → b ∈ orbit G a [PROOFSTEP] simp [orbit_eq_iff.symm, eq_comm] [GOAL] G : Type u α : Type v inst✝¹ : Group G inst✝ : MulAction G α a b : α ⊢ ∀ {z : α}, a ∈ orbit G b → b ∈ orbit G z → a ∈ orbit G z [PROOFSTEP] simp (config := { contextual := true }) [orbit_eq_iff.symm, eq_comm] [GOAL] G : Type u α : Type v inst✝¹ : Group G inst✝ : MulAction G α U : Set α ⊢ Quotient.mk' ⁻¹' (Quotient.mk' '' U) = ⋃ (g : G), (fun x x_1 => x • x_1) g '' U [PROOFSTEP] letI := orbitRel G α [GOAL] G : Type u α : Type v inst✝¹ : Group G inst✝ : MulAction G α U : Set α this : Setoid α := orbitRel G α ⊢ Quotient.mk' ⁻¹' (Quotient.mk' '' U) = ⋃ (g : G), (fun x x_1 => x • x_1) g '' U [PROOFSTEP] set f : α → Quotient (MulAction.orbitRel G α) := Quotient.mk' [GOAL] G : Type u α : Type v inst✝¹ : Group G inst✝ : MulAction G α U : Set α this : Setoid α := orbitRel G α f : α → Quotient (orbitRel G α) := Quotient.mk' ⊢ f ⁻¹' (f '' U) = ⋃ (g : G), (fun x x_1 => x • x_1) g '' U [PROOFSTEP] ext a [GOAL] case h G : Type u α : Type v inst✝¹ : Group G inst✝ : MulAction G α U : Set α this : Setoid α := orbitRel G α f : α → Quotient (orbitRel G α) := Quotient.mk' a : α ⊢ a ∈ f ⁻¹' (f '' U) ↔ a ∈ ⋃ (g : G), (fun x x_1 => x • x_1) g '' U [PROOFSTEP] constructor [GOAL] case h.mp G : Type u α : Type v inst✝¹ : Group G inst✝ : MulAction G α U : Set α this : Setoid α := orbitRel G α f : α → Quotient (orbitRel G α) := Quotient.mk' a : α ⊢ a ∈ f ⁻¹' (f '' U) → a ∈ ⋃ (g : G), (fun x x_1 => x • x_1) g '' U [PROOFSTEP] rintro ⟨b, hb, hab⟩ [GOAL] case h.mp.intro.intro G : Type u α : Type v inst✝¹ : Group G inst✝ : MulAction G α U : Set α this : Setoid α := orbitRel G α f : α → Quotient (orbitRel G α) := Quotient.mk' a b : α hb : b ∈ U hab : f b = f a ⊢ a ∈ ⋃ (g : G), (fun x x_1 => x • x_1) g '' U [PROOFSTEP] obtain ⟨g, rfl⟩ := Quotient.exact hab [GOAL] case h.mp.intro.intro.intro G : Type u α : Type v inst✝¹ : Group G inst✝ : MulAction G α U : Set α this : Setoid α := orbitRel G α f : α → Quotient (orbitRel G α) := Quotient.mk' a : α g : G hb : (fun m => m • a) g ∈ U hab : f ((fun m => m • a) g) = f a ⊢ a ∈ ⋃ (g : G), (fun x x_1 => x • x_1) g '' U [PROOFSTEP] rw [Set.mem_iUnion] [GOAL] case h.mp.intro.intro.intro G : Type u α : Type v inst✝¹ : Group G inst✝ : MulAction G α U : Set α this : Setoid α := orbitRel G α f : α → Quotient (orbitRel G α) := Quotient.mk' a : α g : G hb : (fun m => m • a) g ∈ U hab : f ((fun m => m • a) g) = f a ⊢ ∃ i, a ∈ (fun x x_1 => x • x_1) i '' U [PROOFSTEP] exact ⟨g⁻¹, g • a, hb, inv_smul_smul g a⟩ [GOAL] case h.mpr G : Type u α : Type v inst✝¹ : Group G inst✝ : MulAction G α U : Set α this : Setoid α := orbitRel G α f : α → Quotient (orbitRel G α) := Quotient.mk' a : α ⊢ a ∈ ⋃ (g : G), (fun x x_1 => x • x_1) g '' U → a ∈ f ⁻¹' (f '' U) [PROOFSTEP] intro hx [GOAL] case h.mpr G : Type u α : Type v inst✝¹ : Group G inst✝ : MulAction G α U : Set α this : Setoid α := orbitRel G α f : α → Quotient (orbitRel G α) := Quotient.mk' a : α hx : a ∈ ⋃ (g : G), (fun x x_1 => x • x_1) g '' U ⊢ a ∈ f ⁻¹' (f '' U) [PROOFSTEP] rw [Set.mem_iUnion] at hx [GOAL] case h.mpr G : Type u α : Type v inst✝¹ : Group G inst✝ : MulAction G α U : Set α this : Setoid α := orbitRel G α f : α → Quotient (orbitRel G α) := Quotient.mk' a : α hx : ∃ i, a ∈ (fun x x_1 => x • x_1) i '' U ⊢ a ∈ f ⁻¹' (f '' U) [PROOFSTEP] obtain ⟨g, u, hu₁, hu₂⟩ := hx [GOAL] case h.mpr.intro.intro.intro G : Type u α : Type v inst✝¹ : Group G inst✝ : MulAction G α U : Set α this : Setoid α := orbitRel G α f : α → Quotient (orbitRel G α) := Quotient.mk' a : α g : G u : α hu₁ : u ∈ U hu₂ : (fun x x_1 => x • x_1) g u = a ⊢ a ∈ f ⁻¹' (f '' U) [PROOFSTEP] rw [Set.mem_preimage, Set.mem_image_iff_bex] [GOAL] case h.mpr.intro.intro.intro G : Type u α : Type v inst✝¹ : Group G inst✝ : MulAction G α U : Set α this : Setoid α := orbitRel G α f : α → Quotient (orbitRel G α) := Quotient.mk' a : α g : G u : α hu₁ : u ∈ U hu₂ : (fun x x_1 => x • x_1) g u = a ⊢ ∃ x x_1, f x = f a [PROOFSTEP] refine' ⟨g⁻¹ • a, _, by simp only [Quotient.eq']; use g⁻¹⟩ [GOAL] G : Type u α : Type v inst✝¹ : Group G inst✝ : MulAction G α U : Set α this : Setoid α := orbitRel G α f : α → Quotient (orbitRel G α) := Quotient.mk' a : α g : G u : α hu₁ : u ∈ U hu₂ : (fun x x_1 => x • x_1) g u = a ⊢ f (g⁻¹ • a) = f a [PROOFSTEP] simp only [Quotient.eq'] [GOAL] G : Type u α : Type v inst✝¹ : Group G inst✝ : MulAction G α U : Set α this : Setoid α := orbitRel G α f : α → Quotient (orbitRel G α) := Quotient.mk' a : α g : G u : α hu₁ : u ∈ U hu₂ : (fun x x_1 => x • x_1) g u = a ⊢ Setoid.r (g⁻¹ • a) a [PROOFSTEP] use g⁻¹ [GOAL] case h.mpr.intro.intro.intro G : Type u α : Type v inst✝¹ : Group G inst✝ : MulAction G α U : Set α this : Setoid α := orbitRel G α f : α → Quotient (orbitRel G α) := Quotient.mk' a : α g : G u : α hu₁ : u ∈ U hu₂ : (fun x x_1 => x • x_1) g u = a ⊢ g⁻¹ • a ∈ U [PROOFSTEP] rw [← hu₂] [GOAL] case h.mpr.intro.intro.intro G : Type u α : Type v inst✝¹ : Group G inst✝ : MulAction G α U : Set α this : Setoid α := orbitRel G α f : α → Quotient (orbitRel G α) := Quotient.mk' a : α g : G u : α hu₁ : u ∈ U hu₂ : (fun x x_1 => x • x_1) g u = a ⊢ g⁻¹ • (fun x x_1 => x • x_1) g u ∈ U [PROOFSTEP] convert hu₁ [GOAL] case h.e'_4 G : Type u α : Type v inst✝¹ : Group G inst✝ : MulAction G α U : Set α this : Setoid α := orbitRel G α f : α → Quotient (orbitRel G α) := Quotient.mk' a : α g : G u : α hu₁ : u ∈ U hu₂ : (fun x x_1 => x • x_1) g u = a ⊢ g⁻¹ • (fun x x_1 => x • x_1) g u = u [PROOFSTEP] simp only [inv_smul_smul] [GOAL] G : Type u α : Type v inst✝¹ : Group G inst✝ : MulAction G α U V : Set α ⊢ Disjoint (Quotient.mk' '' U) (Quotient.mk' '' V) ↔ ∀ (x : α), x ∈ U → ∀ (g : G), ¬g • x ∈ V [PROOFSTEP] letI := orbitRel G α [GOAL] G : Type u α : Type v inst✝¹ : Group G inst✝ : MulAction G α U V : Set α this : Setoid α := orbitRel G α ⊢ Disjoint (Quotient.mk' '' U) (Quotient.mk' '' V) ↔ ∀ (x : α), x ∈ U → ∀ (g : G), ¬g • x ∈ V [PROOFSTEP] set f : α → Quotient (MulAction.orbitRel G α) := Quotient.mk' [GOAL] G : Type u α : Type v inst✝¹ : Group G inst✝ : MulAction G α U V : Set α this : Setoid α := orbitRel G α f : α → Quotient (orbitRel G α) := Quotient.mk' ⊢ Disjoint (f '' U) (f '' V) ↔ ∀ (x : α), x ∈ U → ∀ (g : G), ¬g • x ∈ V [PROOFSTEP] refine' ⟨fun h a a_in_U g g_in_V => h.le_bot ⟨⟨a, a_in_U, Quotient.sound ⟨g⁻¹, _⟩⟩, ⟨g • a, g_in_V, rfl⟩⟩, _⟩ [GOAL] case refine'_1 G : Type u α : Type v inst✝¹ : Group G inst✝ : MulAction G α U V : Set α this : Setoid α := orbitRel G α f : α → Quotient (orbitRel G α) := Quotient.mk' h : Disjoint (f '' U) (f '' V) a : α a_in_U : a ∈ U g : G g_in_V : g • a ∈ V ⊢ (fun m => m • g • a) g⁻¹ = a [PROOFSTEP] simp [GOAL] case refine'_2 G : Type u α : Type v inst✝¹ : Group G inst✝ : MulAction G α U V : Set α this : Setoid α := orbitRel G α f : α → Quotient (orbitRel G α) := Quotient.mk' ⊢ (∀ (x : α), x ∈ U → ∀ (g : G), ¬g • x ∈ V) → Disjoint (f '' U) (f '' V) [PROOFSTEP] intro h [GOAL] case refine'_2 G : Type u α : Type v inst✝¹ : Group G inst✝ : MulAction G α U V : Set α this : Setoid α := orbitRel G α f : α → Quotient (orbitRel G α) := Quotient.mk' h : ∀ (x : α), x ∈ U → ∀ (g : G), ¬g • x ∈ V ⊢ Disjoint (f '' U) (f '' V) [PROOFSTEP] rw [Set.disjoint_left] [GOAL] case refine'_2 G : Type u α : Type v inst✝¹ : Group G inst✝ : MulAction G α U V : Set α this : Setoid α := orbitRel G α f : α → Quotient (orbitRel G α) := Quotient.mk' h : ∀ (x : α), x ∈ U → ∀ (g : G), ¬g • x ∈ V ⊢ ∀ ⦃a : Quotient (orbitRel G α)⦄, a ∈ f '' U → ¬a ∈ f '' V [PROOFSTEP] rintro _ ⟨b, hb₁, hb₂⟩ ⟨c, hc₁, hc₂⟩ [GOAL] case refine'_2.intro.intro.intro.intro G : Type u α : Type v inst✝¹ : Group G inst✝ : MulAction G α U V : Set α this : Setoid α := orbitRel G α f : α → Quotient (orbitRel G α) := Quotient.mk' h : ∀ (x : α), x ∈ U → ∀ (g : G), ¬g • x ∈ V a✝ : Quotient (orbitRel G α) b : α hb₁ : b ∈ U hb₂ : f b = a✝ c : α hc₁ : c ∈ V hc₂ : f c = a✝ ⊢ False [PROOFSTEP] obtain ⟨g, rfl⟩ := Quotient.exact (hc₂.trans hb₂.symm) [GOAL] case refine'_2.intro.intro.intro.intro.intro G : Type u α : Type v inst✝¹ : Group G inst✝ : MulAction G α U V : Set α this : Setoid α := orbitRel G α f : α → Quotient (orbitRel G α) := Quotient.mk' h : ∀ (x : α), x ∈ U → ∀ (g : G), ¬g • x ∈ V a✝ : Quotient (orbitRel G α) b : α hb₁ : b ∈ U hb₂ : f b = a✝ g : G hc₁ : (fun m => m • b) g ∈ V hc₂ : f ((fun m => m • b) g) = a✝ ⊢ False [PROOFSTEP] exact h b hb₁ g hc₁ [GOAL] G : Type u α : Type v inst✝¹ : Group G inst✝ : MulAction G α a : α x : Quotient G α ⊢ a ∈ orbit x ↔ Quotient.mk'' a = x [PROOFSTEP] induction x using Quotient.inductionOn' [GOAL] case h G : Type u α : Type v inst✝¹ : Group G inst✝ : MulAction G α a a✝ : α ⊢ a ∈ orbit (Quotient.mk'' a✝) ↔ Quotient.mk'' a = Quotient.mk'' a✝ [PROOFSTEP] rw [Quotient.eq''] [GOAL] case h G : Type u α : Type v inst✝¹ : Group G inst✝ : MulAction G α a a✝ : α ⊢ a ∈ orbit (Quotient.mk'' a✝) ↔ Setoid.r a a✝ [PROOFSTEP] rfl [GOAL] G : Type u α : Type v inst✝¹ : Group G inst✝ : MulAction G α x : Quotient G α φ : Quotient G α → α hφ : Function.RightInverse φ Quotient.mk' ⊢ orbit x = MulAction.orbit G (φ x) [PROOFSTEP] conv_lhs => rw [← hφ x] [GOAL] G : Type u α : Type v inst✝¹ : Group G inst✝ : MulAction G α x : Quotient G α φ : Quotient G α → α hφ : Function.RightInverse φ Quotient.mk' | orbit x [PROOFSTEP] rw [← hφ x] [GOAL] G : Type u α : Type v inst✝¹ : Group G inst✝ : MulAction G α x : Quotient G α φ : Quotient G α → α hφ : Function.RightInverse φ Quotient.mk' | orbit x [PROOFSTEP] rw [← hφ x] [GOAL] G : Type u α : Type v inst✝¹ : Group G inst✝ : MulAction G α x : Quotient G α φ : Quotient G α → α hφ : Function.RightInverse φ Quotient.mk' | orbit x [PROOFSTEP] rw [← hφ x] [GOAL] G : Type u α : Type v inst✝¹ : Group G inst✝ : MulAction G α g : G a : α ⊢ stabilizer G (g • a) = Subgroup.map (MulEquiv.toMonoidHom (↑MulAut.conj g)) (stabilizer G a) [PROOFSTEP] ext h [GOAL] case h G : Type u α : Type v inst✝¹ : Group G inst✝ : MulAction G α g : G a : α h : G ⊢ h ∈ stabilizer G (g • a) ↔ h ∈ Subgroup.map (MulEquiv.toMonoidHom (↑MulAut.conj g)) (stabilizer G a) [PROOFSTEP] rw [mem_stabilizer_iff, ← smul_left_cancel_iff g⁻¹, smul_smul, smul_smul, smul_smul, mul_left_inv, one_smul, ← mem_stabilizer_iff, Subgroup.mem_map_equiv, MulAut.conj_symm_apply] [GOAL] G : Type u α : Type v inst✝¹ : Group G inst✝ : MulAction G α a b : α h : Setoid.Rel (orbitRel G α) a b g : G := Classical.choose h hg : g • b = a ⊢ stabilizer G a = Subgroup.map (MulEquiv.toMonoidHom (↑MulAut.conj g)) (stabilizer G b) [PROOFSTEP] rw [← hg, stabilizer_smul_eq_stabilizer_map_conj] [GOAL] G : Type u α : Type v inst✝¹ : AddGroup G inst✝ : AddAction G α g : G a : α ⊢ stabilizer G (g +ᵥ a) = AddSubgroup.map (AddEquiv.toAddMonoidHom (↑AddAut.conj g)) (stabilizer G a) [PROOFSTEP] ext h [GOAL] case h G : Type u α : Type v inst✝¹ : AddGroup G inst✝ : AddAction G α g : G a : α h : G ⊢ h ∈ stabilizer G (g +ᵥ a) ↔ h ∈ AddSubgroup.map (AddEquiv.toAddMonoidHom (↑AddAut.conj g)) (stabilizer G a) [PROOFSTEP] rw [mem_stabilizer_iff, ← vadd_left_cancel_iff (-g), vadd_vadd, vadd_vadd, vadd_vadd, add_left_neg, zero_vadd, ← mem_stabilizer_iff, AddSubgroup.mem_map_equiv, AddAut.conj_symm_apply] [GOAL] G : Type u α : Type v inst✝¹ : AddGroup G inst✝ : AddAction G α a b : α h : Setoid.Rel (orbitRel G α) a b g : G := Classical.choose h hg : g +ᵥ b = a ⊢ stabilizer G a = AddSubgroup.map (AddEquiv.toAddMonoidHom (↑AddAut.conj g)) (stabilizer G b) [PROOFSTEP] rw [← hg, stabilizer_vadd_eq_stabilizer_map_conj] [GOAL] M : Type u_1 R : Type u_2 inst✝² : Monoid M inst✝¹ : NonUnitalNonAssocRing R inst✝ : DistribMulAction M R k : M h : ∀ (x : R), k • x = 0 → x = 0 a b : R h' : k • a = k • b ⊢ a = b [PROOFSTEP] rw [← sub_eq_zero] [GOAL] M : Type u_1 R : Type u_2 inst✝² : Monoid M inst✝¹ : NonUnitalNonAssocRing R inst✝ : DistribMulAction M R k : M h : ∀ (x : R), k • x = 0 → x = 0 a b : R h' : k • a = k • b ⊢ a - b = 0 [PROOFSTEP] refine' h _ _ [GOAL] M : Type u_1 R : Type u_2 inst✝² : Monoid M inst✝¹ : NonUnitalNonAssocRing R inst✝ : DistribMulAction M R k : M h : ∀ (x : R), k • x = 0 → x = 0 a b : R h' : k • a = k • b ⊢ k • (a - b) = 0 [PROOFSTEP] rw [smul_sub, h', sub_self]
{"mathlib_filename": "Mathlib.GroupTheory.GroupAction.Basic", "llama_tokens": 8307}
[GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a b c x : R e : ℕ pq_pf : a + b = c ⊢ x ^ e * a + x ^ e * b = x ^ e * c [PROOFSTEP] subst_vars [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a b x : R e : ℕ ⊢ x ^ e * a + x ^ e * b = x ^ e * (a + b) [PROOFSTEP] simp [mul_add] [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a b x : R e : ℕ h : a + b = ↑0 ⊢ x ^ e * a + x ^ e * b = ↑0 [PROOFSTEP] simp [h, ← mul_add] [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R b : R ⊢ 0 + b = b [PROOFSTEP] simp [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a : R ⊢ a + 0 = a [PROOFSTEP] simp [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a₁ b₁ c₁ a₂ b₂ c₂ : R x✝¹ : a₁ + b₁ = c₁ x✝ : a₂ + b₂ = c₂ ⊢ a₁ + a₂ + (b₁ + b₂) = c₁ + c₂ [PROOFSTEP] subst_vars [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a₁ b₁ a₂ b₂ : R ⊢ a₁ + a₂ + (b₁ + b₂) = a₁ + b₁ + (a₂ + b₂) [PROOFSTEP] simp [add_assoc, add_left_comm] [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a₁ b₁ a₂ b₂ c : R h : IsNat (a₁ + b₁) 0 h₄ : a₂ + b₂ = c ⊢ a₁ + a₂ + (b₁ + b₂) = c [PROOFSTEP] subst_vars [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a₁ b₁ a₂ b₂ : R h : IsNat (a₁ + b₁) 0 ⊢ a₁ + a₂ + (b₁ + b₂) = a₂ + b₂ [PROOFSTEP] rw [add_add_add_comm, h.1, Nat.cast_zero, add_pf_zero_add] [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a₂ b c a₁ : R x✝ : a₂ + b = c ⊢ a₁ + a₂ + b = a₁ + c [PROOFSTEP] simp [*, add_assoc] [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a b₂ c b₁ : R x✝ : a + b₂ = c ⊢ a + (b₁ + b₂) = b₁ + c [PROOFSTEP] subst_vars [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a b₂ b₁ : R ⊢ a + (b₁ + b₂) = b₁ + (a + b₂) [PROOFSTEP] simp [add_left_comm] [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a : R ⊢ Nat.rawCast 1 * a = a [PROOFSTEP] simp [Nat.rawCast] [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a : R ⊢ a * Nat.rawCast 1 = a [PROOFSTEP] simp [Nat.rawCast] [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a₃ b c a₁ : R a₂ : ℕ x✝ : a₃ * b = c ⊢ a₁ ^ a₂ * a₃ * b = a₁ ^ a₂ * c [PROOFSTEP] subst_vars [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a₃ b a₁ : R a₂ : ℕ ⊢ a₁ ^ a₂ * a₃ * b = a₁ ^ a₂ * (a₃ * b) [PROOFSTEP] rw [mul_assoc] [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a b₃ c b₁ : R b₂ : ℕ x✝ : a * b₃ = c ⊢ a * (b₁ ^ b₂ * b₃) = b₁ ^ b₂ * c [PROOFSTEP] subst_vars [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a b₃ b₁ : R b₂ : ℕ ⊢ a * (b₁ ^ b₂ * b₃) = b₁ ^ b₂ * (a * b₃) [PROOFSTEP] rw [mul_left_comm] [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R ea eb e : ℕ a₂ b₂ c x : R x✝¹ : ea + eb = e x✝ : a₂ * b₂ = c ⊢ x ^ ea * a₂ * (x ^ eb * b₂) = x ^ e * c [PROOFSTEP] subst_vars [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R ea eb : ℕ a₂ b₂ x : R ⊢ x ^ ea * a₂ * (x ^ eb * b₂) = x ^ (ea + eb) * (a₂ * b₂) [PROOFSTEP] simp [pow_add, mul_mul_mul_comm] [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a : R ⊢ a * 0 = 0 [PROOFSTEP] simp [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a b₁ c₁ b₂ c₂ d : R x✝² : a * b₁ = c₁ x✝¹ : a * b₂ = c₂ x✝ : c₁ + 0 + c₂ = d ⊢ a * (b₁ + b₂) = d [PROOFSTEP] subst_vars [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a b₁ b₂ : R ⊢ a * (b₁ + b₂) = a * b₁ + 0 + a * b₂ [PROOFSTEP] simp [_root_.mul_add] [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R b : R ⊢ 0 * b = 0 [PROOFSTEP] simp [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a₁ b c₁ a₂ c₂ d : R x✝² : a₁ * b = c₁ x✝¹ : a₂ * b = c₂ x✝ : c₁ + c₂ = d ⊢ (a₁ + a₂) * b = d [PROOFSTEP] subst_vars [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a₁ b a₂ : R ⊢ (a₁ + a₂) * b = a₁ * b + a₂ * b [PROOFSTEP] simp [_root_.add_mul] [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R n : ℕ ⊢ ↑(Nat.rawCast n) = Nat.rawCast n [PROOFSTEP] simp [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a₁ : ℕ b₁ : R a₃ : ℕ b₃ : R a₂ : ℕ x✝¹ : ↑a₁ = b₁ x✝ : ↑a₃ = b₃ ⊢ ↑(a₁ ^ a₂ * a₃) = b₁ ^ a₂ * b₃ [PROOFSTEP] subst_vars [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a₁ a₃ a₂ : ℕ ⊢ ↑(a₁ ^ a₂ * a₃) = ↑a₁ ^ a₂ * ↑a₃ [PROOFSTEP] simp [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a₁ : ℕ b₁ : R a₂ : ℕ b₂ : R x✝¹ : ↑a₁ = b₁ x✝ : ↑a₂ = b₂ ⊢ ↑(a₁ + a₂) = b₁ + b₂ [PROOFSTEP] subst_vars [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a₁ a₂ : ℕ ⊢ ↑(a₁ + a₂) = ↑a₁ + ↑a₂ [PROOFSTEP] simp [GOAL] u : Lean.Level R : Type ?u.195007 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a b c : ℕ x✝ : a * b = c ⊢ a • b = c [PROOFSTEP] subst_vars [GOAL] u : Lean.Level R : Type ?u.195007 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a b : ℕ ⊢ a • b = a * b [PROOFSTEP] simp [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a : ℕ a' b c : R x✝¹ : ↑a = a' x✝ : a' * b = c ⊢ a • b = c [PROOFSTEP] subst_vars [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a : ℕ b : R ⊢ a • b = ↑a * b [PROOFSTEP] simp [GOAL] u : Lean.Level R✝ : Type ?u.203137 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝¹ : CommSemiring R✝ R : Type u_1 inst✝ : Ring R a b : R x✝ : Int.rawCast (Int.negOfNat 1) * a = b ⊢ -a = b [PROOFSTEP] subst_vars [GOAL] u : Lean.Level R✝ : Type ?u.203137 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝¹ : CommSemiring R✝ R : Type u_1 inst✝ : Ring R a : R ⊢ -a = Int.rawCast (Int.negOfNat 1) * a [PROOFSTEP] simp [Int.negOfNat] [GOAL] u : Lean.Level R✝ : Type ?u.204069 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝¹ : CommSemiring R✝ R : Type u_1 inst✝ : Ring R a₁ : R a₂ : ℕ a₃ b : R x✝ : -a₃ = b ⊢ -(a₁ ^ a₂ * a₃) = a₁ ^ a₂ * b [PROOFSTEP] subst_vars [GOAL] u : Lean.Level R✝ : Type ?u.204069 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝¹ : CommSemiring R✝ R : Type u_1 inst✝ : Ring R a₁ : R a₂ : ℕ a₃ : R ⊢ -(a₁ ^ a₂ * a₃) = a₁ ^ a₂ * -a₃ [PROOFSTEP] simp [GOAL] u : Lean.Level R✝ : Type ?u.213000 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝¹ : CommSemiring R✝ R : Type u_1 inst✝ : Ring R ⊢ -0 = 0 [PROOFSTEP] simp [GOAL] u : Lean.Level R✝ : Type ?u.213479 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝¹ : CommSemiring R✝ R : Type u_1 inst✝ : Ring R a₁ a₂ b₁ b₂ : R x✝¹ : -a₁ = b₁ x✝ : -a₂ = b₂ ⊢ -(a₁ + a₂) = b₁ + b₂ [PROOFSTEP] subst_vars [GOAL] u : Lean.Level R✝ : Type ?u.213479 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝¹ : CommSemiring R✝ R : Type u_1 inst✝ : Ring R a₁ a₂ : R ⊢ -(a₁ + a₂) = -a₁ + -a₂ [PROOFSTEP] simp [add_comm] [GOAL] u : Lean.Level R✝ : Type ?u.219543 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝¹ : CommSemiring R✝ R : Type u_1 inst✝ : Ring R a b c d : R x✝¹ : -b = c x✝ : a + c = d ⊢ a - b = d [PROOFSTEP] subst_vars [GOAL] u : Lean.Level R✝ : Type ?u.219543 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝¹ : CommSemiring R✝ R : Type u_1 inst✝ : Ring R a b : R ⊢ a - b = a + -b [PROOFSTEP] simp [sub_eq_add_neg] [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a : R b : ℕ ⊢ a ^ b = (a + 0) ^ b * Nat.rawCast 1 [PROOFSTEP] simp [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a : R b : ℕ ⊢ a ^ b = a ^ b * Nat.rawCast 1 + 0 [PROOFSTEP] simp [GOAL] u : Lean.Level R : Type ?u.229716 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a✝ : Q(ℕ) va : ExProd sℕ a✝ a : Q(ℕ) value✝ : ℚ hyp✝ : Option Expr lit : Q(ℕ) this : «$a» =Q Nat.rawCast «$lit» p : Nat.ble 1 «$lit» =Q true ⊢ Option Q(0 < «$a») [PROOFSTEP] exact some (q(const_pos $lit $p)) [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a : R ⊢ a ^ 1 = a [PROOFSTEP] simp [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a : R k : ℕ b c : R x✝¹ : a ^ k = b x✝ : b * b = c ⊢ a ^ Nat.mul 2 k = c [PROOFSTEP] subst_vars [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a : R k : ℕ ⊢ a ^ Nat.mul 2 k = a ^ k * a ^ k [PROOFSTEP] simp [Nat.succ_mul, pow_add] [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a : R k : ℕ b c d : R x✝² : a ^ k = b x✝¹ : b * b = c x✝ : c * a = d ⊢ a ^ Nat.add (Nat.mul 2 k) 1 = d [PROOFSTEP] subst_vars [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a : R k : ℕ ⊢ a ^ Nat.add (Nat.mul 2 k) 1 = a ^ k * a ^ k * a [PROOFSTEP] simp [Nat.succ_mul, pow_add] [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R b : ℕ ⊢ Nat.rawCast 1 ^ b = Nat.rawCast 1 [PROOFSTEP] simp [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R ea₁ b c₁ : ℕ a₂ c₂ xa₁ : R x✝¹ : ea₁ * b = c₁ x✝ : a₂ ^ b = c₂ ⊢ (xa₁ ^ ea₁ * a₂) ^ b = xa₁ ^ c₁ * c₂ [PROOFSTEP] subst_vars [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R ea₁ b : ℕ a₂ xa₁ : R ⊢ (xa₁ ^ ea₁ * a₂) ^ b = xa₁ ^ (ea₁ * b) * a₂ ^ b [PROOFSTEP] simp [_root_.mul_pow, pow_mul] [GOAL] u : Lean.Level R : Type ?u.271767 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R k : ℕ ⊢ Nat.rawCast k = Nat.rawCast 1 * k [PROOFSTEP] simp [GOAL] u : Lean.Level R : Type ?u.272246 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a₃ c₂ k a₁ a₂ : ℕ x✝ : a₃ = c₂ * k ⊢ a₁ ^ a₂ * a₃ = a₁ ^ a₂ * c₂ * k [PROOFSTEP] subst_vars [GOAL] u : Lean.Level R : Type ?u.272246 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R c₂ k a₁ a₂ : ℕ ⊢ a₁ ^ a₂ * (c₂ * k) = a₁ ^ a₂ * c₂ * k [PROOFSTEP] rw [mul_assoc] [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a : R ⊢ a ^ Nat.rawCast 1 = a [PROOFSTEP] simp [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R b✝ b : ℕ x✝ : 0 < b + 1 ⊢ 0 ^ (b + 1) = 0 [PROOFSTEP] simp [pow_succ] [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a : R b : ℕ c : R x✝ : a ^ b = c ⊢ (a + 0) ^ b = c + 0 [PROOFSTEP] simp [*] [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R b c k : ℕ a d e : R x✝² : b = c * k x✝¹ : a ^ c = d x✝ : d ^ k = e ⊢ a ^ b = e [PROOFSTEP] subst_vars [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R c k : ℕ a : R ⊢ a ^ (c * k) = (a ^ c) ^ k [PROOFSTEP] simp [pow_mul] [GOAL] u : Lean.Level R : Type ?u.283538 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a✝ : Q(«$α») b : Q(ℕ) va✝ : ExSum sα a✝ vb : ExProd sℕ b a : Q(«$α») va : ExSum sα a this : «$b» =Q Nat.rawCast 1 ⊢ Q(«$a» ^ «$b» = «$a») [PROOFSTEP] exact q(pow_one_cast $a) [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a : R ⊢ a ^ 0 = Nat.rawCast 1 + 0 [PROOFSTEP] simp [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a : R b₁ : ℕ c₁ : R b₂ : ℕ c₂ d : R x✝² : a ^ b₁ = c₁ x✝¹ : a ^ b₂ = c₂ x✝ : c₁ * c₂ = d ⊢ a ^ (b₁ + b₂) = d [PROOFSTEP] subst_vars [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a : R b₁ b₂ : ℕ ⊢ a ^ (b₁ + b₂) = a ^ b₁ * a ^ b₂ [PROOFSTEP] simp [_root_.pow_add] [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a : R n : ℕ e : a = ↑n ⊢ a = Nat.rawCast n + 0 [PROOFSTEP] simp [e] [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a : R e : a = ↑0 ⊢ a = 0 [PROOFSTEP] simp [e] [GOAL] u : Lean.Level R✝ : Type ?u.333286 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝¹ : CommSemiring R✝ n : ℕ R : Type u_1 inst✝ : Ring R a : R e : a = ↑(Int.negOfNat n) ⊢ a = Int.rawCast (Int.negOfNat n) + 0 [PROOFSTEP] simp [e] [GOAL] u : Lean.Level R✝ : Type ?u.334205 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝¹ : CommSemiring R✝ n : ℤ d : ℕ R : Type u_1 inst✝ : DivisionRing R a : R inv✝ : Invertible ↑d e : a = ↑n * ⅟↑d ⊢ a = Rat.rawCast n d + 0 [PROOFSTEP] simp [e, div_eq_mul_inv] [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a a' : R p : a = a' ⊢ a = a' ^ Nat.rawCast 1 * Nat.rawCast 1 [PROOFSTEP] simp [*] [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a : R ⊢ a = a ^ Nat.rawCast 1 * Nat.rawCast 1 + 0 [PROOFSTEP] simp [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a a' : R p : a = a' ⊢ a = a' ^ Nat.rawCast 1 * Nat.rawCast 1 + 0 [PROOFSTEP] simp [*] [GOAL] u : Lean.Level R✝ : Type ?u.354097 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝¹ : CommSemiring R✝ R : Type u_1 inst✝ : DivisionRing R a₁ : R a₂ : ℕ a₃ b₁ b₃ c : R x✝² : a₁⁻¹ = b₁ x✝¹ : a₃⁻¹ = b₃ x✝ : b₃ * (b₁ ^ a₂ * Nat.rawCast 1) = c ⊢ (a₁ ^ a₂ * a₃)⁻¹ = c [PROOFSTEP] subst_vars [GOAL] u : Lean.Level R✝ : Type ?u.354097 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝¹ : CommSemiring R✝ R : Type u_1 inst✝ : DivisionRing R a₁ : R a₂ : ℕ a₃ : R ⊢ (a₁ ^ a₂ * a₃)⁻¹ = a₃⁻¹ * (a₁⁻¹ ^ a₂ * Nat.rawCast 1) [PROOFSTEP] simp [GOAL] u : Lean.Level R✝ : Type ?u.357008 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝¹ : CommSemiring R✝ R : Type u_1 inst✝ : DivisionRing R a b : R x✝ : a⁻¹ = b ⊢ (a + 0)⁻¹ = b + 0 [PROOFSTEP] simp [*] [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a₁ : ℕ b₁ : R a₂ : ℕ b₂ : R x✝¹ : ↑a₁ = b₁ x✝ : ↑a₂ = b₂ ⊢ ↑(a₁ + a₂) = b₁ + b₂ [PROOFSTEP] subst_vars [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a₁ a₂ : ℕ ⊢ ↑(a₁ + a₂) = ↑a₁ + ↑a₂ [PROOFSTEP] simp [GOAL] u : Lean.Level R✝ : Type ?u.392566 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝¹ : CommSemiring R✝ R : Type u_1 inst✝ : DivisionRing R a b c d : R x✝¹ : b⁻¹ = c x✝ : a * c = d ⊢ a / b = d [PROOFSTEP] subst_vars [GOAL] u : Lean.Level R✝ : Type ?u.392566 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝¹ : CommSemiring R✝ R : Type u_1 inst✝ : DivisionRing R a b : R ⊢ a / b = a * b⁻¹ [PROOFSTEP] simp [div_eq_mul_inv] [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a a' b b' c : R x✝² : a = a' x✝¹ : b = b' x✝ : a' + b' = c ⊢ a + b = c [PROOFSTEP] subst_vars [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a' b' : R ⊢ a' + b' = a' + b' [PROOFSTEP] rfl [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a a' b b' c : R x✝² : a = a' x✝¹ : b = b' x✝ : a' * b' = c ⊢ a * b = c [PROOFSTEP] subst_vars [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a' b' : R ⊢ a' * b' = a' * b' [PROOFSTEP] rfl [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a a' : ℕ b b' c : R x✝² : a = a' x✝¹ : b = b' x✝ : a' • b' = c ⊢ a • b = c [PROOFSTEP] subst_vars [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a' : ℕ b' : R ⊢ a' • b' = a' • b' [PROOFSTEP] rfl [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a a' : R b b' : ℕ c : R x✝² : a = a' x✝¹ : b = b' x✝ : a' ^ b' = c ⊢ a ^ b = c [PROOFSTEP] subst_vars [GOAL] u : Lean.Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a' : R b' : ℕ ⊢ a' ^ b' = a' ^ b' [PROOFSTEP] rfl [GOAL] u : Lean.Level R✝ : Type ?u.398592 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝¹ : CommSemiring R✝ R : Type u_1 inst✝ : Ring R a a' b : R x✝¹ : a = a' x✝ : -a' = b ⊢ -a = b [PROOFSTEP] subst_vars [GOAL] u : Lean.Level R✝ : Type ?u.398592 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝¹ : CommSemiring R✝ R : Type u_1 inst✝ : Ring R a' : R ⊢ -a' = -a' [PROOFSTEP] rfl [GOAL] u : Lean.Level R✝ : Type ?u.398710 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝¹ : CommSemiring R✝ R : Type u_1 inst✝ : Ring R a a' b b' c : R x✝² : a = a' x✝¹ : b = b' x✝ : a' - b' = c ⊢ a - b = c [PROOFSTEP] subst_vars [GOAL] u : Lean.Level R✝ : Type ?u.398710 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝¹ : CommSemiring R✝ R : Type u_1 inst✝ : Ring R a' b' : R ⊢ a' - b' = a' - b' [PROOFSTEP] rfl [GOAL] u : Lean.Level R✝ : Type ?u.398916 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝¹ : CommSemiring R✝ R : Type u_1 inst✝ : DivisionRing R a a' b : R x✝¹ : a = a' x✝ : a'⁻¹ = b ⊢ a⁻¹ = b [PROOFSTEP] subst_vars [GOAL] u : Lean.Level R✝ : Type ?u.398916 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝¹ : CommSemiring R✝ R : Type u_1 inst✝ : DivisionRing R a' : R ⊢ a'⁻¹ = a'⁻¹ [PROOFSTEP] rfl [GOAL] u : Lean.Level R✝ : Type ?u.399091 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝¹ : CommSemiring R✝ R : Type u_1 inst✝ : DivisionRing R a a' b b' c : R x✝² : a = a' x✝¹ : b = b' x✝ : a' / b' = c ⊢ a / b = c [PROOFSTEP] subst_vars [GOAL] u : Lean.Level R✝ : Type ?u.399091 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝¹ : CommSemiring R✝ R : Type u_1 inst✝ : DivisionRing R a' b' : R ⊢ a' / b' = a' / b' [PROOFSTEP] rfl [GOAL] u : Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R a c b : R x✝¹ : a = c x✝ : b = c ⊢ a = b [PROOFSTEP] subst_vars [GOAL] u : Level R : Type u_1 α : Q(Type u) sα : Q(CommSemiring «$α») inst✝ : CommSemiring R b : R ⊢ b = b [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Tactic.Ring.Basic", "llama_tokens": 10668}
{"mathlib_filename": "Mathlib.GroupTheory.GroupAction.Embedding", "llama_tokens": 0}
[GOAL] p : ℕ G : Type u_1 inst✝ : Group G hp : Fact (Nat.Prime p) g : G k : ℕ hk : orderOf g = p ^ k ⊢ g ^ p ^ k = 1 [PROOFSTEP] rw [← hk, pow_orderOf_eq_one] [GOAL] p : ℕ G : Type u_1 inst✝¹ : Group G inst✝ : Fintype G n : ℕ hG : card G = p ^ n g : G ⊢ g ^ p ^ n = 1 [PROOFSTEP] rw [← hG, pow_card_eq_one] [GOAL] p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Fintype G ⊢ IsPGroup p G ↔ ∃ n, card G = p ^ n [PROOFSTEP] have hG : card G ≠ 0 := card_ne_zero [GOAL] p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Fintype G hG : card G ≠ 0 ⊢ IsPGroup p G ↔ ∃ n, card G = p ^ n [PROOFSTEP] refine' ⟨fun h => _, fun ⟨n, hn⟩ => of_card hn⟩ [GOAL] p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Fintype G hG : card G ≠ 0 h : IsPGroup p G ⊢ ∃ n, card G = p ^ n [PROOFSTEP] suffices ∀ q ∈ Nat.factors (card G), q = p by use(card G).factors.length rw [← List.prod_replicate, ← List.eq_replicate_of_mem this, Nat.prod_factors hG] [GOAL] p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Fintype G hG : card G ≠ 0 h : IsPGroup p G this : ∀ (q : ℕ), q ∈ Nat.factors (card G) → q = p ⊢ ∃ n, card G = p ^ n [PROOFSTEP] use(card G).factors.length [GOAL] case h p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Fintype G hG : card G ≠ 0 h : IsPGroup p G this : ∀ (q : ℕ), q ∈ Nat.factors (card G) → q = p ⊢ card G = p ^ List.length (Nat.factors (card G)) [PROOFSTEP] rw [← List.prod_replicate, ← List.eq_replicate_of_mem this, Nat.prod_factors hG] [GOAL] p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Fintype G hG : card G ≠ 0 h : IsPGroup p G ⊢ ∀ (q : ℕ), q ∈ Nat.factors (card G) → q = p [PROOFSTEP] intro q hq [GOAL] p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Fintype G hG : card G ≠ 0 h : IsPGroup p G q : ℕ hq : q ∈ Nat.factors (card G) ⊢ q = p [PROOFSTEP] obtain ⟨hq1, hq2⟩ := (Nat.mem_factors hG).mp hq [GOAL] case intro p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Fintype G hG : card G ≠ 0 h : IsPGroup p G q : ℕ hq : q ∈ Nat.factors (card G) hq1 : Nat.Prime q hq2 : q ∣ card G ⊢ q = p [PROOFSTEP] haveI : Fact q.Prime := ⟨hq1⟩ [GOAL] case intro p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Fintype G hG : card G ≠ 0 h : IsPGroup p G q : ℕ hq : q ∈ Nat.factors (card G) hq1 : Nat.Prime q hq2 : q ∣ card G this : Fact (Nat.Prime q) ⊢ q = p [PROOFSTEP] obtain ⟨g, hg⟩ := exists_prime_orderOf_dvd_card q hq2 [GOAL] case intro.intro p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Fintype G hG : card G ≠ 0 h : IsPGroup p G q : ℕ hq : q ∈ Nat.factors (card G) hq1 : Nat.Prime q hq2 : q ∣ card G this : Fact (Nat.Prime q) g : G hg : orderOf g = q ⊢ q = p [PROOFSTEP] obtain ⟨k, hk⟩ := (iff_orderOf.mp h) g [GOAL] case intro.intro.intro p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Fintype G hG : card G ≠ 0 h : IsPGroup p G q : ℕ hq : q ∈ Nat.factors (card G) hq1 : Nat.Prime q hq2 : q ∣ card G this : Fact (Nat.Prime q) g : G hg : orderOf g = q k : ℕ hk : orderOf g = p ^ k ⊢ q = p [PROOFSTEP] exact (hq1.pow_eq_iff.mp (hg.symm.trans hk).symm).1.symm [GOAL] p : ℕ G : Type u_1 inst✝¹ : Group G hG : IsPGroup p G H : Type u_2 inst✝ : Group H ϕ : H →* G hϕ : Function.Injective ↑ϕ ⊢ IsPGroup p H [PROOFSTEP] simp_rw [IsPGroup, ← hϕ.eq_iff, ϕ.map_pow, ϕ.map_one] [GOAL] p : ℕ G : Type u_1 inst✝¹ : Group G hG : IsPGroup p G H : Type u_2 inst✝ : Group H ϕ : H →* G hϕ : Function.Injective ↑ϕ ⊢ ∀ (g : H), ∃ k, ↑ϕ g ^ p ^ k = 1 [PROOFSTEP] exact fun h => hG (ϕ h) [GOAL] p : ℕ G : Type u_1 inst✝¹ : Group G hG : IsPGroup p G H : Type u_2 inst✝ : Group H ϕ : G →* H hϕ : Function.Surjective ↑ϕ ⊢ IsPGroup p H [PROOFSTEP] refine' fun h => Exists.elim (hϕ h) fun g hg => Exists.imp (fun k hk => _) (hG g) [GOAL] p : ℕ G : Type u_1 inst✝¹ : Group G hG : IsPGroup p G H : Type u_2 inst✝ : Group H ϕ : G →* H hϕ : Function.Surjective ↑ϕ h : H g : G hg : ↑ϕ g = h k : ℕ hk : g ^ p ^ k = 1 ⊢ h ^ p ^ k = 1 [PROOFSTEP] rw [← hg, ← ϕ.map_pow, hk, ϕ.map_one] [GOAL] p : ℕ G : Type u_1 inst✝ : Group G hG : IsPGroup p G n : ℕ hn : Nat.coprime p n g : G ⊢ ↑(powEquiv hG hn).symm g = g ^ Nat.gcdB (orderOf g) n [PROOFSTEP] rw [order_eq_card_zpowers'] [GOAL] p : ℕ G : Type u_1 inst✝ : Group G hG : IsPGroup p G n : ℕ hn : Nat.coprime p n g : G ⊢ ↑(powEquiv hG hn).symm g = g ^ Nat.gcdB (Nat.card { x // x ∈ Subgroup.zpowers g }) n [PROOFSTEP] rfl [GOAL] p : ℕ G : Type u_1 inst✝¹ : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) H : Subgroup G inst✝ : Subgroup.FiniteIndex H ⊢ ∃ n, Subgroup.index H = p ^ n [PROOFSTEP] haveI := H.normalCore.fintypeQuotientOfFiniteIndex [GOAL] p : ℕ G : Type u_1 inst✝¹ : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) H : Subgroup G inst✝ : Subgroup.FiniteIndex H this : Fintype (G ⧸ Subgroup.normalCore H) ⊢ ∃ n, Subgroup.index H = p ^ n [PROOFSTEP] obtain ⟨n, hn⟩ := iff_card.mp (hG.to_quotient H.normalCore) [GOAL] case intro p : ℕ G : Type u_1 inst✝¹ : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) H : Subgroup G inst✝ : Subgroup.FiniteIndex H this : Fintype (G ⧸ Subgroup.normalCore H) n : ℕ hn : card (G ⧸ Subgroup.normalCore H) = p ^ n ⊢ ∃ n, Subgroup.index H = p ^ n [PROOFSTEP] obtain ⟨k, _, hk2⟩ := (Nat.dvd_prime_pow hp.out).mp ((congr_arg _ (H.normalCore.index_eq_card.trans hn)).mp (Subgroup.index_dvd_of_le H.normalCore_le)) [GOAL] case intro.intro.intro p : ℕ G : Type u_1 inst✝¹ : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) H : Subgroup G inst✝ : Subgroup.FiniteIndex H this : Fintype (G ⧸ Subgroup.normalCore H) n : ℕ hn : card (G ⧸ Subgroup.normalCore H) = p ^ n k : ℕ left✝ : k ≤ n hk2 : Subgroup.index H = p ^ k ⊢ ∃ n, Subgroup.index H = p ^ n [PROOFSTEP] exact ⟨k, hk2⟩ [GOAL] p : ℕ G : Type u_1 inst✝ : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) ⊢ Nat.card G = 1 ∨ p ∣ Nat.card G [PROOFSTEP] cases fintypeOrInfinite G [GOAL] case inl p : ℕ G : Type u_1 inst✝ : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) val✝ : Fintype G ⊢ Nat.card G = 1 ∨ p ∣ Nat.card G [PROOFSTEP] obtain ⟨n, hn⟩ := iff_card.mp hG [GOAL] case inl.intro p : ℕ G : Type u_1 inst✝ : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) val✝ : Fintype G n : ℕ hn : card G = p ^ n ⊢ Nat.card G = 1 ∨ p ∣ Nat.card G [PROOFSTEP] rw [Nat.card_eq_fintype_card, hn] [GOAL] case inl.intro p : ℕ G : Type u_1 inst✝ : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) val✝ : Fintype G n : ℕ hn : card G = p ^ n ⊢ p ^ n = 1 ∨ p ∣ p ^ n [PROOFSTEP] cases' n with n n [GOAL] case inl.intro.zero p : ℕ G : Type u_1 inst✝ : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) val✝ : Fintype G hn : card G = p ^ Nat.zero ⊢ p ^ Nat.zero = 1 ∨ p ∣ p ^ Nat.zero [PROOFSTEP] exact Or.inl rfl [GOAL] case inl.intro.succ p : ℕ G : Type u_1 inst✝ : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) val✝ : Fintype G n : ℕ hn : card G = p ^ Nat.succ n ⊢ p ^ Nat.succ n = 1 ∨ p ∣ p ^ Nat.succ n [PROOFSTEP] exact Or.inr ⟨p ^ n, by rw [pow_succ]⟩ [GOAL] p : ℕ G : Type u_1 inst✝ : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) val✝ : Fintype G n : ℕ hn : card G = p ^ Nat.succ n ⊢ p ^ Nat.succ n = p * p ^ n [PROOFSTEP] rw [pow_succ] [GOAL] case inr p : ℕ G : Type u_1 inst✝ : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) val✝ : Infinite G ⊢ Nat.card G = 1 ∨ p ∣ Nat.card G [PROOFSTEP] rw [Nat.card_eq_zero_of_infinite] [GOAL] case inr p : ℕ G : Type u_1 inst✝ : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) val✝ : Infinite G ⊢ 0 = 1 ∨ p ∣ 0 [PROOFSTEP] exact Or.inr ⟨0, rfl⟩ [GOAL] p : ℕ G : Type u_1 inst✝¹ : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) inst✝ : Fintype G hGnt : Nontrivial G k : ℕ hk : card G = p ^ k hk0 : k = 0 ⊢ False [PROOFSTEP] rw [hk0, pow_zero] at hk [GOAL] p : ℕ G : Type u_1 inst✝¹ : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) inst✝ : Fintype G hGnt : Nontrivial G k : ℕ hk : card G = 1 hk0 : k = 0 ⊢ False [PROOFSTEP] exact Fintype.one_lt_card.ne' hk [GOAL] p : ℕ G : Type u_1 inst✝² : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) α : Type u_2 inst✝¹ : MulAction G α a : α inst✝ : Fintype ↑(orbit G a) ⊢ ∃ n, card ↑(orbit G a) = p ^ n [PROOFSTEP] let ϕ := orbitEquivQuotientStabilizer G a [GOAL] p : ℕ G : Type u_1 inst✝² : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) α : Type u_2 inst✝¹ : MulAction G α a : α inst✝ : Fintype ↑(orbit G a) ϕ : ↑(orbit G a) ≃ G ⧸ stabilizer G a := orbitEquivQuotientStabilizer G a ⊢ ∃ n, card ↑(orbit G a) = p ^ n [PROOFSTEP] haveI := Fintype.ofEquiv (orbit G a) ϕ [GOAL] p : ℕ G : Type u_1 inst✝² : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) α : Type u_2 inst✝¹ : MulAction G α a : α inst✝ : Fintype ↑(orbit G a) ϕ : ↑(orbit G a) ≃ G ⧸ stabilizer G a := orbitEquivQuotientStabilizer G a this : Fintype (G ⧸ stabilizer G a) ⊢ ∃ n, card ↑(orbit G a) = p ^ n [PROOFSTEP] haveI := (stabilizer G a).finiteIndex_of_finite_quotient [GOAL] p : ℕ G : Type u_1 inst✝² : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) α : Type u_2 inst✝¹ : MulAction G α a : α inst✝ : Fintype ↑(orbit G a) ϕ : ↑(orbit G a) ≃ G ⧸ stabilizer G a := orbitEquivQuotientStabilizer G a this✝ : Fintype (G ⧸ stabilizer G a) this : Subgroup.FiniteIndex (stabilizer G a) ⊢ ∃ n, card ↑(orbit G a) = p ^ n [PROOFSTEP] rw [card_congr ϕ, ← Subgroup.index_eq_card] [GOAL] p : ℕ G : Type u_1 inst✝² : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) α : Type u_2 inst✝¹ : MulAction G α a : α inst✝ : Fintype ↑(orbit G a) ϕ : ↑(orbit G a) ≃ G ⧸ stabilizer G a := orbitEquivQuotientStabilizer G a this✝ : Fintype (G ⧸ stabilizer G a) this : Subgroup.FiniteIndex (stabilizer G a) ⊢ ∃ n, Subgroup.index (stabilizer G a) = p ^ n [PROOFSTEP] exact hG.index (stabilizer G a) [GOAL] p : ℕ G : Type u_1 inst✝³ : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) α : Type u_2 inst✝² : MulAction G α inst✝¹ : Fintype α inst✝ : Fintype ↑(fixedPoints G α) ⊢ card α ≡ card ↑(fixedPoints G α) [MOD p] [PROOFSTEP] classical calc card α = card (Σ y : Quotient (orbitRel G α), { x // Quotient.mk'' x = y }) := card_congr (Equiv.sigmaFiberEquiv (@Quotient.mk'' _ (orbitRel G α))).symm _ = ∑ a : Quotient (orbitRel G α), card { x // Quotient.mk'' x = a } := (card_sigma _) _ ≡ ∑ _a : fixedPoints G α, 1 [MOD p] := ?_ _ = _ := by simp; rfl rw [← ZMod.eq_iff_modEq_nat p, Nat.cast_sum, Nat.cast_sum] have key : ∀ x, card { y // (Quotient.mk'' y : Quotient (orbitRel G α)) = Quotient.mk'' x } = card (orbit G x) := fun x => by simp only [Quotient.eq'']; congr refine' Eq.symm (Finset.sum_bij_ne_zero (fun a _ _ => Quotient.mk'' a.1) (fun _ _ _ => Finset.mem_univ _) (fun a₁ a₂ _ _ _ _ h => Subtype.eq ((mem_fixedPoints' α).mp a₂.2 a₁.1 (Quotient.exact' h))) (fun b => Quotient.inductionOn' b fun b _ hb => _) fun a ha _ => by rw [key, mem_fixedPoints_iff_card_orbit_eq_one.mp a.2]) obtain ⟨k, hk⟩ := hG.card_orbit b have : k = 0 := le_zero_iff.1 (Nat.le_of_lt_succ (lt_of_not_ge (mt (pow_dvd_pow p) (by rwa [pow_one, ← hk, ← Nat.modEq_zero_iff_dvd, ← ZMod.eq_iff_modEq_nat, ← key, Nat.cast_zero])))) exact ⟨⟨b, mem_fixedPoints_iff_card_orbit_eq_one.2 <| by rw [hk, this, pow_zero]⟩, Finset.mem_univ _, ne_of_eq_of_ne Nat.cast_one one_ne_zero, rfl⟩ [GOAL] p : ℕ G : Type u_1 inst✝³ : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) α : Type u_2 inst✝² : MulAction G α inst✝¹ : Fintype α inst✝ : Fintype ↑(fixedPoints G α) ⊢ card α ≡ card ↑(fixedPoints G α) [MOD p] [PROOFSTEP] calc card α = card (Σ y : Quotient (orbitRel G α), { x // Quotient.mk'' x = y }) := card_congr (Equiv.sigmaFiberEquiv (@Quotient.mk'' _ (orbitRel G α))).symm _ = ∑ a : Quotient (orbitRel G α), card { x // Quotient.mk'' x = a } := (card_sigma _) _ ≡ ∑ _a : fixedPoints G α, 1 [MOD p] := ?_ _ = _ := by simp; rfl [GOAL] p : ℕ G : Type u_1 inst✝³ : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) α : Type u_2 inst✝² : MulAction G α inst✝¹ : Fintype α inst✝ : Fintype ↑(fixedPoints G α) ⊢ ∑ _a : ↑(fixedPoints G α), 1 = card ↑(fixedPoints G α) [PROOFSTEP] simp [GOAL] p : ℕ G : Type u_1 inst✝³ : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) α : Type u_2 inst✝² : MulAction G α inst✝¹ : Fintype α inst✝ : Fintype ↑(fixedPoints G α) ⊢ Finset.card Finset.univ = card ↑(fixedPoints G α) [PROOFSTEP] rfl [GOAL] p : ℕ G : Type u_1 inst✝³ : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) α : Type u_2 inst✝² : MulAction G α inst✝¹ : Fintype α inst✝ : Fintype ↑(fixedPoints G α) ⊢ ∑ a : Quotient (orbitRel G α), card { x // Quotient.mk'' x = a } ≡ ∑ _a : ↑(fixedPoints G α), 1 [MOD p] [PROOFSTEP] rw [← ZMod.eq_iff_modEq_nat p, Nat.cast_sum, Nat.cast_sum] [GOAL] p : ℕ G : Type u_1 inst✝³ : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) α : Type u_2 inst✝² : MulAction G α inst✝¹ : Fintype α inst✝ : Fintype ↑(fixedPoints G α) ⊢ ∑ x : Quotient (orbitRel G α), ↑(card { x_1 // Quotient.mk'' x_1 = x }) = ∑ x : ↑(fixedPoints G α), ↑1 [PROOFSTEP] have key : ∀ x, card { y // (Quotient.mk'' y : Quotient (orbitRel G α)) = Quotient.mk'' x } = card (orbit G x) := fun x => by simp only [Quotient.eq'']; congr [GOAL] p : ℕ G : Type u_1 inst✝³ : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) α : Type u_2 inst✝² : MulAction G α inst✝¹ : Fintype α inst✝ : Fintype ↑(fixedPoints G α) x : α ⊢ card { y // Quotient.mk'' y = Quotient.mk'' x } = card ↑(orbit G x) [PROOFSTEP] simp only [Quotient.eq''] [GOAL] p : ℕ G : Type u_1 inst✝³ : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) α : Type u_2 inst✝² : MulAction G α inst✝¹ : Fintype α inst✝ : Fintype ↑(fixedPoints G α) x : α ⊢ card { y // Setoid.r y x } = card ↑(orbit G x) [PROOFSTEP] congr [GOAL] p : ℕ G : Type u_1 inst✝³ : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) α : Type u_2 inst✝² : MulAction G α inst✝¹ : Fintype α inst✝ : Fintype ↑(fixedPoints G α) key : ∀ (x : α), card { y // Quotient.mk'' y = Quotient.mk'' x } = card ↑(orbit G x) ⊢ ∑ x : Quotient (orbitRel G α), ↑(card { x_1 // Quotient.mk'' x_1 = x }) = ∑ x : ↑(fixedPoints G α), ↑1 [PROOFSTEP] refine' Eq.symm (Finset.sum_bij_ne_zero (fun a _ _ => Quotient.mk'' a.1) (fun _ _ _ => Finset.mem_univ _) (fun a₁ a₂ _ _ _ _ h => Subtype.eq ((mem_fixedPoints' α).mp a₂.2 a₁.1 (Quotient.exact' h))) (fun b => Quotient.inductionOn' b fun b _ hb => _) fun a ha _ => by rw [key, mem_fixedPoints_iff_card_orbit_eq_one.mp a.2]) [GOAL] p : ℕ G : Type u_1 inst✝³ : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) α : Type u_2 inst✝² : MulAction G α inst✝¹ : Fintype α inst✝ : Fintype ↑(fixedPoints G α) key : ∀ (x : α), card { y // Quotient.mk'' y = Quotient.mk'' x } = card ↑(orbit G x) a : ↑(fixedPoints G α) ha : a ∈ Finset.univ x✝ : ↑1 ≠ 0 ⊢ ↑1 = ↑(card { x // Quotient.mk'' x = (fun a x x => Quotient.mk'' ↑a) a ha x✝ }) [PROOFSTEP] rw [key, mem_fixedPoints_iff_card_orbit_eq_one.mp a.2] [GOAL] p : ℕ G : Type u_1 inst✝³ : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) α : Type u_2 inst✝² : MulAction G α inst✝¹ : Fintype α inst✝ : Fintype ↑(fixedPoints G α) key : ∀ (x : α), card { y // Quotient.mk'' y = Quotient.mk'' x } = card ↑(orbit G x) b✝ : Quotient (orbitRel G α) b : α x✝ : Quotient.mk'' b ∈ Finset.univ hb : ↑(card { x // Quotient.mk'' x = Quotient.mk'' b }) ≠ 0 ⊢ ∃ a h₁ h₂, Quotient.mk'' b = (fun a x x => Quotient.mk'' ↑a) a h₁ h₂ [PROOFSTEP] obtain ⟨k, hk⟩ := hG.card_orbit b [GOAL] case intro p : ℕ G : Type u_1 inst✝³ : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) α : Type u_2 inst✝² : MulAction G α inst✝¹ : Fintype α inst✝ : Fintype ↑(fixedPoints G α) key : ∀ (x : α), card { y // Quotient.mk'' y = Quotient.mk'' x } = card ↑(orbit G x) b✝ : Quotient (orbitRel G α) b : α x✝ : Quotient.mk'' b ∈ Finset.univ hb : ↑(card { x // Quotient.mk'' x = Quotient.mk'' b }) ≠ 0 k : ℕ hk : card ↑(orbit G b) = p ^ k ⊢ ∃ a h₁ h₂, Quotient.mk'' b = (fun a x x => Quotient.mk'' ↑a) a h₁ h₂ [PROOFSTEP] have : k = 0 := le_zero_iff.1 (Nat.le_of_lt_succ (lt_of_not_ge (mt (pow_dvd_pow p) (by rwa [pow_one, ← hk, ← Nat.modEq_zero_iff_dvd, ← ZMod.eq_iff_modEq_nat, ← key, Nat.cast_zero])))) [GOAL] p : ℕ G : Type u_1 inst✝³ : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) α : Type u_2 inst✝² : MulAction G α inst✝¹ : Fintype α inst✝ : Fintype ↑(fixedPoints G α) key : ∀ (x : α), card { y // Quotient.mk'' y = Quotient.mk'' x } = card ↑(orbit G x) b✝ : Quotient (orbitRel G α) b : α x✝ : Quotient.mk'' b ∈ Finset.univ hb : ↑(card { x // Quotient.mk'' x = Quotient.mk'' b }) ≠ 0 k : ℕ hk : card ↑(orbit G b) = p ^ k ⊢ ¬p ^ Nat.succ 0 ∣ p ^ k [PROOFSTEP] rwa [pow_one, ← hk, ← Nat.modEq_zero_iff_dvd, ← ZMod.eq_iff_modEq_nat, ← key, Nat.cast_zero] [GOAL] case intro p : ℕ G : Type u_1 inst✝³ : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) α : Type u_2 inst✝² : MulAction G α inst✝¹ : Fintype α inst✝ : Fintype ↑(fixedPoints G α) key : ∀ (x : α), card { y // Quotient.mk'' y = Quotient.mk'' x } = card ↑(orbit G x) b✝ : Quotient (orbitRel G α) b : α x✝ : Quotient.mk'' b ∈ Finset.univ hb : ↑(card { x // Quotient.mk'' x = Quotient.mk'' b }) ≠ 0 k : ℕ hk : card ↑(orbit G b) = p ^ k this : k = 0 ⊢ ∃ a h₁ h₂, Quotient.mk'' b = (fun a x x => Quotient.mk'' ↑a) a h₁ h₂ [PROOFSTEP] exact ⟨⟨b, mem_fixedPoints_iff_card_orbit_eq_one.2 <| by rw [hk, this, pow_zero]⟩, Finset.mem_univ _, ne_of_eq_of_ne Nat.cast_one one_ne_zero, rfl⟩ [GOAL] p : ℕ G : Type u_1 inst✝³ : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) α : Type u_2 inst✝² : MulAction G α inst✝¹ : Fintype α inst✝ : Fintype ↑(fixedPoints G α) key : ∀ (x : α), card { y // Quotient.mk'' y = Quotient.mk'' x } = card ↑(orbit G x) b✝ : Quotient (orbitRel G α) b : α x✝ : Quotient.mk'' b ∈ Finset.univ hb : ↑(card { x // Quotient.mk'' x = Quotient.mk'' b }) ≠ 0 k : ℕ hk : card ↑(orbit G b) = p ^ k this : k = 0 ⊢ card ↑(orbit G b) = 1 [PROOFSTEP] rw [hk, this, pow_zero] [GOAL] p : ℕ G : Type u_1 inst✝³ : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) α : Type u_2 inst✝² : MulAction G α inst✝¹ : Fintype α hpα : ¬p ∣ card α inst✝ : Finite ↑(fixedPoints G α) ⊢ Nonempty ↑(fixedPoints G α) [PROOFSTEP] cases nonempty_fintype (fixedPoints G α) [GOAL] case intro p : ℕ G : Type u_1 inst✝³ : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) α : Type u_2 inst✝² : MulAction G α inst✝¹ : Fintype α hpα : ¬p ∣ card α inst✝ : Finite ↑(fixedPoints G α) val✝ : Fintype ↑(fixedPoints G α) ⊢ Nonempty ↑(fixedPoints G α) [PROOFSTEP] rw [← card_pos_iff, pos_iff_ne_zero] [GOAL] case intro p : ℕ G : Type u_1 inst✝³ : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) α : Type u_2 inst✝² : MulAction G α inst✝¹ : Fintype α hpα : ¬p ∣ card α inst✝ : Finite ↑(fixedPoints G α) val✝ : Fintype ↑(fixedPoints G α) ⊢ card ↑(fixedPoints G α) ≠ 0 [PROOFSTEP] contrapose! hpα [GOAL] case intro p : ℕ G : Type u_1 inst✝³ : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) α : Type u_2 inst✝² : MulAction G α inst✝¹ : Fintype α inst✝ : Finite ↑(fixedPoints G α) val✝ : Fintype ↑(fixedPoints G α) hpα : card ↑(fixedPoints G α) = 0 ⊢ p ∣ card α [PROOFSTEP] rw [← Nat.modEq_zero_iff_dvd, ← hpα] [GOAL] case intro p : ℕ G : Type u_1 inst✝³ : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) α : Type u_2 inst✝² : MulAction G α inst✝¹ : Fintype α inst✝ : Finite ↑(fixedPoints G α) val✝ : Fintype ↑(fixedPoints G α) hpα : card ↑(fixedPoints G α) = 0 ⊢ card α ≡ card ↑(fixedPoints G α) [MOD p] [PROOFSTEP] exact hG.card_modEq_card_fixedPoints α [GOAL] p : ℕ G : Type u_1 inst✝² : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) α : Type u_2 inst✝¹ : MulAction G α inst✝ : Fintype α hpα : p ∣ card α a : α ha : a ∈ fixedPoints G α ⊢ ∃ b, b ∈ fixedPoints G α ∧ a ≠ b [PROOFSTEP] cases nonempty_fintype (fixedPoints G α) [GOAL] case intro p : ℕ G : Type u_1 inst✝² : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) α : Type u_2 inst✝¹ : MulAction G α inst✝ : Fintype α hpα : p ∣ card α a : α ha : a ∈ fixedPoints G α val✝ : Fintype ↑(fixedPoints G α) ⊢ ∃ b, b ∈ fixedPoints G α ∧ a ≠ b [PROOFSTEP] have hpf : p ∣ card (fixedPoints G α) := Nat.modEq_zero_iff_dvd.mp ((hG.card_modEq_card_fixedPoints α).symm.trans hpα.modEq_zero_nat) [GOAL] case intro p : ℕ G : Type u_1 inst✝² : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) α : Type u_2 inst✝¹ : MulAction G α inst✝ : Fintype α hpα : p ∣ card α a : α ha : a ∈ fixedPoints G α val✝ : Fintype ↑(fixedPoints G α) hpf : p ∣ card ↑(fixedPoints G α) ⊢ ∃ b, b ∈ fixedPoints G α ∧ a ≠ b [PROOFSTEP] have hα : 1 < card (fixedPoints G α) := (Fact.out (p := p.Prime)).one_lt.trans_le (Nat.le_of_dvd (card_pos_iff.2 ⟨⟨a, ha⟩⟩) hpf) [GOAL] case intro p : ℕ G : Type u_1 inst✝² : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) α : Type u_2 inst✝¹ : MulAction G α inst✝ : Fintype α hpα : p ∣ card α a : α ha : a ∈ fixedPoints G α val✝ : Fintype ↑(fixedPoints G α) hpf : p ∣ card ↑(fixedPoints G α) hα : 1 < card ↑(fixedPoints G α) ⊢ ∃ b, b ∈ fixedPoints G α ∧ a ≠ b [PROOFSTEP] exact let ⟨⟨b, hb⟩, hba⟩ := exists_ne_of_one_lt_card hα ⟨a, ha⟩ ⟨b, hb, fun hab => hba (by simp_rw [hab])⟩ [GOAL] p : ℕ G : Type u_1 inst✝² : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) α : Type u_2 inst✝¹ : MulAction G α inst✝ : Fintype α hpα : p ∣ card α a : α ha : a ∈ fixedPoints G α val✝ : Fintype ↑(fixedPoints G α) hpf : p ∣ card ↑(fixedPoints G α) hα : 1 < card ↑(fixedPoints G α) b : α hb : b ∈ fixedPoints G α hba : { val := b, property := hb } ≠ { val := a, property := ha } hab : a = b ⊢ { val := b, property := hb } = { val := a, property := ha } [PROOFSTEP] simp_rw [hab] [GOAL] p : ℕ G : Type u_1 inst✝⁴ : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) α : Type u_2 inst✝³ : MulAction G α inst✝² : Fintype α inst✝¹ : Nontrivial G inst✝ : Finite G ⊢ Nontrivial { x // x ∈ Subgroup.center G } [PROOFSTEP] classical cases nonempty_fintype G have := (hG.of_equiv ConjAct.toConjAct).exists_fixed_point_of_prime_dvd_card_of_fixed_point G rw [ConjAct.fixedPoints_eq_center] at this have dvd : p ∣ card G := by obtain ⟨n, hn0, hn⟩ := hG.nontrivial_iff_card.mp inferInstance exact hn.symm ▸ dvd_pow_self _ (ne_of_gt hn0) obtain ⟨g, hg⟩ := this dvd (Subgroup.center G).one_mem exact ⟨⟨1, ⟨g, hg.1⟩, mt Subtype.ext_iff.mp hg.2⟩⟩ [GOAL] p : ℕ G : Type u_1 inst✝⁴ : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) α : Type u_2 inst✝³ : MulAction G α inst✝² : Fintype α inst✝¹ : Nontrivial G inst✝ : Finite G ⊢ Nontrivial { x // x ∈ Subgroup.center G } [PROOFSTEP] cases nonempty_fintype G [GOAL] case intro p : ℕ G : Type u_1 inst✝⁴ : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) α : Type u_2 inst✝³ : MulAction G α inst✝² : Fintype α inst✝¹ : Nontrivial G inst✝ : Finite G val✝ : Fintype G ⊢ Nontrivial { x // x ∈ Subgroup.center G } [PROOFSTEP] have := (hG.of_equiv ConjAct.toConjAct).exists_fixed_point_of_prime_dvd_card_of_fixed_point G [GOAL] case intro p : ℕ G : Type u_1 inst✝⁴ : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) α : Type u_2 inst✝³ : MulAction G α inst✝² : Fintype α inst✝¹ : Nontrivial G inst✝ : Finite G val✝ : Fintype G this : p ∣ card G → ∀ {a : G}, a ∈ fixedPoints (ConjAct G) G → ∃ b, b ∈ fixedPoints (ConjAct G) G ∧ a ≠ b ⊢ Nontrivial { x // x ∈ Subgroup.center G } [PROOFSTEP] rw [ConjAct.fixedPoints_eq_center] at this [GOAL] case intro p : ℕ G : Type u_1 inst✝⁴ : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) α : Type u_2 inst✝³ : MulAction G α inst✝² : Fintype α inst✝¹ : Nontrivial G inst✝ : Finite G val✝ : Fintype G this : p ∣ card G → ∀ {a : G}, a ∈ ↑(Subgroup.center G) → ∃ b, b ∈ ↑(Subgroup.center G) ∧ a ≠ b ⊢ Nontrivial { x // x ∈ Subgroup.center G } [PROOFSTEP] have dvd : p ∣ card G := by obtain ⟨n, hn0, hn⟩ := hG.nontrivial_iff_card.mp inferInstance exact hn.symm ▸ dvd_pow_self _ (ne_of_gt hn0) [GOAL] p : ℕ G : Type u_1 inst✝⁴ : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) α : Type u_2 inst✝³ : MulAction G α inst✝² : Fintype α inst✝¹ : Nontrivial G inst✝ : Finite G val✝ : Fintype G this : p ∣ card G → ∀ {a : G}, a ∈ ↑(Subgroup.center G) → ∃ b, b ∈ ↑(Subgroup.center G) ∧ a ≠ b ⊢ p ∣ card G [PROOFSTEP] obtain ⟨n, hn0, hn⟩ := hG.nontrivial_iff_card.mp inferInstance [GOAL] case intro.intro p : ℕ G : Type u_1 inst✝⁴ : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) α : Type u_2 inst✝³ : MulAction G α inst✝² : Fintype α inst✝¹ : Nontrivial G inst✝ : Finite G val✝ : Fintype G this : p ∣ card G → ∀ {a : G}, a ∈ ↑(Subgroup.center G) → ∃ b, b ∈ ↑(Subgroup.center G) ∧ a ≠ b n : ℕ hn0 : n > 0 hn : card G = p ^ n ⊢ p ∣ card G [PROOFSTEP] exact hn.symm ▸ dvd_pow_self _ (ne_of_gt hn0) [GOAL] case intro p : ℕ G : Type u_1 inst✝⁴ : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) α : Type u_2 inst✝³ : MulAction G α inst✝² : Fintype α inst✝¹ : Nontrivial G inst✝ : Finite G val✝ : Fintype G this : p ∣ card G → ∀ {a : G}, a ∈ ↑(Subgroup.center G) → ∃ b, b ∈ ↑(Subgroup.center G) ∧ a ≠ b dvd : p ∣ card G ⊢ Nontrivial { x // x ∈ Subgroup.center G } [PROOFSTEP] obtain ⟨g, hg⟩ := this dvd (Subgroup.center G).one_mem [GOAL] case intro.intro p : ℕ G : Type u_1 inst✝⁴ : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) α : Type u_2 inst✝³ : MulAction G α inst✝² : Fintype α inst✝¹ : Nontrivial G inst✝ : Finite G val✝ : Fintype G this : p ∣ card G → ∀ {a : G}, a ∈ ↑(Subgroup.center G) → ∃ b, b ∈ ↑(Subgroup.center G) ∧ a ≠ b dvd : p ∣ card G g : G hg : g ∈ ↑(Subgroup.center G) ∧ 1 ≠ g ⊢ Nontrivial { x // x ∈ Subgroup.center G } [PROOFSTEP] exact ⟨⟨1, ⟨g, hg.1⟩, mt Subtype.ext_iff.mp hg.2⟩⟩ [GOAL] p : ℕ G : Type u_1 inst✝⁴ : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) α : Type u_2 inst✝³ : MulAction G α inst✝² : Fintype α inst✝¹ : Nontrivial G inst✝ : Finite G ⊢ ⊥ < Subgroup.center G [PROOFSTEP] haveI := center_nontrivial hG [GOAL] p : ℕ G : Type u_1 inst✝⁴ : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) α : Type u_2 inst✝³ : MulAction G α inst✝² : Fintype α inst✝¹ : Nontrivial G inst✝ : Finite G this : Nontrivial { x // x ∈ Subgroup.center G } ⊢ ⊥ < Subgroup.center G [PROOFSTEP] cases nonempty_fintype G [GOAL] case intro p : ℕ G : Type u_1 inst✝⁴ : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) α : Type u_2 inst✝³ : MulAction G α inst✝² : Fintype α inst✝¹ : Nontrivial G inst✝ : Finite G this : Nontrivial { x // x ∈ Subgroup.center G } val✝ : Fintype G ⊢ ⊥ < Subgroup.center G [PROOFSTEP] classical exact bot_lt_iff_ne_bot.mpr ((Subgroup.center G).one_lt_card_iff_ne_bot.mp Fintype.one_lt_card) [GOAL] case intro p : ℕ G : Type u_1 inst✝⁴ : Group G hG : IsPGroup p G hp : Fact (Nat.Prime p) α : Type u_2 inst✝³ : MulAction G α inst✝² : Fintype α inst✝¹ : Nontrivial G inst✝ : Finite G this : Nontrivial { x // x ∈ Subgroup.center G } val✝ : Fintype G ⊢ ⊥ < Subgroup.center G [PROOFSTEP] exact bot_lt_iff_ne_bot.mpr ((Subgroup.center G).one_lt_card_iff_ne_bot.mp Fintype.one_lt_card) [GOAL] p : ℕ G : Type u_1 inst✝ : Group G H K : Subgroup G hK : IsPGroup p { x // x ∈ K } hHK : H ≤ K a b : { x // x ∈ H } h : ↑(Subgroup.inclusion hHK) a = ↑(Subgroup.inclusion hHK) b ⊢ ↑a = ↑b [PROOFSTEP] change ((Subgroup.inclusion hHK) a : G) = (Subgroup.inclusion hHK) b [GOAL] p : ℕ G : Type u_1 inst✝ : Group G H K : Subgroup G hK : IsPGroup p { x // x ∈ K } hHK : H ≤ K a b : { x // x ∈ H } h : ↑(Subgroup.inclusion hHK) a = ↑(Subgroup.inclusion hHK) b ⊢ ↑(↑(Subgroup.inclusion hHK) a) = ↑(↑(Subgroup.inclusion hHK) b) [PROOFSTEP] apply Subtype.ext_iff.mp h [GOAL] p : ℕ G : Type u_1 inst✝¹ : Group G H : Subgroup G hH : IsPGroup p { x // x ∈ H } K : Type u_2 inst✝ : Group K ϕ : G →* K ⊢ IsPGroup p { x // x ∈ Subgroup.map ϕ H } [PROOFSTEP] rw [← H.subtype_range, MonoidHom.map_range] [GOAL] p : ℕ G : Type u_1 inst✝¹ : Group G H : Subgroup G hH : IsPGroup p { x // x ∈ H } K : Type u_2 inst✝ : Group K ϕ : G →* K ⊢ IsPGroup p { x // x ∈ MonoidHom.range (MonoidHom.comp ϕ (Subgroup.subtype H)) } [PROOFSTEP] exact hH.of_surjective (ϕ.restrict H).rangeRestrict (ϕ.restrict H).rangeRestrict_surjective [GOAL] p : ℕ G : Type u_1 inst✝¹ : Group G H : Subgroup G hH : IsPGroup p { x // x ∈ H } K : Type u_2 inst✝ : Group K ϕ : K →* G hϕ : IsPGroup p { x // x ∈ MonoidHom.ker ϕ } ⊢ IsPGroup p { x // x ∈ Subgroup.comap ϕ H } [PROOFSTEP] intro g [GOAL] p : ℕ G : Type u_1 inst✝¹ : Group G H : Subgroup G hH : IsPGroup p { x // x ∈ H } K : Type u_2 inst✝ : Group K ϕ : K →* G hϕ : IsPGroup p { x // x ∈ MonoidHom.ker ϕ } g : { x // x ∈ Subgroup.comap ϕ H } ⊢ ∃ k, g ^ p ^ k = 1 [PROOFSTEP] obtain ⟨j, hj⟩ := hH ⟨ϕ g.1, g.2⟩ [GOAL] case intro p : ℕ G : Type u_1 inst✝¹ : Group G H : Subgroup G hH : IsPGroup p { x // x ∈ H } K : Type u_2 inst✝ : Group K ϕ : K →* G hϕ : IsPGroup p { x // x ∈ MonoidHom.ker ϕ } g : { x // x ∈ Subgroup.comap ϕ H } j : ℕ hj : { val := ↑ϕ ↑g, property := (_ : ↑g ∈ Subgroup.comap ϕ H) } ^ p ^ j = 1 ⊢ ∃ k, g ^ p ^ k = 1 [PROOFSTEP] rw [Subtype.ext_iff, H.coe_pow, Subtype.coe_mk, ← ϕ.map_pow] at hj [GOAL] case intro p : ℕ G : Type u_1 inst✝¹ : Group G H : Subgroup G hH : IsPGroup p { x // x ∈ H } K : Type u_2 inst✝ : Group K ϕ : K →* G hϕ : IsPGroup p { x // x ∈ MonoidHom.ker ϕ } g : { x // x ∈ Subgroup.comap ϕ H } j : ℕ hj : ↑ϕ (↑g ^ p ^ j) = ↑1 ⊢ ∃ k, g ^ p ^ k = 1 [PROOFSTEP] obtain ⟨k, hk⟩ := hϕ ⟨g.1 ^ p ^ j, hj⟩ [GOAL] case intro.intro p : ℕ G : Type u_1 inst✝¹ : Group G H : Subgroup G hH : IsPGroup p { x // x ∈ H } K : Type u_2 inst✝ : Group K ϕ : K →* G hϕ : IsPGroup p { x // x ∈ MonoidHom.ker ϕ } g : { x // x ∈ Subgroup.comap ϕ H } j : ℕ hj : ↑ϕ (↑g ^ p ^ j) = ↑1 k : ℕ hk : { val := ↑g ^ p ^ j, property := hj } ^ p ^ k = 1 ⊢ ∃ k, g ^ p ^ k = 1 [PROOFSTEP] rw [Subtype.ext_iff, ϕ.ker.coe_pow, Subtype.coe_mk, ← pow_mul, ← pow_add] at hk [GOAL] case intro.intro p : ℕ G : Type u_1 inst✝¹ : Group G H : Subgroup G hH : IsPGroup p { x // x ∈ H } K : Type u_2 inst✝ : Group K ϕ : K →* G hϕ : IsPGroup p { x // x ∈ MonoidHom.ker ϕ } g : { x // x ∈ Subgroup.comap ϕ H } j : ℕ hj : ↑ϕ (↑g ^ p ^ j) = ↑1 k : ℕ hk : ↑g ^ p ^ (j + k) = ↑1 ⊢ ∃ k, g ^ p ^ k = 1 [PROOFSTEP] exact ⟨j + k, by rwa [Subtype.ext_iff, (H.comap ϕ).coe_pow]⟩ [GOAL] p : ℕ G : Type u_1 inst✝¹ : Group G H : Subgroup G hH : IsPGroup p { x // x ∈ H } K : Type u_2 inst✝ : Group K ϕ : K →* G hϕ : IsPGroup p { x // x ∈ MonoidHom.ker ϕ } g : { x // x ∈ Subgroup.comap ϕ H } j : ℕ hj : ↑ϕ (↑g ^ p ^ j) = ↑1 k : ℕ hk : ↑g ^ p ^ (j + k) = ↑1 ⊢ g ^ p ^ (j + k) = 1 [PROOFSTEP] rwa [Subtype.ext_iff, (H.comap ϕ).coe_pow] [GOAL] p : ℕ G : Type u_1 inst✝¹ : Group G H K : Subgroup G hH : IsPGroup p { x // x ∈ H } hK : IsPGroup p { x // x ∈ K } inst✝ : Subgroup.Normal K ⊢ IsPGroup p { x // x ∈ H ⊔ K } [PROOFSTEP] rw [← QuotientGroup.ker_mk' K, ← Subgroup.comap_map_eq] [GOAL] p : ℕ G : Type u_1 inst✝¹ : Group G H K : Subgroup G hH : IsPGroup p { x // x ∈ H } hK : IsPGroup p { x // x ∈ K } inst✝ : Subgroup.Normal K ⊢ IsPGroup p { x // x ∈ Subgroup.comap (QuotientGroup.mk' K) (Subgroup.map (QuotientGroup.mk' K) H) } [PROOFSTEP] apply (hH.map (QuotientGroup.mk' K)).comap_of_ker_isPGroup [GOAL] case hϕ p : ℕ G : Type u_1 inst✝¹ : Group G H K : Subgroup G hH : IsPGroup p { x // x ∈ H } hK : IsPGroup p { x // x ∈ K } inst✝ : Subgroup.Normal K ⊢ IsPGroup p { x // x ∈ MonoidHom.ker (QuotientGroup.mk' K) } [PROOFSTEP] rwa [QuotientGroup.ker_mk'] [GOAL] p : ℕ G : Type u_1 inst✝³ : Group G G₂ : Type u_2 inst✝² : Group G₂ p₁ p₂ : ℕ hp₁ : Fact (Nat.Prime p₁) hp₂ : Fact (Nat.Prime p₂) hne : p₁ ≠ p₂ H₁ : Subgroup G H₂ : Subgroup G₂ inst✝¹ : Fintype { x // x ∈ H₁ } inst✝ : Fintype { x // x ∈ H₂ } hH₁ : IsPGroup p₁ { x // x ∈ H₁ } hH₂ : IsPGroup p₂ { x // x ∈ H₂ } ⊢ Nat.coprime (card { x // x ∈ H₁ }) (card { x // x ∈ H₂ }) [PROOFSTEP] obtain ⟨n₁, heq₁⟩ := iff_card.mp hH₁ [GOAL] case intro p : ℕ G : Type u_1 inst✝³ : Group G G₂ : Type u_2 inst✝² : Group G₂ p₁ p₂ : ℕ hp₁ : Fact (Nat.Prime p₁) hp₂ : Fact (Nat.Prime p₂) hne : p₁ ≠ p₂ H₁ : Subgroup G H₂ : Subgroup G₂ inst✝¹ : Fintype { x // x ∈ H₁ } inst✝ : Fintype { x // x ∈ H₂ } hH₁ : IsPGroup p₁ { x // x ∈ H₁ } hH₂ : IsPGroup p₂ { x // x ∈ H₂ } n₁ : ℕ heq₁ : card { x // x ∈ H₁ } = p₁ ^ n₁ ⊢ Nat.coprime (card { x // x ∈ H₁ }) (card { x // x ∈ H₂ }) [PROOFSTEP] rw [heq₁] [GOAL] case intro p : ℕ G : Type u_1 inst✝³ : Group G G₂ : Type u_2 inst✝² : Group G₂ p₁ p₂ : ℕ hp₁ : Fact (Nat.Prime p₁) hp₂ : Fact (Nat.Prime p₂) hne : p₁ ≠ p₂ H₁ : Subgroup G H₂ : Subgroup G₂ inst✝¹ : Fintype { x // x ∈ H₁ } inst✝ : Fintype { x // x ∈ H₂ } hH₁ : IsPGroup p₁ { x // x ∈ H₁ } hH₂ : IsPGroup p₂ { x // x ∈ H₂ } n₁ : ℕ heq₁ : card { x // x ∈ H₁ } = p₁ ^ n₁ ⊢ Nat.coprime (p₁ ^ n₁) (card { x // x ∈ H₂ }) [PROOFSTEP] clear heq₁ [GOAL] case intro p : ℕ G : Type u_1 inst✝³ : Group G G₂ : Type u_2 inst✝² : Group G₂ p₁ p₂ : ℕ hp₁ : Fact (Nat.Prime p₁) hp₂ : Fact (Nat.Prime p₂) hne : p₁ ≠ p₂ H₁ : Subgroup G H₂ : Subgroup G₂ inst✝¹ : Fintype { x // x ∈ H₁ } inst✝ : Fintype { x // x ∈ H₂ } hH₁ : IsPGroup p₁ { x // x ∈ H₁ } hH₂ : IsPGroup p₂ { x // x ∈ H₂ } n₁ : ℕ ⊢ Nat.coprime (p₁ ^ n₁) (card { x // x ∈ H₂ }) [PROOFSTEP] obtain ⟨n₂, heq₂⟩ := iff_card.mp hH₂ [GOAL] case intro.intro p : ℕ G : Type u_1 inst✝³ : Group G G₂ : Type u_2 inst✝² : Group G₂ p₁ p₂ : ℕ hp₁ : Fact (Nat.Prime p₁) hp₂ : Fact (Nat.Prime p₂) hne : p₁ ≠ p₂ H₁ : Subgroup G H₂ : Subgroup G₂ inst✝¹ : Fintype { x // x ∈ H₁ } inst✝ : Fintype { x // x ∈ H₂ } hH₁ : IsPGroup p₁ { x // x ∈ H₁ } hH₂ : IsPGroup p₂ { x // x ∈ H₂ } n₁ n₂ : ℕ heq₂ : card { x // x ∈ H₂ } = p₂ ^ n₂ ⊢ Nat.coprime (p₁ ^ n₁) (card { x // x ∈ H₂ }) [PROOFSTEP] rw [heq₂] [GOAL] case intro.intro p : ℕ G : Type u_1 inst✝³ : Group G G₂ : Type u_2 inst✝² : Group G₂ p₁ p₂ : ℕ hp₁ : Fact (Nat.Prime p₁) hp₂ : Fact (Nat.Prime p₂) hne : p₁ ≠ p₂ H₁ : Subgroup G H₂ : Subgroup G₂ inst✝¹ : Fintype { x // x ∈ H₁ } inst✝ : Fintype { x // x ∈ H₂ } hH₁ : IsPGroup p₁ { x // x ∈ H₁ } hH₂ : IsPGroup p₂ { x // x ∈ H₂ } n₁ n₂ : ℕ heq₂ : card { x // x ∈ H₂ } = p₂ ^ n₂ ⊢ Nat.coprime (p₁ ^ n₁) (p₂ ^ n₂) [PROOFSTEP] clear heq₂ [GOAL] case intro.intro p : ℕ G : Type u_1 inst✝³ : Group G G₂ : Type u_2 inst✝² : Group G₂ p₁ p₂ : ℕ hp₁ : Fact (Nat.Prime p₁) hp₂ : Fact (Nat.Prime p₂) hne : p₁ ≠ p₂ H₁ : Subgroup G H₂ : Subgroup G₂ inst✝¹ : Fintype { x // x ∈ H₁ } inst✝ : Fintype { x // x ∈ H₂ } hH₁ : IsPGroup p₁ { x // x ∈ H₁ } hH₂ : IsPGroup p₂ { x // x ∈ H₂ } n₁ n₂ : ℕ ⊢ Nat.coprime (p₁ ^ n₁) (p₂ ^ n₂) [PROOFSTEP] exact Nat.coprime_pow_primes _ _ hp₁.elim hp₂.elim hne [GOAL] p : ℕ G : Type u_1 inst✝ : Group G p₁ p₂ : ℕ hp₁ : Fact (Nat.Prime p₁) hp₂ : Fact (Nat.Prime p₂) hne : p₁ ≠ p₂ H₁ H₂ : Subgroup G hH₁ : IsPGroup p₁ { x // x ∈ H₁ } hH₂ : IsPGroup p₂ { x // x ∈ H₂ } ⊢ Disjoint H₁ H₂ [PROOFSTEP] rw [Subgroup.disjoint_def] [GOAL] p : ℕ G : Type u_1 inst✝ : Group G p₁ p₂ : ℕ hp₁ : Fact (Nat.Prime p₁) hp₂ : Fact (Nat.Prime p₂) hne : p₁ ≠ p₂ H₁ H₂ : Subgroup G hH₁ : IsPGroup p₁ { x // x ∈ H₁ } hH₂ : IsPGroup p₂ { x // x ∈ H₂ } ⊢ ∀ {x : G}, x ∈ H₁ → x ∈ H₂ → x = 1 [PROOFSTEP] intro x hx₁ hx₂ [GOAL] p : ℕ G : Type u_1 inst✝ : Group G p₁ p₂ : ℕ hp₁ : Fact (Nat.Prime p₁) hp₂ : Fact (Nat.Prime p₂) hne : p₁ ≠ p₂ H₁ H₂ : Subgroup G hH₁ : IsPGroup p₁ { x // x ∈ H₁ } hH₂ : IsPGroup p₂ { x // x ∈ H₂ } x : G hx₁ : x ∈ H₁ hx₂ : x ∈ H₂ ⊢ x = 1 [PROOFSTEP] obtain ⟨n₁, hn₁⟩ := iff_orderOf.mp hH₁ ⟨x, hx₁⟩ [GOAL] case intro p : ℕ G : Type u_1 inst✝ : Group G p₁ p₂ : ℕ hp₁ : Fact (Nat.Prime p₁) hp₂ : Fact (Nat.Prime p₂) hne : p₁ ≠ p₂ H₁ H₂ : Subgroup G hH₁ : IsPGroup p₁ { x // x ∈ H₁ } hH₂ : IsPGroup p₂ { x // x ∈ H₂ } x : G hx₁ : x ∈ H₁ hx₂ : x ∈ H₂ n₁ : ℕ hn₁ : orderOf { val := x, property := hx₁ } = p₁ ^ n₁ ⊢ x = 1 [PROOFSTEP] obtain ⟨n₂, hn₂⟩ := iff_orderOf.mp hH₂ ⟨x, hx₂⟩ [GOAL] case intro.intro p : ℕ G : Type u_1 inst✝ : Group G p₁ p₂ : ℕ hp₁ : Fact (Nat.Prime p₁) hp₂ : Fact (Nat.Prime p₂) hne : p₁ ≠ p₂ H₁ H₂ : Subgroup G hH₁ : IsPGroup p₁ { x // x ∈ H₁ } hH₂ : IsPGroup p₂ { x // x ∈ H₂ } x : G hx₁ : x ∈ H₁ hx₂ : x ∈ H₂ n₁ : ℕ hn₁ : orderOf { val := x, property := hx₁ } = p₁ ^ n₁ n₂ : ℕ hn₂ : orderOf { val := x, property := hx₂ } = p₂ ^ n₂ ⊢ x = 1 [PROOFSTEP] rw [← orderOf_subgroup, Subgroup.coe_mk] at hn₁ hn₂ [GOAL] case intro.intro p : ℕ G : Type u_1 inst✝ : Group G p₁ p₂ : ℕ hp₁ : Fact (Nat.Prime p₁) hp₂ : Fact (Nat.Prime p₂) hne : p₁ ≠ p₂ H₁ H₂ : Subgroup G hH₁ : IsPGroup p₁ { x // x ∈ H₁ } hH₂ : IsPGroup p₂ { x // x ∈ H₂ } x : G hx₁ : x ∈ H₁ hx₂ : x ∈ H₂ n₁ : ℕ hn₁ : orderOf x = p₁ ^ n₁ n₂ : ℕ hn₂ : orderOf x = p₂ ^ n₂ ⊢ x = 1 [PROOFSTEP] have : p₁ ^ n₁ = p₂ ^ n₂ := by rw [← hn₁, ← hn₂] [GOAL] p : ℕ G : Type u_1 inst✝ : Group G p₁ p₂ : ℕ hp₁ : Fact (Nat.Prime p₁) hp₂ : Fact (Nat.Prime p₂) hne : p₁ ≠ p₂ H₁ H₂ : Subgroup G hH₁ : IsPGroup p₁ { x // x ∈ H₁ } hH₂ : IsPGroup p₂ { x // x ∈ H₂ } x : G hx₁ : x ∈ H₁ hx₂ : x ∈ H₂ n₁ : ℕ hn₁ : orderOf x = p₁ ^ n₁ n₂ : ℕ hn₂ : orderOf x = p₂ ^ n₂ ⊢ p₁ ^ n₁ = p₂ ^ n₂ [PROOFSTEP] rw [← hn₁, ← hn₂] [GOAL] case intro.intro p : ℕ G : Type u_1 inst✝ : Group G p₁ p₂ : ℕ hp₁ : Fact (Nat.Prime p₁) hp₂ : Fact (Nat.Prime p₂) hne : p₁ ≠ p₂ H₁ H₂ : Subgroup G hH₁ : IsPGroup p₁ { x // x ∈ H₁ } hH₂ : IsPGroup p₂ { x // x ∈ H₂ } x : G hx₁ : x ∈ H₁ hx₂ : x ∈ H₂ n₁ : ℕ hn₁ : orderOf x = p₁ ^ n₁ n₂ : ℕ hn₂ : orderOf x = p₂ ^ n₂ this : p₁ ^ n₁ = p₂ ^ n₂ ⊢ x = 1 [PROOFSTEP] rcases n₁.eq_zero_or_pos with (rfl | hn₁) [GOAL] case intro.intro.inl p : ℕ G : Type u_1 inst✝ : Group G p₁ p₂ : ℕ hp₁ : Fact (Nat.Prime p₁) hp₂ : Fact (Nat.Prime p₂) hne : p₁ ≠ p₂ H₁ H₂ : Subgroup G hH₁ : IsPGroup p₁ { x // x ∈ H₁ } hH₂ : IsPGroup p₂ { x // x ∈ H₂ } x : G hx₁ : x ∈ H₁ hx₂ : x ∈ H₂ n₂ : ℕ hn₂ : orderOf x = p₂ ^ n₂ hn₁ : orderOf x = p₁ ^ 0 this : p₁ ^ 0 = p₂ ^ n₂ ⊢ x = 1 [PROOFSTEP] simpa using hn₁ [GOAL] case intro.intro.inr p : ℕ G : Type u_1 inst✝ : Group G p₁ p₂ : ℕ hp₁ : Fact (Nat.Prime p₁) hp₂ : Fact (Nat.Prime p₂) hne : p₁ ≠ p₂ H₁ H₂ : Subgroup G hH₁ : IsPGroup p₁ { x // x ∈ H₁ } hH₂ : IsPGroup p₂ { x // x ∈ H₂ } x : G hx₁ : x ∈ H₁ hx₂ : x ∈ H₂ n₁ : ℕ hn₁✝ : orderOf x = p₁ ^ n₁ n₂ : ℕ hn₂ : orderOf x = p₂ ^ n₂ this : p₁ ^ n₁ = p₂ ^ n₂ hn₁ : n₁ > 0 ⊢ x = 1 [PROOFSTEP] exact absurd (eq_of_prime_pow_eq hp₁.out.prime hp₂.out.prime hn₁ this) hne [GOAL] p : ℕ G : Type u_1 inst✝³ : Group G inst✝² : Fintype G inst✝¹ : Fact (Nat.Prime p) n : ℕ hGpn : card G = p ^ n hn : 0 < n inst✝ : Fintype { x // x ∈ center G } ⊢ ∃ k, k > 0 ∧ card { x // x ∈ center G } = p ^ k [PROOFSTEP] have hcG := to_subgroup (of_card hGpn) (center G) [GOAL] p : ℕ G : Type u_1 inst✝³ : Group G inst✝² : Fintype G inst✝¹ : Fact (Nat.Prime p) n : ℕ hGpn : card G = p ^ n hn : 0 < n inst✝ : Fintype { x // x ∈ center G } hcG : IsPGroup p { x // x ∈ center G } ⊢ ∃ k, k > 0 ∧ card { x // x ∈ center G } = p ^ k [PROOFSTEP] rcases iff_card.1 hcG with _ [GOAL] p : ℕ G : Type u_1 inst✝³ : Group G inst✝² : Fintype G inst✝¹ : Fact (Nat.Prime p) n : ℕ hGpn : card G = p ^ n hn : 0 < n inst✝ : Fintype { x // x ∈ center G } hcG : IsPGroup p { x // x ∈ center G } x✝ : ∃ n, card { x // x ∈ center G } = p ^ n ⊢ ∃ k, k > 0 ∧ card { x // x ∈ center G } = p ^ k [PROOFSTEP] haveI : Nontrivial G := (nontrivial_iff_card <| of_card hGpn).2 ⟨n, hn, hGpn⟩ [GOAL] p : ℕ G : Type u_1 inst✝³ : Group G inst✝² : Fintype G inst✝¹ : Fact (Nat.Prime p) n : ℕ hGpn : card G = p ^ n hn : 0 < n inst✝ : Fintype { x // x ∈ center G } hcG : IsPGroup p { x // x ∈ center G } x✝ : ∃ n, card { x // x ∈ center G } = p ^ n this : Nontrivial G ⊢ ∃ k, k > 0 ∧ card { x // x ∈ center G } = p ^ k [PROOFSTEP] exact (nontrivial_iff_card hcG).mp (center_nontrivial (of_card hGpn)) [GOAL] p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fintype G inst✝ : Fact (Nat.Prime p) n : ℕ hGpn : card G = p ^ n hG : card G = p ^ 2 ⊢ IsCyclic (G ⧸ center G) [PROOFSTEP] classical rcases card_center_eq_prime_pow hG zero_lt_two with ⟨k, hk0, hk⟩ rw [card_eq_card_quotient_mul_card_subgroup (center G), mul_comm, hk] at hG have hk2 := (Nat.pow_dvd_pow_iff_le_right (Fact.out (p := p.Prime)).one_lt).1 ⟨_, hG.symm⟩ interval_cases k · rw [sq, pow_one, mul_right_inj' (Fact.out (p := p.Prime)).ne_zero] at hG exact isCyclic_of_prime_card hG · exact @isCyclic_of_subsingleton _ _ ⟨Fintype.card_le_one_iff.1 (mul_right_injective₀ (pow_ne_zero 2 (NeZero.ne p)) (hG.trans (mul_one (p ^ 2)).symm)).le⟩ [GOAL] p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fintype G inst✝ : Fact (Nat.Prime p) n : ℕ hGpn : card G = p ^ n hG : card G = p ^ 2 ⊢ IsCyclic (G ⧸ center G) [PROOFSTEP] rcases card_center_eq_prime_pow hG zero_lt_two with ⟨k, hk0, hk⟩ [GOAL] case intro.intro p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fintype G inst✝ : Fact (Nat.Prime p) n : ℕ hGpn : card G = p ^ n hG : card G = p ^ 2 k : ℕ hk0 : k > 0 hk : card { x // x ∈ center G } = p ^ k ⊢ IsCyclic (G ⧸ center G) [PROOFSTEP] rw [card_eq_card_quotient_mul_card_subgroup (center G), mul_comm, hk] at hG [GOAL] case intro.intro p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fintype G inst✝ : Fact (Nat.Prime p) n : ℕ hGpn : card G = p ^ n k : ℕ hG : p ^ k * card (G ⧸ center G) = p ^ 2 hk0 : k > 0 hk : card { x // x ∈ center G } = p ^ k ⊢ IsCyclic (G ⧸ center G) [PROOFSTEP] have hk2 := (Nat.pow_dvd_pow_iff_le_right (Fact.out (p := p.Prime)).one_lt).1 ⟨_, hG.symm⟩ [GOAL] case intro.intro p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fintype G inst✝ : Fact (Nat.Prime p) n : ℕ hGpn : card G = p ^ n k : ℕ hG : p ^ k * card (G ⧸ center G) = p ^ 2 hk0 : k > 0 hk : card { x // x ∈ center G } = p ^ k hk2 : k ≤ 2 ⊢ IsCyclic (G ⧸ center G) [PROOFSTEP] interval_cases k [GOAL] case intro.intro.«1» p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fintype G inst✝ : Fact (Nat.Prime p) n : ℕ hGpn : card G = p ^ n k : ℕ hG : p ^ 1 * card (G ⧸ center G) = p ^ 2 hk0 : 1 > 0 hk : card { x // x ∈ center G } = p ^ 1 hk2 : 1 ≤ 2 ⊢ IsCyclic (G ⧸ center G) [PROOFSTEP] rw [sq, pow_one, mul_right_inj' (Fact.out (p := p.Prime)).ne_zero] at hG [GOAL] case intro.intro.«1» p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fintype G inst✝ : Fact (Nat.Prime p) n : ℕ hGpn : card G = p ^ n k : ℕ hG : card (G ⧸ center G) = p hk0 : 1 > 0 hk : card { x // x ∈ center G } = p ^ 1 hk2 : 1 ≤ 2 ⊢ IsCyclic (G ⧸ center G) [PROOFSTEP] exact isCyclic_of_prime_card hG [GOAL] case intro.intro.«2» p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fintype G inst✝ : Fact (Nat.Prime p) n : ℕ hGpn : card G = p ^ n k : ℕ hG : p ^ 2 * card (G ⧸ center G) = p ^ 2 hk0 : 2 > 0 hk : card { x // x ∈ center G } = p ^ 2 hk2 : 2 ≤ 2 ⊢ IsCyclic (G ⧸ center G) [PROOFSTEP] exact @isCyclic_of_subsingleton _ _ ⟨Fintype.card_le_one_iff.1 (mul_right_injective₀ (pow_ne_zero 2 (NeZero.ne p)) (hG.trans (mul_one (p ^ 2)).symm)).le⟩
{"mathlib_filename": "Mathlib.GroupTheory.PGroup", "llama_tokens": 22165}
[GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x✝ y : G a b : A n m : ℕ x : G ⊢ IsPeriodicPt ((fun x x_1 => x * x_1) x) n 1 ↔ x ^ n = 1 [PROOFSTEP] rw [IsPeriodicPt, IsFixedPt, mul_left_iterate] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x✝ y : G a b : A n m : ℕ x : G ⊢ (fun x_1 => x ^ n * x_1) 1 = 1 ↔ x ^ n = 1 [PROOFSTEP] dsimp [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x✝ y : G a b : A n m : ℕ x : G ⊢ x ^ n * 1 = 1 ↔ x ^ n = 1 [PROOFSTEP] rw [mul_one] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x✝ y : G a b : A n m : ℕ x : G ⊢ IsOfFinOrder x ↔ ∃ n, 0 < n ∧ x ^ n = 1 [PROOFSTEP] simp [IsOfFinOrder, mem_periodicPts, isPeriodicPt_mul_iff_pow_eq_one] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x✝ y : G a b : A n m : ℕ x : G h : Injective fun n => x ^ n ⊢ ¬IsOfFinOrder x [PROOFSTEP] simp_rw [isOfFinOrder_iff_pow_eq_one, not_exists, not_and] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x✝ y : G a b : A n m : ℕ x : G h : Injective fun n => x ^ n ⊢ ∀ (x_1 : ℕ), 0 < x_1 → ¬x ^ x_1 = 1 [PROOFSTEP] intro n hn_pos hnx [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x✝ y : G a b : A n✝ m : ℕ x : G h : Injective fun n => x ^ n n : ℕ hn_pos : 0 < n hnx : x ^ n = 1 ⊢ False [PROOFSTEP] rw [← pow_zero x] at hnx [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x✝ y : G a b : A n✝ m : ℕ x : G h : Injective fun n => x ^ n n : ℕ hn_pos : 0 < n hnx : x ^ n = x ^ 0 ⊢ False [PROOFSTEP] rw [h hnx] at hn_pos [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x✝ y : G a b : A n✝ m : ℕ x : G h : Injective fun n => x ^ n n : ℕ hn_pos : 0 < 0 hnx : x ^ n = x ^ 0 ⊢ False [PROOFSTEP] exact irrefl 0 hn_pos [GOAL] G : Type u_1 H✝ : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x✝ y : G a b : A n m : ℕ H : Submonoid G x : { x // x ∈ H } ⊢ IsOfFinOrder x ↔ IsOfFinOrder ↑x [PROOFSTEP] rw [isOfFinOrder_iff_pow_eq_one, isOfFinOrder_iff_pow_eq_one] [GOAL] G : Type u_1 H✝ : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x✝ y : G a b : A n m : ℕ H : Submonoid G x : { x // x ∈ H } ⊢ (∃ n, 0 < n ∧ x ^ n = 1) ↔ ∃ n, 0 < n ∧ ↑x ^ n = 1 [PROOFSTEP] norm_cast [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝² : Monoid G inst✝¹ : AddMonoid A x✝ y : G a b : A n m : ℕ inst✝ : Monoid H f : G →* H x : G h : IsOfFinOrder x ⊢ ∃ n, 0 < n ∧ ↑f x ^ n = 1 [PROOFSTEP] rcases(isOfFinOrder_iff_pow_eq_one _).mp h with ⟨n, npos, hn⟩ [GOAL] case intro.intro G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝² : Monoid G inst✝¹ : AddMonoid A x✝ y : G a b : A n✝ m : ℕ inst✝ : Monoid H f : G →* H x : G h : IsOfFinOrder x n : ℕ npos : 0 < n hn : x ^ n = 1 ⊢ ∃ n, 0 < n ∧ ↑f x ^ n = 1 [PROOFSTEP] exact ⟨n, npos, by rw [← f.map_pow, hn, f.map_one]⟩ [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝² : Monoid G inst✝¹ : AddMonoid A x✝ y : G a b : A n✝ m : ℕ inst✝ : Monoid H f : G →* H x : G h : IsOfFinOrder x n : ℕ npos : 0 < n hn : x ^ n = 1 ⊢ ↑f x ^ n = 1 [PROOFSTEP] rw [← f.map_pow, hn, f.map_one] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝² : Monoid G inst✝¹ : AddMonoid A x✝ y : G a b : A n m : ℕ η : Type u_6 Gs : η → Type u_7 inst✝ : (i : η) → Monoid (Gs i) x : (i : η) → Gs i h : IsOfFinOrder x ⊢ ∀ (i : η), IsOfFinOrder (x i) [PROOFSTEP] rcases(isOfFinOrder_iff_pow_eq_one _).mp h with ⟨n, npos, hn⟩ [GOAL] case intro.intro G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝² : Monoid G inst✝¹ : AddMonoid A x✝ y : G a b : A n✝ m : ℕ η : Type u_6 Gs : η → Type u_7 inst✝ : (i : η) → Monoid (Gs i) x : (i : η) → Gs i h : IsOfFinOrder x n : ℕ npos : 0 < n hn : x ^ n = 1 ⊢ ∀ (i : η), IsOfFinOrder (x i) [PROOFSTEP] exact fun _ => (isOfFinOrder_iff_pow_eq_one _).mpr ⟨n, npos, (congr_fun hn.symm _).symm⟩ [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x✝ y : G a b : A n m : ℕ x : G ⊢ x ^ orderOf x = 1 [PROOFSTEP] refine Eq.trans ?_ (isPeriodicPt_minimalPeriod (x * ·) 1) -- porting note: we need a `dsimp` in the middle of the rewrite to do beta reduction [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x✝ y : G a b : A n m : ℕ x : G ⊢ x ^ orderOf x = (fun x_1 => x * x_1)^[minimalPeriod (fun x_1 => x * x_1) 1] 1 [PROOFSTEP] rw [orderOf, mul_left_iterate] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x✝ y : G a b : A n m : ℕ x : G ⊢ x ^ minimalPeriod (fun x_1 => x * x_1) 1 = (fun x_1 => x ^ minimalPeriod (fun x_2 => x * x_2) 1 * x_1) 1 [PROOFSTEP] dsimp [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x✝ y : G a b : A n m : ℕ x : G ⊢ x ^ minimalPeriod (fun x_1 => x * x_1) 1 = x ^ minimalPeriod (fun x_1 => x * x_1) 1 * 1 [PROOFSTEP] rw [mul_one] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m : ℕ h : ¬IsOfFinOrder x ⊢ orderOf x = 0 [PROOFSTEP] rwa [orderOf, minimalPeriod, dif_neg] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m : ℕ ⊢ orderOf x = 0 ↔ ∀ (n : ℕ), 0 < n → x ^ n ≠ 1 [PROOFSTEP] simp_rw [orderOf_eq_zero_iff, isOfFinOrder_iff_pow_eq_one, not_exists, not_and] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n✝ m n : ℕ h : 0 < n ⊢ orderOf x = n ↔ x ^ n = 1 ∧ ∀ (m : ℕ), m < n → 0 < m → x ^ m ≠ 1 [PROOFSTEP] simp_rw [Ne, ← isPeriodicPt_mul_iff_pow_eq_one, orderOf, minimalPeriod] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n✝ m n : ℕ h : 0 < n ⊢ (if h : 1 ∈ periodicPts fun x_1 => x * x_1 then Nat.find h else 0) = n ↔ IsPeriodicPt (fun x_1 => x * x_1) n 1 ∧ ∀ (m : ℕ), m < n → 0 < m → ¬IsPeriodicPt (fun x_1 => x * x_1) m 1 [PROOFSTEP] split_ifs with h1 [GOAL] case pos G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n✝ m n : ℕ h : 0 < n h1 : 1 ∈ periodicPts fun x_1 => x * x_1 ⊢ Nat.find h1 = n ↔ IsPeriodicPt (fun x_1 => x * x_1) n 1 ∧ ∀ (m : ℕ), m < n → 0 < m → ¬IsPeriodicPt (fun x_1 => x * x_1) m 1 [PROOFSTEP] classical rw [find_eq_iff] simp only [h, true_and] push_neg rfl [GOAL] case pos G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n✝ m n : ℕ h : 0 < n h1 : 1 ∈ periodicPts fun x_1 => x * x_1 ⊢ Nat.find h1 = n ↔ IsPeriodicPt (fun x_1 => x * x_1) n 1 ∧ ∀ (m : ℕ), m < n → 0 < m → ¬IsPeriodicPt (fun x_1 => x * x_1) m 1 [PROOFSTEP] rw [find_eq_iff] [GOAL] case pos G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n✝ m n : ℕ h : 0 < n h1 : 1 ∈ periodicPts fun x_1 => x * x_1 ⊢ ((n > 0 ∧ IsPeriodicPt (fun x_1 => x * x_1) n 1) ∧ ∀ (n_1 : ℕ), n_1 < n → ¬(n_1 > 0 ∧ IsPeriodicPt (fun x_1 => x * x_1) n_1 1)) ↔ IsPeriodicPt (fun x_1 => x * x_1) n 1 ∧ ∀ (m : ℕ), m < n → 0 < m → ¬IsPeriodicPt (fun x_1 => x * x_1) m 1 [PROOFSTEP] simp only [h, true_and] [GOAL] case pos G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n✝ m n : ℕ h : 0 < n h1 : 1 ∈ periodicPts fun x_1 => x * x_1 ⊢ (IsPeriodicPt (fun x_1 => x * x_1) n 1 ∧ ∀ (n_1 : ℕ), n_1 < n → ¬(n_1 > 0 ∧ IsPeriodicPt (fun x_1 => x * x_1) n_1 1)) ↔ IsPeriodicPt (fun x_1 => x * x_1) n 1 ∧ ∀ (m : ℕ), m < n → 0 < m → ¬IsPeriodicPt (fun x_1 => x * x_1) m 1 [PROOFSTEP] push_neg [GOAL] case pos G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n✝ m n : ℕ h : 0 < n h1 : 1 ∈ periodicPts fun x_1 => x * x_1 ⊢ (IsPeriodicPt (fun x_1 => x * x_1) n 1 ∧ ∀ (n_1 : ℕ), n_1 < n → n_1 > 0 → ¬IsPeriodicPt (fun x_1 => x * x_1) n_1 1) ↔ IsPeriodicPt (fun x_1 => x * x_1) n 1 ∧ ∀ (m : ℕ), m < n → 0 < m → ¬IsPeriodicPt (fun x_1 => x * x_1) m 1 [PROOFSTEP] rfl [GOAL] case neg G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n✝ m n : ℕ h : 0 < n h1 : ¬1 ∈ periodicPts fun x_1 => x * x_1 ⊢ 0 = n ↔ IsPeriodicPt (fun x_1 => x * x_1) n 1 ∧ ∀ (m : ℕ), m < n → 0 < m → ¬IsPeriodicPt (fun x_1 => x * x_1) m 1 [PROOFSTEP] rw [iff_false_left h.ne] [GOAL] case neg G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n✝ m n : ℕ h : 0 < n h1 : ¬1 ∈ periodicPts fun x_1 => x * x_1 ⊢ ¬(IsPeriodicPt (fun x_1 => x * x_1) n 1 ∧ ∀ (m : ℕ), m < n → 0 < m → ¬IsPeriodicPt (fun x_1 => x * x_1) m 1) [PROOFSTEP] rintro ⟨h', -⟩ [GOAL] case neg.intro G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n✝ m n : ℕ h : 0 < n h1 : ¬1 ∈ periodicPts fun x_1 => x * x_1 h' : IsPeriodicPt (fun x_1 => x * x_1) n 1 ⊢ False [PROOFSTEP] exact h1 ⟨n, h, h'⟩ [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m : ℕ ⊢ 0 < orderOf x ↔ IsOfFinOrder x [PROOFSTEP] rw [iff_not_comm.mp orderOf_eq_zero_iff, pos_iff_ne_zero] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝² : Monoid G inst✝¹ : AddMonoid A x y✝ : G a b : A n m : ℕ inst✝ : Monoid β y : β hx : IsOfFinOrder x h : orderOf y ∣ orderOf x ⊢ IsOfFinOrder y [PROOFSTEP] rw [← orderOf_pos_iff] at hx ⊢ [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝² : Monoid G inst✝¹ : AddMonoid A x y✝ : G a b : A n m : ℕ inst✝ : Monoid β y : β hx : 0 < orderOf x h : orderOf y ∣ orderOf x ⊢ 0 < orderOf y [PROOFSTEP] exact Nat.pos_of_dvd_of_pos h hx [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m : ℕ hn : 0 < n h : x ^ n = 1 ⊢ IsPeriodicPt (fun x_1 => x * x_1) n 1 [PROOFSTEP] rwa [isPeriodicPt_mul_iff_pow_eq_one] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m : ℕ ⊢ orderOf 1 = 1 [PROOFSTEP] rw [orderOf, ← minimalPeriod_id (x := (1 : G)), ← one_mul_eq_id] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m : ℕ ⊢ orderOf x = 1 ↔ x = 1 [PROOFSTEP] rw [orderOf, minimalPeriod_eq_one_iff_isFixedPt, IsFixedPt, mul_one] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n✝ m n : ℕ ⊢ x ^ n = x ^ (n % orderOf x + orderOf x * (n / orderOf x)) [PROOFSTEP] rw [Nat.mod_add_div] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n✝ m n : ℕ ⊢ x ^ (n % orderOf x + orderOf x * (n / orderOf x)) = x ^ (n % orderOf x) [PROOFSTEP] simp [pow_add, pow_mul, pow_orderOf_eq_one] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n✝ m n : ℕ h : orderOf x ∣ n ⊢ x ^ n = 1 [PROOFSTEP] rw [pow_eq_mod_orderOf, Nat.mod_eq_zero_of_dvd h, _root_.pow_zero] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n✝ m n : ℕ ⊢ orderOf (x ^ n) ∣ orderOf x [PROOFSTEP] rw [orderOf_dvd_iff_pow_eq_one, pow_right_comm, pow_orderOf_eq_one, one_pow] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x✝ y : G a b : A n m : ℕ x : G hn : n < orderOf x hm : m < orderOf x eq : x ^ n = x ^ m ⊢ (fun x_1 => x * x_1)^[n] 1 = (fun x_1 => x * x_1)^[m] 1 [PROOFSTEP] simpa only [mul_left_iterate, mul_one] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m : ℕ ⊢ x ^ n = 1 ↔ n ≡ 0 [MOD orderOf x] [PROOFSTEP] rw [modEq_zero_iff_dvd, orderOf_dvd_iff_pow_eq_one] [GOAL] G : Type u_1 H✝ : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝² : Monoid G inst✝¹ : AddMonoid A x✝ y : G a b : A n m : ℕ H : Type u_6 inst✝ : Monoid H ψ : G →* H x : G ⊢ orderOf (↑ψ x) ∣ orderOf x [PROOFSTEP] apply orderOf_dvd_of_pow_eq_one [GOAL] case h G : Type u_1 H✝ : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝² : Monoid G inst✝¹ : AddMonoid A x✝ y : G a b : A n m : ℕ H : Type u_6 inst✝ : Monoid H ψ : G →* H x : G ⊢ ↑ψ x ^ orderOf x = 1 [PROOFSTEP] rw [← map_pow, pow_orderOf_eq_one] [GOAL] case h G : Type u_1 H✝ : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝² : Monoid G inst✝¹ : AddMonoid A x✝ y : G a b : A n m : ℕ H : Type u_6 inst✝ : Monoid H ψ : G →* H x : G ⊢ ↑ψ 1 = 1 [PROOFSTEP] apply map_one [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m : ℕ h : coprime n (orderOf x) ⊢ ∃ m, (x ^ n) ^ m = x [PROOFSTEP] by_cases h0 : orderOf x = 0 [GOAL] case pos G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m : ℕ h : coprime n (orderOf x) h0 : orderOf x = 0 ⊢ ∃ m, (x ^ n) ^ m = x [PROOFSTEP] rw [h0, coprime_zero_right] at h [GOAL] case pos G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m : ℕ h : n = 1 h0 : orderOf x = 0 ⊢ ∃ m, (x ^ n) ^ m = x [PROOFSTEP] exact ⟨1, by rw [h, pow_one, pow_one]⟩ [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m : ℕ h : n = 1 h0 : orderOf x = 0 ⊢ (x ^ n) ^ 1 = x [PROOFSTEP] rw [h, pow_one, pow_one] [GOAL] case neg G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m : ℕ h : coprime n (orderOf x) h0 : ¬orderOf x = 0 ⊢ ∃ m, (x ^ n) ^ m = x [PROOFSTEP] by_cases h1 : orderOf x = 1 [GOAL] case pos G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m : ℕ h : coprime n (orderOf x) h0 : ¬orderOf x = 0 h1 : orderOf x = 1 ⊢ ∃ m, (x ^ n) ^ m = x [PROOFSTEP] exact ⟨0, by rw [orderOf_eq_one_iff.mp h1, one_pow, one_pow]⟩ [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m : ℕ h : coprime n (orderOf x) h0 : ¬orderOf x = 0 h1 : orderOf x = 1 ⊢ (x ^ n) ^ 0 = x [PROOFSTEP] rw [orderOf_eq_one_iff.mp h1, one_pow, one_pow] [GOAL] case neg G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m : ℕ h : coprime n (orderOf x) h0 : ¬orderOf x = 0 h1 : ¬orderOf x = 1 ⊢ ∃ m, (x ^ n) ^ m = x [PROOFSTEP] obtain ⟨m, h⟩ := exists_mul_emod_eq_one_of_coprime h (one_lt_iff_ne_zero_and_ne_one.mpr ⟨h0, h1⟩) [GOAL] case neg.intro G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m✝ : ℕ h✝ : coprime n (orderOf x) h0 : ¬orderOf x = 0 h1 : ¬orderOf x = 1 m : ℕ h : n * m % orderOf x = 1 ⊢ ∃ m, (x ^ n) ^ m = x [PROOFSTEP] exact ⟨m, by rw [← pow_mul, pow_eq_mod_orderOf, h, pow_one]⟩ [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m✝ : ℕ h✝ : coprime n (orderOf x) h0 : ¬orderOf x = 0 h1 : ¬orderOf x = 1 m : ℕ h : n * m % orderOf x = 1 ⊢ (x ^ n) ^ m = x [PROOFSTEP] rw [← pow_mul, pow_eq_mod_orderOf, h, pow_one] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m : ℕ hn : 0 < n hx : x ^ n = 1 hd : ∀ (p : ℕ), Nat.Prime p → p ∣ n → x ^ (n / p) ≠ 1 ⊢ orderOf x = n [PROOFSTEP] cases' exists_eq_mul_right_of_dvd (orderOf_dvd_of_pow_eq_one hx) with a ha [GOAL] case intro G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a✝ b : A n m : ℕ hn : 0 < n hx : x ^ n = 1 hd : ∀ (p : ℕ), Nat.Prime p → p ∣ n → x ^ (n / p) ≠ 1 a : ℕ ha : n = orderOf x * a ⊢ orderOf x = n [PROOFSTEP] suffices a = 1 by simp [this, ha] -- Assume `a` is not one... [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a✝ b : A n m : ℕ hn : 0 < n hx : x ^ n = 1 hd : ∀ (p : ℕ), Nat.Prime p → p ∣ n → x ^ (n / p) ≠ 1 a : ℕ ha : n = orderOf x * a this : a = 1 ⊢ orderOf x = n [PROOFSTEP] simp [this, ha] -- Assume `a` is not one... [GOAL] case intro G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a✝ b : A n m : ℕ hn : 0 < n hx : x ^ n = 1 hd : ∀ (p : ℕ), Nat.Prime p → p ∣ n → x ^ (n / p) ≠ 1 a : ℕ ha : n = orderOf x * a ⊢ a = 1 [PROOFSTEP] by_contra h [GOAL] case intro G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a✝ b : A n m : ℕ hn : 0 < n hx : x ^ n = 1 hd : ∀ (p : ℕ), Nat.Prime p → p ∣ n → x ^ (n / p) ≠ 1 a : ℕ ha : n = orderOf x * a h : ¬a = 1 ⊢ False [PROOFSTEP] have a_min_fac_dvd_p_sub_one : a.minFac ∣ n := by obtain ⟨b, hb⟩ : ∃ b : ℕ, a = b * a.minFac := exists_eq_mul_left_of_dvd a.minFac_dvd rw [hb, ← mul_assoc] at ha exact Dvd.intro_left (orderOf x * b) ha.symm [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a✝ b : A n m : ℕ hn : 0 < n hx : x ^ n = 1 hd : ∀ (p : ℕ), Nat.Prime p → p ∣ n → x ^ (n / p) ≠ 1 a : ℕ ha : n = orderOf x * a h : ¬a = 1 ⊢ minFac a ∣ n [PROOFSTEP] obtain ⟨b, hb⟩ : ∃ b : ℕ, a = b * a.minFac := exists_eq_mul_left_of_dvd a.minFac_dvd [GOAL] case intro G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a✝ b✝ : A n m : ℕ hn : 0 < n hx : x ^ n = 1 hd : ∀ (p : ℕ), Nat.Prime p → p ∣ n → x ^ (n / p) ≠ 1 a : ℕ ha : n = orderOf x * a h : ¬a = 1 b : ℕ hb : a = b * minFac a ⊢ minFac a ∣ n [PROOFSTEP] rw [hb, ← mul_assoc] at ha [GOAL] case intro G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a✝ b✝ : A n m : ℕ hn : 0 < n hx : x ^ n = 1 hd : ∀ (p : ℕ), Nat.Prime p → p ∣ n → x ^ (n / p) ≠ 1 a : ℕ h : ¬a = 1 b : ℕ ha : n = orderOf x * b * minFac a hb : a = b * minFac a ⊢ minFac a ∣ n [PROOFSTEP] exact Dvd.intro_left (orderOf x * b) ha.symm [GOAL] case intro G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a✝ b : A n m : ℕ hn : 0 < n hx : x ^ n = 1 hd : ∀ (p : ℕ), Nat.Prime p → p ∣ n → x ^ (n / p) ≠ 1 a : ℕ ha : n = orderOf x * a h : ¬a = 1 a_min_fac_dvd_p_sub_one : minFac a ∣ n ⊢ False [PROOFSTEP] refine' hd a.minFac (Nat.minFac_prime h) a_min_fac_dvd_p_sub_one _ [GOAL] case intro G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a✝ b : A n m : ℕ hn : 0 < n hx : x ^ n = 1 hd : ∀ (p : ℕ), Nat.Prime p → p ∣ n → x ^ (n / p) ≠ 1 a : ℕ ha : n = orderOf x * a h : ¬a = 1 a_min_fac_dvd_p_sub_one : minFac a ∣ n ⊢ x ^ (n / minFac a) = 1 [PROOFSTEP] rw [← orderOf_dvd_iff_pow_eq_one, Nat.dvd_div_iff a_min_fac_dvd_p_sub_one, ha, mul_comm, Nat.mul_dvd_mul_iff_left (orderOf_pos' _)] [GOAL] case intro G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a✝ b : A n m : ℕ hn : 0 < n hx : x ^ n = 1 hd : ∀ (p : ℕ), Nat.Prime p → p ∣ n → x ^ (n / p) ≠ 1 a : ℕ ha : n = orderOf x * a h : ¬a = 1 a_min_fac_dvd_p_sub_one : minFac a ∣ n ⊢ minFac a ∣ a [PROOFSTEP] exact Nat.minFac_dvd a [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a✝ b : A n m : ℕ hn : 0 < n hx : x ^ n = 1 hd : ∀ (p : ℕ), Nat.Prime p → p ∣ n → x ^ (n / p) ≠ 1 a : ℕ ha : n = orderOf x * a h : ¬a = 1 a_min_fac_dvd_p_sub_one : minFac a ∣ n ⊢ IsOfFinOrder x [PROOFSTEP] rw [isOfFinOrder_iff_pow_eq_one] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a✝ b : A n m : ℕ hn : 0 < n hx : x ^ n = 1 hd : ∀ (p : ℕ), Nat.Prime p → p ∣ n → x ^ (n / p) ≠ 1 a : ℕ ha : n = orderOf x * a h : ¬a = 1 a_min_fac_dvd_p_sub_one : minFac a ∣ n ⊢ ∃ n, 0 < n ∧ x ^ n = 1 [PROOFSTEP] exact Exists.intro n (id ⟨hn, hx⟩) [GOAL] G : Type u_1 H✝ : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝² : Monoid G inst✝¹ : AddMonoid A x y✝ : G a b : A n m : ℕ H : Type u_6 inst✝ : Monoid H y : H ⊢ orderOf x = orderOf y ↔ ∀ (n : ℕ), x ^ n = 1 ↔ y ^ n = 1 [PROOFSTEP] simp_rw [← isPeriodicPt_mul_iff_pow_eq_one, ← minimalPeriod_eq_minimalPeriod_iff, orderOf] [GOAL] G : Type u_1 H✝ : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝² : Monoid G inst✝¹ : AddMonoid A x✝ y : G a b : A n m : ℕ H : Type u_6 inst✝ : Monoid H f : G →* H hf : Injective ↑f x : G ⊢ orderOf (↑f x) = orderOf x [PROOFSTEP] simp_rw [orderOf_eq_orderOf_iff, ← f.map_pow, ← f.map_one, hf.eq_iff, forall_const] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m : ℕ h : n ≠ 0 ⊢ orderOf (x ^ n) = orderOf x / gcd (orderOf x) n [PROOFSTEP] unfold orderOf [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m : ℕ h : n ≠ 0 ⊢ minimalPeriod (fun x_1 => x ^ n * x_1) 1 = minimalPeriod (fun x_1 => x * x_1) 1 / gcd (minimalPeriod (fun x_1 => x * x_1) 1) n [PROOFSTEP] rw [← minimalPeriod_iterate_eq_div_gcd h, mul_left_iterate] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m : ℕ h : IsOfFinOrder x ⊢ orderOf (x ^ n) = orderOf x / gcd (orderOf x) n [PROOFSTEP] unfold orderOf [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m : ℕ h : IsOfFinOrder x ⊢ minimalPeriod (fun x_1 => x ^ n * x_1) 1 = minimalPeriod (fun x_1 => x * x_1) 1 / gcd (minimalPeriod (fun x_1 => x * x_1) 1) n [PROOFSTEP] rw [← minimalPeriod_iterate_eq_div_gcd' h, mul_left_iterate] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m : ℕ h : coprime (orderOf y) m ⊢ orderOf (y ^ m) = orderOf y [PROOFSTEP] by_cases hg : orderOf y = 0 [GOAL] case pos G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m : ℕ h : coprime (orderOf y) m hg : orderOf y = 0 ⊢ orderOf (y ^ m) = orderOf y [PROOFSTEP] rw [m.coprime_zero_left.mp (hg ▸ h), pow_one] [GOAL] case neg G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m : ℕ h : coprime (orderOf y) m hg : ¬orderOf y = 0 ⊢ orderOf (y ^ m) = orderOf y [PROOFSTEP] rw [orderOf_pow'' y m (hg.imp_symm orderOf_eq_zero), h.gcd_eq_one, Nat.div_one] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m : ℕ h : Commute x y ⊢ orderOf (x * y) ∣ lcm (orderOf x) (orderOf y) [PROOFSTEP] rw [orderOf, ← comp_mul_left] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m : ℕ h : Commute x y ⊢ minimalPeriod ((fun x_1 => x * x_1) ∘ fun x => y * x) 1 ∣ lcm (orderOf x) (orderOf y) [PROOFSTEP] exact Function.Commute.minimalPeriod_of_comp_dvd_lcm h.function_commute_mul_left [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m : ℕ h : Commute x y ⊢ orderOf y ∣ lcm (orderOf x) (orderOf (x * y)) [PROOFSTEP] by_cases h0 : orderOf x = 0 [GOAL] case pos G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m : ℕ h : Commute x y h0 : orderOf x = 0 ⊢ orderOf y ∣ lcm (orderOf x) (orderOf (x * y)) [PROOFSTEP] rw [h0, lcm_zero_left] [GOAL] case pos G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m : ℕ h : Commute x y h0 : orderOf x = 0 ⊢ orderOf y ∣ 0 [PROOFSTEP] apply dvd_zero [GOAL] case neg G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m : ℕ h : Commute x y h0 : ¬orderOf x = 0 ⊢ orderOf y ∣ lcm (orderOf x) (orderOf (x * y)) [PROOFSTEP] conv_lhs => rw [← one_mul y, ← pow_orderOf_eq_one x, ← succ_pred_eq_of_pos (Nat.pos_of_ne_zero h0), _root_.pow_succ', mul_assoc] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m : ℕ h : Commute x y h0 : ¬orderOf x = 0 | orderOf y [PROOFSTEP] rw [← one_mul y, ← pow_orderOf_eq_one x, ← succ_pred_eq_of_pos (Nat.pos_of_ne_zero h0), _root_.pow_succ', mul_assoc] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m : ℕ h : Commute x y h0 : ¬orderOf x = 0 | orderOf y [PROOFSTEP] rw [← one_mul y, ← pow_orderOf_eq_one x, ← succ_pred_eq_of_pos (Nat.pos_of_ne_zero h0), _root_.pow_succ', mul_assoc] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m : ℕ h : Commute x y h0 : ¬orderOf x = 0 | orderOf y [PROOFSTEP] rw [← one_mul y, ← pow_orderOf_eq_one x, ← succ_pred_eq_of_pos (Nat.pos_of_ne_zero h0), _root_.pow_succ', mul_assoc] [GOAL] case neg G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m : ℕ h : Commute x y h0 : ¬orderOf x = 0 ⊢ orderOf (x ^ pred (orderOf x) * (x * y)) ∣ lcm (orderOf x) (orderOf (x * y)) [PROOFSTEP] exact (((Commute.refl x).mul_right h).pow_left _).orderOf_mul_dvd_lcm.trans (lcm_dvd_iff.2 ⟨(orderOf_pow_dvd _).trans (dvd_lcm_left _ _), dvd_lcm_right _ _⟩) [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m : ℕ h : Commute x y hco : coprime (orderOf x) (orderOf y) ⊢ orderOf (x * y) = orderOf x * orderOf y [PROOFSTEP] rw [orderOf, ← comp_mul_left] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m : ℕ h : Commute x y hco : coprime (orderOf x) (orderOf y) ⊢ minimalPeriod ((fun x_1 => x * x_1) ∘ fun x => y * x) 1 = orderOf x * orderOf y [PROOFSTEP] exact h.function_commute_mul_left.minimalPeriod_of_comp_eq_mul_of_coprime hco [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m : ℕ h : Commute x y hy : IsOfFinOrder y hdvd : ∀ (p : ℕ), Nat.Prime p → p ∣ orderOf x → p * orderOf x ∣ orderOf y ⊢ orderOf (x * y) = orderOf y [PROOFSTEP] have hoy := orderOf_pos' hy [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m : ℕ h : Commute x y hy : IsOfFinOrder y hdvd : ∀ (p : ℕ), Nat.Prime p → p ∣ orderOf x → p * orderOf x ∣ orderOf y hoy : 0 < orderOf y ⊢ orderOf (x * y) = orderOf y [PROOFSTEP] have hxy := dvd_of_forall_prime_mul_dvd hdvd [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m : ℕ h : Commute x y hy : IsOfFinOrder y hdvd : ∀ (p : ℕ), Nat.Prime p → p ∣ orderOf x → p * orderOf x ∣ orderOf y hoy : 0 < orderOf y hxy : orderOf x ∣ orderOf y ⊢ orderOf (x * y) = orderOf y [PROOFSTEP] apply orderOf_eq_of_pow_and_pow_div_prime hoy [GOAL] case hx G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m : ℕ h : Commute x y hy : IsOfFinOrder y hdvd : ∀ (p : ℕ), Nat.Prime p → p ∣ orderOf x → p * orderOf x ∣ orderOf y hoy : 0 < orderOf y hxy : orderOf x ∣ orderOf y ⊢ (x * y) ^ orderOf y = 1 [PROOFSTEP] simp only [Ne, ← orderOf_dvd_iff_pow_eq_one] [GOAL] case hd G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m : ℕ h : Commute x y hy : IsOfFinOrder y hdvd : ∀ (p : ℕ), Nat.Prime p → p ∣ orderOf x → p * orderOf x ∣ orderOf y hoy : 0 < orderOf y hxy : orderOf x ∣ orderOf y ⊢ ∀ (p : ℕ), Nat.Prime p → p ∣ orderOf y → (x * y) ^ (orderOf y / p) ≠ 1 [PROOFSTEP] simp only [Ne, ← orderOf_dvd_iff_pow_eq_one] [GOAL] case hx G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m : ℕ h : Commute x y hy : IsOfFinOrder y hdvd : ∀ (p : ℕ), Nat.Prime p → p ∣ orderOf x → p * orderOf x ∣ orderOf y hoy : 0 < orderOf y hxy : orderOf x ∣ orderOf y ⊢ orderOf (x * y) ∣ orderOf y [PROOFSTEP] exact h.orderOf_mul_dvd_lcm.trans (lcm_dvd hxy dvd_rfl) [GOAL] case hd G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m : ℕ h : Commute x y hy : IsOfFinOrder y hdvd : ∀ (p : ℕ), Nat.Prime p → p ∣ orderOf x → p * orderOf x ∣ orderOf y hoy : 0 < orderOf y hxy : orderOf x ∣ orderOf y ⊢ ∀ (p : ℕ), Nat.Prime p → p ∣ orderOf y → ¬orderOf (x * y) ∣ orderOf y / p [PROOFSTEP] refine' fun p hp hpy hd => hp.ne_one _ [GOAL] case hd G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m : ℕ h : Commute x y hy : IsOfFinOrder y hdvd : ∀ (p : ℕ), Nat.Prime p → p ∣ orderOf x → p * orderOf x ∣ orderOf y hoy : 0 < orderOf y hxy : orderOf x ∣ orderOf y p : ℕ hp : Nat.Prime p hpy : p ∣ orderOf y hd : orderOf (x * y) ∣ orderOf y / p ⊢ p = 1 [PROOFSTEP] rw [← Nat.dvd_one, ← mul_dvd_mul_iff_right hoy.ne', one_mul, ← dvd_div_iff hpy] [GOAL] case hd G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m : ℕ h : Commute x y hy : IsOfFinOrder y hdvd : ∀ (p : ℕ), Nat.Prime p → p ∣ orderOf x → p * orderOf x ∣ orderOf y hoy : 0 < orderOf y hxy : orderOf x ∣ orderOf y p : ℕ hp : Nat.Prime p hpy : p ∣ orderOf y hd : orderOf (x * y) ∣ orderOf y / p ⊢ orderOf y ∣ orderOf y / p [PROOFSTEP] refine' (orderOf_dvd_lcm_mul h).trans (lcm_dvd ((dvd_div_iff hpy).2 _) hd) [GOAL] case hd G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m : ℕ h : Commute x y hy : IsOfFinOrder y hdvd : ∀ (p : ℕ), Nat.Prime p → p ∣ orderOf x → p * orderOf x ∣ orderOf y hoy : 0 < orderOf y hxy : orderOf x ∣ orderOf y p : ℕ hp : Nat.Prime p hpy : p ∣ orderOf y hd : orderOf (x * y) ∣ orderOf y / p ⊢ p * orderOf x ∣ orderOf y [PROOFSTEP] by_cases h : p ∣ orderOf x [GOAL] case pos G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m : ℕ h✝ : Commute x y hy : IsOfFinOrder y hdvd : ∀ (p : ℕ), Nat.Prime p → p ∣ orderOf x → p * orderOf x ∣ orderOf y hoy : 0 < orderOf y hxy : orderOf x ∣ orderOf y p : ℕ hp : Nat.Prime p hpy : p ∣ orderOf y hd : orderOf (x * y) ∣ orderOf y / p h : p ∣ orderOf x ⊢ p * orderOf x ∣ orderOf y case neg G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m : ℕ h✝ : Commute x y hy : IsOfFinOrder y hdvd : ∀ (p : ℕ), Nat.Prime p → p ∣ orderOf x → p * orderOf x ∣ orderOf y hoy : 0 < orderOf y hxy : orderOf x ∣ orderOf y p : ℕ hp : Nat.Prime p hpy : p ∣ orderOf y hd : orderOf (x * y) ∣ orderOf y / p h : ¬p ∣ orderOf x ⊢ p * orderOf x ∣ orderOf y [PROOFSTEP] exacts [hdvd p hp h, (hp.coprime_iff_not_dvd.2 h).mul_dvd_of_dvd_of_dvd hpy hxy] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m p : ℕ hp : Fact (Nat.Prime p) hg : x ^ p = 1 hg1 : x ≠ 1 ⊢ ¬IsFixedPt (fun x_1 => x * x_1) 1 [PROOFSTEP] rwa [IsFixedPt, mul_one] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m p : ℕ hp : Fact (Nat.Prime p) hnot : ¬x ^ p ^ n = 1 hfin : x ^ p ^ (n + 1) = 1 ⊢ orderOf x = p ^ (n + 1) [PROOFSTEP] apply minimalPeriod_eq_prime_pow [GOAL] case hk G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m p : ℕ hp : Fact (Nat.Prime p) hnot : ¬x ^ p ^ n = 1 hfin : x ^ p ^ (n + 1) = 1 ⊢ ¬IsPeriodicPt (fun x_1 => x * x_1) (p ^ n) 1 [PROOFSTEP] rwa [isPeriodicPt_mul_iff_pow_eq_one] [GOAL] case hk1 G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m p : ℕ hp : Fact (Nat.Prime p) hnot : ¬x ^ p ^ n = 1 hfin : x ^ p ^ (n + 1) = 1 ⊢ IsPeriodicPt (fun x_1 => x * x_1) (p ^ (n + 1)) 1 [PROOFSTEP] rwa [isPeriodicPt_mul_iff_pow_eq_one] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m p : ℕ hp : Fact (Nat.Prime p) x✝ : ∃ k, orderOf x = p ^ k k : ℕ hk : orderOf x = p ^ k ⊢ x ^ p ^ k = 1 [PROOFSTEP] rw [← hk, pow_orderOf_eq_one] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m p : ℕ hp : Fact (Nat.Prime p) x✝ : ∃ m, x ^ p ^ m = 1 w✝ : ℕ hm : x ^ p ^ w✝ = 1 ⊢ ∃ k, orderOf x = p ^ k [PROOFSTEP] obtain ⟨k, _, hk⟩ := (Nat.dvd_prime_pow hp.elim).mp (orderOf_dvd_of_pow_eq_one hm) [GOAL] case intro.intro G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid G inst✝ : AddMonoid A x y : G a b : A n m p : ℕ hp : Fact (Nat.Prime p) x✝ : ∃ m, x ^ p ^ m = 1 w✝ : ℕ hm : x ^ p ^ w✝ = 1 k : ℕ left✝ : k ≤ w✝ hk : orderOf x = p ^ k ⊢ ∃ k, orderOf x = p ^ k [PROOFSTEP] exact ⟨k, hk⟩ [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : LeftCancelMonoid G x y : G m n : ℕ ⊢ x ^ n = x ^ m ↔ n ≡ m [MOD orderOf x] [PROOFSTEP] wlog hmn : m ≤ n generalizing m n [GOAL] case inr G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : LeftCancelMonoid G x y : G m n : ℕ this : ∀ {m n : ℕ}, m ≤ n → (x ^ n = x ^ m ↔ n ≡ m [MOD orderOf x]) hmn : ¬m ≤ n ⊢ x ^ n = x ^ m ↔ n ≡ m [MOD orderOf x] [PROOFSTEP] rw [eq_comm, ModEq.comm, this (le_of_not_le hmn)] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : LeftCancelMonoid G x y : G m✝ n✝ m n : ℕ hmn : m ≤ n ⊢ x ^ n = x ^ m ↔ n ≡ m [MOD orderOf x] [PROOFSTEP] obtain ⟨k, rfl⟩ := Nat.exists_eq_add_of_le hmn [GOAL] case intro G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : LeftCancelMonoid G x y : G m✝ n m k : ℕ hmn : m ≤ m + k ⊢ x ^ (m + k) = x ^ m ↔ m + k ≡ m [MOD orderOf x] [PROOFSTEP] rw [← mul_one (x ^ m), pow_add, mul_left_cancel_iff, pow_eq_one_iff_modEq] [GOAL] case intro G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : LeftCancelMonoid G x y : G m✝ n m k : ℕ hmn : m ≤ m + k ⊢ k ≡ 0 [MOD orderOf x] ↔ m + k ≡ m [MOD orderOf x] [PROOFSTEP] exact ⟨fun h => Nat.ModEq.add_left _ h, fun h => Nat.ModEq.add_left_cancel' _ h⟩ [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : LeftCancelMonoid G x✝ y : G m n : ℕ x : G ⊢ (Injective fun n => x ^ n) ↔ ¬IsOfFinOrder x [PROOFSTEP] refine' ⟨fun h => not_isOfFinOrder_of_injective_pow h, fun h n m hnm => _⟩ [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : LeftCancelMonoid G x✝ y : G m✝ n✝ : ℕ x : G h : ¬IsOfFinOrder x n m : ℕ hnm : (fun n => x ^ n) n = (fun n => x ^ n) m ⊢ n = m [PROOFSTEP] rwa [pow_eq_pow_iff_modEq, orderOf_eq_zero_iff.mpr h, modEq_zero_iff] at hnm [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : LeftCancelMonoid G x y : G m✝ n✝ : ℕ h : orderOf x = 0 n m : ℕ ⊢ x ^ n = x ^ m ↔ n = m [PROOFSTEP] rw [pow_eq_pow_iff_modEq, h, modEq_zero_iff] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : LeftCancelMonoid G x✝ y : G m n : ℕ x : G h : ¬IsOfFinOrder x ⊢ Set.Infinite {y | ¬IsOfFinOrder y} [PROOFSTEP] let s := {n | 0 < n}.image fun n : ℕ => x ^ n [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : LeftCancelMonoid G x✝ y : G m n : ℕ x : G h : ¬IsOfFinOrder x s : Set G := (fun n => x ^ n) '' {n | 0 < n} ⊢ Set.Infinite {y | ¬IsOfFinOrder y} [PROOFSTEP] have hs : s ⊆ {y : G | ¬IsOfFinOrder y} := by rintro - ⟨n, hn : 0 < n, rfl⟩ (contra : IsOfFinOrder (x ^ n)) apply h rw [isOfFinOrder_iff_pow_eq_one] at contra ⊢ obtain ⟨m, hm, hm'⟩ := contra exact ⟨n * m, mul_pos hn hm, by rwa [pow_mul]⟩ [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : LeftCancelMonoid G x✝ y : G m n : ℕ x : G h : ¬IsOfFinOrder x s : Set G := (fun n => x ^ n) '' {n | 0 < n} ⊢ s ⊆ {y | ¬IsOfFinOrder y} [PROOFSTEP] rintro - ⟨n, hn : 0 < n, rfl⟩ (contra : IsOfFinOrder (x ^ n)) [GOAL] case intro.intro G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : LeftCancelMonoid G x✝ y : G m n✝ : ℕ x : G h : ¬IsOfFinOrder x s : Set G := (fun n => x ^ n) '' {n | 0 < n} n : ℕ hn : 0 < n contra : IsOfFinOrder (x ^ n) ⊢ False [PROOFSTEP] apply h [GOAL] case intro.intro G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : LeftCancelMonoid G x✝ y : G m n✝ : ℕ x : G h : ¬IsOfFinOrder x s : Set G := (fun n => x ^ n) '' {n | 0 < n} n : ℕ hn : 0 < n contra : IsOfFinOrder (x ^ n) ⊢ IsOfFinOrder x [PROOFSTEP] rw [isOfFinOrder_iff_pow_eq_one] at contra ⊢ [GOAL] case intro.intro G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : LeftCancelMonoid G x✝ y : G m n✝ : ℕ x : G h : ¬IsOfFinOrder x s : Set G := (fun n => x ^ n) '' {n | 0 < n} n : ℕ hn : 0 < n contra : ∃ n_1, 0 < n_1 ∧ (x ^ n) ^ n_1 = 1 ⊢ ∃ n, 0 < n ∧ x ^ n = 1 [PROOFSTEP] obtain ⟨m, hm, hm'⟩ := contra [GOAL] case intro.intro.intro.intro G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : LeftCancelMonoid G x✝ y : G m✝ n✝ : ℕ x : G h : ¬IsOfFinOrder x s : Set G := (fun n => x ^ n) '' {n | 0 < n} n : ℕ hn : 0 < n m : ℕ hm : 0 < m hm' : (x ^ n) ^ m = 1 ⊢ ∃ n, 0 < n ∧ x ^ n = 1 [PROOFSTEP] exact ⟨n * m, mul_pos hn hm, by rwa [pow_mul]⟩ [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : LeftCancelMonoid G x✝ y : G m✝ n✝ : ℕ x : G h : ¬IsOfFinOrder x s : Set G := (fun n => x ^ n) '' {n | 0 < n} n : ℕ hn : 0 < n m : ℕ hm : 0 < m hm' : (x ^ n) ^ m = 1 ⊢ x ^ (n * m) = 1 [PROOFSTEP] rwa [pow_mul] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : LeftCancelMonoid G x✝ y : G m n : ℕ x : G h : ¬IsOfFinOrder x s : Set G := (fun n => x ^ n) '' {n | 0 < n} hs : s ⊆ {y | ¬IsOfFinOrder y} ⊢ Set.Infinite {y | ¬IsOfFinOrder y} [PROOFSTEP] suffices s.Infinite by exact this.mono hs [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : LeftCancelMonoid G x✝ y : G m n : ℕ x : G h : ¬IsOfFinOrder x s : Set G := (fun n => x ^ n) '' {n | 0 < n} hs : s ⊆ {y | ¬IsOfFinOrder y} this : Set.Infinite s ⊢ Set.Infinite {y | ¬IsOfFinOrder y} [PROOFSTEP] exact this.mono hs [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : LeftCancelMonoid G x✝ y : G m n : ℕ x : G h : ¬IsOfFinOrder x s : Set G := (fun n => x ^ n) '' {n | 0 < n} hs : s ⊆ {y | ¬IsOfFinOrder y} ⊢ Set.Infinite s [PROOFSTEP] contrapose! h [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : LeftCancelMonoid G x✝ y : G m n : ℕ x : G s : Set G := (fun n => x ^ n) '' {n | 0 < n} hs : s ⊆ {y | ¬IsOfFinOrder y} h : ¬Set.Infinite ((fun n => x ^ n) '' {n | 0 < n}) ⊢ IsOfFinOrder x [PROOFSTEP] have : ¬Injective fun n : ℕ => x ^ n := by have := Set.not_injOn_infinite_finite_image (Set.Ioi_infinite 0) (Set.not_infinite.mp h) contrapose! this exact Set.injOn_of_injective this _ [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : LeftCancelMonoid G x✝ y : G m n : ℕ x : G s : Set G := (fun n => x ^ n) '' {n | 0 < n} hs : s ⊆ {y | ¬IsOfFinOrder y} h : ¬Set.Infinite ((fun n => x ^ n) '' {n | 0 < n}) ⊢ ¬Injective fun n => x ^ n [PROOFSTEP] have := Set.not_injOn_infinite_finite_image (Set.Ioi_infinite 0) (Set.not_infinite.mp h) [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : LeftCancelMonoid G x✝ y : G m n : ℕ x : G s : Set G := (fun n => x ^ n) '' {n | 0 < n} hs : s ⊆ {y | ¬IsOfFinOrder y} h : ¬Set.Infinite ((fun n => x ^ n) '' {n | 0 < n}) this : ¬Set.InjOn (fun n => x ^ n) (Set.Ioi 0) ⊢ ¬Injective fun n => x ^ n [PROOFSTEP] contrapose! this [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : LeftCancelMonoid G x✝ y : G m n : ℕ x : G s : Set G := (fun n => x ^ n) '' {n | 0 < n} hs : s ⊆ {y | ¬IsOfFinOrder y} h : ¬Set.Infinite ((fun n => x ^ n) '' {n | 0 < n}) this : Injective fun n => x ^ n ⊢ Set.InjOn (fun n => x ^ n) (Set.Ioi 0) [PROOFSTEP] exact Set.injOn_of_injective this _ [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : LeftCancelMonoid G x✝ y : G m n : ℕ x : G s : Set G := (fun n => x ^ n) '' {n | 0 < n} hs : s ⊆ {y | ¬IsOfFinOrder y} h : ¬Set.Infinite ((fun n => x ^ n) '' {n | 0 < n}) this : ¬Injective fun n => x ^ n ⊢ IsOfFinOrder x [PROOFSTEP] rwa [injective_pow_iff_not_isOfFinOrder, Classical.not_not] at this [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : Group G x✝ y : G i : ℤ x : G hx : IsOfFinOrder x ⊢ ∃ n, 0 < n ∧ x⁻¹ ^ n = 1 [PROOFSTEP] rcases(isOfFinOrder_iff_pow_eq_one x).mp hx with ⟨n, npos, hn⟩ [GOAL] case intro.intro G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : Group G x✝ y : G i : ℤ x : G hx : IsOfFinOrder x n : ℕ npos : 0 < n hn : x ^ n = 1 ⊢ ∃ n, 0 < n ∧ x⁻¹ ^ n = 1 [PROOFSTEP] refine' ⟨n, npos, by simp_rw [inv_pow, hn, inv_one]⟩ [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : Group G x✝ y : G i : ℤ x : G hx : IsOfFinOrder x n : ℕ npos : 0 < n hn : x ^ n = 1 ⊢ x⁻¹ ^ n = 1 [PROOFSTEP] simp_rw [inv_pow, hn, inv_one] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : Group G x y : G i : ℤ ⊢ ↑(orderOf x) ∣ i ↔ x ^ i = 1 [PROOFSTEP] rcases Int.eq_nat_or_neg i with ⟨i, rfl | rfl⟩ [GOAL] case intro.inl G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : Group G x y : G i : ℕ ⊢ ↑(orderOf x) ∣ ↑i ↔ x ^ ↑i = 1 [PROOFSTEP] rw [Int.coe_nat_dvd, orderOf_dvd_iff_pow_eq_one, zpow_ofNat] [GOAL] case intro.inr G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : Group G x y : G i : ℕ ⊢ ↑(orderOf x) ∣ -↑i ↔ x ^ (-↑i) = 1 [PROOFSTEP] rw [dvd_neg, Int.coe_nat_dvd, zpow_neg, inv_eq_one, zpow_ofNat, orderOf_dvd_iff_pow_eq_one] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : Group G x✝ y : G i : ℤ x : G ⊢ orderOf x⁻¹ = orderOf x [PROOFSTEP] simp [orderOf_eq_orderOf_iff] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : Group G x y : G i : ℤ ⊢ x ^ i = ?m.965169 [PROOFSTEP] rw [← Int.emod_add_ediv i (orderOf x)] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : Group G x y : G i : ℤ ⊢ x ^ (i % ↑(orderOf x) + ↑(orderOf x) * (i / ↑(orderOf x))) = x ^ (i % ↑(orderOf x)) [PROOFSTEP] simp [zpow_add, zpow_mul, pow_orderOf_eq_one] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : Group G x y : G i : ℤ ⊢ (x ^ i) ^ orderOf x = 1 [PROOFSTEP] by_cases h : IsOfFinOrder x [GOAL] case pos G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : Group G x y : G i : ℤ h : IsOfFinOrder x ⊢ (x ^ i) ^ orderOf x = 1 [PROOFSTEP] rw [← zpow_ofNat, ← zpow_mul, mul_comm, zpow_mul, zpow_ofNat, pow_orderOf_eq_one, one_zpow] [GOAL] case neg G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : Group G x y : G i : ℤ h : ¬IsOfFinOrder x ⊢ (x ^ i) ^ orderOf x = 1 [PROOFSTEP] rw [orderOf_eq_zero h, _root_.pow_zero] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : Group G x y : G i : ℤ h : IsOfFinOrder x h' : y ∈ Subgroup.zpowers x ⊢ IsOfFinOrder y [PROOFSTEP] obtain ⟨k, rfl⟩ := Subgroup.mem_zpowers_iff.mp h' [GOAL] case intro G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : Group G x : G i : ℤ h : IsOfFinOrder x k : ℤ h' : x ^ k ∈ Subgroup.zpowers x ⊢ IsOfFinOrder (x ^ k) [PROOFSTEP] exact h.zpow [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : Group G x y : G i : ℤ h : y ∈ Subgroup.zpowers x ⊢ orderOf y ∣ orderOf x [PROOFSTEP] obtain ⟨k, rfl⟩ := Subgroup.mem_zpowers_iff.mp h [GOAL] case intro G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : Group G x : G i k : ℤ h : x ^ k ∈ Subgroup.zpowers x ⊢ orderOf (x ^ k) ∣ orderOf x [PROOFSTEP] rw [orderOf_dvd_iff_pow_eq_one] [GOAL] case intro G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : Group G x : G i k : ℤ h : x ^ k ∈ Subgroup.zpowers x ⊢ (x ^ k) ^ orderOf x = 1 [PROOFSTEP] exact zpow_pow_orderOf [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α✝ : Type u_4 β : Type u_5 inst✝¹ : Group G x y : G i : ℤ α : Type u_6 inst✝ : MulAction G α hx : x ∈ Subgroup.zpowers y a : α hs : y • a = a ⊢ x • a = a [PROOFSTEP] obtain ⟨k, rfl⟩ := Subgroup.mem_zpowers_iff.mp hx [GOAL] case intro G : Type u_1 H : Type u_2 A : Type u_3 α✝ : Type u_4 β : Type u_5 inst✝¹ : Group G y : G i : ℤ α : Type u_6 inst✝ : MulAction G α a : α hs : y • a = a k : ℤ hx : y ^ k ∈ Subgroup.zpowers y ⊢ y ^ k • a = a [PROOFSTEP] rw [← MulAction.toPerm_apply, ← MulAction.toPermHom_apply, MonoidHom.map_zpow _ y k, MulAction.toPermHom_apply] [GOAL] case intro G : Type u_1 H : Type u_2 A : Type u_3 α✝ : Type u_4 β : Type u_5 inst✝¹ : Group G y : G i : ℤ α : Type u_6 inst✝ : MulAction G α a : α hs : y • a = a k : ℤ hx : y ^ k ∈ Subgroup.zpowers y ⊢ ↑(MulAction.toPerm y ^ k) a = a [PROOFSTEP] exact Function.IsFixedPt.perm_zpow (by exact hs) k [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α✝ : Type u_4 β : Type u_5 inst✝¹ : Group G y : G i : ℤ α : Type u_6 inst✝ : MulAction G α a : α hs : y • a = a k : ℤ hx : y ^ k ∈ Subgroup.zpowers y ⊢ IsFixedPt (↑(MulAction.toPerm y)) a [PROOFSTEP] exact hs [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝² : Monoid G x : G n : ℕ inst✝¹ : Fintype G inst✝ : DecidableEq G hn : n ≠ 0 ⊢ ∀ (x : ℕ), x ∈ Finset.filter (fun x => x ∣ n) (Finset.range (succ n)) → ∀ (y : ℕ), y ∈ Finset.filter (fun x => x ∣ n) (Finset.range (succ n)) → x ≠ y → Disjoint (Finset.filter (fun x_1 => orderOf x_1 = x) Finset.univ) (Finset.filter (fun x => orderOf x = y) Finset.univ) [PROOFSTEP] intros [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝² : Monoid G x : G n : ℕ inst✝¹ : Fintype G inst✝ : DecidableEq G hn : n ≠ 0 x✝ : ℕ a✝² : x✝ ∈ Finset.filter (fun x => x ∣ n) (Finset.range (succ n)) y✝ : ℕ a✝¹ : y✝ ∈ Finset.filter (fun x => x ∣ n) (Finset.range (succ n)) a✝ : x✝ ≠ y✝ ⊢ Disjoint (Finset.filter (fun x => orderOf x = x✝) Finset.univ) (Finset.filter (fun x => orderOf x = y✝) Finset.univ) [PROOFSTEP] apply Finset.disjoint_filter.2 [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝² : Monoid G x : G n : ℕ inst✝¹ : Fintype G inst✝ : DecidableEq G hn : n ≠ 0 x✝ : ℕ a✝² : x✝ ∈ Finset.filter (fun x => x ∣ n) (Finset.range (succ n)) y✝ : ℕ a✝¹ : y✝ ∈ Finset.filter (fun x => x ∣ n) (Finset.range (succ n)) a✝ : x✝ ≠ y✝ ⊢ ∀ (x : G), x ∈ Finset.univ → orderOf x = x✝ → ¬orderOf x = y✝ [PROOFSTEP] rintro _ _ rfl [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝² : Monoid G x : G n : ℕ inst✝¹ : Fintype G inst✝ : DecidableEq G hn : n ≠ 0 y✝ : ℕ a✝³ : y✝ ∈ Finset.filter (fun x => x ∣ n) (Finset.range (succ n)) x✝ : G a✝² : x✝ ∈ Finset.univ a✝¹ : orderOf x✝ ∈ Finset.filter (fun x => x ∣ n) (Finset.range (succ n)) a✝ : orderOf x✝ ≠ y✝ ⊢ ¬orderOf x✝ = y✝ [PROOFSTEP] assumption [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝² : Monoid G x : G n : ℕ inst✝¹ : Fintype G inst✝ : DecidableEq G hn : n ≠ 0 ⊢ ∀ (a : G), (a ∈ Finset.biUnion (Finset.filter (fun x => x ∣ n) (Finset.range (succ n))) fun m => Finset.filter (fun x => orderOf x = m) Finset.univ) ↔ a ∈ Finset.filter (fun x => x ^ n = 1) Finset.univ [PROOFSTEP] intro x [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝² : Monoid G x✝ : G n : ℕ inst✝¹ : Fintype G inst✝ : DecidableEq G hn : n ≠ 0 x : G ⊢ (x ∈ Finset.biUnion (Finset.filter (fun x => x ∣ n) (Finset.range (succ n))) fun m => Finset.filter (fun x => orderOf x = m) Finset.univ) ↔ x ∈ Finset.filter (fun x => x ^ n = 1) Finset.univ [PROOFSTEP] suffices orderOf x ≤ n ∧ orderOf x ∣ n ↔ x ^ n = 1 by simpa [Nat.lt_succ_iff] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝² : Monoid G x✝ : G n : ℕ inst✝¹ : Fintype G inst✝ : DecidableEq G hn : n ≠ 0 x : G this : orderOf x ≤ n ∧ orderOf x ∣ n ↔ x ^ n = 1 ⊢ (x ∈ Finset.biUnion (Finset.filter (fun x => x ∣ n) (Finset.range (succ n))) fun m => Finset.filter (fun x => orderOf x = m) Finset.univ) ↔ x ∈ Finset.filter (fun x => x ^ n = 1) Finset.univ [PROOFSTEP] simpa [Nat.lt_succ_iff] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝² : Monoid G x✝ : G n : ℕ inst✝¹ : Fintype G inst✝ : DecidableEq G hn : n ≠ 0 x : G ⊢ orderOf x ≤ n ∧ orderOf x ∣ n ↔ x ^ n = 1 [PROOFSTEP] exact ⟨fun h => by let ⟨m, hm⟩ := h.2 rw [hm, pow_mul, pow_orderOf_eq_one, one_pow], fun h => ⟨orderOf_le_of_pow_eq_one hn.bot_lt h, orderOf_dvd_of_pow_eq_one h⟩⟩ [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝² : Monoid G x✝ : G n : ℕ inst✝¹ : Fintype G inst✝ : DecidableEq G hn : n ≠ 0 x : G h : orderOf x ≤ n ∧ orderOf x ∣ n ⊢ x ^ n = 1 [PROOFSTEP] let ⟨m, hm⟩ := h.2 [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝² : Monoid G x✝ : G n : ℕ inst✝¹ : Fintype G inst✝ : DecidableEq G hn : n ≠ 0 x : G h : orderOf x ≤ n ∧ orderOf x ∣ n m : ℕ hm : n = orderOf x * m ⊢ x ^ n = 1 [PROOFSTEP] rw [hm, pow_mul, pow_orderOf_eq_one, one_pow] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : LeftCancelMonoid G x✝ y : G n : ℕ inst✝ : Finite G x : G ⊢ IsOfFinOrder x [PROOFSTEP] have : (Set.univ : Set G).Finite := Set.univ.toFinite [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : LeftCancelMonoid G x✝ y : G n : ℕ inst✝ : Finite G x : G this : Set.Finite Set.univ ⊢ IsOfFinOrder x [PROOFSTEP] contrapose! this [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : LeftCancelMonoid G x✝ y : G n : ℕ inst✝ : Finite G x : G this : ¬IsOfFinOrder x ⊢ ¬Set.Finite Set.univ [PROOFSTEP] exact Set.Infinite.mono (Set.subset_univ _) (infinite_not_isOfFinOrder this) [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : LeftCancelMonoid G x✝ y : G n✝ : ℕ inst✝ : Finite G x : G n : ℕ hn : ∃ m, x ^ m = x ^ n ⊢ ↑(finEquivPowers x).symm { val := x ^ n, property := hn } = { val := n % orderOf x, isLt := (_ : n % orderOf x < orderOf x) } [PROOFSTEP] rw [Equiv.symm_apply_eq, finEquivPowers_apply, Subtype.mk_eq_mk, pow_eq_mod_orderOf, Fin.val_mk] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : LeftCancelMonoid G x y : G n✝ : ℕ inst✝ : Finite G h : orderOf x = orderOf y n : ℕ ⊢ ↑(powersEquivPowers h) { val := x ^ n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) x y = x ^ n) } = { val := y ^ n, property := (_ : ∃ y_1, (fun x x_1 => x ^ x_1) y y_1 = y ^ n) } [PROOFSTEP] rw [powersEquivPowers, Equiv.trans_apply, Equiv.trans_apply, finEquivPowers_symm_apply, ← Equiv.eq_symm_apply, finEquivPowers_symm_apply] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : LeftCancelMonoid G x y : G n✝ : ℕ inst✝ : Finite G h : orderOf x = orderOf y n : ℕ ⊢ ↑(Fin.castIso h).toEquiv { val := n % orderOf x, isLt := (_ : n % orderOf x < orderOf x) } = { val := n % orderOf y, isLt := (_ : n % orderOf y < orderOf y) } [PROOFSTEP] simp [h] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Group G x✝ y : G n : ℕ inst✝ : Finite G x : G ⊢ ∃ i x_1, x ^ i = 1 [PROOFSTEP] rcases exists_pow_eq_one x with ⟨w, hw1, hw2⟩ [GOAL] case intro.intro G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Group G x✝ y : G n : ℕ inst✝ : Finite G x : G w : ℕ hw1 : w > 0 hw2 : IsPeriodicPt ((fun x x_1 => x * x_1) x) w 1 ⊢ ∃ i x_1, x ^ i = 1 [PROOFSTEP] refine' ⟨w, Int.coe_nat_ne_zero.mpr (_root_.ne_of_gt hw1), _⟩ [GOAL] case intro.intro G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Group G x✝ y : G n : ℕ inst✝ : Finite G x : G w : ℕ hw1 : w > 0 hw2 : IsPeriodicPt ((fun x x_1 => x * x_1) x) w 1 ⊢ x ^ ↑w = 1 [PROOFSTEP] rw [zpow_ofNat] [GOAL] case intro.intro G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Group G x✝ y : G n : ℕ inst✝ : Finite G x : G w : ℕ hw1 : w > 0 hw2 : IsPeriodicPt ((fun x x_1 => x * x_1) x) w 1 ⊢ x ^ w = 1 [PROOFSTEP] exact (isPeriodicPt_mul_iff_pow_eq_one _).mp hw2 [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Group G x y : G n✝ : ℕ inst✝ : Finite G x✝ : y ∈ Submonoid.powers x n : ℕ hn : (fun x x_1 => x ^ x_1) x n = y ⊢ (fun x x_1 => x ^ x_1) x ↑n = y [PROOFSTEP] simp_all [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Group G x y : G n : ℕ inst✝ : Finite G x✝ : y ∈ zpowers x i : ℤ hi : (fun x x_1 => x ^ x_1) x i = y ⊢ (fun x x_1 => x ^ x_1) x (Int.natAbs (i % ↑(orderOf x))) = y [PROOFSTEP] dsimp only [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Group G x y : G n : ℕ inst✝ : Finite G x✝ : y ∈ zpowers x i : ℤ hi : (fun x x_1 => x ^ x_1) x i = y ⊢ x ^ Int.natAbs (i % ↑(orderOf x)) = y [PROOFSTEP] rwa [← zpow_ofNat, Int.natAbs_of_nonneg (Int.emod_nonneg _ (Int.coe_nat_ne_zero_iff_pos.2 (orderOf_pos x))), ← zpow_eq_mod_orderOf] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝² : Group G x y : G n : ℕ inst✝¹ : Finite G inst✝ : DecidableEq G ⊢ y ∈ zpowers x ↔ y ∈ Finset.image ((fun x x_1 => x ^ x_1) x) (Finset.range (orderOf x)) [PROOFSTEP] rw [← mem_powers_iff_mem_zpowers, mem_powers_iff_mem_range_orderOf] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : Group G x y : G n✝ : ℕ n : ℤ ⊢ x ^ n = 1 ↔ n ≡ 0 [ZMOD ↑(orderOf x)] [PROOFSTEP] rw [Int.modEq_zero_iff_dvd, orderOf_dvd_iff_zpow_eq_one] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : Group G x y : G n✝ : ℕ m n : ℤ ⊢ x ^ m = x ^ n ↔ m ≡ n [ZMOD ↑(orderOf x)] [PROOFSTEP] rw [← mul_inv_eq_one, ← zpow_sub, zpow_eq_one_iff_modEq, Int.modEq_iff_dvd, Int.modEq_iff_dvd, zero_sub, neg_sub] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : Group G x y : G n : ℕ ⊢ (Injective fun n => x ^ n) ↔ ¬IsOfFinOrder x [PROOFSTEP] refine' ⟨_, fun h n m hnm => _⟩ [GOAL] case refine'_1 G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : Group G x y : G n : ℕ ⊢ (Injective fun n => x ^ n) → ¬IsOfFinOrder x [PROOFSTEP] simp_rw [isOfFinOrder_iff_pow_eq_one] [GOAL] case refine'_1 G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : Group G x y : G n : ℕ ⊢ (Injective fun n => x ^ n) → ¬∃ n, 0 < n ∧ x ^ n = 1 [PROOFSTEP] rintro h ⟨n, hn, hx⟩ [GOAL] case refine'_1.intro.intro G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : Group G x y : G n✝ : ℕ h : Injective fun n => x ^ n n : ℕ hn : 0 < n hx : x ^ n = 1 ⊢ False [PROOFSTEP] exact Nat.cast_ne_zero.2 hn.ne' (h <| by simpa using hx) [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : Group G x y : G n✝ : ℕ h : Injective fun n => x ^ n n : ℕ hn : 0 < n hx : x ^ n = 1 ⊢ (fun n => x ^ n) ↑n = (fun n => x ^ n) 0 [PROOFSTEP] simpa using hx [GOAL] case refine'_2 G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : Group G x y : G n✝ : ℕ h : ¬IsOfFinOrder x n m : ℤ hnm : (fun n => x ^ n) n = (fun n => x ^ n) m ⊢ n = m [PROOFSTEP] rwa [zpow_eq_zpow_iff_modEq, orderOf_eq_zero_iff.2 h, Nat.cast_zero, Int.modEq_zero_iff] at hnm [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Group G x✝ y : G n✝ : ℕ inst✝ : Finite G x : G n : ℕ hn : ∃ m, x ^ m = x ^ n ⊢ ↑(finEquivZpowers x).symm { val := x ^ n, property := hn } = { val := n % orderOf x, isLt := (_ : n % orderOf x < orderOf x) } [PROOFSTEP] rw [finEquivZpowers, Equiv.symm_trans_apply] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Group G x✝ y : G n✝ : ℕ inst✝ : Finite G x : G n : ℕ hn : ∃ m, x ^ m = x ^ n ⊢ ↑(finEquivPowers x).symm (↑(Equiv.Set.ofEq (_ : ↑(Submonoid.powers x) = ↑(zpowers x))).symm { val := x ^ n, property := hn }) = { val := n % orderOf x, isLt := (_ : n % orderOf x < orderOf x) } [PROOFSTEP] exact finEquivPowers_symm_apply x n [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Group G x y : G n✝ : ℕ inst✝ : Finite G h : orderOf x = orderOf y n : ℕ ⊢ ↑(zpowersEquivZpowers h) { val := x ^ n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) x y = x ^ n) } = { val := y ^ n, property := (_ : ∃ y_1, (fun x x_1 => x ^ x_1) y y_1 = y ^ n) } [PROOFSTEP] rw [zpowersEquivZpowers, Equiv.trans_apply, Equiv.trans_apply, finEquivZpowers_symm_apply, ← Equiv.eq_symm_apply, finEquivZpowers_symm_apply] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Group G x y : G n✝ : ℕ inst✝ : Finite G h : orderOf x = orderOf y n : ℕ ⊢ ↑(Fin.castIso h).toEquiv { val := n % orderOf x, isLt := (_ : n % orderOf x < orderOf x) } = { val := n % orderOf y, isLt := (_ : n % orderOf y < orderOf y) } [PROOFSTEP] simp [h] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Group G x y : G n : ℕ inst✝ : Fintype G ⊢ orderOf x ∣ Fintype.card G [PROOFSTEP] classical have ft_prod : Fintype ((G ⧸ zpowers x) × zpowers x) := Fintype.ofEquiv G groupEquivQuotientProdSubgroup have ft_s : Fintype (zpowers x) := @Fintype.prodRight _ _ _ ft_prod _ have ft_cosets : Fintype (G ⧸ zpowers x) := @Fintype.prodLeft _ _ _ ft_prod ⟨⟨1, (zpowers x).one_mem⟩⟩ have eq₁ : Fintype.card G = @Fintype.card _ ft_cosets * @Fintype.card _ ft_s := calc Fintype.card G = @Fintype.card _ ft_prod := @Fintype.card_congr _ _ _ ft_prod groupEquivQuotientProdSubgroup _ = @Fintype.card _ (@instFintypeProd _ _ ft_cosets ft_s) := (congr_arg (@Fintype.card _) <| Subsingleton.elim _ _) _ = @Fintype.card _ ft_cosets * @Fintype.card _ ft_s := @Fintype.card_prod _ _ ft_cosets ft_s have eq₂ : orderOf x = @Fintype.card _ ft_s := calc orderOf x = _ := orderOf_eq_card_zpowers _ = _ := congr_arg (@Fintype.card _) <| Subsingleton.elim _ _ exact Dvd.intro (@Fintype.card (G ⧸ Subgroup.zpowers x) ft_cosets) (by rw [eq₁, eq₂, mul_comm]) [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Group G x y : G n : ℕ inst✝ : Fintype G ⊢ orderOf x ∣ Fintype.card G [PROOFSTEP] have ft_prod : Fintype ((G ⧸ zpowers x) × zpowers x) := Fintype.ofEquiv G groupEquivQuotientProdSubgroup [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Group G x y : G n : ℕ inst✝ : Fintype G ft_prod : Fintype ((G ⧸ zpowers x) × { x_1 // x_1 ∈ zpowers x }) ⊢ orderOf x ∣ Fintype.card G [PROOFSTEP] have ft_s : Fintype (zpowers x) := @Fintype.prodRight _ _ _ ft_prod _ [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Group G x y : G n : ℕ inst✝ : Fintype G ft_prod : Fintype ((G ⧸ zpowers x) × { x_1 // x_1 ∈ zpowers x }) ft_s : Fintype { x_1 // x_1 ∈ zpowers x } ⊢ orderOf x ∣ Fintype.card G [PROOFSTEP] have ft_cosets : Fintype (G ⧸ zpowers x) := @Fintype.prodLeft _ _ _ ft_prod ⟨⟨1, (zpowers x).one_mem⟩⟩ [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Group G x y : G n : ℕ inst✝ : Fintype G ft_prod : Fintype ((G ⧸ zpowers x) × { x_1 // x_1 ∈ zpowers x }) ft_s : Fintype { x_1 // x_1 ∈ zpowers x } ft_cosets : Fintype (G ⧸ zpowers x) ⊢ orderOf x ∣ Fintype.card G [PROOFSTEP] have eq₁ : Fintype.card G = @Fintype.card _ ft_cosets * @Fintype.card _ ft_s := calc Fintype.card G = @Fintype.card _ ft_prod := @Fintype.card_congr _ _ _ ft_prod groupEquivQuotientProdSubgroup _ = @Fintype.card _ (@instFintypeProd _ _ ft_cosets ft_s) := (congr_arg (@Fintype.card _) <| Subsingleton.elim _ _) _ = @Fintype.card _ ft_cosets * @Fintype.card _ ft_s := @Fintype.card_prod _ _ ft_cosets ft_s [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Group G x y : G n : ℕ inst✝ : Fintype G ft_prod : Fintype ((G ⧸ zpowers x) × { x_1 // x_1 ∈ zpowers x }) ft_s : Fintype { x_1 // x_1 ∈ zpowers x } ft_cosets : Fintype (G ⧸ zpowers x) eq₁ : Fintype.card G = Fintype.card (G ⧸ zpowers x) * Fintype.card { x_1 // x_1 ∈ zpowers x } ⊢ orderOf x ∣ Fintype.card G [PROOFSTEP] have eq₂ : orderOf x = @Fintype.card _ ft_s := calc orderOf x = _ := orderOf_eq_card_zpowers _ = _ := congr_arg (@Fintype.card _) <| Subsingleton.elim _ _ [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Group G x y : G n : ℕ inst✝ : Fintype G ft_prod : Fintype ((G ⧸ zpowers x) × { x_1 // x_1 ∈ zpowers x }) ft_s : Fintype { x_1 // x_1 ∈ zpowers x } ft_cosets : Fintype (G ⧸ zpowers x) eq₁ : Fintype.card G = Fintype.card (G ⧸ zpowers x) * Fintype.card { x_1 // x_1 ∈ zpowers x } eq₂ : orderOf x = Fintype.card { x_1 // x_1 ∈ zpowers x } ⊢ orderOf x ∣ Fintype.card G [PROOFSTEP] exact Dvd.intro (@Fintype.card (G ⧸ Subgroup.zpowers x) ft_cosets) (by rw [eq₁, eq₂, mul_comm]) [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Group G x y : G n : ℕ inst✝ : Fintype G ft_prod : Fintype ((G ⧸ zpowers x) × { x_1 // x_1 ∈ zpowers x }) ft_s : Fintype { x_1 // x_1 ∈ zpowers x } ft_cosets : Fintype (G ⧸ zpowers x) eq₁ : Fintype.card G = Fintype.card (G ⧸ zpowers x) * Fintype.card { x_1 // x_1 ∈ zpowers x } eq₂ : orderOf x = Fintype.card { x_1 // x_1 ∈ zpowers x } ⊢ orderOf x * Fintype.card (G ⧸ zpowers x) = Fintype.card G [PROOFSTEP] rw [eq₁, eq₂, mul_comm] [GOAL] G✝ : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝² : Group G✝ x✝ y : G✝ n : ℕ inst✝¹ : Fintype G✝ G : Type u_6 inst✝ : Group G x : G ⊢ orderOf x ∣ Nat.card G [PROOFSTEP] cases' fintypeOrInfinite G with h h [GOAL] case inl G✝ : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝² : Group G✝ x✝ y : G✝ n : ℕ inst✝¹ : Fintype G✝ G : Type u_6 inst✝ : Group G x : G h : Fintype G ⊢ orderOf x ∣ Nat.card G [PROOFSTEP] simp only [Nat.card_eq_fintype_card, orderOf_dvd_card_univ] [GOAL] case inr G✝ : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝² : Group G✝ x✝ y : G✝ n : ℕ inst✝¹ : Fintype G✝ G : Type u_6 inst✝ : Group G x : G h : Infinite G ⊢ orderOf x ∣ Nat.card G [PROOFSTEP] simp only [card_eq_zero_of_infinite, dvd_zero] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Group G x y : G n : ℕ inst✝ : Fintype G ⊢ x ^ Fintype.card G = 1 [PROOFSTEP] rw [← Nat.card_eq_fintype_card, pow_card_eq_one'] [GOAL] G✝ : Type u_1 H✝ : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝³ : Group G✝ x y : G✝ n : ℕ inst✝² : Fintype G✝ G : Type u_6 inst✝¹ : Group G H : Subgroup G inst✝ : Normal H g : G ⊢ g ^ index H ∈ H [PROOFSTEP] rw [← eq_one_iff, QuotientGroup.mk_pow H, index, pow_card_eq_one'] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Group G x y : G n✝ : ℕ inst✝ : Fintype G n : ℕ ⊢ x ^ n = x ^ (n % Fintype.card G) [PROOFSTEP] rw [pow_eq_mod_orderOf, ← Nat.mod_mod_of_dvd n orderOf_dvd_card_univ, ← pow_eq_mod_orderOf] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Group G x y : G n✝ : ℕ inst✝ : Fintype G n : ℤ ⊢ x ^ n = x ^ (n % ↑(Fintype.card G)) [PROOFSTEP] rw [zpow_eq_mod_orderOf, ← Int.emod_emod_of_dvd n (Int.coe_nat_dvd.2 orderOf_dvd_card_univ), ← zpow_eq_mod_orderOf] [GOAL] G✝ : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝² : Group G✝ x y : G✝ n : ℕ inst✝¹ : Fintype G✝ G : Type u_6 inst✝ : Group G h : coprime (Nat.card G) n g : G ⊢ (fun g => g ^ gcdB (Nat.card G) n) ((fun g => g ^ n) g) = g [PROOFSTEP] have key := congr_arg ((· ^ ·) g) ((Nat.card G).gcd_eq_gcd_ab n) [GOAL] G✝ : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝² : Group G✝ x y : G✝ n : ℕ inst✝¹ : Fintype G✝ G : Type u_6 inst✝ : Group G h : coprime (Nat.card G) n g : G key : (fun x x_1 => x ^ x_1) g ↑(gcd (Nat.card G) n) = (fun x x_1 => x ^ x_1) g (↑(Nat.card G) * gcdA (Nat.card G) n + ↑n * gcdB (Nat.card G) n) ⊢ (fun g => g ^ gcdB (Nat.card G) n) ((fun g => g ^ n) g) = g [PROOFSTEP] dsimp only at key [GOAL] G✝ : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝² : Group G✝ x y : G✝ n : ℕ inst✝¹ : Fintype G✝ G : Type u_6 inst✝ : Group G h : coprime (Nat.card G) n g : G key : g ^ ↑(gcd (Nat.card G) n) = g ^ (↑(Nat.card G) * gcdA (Nat.card G) n + ↑n * gcdB (Nat.card G) n) ⊢ (fun g => g ^ gcdB (Nat.card G) n) ((fun g => g ^ n) g) = g [PROOFSTEP] rwa [zpow_add, zpow_mul, zpow_mul, zpow_ofNat, zpow_ofNat, zpow_ofNat, h.gcd_eq_one, pow_one, pow_card_eq_one', one_zpow, one_mul, eq_comm] at key [GOAL] G✝ : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝² : Group G✝ x y : G✝ n : ℕ inst✝¹ : Fintype G✝ G : Type u_6 inst✝ : Group G h : coprime (Nat.card G) n g : G ⊢ (fun g => g ^ n) ((fun g => g ^ gcdB (Nat.card G) n) g) = g [PROOFSTEP] have key := congr_arg ((· ^ ·) g) ((Nat.card G).gcd_eq_gcd_ab n) [GOAL] G✝ : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝² : Group G✝ x y : G✝ n : ℕ inst✝¹ : Fintype G✝ G : Type u_6 inst✝ : Group G h : coprime (Nat.card G) n g : G key : (fun x x_1 => x ^ x_1) g ↑(gcd (Nat.card G) n) = (fun x x_1 => x ^ x_1) g (↑(Nat.card G) * gcdA (Nat.card G) n + ↑n * gcdB (Nat.card G) n) ⊢ (fun g => g ^ n) ((fun g => g ^ gcdB (Nat.card G) n) g) = g [PROOFSTEP] dsimp only at key [GOAL] G✝ : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝² : Group G✝ x y : G✝ n : ℕ inst✝¹ : Fintype G✝ G : Type u_6 inst✝ : Group G h : coprime (Nat.card G) n g : G key : g ^ ↑(gcd (Nat.card G) n) = g ^ (↑(Nat.card G) * gcdA (Nat.card G) n + ↑n * gcdB (Nat.card G) n) ⊢ (fun g => g ^ n) ((fun g => g ^ gcdB (Nat.card G) n) g) = g [PROOFSTEP] rwa [zpow_add, zpow_mul, zpow_mul', zpow_ofNat, zpow_ofNat, zpow_ofNat, h.gcd_eq_one, pow_one, pow_card_eq_one', one_zpow, one_mul, eq_comm] at key [GOAL] G✝ : Type u_1 H✝ : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝⁴ : Group G✝ x y : G✝ n : ℕ inst✝³ : Fintype G✝ G : Type u_6 inst✝² : Group G H K : Subgroup G inst✝¹ : Fintype { x // x ∈ H } inst✝ : Fintype { x // x ∈ K } h : coprime (Fintype.card { x // x ∈ H }) (Fintype.card { x // x ∈ K }) ⊢ H ⊓ K = ⊥ [PROOFSTEP] refine' (H ⊓ K).eq_bot_iff_forall.mpr fun x hx => _ [GOAL] G✝ : Type u_1 H✝ : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝⁴ : Group G✝ x✝ y : G✝ n : ℕ inst✝³ : Fintype G✝ G : Type u_6 inst✝² : Group G H K : Subgroup G inst✝¹ : Fintype { x // x ∈ H } inst✝ : Fintype { x // x ∈ K } h : coprime (Fintype.card { x // x ∈ H }) (Fintype.card { x // x ∈ K }) x : G hx : x ∈ H ⊓ K ⊢ x = 1 [PROOFSTEP] rw [← orderOf_eq_one_iff, ← Nat.dvd_one, ← h.gcd_eq_one, Nat.dvd_gcd_iff] [GOAL] G✝ : Type u_1 H✝ : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝⁴ : Group G✝ x✝ y : G✝ n : ℕ inst✝³ : Fintype G✝ G : Type u_6 inst✝² : Group G H K : Subgroup G inst✝¹ : Fintype { x // x ∈ H } inst✝ : Fintype { x // x ∈ K } h : coprime (Fintype.card { x // x ∈ H }) (Fintype.card { x // x ∈ K }) x : G hx : x ∈ H ⊓ K ⊢ orderOf x ∣ Fintype.card { x // x ∈ H } ∧ orderOf x ∣ Fintype.card { x // x ∈ K } [PROOFSTEP] exact ⟨(congr_arg (· ∣ Fintype.card H) (orderOf_subgroup ⟨x, hx.1⟩)).mpr orderOf_dvd_card_univ, (congr_arg (· ∣ Fintype.card K) (orderOf_subgroup ⟨x, hx.2⟩)).mpr orderOf_dvd_card_univ⟩ [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝² : Group G x y : G n : ℕ inst✝¹ : Fintype G inst✝ : DecidableEq G ⊢ Finset.image (fun i => x ^ i) (Finset.range (orderOf x)) = Set.toFinset ↑(zpowers x) [PROOFSTEP] ext x [GOAL] case a G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝² : Group G x✝ y : G n : ℕ inst✝¹ : Fintype G inst✝ : DecidableEq G x : G ⊢ x ∈ Finset.image (fun i => x✝ ^ i) (Finset.range (orderOf x✝)) ↔ x ∈ Set.toFinset ↑(zpowers x✝) [PROOFSTEP] rw [Set.mem_toFinset, SetLike.mem_coe, mem_zpowers_iff_mem_range_orderOf] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Group G x y : G n : ℕ inst✝ : Fintype G h : x ^ gcd n (Fintype.card G) = 1 ⊢ x ^ n = 1 [PROOFSTEP] let ⟨m, hm⟩ := gcd_dvd_left n (Fintype.card G) [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Group G x y : G n : ℕ inst✝ : Fintype G h : x ^ gcd n (Fintype.card G) = 1 m : ℕ hm : n = gcd n (Fintype.card G) * m ⊢ x ^ n = 1 [PROOFSTEP] rw [hm, pow_mul, h, one_pow] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 M : Type u_6 inst✝¹ : LeftCancelMonoid M inst✝ : Fintype M S : Set M hS1 : Set.Nonempty S hS2 : S * S = S a : M ha : a ∈ S ⊢ a ^ (zero + 1) ∈ S [PROOFSTEP] rwa [Nat.zero_eq, zero_add, pow_one] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 M : Type u_6 inst✝¹ : LeftCancelMonoid M inst✝ : Fintype M S : Set M hS1 : Set.Nonempty S hS2 : S * S = S pow_mem : ∀ (a : M), a ∈ S → ∀ (n : ℕ), a ^ (n + 1) ∈ S ⊢ 1 ∈ { carrier := S, mul_mem' := (_ : ∀ {a b : M}, a ∈ S → b ∈ S → a * b ∈ S) }.carrier [PROOFSTEP] obtain ⟨a, ha⟩ := hS1 [GOAL] case intro G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 M : Type u_6 inst✝¹ : LeftCancelMonoid M inst✝ : Fintype M S : Set M hS2 : S * S = S pow_mem : ∀ (a : M), a ∈ S → ∀ (n : ℕ), a ^ (n + 1) ∈ S a : M ha : a ∈ S ⊢ 1 ∈ { carrier := S, mul_mem' := (_ : ∀ {a b : M}, a ∈ S → b ∈ S → a * b ∈ S) }.carrier [PROOFSTEP] rw [← pow_orderOf_eq_one a, ← tsub_add_cancel_of_le (succ_le_of_lt (orderOf_pos a))] [GOAL] case intro G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 M : Type u_6 inst✝¹ : LeftCancelMonoid M inst✝ : Fintype M S : Set M hS2 : S * S = S pow_mem : ∀ (a : M), a ∈ S → ∀ (n : ℕ), a ^ (n + 1) ∈ S a : M ha : a ∈ S ⊢ a ^ (orderOf a - succ 0 + succ 0) ∈ { carrier := S, mul_mem' := (_ : ∀ {a b : M}, a ∈ S → b ∈ S → a * b ∈ S) }.carrier [PROOFSTEP] exact pow_mem a ha (orderOf a - 1) [GOAL] G✝ : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 G : Type u_6 inst✝¹ : Group G inst✝ : Fintype G S : Set G hS1 : Set.Nonempty S hS2 : S * S = S src✝ : Submonoid G := submonoidOfIdempotent S hS1 hS2 a : G ha : a ∈ { toSubsemigroup := { carrier := S, mul_mem' := (_ : ∀ {a b : G}, a ∈ src✝.carrier → b ∈ src✝.carrier → a * b ∈ src✝.carrier) }, one_mem' := (_ : 1 ∈ src✝.carrier) }.toSubsemigroup.carrier ⊢ a⁻¹ ∈ submonoidOfIdempotent S hS1 hS2 [PROOFSTEP] rw [← one_mul a⁻¹, ← pow_one a, ← pow_orderOf_eq_one a, ← pow_sub a (orderOf_pos a)] [GOAL] G✝ : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 G : Type u_6 inst✝¹ : Group G inst✝ : Fintype G S : Set G hS1 : Set.Nonempty S hS2 : S * S = S src✝ : Submonoid G := submonoidOfIdempotent S hS1 hS2 a : G ha : a ∈ { toSubsemigroup := { carrier := S, mul_mem' := (_ : ∀ {a b : G}, a ∈ src✝.carrier → b ∈ src✝.carrier → a * b ∈ src✝.carrier) }, one_mem' := (_ : 1 ∈ src✝.carrier) }.toSubsemigroup.carrier ⊢ a ^ (orderOf a - succ 0) ∈ submonoidOfIdempotent S hS1 hS2 [PROOFSTEP] exact pow_mem ha (orderOf a - 1) [GOAL] G✝ : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 G : Type u_6 inst✝¹ : Group G inst✝ : Fintype G S : Set G hS : Set.Nonempty S ⊢ 1 ∈ S ^ Fintype.card G [PROOFSTEP] obtain ⟨a, ha⟩ := hS [GOAL] case intro G✝ : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 G : Type u_6 inst✝¹ : Group G inst✝ : Fintype G S : Set G a : G ha : a ∈ S ⊢ 1 ∈ S ^ Fintype.card G [PROOFSTEP] rw [← pow_card_eq_one] [GOAL] case intro G✝ : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 G : Type u_6 inst✝¹ : Group G inst✝ : Fintype G S : Set G a : G ha : a ∈ S ⊢ ?m.1815695 ^ Fintype.card G ∈ S ^ Fintype.card G G✝ : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 G : Type u_6 inst✝¹ : Group G inst✝ : Fintype G S : Set G a : G ha : a ∈ S ⊢ G [PROOFSTEP] exact Set.pow_mem_pow ha (Fintype.card G) [GOAL] G✝ : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 G : Type u_6 inst✝¹ : Group G inst✝ : Fintype G S : Set G hS : Set.Nonempty S one_mem : 1 ∈ S ^ Fintype.card G ⊢ S ^ Fintype.card G * S ^ Fintype.card G = S ^ Fintype.card G [PROOFSTEP] classical! [GOAL] G✝ : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 G : Type u_6 inst✝¹ : Group G inst✝ : Fintype G S : Set G hS : Set.Nonempty S one_mem : 1 ∈ S ^ Fintype.card G em✝ : (a : Prop) → Decidable a ⊢ S ^ Fintype.card G * S ^ Fintype.card G = S ^ Fintype.card G [PROOFSTEP] apply (Set.eq_of_subset_of_card_le (Set.subset_mul_left _ one_mem) (ge_of_eq _)).symm [GOAL] G✝ : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 G : Type u_6 inst✝¹ : Group G inst✝ : Fintype G S : Set G hS : Set.Nonempty S one_mem : 1 ∈ S ^ Fintype.card G em✝ : (a : Prop) → Decidable a ⊢ Fintype.card ↑(S ^ Fintype.card G) = Fintype.card ↑(S ^ Fintype.card G * S ^ Fintype.card G) [PROOFSTEP] simp_rw [← pow_add, Group.card_pow_eq_card_pow_card_univ S (Fintype.card G + Fintype.card G) le_add_self] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : LinearOrderedRing G x : G h : |x| ≠ 1 ⊢ orderOf x = 0 [PROOFSTEP] rw [orderOf_eq_zero_iff'] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : LinearOrderedRing G x : G h : |x| ≠ 1 ⊢ ∀ (n : ℕ), 0 < n → x ^ n ≠ 1 [PROOFSTEP] intro n hn hx [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : LinearOrderedRing G x : G h : |x| ≠ 1 n : ℕ hn : 0 < n hx : x ^ n = 1 ⊢ False [PROOFSTEP] replace hx : |x| ^ n = 1 := by simpa only [abs_one, abs_pow] using congr_arg abs hx [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : LinearOrderedRing G x : G h : |x| ≠ 1 n : ℕ hn : 0 < n hx : x ^ n = 1 ⊢ |x| ^ n = 1 [PROOFSTEP] simpa only [abs_one, abs_pow] using congr_arg abs hx [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : LinearOrderedRing G x : G h : |x| ≠ 1 n : ℕ hn : 0 < n hx : |x| ^ n = 1 ⊢ False [PROOFSTEP] cases' h.lt_or_lt with h h [GOAL] case inl G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : LinearOrderedRing G x : G h✝ : |x| ≠ 1 n : ℕ hn : 0 < n hx : |x| ^ n = 1 h : |x| < 1 ⊢ False [PROOFSTEP] exact ((pow_lt_one (abs_nonneg x) h hn.ne').ne hx).elim [GOAL] case inr G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : LinearOrderedRing G x : G h✝ : |x| ≠ 1 n : ℕ hn : 0 < n hx : |x| ^ n = 1 h : 1 < |x| ⊢ False [PROOFSTEP] exact ((one_lt_pow h hn.ne').ne' hx).elim [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : LinearOrderedRing G x : G ⊢ orderOf x ≤ 2 [PROOFSTEP] cases' ne_or_eq |x| 1 with h h [GOAL] case inl G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : LinearOrderedRing G x : G h : |x| ≠ 1 ⊢ orderOf x ≤ 2 [PROOFSTEP] simp [orderOf_abs_ne_one h] [GOAL] case inr G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : LinearOrderedRing G x : G h : |x| = 1 ⊢ orderOf x ≤ 2 [PROOFSTEP] rcases eq_or_eq_neg_of_abs_eq h with (rfl | rfl) [GOAL] case inr.inl G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : LinearOrderedRing G h : |1| = 1 ⊢ orderOf 1 ≤ 2 [PROOFSTEP] simp [GOAL] case inr.inr G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : LinearOrderedRing G h : |(-1)| = 1 ⊢ orderOf (-1) ≤ 2 [PROOFSTEP] apply orderOf_le_of_pow_eq_one [GOAL] case inr.inr.hn G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : LinearOrderedRing G h : |(-1)| = 1 ⊢ 0 < 2 [PROOFSTEP] norm_num [GOAL] case inr.inr.h G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝ : LinearOrderedRing G h : |(-1)| = 1 ⊢ (-1) ^ 2 = 1 [PROOFSTEP] norm_num [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 α : Type u_4 β : Type u_5 inst✝¹ : Monoid α inst✝ : Monoid β x : α × β a : α b : β ⊢ IsOfFinOrder a → IsOfFinOrder b → IsOfFinOrder (a, b) [PROOFSTEP] simpa only [← orderOf_pos_iff, Prod.orderOf] using Nat.lcm_pos
{"mathlib_filename": "Mathlib.GroupTheory.OrderOfElement", "llama_tokens": 42156}
[GOAL] α : Type u β : Type v γ : Type w inst✝¹ : Group α inst✝ : MulAction α β c : α x : β ⊢ c⁻¹ • c • x = x [PROOFSTEP] rw [smul_smul, mul_left_inv, one_smul] [GOAL] α : Type u β : Type v γ : Type w inst✝¹ : Group α inst✝ : MulAction α β c : α x : β ⊢ c • c⁻¹ • x = x [PROOFSTEP] rw [smul_smul, mul_right_inv, one_smul] [GOAL] α : Type u β : Type v γ : Type w inst✝⁴ : Group α inst✝³ : MulAction α β inst✝² : Group β inst✝¹ : SMulCommClass α β β inst✝ : IsScalarTower α β β c : α x : β ⊢ (c • x)⁻¹ = c⁻¹ • x⁻¹ [PROOFSTEP] rw [inv_eq_iff_mul_eq_one, smul_mul_smul, mul_right_inv, mul_right_inv, one_smul] [GOAL] α : Type u β : Type v γ : Type w inst✝⁴ : Group α inst✝³ : MulAction α β inst✝² : Group β inst✝¹ : SMulCommClass α β β inst✝ : IsScalarTower α β β c : α x : β p : ℤ ⊢ (c • x) ^ p = c ^ p • x ^ p [PROOFSTEP] cases p [GOAL] case ofNat α : Type u β : Type v γ : Type w inst✝⁴ : Group α inst✝³ : MulAction α β inst✝² : Group β inst✝¹ : SMulCommClass α β β inst✝ : IsScalarTower α β β c : α x : β a✝ : ℕ ⊢ (c • x) ^ Int.ofNat a✝ = c ^ Int.ofNat a✝ • x ^ Int.ofNat a✝ [PROOFSTEP] simp [smul_pow, smul_inv] [GOAL] case negSucc α : Type u β : Type v γ : Type w inst✝⁴ : Group α inst✝³ : MulAction α β inst✝² : Group β inst✝¹ : SMulCommClass α β β inst✝ : IsScalarTower α β β c : α x : β a✝ : ℕ ⊢ (c • x) ^ Int.negSucc a✝ = c ^ Int.negSucc a✝ • x ^ Int.negSucc a✝ [PROOFSTEP] simp [smul_pow, smul_inv] [GOAL] α : Type u β : Type v γ : Type w inst✝⁴ : Group α inst✝³ : MulAction α β inst✝² : Mul β inst✝¹ : SMulCommClass α β β inst✝ : IsScalarTower α β β a b : β r : α ⊢ Commute (r • a) b ↔ Commute a b [PROOFSTEP] rw [Commute.symm_iff, Commute.smul_right_iff, Commute.symm_iff] [GOAL] α : Type u β : Type v γ : Type w inst✝¹ : GroupWithZero α inst✝ : MulAction α β a✝ a : α ha : a ≠ 0 x y : β h : a⁻¹ • x = y ⊢ x = a • y [PROOFSTEP] rw [← h, smul_inv_smul₀ ha] [GOAL] α : Type u β : Type v γ : Type w inst✝¹ : GroupWithZero α inst✝ : MulAction α β a✝ a : α ha : a ≠ 0 x y : β h : x = a • y ⊢ a⁻¹ • x = y [PROOFSTEP] rw [h, inv_smul_smul₀ ha] [GOAL] α : Type u β : Type v γ : Type w inst✝² : Group α inst✝¹ : AddMonoid β inst✝ : DistribMulAction α β a : α x : β h : a • x = 0 ⊢ x = 0 [PROOFSTEP] rw [← inv_smul_smul a x, h, smul_zero] [GOAL] α : Type u β : Type v γ : Type w G : Type u_1 A : Type u_2 B : Type u_3 inst✝¹ : DivisionMonoid G inst✝ : MulAction G A ⊢ ∀ (b : A → B), 1 • b = b [PROOFSTEP] intro f [GOAL] α : Type u β : Type v γ : Type w G : Type u_1 A : Type u_2 B : Type u_3 inst✝¹ : DivisionMonoid G inst✝ : MulAction G A f : A → B ⊢ 1 • f = f [PROOFSTEP] show (fun x => f ((1 : G)⁻¹ • x)) = f [GOAL] α : Type u β : Type v γ : Type w G : Type u_1 A : Type u_2 B : Type u_3 inst✝¹ : DivisionMonoid G inst✝ : MulAction G A f : A → B ⊢ (fun x => f (1⁻¹ • x)) = f [PROOFSTEP] simp only [inv_one, one_smul] [GOAL] α : Type u β : Type v γ : Type w G : Type u_1 A : Type u_2 B : Type u_3 inst✝¹ : DivisionMonoid G inst✝ : MulAction G A ⊢ ∀ (x y : G) (b : A → B), (x * y) • b = x • y • b [PROOFSTEP] intros x y f [GOAL] α : Type u β : Type v γ : Type w G : Type u_1 A : Type u_2 B : Type u_3 inst✝¹ : DivisionMonoid G inst✝ : MulAction G A x y : G f : A → B ⊢ (x * y) • f = x • y • f [PROOFSTEP] show (fun a => f ((x * y)⁻¹ • a)) = (fun a => f (y⁻¹ • x⁻¹ • a)) [GOAL] α : Type u β : Type v γ : Type w G : Type u_1 A : Type u_2 B : Type u_3 inst✝¹ : DivisionMonoid G inst✝ : MulAction G A x y : G f : A → B ⊢ (fun a => f ((x * y)⁻¹ • a)) = fun a => f (y⁻¹ • x⁻¹ • a) [PROOFSTEP] simp only [mul_smul, mul_inv_rev] [GOAL] α : Type u β : Type v γ : Type w inst✝⁵ : Group α inst✝⁴ : Monoid β inst✝³ : AddGroup β inst✝² : DistribMulAction α β inst✝¹ : IsScalarTower α β β inst✝ : SMulCommClass α β β r : α a : β ⊢ IsUnit (r • 1 - a) ↔ IsUnit (1 - r⁻¹ • a) [PROOFSTEP] rw [← isUnit_smul_iff r (1 - r⁻¹ • a), smul_sub, smul_inv_smul]
{"mathlib_filename": "Mathlib.GroupTheory.GroupAction.Group", "llama_tokens": 2082}
[GOAL] α : Type u β : Type v γ : Type w inst✝² : Group α inst✝¹ : Monoid β inst✝ : MulAction β α H : Subgroup α x✝³ x✝² x✝¹ : α x✝ : x✝²⁻¹ * x✝¹ ∈ H ⊢ (x✝³ • x✝²)⁻¹ * x✝³ • x✝¹ ∈ H [PROOFSTEP] rwa [smul_eq_mul, smul_eq_mul, mul_inv_rev, mul_assoc, inv_mul_cancel_left] [GOAL] α : Type u β : Type v γ : Type w inst✝² : Group α inst✝¹ : Monoid β inst✝ : MulAction β α H : Subgroup α b : { x // x ∈ ↑opposite (normalizer H) } c x✝¹ : α x✝ : c⁻¹ * x✝¹ ∈ H ⊢ (b • c)⁻¹ * b • x✝¹ ∈ H [PROOFSTEP] rwa [smul_def, smul_def, smul_eq_mul_unop, smul_eq_mul_unop, mul_inv_rev, ← mul_assoc, mem_normalizer_iff'.mp b.prop, mul_assoc, mul_inv_cancel_left] [GOAL] α : Type u β : Type v γ : Type w inst✝² : Group α inst✝¹ : Monoid β inst✝ : MulAction β α H : Subgroup α hH : Normal H x✝³ : αᵐᵒᵖ x✝² x✝¹ : α x✝ : x✝²⁻¹ * x✝¹ ∈ H ⊢ (x✝³ • x✝²)⁻¹ * x✝³ • x✝¹ ∈ H [PROOFSTEP] rwa [smul_eq_mul_unop, smul_eq_mul_unop, mul_inv_rev, mul_assoc, hH.mem_comm_iff, mul_assoc, mul_inv_cancel_right] [GOAL] α : Type u β : Type v γ : Type w inst✝³ : Group α inst✝² : Monoid β inst✝¹ : MulAction β α H : Subgroup α inst✝ : QuotientAction β H b : β q : α ⧸ H ⊢ ↑(b • Quotient.out' q) = b • q [PROOFSTEP] rw [← Quotient.smul_mk, QuotientGroup.out_eq'] [GOAL] α : Type u β : Type v γ : Type w inst✝² : Group α inst✝¹ : Monoid β inst✝ : MulAction β α H : Subgroup α a : α q : α ⧸ H ⊢ (Quotient.out' q)⁻¹ * a ^ minimalPeriod ((fun x x_1 => x • x_1) a) q * Quotient.out' q ∈ H [PROOFSTEP] rw [mul_assoc, ← QuotientGroup.eq', QuotientGroup.out_eq', ← smul_eq_mul, Quotient.mk_smul_out', eq_comm, pow_smul_eq_iff_minimalPeriod_dvd] [GOAL] α : Type u β : Type v γ : Type w inst✝² inst✝¹ : Group α inst✝ : MulAction α β x : β g : α ⧸ stabilizer α x g1 g2 : α H : Setoid.r g1 g2 ⊢ g1 • (g1⁻¹ * g2) • x = g2 • x [PROOFSTEP] rw [smul_smul, mul_inv_cancel_left] [GOAL] α : Type u β : Type v γ : Type w inst✝² inst✝¹ : Group α inst✝ : MulAction α β x : β y₁ y₂ : α ⧸ stabilizer α x g₁ g₂ : α H : g₁ • x = g₂ • x ⊢ Setoid.r g₁ g₂ [PROOFSTEP] rw [leftRel_apply] [GOAL] α : Type u β : Type v γ : Type w inst✝² inst✝¹ : Group α inst✝ : MulAction α β x : β y₁ y₂ : α ⧸ stabilizer α x g₁ g₂ : α H : g₁ • x = g₂ • x ⊢ g₁⁻¹ * g₂ ∈ stabilizer α x [PROOFSTEP] show (g₁⁻¹ * g₂) • x = x [GOAL] α : Type u β : Type v γ : Type w inst✝² inst✝¹ : Group α inst✝ : MulAction α β x : β y₁ y₂ : α ⧸ stabilizer α x g₁ g₂ : α H : g₁ • x = g₂ • x ⊢ (g₁⁻¹ * g₂) • x = x [PROOFSTEP] rw [mul_smul, ← H, inv_smul_smul] [GOAL] α : Type u β : Type v γ : Type w inst✝² inst✝¹ : Group α inst✝ : MulAction α β x✝ b : β x y : α ⧸ stabilizer α b hxy : (fun g => { val := ofQuotientStabilizer α b g, property := (_ : ofQuotientStabilizer α b g ∈ orbit α b) }) x = (fun g => { val := ofQuotientStabilizer α b g, property := (_ : ofQuotientStabilizer α b g ∈ orbit α b) }) y ⊢ ofQuotientStabilizer α b x = ofQuotientStabilizer α b y [PROOFSTEP] convert congr_arg Subtype.val hxy [GOAL] α : Type u β : Type v γ : Type w inst✝⁵ inst✝⁴ : Group α inst✝³ : MulAction α β x b : β inst✝² : Fintype α inst✝¹ : Fintype ↑(orbit α b) inst✝ : Fintype { x // x ∈ stabilizer α b } ⊢ Fintype.card ↑(orbit α b) * Fintype.card { x // x ∈ stabilizer α b } = Fintype.card α [PROOFSTEP] rw [← Fintype.card_prod, Fintype.card_congr (orbitProdStabilizerEquivGroup α b)] [GOAL] α : Type u β : Type v γ : Type w inst✝³ inst✝² : Group α inst✝¹ : MulAction α β x : β G : Type u_1 inst✝ : Group G H : Subgroup G ⊢ stabilizer G ↑1 = H [PROOFSTEP] ext [GOAL] case h α : Type u β : Type v γ : Type w inst✝³ inst✝² : Group α inst✝¹ : MulAction α β x : β G : Type u_1 inst✝ : Group G H : Subgroup G x✝ : G ⊢ x✝ ∈ stabilizer G ↑1 ↔ x✝ ∈ H [PROOFSTEP] simp [QuotientGroup.eq] [GOAL] α : Type u β : Type v γ : Type w inst✝⁶ inst✝⁵ : Group α inst✝⁴ : MulAction α β x : β inst✝³ : Fintype α inst✝² : Fintype β inst✝¹ : Fintype (Quotient (orbitRel α β)) inst✝ : (b : β) → Fintype { x // x ∈ stabilizer α b } φ : Quotient (orbitRel α β) → β hφ : LeftInverse Quotient.mk'' φ ⊢ Fintype.card β = ∑ ω : Quotient (orbitRel α β), Fintype.card α / Fintype.card { x // x ∈ stabilizer α (φ ω) } [PROOFSTEP] classical have : ∀ ω : Ω, Fintype.card α / Fintype.card (stabilizer α (φ ω)) = Fintype.card (α ⧸ stabilizer α (φ ω)) := by intro ω rw [Fintype.card_congr (@Subgroup.groupEquivQuotientProdSubgroup α _ (stabilizer α <| φ ω)), Fintype.card_prod, Nat.mul_div_cancel] exact Fintype.card_pos_iff.mpr (by infer_instance) simp_rw [this, ← Fintype.card_sigma, Fintype.card_congr (selfEquivSigmaOrbitsQuotientStabilizer' α β hφ)] [GOAL] α : Type u β : Type v γ : Type w inst✝⁶ inst✝⁵ : Group α inst✝⁴ : MulAction α β x : β inst✝³ : Fintype α inst✝² : Fintype β inst✝¹ : Fintype (Quotient (orbitRel α β)) inst✝ : (b : β) → Fintype { x // x ∈ stabilizer α b } φ : Quotient (orbitRel α β) → β hφ : LeftInverse Quotient.mk'' φ ⊢ Fintype.card β = ∑ ω : Quotient (orbitRel α β), Fintype.card α / Fintype.card { x // x ∈ stabilizer α (φ ω) } [PROOFSTEP] have : ∀ ω : Ω, Fintype.card α / Fintype.card (stabilizer α (φ ω)) = Fintype.card (α ⧸ stabilizer α (φ ω)) := by intro ω rw [Fintype.card_congr (@Subgroup.groupEquivQuotientProdSubgroup α _ (stabilizer α <| φ ω)), Fintype.card_prod, Nat.mul_div_cancel] exact Fintype.card_pos_iff.mpr (by infer_instance) [GOAL] α : Type u β : Type v γ : Type w inst✝⁶ inst✝⁵ : Group α inst✝⁴ : MulAction α β x : β inst✝³ : Fintype α inst✝² : Fintype β inst✝¹ : Fintype (Quotient (orbitRel α β)) inst✝ : (b : β) → Fintype { x // x ∈ stabilizer α b } φ : Quotient (orbitRel α β) → β hφ : LeftInverse Quotient.mk'' φ ⊢ ∀ (ω : Quotient (orbitRel α β)), Fintype.card α / Fintype.card { x // x ∈ stabilizer α (φ ω) } = Fintype.card (α ⧸ stabilizer α (φ ω)) [PROOFSTEP] intro ω [GOAL] α : Type u β : Type v γ : Type w inst✝⁶ inst✝⁵ : Group α inst✝⁴ : MulAction α β x : β inst✝³ : Fintype α inst✝² : Fintype β inst✝¹ : Fintype (Quotient (orbitRel α β)) inst✝ : (b : β) → Fintype { x // x ∈ stabilizer α b } φ : Quotient (orbitRel α β) → β hφ : LeftInverse Quotient.mk'' φ ω : Quotient (orbitRel α β) ⊢ Fintype.card α / Fintype.card { x // x ∈ stabilizer α (φ ω) } = Fintype.card (α ⧸ stabilizer α (φ ω)) [PROOFSTEP] rw [Fintype.card_congr (@Subgroup.groupEquivQuotientProdSubgroup α _ (stabilizer α <| φ ω)), Fintype.card_prod, Nat.mul_div_cancel] [GOAL] case H α : Type u β : Type v γ : Type w inst✝⁶ inst✝⁵ : Group α inst✝⁴ : MulAction α β x : β inst✝³ : Fintype α inst✝² : Fintype β inst✝¹ : Fintype (Quotient (orbitRel α β)) inst✝ : (b : β) → Fintype { x // x ∈ stabilizer α b } φ : Quotient (orbitRel α β) → β hφ : LeftInverse Quotient.mk'' φ ω : Quotient (orbitRel α β) ⊢ 0 < Fintype.card { x // x ∈ stabilizer α (φ ω) } [PROOFSTEP] exact Fintype.card_pos_iff.mpr (by infer_instance) [GOAL] α : Type u β : Type v γ : Type w inst✝⁶ inst✝⁵ : Group α inst✝⁴ : MulAction α β x : β inst✝³ : Fintype α inst✝² : Fintype β inst✝¹ : Fintype (Quotient (orbitRel α β)) inst✝ : (b : β) → Fintype { x // x ∈ stabilizer α b } φ : Quotient (orbitRel α β) → β hφ : LeftInverse Quotient.mk'' φ ω : Quotient (orbitRel α β) ⊢ Nonempty { x // x ∈ stabilizer α (φ ω) } [PROOFSTEP] infer_instance [GOAL] α : Type u β : Type v γ : Type w inst✝⁶ inst✝⁵ : Group α inst✝⁴ : MulAction α β x : β inst✝³ : Fintype α inst✝² : Fintype β inst✝¹ : Fintype (Quotient (orbitRel α β)) inst✝ : (b : β) → Fintype { x // x ∈ stabilizer α b } φ : Quotient (orbitRel α β) → β hφ : LeftInverse Quotient.mk'' φ this : ∀ (ω : Quotient (orbitRel α β)), Fintype.card α / Fintype.card { x // x ∈ stabilizer α (φ ω) } = Fintype.card (α ⧸ stabilizer α (φ ω)) ⊢ Fintype.card β = ∑ ω : Quotient (orbitRel α β), Fintype.card α / Fintype.card { x // x ∈ stabilizer α (φ ω) } [PROOFSTEP] simp_rw [this, ← Fintype.card_sigma, Fintype.card_congr (selfEquivSigmaOrbitsQuotientStabilizer' α β hφ)] [GOAL] α : Type u β : Type v γ : Type w inst✝⁵ inst✝⁴ : Group α inst✝³ : MulAction α β x : β inst✝² : Fintype α inst✝¹ : (a : α) → Fintype ↑(fixedBy α β a) inst✝ : Fintype (Quotient (orbitRel α β)) ⊢ ∑ a : α, Fintype.card ↑(fixedBy α β a) = Fintype.card (Quotient (orbitRel α β)) * Fintype.card α [PROOFSTEP] rw [← Fintype.card_prod, ← Fintype.card_sigma, Fintype.card_congr (sigmaFixedByEquivOrbitsProdGroup α β)] [GOAL] α : Type u β : Type v γ : Type w inst✝³ inst✝² : Group α inst✝¹ : MulAction α β x : β G : Type ?u.117012 inst✝ : Group G H : Subgroup G ⊢ ∀ (x y : G ⧸ H), ∃ g, g • x = y [PROOFSTEP] { rintro ⟨x⟩ ⟨y⟩ refine' ⟨y * x⁻¹, QuotientGroup.eq.mpr _⟩ simp only [smul_eq_mul, H.one_mem, mul_left_inv, inv_mul_cancel_right] } [GOAL] α : Type u β : Type v γ : Type w inst✝³ inst✝² : Group α inst✝¹ : MulAction α β x : β G : Type ?u.117012 inst✝ : Group G H : Subgroup G ⊢ ∀ (x y : G ⧸ H), ∃ g, g • x = y [PROOFSTEP] rintro ⟨x⟩ ⟨y⟩ [GOAL] case mk.mk α : Type u β : Type v γ : Type w inst✝³ inst✝² : Group α inst✝¹ : MulAction α β x✝¹ : β G : Type ?u.117012 inst✝ : Group G H : Subgroup G x✝ : G ⧸ H x : G y✝ : G ⧸ H y : G ⊢ ∃ g, g • Quot.mk Setoid.r x = Quot.mk Setoid.r y [PROOFSTEP] refine' ⟨y * x⁻¹, QuotientGroup.eq.mpr _⟩ [GOAL] case mk.mk α : Type u β : Type v γ : Type w inst✝³ inst✝² : Group α inst✝¹ : MulAction α β x✝¹ : β G : Type ?u.117012 inst✝ : Group G H : Subgroup G x✝ : G ⧸ H x : G y✝ : G ⧸ H y : G ⊢ ((fun x x_1 => x • x_1) (y * x⁻¹) x)⁻¹ * y ∈ H [PROOFSTEP] simp only [smul_eq_mul, H.one_mem, mul_left_inv, inv_mul_cancel_right] [GOAL] α : Type u β : Type v γ : Type w G : Type u_1 inst✝³ : Group G inst✝² : Fintype G g : G inst✝¹ : Fintype ↑(carrier (ConjClasses.mk g)) inst✝ : Fintype { x // x ∈ MulAction.stabilizer (ConjAct G) g } ⊢ Fintype.card ↑(carrier (ConjClasses.mk g)) = Fintype.card G / Fintype.card { x // x ∈ MulAction.stabilizer (ConjAct G) g } [PROOFSTEP] classical rw [Fintype.card_congr <| ConjAct.toConjAct (G := G) |>.toEquiv] rw [← MulAction.card_orbit_mul_card_stabilizer_eq_card_group (ConjAct G) g, Nat.mul_div_cancel] simp_rw [ConjAct.orbit_eq_carrier_conjClasses] exact Fintype.card_pos_iff.mpr inferInstance [GOAL] α : Type u β : Type v γ : Type w G : Type u_1 inst✝³ : Group G inst✝² : Fintype G g : G inst✝¹ : Fintype ↑(carrier (ConjClasses.mk g)) inst✝ : Fintype { x // x ∈ MulAction.stabilizer (ConjAct G) g } ⊢ Fintype.card ↑(carrier (ConjClasses.mk g)) = Fintype.card G / Fintype.card { x // x ∈ MulAction.stabilizer (ConjAct G) g } [PROOFSTEP] rw [Fintype.card_congr <| ConjAct.toConjAct (G := G) |>.toEquiv] [GOAL] α : Type u β : Type v γ : Type w G : Type u_1 inst✝³ : Group G inst✝² : Fintype G g : G inst✝¹ : Fintype ↑(carrier (ConjClasses.mk g)) inst✝ : Fintype { x // x ∈ MulAction.stabilizer (ConjAct G) g } ⊢ Fintype.card ↑(carrier (ConjClasses.mk g)) = Fintype.card (ConjAct G) / Fintype.card { x // x ∈ MulAction.stabilizer (ConjAct G) g } [PROOFSTEP] rw [← MulAction.card_orbit_mul_card_stabilizer_eq_card_group (ConjAct G) g, Nat.mul_div_cancel] [GOAL] α : Type u β : Type v γ : Type w G : Type u_1 inst✝³ : Group G inst✝² : Fintype G g : G inst✝¹ : Fintype ↑(carrier (ConjClasses.mk g)) inst✝ : Fintype { x // x ∈ MulAction.stabilizer (ConjAct G) g } ⊢ Fintype.card ↑(carrier (ConjClasses.mk g)) = Fintype.card ↑(MulAction.orbit (ConjAct G) g) case H α : Type u β : Type v γ : Type w G : Type u_1 inst✝³ : Group G inst✝² : Fintype G g : G inst✝¹ : Fintype ↑(carrier (ConjClasses.mk g)) inst✝ : Fintype { x // x ∈ MulAction.stabilizer (ConjAct G) g } ⊢ 0 < Fintype.card { x // x ∈ MulAction.stabilizer (ConjAct G) g } [PROOFSTEP] simp_rw [ConjAct.orbit_eq_carrier_conjClasses] [GOAL] case H α : Type u β : Type v γ : Type w G : Type u_1 inst✝³ : Group G inst✝² : Fintype G g : G inst✝¹ : Fintype ↑(carrier (ConjClasses.mk g)) inst✝ : Fintype { x // x ∈ MulAction.stabilizer (ConjAct G) g } ⊢ 0 < Fintype.card { x // x ∈ MulAction.stabilizer (ConjAct G) g } [PROOFSTEP] exact Fintype.card_pos_iff.mpr inferInstance [GOAL] α : Type u β : Type v γ : Type w G : Type u_1 inst✝ : Group G H : Subgroup G ⊢ normalCore H = MonoidHom.ker (MulAction.toPermHom G (G ⧸ H)) [PROOFSTEP] apply le_antisymm [GOAL] case a α : Type u β : Type v γ : Type w G : Type u_1 inst✝ : Group G H : Subgroup G ⊢ normalCore H ≤ MonoidHom.ker (MulAction.toPermHom G (G ⧸ H)) [PROOFSTEP] intro g hg [GOAL] case a α : Type u β : Type v γ : Type w G : Type u_1 inst✝ : Group G H : Subgroup G g : G hg : g ∈ normalCore H ⊢ g ∈ MonoidHom.ker (MulAction.toPermHom G (G ⧸ H)) [PROOFSTEP] apply Equiv.Perm.ext [GOAL] case a.H α : Type u β : Type v γ : Type w G : Type u_1 inst✝ : Group G H : Subgroup G g : G hg : g ∈ normalCore H ⊢ ∀ (x : G ⧸ H), ↑(↑(MulAction.toPermHom G (G ⧸ H)) g) x = ↑1 x [PROOFSTEP] refine' fun q ↦ QuotientGroup.induction_on q _ [GOAL] case a.H α : Type u β : Type v γ : Type w G : Type u_1 inst✝ : Group G H : Subgroup G g : G hg : g ∈ normalCore H q : G ⧸ H ⊢ ∀ (z : G), ↑(↑(MulAction.toPermHom G (G ⧸ H)) g) ↑z = ↑1 ↑z [PROOFSTEP] refine' fun g' => (MulAction.Quotient.smul_mk H g g').trans (QuotientGroup.eq.mpr _) [GOAL] case a.H α : Type u β : Type v γ : Type w G : Type u_1 inst✝ : Group G H : Subgroup G g : G hg : g ∈ normalCore H q : G ⧸ H g' : G ⊢ (g • g')⁻¹ * g' ∈ H [PROOFSTEP] rw [smul_eq_mul, mul_inv_rev, ← inv_inv g', inv_inv] [GOAL] case a.H α : Type u β : Type v γ : Type w G : Type u_1 inst✝ : Group G H : Subgroup G g : G hg : g ∈ normalCore H q : G ⧸ H g' : G ⊢ g'⁻¹ * g⁻¹ * g'⁻¹⁻¹ ∈ H [PROOFSTEP] exact H.normalCore.inv_mem hg g'⁻¹ [GOAL] case a α : Type u β : Type v γ : Type w G : Type u_1 inst✝ : Group G H : Subgroup G ⊢ MonoidHom.ker (MulAction.toPermHom G (G ⧸ H)) ≤ normalCore H [PROOFSTEP] refine' (Subgroup.normal_le_normalCore.mpr fun g hg => _) [GOAL] case a α : Type u β : Type v γ : Type w G : Type u_1 inst✝ : Group G H : Subgroup G g : G hg : g ∈ MonoidHom.ker (MulAction.toPermHom G (G ⧸ H)) ⊢ g ∈ H [PROOFSTEP] rw [← H.inv_mem_iff, ← mul_one g⁻¹, ← QuotientGroup.eq, ← mul_one g] [GOAL] case a α : Type u β : Type v γ : Type w G : Type u_1 inst✝ : Group G H : Subgroup G g : G hg : g ∈ MonoidHom.ker (MulAction.toPermHom G (G ⧸ H)) ⊢ ↑(g * 1) = ↑1 [PROOFSTEP] exact (MulAction.Quotient.smul_mk H g 1).symm.trans (Equiv.Perm.ext_iff.mp hg (1 : G)) [GOAL] α : Type u β : Type v γ : Type w G : Type u_1 inst✝ : Group G ⊢ Nat.card { p // Commute p.fst p.snd } = Nat.card (ConjClasses G) * Nat.card G [PROOFSTEP] classical rcases fintypeOrInfinite G; swap · rw [mul_comm, Nat.card_eq_zero_of_infinite, Nat.card_eq_zero_of_infinite, zero_mul] simp only [Nat.card_eq_fintype_card] -- Porting note: Changed `calc` proof into a `rw` proof. rw [card_congr (Equiv.subtypeProdEquivSigmaSubtype Commute), card_sigma, sum_equiv ConjAct.toConjAct.toEquiv (fun a ↦ card { b // Commute a b }) (fun g ↦ card (MulAction.fixedBy (ConjAct G) G g)) fun g ↦ card_congr' <| congr_arg _ <| funext fun h ↦ mul_inv_eq_iff_eq_mul.symm.to_eq, MulAction.sum_card_fixedBy_eq_card_orbits_mul_card_group] congr 1; apply card_congr'; congr; ext; exact (Setoid.comm' _).trans isConj_iff.symm [GOAL] α : Type u β : Type v γ : Type w G : Type u_1 inst✝ : Group G ⊢ Nat.card { p // Commute p.fst p.snd } = Nat.card (ConjClasses G) * Nat.card G [PROOFSTEP] rcases fintypeOrInfinite G [GOAL] case inl α : Type u β : Type v γ : Type w G : Type u_1 inst✝ : Group G val✝ : Fintype G ⊢ Nat.card { p // Commute p.fst p.snd } = Nat.card (ConjClasses G) * Nat.card G case inr α : Type u β : Type v γ : Type w G : Type u_1 inst✝ : Group G val✝ : Infinite G ⊢ Nat.card { p // Commute p.fst p.snd } = Nat.card (ConjClasses G) * Nat.card G [PROOFSTEP] swap [GOAL] case inr α : Type u β : Type v γ : Type w G : Type u_1 inst✝ : Group G val✝ : Infinite G ⊢ Nat.card { p // Commute p.fst p.snd } = Nat.card (ConjClasses G) * Nat.card G [PROOFSTEP] rw [mul_comm, Nat.card_eq_zero_of_infinite, Nat.card_eq_zero_of_infinite, zero_mul] [GOAL] case inl α : Type u β : Type v γ : Type w G : Type u_1 inst✝ : Group G val✝ : Fintype G ⊢ Nat.card { p // Commute p.fst p.snd } = Nat.card (ConjClasses G) * Nat.card G [PROOFSTEP] simp only [Nat.card_eq_fintype_card] -- Porting note: Changed `calc` proof into a `rw` proof. [GOAL] case inl α : Type u β : Type v γ : Type w G : Type u_1 inst✝ : Group G val✝ : Fintype G ⊢ card { p // Commute p.fst p.snd } = card (ConjClasses G) * card G [PROOFSTEP] rw [card_congr (Equiv.subtypeProdEquivSigmaSubtype Commute), card_sigma, sum_equiv ConjAct.toConjAct.toEquiv (fun a ↦ card { b // Commute a b }) (fun g ↦ card (MulAction.fixedBy (ConjAct G) G g)) fun g ↦ card_congr' <| congr_arg _ <| funext fun h ↦ mul_inv_eq_iff_eq_mul.symm.to_eq, MulAction.sum_card_fixedBy_eq_card_orbits_mul_card_group] [GOAL] case inl α : Type u β : Type v γ : Type w G : Type u_1 inst✝ : Group G val✝ : Fintype G ⊢ card (Quotient (MulAction.orbitRel (ConjAct G) G)) * card (ConjAct G) = card (ConjClasses G) * card G [PROOFSTEP] congr 1 [GOAL] case inl.e_a α : Type u β : Type v γ : Type w G : Type u_1 inst✝ : Group G val✝ : Fintype G ⊢ card (Quotient (MulAction.orbitRel (ConjAct G) G)) = card (ConjClasses G) [PROOFSTEP] apply card_congr' [GOAL] case inl.e_a.h α : Type u β : Type v γ : Type w G : Type u_1 inst✝ : Group G val✝ : Fintype G ⊢ Quotient (MulAction.orbitRel (ConjAct G) G) = ConjClasses G [PROOFSTEP] congr [GOAL] case inl.e_a.h.e_s α : Type u β : Type v γ : Type w G : Type u_1 inst✝ : Group G val✝ : Fintype G ⊢ MulAction.orbitRel (ConjAct G) G = IsConj.setoid G [PROOFSTEP] ext [GOAL] case inl.e_a.h.e_s.H α : Type u β : Type v γ : Type w G : Type u_1 inst✝ : Group G val✝ : Fintype G a✝ b✝ : G ⊢ Setoid.Rel (MulAction.orbitRel (ConjAct G) G) a✝ b✝ ↔ Setoid.Rel (IsConj.setoid G) a✝ b✝ [PROOFSTEP] exact (Setoid.comm' _).trans isConj_iff.symm
{"mathlib_filename": "Mathlib.GroupTheory.GroupAction.Quotient", "llama_tokens": 8850}
[GOAL] S✝ : Type u' T : Type u'' R✝ : Type u M✝ : Type v inst✝⁵ : SMul R✝ M✝ inst✝⁴ : SetLike S✝ M✝ hS : SMulMemClass S✝ R✝ M✝ s : S✝ R : Type u_1 M : Type u_2 S : Type u_3 inst✝³ : Monoid R inst✝² : MulAction R M inst✝¹ : SetLike S M inst✝ : SMulMemClass S R M N : S x : M h : ∀ (a : R), a • x ∈ N ⊢ x ∈ N [PROOFSTEP] simpa using h 1 [GOAL] S : Type u' T : Type u'' R : Type u M : Type v inst✝ : SMul R M p q : SubMulAction R M h : p.carrier = q.carrier ⊢ p = q [PROOFSTEP] cases p [GOAL] case mk S : Type u' T : Type u'' R : Type u M : Type v inst✝ : SMul R M q : SubMulAction R M carrier✝ : Set M smul_mem'✝ : ∀ (c : R) {x : M}, x ∈ carrier✝ → c • x ∈ carrier✝ h : { carrier := carrier✝, smul_mem' := smul_mem'✝ }.carrier = q.carrier ⊢ { carrier := carrier✝, smul_mem' := smul_mem'✝ } = q [PROOFSTEP] cases q [GOAL] case mk.mk S : Type u' T : Type u'' R : Type u M : Type v inst✝ : SMul R M carrier✝¹ : Set M smul_mem'✝¹ : ∀ (c : R) {x : M}, x ∈ carrier✝¹ → c • x ∈ carrier✝¹ carrier✝ : Set M smul_mem'✝ : ∀ (c : R) {x : M}, x ∈ carrier✝ → c • x ∈ carrier✝ h : { carrier := carrier✝¹, smul_mem' := smul_mem'✝¹ }.carrier = { carrier := carrier✝, smul_mem' := smul_mem'✝ }.carrier ⊢ { carrier := carrier✝¹, smul_mem' := smul_mem'✝¹ } = { carrier := carrier✝, smul_mem' := smul_mem'✝ } [PROOFSTEP] congr [GOAL] S : Type u' T : Type u'' R : Type u M : Type v inst✝ : SMul R M p : SubMulAction R M r : R x : M ⊢ { x // x ∈ p } →[R] M [PROOFSTEP] refine' { toFun := Subtype.val .. } [GOAL] S : Type u' T : Type u'' R : Type u M : Type v inst✝ : SMul R M p : SubMulAction R M r : R x : M ⊢ ∀ (m : R) (x : { x // x ∈ p }), ↑(m • x) = m • ↑x [PROOFSTEP] simp [val_smul] [GOAL] S : Type u' T : Type u'' R : Type u M : Type v inst✝⁴ : Monoid R inst✝³ : MulAction R M inst✝² : SMul S R inst✝¹ : SMul S M inst✝ : IsScalarTower S R M p : SubMulAction R M s : S x : M h : x ∈ p ⊢ s • x ∈ p [PROOFSTEP] rw [← one_smul R x, ← smul_assoc] [GOAL] S : Type u' T : Type u'' R : Type u M : Type v inst✝⁴ : Monoid R inst✝³ : MulAction R M inst✝² : SMul S R inst✝¹ : SMul S M inst✝ : IsScalarTower S R M p : SubMulAction R M s : S x : M h : x ∈ p ⊢ (s • 1) • x ∈ p [PROOFSTEP] exact p.smul_mem _ h [GOAL] S : Type u' T : Type u'' R : Type u M : Type v inst✝¹ : Monoid R inst✝ : MulAction R M p : SubMulAction R M m : { x // x ∈ p } ⊢ MulAction.Stabilizer.submonoid R m = MulAction.Stabilizer.submonoid R ↑m [PROOFSTEP] ext [GOAL] case h S : Type u' T : Type u'' R : Type u M : Type v inst✝¹ : Monoid R inst✝ : MulAction R M p : SubMulAction R M m : { x // x ∈ p } x✝ : R ⊢ x✝ ∈ MulAction.Stabilizer.submonoid R m ↔ x✝ ∈ MulAction.Stabilizer.submonoid R ↑m [PROOFSTEP] simp only [MulAction.mem_stabilizer_submonoid_iff, ← SubMulAction.val_smul, SetLike.coe_eq_coe] [GOAL] S : Type u' T : Type u'' R : Type u M : Type v inst✝¹ : Group R inst✝ : MulAction R M p : SubMulAction R M m : { x // x ∈ p } ⊢ MulAction.stabilizer R m = MulAction.stabilizer R ↑m [PROOFSTEP] rw [← Subgroup.toSubmonoid_eq] [GOAL] S : Type u' T : Type u'' R : Type u M : Type v inst✝¹ : Group R inst✝ : MulAction R M p : SubMulAction R M m : { x // x ∈ p } ⊢ (MulAction.stabilizer R m).toSubmonoid = (MulAction.stabilizer R ↑m).toSubmonoid [PROOFSTEP] exact stabilizer_of_subMul.submonoid m [GOAL] S : Type u' T : Type u'' R : Type u M : Type v inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M p p' : SubMulAction R M r : R x y : M hx : x ∈ p ⊢ -x ∈ p [PROOFSTEP] rw [← neg_one_smul R] [GOAL] S : Type u' T : Type u'' R : Type u M : Type v inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M p p' : SubMulAction R M r : R x y : M hx : x ∈ p ⊢ -1 • x ∈ p [PROOFSTEP] exact p.smul_mem _ hx [GOAL] S : Type u' T : Type u'' R : Type u M : Type v inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M p p' : SubMulAction R M r : R x y : M h : -x ∈ p ⊢ x ∈ p [PROOFSTEP] rw [← neg_neg x] [GOAL] S : Type u' T : Type u'' R : Type u M : Type v inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M p p' : SubMulAction R M r : R x y : M h : -x ∈ p ⊢ - -x ∈ p [PROOFSTEP] exact neg_mem _ h
{"mathlib_filename": "Mathlib.GroupTheory.GroupAction.SubMulAction", "llama_tokens": 2153}
{"mathlib_filename": "Mathlib.GroupTheory.Submonoid.Centralizer", "llama_tokens": 0}
[GOAL] M : Type u_1 inst✝ : Monoid M ⊢ SMulCommClass { x // x ∈ center M } { x // x ∈ center M } M [PROOFSTEP] infer_instance
{"mathlib_filename": "Mathlib.GroupTheory.Submonoid.Center", "llama_tokens": 58}
[GOAL] α : Type u β : Type v inst✝ : AddCommGroup β f : α → β x : α ⊢ ↑(↑lift f) (of x) = f x [PROOFSTEP] convert Abelianization.lift.of (FreeGroup.lift f (β := Multiplicative β)) (FreeGroup.of x) using 1 [GOAL] case h.e'_3.h α : Type u β : Type v inst✝ : AddCommGroup β f : α → β x : α e_1✝ : (fun x => β) (of x) = (fun x => Multiplicative β) (↑Abelianization.of (FreeGroup.of x)) ⊢ f x = ↑(↑FreeGroup.lift f) (FreeGroup.of x) [PROOFSTEP] exact (FreeGroup.lift.of (β := Multiplicative β)).symm [GOAL] α✝ : Type u β✝ : Type v inst✝² : AddCommGroup β✝ f✝ : α✝ → β✝ α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : AddCommGroup β inst✝ : AddCommGroup γ a : FreeAbelianGroup α f : α → β g : β →+ γ ⊢ ↑g (↑(↑lift f) a) = ↑(↑lift (↑g ∘ f)) a [PROOFSTEP] show (g.comp (lift f)) a = lift (g ∘ f) a [GOAL] α✝ : Type u β✝ : Type v inst✝² : AddCommGroup β✝ f✝ : α✝ → β✝ α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : AddCommGroup β inst✝ : AddCommGroup γ a : FreeAbelianGroup α f : α → β g : β →+ γ ⊢ ↑(AddMonoidHom.comp g (↑lift f)) a = ↑(↑lift (↑g ∘ f)) a [PROOFSTEP] apply lift.unique [GOAL] case hg α✝ : Type u β✝ : Type v inst✝² : AddCommGroup β✝ f✝ : α✝ → β✝ α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : AddCommGroup β inst✝ : AddCommGroup γ a : FreeAbelianGroup α f : α → β g : β →+ γ ⊢ ∀ (x : α), ↑(AddMonoidHom.comp g (↑lift f)) (of x) = (↑g ∘ f) x [PROOFSTEP] intro a [GOAL] case hg α✝ : Type u β✝ : Type v inst✝² : AddCommGroup β✝ f✝ : α✝ → β✝ α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : AddCommGroup β inst✝ : AddCommGroup γ a✝ : FreeAbelianGroup α f : α → β g : β →+ γ a : α ⊢ ↑(AddMonoidHom.comp g (↑lift f)) (of a) = (↑g ∘ f) a [PROOFSTEP] show g ((lift f) (of a)) = g (f a) [GOAL] case hg α✝ : Type u β✝ : Type v inst✝² : AddCommGroup β✝ f✝ : α✝ → β✝ α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : AddCommGroup β inst✝ : AddCommGroup γ a✝ : FreeAbelianGroup α f : α → β g : β →+ γ a : α ⊢ ↑g (↑(↑lift f) (of a)) = ↑g (f a) [PROOFSTEP] simp only [(· ∘ ·), lift.of] [GOAL] α✝ : Type u α : Type u_1 β : Type u_2 inst✝ : AddCommGroup β a : FreeAbelianGroup α f g : α → β ⊢ ↑(↑lift (f + g)) a = ↑(↑lift f) a + ↑(↑lift g) a [PROOFSTEP] refine' FreeAbelianGroup.induction_on a _ _ _ _ [GOAL] case refine'_1 α✝ : Type u α : Type u_1 β : Type u_2 inst✝ : AddCommGroup β a : FreeAbelianGroup α f g : α → β ⊢ ↑(↑lift (f + g)) 0 = ↑(↑lift f) 0 + ↑(↑lift g) 0 [PROOFSTEP] simp only [(lift _).map_zero, zero_add] [GOAL] case refine'_2 α✝ : Type u α : Type u_1 β : Type u_2 inst✝ : AddCommGroup β a : FreeAbelianGroup α f g : α → β ⊢ ∀ (x : α), ↑(↑lift (f + g)) (of x) = ↑(↑lift f) (of x) + ↑(↑lift g) (of x) [PROOFSTEP] intro x [GOAL] case refine'_2 α✝ : Type u α : Type u_1 β : Type u_2 inst✝ : AddCommGroup β a : FreeAbelianGroup α f g : α → β x : α ⊢ ↑(↑lift (f + g)) (of x) = ↑(↑lift f) (of x) + ↑(↑lift g) (of x) [PROOFSTEP] simp only [lift.of, Pi.add_apply] [GOAL] case refine'_3 α✝ : Type u α : Type u_1 β : Type u_2 inst✝ : AddCommGroup β a : FreeAbelianGroup α f g : α → β ⊢ ∀ (x : α), ↑(↑lift (f + g)) (of x) = ↑(↑lift f) (of x) + ↑(↑lift g) (of x) → ↑(↑lift (f + g)) (-of x) = ↑(↑lift f) (-of x) + ↑(↑lift g) (-of x) [PROOFSTEP] intro x _ [GOAL] case refine'_3 α✝ : Type u α : Type u_1 β : Type u_2 inst✝ : AddCommGroup β a : FreeAbelianGroup α f g : α → β x : α a✝ : ↑(↑lift (f + g)) (of x) = ↑(↑lift f) (of x) + ↑(↑lift g) (of x) ⊢ ↑(↑lift (f + g)) (-of x) = ↑(↑lift f) (-of x) + ↑(↑lift g) (-of x) [PROOFSTEP] simp only [map_neg, lift.of, Pi.add_apply, neg_add] [GOAL] case refine'_4 α✝ : Type u α : Type u_1 β : Type u_2 inst✝ : AddCommGroup β a : FreeAbelianGroup α f g : α → β ⊢ ∀ (x y : FreeAbelianGroup α), ↑(↑lift (f + g)) x = ↑(↑lift f) x + ↑(↑lift g) x → ↑(↑lift (f + g)) y = ↑(↑lift f) y + ↑(↑lift g) y → ↑(↑lift (f + g)) (x + y) = ↑(↑lift f) (x + y) + ↑(↑lift g) (x + y) [PROOFSTEP] intro x y hx hy [GOAL] case refine'_4 α✝ : Type u α : Type u_1 β : Type u_2 inst✝ : AddCommGroup β a : FreeAbelianGroup α f g : α → β x y : FreeAbelianGroup α hx : ↑(↑lift (f + g)) x = ↑(↑lift f) x + ↑(↑lift g) x hy : ↑(↑lift (f + g)) y = ↑(↑lift f) y + ↑(↑lift g) y ⊢ ↑(↑lift (f + g)) (x + y) = ↑(↑lift f) (x + y) + ↑(↑lift g) (x + y) [PROOFSTEP] simp only [(lift _).map_add, hx, hy, add_add_add_comm] [GOAL] α β : Type u f : FreeAbelianGroup (α → β) x y : FreeAbelianGroup α ⊢ ↑(↑lift fun x_1 => x_1 <$> (x + y)) f = (fun x x_1 => Seq.seq x fun x => x_1) f x + (fun x x_1 => Seq.seq x fun x => x_1) f y [PROOFSTEP] simp only [FreeAbelianGroup.map_add] [GOAL] α β : Type u f : FreeAbelianGroup (α → β) x y : FreeAbelianGroup α ⊢ ↑(↑lift fun x_1 => x_1 <$> x + x_1 <$> y) f = (Seq.seq f fun x_1 => x) + Seq.seq f fun x => y [PROOFSTEP] exact lift.add' f _ _ [GOAL] α β α✝ : Type u x✝ : FreeAbelianGroup α✝ x : α✝ ih : id <$> pure x = pure x ⊢ id <$> (-pure x) = -pure x [PROOFSTEP] rw [FreeAbelianGroup.map_neg, ih] [GOAL] α β α✝ : Type u x✝ x y : FreeAbelianGroup α✝ ihx : id <$> x = x ihy : id <$> y = y ⊢ id <$> (x + y) = x + y [PROOFSTEP] rw [FreeAbelianGroup.map_add, ihx, ihy] [GOAL] α β α✝ β✝ γ✝ : Type u x : FreeAbelianGroup α✝ f : α✝ → FreeAbelianGroup β✝ g : β✝ → FreeAbelianGroup γ✝ ⊢ 0 >>= f >>= g = 0 >>= fun x => f x >>= g [PROOFSTEP] iterate 3 rw [zero_bind] [GOAL] α β α✝ β✝ γ✝ : Type u x : FreeAbelianGroup α✝ f : α✝ → FreeAbelianGroup β✝ g : β✝ → FreeAbelianGroup γ✝ ⊢ 0 >>= f >>= g = 0 >>= fun x => f x >>= g [PROOFSTEP] rw [zero_bind] [GOAL] α β α✝ β✝ γ✝ : Type u x : FreeAbelianGroup α✝ f : α✝ → FreeAbelianGroup β✝ g : β✝ → FreeAbelianGroup γ✝ ⊢ 0 >>= g = 0 >>= fun x => f x >>= g [PROOFSTEP] rw [zero_bind] [GOAL] α β α✝ β✝ γ✝ : Type u x : FreeAbelianGroup α✝ f : α✝ → FreeAbelianGroup β✝ g : β✝ → FreeAbelianGroup γ✝ ⊢ 0 = 0 >>= fun x => f x >>= g [PROOFSTEP] rw [zero_bind] [GOAL] α β α✝ β✝ γ✝ : Type u x✝ : FreeAbelianGroup α✝ f : α✝ → FreeAbelianGroup β✝ g : β✝ → FreeAbelianGroup γ✝ x : α✝ ⊢ pure x >>= f >>= g = pure x >>= fun x => f x >>= g [PROOFSTEP] iterate 2 rw [pure_bind] [GOAL] α β α✝ β✝ γ✝ : Type u x✝ : FreeAbelianGroup α✝ f : α✝ → FreeAbelianGroup β✝ g : β✝ → FreeAbelianGroup γ✝ x : α✝ ⊢ pure x >>= f >>= g = pure x >>= fun x => f x >>= g [PROOFSTEP] rw [pure_bind] [GOAL] α β α✝ β✝ γ✝ : Type u x✝ : FreeAbelianGroup α✝ f : α✝ → FreeAbelianGroup β✝ g : β✝ → FreeAbelianGroup γ✝ x : α✝ ⊢ f x >>= g = pure x >>= fun x => f x >>= g [PROOFSTEP] rw [pure_bind] [GOAL] α β α✝ β✝ γ✝ : Type u x✝ : FreeAbelianGroup α✝ f : α✝ → FreeAbelianGroup β✝ g : β✝ → FreeAbelianGroup γ✝ x : α✝ ih : pure x >>= f >>= g = pure x >>= fun x => f x >>= g ⊢ -pure x >>= f >>= g = -pure x >>= fun x => f x >>= g [PROOFSTEP] iterate 3 rw [neg_bind] <;> try rw [ih] [GOAL] α β α✝ β✝ γ✝ : Type u x✝ : FreeAbelianGroup α✝ f : α✝ → FreeAbelianGroup β✝ g : β✝ → FreeAbelianGroup γ✝ x : α✝ ih : pure x >>= f >>= g = pure x >>= fun x => f x >>= g ⊢ -pure x >>= f >>= g = -pure x >>= fun x => f x >>= g [PROOFSTEP] rw [neg_bind] [GOAL] α β α✝ β✝ γ✝ : Type u x✝ : FreeAbelianGroup α✝ f : α✝ → FreeAbelianGroup β✝ g : β✝ → FreeAbelianGroup γ✝ x : α✝ ih : pure x >>= f >>= g = pure x >>= fun x => f x >>= g ⊢ -(pure x >>= f) >>= g = -pure x >>= fun x => f x >>= g [PROOFSTEP] try rw [ih] [GOAL] α β α✝ β✝ γ✝ : Type u x✝ : FreeAbelianGroup α✝ f : α✝ → FreeAbelianGroup β✝ g : β✝ → FreeAbelianGroup γ✝ x : α✝ ih : pure x >>= f >>= g = pure x >>= fun x => f x >>= g ⊢ -(pure x >>= f) >>= g = -pure x >>= fun x => f x >>= g [PROOFSTEP] rw [ih] [GOAL] α β α✝ β✝ γ✝ : Type u x✝ : FreeAbelianGroup α✝ f : α✝ → FreeAbelianGroup β✝ g : β✝ → FreeAbelianGroup γ✝ x : α✝ ih : pure x >>= f >>= g = pure x >>= fun x => f x >>= g ⊢ -(pure x >>= f) >>= g = -pure x >>= fun x => f x >>= g [PROOFSTEP] rw [neg_bind] [GOAL] α β α✝ β✝ γ✝ : Type u x✝ : FreeAbelianGroup α✝ f : α✝ → FreeAbelianGroup β✝ g : β✝ → FreeAbelianGroup γ✝ x : α✝ ih : pure x >>= f >>= g = pure x >>= fun x => f x >>= g ⊢ -(pure x >>= f >>= g) = -pure x >>= fun x => f x >>= g [PROOFSTEP] try rw [ih] [GOAL] α β α✝ β✝ γ✝ : Type u x✝ : FreeAbelianGroup α✝ f : α✝ → FreeAbelianGroup β✝ g : β✝ → FreeAbelianGroup γ✝ x : α✝ ih : pure x >>= f >>= g = pure x >>= fun x => f x >>= g ⊢ -(pure x >>= f >>= g) = -pure x >>= fun x => f x >>= g [PROOFSTEP] rw [ih] [GOAL] α β α✝ β✝ γ✝ : Type u x✝ : FreeAbelianGroup α✝ f : α✝ → FreeAbelianGroup β✝ g : β✝ → FreeAbelianGroup γ✝ x : α✝ ih : pure x >>= f >>= g = pure x >>= fun x => f x >>= g ⊢ -(pure x >>= fun x => f x >>= g) = -pure x >>= fun x => f x >>= g [PROOFSTEP] rw [neg_bind] [GOAL] α β α✝ β✝ γ✝ : Type u x✝ : FreeAbelianGroup α✝ f : α✝ → FreeAbelianGroup β✝ g : β✝ → FreeAbelianGroup γ✝ x y : FreeAbelianGroup α✝ ihx : x >>= f >>= g = x >>= fun x => f x >>= g ihy : y >>= f >>= g = y >>= fun x => f x >>= g ⊢ x + y >>= f >>= g = x + y >>= fun x => f x >>= g [PROOFSTEP] iterate 3 rw [add_bind] <;> try rw [ihx, ihy] [GOAL] α β α✝ β✝ γ✝ : Type u x✝ : FreeAbelianGroup α✝ f : α✝ → FreeAbelianGroup β✝ g : β✝ → FreeAbelianGroup γ✝ x y : FreeAbelianGroup α✝ ihx : x >>= f >>= g = x >>= fun x => f x >>= g ihy : y >>= f >>= g = y >>= fun x => f x >>= g ⊢ x + y >>= f >>= g = x + y >>= fun x => f x >>= g [PROOFSTEP] rw [add_bind] [GOAL] α β α✝ β✝ γ✝ : Type u x✝ : FreeAbelianGroup α✝ f : α✝ → FreeAbelianGroup β✝ g : β✝ → FreeAbelianGroup γ✝ x y : FreeAbelianGroup α✝ ihx : x >>= f >>= g = x >>= fun x => f x >>= g ihy : y >>= f >>= g = y >>= fun x => f x >>= g ⊢ (x >>= f) + (y >>= f) >>= g = x + y >>= fun x => f x >>= g [PROOFSTEP] try rw [ihx, ihy] [GOAL] α β α✝ β✝ γ✝ : Type u x✝ : FreeAbelianGroup α✝ f : α✝ → FreeAbelianGroup β✝ g : β✝ → FreeAbelianGroup γ✝ x y : FreeAbelianGroup α✝ ihx : x >>= f >>= g = x >>= fun x => f x >>= g ihy : y >>= f >>= g = y >>= fun x => f x >>= g ⊢ (x >>= f) + (y >>= f) >>= g = x + y >>= fun x => f x >>= g [PROOFSTEP] rw [ihx, ihy] [GOAL] α β α✝ β✝ γ✝ : Type u x✝ : FreeAbelianGroup α✝ f : α✝ → FreeAbelianGroup β✝ g : β✝ → FreeAbelianGroup γ✝ x y : FreeAbelianGroup α✝ ihx : x >>= f >>= g = x >>= fun x => f x >>= g ihy : y >>= f >>= g = y >>= fun x => f x >>= g ⊢ (x >>= f) + (y >>= f) >>= g = x + y >>= fun x => f x >>= g [PROOFSTEP] rw [add_bind] [GOAL] α β α✝ β✝ γ✝ : Type u x✝ : FreeAbelianGroup α✝ f : α✝ → FreeAbelianGroup β✝ g : β✝ → FreeAbelianGroup γ✝ x y : FreeAbelianGroup α✝ ihx : x >>= f >>= g = x >>= fun x => f x >>= g ihy : y >>= f >>= g = y >>= fun x => f x >>= g ⊢ (x >>= f >>= g) + (y >>= f >>= g) = x + y >>= fun x => f x >>= g [PROOFSTEP] try rw [ihx, ihy] [GOAL] α β α✝ β✝ γ✝ : Type u x✝ : FreeAbelianGroup α✝ f : α✝ → FreeAbelianGroup β✝ g : β✝ → FreeAbelianGroup γ✝ x y : FreeAbelianGroup α✝ ihx : x >>= f >>= g = x >>= fun x => f x >>= g ihy : y >>= f >>= g = y >>= fun x => f x >>= g ⊢ (x >>= f >>= g) + (y >>= f >>= g) = x + y >>= fun x => f x >>= g [PROOFSTEP] rw [ihx, ihy] [GOAL] α β α✝ β✝ γ✝ : Type u x✝ : FreeAbelianGroup α✝ f : α✝ → FreeAbelianGroup β✝ g : β✝ → FreeAbelianGroup γ✝ x y : FreeAbelianGroup α✝ ihx : x >>= f >>= g = x >>= fun x => f x >>= g ihy : y >>= f >>= g = y >>= fun x => f x >>= g ⊢ (x >>= fun x => f x >>= g) + (y >>= fun x => f x >>= g) = x + y >>= fun x => f x >>= g [PROOFSTEP] rw [add_bind] [GOAL] α β α✝ β✝ : Type u x : FreeAbelianGroup α✝ y : FreeAbelianGroup β✝ ⊢ (Seq.seq (Prod.mk <$> x) fun x => y) = Seq.seq ((fun b a => (a, b)) <$> y) fun x_1 => x [PROOFSTEP] refine' FreeAbelianGroup.induction_on' x _ _ _ _ [GOAL] case refine'_1 α β α✝ β✝ : Type u x : FreeAbelianGroup α✝ y : FreeAbelianGroup β✝ ⊢ (Seq.seq (Prod.mk <$> 0) fun x => y) = Seq.seq ((fun b a => (a, b)) <$> y) fun x => 0 [PROOFSTEP] rw [FreeAbelianGroup.map_zero, zero_seq, seq_zero] [GOAL] case refine'_2 α β α✝ β✝ : Type u x : FreeAbelianGroup α✝ y : FreeAbelianGroup β✝ ⊢ ∀ (x : α✝), (Seq.seq (Prod.mk <$> pure x) fun x => y) = Seq.seq ((fun b a => (a, b)) <$> y) fun x_1 => pure x [PROOFSTEP] intro p [GOAL] case refine'_2 α β α✝ β✝ : Type u x : FreeAbelianGroup α✝ y : FreeAbelianGroup β✝ p : α✝ ⊢ (Seq.seq (Prod.mk <$> pure p) fun x => y) = Seq.seq ((fun b a => (a, b)) <$> y) fun x => pure p [PROOFSTEP] rw [map_pure, pure_seq] [GOAL] case refine'_2 α β α✝ β✝ : Type u x : FreeAbelianGroup α✝ y : FreeAbelianGroup β✝ p : α✝ ⊢ Prod.mk p <$> y = Seq.seq ((fun b a => (a, b)) <$> y) fun x => pure p [PROOFSTEP] exact FreeAbelianGroup.induction_on' y (by rw [FreeAbelianGroup.map_zero, FreeAbelianGroup.map_zero, zero_seq]) (fun q ↦ by rw [map_pure, map_pure, pure_seq, map_pure]) (fun q ih ↦ by rw [FreeAbelianGroup.map_neg, FreeAbelianGroup.map_neg, neg_seq, ih]) fun y₁ y₂ ih1 ih2 ↦ by rw [FreeAbelianGroup.map_add, FreeAbelianGroup.map_add, add_seq, ih1, ih2] [GOAL] α β α✝ β✝ : Type u x : FreeAbelianGroup α✝ y : FreeAbelianGroup β✝ p : α✝ ⊢ Prod.mk p <$> 0 = Seq.seq ((fun b a => (a, b)) <$> 0) fun x => pure p [PROOFSTEP] rw [FreeAbelianGroup.map_zero, FreeAbelianGroup.map_zero, zero_seq] [GOAL] α β α✝ β✝ : Type u x : FreeAbelianGroup α✝ y : FreeAbelianGroup β✝ p : α✝ q : β✝ ⊢ Prod.mk p <$> pure q = Seq.seq ((fun b a => (a, b)) <$> pure q) fun x => pure p [PROOFSTEP] rw [map_pure, map_pure, pure_seq, map_pure] [GOAL] α β α✝ β✝ : Type u x : FreeAbelianGroup α✝ y : FreeAbelianGroup β✝ p : α✝ q : β✝ ih : Prod.mk p <$> pure q = Seq.seq ((fun b a => (a, b)) <$> pure q) fun x => pure p ⊢ Prod.mk p <$> (-pure q) = Seq.seq ((fun b a => (a, b)) <$> (-pure q)) fun x => pure p [PROOFSTEP] rw [FreeAbelianGroup.map_neg, FreeAbelianGroup.map_neg, neg_seq, ih] [GOAL] α β α✝ β✝ : Type u x : FreeAbelianGroup α✝ y : FreeAbelianGroup β✝ p : α✝ y₁ y₂ : FreeAbelianGroup β✝ ih1 : Prod.mk p <$> y₁ = Seq.seq ((fun b a => (a, b)) <$> y₁) fun x => pure p ih2 : Prod.mk p <$> y₂ = Seq.seq ((fun b a => (a, b)) <$> y₂) fun x => pure p ⊢ Prod.mk p <$> (y₁ + y₂) = Seq.seq ((fun b a => (a, b)) <$> (y₁ + y₂)) fun x => pure p [PROOFSTEP] rw [FreeAbelianGroup.map_add, FreeAbelianGroup.map_add, add_seq, ih1, ih2] [GOAL] case refine'_3 α β α✝ β✝ : Type u x : FreeAbelianGroup α✝ y : FreeAbelianGroup β✝ ⊢ ∀ (x : α✝), ((Seq.seq (Prod.mk <$> pure x) fun x => y) = Seq.seq ((fun b a => (a, b)) <$> y) fun x_1 => pure x) → (Seq.seq (Prod.mk <$> (-pure x)) fun x => y) = Seq.seq ((fun b a => (a, b)) <$> y) fun x_1 => -pure x [PROOFSTEP] intro p ih [GOAL] case refine'_3 α β α✝ β✝ : Type u x : FreeAbelianGroup α✝ y : FreeAbelianGroup β✝ p : α✝ ih : (Seq.seq (Prod.mk <$> pure p) fun x => y) = Seq.seq ((fun b a => (a, b)) <$> y) fun x => pure p ⊢ (Seq.seq (Prod.mk <$> (-pure p)) fun x => y) = Seq.seq ((fun b a => (a, b)) <$> y) fun x => -pure p [PROOFSTEP] rw [FreeAbelianGroup.map_neg, neg_seq, seq_neg, ih] [GOAL] case refine'_4 α β α✝ β✝ : Type u x : FreeAbelianGroup α✝ y : FreeAbelianGroup β✝ ⊢ ∀ (x y_1 : FreeAbelianGroup α✝), ((Seq.seq (Prod.mk <$> x) fun x => y) = Seq.seq ((fun b a => (a, b)) <$> y) fun x_1 => x) → ((Seq.seq (Prod.mk <$> y_1) fun x => y) = Seq.seq ((fun b a => (a, b)) <$> y) fun x => y_1) → (Seq.seq (Prod.mk <$> (x + y_1)) fun x => y) = Seq.seq ((fun b a => (a, b)) <$> y) fun x_1 => x + y_1 [PROOFSTEP] intro x₁ x₂ ih1 ih2 [GOAL] case refine'_4 α β α✝ β✝ : Type u x : FreeAbelianGroup α✝ y : FreeAbelianGroup β✝ x₁ x₂ : FreeAbelianGroup α✝ ih1 : (Seq.seq (Prod.mk <$> x₁) fun x => y) = Seq.seq ((fun b a => (a, b)) <$> y) fun x => x₁ ih2 : (Seq.seq (Prod.mk <$> x₂) fun x => y) = Seq.seq ((fun b a => (a, b)) <$> y) fun x => x₂ ⊢ (Seq.seq (Prod.mk <$> (x₁ + x₂)) fun x => y) = Seq.seq ((fun b a => (a, b)) <$> y) fun x => x₁ + x₂ [PROOFSTEP] rw [FreeAbelianGroup.map_add, add_seq, seq_add, ih1, ih2] [GOAL] α✝ : Type u β✝ : Type v γ✝ : Type w α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : AddCommGroup γ f : α → β g : β → γ x : FreeAbelianGroup α ⊢ ↑(↑lift (g ∘ f)) x = ↑(↑lift g) (↑(map f) x) [PROOFSTEP] apply FreeAbelianGroup.induction_on (C := fun x ↦ lift (g ∘ f) x = lift g (map f x)) x [GOAL] case C0 α✝ : Type u β✝ : Type v γ✝ : Type w α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : AddCommGroup γ f : α → β g : β → γ x : FreeAbelianGroup α ⊢ ↑(↑lift (g ∘ f)) 0 = ↑(↑lift g) (↑(map f) 0) [PROOFSTEP] simp only [map_zero] [GOAL] case C1 α✝ : Type u β✝ : Type v γ✝ : Type w α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : AddCommGroup γ f : α → β g : β → γ x : FreeAbelianGroup α ⊢ ∀ (x : α), ↑(↑lift (g ∘ f)) (of x) = ↑(↑lift g) (↑(map f) (of x)) [PROOFSTEP] intro _ [GOAL] case C1 α✝ : Type u β✝ : Type v γ✝ : Type w α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : AddCommGroup γ f : α → β g : β → γ x : FreeAbelianGroup α x✝ : α ⊢ ↑(↑lift (g ∘ f)) (of x✝) = ↑(↑lift g) (↑(map f) (of x✝)) [PROOFSTEP] simp only [lift.of, map, Function.comp] [GOAL] case Cn α✝ : Type u β✝ : Type v γ✝ : Type w α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : AddCommGroup γ f : α → β g : β → γ x : FreeAbelianGroup α ⊢ ∀ (x : α), ↑(↑lift (g ∘ f)) (of x) = ↑(↑lift g) (↑(map f) (of x)) → ↑(↑lift (g ∘ f)) (-of x) = ↑(↑lift g) (↑(map f) (-of x)) [PROOFSTEP] intro _ h [GOAL] case Cn α✝ : Type u β✝ : Type v γ✝ : Type w α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : AddCommGroup γ f : α → β g : β → γ x : FreeAbelianGroup α x✝ : α h : ↑(↑lift (g ∘ f)) (of x✝) = ↑(↑lift g) (↑(map f) (of x✝)) ⊢ ↑(↑lift (g ∘ f)) (-of x✝) = ↑(↑lift g) (↑(map f) (-of x✝)) [PROOFSTEP] simp only [h, AddMonoidHom.map_neg] [GOAL] case Cp α✝ : Type u β✝ : Type v γ✝ : Type w α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : AddCommGroup γ f : α → β g : β → γ x : FreeAbelianGroup α ⊢ ∀ (x y : FreeAbelianGroup α), ↑(↑lift (g ∘ f)) x = ↑(↑lift g) (↑(map f) x) → ↑(↑lift (g ∘ f)) y = ↑(↑lift g) (↑(map f) y) → ↑(↑lift (g ∘ f)) (x + y) = ↑(↑lift g) (↑(map f) (x + y)) [PROOFSTEP] intro _ _ h₁ h₂ [GOAL] case Cp α✝ : Type u β✝ : Type v γ✝ : Type w α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : AddCommGroup γ f : α → β g : β → γ x x✝ y✝ : FreeAbelianGroup α h₁ : ↑(↑lift (g ∘ f)) x✝ = ↑(↑lift g) (↑(map f) x✝) h₂ : ↑(↑lift (g ∘ f)) y✝ = ↑(↑lift g) (↑(map f) y✝) ⊢ ↑(↑lift (g ∘ f)) (x✝ + y✝) = ↑(↑lift g) (↑(map f) (x✝ + y✝)) [PROOFSTEP] simp only [h₁, h₂, AddMonoidHom.map_add] [GOAL] α : Type u β : Type v γ : Type w x : FreeAbelianGroup α ⊢ ↑(map id) x = x [PROOFSTEP] rw [map_id] [GOAL] α : Type u β : Type v γ : Type w x : FreeAbelianGroup α ⊢ ↑(AddMonoidHom.id (FreeAbelianGroup α)) x = x [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w f : α → β g : β → γ x✝ : α ⊢ ↑(AddMonoidHom.comp (map g) (map f)) (of x✝) = ↑(map (g ∘ f)) (of x✝) [PROOFSTEP] simp [map] [GOAL] α : Type u β : Type v γ : Type w f : α → β g : β → γ x : FreeAbelianGroup α ⊢ ↑(map (g ∘ f)) x = ↑(map g) (↑(map f) x) [PROOFSTEP] rw [map_comp] [GOAL] α : Type u β : Type v γ : Type w f : α → β g : β → γ x : FreeAbelianGroup α ⊢ ↑(AddMonoidHom.comp (map g) (map f)) x = ↑(map g) (↑(map f) x) [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w inst✝ : Mul α x y : α ⊢ of x * of y = of (x * y) [PROOFSTEP] rw [mul_def, lift.of, lift.of] [GOAL] α : Type u β : Type v γ : Type w inst✝ : Mul α src✝¹ : Mul (FreeAbelianGroup α) := mul α src✝ : AddCommGroup (FreeAbelianGroup α) := addCommGroup α x y z : FreeAbelianGroup α ⊢ (x + y) * z = x * z + y * z [PROOFSTEP] simp only [(· * ·), Mul.mul, map_add, ← Pi.add_def, lift.add'] [GOAL] α : Type u β : Type v γ : Type w inst✝ : Mul α src✝¹ : Distrib (FreeAbelianGroup α) := distrib src✝ : AddCommGroup (FreeAbelianGroup α) := addCommGroup α a : FreeAbelianGroup α ⊢ 0 * a = 0 [PROOFSTEP] have h : 0 * a + 0 * a = 0 * a := by simp [← add_mul] [GOAL] α : Type u β : Type v γ : Type w inst✝ : Mul α src✝¹ : Distrib (FreeAbelianGroup α) := distrib src✝ : AddCommGroup (FreeAbelianGroup α) := addCommGroup α a : FreeAbelianGroup α ⊢ 0 * a + 0 * a = 0 * a [PROOFSTEP] simp [← add_mul] [GOAL] α : Type u β : Type v γ : Type w inst✝ : Mul α src✝¹ : Distrib (FreeAbelianGroup α) := distrib src✝ : AddCommGroup (FreeAbelianGroup α) := addCommGroup α a : FreeAbelianGroup α h : 0 * a + 0 * a = 0 * a ⊢ 0 * a = 0 [PROOFSTEP] simpa using h [GOAL] α : Type u β : Type v γ : Type w inst✝ : Semigroup α src✝ : NonUnitalNonAssocRing (FreeAbelianGroup α) := nonUnitalNonAssocRing x y z : FreeAbelianGroup α ⊢ x * y * z = x * (y * z) [PROOFSTEP] refine' FreeAbelianGroup.induction_on z (by simp only [mul_zero]) (fun L3 ↦ _) (fun L3 ih ↦ _) fun z₁ z₂ ih₁ ih₂ ↦ _ [GOAL] α : Type u β : Type v γ : Type w inst✝ : Semigroup α src✝ : NonUnitalNonAssocRing (FreeAbelianGroup α) := nonUnitalNonAssocRing x y z : FreeAbelianGroup α ⊢ x * y * 0 = x * (y * 0) [PROOFSTEP] simp only [mul_zero] [GOAL] case refine'_1 α : Type u β : Type v γ : Type w inst✝ : Semigroup α src✝ : NonUnitalNonAssocRing (FreeAbelianGroup α) := nonUnitalNonAssocRing x y z : FreeAbelianGroup α L3 : α ⊢ x * y * of L3 = x * (y * of L3) [PROOFSTEP] refine' FreeAbelianGroup.induction_on y (by simp only [mul_zero, zero_mul]) (fun L2 ↦ _) (fun L2 ih ↦ _) fun y₁ y₂ ih₁ ih₂ ↦ _ [GOAL] α : Type u β : Type v γ : Type w inst✝ : Semigroup α src✝ : NonUnitalNonAssocRing (FreeAbelianGroup α) := nonUnitalNonAssocRing x y z : FreeAbelianGroup α L3 : α ⊢ x * 0 * of L3 = x * (0 * of L3) [PROOFSTEP] simp only [mul_zero, zero_mul] [GOAL] case refine'_1.refine'_1 α : Type u β : Type v γ : Type w inst✝ : Semigroup α src✝ : NonUnitalNonAssocRing (FreeAbelianGroup α) := nonUnitalNonAssocRing x y z : FreeAbelianGroup α L3 L2 : α ⊢ x * of L2 * of L3 = x * (of L2 * of L3) [PROOFSTEP] refine' FreeAbelianGroup.induction_on x (by simp only [zero_mul]) (fun L1 ↦ _) (fun L1 ih ↦ _) fun x₁ x₂ ih₁ ih₂ ↦ _ [GOAL] α : Type u β : Type v γ : Type w inst✝ : Semigroup α src✝ : NonUnitalNonAssocRing (FreeAbelianGroup α) := nonUnitalNonAssocRing x y z : FreeAbelianGroup α L3 L2 : α ⊢ 0 * of L2 * of L3 = 0 * (of L2 * of L3) [PROOFSTEP] simp only [zero_mul] [GOAL] case refine'_1.refine'_1.refine'_1 α : Type u β : Type v γ : Type w inst✝ : Semigroup α src✝ : NonUnitalNonAssocRing (FreeAbelianGroup α) := nonUnitalNonAssocRing x y z : FreeAbelianGroup α L3 L2 L1 : α ⊢ of L1 * of L2 * of L3 = of L1 * (of L2 * of L3) [PROOFSTEP] rw [of_mul_of, of_mul_of, of_mul_of, of_mul_of, mul_assoc] [GOAL] case refine'_1.refine'_1.refine'_2 α : Type u β : Type v γ : Type w inst✝ : Semigroup α src✝ : NonUnitalNonAssocRing (FreeAbelianGroup α) := nonUnitalNonAssocRing x y z : FreeAbelianGroup α L3 L2 L1 : α ih : of L1 * of L2 * of L3 = of L1 * (of L2 * of L3) ⊢ -of L1 * of L2 * of L3 = -of L1 * (of L2 * of L3) [PROOFSTEP] rw [neg_mul, neg_mul, neg_mul, ih] [GOAL] case refine'_1.refine'_1.refine'_3 α : Type u β : Type v γ : Type w inst✝ : Semigroup α src✝ : NonUnitalNonAssocRing (FreeAbelianGroup α) := nonUnitalNonAssocRing x y z : FreeAbelianGroup α L3 L2 : α x₁ x₂ : FreeAbelianGroup α ih₁ : x₁ * of L2 * of L3 = x₁ * (of L2 * of L3) ih₂ : x₂ * of L2 * of L3 = x₂ * (of L2 * of L3) ⊢ (x₁ + x₂) * of L2 * of L3 = (x₁ + x₂) * (of L2 * of L3) [PROOFSTEP] rw [add_mul, add_mul, add_mul, ih₁, ih₂] [GOAL] case refine'_1.refine'_2 α : Type u β : Type v γ : Type w inst✝ : Semigroup α src✝ : NonUnitalNonAssocRing (FreeAbelianGroup α) := nonUnitalNonAssocRing x y z : FreeAbelianGroup α L3 L2 : α ih : x * of L2 * of L3 = x * (of L2 * of L3) ⊢ x * -of L2 * of L3 = x * (-of L2 * of L3) [PROOFSTEP] rw [neg_mul, mul_neg, mul_neg, neg_mul, ih] [GOAL] case refine'_1.refine'_3 α : Type u β : Type v γ : Type w inst✝ : Semigroup α src✝ : NonUnitalNonAssocRing (FreeAbelianGroup α) := nonUnitalNonAssocRing x y z : FreeAbelianGroup α L3 : α y₁ y₂ : FreeAbelianGroup α ih₁ : x * y₁ * of L3 = x * (y₁ * of L3) ih₂ : x * y₂ * of L3 = x * (y₂ * of L3) ⊢ x * (y₁ + y₂) * of L3 = x * ((y₁ + y₂) * of L3) [PROOFSTEP] rw [add_mul, mul_add, mul_add, add_mul, ih₁, ih₂] [GOAL] case refine'_2 α : Type u β : Type v γ : Type w inst✝ : Semigroup α src✝ : NonUnitalNonAssocRing (FreeAbelianGroup α) := nonUnitalNonAssocRing x y z : FreeAbelianGroup α L3 : α ih : x * y * of L3 = x * (y * of L3) ⊢ x * y * -of L3 = x * (y * -of L3) [PROOFSTEP] rw [mul_neg, mul_neg, mul_neg, ih] [GOAL] case refine'_3 α : Type u β : Type v γ : Type w inst✝ : Semigroup α src✝ : NonUnitalNonAssocRing (FreeAbelianGroup α) := nonUnitalNonAssocRing x y z z₁ z₂ : FreeAbelianGroup α ih₁ : x * y * z₁ = x * (y * z₁) ih₂ : x * y * z₂ = x * (y * z₂) ⊢ x * y * (z₁ + z₂) = x * (y * (z₁ + z₂)) [PROOFSTEP] rw [mul_add, mul_add, mul_add, ih₁, ih₂] [GOAL] α : Type u β : Type v γ : Type w R : Type u_1 inst✝¹ : Monoid α inst✝ : Ring R src✝¹ : NonUnitalRing (FreeAbelianGroup α) := nonUnitalRing α src✝ : One (FreeAbelianGroup α) := one α x : FreeAbelianGroup α ⊢ 1 * x = x [PROOFSTEP] dsimp only [(· * ·), Mul.mul, OfNat.ofNat, One.one] [GOAL] α : Type u β : Type v γ : Type w R : Type u_1 inst✝¹ : Monoid α inst✝ : Ring R src✝¹ : NonUnitalRing (FreeAbelianGroup α) := nonUnitalRing α src✝ : One (FreeAbelianGroup α) := one α x : FreeAbelianGroup α ⊢ ↑(↑lift fun x₂ => ↑(↑lift fun x₁ => of (Mul.mul x₁ x₂)) (of One.one)) x = x [PROOFSTEP] refine' FreeAbelianGroup.induction_on x rfl _ _ _ [GOAL] case refine'_1 α : Type u β : Type v γ : Type w R : Type u_1 inst✝¹ : Monoid α inst✝ : Ring R src✝¹ : NonUnitalRing (FreeAbelianGroup α) := nonUnitalRing α src✝ : One (FreeAbelianGroup α) := one α x : FreeAbelianGroup α ⊢ ∀ (x : α), ↑(↑lift fun x₂ => ↑(↑lift fun x₁ => of (Mul.mul x₁ x₂)) (of One.one)) (of x) = of x [PROOFSTEP] intro L [GOAL] case refine'_1 α : Type u β : Type v γ : Type w R : Type u_1 inst✝¹ : Monoid α inst✝ : Ring R src✝¹ : NonUnitalRing (FreeAbelianGroup α) := nonUnitalRing α src✝ : One (FreeAbelianGroup α) := one α x : FreeAbelianGroup α L : α ⊢ ↑(↑lift fun x₂ => ↑(↑lift fun x₁ => of (Mul.mul x₁ x₂)) (of One.one)) (of L) = of L [PROOFSTEP] rw [lift.of, lift.of] [GOAL] case refine'_1 α : Type u β : Type v γ : Type w R : Type u_1 inst✝¹ : Monoid α inst✝ : Ring R src✝¹ : NonUnitalRing (FreeAbelianGroup α) := nonUnitalRing α src✝ : One (FreeAbelianGroup α) := one α x : FreeAbelianGroup α L : α ⊢ of (Mul.mul One.one L) = of L [PROOFSTEP] congr 1 [GOAL] case refine'_1.e_x α : Type u β : Type v γ : Type w R : Type u_1 inst✝¹ : Monoid α inst✝ : Ring R src✝¹ : NonUnitalRing (FreeAbelianGroup α) := nonUnitalRing α src✝ : One (FreeAbelianGroup α) := one α x : FreeAbelianGroup α L : α ⊢ Mul.mul One.one L = L [PROOFSTEP] exact one_mul L [GOAL] case refine'_2 α : Type u β : Type v γ : Type w R : Type u_1 inst✝¹ : Monoid α inst✝ : Ring R src✝¹ : NonUnitalRing (FreeAbelianGroup α) := nonUnitalRing α src✝ : One (FreeAbelianGroup α) := one α x : FreeAbelianGroup α ⊢ ∀ (x : α), ↑(↑lift fun x₂ => ↑(↑lift fun x₁ => of (Mul.mul x₁ x₂)) (of One.one)) (of x) = of x → ↑(↑lift fun x₂ => ↑(↑lift fun x₁ => of (Mul.mul x₁ x₂)) (of One.one)) (-of x) = -of x [PROOFSTEP] intro L ih [GOAL] case refine'_2 α : Type u β : Type v γ : Type w R : Type u_1 inst✝¹ : Monoid α inst✝ : Ring R src✝¹ : NonUnitalRing (FreeAbelianGroup α) := nonUnitalRing α src✝ : One (FreeAbelianGroup α) := one α x : FreeAbelianGroup α L : α ih : ↑(↑lift fun x₂ => ↑(↑lift fun x₁ => of (Mul.mul x₁ x₂)) (of One.one)) (of L) = of L ⊢ ↑(↑lift fun x₂ => ↑(↑lift fun x₁ => of (Mul.mul x₁ x₂)) (of One.one)) (-of L) = -of L [PROOFSTEP] rw [map_neg, ih] [GOAL] case refine'_3 α : Type u β : Type v γ : Type w R : Type u_1 inst✝¹ : Monoid α inst✝ : Ring R src✝¹ : NonUnitalRing (FreeAbelianGroup α) := nonUnitalRing α src✝ : One (FreeAbelianGroup α) := one α x : FreeAbelianGroup α ⊢ ∀ (x y : FreeAbelianGroup α), ↑(↑lift fun x₂ => ↑(↑lift fun x₁ => of (Mul.mul x₁ x₂)) (of One.one)) x = x → ↑(↑lift fun x₂ => ↑(↑lift fun x₁ => of (Mul.mul x₁ x₂)) (of One.one)) y = y → ↑(↑lift fun x₂ => ↑(↑lift fun x₁ => of (Mul.mul x₁ x₂)) (of One.one)) (x + y) = x + y [PROOFSTEP] intro x1 x2 ih1 ih2 [GOAL] case refine'_3 α : Type u β : Type v γ : Type w R : Type u_1 inst✝¹ : Monoid α inst✝ : Ring R src✝¹ : NonUnitalRing (FreeAbelianGroup α) := nonUnitalRing α src✝ : One (FreeAbelianGroup α) := one α x x1 x2 : FreeAbelianGroup α ih1 : ↑(↑lift fun x₂ => ↑(↑lift fun x₁ => of (Mul.mul x₁ x₂)) (of One.one)) x1 = x1 ih2 : ↑(↑lift fun x₂ => ↑(↑lift fun x₁ => of (Mul.mul x₁ x₂)) (of One.one)) x2 = x2 ⊢ ↑(↑lift fun x₂ => ↑(↑lift fun x₁ => of (Mul.mul x₁ x₂)) (of One.one)) (x1 + x2) = x1 + x2 [PROOFSTEP] rw [map_add, ih1, ih2] [GOAL] α : Type u β : Type v γ : Type w R : Type u_1 inst✝¹ : Monoid α inst✝ : Ring R src✝¹ : NonUnitalRing (FreeAbelianGroup α) := nonUnitalRing α src✝ : One (FreeAbelianGroup α) := one α x : FreeAbelianGroup α ⊢ x * 1 = x [PROOFSTEP] dsimp only [(· * ·), Mul.mul, OfNat.ofNat, One.one] [GOAL] α : Type u β : Type v γ : Type w R : Type u_1 inst✝¹ : Monoid α inst✝ : Ring R src✝¹ : NonUnitalRing (FreeAbelianGroup α) := nonUnitalRing α src✝ : One (FreeAbelianGroup α) := one α x : FreeAbelianGroup α ⊢ ↑(↑lift fun x₂ => ↑(↑lift fun x₁ => of (Mul.mul x₁ x₂)) x) (of One.one) = x [PROOFSTEP] rw [lift.of] [GOAL] α : Type u β : Type v γ : Type w R : Type u_1 inst✝¹ : Monoid α inst✝ : Ring R src✝¹ : NonUnitalRing (FreeAbelianGroup α) := nonUnitalRing α src✝ : One (FreeAbelianGroup α) := one α x : FreeAbelianGroup α ⊢ ↑(↑lift fun x₁ => of (Mul.mul x₁ One.one)) x = x [PROOFSTEP] refine' FreeAbelianGroup.induction_on x rfl (fun L ↦ _) (fun L ih ↦ _) fun x1 x2 ih1 ih2 ↦ _ [GOAL] case refine'_1 α : Type u β : Type v γ : Type w R : Type u_1 inst✝¹ : Monoid α inst✝ : Ring R src✝¹ : NonUnitalRing (FreeAbelianGroup α) := nonUnitalRing α src✝ : One (FreeAbelianGroup α) := one α x : FreeAbelianGroup α L : α ⊢ ↑(↑lift fun x₁ => of (Mul.mul x₁ One.one)) (of L) = of L [PROOFSTEP] erw [lift.of] [GOAL] case refine'_1 α : Type u β : Type v γ : Type w R : Type u_1 inst✝¹ : Monoid α inst✝ : Ring R src✝¹ : NonUnitalRing (FreeAbelianGroup α) := nonUnitalRing α src✝ : One (FreeAbelianGroup α) := one α x : FreeAbelianGroup α L : α ⊢ of (Mul.mul L One.one) = of L [PROOFSTEP] congr 1 [GOAL] case refine'_1.e_x α : Type u β : Type v γ : Type w R : Type u_1 inst✝¹ : Monoid α inst✝ : Ring R src✝¹ : NonUnitalRing (FreeAbelianGroup α) := nonUnitalRing α src✝ : One (FreeAbelianGroup α) := one α x : FreeAbelianGroup α L : α ⊢ Mul.mul L One.one = L [PROOFSTEP] exact mul_one L [GOAL] case refine'_2 α : Type u β : Type v γ : Type w R : Type u_1 inst✝¹ : Monoid α inst✝ : Ring R src✝¹ : NonUnitalRing (FreeAbelianGroup α) := nonUnitalRing α src✝ : One (FreeAbelianGroup α) := one α x : FreeAbelianGroup α L : α ih : ↑(↑lift fun x₁ => of (Mul.mul x₁ One.one)) (of L) = of L ⊢ ↑(↑lift fun x₁ => of (Mul.mul x₁ One.one)) (-of L) = -of L [PROOFSTEP] rw [map_neg, ih] [GOAL] case refine'_3 α : Type u β : Type v γ : Type w R : Type u_1 inst✝¹ : Monoid α inst✝ : Ring R src✝¹ : NonUnitalRing (FreeAbelianGroup α) := nonUnitalRing α src✝ : One (FreeAbelianGroup α) := one α x x1 x2 : FreeAbelianGroup α ih1 : ↑(↑lift fun x₁ => of (Mul.mul x₁ One.one)) x1 = x1 ih2 : ↑(↑lift fun x₁ => of (Mul.mul x₁ One.one)) x2 = x2 ⊢ ↑(↑lift fun x₁ => of (Mul.mul x₁ One.one)) (x1 + x2) = x1 + x2 [PROOFSTEP] rw [map_add, ih1, ih2] [GOAL] α : Type u β : Type v γ : Type w R : Type u_1 inst✝¹ : Monoid α inst✝ : Ring R f : α →* R src✝ : (fun x => FreeAbelianGroup α →+ R) ↑f := ↑lift ↑f x y : FreeAbelianGroup α ⊢ OneHom.toFun { toFun := ↑(↑lift ↑f), map_one' := (_ : ↑(↑lift ↑f) (of 1) = 1) } (x * y) = OneHom.toFun { toFun := ↑(↑lift ↑f), map_one' := (_ : ↑(↑lift ↑f) (of 1) = 1) } x * OneHom.toFun { toFun := ↑(↑lift ↑f), map_one' := (_ : ↑(↑lift ↑f) (of 1) = 1) } y [PROOFSTEP] simp only [GOAL] α : Type u β : Type v γ : Type w R : Type u_1 inst✝¹ : Monoid α inst✝ : Ring R f : α →* R src✝ : (fun x => FreeAbelianGroup α →+ R) ↑f := ↑lift ↑f x y : FreeAbelianGroup α ⊢ ↑(↑lift ↑f) (x * y) = ↑(↑lift ↑f) x * ↑(↑lift ↑f) y [PROOFSTEP] refine' FreeAbelianGroup.induction_on y (by simp only [mul_zero, map_zero]) (fun L2 ↦ _) (fun L2 ih ↦ _) _ [GOAL] α : Type u β : Type v γ : Type w R : Type u_1 inst✝¹ : Monoid α inst✝ : Ring R f : α →* R src✝ : (fun x => FreeAbelianGroup α →+ R) ↑f := ↑lift ↑f x y : FreeAbelianGroup α ⊢ ↑(↑lift ↑f) (x * 0) = ↑(↑lift ↑f) x * ↑(↑lift ↑f) 0 [PROOFSTEP] simp only [mul_zero, map_zero] [GOAL] case refine'_1 α : Type u β : Type v γ : Type w R : Type u_1 inst✝¹ : Monoid α inst✝ : Ring R f : α →* R src✝ : (fun x => FreeAbelianGroup α →+ R) ↑f := ↑lift ↑f x y : FreeAbelianGroup α L2 : α ⊢ ↑(↑lift ↑f) (x * of L2) = ↑(↑lift ↑f) x * ↑(↑lift ↑f) (of L2) [PROOFSTEP] refine' FreeAbelianGroup.induction_on x (by simp only [zero_mul, map_zero]) (fun L1 ↦ _) (fun L1 ih ↦ _) _ [GOAL] α : Type u β : Type v γ : Type w R : Type u_1 inst✝¹ : Monoid α inst✝ : Ring R f : α →* R src✝ : (fun x => FreeAbelianGroup α →+ R) ↑f := ↑lift ↑f x y : FreeAbelianGroup α L2 : α ⊢ ↑(↑lift ↑f) (0 * of L2) = ↑(↑lift ↑f) 0 * ↑(↑lift ↑f) (of L2) [PROOFSTEP] simp only [zero_mul, map_zero] [GOAL] case refine'_1.refine'_1 α : Type u β : Type v γ : Type w R : Type u_1 inst✝¹ : Monoid α inst✝ : Ring R f : α →* R src✝ : (fun x => FreeAbelianGroup α →+ R) ↑f := ↑lift ↑f x y : FreeAbelianGroup α L2 L1 : α ⊢ ↑(↑lift ↑f) (of L1 * of L2) = ↑(↑lift ↑f) (of L1) * ↑(↑lift ↑f) (of L2) [PROOFSTEP] simp_rw [of_mul_of, lift.of] [GOAL] case refine'_1.refine'_1 α : Type u β : Type v γ : Type w R : Type u_1 inst✝¹ : Monoid α inst✝ : Ring R f : α →* R src✝ : (fun x => FreeAbelianGroup α →+ R) ↑f := ↑lift ↑f x y : FreeAbelianGroup α L2 L1 : α ⊢ ↑f (L1 * L2) = ↑f L1 * ↑f L2 [PROOFSTEP] exact f.map_mul _ _ [GOAL] case refine'_1.refine'_2 α : Type u β : Type v γ : Type w R : Type u_1 inst✝¹ : Monoid α inst✝ : Ring R f : α →* R src✝ : (fun x => FreeAbelianGroup α →+ R) ↑f := ↑lift ↑f x y : FreeAbelianGroup α L2 L1 : α ih : ↑(↑lift ↑f) (of L1 * of L2) = ↑(↑lift ↑f) (of L1) * ↑(↑lift ↑f) (of L2) ⊢ ↑(↑lift ↑f) (-of L1 * of L2) = ↑(↑lift ↑f) (-of L1) * ↑(↑lift ↑f) (of L2) [PROOFSTEP] simp_rw [neg_mul, map_neg, neg_mul] [GOAL] case refine'_1.refine'_2 α : Type u β : Type v γ : Type w R : Type u_1 inst✝¹ : Monoid α inst✝ : Ring R f : α →* R src✝ : (fun x => FreeAbelianGroup α →+ R) ↑f := ↑lift ↑f x y : FreeAbelianGroup α L2 L1 : α ih : ↑(↑lift ↑f) (of L1 * of L2) = ↑(↑lift ↑f) (of L1) * ↑(↑lift ↑f) (of L2) ⊢ -↑(↑lift ↑f) (of L1 * of L2) = -(↑(↑lift ↑f) (of L1) * ↑(↑lift ↑f) (of L2)) [PROOFSTEP] exact congr_arg Neg.neg ih [GOAL] case refine'_1.refine'_3 α : Type u β : Type v γ : Type w R : Type u_1 inst✝¹ : Monoid α inst✝ : Ring R f : α →* R src✝ : (fun x => FreeAbelianGroup α →+ R) ↑f := ↑lift ↑f x y : FreeAbelianGroup α L2 : α ⊢ ∀ (x y : FreeAbelianGroup α), ↑(↑lift ↑f) (x * of L2) = ↑(↑lift ↑f) x * ↑(↑lift ↑f) (of L2) → ↑(↑lift ↑f) (y * of L2) = ↑(↑lift ↑f) y * ↑(↑lift ↑f) (of L2) → ↑(↑lift ↑f) ((x + y) * of L2) = ↑(↑lift ↑f) (x + y) * ↑(↑lift ↑f) (of L2) [PROOFSTEP] intro x1 x2 ih1 ih2 [GOAL] case refine'_1.refine'_3 α : Type u β : Type v γ : Type w R : Type u_1 inst✝¹ : Monoid α inst✝ : Ring R f : α →* R src✝ : (fun x => FreeAbelianGroup α →+ R) ↑f := ↑lift ↑f x y : FreeAbelianGroup α L2 : α x1 x2 : FreeAbelianGroup α ih1 : ↑(↑lift ↑f) (x1 * of L2) = ↑(↑lift ↑f) x1 * ↑(↑lift ↑f) (of L2) ih2 : ↑(↑lift ↑f) (x2 * of L2) = ↑(↑lift ↑f) x2 * ↑(↑lift ↑f) (of L2) ⊢ ↑(↑lift ↑f) ((x1 + x2) * of L2) = ↑(↑lift ↑f) (x1 + x2) * ↑(↑lift ↑f) (of L2) [PROOFSTEP] simp only [add_mul, map_add, ih1, ih2] [GOAL] case refine'_2 α : Type u β : Type v γ : Type w R : Type u_1 inst✝¹ : Monoid α inst✝ : Ring R f : α →* R src✝ : (fun x => FreeAbelianGroup α →+ R) ↑f := ↑lift ↑f x y : FreeAbelianGroup α L2 : α ih : ↑(↑lift ↑f) (x * of L2) = ↑(↑lift ↑f) x * ↑(↑lift ↑f) (of L2) ⊢ ↑(↑lift ↑f) (x * -of L2) = ↑(↑lift ↑f) x * ↑(↑lift ↑f) (-of L2) [PROOFSTEP] rw [mul_neg, map_neg, map_neg, mul_neg, ih] [GOAL] case refine'_3 α : Type u β : Type v γ : Type w R : Type u_1 inst✝¹ : Monoid α inst✝ : Ring R f : α →* R src✝ : (fun x => FreeAbelianGroup α →+ R) ↑f := ↑lift ↑f x y : FreeAbelianGroup α ⊢ ∀ (x_1 y : FreeAbelianGroup α), ↑(↑lift ↑f) (x * x_1) = ↑(↑lift ↑f) x * ↑(↑lift ↑f) x_1 → ↑(↑lift ↑f) (x * y) = ↑(↑lift ↑f) x * ↑(↑lift ↑f) y → ↑(↑lift ↑f) (x * (x_1 + y)) = ↑(↑lift ↑f) x * ↑(↑lift ↑f) (x_1 + y) [PROOFSTEP] intro y1 y2 ih1 ih2 [GOAL] case refine'_3 α : Type u β : Type v γ : Type w R : Type u_1 inst✝¹ : Monoid α inst✝ : Ring R f : α →* R src✝ : (fun x => FreeAbelianGroup α →+ R) ↑f := ↑lift ↑f x y y1 y2 : FreeAbelianGroup α ih1 : ↑(↑lift ↑f) (x * y1) = ↑(↑lift ↑f) x * ↑(↑lift ↑f) y1 ih2 : ↑(↑lift ↑f) (x * y2) = ↑(↑lift ↑f) x * ↑(↑lift ↑f) y2 ⊢ ↑(↑lift ↑f) (x * (y1 + y2)) = ↑(↑lift ↑f) x * ↑(↑lift ↑f) (y1 + y2) [PROOFSTEP] rw [mul_add, map_add, map_add, mul_add, ih1, ih2] [GOAL] α : Type u β : Type v γ : Type w R : Type u_1 inst✝¹ : Monoid α inst✝ : Ring R f : α →* R ⊢ ∀ (x : α), ↑((fun F => MonoidHom.comp (↑F) ofMulHom) ((fun f => let src := ↑lift ↑f; { toMonoidHom := { toOneHom := { toFun := ↑(↑lift ↑f), map_one' := (_ : ↑(↑lift ↑f) (of 1) = 1) }, map_mul' := (_ : ∀ (x y : FreeAbelianGroup α), OneHom.toFun { toFun := ↑(↑lift ↑f), map_one' := (_ : ↑(↑lift ↑f) (of 1) = 1) } (x * y) = OneHom.toFun { toFun := ↑(↑lift ↑f), map_one' := (_ : ↑(↑lift ↑f) (of 1) = 1) } x * OneHom.toFun { toFun := ↑(↑lift ↑f), map_one' := (_ : ↑(↑lift ↑f) (of 1) = 1) } y) }, map_zero' := (_ : ZeroHom.toFun (↑src) 0 = 0), map_add' := (_ : ∀ (x y : FreeAbelianGroup α), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }) f)) x = ↑f x [PROOFSTEP] simp only [RingHom.coe_monoidHom_mk, MonoidHom.coe_comp, MonoidHom.coe_mk, OneHom.coe_mk, ofMulHom_coe, Function.comp_apply, lift.of, forall_const] [GOAL] α : Type u β : Type v γ : Type w R : Type u_1 inst✝¹ : Monoid α inst✝ : Ring R F : FreeAbelianGroup α →+* R ⊢ (fun f => ↑f) ((fun f => let src := ↑lift ↑f; { toMonoidHom := { toOneHom := { toFun := ↑(↑lift ↑f), map_one' := (_ : ↑(↑lift ↑f) (of 1) = 1) }, map_mul' := (_ : ∀ (x y : FreeAbelianGroup α), OneHom.toFun { toFun := ↑(↑lift ↑f), map_one' := (_ : ↑(↑lift ↑f) (of 1) = 1) } (x * y) = OneHom.toFun { toFun := ↑(↑lift ↑f), map_one' := (_ : ↑(↑lift ↑f) (of 1) = 1) } x * OneHom.toFun { toFun := ↑(↑lift ↑f), map_one' := (_ : ↑(↑lift ↑f) (of 1) = 1) } y) }, map_zero' := (_ : ZeroHom.toFun (↑src) 0 = 0), map_add' := (_ : ∀ (x y : FreeAbelianGroup α), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }) ((fun F => MonoidHom.comp (↑F) ofMulHom) F)) = (fun f => ↑f) F [PROOFSTEP] simp only [GOAL] α : Type u β : Type v γ : Type w R : Type u_1 inst✝¹ : Monoid α inst✝ : Ring R F : FreeAbelianGroup α →+* R ⊢ ↑{ toMonoidHom := { toOneHom := { toFun := ↑(↑lift ↑(MonoidHom.comp (↑F) ofMulHom)), map_one' := (_ : ↑(↑lift ↑((fun F => MonoidHom.comp (↑F) ofMulHom) F)) (of 1) = 1) }, map_mul' := (_ : ∀ (x y : FreeAbelianGroup α), OneHom.toFun { toFun := ↑(↑lift ↑((fun F => MonoidHom.comp (↑F) ofMulHom) F)), map_one' := (_ : ↑(↑lift ↑((fun F => MonoidHom.comp (↑F) ofMulHom) F)) (of 1) = 1) } (x * y) = OneHom.toFun { toFun := ↑(↑lift ↑((fun F => MonoidHom.comp (↑F) ofMulHom) F)), map_one' := (_ : ↑(↑lift ↑((fun F => MonoidHom.comp (↑F) ofMulHom) F)) (of 1) = 1) } x * OneHom.toFun { toFun := ↑(↑lift ↑((fun F => MonoidHom.comp (↑F) ofMulHom) F)), map_one' := (_ : ↑(↑lift ↑((fun F => MonoidHom.comp (↑F) ofMulHom) F)) (of 1) = 1) } y) }, map_zero' := (_ : ZeroHom.toFun (↑(↑lift ↑((fun F => MonoidHom.comp (↑F) ofMulHom) F))) 0 = 0), map_add' := (_ : ∀ (x y : FreeAbelianGroup α), ZeroHom.toFun (↑(↑lift ↑((fun F => MonoidHom.comp (↑F) ofMulHom) F))) (x + y) = ZeroHom.toFun (↑(↑lift ↑((fun F => MonoidHom.comp (↑F) ofMulHom) F))) x + ZeroHom.toFun (↑(↑lift ↑((fun F => MonoidHom.comp (↑F) ofMulHom) F))) y) } = ↑F [PROOFSTEP] rw [← lift.apply_symm_apply (↑F : FreeAbelianGroup α →+ R)] [GOAL] α : Type u β : Type v γ : Type w R : Type u_1 inst✝¹ : Monoid α inst✝ : Ring R F : FreeAbelianGroup α →+* R ⊢ ↑{ toMonoidHom := { toOneHom := { toFun := ↑(↑lift ↑(MonoidHom.comp (↑F) ofMulHom)), map_one' := (_ : ↑(↑lift ↑((fun F => MonoidHom.comp (↑F) ofMulHom) F)) (of 1) = 1) }, map_mul' := (_ : ∀ (x y : FreeAbelianGroup α), OneHom.toFun { toFun := ↑(↑lift ↑((fun F => MonoidHom.comp (↑F) ofMulHom) F)), map_one' := (_ : ↑(↑lift ↑((fun F => MonoidHom.comp (↑F) ofMulHom) F)) (of 1) = 1) } (x * y) = OneHom.toFun { toFun := ↑(↑lift ↑((fun F => MonoidHom.comp (↑F) ofMulHom) F)), map_one' := (_ : ↑(↑lift ↑((fun F => MonoidHom.comp (↑F) ofMulHom) F)) (of 1) = 1) } x * OneHom.toFun { toFun := ↑(↑lift ↑((fun F => MonoidHom.comp (↑F) ofMulHom) F)), map_one' := (_ : ↑(↑lift ↑((fun F => MonoidHom.comp (↑F) ofMulHom) F)) (of 1) = 1) } y) }, map_zero' := (_ : ZeroHom.toFun (↑(↑lift ↑((fun F => MonoidHom.comp (↑F) ofMulHom) F))) 0 = 0), map_add' := (_ : ∀ (x y : FreeAbelianGroup α), ZeroHom.toFun (↑(↑lift ↑((fun F => MonoidHom.comp (↑F) ofMulHom) F))) (x + y) = ZeroHom.toFun (↑(↑lift ↑((fun F => MonoidHom.comp (↑F) ofMulHom) F))) x + ZeroHom.toFun (↑(↑lift ↑((fun F => MonoidHom.comp (↑F) ofMulHom) F))) y) } = ↑lift (↑lift.symm ↑F) [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w inst✝ : CommMonoid α src✝ : Ring (FreeAbelianGroup α) := ring α x y : FreeAbelianGroup α ⊢ x * y = y * x [PROOFSTEP] refine' FreeAbelianGroup.induction_on x (zero_mul y) _ _ _ [GOAL] case refine'_1 α : Type u β : Type v γ : Type w inst✝ : CommMonoid α src✝ : Ring (FreeAbelianGroup α) := ring α x y : FreeAbelianGroup α ⊢ ∀ (x : α), of x * y = y * of x [PROOFSTEP] intro s [GOAL] case refine'_1 α : Type u β : Type v γ : Type w inst✝ : CommMonoid α src✝ : Ring (FreeAbelianGroup α) := ring α x y : FreeAbelianGroup α s : α ⊢ of s * y = y * of s [PROOFSTEP] refine' FreeAbelianGroup.induction_on y (zero_mul _).symm _ _ _ [GOAL] case refine'_1.refine'_1 α : Type u β : Type v γ : Type w inst✝ : CommMonoid α src✝ : Ring (FreeAbelianGroup α) := ring α x y : FreeAbelianGroup α s : α ⊢ ∀ (x : α), of s * of x = of x * of s [PROOFSTEP] intro t [GOAL] case refine'_1.refine'_1 α : Type u β : Type v γ : Type w inst✝ : CommMonoid α src✝ : Ring (FreeAbelianGroup α) := ring α x y : FreeAbelianGroup α s t : α ⊢ of s * of t = of t * of s [PROOFSTEP] dsimp only [(· * ·), Mul.mul] [GOAL] case refine'_1.refine'_1 α : Type u β : Type v γ : Type w inst✝ : CommMonoid α src✝ : Ring (FreeAbelianGroup α) := ring α x y : FreeAbelianGroup α s t : α ⊢ ↑(↑lift fun x₂ => ↑(↑lift fun x₁ => of (Mul.mul x₁ x₂)) (of s)) (of t) = ↑(↑lift fun x₂ => ↑(↑lift fun x₁ => of (Mul.mul x₁ x₂)) (of t)) (of s) [PROOFSTEP] iterate 4 rw [lift.of] [GOAL] case refine'_1.refine'_1 α : Type u β : Type v γ : Type w inst✝ : CommMonoid α src✝ : Ring (FreeAbelianGroup α) := ring α x y : FreeAbelianGroup α s t : α ⊢ ↑(↑lift fun x₂ => ↑(↑lift fun x₁ => of (Mul.mul x₁ x₂)) (of s)) (of t) = ↑(↑lift fun x₂ => ↑(↑lift fun x₁ => of (Mul.mul x₁ x₂)) (of t)) (of s) [PROOFSTEP] rw [lift.of] [GOAL] case refine'_1.refine'_1 α : Type u β : Type v γ : Type w inst✝ : CommMonoid α src✝ : Ring (FreeAbelianGroup α) := ring α x y : FreeAbelianGroup α s t : α ⊢ ↑(↑lift fun x₁ => of (Mul.mul x₁ t)) (of s) = ↑(↑lift fun x₂ => ↑(↑lift fun x₁ => of (Mul.mul x₁ x₂)) (of t)) (of s) [PROOFSTEP] rw [lift.of] [GOAL] case refine'_1.refine'_1 α : Type u β : Type v γ : Type w inst✝ : CommMonoid α src✝ : Ring (FreeAbelianGroup α) := ring α x y : FreeAbelianGroup α s t : α ⊢ of (Mul.mul s t) = ↑(↑lift fun x₂ => ↑(↑lift fun x₁ => of (Mul.mul x₁ x₂)) (of t)) (of s) [PROOFSTEP] rw [lift.of] [GOAL] case refine'_1.refine'_1 α : Type u β : Type v γ : Type w inst✝ : CommMonoid α src✝ : Ring (FreeAbelianGroup α) := ring α x y : FreeAbelianGroup α s t : α ⊢ of (Mul.mul s t) = ↑(↑lift fun x₁ => of (Mul.mul x₁ s)) (of t) [PROOFSTEP] rw [lift.of] [GOAL] case refine'_1.refine'_1 α : Type u β : Type v γ : Type w inst✝ : CommMonoid α src✝ : Ring (FreeAbelianGroup α) := ring α x y : FreeAbelianGroup α s t : α ⊢ of (Mul.mul s t) = of (Mul.mul t s) [PROOFSTEP] congr 1 [GOAL] case refine'_1.refine'_1.e_x α : Type u β : Type v γ : Type w inst✝ : CommMonoid α src✝ : Ring (FreeAbelianGroup α) := ring α x y : FreeAbelianGroup α s t : α ⊢ Mul.mul s t = Mul.mul t s [PROOFSTEP] exact mul_comm _ _ [GOAL] case refine'_1.refine'_2 α : Type u β : Type v γ : Type w inst✝ : CommMonoid α src✝ : Ring (FreeAbelianGroup α) := ring α x y : FreeAbelianGroup α s : α ⊢ ∀ (x : α), of s * of x = of x * of s → of s * -of x = -of x * of s [PROOFSTEP] intro t ih [GOAL] case refine'_1.refine'_2 α : Type u β : Type v γ : Type w inst✝ : CommMonoid α src✝ : Ring (FreeAbelianGroup α) := ring α x y : FreeAbelianGroup α s t : α ih : of s * of t = of t * of s ⊢ of s * -of t = -of t * of s [PROOFSTEP] rw [mul_neg, ih, neg_mul_eq_neg_mul] [GOAL] case refine'_1.refine'_3 α : Type u β : Type v γ : Type w inst✝ : CommMonoid α src✝ : Ring (FreeAbelianGroup α) := ring α x y : FreeAbelianGroup α s : α ⊢ ∀ (x y : FreeAbelianGroup α), of s * x = x * of s → of s * y = y * of s → of s * (x + y) = (x + y) * of s [PROOFSTEP] intro y1 y2 ih1 ih2 [GOAL] case refine'_1.refine'_3 α : Type u β : Type v γ : Type w inst✝ : CommMonoid α src✝ : Ring (FreeAbelianGroup α) := ring α x y : FreeAbelianGroup α s : α y1 y2 : FreeAbelianGroup α ih1 : of s * y1 = y1 * of s ih2 : of s * y2 = y2 * of s ⊢ of s * (y1 + y2) = (y1 + y2) * of s [PROOFSTEP] rw [mul_add, add_mul, ih1, ih2] [GOAL] case refine'_2 α : Type u β : Type v γ : Type w inst✝ : CommMonoid α src✝ : Ring (FreeAbelianGroup α) := ring α x y : FreeAbelianGroup α ⊢ ∀ (x : α), of x * y = y * of x → -of x * y = y * -of x [PROOFSTEP] intro s ih [GOAL] case refine'_2 α : Type u β : Type v γ : Type w inst✝ : CommMonoid α src✝ : Ring (FreeAbelianGroup α) := ring α x y : FreeAbelianGroup α s : α ih : of s * y = y * of s ⊢ -of s * y = y * -of s [PROOFSTEP] rw [neg_mul, ih, neg_mul_eq_mul_neg] [GOAL] case refine'_3 α : Type u β : Type v γ : Type w inst✝ : CommMonoid α src✝ : Ring (FreeAbelianGroup α) := ring α x y : FreeAbelianGroup α ⊢ ∀ (x y_1 : FreeAbelianGroup α), x * y = y * x → y_1 * y = y * y_1 → (x + y_1) * y = y * (x + y_1) [PROOFSTEP] intro x1 x2 ih1 ih2 [GOAL] case refine'_3 α : Type u β : Type v γ : Type w inst✝ : CommMonoid α src✝ : Ring (FreeAbelianGroup α) := ring α x y x1 x2 : FreeAbelianGroup α ih1 : x1 * y = y * x1 ih2 : x2 * y = y * x2 ⊢ (x1 + x2) * y = y * (x1 + x2) [PROOFSTEP] rw [add_mul, mul_add, ih1, ih2] [GOAL] α : Type u β : Type v γ : Type w x : FreeAbelianGroup PEmpty ⊢ ∀ (x y : FreeAbelianGroup PEmpty), x = default → y = default → x + y = default [PROOFSTEP] rintro - - rfl rfl [GOAL] α : Type u β : Type v γ : Type w x : FreeAbelianGroup PEmpty ⊢ default + default = default [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w T : Type u_1 inst✝ : Unique T z : FreeAbelianGroup T ⊢ (fun n => n • of default) (↑(↑lift fun x => 1) 0) = 0 [PROOFSTEP] simp only [zero_smul, AddMonoidHom.map_zero] [GOAL] α : Type u β : Type v γ : Type w T : Type u_1 inst✝ : Unique T z : FreeAbelianGroup T ⊢ (fun n => n • of default) (↑(↑lift fun x => 1) (of default)) = of default [PROOFSTEP] simp only [one_smul, lift.of] [GOAL] α : Type u β : Type v γ : Type w T : Type u_1 inst✝ : Unique T z : FreeAbelianGroup T ⊢ (fun n => n • of default) (↑(↑lift fun x => 1) (of default)) = of default → (fun n => n • of default) (↑(↑lift fun x => 1) (-of default)) = -of default [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w T : Type u_1 inst✝ : Unique T z x y : FreeAbelianGroup T hx : (fun n => n • of default) (↑(↑lift fun x => 1) x) = x hy : (fun n => n • of default) (↑(↑lift fun x => 1) y) = y ⊢ (fun n => n • of default) (↑(↑lift fun x => 1) (x + y)) = x + y [PROOFSTEP] simp only [AddMonoidHom.map_add, add_smul] at * [GOAL] α : Type u β : Type v γ : Type w T : Type u_1 inst✝ : Unique T z x y : FreeAbelianGroup T hx : ↑(↑lift fun x => 1) x • of default = x hy : ↑(↑lift fun x => 1) y • of default = y ⊢ ↑(↑lift fun x => 1) x • of default + ↑(↑lift fun x => 1) y • of default = x + y [PROOFSTEP] rw [hx, hy] [GOAL] α : Type u β : Type v γ : Type w T : Type u_1 inst✝ : Unique T n : ℤ ⊢ ↑(↑lift fun x => 1) ((fun n => n • of default) n) = n [PROOFSTEP] rw [AddMonoidHom.map_zsmul, lift.of] [GOAL] α : Type u β : Type v γ : Type w T : Type u_1 inst✝ : Unique T n : ℤ ⊢ n • 1 = n [PROOFSTEP] exact zsmul_int_one n [GOAL] α✝ : Type u β✝ : Type v γ : Type w α : Type u_1 β : Type u_2 f : α ≃ β ⊢ Function.LeftInverse ↑(map ↑f.symm) ↑(map ↑f) [PROOFSTEP] intro x [GOAL] α✝ : Type u β✝ : Type v γ : Type w α : Type u_1 β : Type u_2 f : α ≃ β x : FreeAbelianGroup α ⊢ ↑(map ↑f.symm) (↑(map ↑f) x) = x [PROOFSTEP] rw [← map_comp_apply, Equiv.symm_comp_self, map_id] [GOAL] α✝ : Type u β✝ : Type v γ : Type w α : Type u_1 β : Type u_2 f : α ≃ β x : FreeAbelianGroup α ⊢ ↑(AddMonoidHom.id (FreeAbelianGroup α)) x = x [PROOFSTEP] rfl [GOAL] α✝ : Type u β✝ : Type v γ : Type w α : Type u_1 β : Type u_2 f : α ≃ β ⊢ Function.RightInverse ↑(map ↑f.symm) ↑(map ↑f) [PROOFSTEP] intro x [GOAL] α✝ : Type u β✝ : Type v γ : Type w α : Type u_1 β : Type u_2 f : α ≃ β x : FreeAbelianGroup β ⊢ ↑(map ↑f) (↑(map ↑f.symm) x) = x [PROOFSTEP] rw [← map_comp_apply, Equiv.self_comp_symm, map_id] [GOAL] α✝ : Type u β✝ : Type v γ : Type w α : Type u_1 β : Type u_2 f : α ≃ β x : FreeAbelianGroup β ⊢ ↑(AddMonoidHom.id (FreeAbelianGroup β)) x = x [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.GroupTheory.FreeAbelianGroup", "llama_tokens": 25559}
[GOAL] R : Type u_1 M : Type u_2 inst✝⁴ : Monoid R inst✝³ : MulAction R M inst✝² : MulOneClass M inst✝¹ : IsScalarTower R M M inst✝ : SMulCommClass R M M a : SubMulAction R M ⊢ 1 * a = a [PROOFSTEP] ext x [GOAL] case h R : Type u_1 M : Type u_2 inst✝⁴ : Monoid R inst✝³ : MulAction R M inst✝² : MulOneClass M inst✝¹ : IsScalarTower R M M inst✝ : SMulCommClass R M M a : SubMulAction R M x : M ⊢ x ∈ 1 * a ↔ x ∈ a [PROOFSTEP] simp only [mem_mul, mem_one, smul_mul_assoc, exists_and_left, exists_exists_eq_and, one_mul] [GOAL] case h R : Type u_1 M : Type u_2 inst✝⁴ : Monoid R inst✝³ : MulAction R M inst✝² : MulOneClass M inst✝¹ : IsScalarTower R M M inst✝ : SMulCommClass R M M a : SubMulAction R M x : M ⊢ (∃ a_1 x_1, x_1 ∈ a ∧ a_1 • x_1 = x) ↔ x ∈ a [PROOFSTEP] refine' ⟨_, fun hx => ⟨1, x, hx, one_smul _ _⟩⟩ [GOAL] case h R : Type u_1 M : Type u_2 inst✝⁴ : Monoid R inst✝³ : MulAction R M inst✝² : MulOneClass M inst✝¹ : IsScalarTower R M M inst✝ : SMulCommClass R M M a : SubMulAction R M x : M ⊢ (∃ a_1 x_1, x_1 ∈ a ∧ a_1 • x_1 = x) → x ∈ a [PROOFSTEP] rintro ⟨r, y, hy, rfl⟩ [GOAL] case h.intro.intro.intro R : Type u_1 M : Type u_2 inst✝⁴ : Monoid R inst✝³ : MulAction R M inst✝² : MulOneClass M inst✝¹ : IsScalarTower R M M inst✝ : SMulCommClass R M M a : SubMulAction R M r : R y : M hy : y ∈ a ⊢ r • y ∈ a [PROOFSTEP] exact smul_mem _ _ hy [GOAL] R : Type u_1 M : Type u_2 inst✝⁴ : Monoid R inst✝³ : MulAction R M inst✝² : MulOneClass M inst✝¹ : IsScalarTower R M M inst✝ : SMulCommClass R M M a : SubMulAction R M ⊢ a * 1 = a [PROOFSTEP] ext x [GOAL] case h R : Type u_1 M : Type u_2 inst✝⁴ : Monoid R inst✝³ : MulAction R M inst✝² : MulOneClass M inst✝¹ : IsScalarTower R M M inst✝ : SMulCommClass R M M a : SubMulAction R M x : M ⊢ x ∈ a * 1 ↔ x ∈ a [PROOFSTEP] simp only [mem_mul, mem_one, mul_smul_comm, exists_and_left, exists_exists_eq_and, mul_one] [GOAL] case h R : Type u_1 M : Type u_2 inst✝⁴ : Monoid R inst✝³ : MulAction R M inst✝² : MulOneClass M inst✝¹ : IsScalarTower R M M inst✝ : SMulCommClass R M M a : SubMulAction R M x : M ⊢ (∃ y, y ∈ a ∧ ∃ a, a • y = x) ↔ x ∈ a [PROOFSTEP] constructor [GOAL] case h.mp R : Type u_1 M : Type u_2 inst✝⁴ : Monoid R inst✝³ : MulAction R M inst✝² : MulOneClass M inst✝¹ : IsScalarTower R M M inst✝ : SMulCommClass R M M a : SubMulAction R M x : M ⊢ (∃ y, y ∈ a ∧ ∃ a, a • y = x) → x ∈ a [PROOFSTEP] rintro ⟨y, hy, r, rfl⟩ [GOAL] case h.mp.intro.intro.intro R : Type u_1 M : Type u_2 inst✝⁴ : Monoid R inst✝³ : MulAction R M inst✝² : MulOneClass M inst✝¹ : IsScalarTower R M M inst✝ : SMulCommClass R M M a : SubMulAction R M y : M hy : y ∈ a r : R ⊢ r • y ∈ a [PROOFSTEP] exact smul_mem _ _ hy [GOAL] case h.mpr R : Type u_1 M : Type u_2 inst✝⁴ : Monoid R inst✝³ : MulAction R M inst✝² : MulOneClass M inst✝¹ : IsScalarTower R M M inst✝ : SMulCommClass R M M a : SubMulAction R M x : M ⊢ x ∈ a → ∃ y, y ∈ a ∧ ∃ a, a • y = x [PROOFSTEP] intro hx [GOAL] case h.mpr R : Type u_1 M : Type u_2 inst✝⁴ : Monoid R inst✝³ : MulAction R M inst✝² : MulOneClass M inst✝¹ : IsScalarTower R M M inst✝ : SMulCommClass R M M a : SubMulAction R M x : M hx : x ∈ a ⊢ ∃ y, y ∈ a ∧ ∃ a, a • y = x [PROOFSTEP] exact ⟨x, hx, 1, one_smul _ _⟩ [GOAL] R : Type u_1 M : Type u_2 inst✝⁴ : Monoid R inst✝³ : MulAction R M inst✝² : Monoid M inst✝¹ : IsScalarTower R M M inst✝ : SMulCommClass R M M p : SubMulAction R M x✝ : 1 ≠ 0 ⊢ ↑(p ^ 1) = ↑p ^ 1 [PROOFSTEP] rw [pow_one, pow_one] [GOAL] R : Type u_1 M : Type u_2 inst✝⁴ : Monoid R inst✝³ : MulAction R M inst✝² : Monoid M inst✝¹ : IsScalarTower R M M inst✝ : SMulCommClass R M M p : SubMulAction R M n : ℕ x✝ : n + 2 ≠ 0 ⊢ ↑(p ^ (n + 2)) = ↑p ^ (n + 2) [PROOFSTEP] rw [pow_succ _ (n + 1), pow_succ _ (n + 1), coe_mul, coe_pow _ n.succ_ne_zero] [GOAL] R : Type u_1 M : Type u_2 inst✝⁴ : Monoid R inst✝³ : MulAction R M inst✝² : Monoid M inst✝¹ : IsScalarTower R M M inst✝ : SMulCommClass R M M p : SubMulAction R M ⊢ ↑p ^ 0 ⊆ ↑(p ^ 0) [PROOFSTEP] rw [pow_zero, pow_zero] [GOAL] R : Type u_1 M : Type u_2 inst✝⁴ : Monoid R inst✝³ : MulAction R M inst✝² : Monoid M inst✝¹ : IsScalarTower R M M inst✝ : SMulCommClass R M M p : SubMulAction R M ⊢ 1 ⊆ ↑1 [PROOFSTEP] exact subset_coe_one [GOAL] R : Type u_1 M : Type u_2 inst✝⁴ : Monoid R inst✝³ : MulAction R M inst✝² : Monoid M inst✝¹ : IsScalarTower R M M inst✝ : SMulCommClass R M M p : SubMulAction R M n : ℕ ⊢ ↑p ^ (n + 1) ⊆ ↑(p ^ (n + 1)) [PROOFSTEP] rw [← Nat.succ_eq_add_one, coe_pow _ n.succ_ne_zero]
{"mathlib_filename": "Mathlib.GroupTheory.GroupAction.SubMulAction.Pointwise", "llama_tokens": 2380}
{"mathlib_filename": "Mathlib.GroupTheory.GroupAction.DomAct.ActionHom", "llama_tokens": 0}
[GOAL] β : Type u_1 M : Type ?u.36709 α : Type ?u.36708 inst✝² : SMul M α inst✝¹ : FaithfulSMul M α inst✝ : Nontrivial β c₁ c₂ : Mᵈᵐᵃ h : ∀ (a : α → β), c₁ • a = c₂ • a a : α ⊢ ↑mk.symm c₁ • a = ↑mk.symm c₂ • a [PROOFSTEP] rcases exists_pair_ne β with ⟨x, y, hne⟩ [GOAL] case intro.intro β : Type u_1 M : Type ?u.36709 α : Type ?u.36708 inst✝² : SMul M α inst✝¹ : FaithfulSMul M α inst✝ : Nontrivial β c₁ c₂ : Mᵈᵐᵃ h : ∀ (a : α → β), c₁ • a = c₂ • a a : α x y : β hne : x ≠ y ⊢ ↑mk.symm c₁ • a = ↑mk.symm c₂ • a [PROOFSTEP] contrapose! hne [GOAL] case intro.intro β : Type u_1 M : Type ?u.36709 α : Type ?u.36708 inst✝² : SMul M α inst✝¹ : FaithfulSMul M α inst✝ : Nontrivial β c₁ c₂ : Mᵈᵐᵃ h : ∀ (a : α → β), c₁ • a = c₂ • a a : α x y : β hne : ↑mk.symm c₁ • a ≠ ↑mk.symm c₂ • a ⊢ x = y [PROOFSTEP] haveI := Classical.decEq α [GOAL] case intro.intro β : Type u_1 M : Type ?u.36709 α : Type ?u.36708 inst✝² : SMul M α inst✝¹ : FaithfulSMul M α inst✝ : Nontrivial β c₁ c₂ : Mᵈᵐᵃ h : ∀ (a : α → β), c₁ • a = c₂ • a a : α x y : β hne : ↑mk.symm c₁ • a ≠ ↑mk.symm c₂ • a this : DecidableEq α ⊢ x = y [PROOFSTEP] replace h := congr_fun (h (update (const α x) (mk.symm c₂ • a) y)) a [GOAL] case intro.intro β : Type u_1 M : Type ?u.36709 α : Type ?u.36708 inst✝² : SMul M α inst✝¹ : FaithfulSMul M α inst✝ : Nontrivial β c₁ c₂ : Mᵈᵐᵃ a : α x y : β hne : ↑mk.symm c₁ • a ≠ ↑mk.symm c₂ • a this : DecidableEq α h : (c₁ • update (const α x) (↑mk.symm c₂ • a) y) a = (c₂ • update (const α x) (↑mk.symm c₂ • a) y) a ⊢ x = y [PROOFSTEP] simpa [smul_apply, hne] using h
{"mathlib_filename": "Mathlib.GroupTheory.GroupAction.DomAct.Basic", "llama_tokens": 923}
[GOAL] M₀ : Type ?u.8 inst✝ : MonoidWithZero M₀ ⊢ 1 ∈ { carrier := {x | ∀ (y : M₀), y * x = 0 → y = 0}, mul_mem' := (_ : ∀ {x y : M₀}, x ∈ {x | ∀ (y : M₀), y * x = 0 → y = 0} → y ∈ {x | ∀ (y : M₀), y * x = 0 → y = 0} → ∀ (z : M₀), z * (x * y) = 0 → z = 0) }.carrier [PROOFSTEP] simp [GOAL] M₀ : Type ?u.2171 inst✝ : MonoidWithZero M₀ ⊢ 1 ∈ { carrier := {x | ∀ (y : M₀), x * y = 0 → y = 0}, mul_mem' := (_ : ∀ {x y : M₀}, x ∈ {x | ∀ (y : M₀), x * y = 0 → y = 0} → y ∈ {x | ∀ (y : M₀), x * y = 0 → y = 0} → ∀ (z : M₀), x * y * z = 0 → z = 0) }.carrier [PROOFSTEP] simp [GOAL] M₀✝ : Type ?u.4317 inst✝¹ : MonoidWithZero M₀✝ M₀ : Type u_1 inst✝ : CommMonoidWithZero M₀ ⊢ nonZeroDivisorsLeft M₀ = nonZeroDivisorsRight M₀ [PROOFSTEP] ext x [GOAL] case h M₀✝ : Type ?u.4317 inst✝¹ : MonoidWithZero M₀✝ M₀ : Type u_1 inst✝ : CommMonoidWithZero M₀ x : M₀ ⊢ x ∈ nonZeroDivisorsLeft M₀ ↔ x ∈ nonZeroDivisorsRight M₀ [PROOFSTEP] simp [mul_comm x] [GOAL] M₀ : Type u_1 inst✝² : MonoidWithZero M₀ inst✝¹ : NoZeroDivisors M₀ inst✝ : Nontrivial M₀ ⊢ ↑(nonZeroDivisorsLeft M₀) = {x | x ≠ 0} [PROOFSTEP] ext x [GOAL] case h M₀ : Type u_1 inst✝² : MonoidWithZero M₀ inst✝¹ : NoZeroDivisors M₀ inst✝ : Nontrivial M₀ x : M₀ ⊢ x ∈ ↑(nonZeroDivisorsLeft M₀) ↔ x ∈ {x | x ≠ 0} [PROOFSTEP] simp only [SetLike.mem_coe, mem_nonZeroDivisorsLeft_iff, mul_eq_zero, forall_eq_or_imp, true_and, Set.mem_setOf_eq] [GOAL] case h M₀ : Type u_1 inst✝² : MonoidWithZero M₀ inst✝¹ : NoZeroDivisors M₀ inst✝ : Nontrivial M₀ x : M₀ ⊢ (∀ (a : M₀), x = 0 → a = 0) ↔ x ≠ 0 [PROOFSTEP] refine' ⟨fun h ↦ _, fun hx y hx' ↦ by contradiction⟩ [GOAL] M₀ : Type u_1 inst✝² : MonoidWithZero M₀ inst✝¹ : NoZeroDivisors M₀ inst✝ : Nontrivial M₀ x : M₀ hx : x ≠ 0 y : M₀ hx' : x = 0 ⊢ y = 0 [PROOFSTEP] contradiction [GOAL] case h M₀ : Type u_1 inst✝² : MonoidWithZero M₀ inst✝¹ : NoZeroDivisors M₀ inst✝ : Nontrivial M₀ x : M₀ h : ∀ (a : M₀), x = 0 → a = 0 ⊢ x ≠ 0 [PROOFSTEP] contrapose! h [GOAL] case h M₀ : Type u_1 inst✝² : MonoidWithZero M₀ inst✝¹ : NoZeroDivisors M₀ inst✝ : Nontrivial M₀ x : M₀ h : x = 0 ⊢ ∃ a, x = 0 ∧ a ≠ 0 [PROOFSTEP] exact ⟨1, h, one_ne_zero⟩ [GOAL] M₀ : Type u_1 inst✝² : MonoidWithZero M₀ inst✝¹ : NoZeroDivisors M₀ inst✝ : Nontrivial M₀ ⊢ ↑(nonZeroDivisorsRight M₀) = {x | x ≠ 0} [PROOFSTEP] ext x [GOAL] case h M₀ : Type u_1 inst✝² : MonoidWithZero M₀ inst✝¹ : NoZeroDivisors M₀ inst✝ : Nontrivial M₀ x : M₀ ⊢ x ∈ ↑(nonZeroDivisorsRight M₀) ↔ x ∈ {x | x ≠ 0} [PROOFSTEP] simp only [SetLike.mem_coe, mem_nonZeroDivisorsRight_iff, mul_eq_zero, Set.mem_setOf_eq] [GOAL] case h M₀ : Type u_1 inst✝² : MonoidWithZero M₀ inst✝¹ : NoZeroDivisors M₀ inst✝ : Nontrivial M₀ x : M₀ ⊢ (∀ (y : M₀), x = 0 ∨ y = 0 → y = 0) ↔ x ≠ 0 [PROOFSTEP] refine' ⟨fun h ↦ _, fun hx y hx' ↦ by aesop⟩ [GOAL] M₀ : Type u_1 inst✝² : MonoidWithZero M₀ inst✝¹ : NoZeroDivisors M₀ inst✝ : Nontrivial M₀ x : M₀ hx : x ≠ 0 y : M₀ hx' : x = 0 ∨ y = 0 ⊢ y = 0 [PROOFSTEP] aesop [GOAL] case h M₀ : Type u_1 inst✝² : MonoidWithZero M₀ inst✝¹ : NoZeroDivisors M₀ inst✝ : Nontrivial M₀ x : M₀ h : ∀ (y : M₀), x = 0 ∨ y = 0 → y = 0 ⊢ x ≠ 0 [PROOFSTEP] contrapose! h [GOAL] case h M₀ : Type u_1 inst✝² : MonoidWithZero M₀ inst✝¹ : NoZeroDivisors M₀ inst✝ : Nontrivial M₀ x : M₀ h : x = 0 ⊢ ∃ y, (x = 0 ∨ y = 0) ∧ y ≠ 0 [PROOFSTEP] exact ⟨1, Or.inl h, one_ne_zero⟩
{"mathlib_filename": "Mathlib.GroupTheory.Submonoid.ZeroDivisors", "llama_tokens": 1872}
[GOAL] M✝ : Type u_1 N : Type u_2 A✝ : Type u_3 inst✝⁴ : MulOneClass M✝ s : Set M✝ inst✝³ : AddZeroClass A✝ t : Set A✝ M : Type u_4 A : Type u_5 inst✝² : Monoid M inst✝¹ : SetLike A M inst✝ : SubmonoidClass A M S : A x : M hx : x ∈ S ⊢ x ^ 0 ∈ S [PROOFSTEP] rw [pow_zero] [GOAL] M✝ : Type u_1 N : Type u_2 A✝ : Type u_3 inst✝⁴ : MulOneClass M✝ s : Set M✝ inst✝³ : AddZeroClass A✝ t : Set A✝ M : Type u_4 A : Type u_5 inst✝² : Monoid M inst✝¹ : SetLike A M inst✝ : SubmonoidClass A M S : A x : M hx : x ∈ S ⊢ 1 ∈ S [PROOFSTEP] exact OneMemClass.one_mem S [GOAL] M✝ : Type u_1 N : Type u_2 A✝ : Type u_3 inst✝⁴ : MulOneClass M✝ s : Set M✝ inst✝³ : AddZeroClass A✝ t : Set A✝ M : Type u_4 A : Type u_5 inst✝² : Monoid M inst✝¹ : SetLike A M inst✝ : SubmonoidClass A M S : A x : M hx : x ∈ S n : ℕ ⊢ x ^ (n + 1) ∈ S [PROOFSTEP] rw [pow_succ] [GOAL] M✝ : Type u_1 N : Type u_2 A✝ : Type u_3 inst✝⁴ : MulOneClass M✝ s : Set M✝ inst✝³ : AddZeroClass A✝ t : Set A✝ M : Type u_4 A : Type u_5 inst✝² : Monoid M inst✝¹ : SetLike A M inst✝ : SubmonoidClass A M S : A x : M hx : x ∈ S n : ℕ ⊢ x * x ^ n ∈ S [PROOFSTEP] exact mul_mem hx (pow_mem hx n) [GOAL] M : Type u_1 N : Type u_2 A : Type u_3 inst✝¹ : MulOneClass M s : Set M inst✝ : AddZeroClass A t : Set A p q : Submonoid M h : (fun s => s.carrier) p = (fun s => s.carrier) q ⊢ p = q [PROOFSTEP] cases p [GOAL] case mk M : Type u_1 N : Type u_2 A : Type u_3 inst✝¹ : MulOneClass M s : Set M inst✝ : AddZeroClass A t : Set A q : Submonoid M toSubsemigroup✝ : Subsemigroup M one_mem'✝ : 1 ∈ toSubsemigroup✝.carrier h : (fun s => s.carrier) { toSubsemigroup := toSubsemigroup✝, one_mem' := one_mem'✝ } = (fun s => s.carrier) q ⊢ { toSubsemigroup := toSubsemigroup✝, one_mem' := one_mem'✝ } = q [PROOFSTEP] cases q [GOAL] case mk.mk M : Type u_1 N : Type u_2 A : Type u_3 inst✝¹ : MulOneClass M s : Set M inst✝ : AddZeroClass A t : Set A toSubsemigroup✝¹ : Subsemigroup M one_mem'✝¹ : 1 ∈ toSubsemigroup✝¹.carrier toSubsemigroup✝ : Subsemigroup M one_mem'✝ : 1 ∈ toSubsemigroup✝.carrier h : (fun s => s.carrier) { toSubsemigroup := toSubsemigroup✝¹, one_mem' := one_mem'✝¹ } = (fun s => s.carrier) { toSubsemigroup := toSubsemigroup✝, one_mem' := one_mem'✝ } ⊢ { toSubsemigroup := toSubsemigroup✝¹, one_mem' := one_mem'✝¹ } = { toSubsemigroup := toSubsemigroup✝, one_mem' := one_mem'✝ } [PROOFSTEP] congr [GOAL] case mk.mk.e_toSubsemigroup M : Type u_1 N : Type u_2 A : Type u_3 inst✝¹ : MulOneClass M s : Set M inst✝ : AddZeroClass A t : Set A toSubsemigroup✝¹ : Subsemigroup M one_mem'✝¹ : 1 ∈ toSubsemigroup✝¹.carrier toSubsemigroup✝ : Subsemigroup M one_mem'✝ : 1 ∈ toSubsemigroup✝.carrier h : (fun s => s.carrier) { toSubsemigroup := toSubsemigroup✝¹, one_mem' := one_mem'✝¹ } = (fun s => s.carrier) { toSubsemigroup := toSubsemigroup✝, one_mem' := one_mem'✝ } ⊢ toSubsemigroup✝¹ = toSubsemigroup✝ [PROOFSTEP] exact SetLike.coe_injective' h [GOAL] M : Type u_1 N : Type u_2 A : Type u_3 inst✝¹ : MulOneClass M s : Set M inst✝ : AddZeroClass A t : Set A S : Submonoid M a✝ b✝ : M ha : a✝ ∈ {1} hb : b✝ ∈ {1} ⊢ a✝ * b✝ ∈ {1} [PROOFSTEP] simp only [Set.mem_singleton_iff] at * [GOAL] M : Type u_1 N : Type u_2 A : Type u_3 inst✝¹ : MulOneClass M s : Set M inst✝ : AddZeroClass A t : Set A S : Submonoid M a✝ b✝ : M ha : a✝ = 1 hb : b✝ = 1 ⊢ a✝ * b✝ = 1 [PROOFSTEP] rw [ha, hb, mul_one] [GOAL] M : Type u_1 N : Type u_2 A : Type u_3 inst✝¹ : MulOneClass M s✝ : Set M inst✝ : AddZeroClass A t : Set A S : Submonoid M s : Set (Submonoid M) a✝ b✝ : M hx : a✝ ∈ ⋂ (t : Submonoid M) (_ : t ∈ s), ↑t hy : b✝ ∈ ⋂ (t : Submonoid M) (_ : t ∈ s), ↑t i : Submonoid M h : i ∈ s ⊢ a✝ ∈ i [PROOFSTEP] apply Set.mem_iInter₂.1 hx i h [GOAL] M : Type u_1 N : Type u_2 A : Type u_3 inst✝¹ : MulOneClass M s✝ : Set M inst✝ : AddZeroClass A t : Set A S : Submonoid M s : Set (Submonoid M) a✝ b✝ : M hx : a✝ ∈ ⋂ (t : Submonoid M) (_ : t ∈ s), ↑t hy : b✝ ∈ ⋂ (t : Submonoid M) (_ : t ∈ s), ↑t i : Submonoid M h : i ∈ s ⊢ b✝ ∈ i [PROOFSTEP] apply Set.mem_iInter₂.1 hy i h [GOAL] M : Type u_1 N : Type u_2 A : Type u_3 inst✝¹ : MulOneClass M s : Set M inst✝ : AddZeroClass A t : Set A S✝ : Submonoid M ι : Sort u_4 S : ι → Submonoid M x : M ⊢ x ∈ ⨅ (i : ι), S i ↔ ∀ (i : ι), x ∈ S i [PROOFSTEP] simp only [iInf, mem_sInf, Set.forall_range_iff] [GOAL] M : Type u_1 N : Type u_2 A : Type u_3 inst✝¹ : MulOneClass M s : Set M inst✝ : AddZeroClass A t : Set A S✝ : Submonoid M ι : Sort u_4 S : ι → Submonoid M ⊢ ↑(⨅ (i : ι), S i) = ⋂ (i : ι), ↑(S i) [PROOFSTEP] simp only [iInf, coe_sInf, Set.biInter_range] [GOAL] M : Type u_1 N : Type u_2 A : Type u_3 inst✝¹ : MulOneClass M s : Set M inst✝ : AddZeroClass A t : Set A S : Submonoid M h : Subsingleton M x y : Submonoid M i : M ⊢ 1 ∈ x ↔ 1 ∈ y [PROOFSTEP] simp [Submonoid.one_mem] [GOAL] M : Type u_1 N : Type u_2 A : Type u_3 inst✝¹ : MulOneClass M s✝ : Set M inst✝ : AddZeroClass A t : Set A S : Submonoid M s : Set M p : (x : M) → x ∈ closure s → Prop Hs : ∀ (x : M) (h : x ∈ s), p x (_ : x ∈ ↑(closure s)) H1 : p 1 (_ : 1 ∈ closure s) Hmul : ∀ (x : M) (hx : x ∈ closure s) (y : M) (hy : y ∈ closure s), p x hx → p y hy → p (x * y) (_ : x * y ∈ closure s) x : M hx : x ∈ closure s ⊢ p x hx [PROOFSTEP] refine' Exists.elim _ fun (hx : x ∈ closure s) (hc : p x hx) => hc [GOAL] M : Type u_1 N : Type u_2 A : Type u_3 inst✝¹ : MulOneClass M s✝ : Set M inst✝ : AddZeroClass A t : Set A S : Submonoid M s : Set M p : (x : M) → x ∈ closure s → Prop Hs : ∀ (x : M) (h : x ∈ s), p x (_ : x ∈ ↑(closure s)) H1 : p 1 (_ : 1 ∈ closure s) Hmul : ∀ (x : M) (hx : x ∈ closure s) (y : M) (hy : y ∈ closure s), p x hx → p y hy → p (x * y) (_ : x * y ∈ closure s) x : M hx : x ∈ closure s ⊢ ∃ x_1, p x x_1 [PROOFSTEP] exact closure_induction hx (fun x hx => ⟨_, Hs x hx⟩) ⟨_, H1⟩ fun x y ⟨hx', hx⟩ ⟨hy', hy⟩ => ⟨_, Hmul _ _ _ _ hx hy⟩ [GOAL] M : Type u_1 N : Type u_2 A : Type u_3 inst✝¹ : MulOneClass M s✝ : Set M inst✝ : AddZeroClass A t : Set A S : Submonoid M p : M → Prop x : M s : Set M hs : closure s = ⊤ Hs : ∀ (x : M), x ∈ s → p x H1 : p 1 Hmul : ∀ (x y : M), p x → p y → p (x * y) ⊢ p x [PROOFSTEP] have : ∀ x ∈ closure s, p x := fun x hx => closure_induction hx Hs H1 Hmul [GOAL] M : Type u_1 N : Type u_2 A : Type u_3 inst✝¹ : MulOneClass M s✝ : Set M inst✝ : AddZeroClass A t : Set A S : Submonoid M p : M → Prop x : M s : Set M hs : closure s = ⊤ Hs : ∀ (x : M), x ∈ s → p x H1 : p 1 Hmul : ∀ (x y : M), p x → p y → p (x * y) this : ∀ (x : M), x ∈ closure s → p x ⊢ p x [PROOFSTEP] simpa [hs] using this x [GOAL] M : Type u_1 N : Type u_2 A : Type u_3 inst✝¹ : MulOneClass M s : Set M inst✝ : AddZeroClass A t : Set A S : Submonoid M m : M p : Submonoid M ⊢ closure {m} ≤ p ↔ m ∈ p [PROOFSTEP] rw [closure_le, singleton_subset_iff, SetLike.mem_coe] [GOAL] M : Type u_1 N : Type u_2 A : Type u_3 inst✝¹ : MulOneClass M s : Set M inst✝ : AddZeroClass A t : Set A S : Submonoid M ι : Sort u_4 p : ι → Submonoid M m : M ⊢ m ∈ ⨆ (i : ι), p i ↔ ∀ (N : Submonoid M), (∀ (i : ι), p i ≤ N) → m ∈ N [PROOFSTEP] rw [← closure_singleton_le_iff_mem, le_iSup_iff] [GOAL] M : Type u_1 N : Type u_2 A : Type u_3 inst✝¹ : MulOneClass M s : Set M inst✝ : AddZeroClass A t : Set A S : Submonoid M ι : Sort u_4 p : ι → Submonoid M m : M ⊢ (∀ (b : Submonoid M), (∀ (i : ι), p i ≤ b) → closure {m} ≤ b) ↔ ∀ (N : Submonoid M), (∀ (i : ι), p i ≤ N) → m ∈ N [PROOFSTEP] simp only [closure_singleton_le_iff_mem] [GOAL] M : Type u_1 N : Type u_2 A : Type u_3 inst✝¹ : MulOneClass M s : Set M inst✝ : AddZeroClass A t : Set A S : Submonoid M ι : Sort u_4 p : ι → Submonoid M ⊢ ⨆ (i : ι), p i = closure (⋃ (i : ι), ↑(p i)) [PROOFSTEP] simp_rw [Submonoid.closure_iUnion, Submonoid.closure_eq] [GOAL] M : Type u_1 N : Type u_2 A : Type u_3 inst✝¹ : MulOneClass M s : Set M inst✝ : AddZeroClass A t : Set A S p₁ p₂ : Submonoid M ⊢ Disjoint p₁ p₂ ↔ ∀ {x : M}, x ∈ p₁ → x ∈ p₂ → x = 1 [PROOFSTEP] simp_rw [disjoint_iff_inf_le, SetLike.le_def, mem_inf, and_imp, mem_bot] [GOAL] M : Type u_1 N : Type u_2 A : Type u_3 inst✝² : MulOneClass M s : Set M inst✝¹ : AddZeroClass A t : Set A inst✝ : MulOneClass N f g : M →* N a✝ b✝ : M hx : ↑f a✝ = ↑g a✝ hy : ↑f b✝ = ↑g b✝ ⊢ a✝ * b✝ ∈ {x | ↑f x = ↑g x} [PROOFSTEP] simp [*] [GOAL] M : Type u_1 N : Type u_2 A : Type u_3 inst✝² : MulOneClass M s : Set M inst✝¹ : AddZeroClass A t : Set A inst✝ : MulOneClass N f g : M →* N ⊢ 1 ∈ { carrier := {x | ↑f x = ↑g x}, mul_mem' := (_ : ∀ {a b : M}, ↑f a = ↑g a → ↑f b = ↑g b → ↑f (a * b) = ↑g (a * b)) }.carrier [PROOFSTEP] rw [Set.mem_setOf_eq, f.map_one, g.map_one] [GOAL] M✝ : Type u_1 N : Type u_2 A : Type u_3 inst✝² : Monoid M✝ inst✝¹ : Monoid N s : Set M✝ M : Type u_4 inst✝ : Monoid M ⊢ ∀ {a b : M}, a ∈ setOf IsUnit → b ∈ setOf IsUnit → a * b ∈ setOf IsUnit [PROOFSTEP] intro a b ha hb [GOAL] M✝ : Type u_1 N : Type u_2 A : Type u_3 inst✝² : Monoid M✝ inst✝¹ : Monoid N s : Set M✝ M : Type u_4 inst✝ : Monoid M a b : M ha : a ∈ setOf IsUnit hb : b ∈ setOf IsUnit ⊢ a * b ∈ setOf IsUnit [PROOFSTEP] rw [Set.mem_setOf_eq] at * [GOAL] M✝ : Type u_1 N : Type u_2 A : Type u_3 inst✝² : Monoid M✝ inst✝¹ : Monoid N s : Set M✝ M : Type u_4 inst✝ : Monoid M a b : M ha : IsUnit a hb : IsUnit b ⊢ IsUnit (a * b) [PROOFSTEP] exact IsUnit.mul ha hb [GOAL] M✝ : Type u_1 N : Type u_2 A : Type u_3 inst✝² : Monoid M✝ inst✝¹ : Monoid N s : Set M✝ M : Type u_4 inst✝ : Monoid M ⊢ 1 ∈ { carrier := setOf IsUnit, mul_mem' := (_ : ∀ {a b : M}, a ∈ setOf IsUnit → b ∈ setOf IsUnit → a * b ∈ setOf IsUnit) }.carrier [PROOFSTEP] simp only [isUnit_one, Set.mem_setOf_eq] [GOAL] M✝ : Type u_1 N : Type u_2 A : Type u_3 inst✝² : Monoid M✝ inst✝¹ : Monoid N s : Set M✝ M : Type u_4 inst✝ : Monoid M a : M ⊢ a ∈ submonoid M ↔ IsUnit a [PROOFSTEP] change a ∈ setOf IsUnit ↔ IsUnit a [GOAL] M✝ : Type u_1 N : Type u_2 A : Type u_3 inst✝² : Monoid M✝ inst✝¹ : Monoid N s : Set M✝ M : Type u_4 inst✝ : Monoid M a : M ⊢ a ∈ setOf IsUnit ↔ IsUnit a [PROOFSTEP] rw [Set.mem_setOf_eq] [GOAL] M✝ : Type u_1 N✝ : Type u_2 A : Type u_3 inst✝³ : Monoid M✝ inst✝² : Monoid N✝ s✝ : Set M✝ M : Type ?u.38168 N : Type ?u.38171 inst✝¹ : Monoid M inst✝ : Monoid N s : Set M f : M → N hs : closure s = ⊤ h1 : f 1 = 1 hmul : ∀ (x : M), x ∈ s → ∀ (y : M), f (x * y) = f x * f y x y : M ⊢ f (1 * y) = f 1 * f y [PROOFSTEP] rw [one_mul, h1, one_mul] [GOAL] M✝ : Type u_1 N✝ : Type u_2 A : Type u_3 inst✝³ : Monoid M✝ inst✝² : Monoid N✝ s✝ : Set M✝ M : Type ?u.38168 N : Type ?u.38171 inst✝¹ : Monoid M inst✝ : Monoid N s : Set M f : M → N hs : closure s = ⊤ h1 : f 1 = 1 hmul : ∀ (x : M), x ∈ s → ∀ (y : M), f (x * y) = f x * f y x a b : M ha : ∀ (y : M), f (a * y) = f a * f y hb : ∀ (y : M), f (b * y) = f b * f y y : M ⊢ f (a * b * y) = f (a * b) * f y [PROOFSTEP] rw [mul_assoc, ha, ha, hb, mul_assoc] [GOAL] M✝ : Type u_1 N✝ : Type u_2 A : Type u_3 inst✝³ : Monoid M✝ inst✝² : Monoid N✝ s✝ : Set M✝ M : Type ?u.40855 N : Type ?u.40858 inst✝¹ : Monoid M inst✝ : Monoid N s : Set M f : M → N hs : closure s = ⊤ h1 : f 1 = 1 hmul : ∀ (x y : M), y ∈ s → f (x * y) = f x * f y x y : M ⊢ ∀ (x : M), OneHom.toFun { toFun := f, map_one' := h1 } (x * 1) = OneHom.toFun { toFun := f, map_one' := h1 } x * OneHom.toFun { toFun := f, map_one' := h1 } 1 [PROOFSTEP] simp [h1] [GOAL] M✝ : Type u_1 N✝ : Type u_2 A : Type u_3 inst✝³ : Monoid M✝ inst✝² : Monoid N✝ s✝ : Set M✝ M : Type ?u.40855 N : Type ?u.40858 inst✝¹ : Monoid M inst✝ : Monoid N s : Set M f : M → N hs : closure s = ⊤ h1 : f 1 = 1 hmul : ∀ (x y : M), y ∈ s → f (x * y) = f x * f y x✝ y y₁ y₂ : M h₁ : ∀ (x : M), f (x * y₁) = f x * f y₁ h₂ : ∀ (x : M), f (x * y₂) = f x * f y₂ x : M ⊢ OneHom.toFun { toFun := f, map_one' := h1 } (x * (y₁ * y₂)) = OneHom.toFun { toFun := f, map_one' := h1 } x * OneHom.toFun { toFun := f, map_one' := h1 } (y₁ * y₂) [PROOFSTEP] simp [← mul_assoc, h₁, h₂]
{"mathlib_filename": "Mathlib.GroupTheory.Submonoid.Basic", "llama_tokens": 6534}
[GOAL] M : Type u_1 inst✝ : CommMonoid M src✝ : Group { x // x ∈ IsUnit.submonoid M } := inferInstanceAs (Group { x // x ∈ IsUnit.submonoid M }) a b : { x // x ∈ IsUnit.submonoid M } ⊢ a * b = b * a [PROOFSTEP] convert mul_comm a b [GOAL] M : Type u_1 inst✝ : Monoid M S : Submonoid M a _b : M x✝¹ : a ∈ {x | ∃ y, x * ↑y = 1} x✝ : _b ∈ {x | ∃ y, x * ↑y = 1} a' : { x // x ∈ S } ha : a * ↑a' = 1 b' : { x // x ∈ S } hb : _b * ↑b' = 1 ⊢ a * _b * ↑(b' * a') = 1 [PROOFSTEP] simp only [coe_mul, ← mul_assoc, mul_assoc a, hb, mul_one, ha] [GOAL] M : Type u_1 inst✝ : Monoid M S : Submonoid M ⊢ leftInv (leftInv S) ≤ S [PROOFSTEP] rintro x ⟨⟨y, z, h₁⟩, h₂ : x * y = 1⟩ [GOAL] case intro.mk.intro M : Type u_1 inst✝ : Monoid M S : Submonoid M x y : M z : { x // x ∈ S } h₁ : y * ↑z = 1 h₂ : x * y = 1 ⊢ x ∈ S [PROOFSTEP] convert z.prop [GOAL] case h.e'_4 M : Type u_1 inst✝ : Monoid M S : Submonoid M x y : M z : { x // x ∈ S } h₁ : y * ↑z = 1 h₂ : x * y = 1 ⊢ x = ↑z [PROOFSTEP] rw [← mul_one x, ← h₁, ← mul_assoc, h₂, one_mul] [GOAL] M : Type u_1 inst✝ : Monoid M S : Submonoid M hS : S ≤ IsUnit.submonoid M ⊢ leftInv (leftInv S) = S [PROOFSTEP] refine' le_antisymm S.leftInv_leftInv_le _ [GOAL] M : Type u_1 inst✝ : Monoid M S : Submonoid M hS : S ≤ IsUnit.submonoid M ⊢ S ≤ leftInv (leftInv S) [PROOFSTEP] intro x hx [GOAL] M : Type u_1 inst✝ : Monoid M S : Submonoid M hS : S ≤ IsUnit.submonoid M x : M hx : x ∈ S ⊢ x ∈ leftInv (leftInv S) [PROOFSTEP] have : x = ((hS hx).unit⁻¹⁻¹ : Mˣ) := by rw [inv_inv (hS hx).unit] rfl [GOAL] M : Type u_1 inst✝ : Monoid M S : Submonoid M hS : S ≤ IsUnit.submonoid M x : M hx : x ∈ S ⊢ x = ↑(IsUnit.unit (_ : x ∈ IsUnit.submonoid M))⁻¹⁻¹ [PROOFSTEP] rw [inv_inv (hS hx).unit] [GOAL] M : Type u_1 inst✝ : Monoid M S : Submonoid M hS : S ≤ IsUnit.submonoid M x : M hx : x ∈ S ⊢ x = ↑(IsUnit.unit (_ : x ∈ IsUnit.submonoid M)) [PROOFSTEP] rfl [GOAL] M : Type u_1 inst✝ : Monoid M S : Submonoid M hS : S ≤ IsUnit.submonoid M x : M hx : x ∈ S this : x = ↑(IsUnit.unit (_ : x ∈ IsUnit.submonoid M))⁻¹⁻¹ ⊢ x ∈ leftInv (leftInv S) [PROOFSTEP] rw [this] [GOAL] M : Type u_1 inst✝ : Monoid M S : Submonoid M hS : S ≤ IsUnit.submonoid M x : M hx : x ∈ S this : x = ↑(IsUnit.unit (_ : x ∈ IsUnit.submonoid M))⁻¹⁻¹ ⊢ ↑(IsUnit.unit (_ : x ∈ IsUnit.submonoid M))⁻¹⁻¹ ∈ leftInv (leftInv S) [PROOFSTEP] exact S.leftInv.unit_mem_leftInv _ (S.unit_mem_leftInv _ hx) [GOAL] M : Type u_1 inst✝ : CommMonoid M S : Submonoid M x : { x // x ∈ leftInv S } ⊢ ↑(fromLeftInv S x) * ↑x = 1 [PROOFSTEP] rw [mul_comm, mul_fromLeftInv] [GOAL] M : Type u_1 inst✝ : CommMonoid M S : Submonoid M a : { x // x ∈ leftInv S } b : M ⊢ ↑(fromLeftInv S a) = b ↔ ↑a * b = 1 [PROOFSTEP] rw [← IsUnit.mul_right_inj (leftInv_le_isUnit _ a.prop), S.mul_fromLeftInv, eq_comm] [GOAL] M : Type u_1 inst✝ : CommMonoid M S : Submonoid M x y : { x // x ∈ leftInv S } ⊢ ↑(OneHom.toFun { toFun := fromLeftInv S, map_one' := (_ : fromLeftInv S 1 = 1) } (x * y)) = ↑(OneHom.toFun { toFun := fromLeftInv S, map_one' := (_ : fromLeftInv S 1 = 1) } x * OneHom.toFun { toFun := fromLeftInv S, map_one' := (_ : fromLeftInv S 1 = 1) } y) [PROOFSTEP] rw [fromLeftInv_eq_iff, mul_comm x, Submonoid.coe_mul, Submonoid.coe_mul, mul_assoc, ← mul_assoc (x : M), mul_fromLeftInv, one_mul, mul_fromLeftInv] [GOAL] M : Type u_1 inst✝ : CommMonoid M S : Submonoid M hS : S ≤ IsUnit.submonoid M src✝ : { x // x ∈ leftInv S } →* { x // x ∈ S } := fromCommLeftInv S x : { x // x ∈ S } ⊢ { x // x ∈ leftInv S } [PROOFSTEP] choose x' hx using hS x.prop [GOAL] M : Type u_1 inst✝ : CommMonoid M S : Submonoid M hS : S ≤ IsUnit.submonoid M src✝ : { x // x ∈ leftInv S } →* { x // x ∈ S } := fromCommLeftInv S x : { x // x ∈ S } x' : Mˣ hx : ↑x' = ↑x ⊢ { x // x ∈ leftInv S } [PROOFSTEP] exact ⟨x'.inv, x, hx ▸ x'.inv_val⟩ [GOAL] M : Type u_1 inst✝ : CommMonoid M S : Submonoid M hS : S ≤ IsUnit.submonoid M src✝ : { x // x ∈ leftInv S } →* { x // x ∈ S } := fromCommLeftInv S x : { x // x ∈ leftInv S } ⊢ ↑((fun x => (fun x' hx => { val := x'.inv, property := (_ : ∃ y, x'.inv * ↑y = 1) }) (Classical.choose (_ : ↑x ∈ IsUnit.submonoid M)) (_ : ↑(Classical.choose (_ : ↑x ∈ IsUnit.submonoid M)) = ↑x)) (OneHom.toFun (↑src✝) x)) = ↑x [PROOFSTEP] dsimp only [GOAL] M : Type u_1 inst✝ : CommMonoid M S : Submonoid M hS : S ≤ IsUnit.submonoid M src✝ : { x // x ∈ leftInv S } →* { x // x ∈ S } := fromCommLeftInv S x : { x // x ∈ leftInv S } ⊢ (Classical.choose (_ : ↑(OneHom.toFun (↑(fromCommLeftInv S)) x) ∈ IsUnit.submonoid M)).inv = ↑x [PROOFSTEP] generalize_proofs h [GOAL] M : Type u_1 inst✝ : CommMonoid M S : Submonoid M hS : S ≤ IsUnit.submonoid M src✝ : { x // x ∈ leftInv S } →* { x // x ∈ S } := fromCommLeftInv S x : { x // x ∈ leftInv S } h : ↑(OneHom.toFun (↑(fromCommLeftInv S)) x) ∈ IsUnit.submonoid M ⊢ (Classical.choose h).inv = ↑x [PROOFSTEP] rw [← h.choose.mul_left_inj] [GOAL] M : Type u_1 inst✝ : CommMonoid M S : Submonoid M hS : S ≤ IsUnit.submonoid M src✝ : { x // x ∈ leftInv S } →* { x // x ∈ S } := fromCommLeftInv S x : { x // x ∈ leftInv S } h : ↑(OneHom.toFun (↑(fromCommLeftInv S)) x) ∈ IsUnit.submonoid M ⊢ (Classical.choose h).inv * ↑(Exists.choose h) = ↑x * ↑(Exists.choose h) [PROOFSTEP] conv => rhs; rw [h.choose_spec] [GOAL] M : Type u_1 inst✝ : CommMonoid M S : Submonoid M hS : S ≤ IsUnit.submonoid M src✝ : { x // x ∈ leftInv S } →* { x // x ∈ S } := fromCommLeftInv S x : { x // x ∈ leftInv S } h : ↑(OneHom.toFun (↑(fromCommLeftInv S)) x) ∈ IsUnit.submonoid M | (Classical.choose h).inv * ↑(Exists.choose h) = ↑x * ↑(Exists.choose h) [PROOFSTEP] rhs; rw [h.choose_spec] [GOAL] M : Type u_1 inst✝ : CommMonoid M S : Submonoid M hS : S ≤ IsUnit.submonoid M src✝ : { x // x ∈ leftInv S } →* { x // x ∈ S } := fromCommLeftInv S x : { x // x ∈ leftInv S } h : ↑(OneHom.toFun (↑(fromCommLeftInv S)) x) ∈ IsUnit.submonoid M | (Classical.choose h).inv * ↑(Exists.choose h) = ↑x * ↑(Exists.choose h) [PROOFSTEP] rhs; rw [h.choose_spec] [GOAL] M : Type u_1 inst✝ : CommMonoid M S : Submonoid M hS : S ≤ IsUnit.submonoid M src✝ : { x // x ∈ leftInv S } →* { x // x ∈ S } := fromCommLeftInv S x : { x // x ∈ leftInv S } h : ↑(OneHom.toFun (↑(fromCommLeftInv S)) x) ∈ IsUnit.submonoid M | (Classical.choose h).inv * ↑(Exists.choose h) = ↑x * ↑(Exists.choose h) [PROOFSTEP] rhs [GOAL] M : Type u_1 inst✝ : CommMonoid M S : Submonoid M hS : S ≤ IsUnit.submonoid M src✝ : { x // x ∈ leftInv S } →* { x // x ∈ S } := fromCommLeftInv S x : { x // x ∈ leftInv S } h : ↑(OneHom.toFun (↑(fromCommLeftInv S)) x) ∈ IsUnit.submonoid M | ↑x * ↑(Exists.choose h) [PROOFSTEP] rw [h.choose_spec] [GOAL] M : Type u_1 inst✝ : CommMonoid M S : Submonoid M hS : S ≤ IsUnit.submonoid M src✝ : { x // x ∈ leftInv S } →* { x // x ∈ S } := fromCommLeftInv S x : { x // x ∈ leftInv S } h : ↑(OneHom.toFun (↑(fromCommLeftInv S)) x) ∈ IsUnit.submonoid M ⊢ (Classical.choose h).inv * ↑(Exists.choose h) = ↑x * ↑(OneHom.toFun (↑(fromCommLeftInv S)) x) [PROOFSTEP] exact h.choose.inv_val.trans (S.mul_fromLeftInv x).symm [GOAL] M : Type u_1 inst✝ : CommMonoid M S : Submonoid M hS : S ≤ IsUnit.submonoid M src✝ : { x // x ∈ leftInv S } →* { x // x ∈ S } := fromCommLeftInv S x : { x // x ∈ S } ⊢ OneHom.toFun (↑src✝) ((fun x => (fun x' hx => { val := x'.inv, property := (_ : ∃ y, x'.inv * ↑y = 1) }) (Classical.choose (_ : ↑x ∈ IsUnit.submonoid M)) (_ : ↑(Classical.choose (_ : ↑x ∈ IsUnit.submonoid M)) = ↑x)) x) = x [PROOFSTEP] dsimp only [fromCommLeftInv] [GOAL] M : Type u_1 inst✝ : CommMonoid M S : Submonoid M hS : S ≤ IsUnit.submonoid M src✝ : { x // x ∈ leftInv S } →* { x // x ∈ S } := fromCommLeftInv S x : { x // x ∈ S } ⊢ fromLeftInv S { val := (Classical.choose (_ : ↑x ∈ IsUnit.submonoid M)).inv, property := (_ : ∃ y, (Classical.choose (_ : ↑x ∈ IsUnit.submonoid M)).inv * ↑y = 1) } = x [PROOFSTEP] ext [GOAL] case a M : Type u_1 inst✝ : CommMonoid M S : Submonoid M hS : S ≤ IsUnit.submonoid M src✝ : { x // x ∈ leftInv S } →* { x // x ∈ S } := fromCommLeftInv S x : { x // x ∈ S } ⊢ ↑(fromLeftInv S { val := (Classical.choose (_ : ↑x ∈ IsUnit.submonoid M)).inv, property := (_ : ∃ y, (Classical.choose (_ : ↑x ∈ IsUnit.submonoid M)).inv * ↑y = 1) }) = ↑x [PROOFSTEP] rw [fromLeftInv_eq_iff] [GOAL] case a M : Type u_1 inst✝ : CommMonoid M S : Submonoid M hS : S ≤ IsUnit.submonoid M src✝ : { x // x ∈ leftInv S } →* { x // x ∈ S } := fromCommLeftInv S x : { x // x ∈ S } ⊢ ↑{ val := (Classical.choose (_ : ↑x ∈ IsUnit.submonoid M)).inv, property := (_ : ∃ y, (Classical.choose (_ : ↑x ∈ IsUnit.submonoid M)).inv * ↑y = 1) } * ↑x = 1 [PROOFSTEP] convert (hS x.prop).choose.inv_val [GOAL] case h.e'_2.h.e'_6 M : Type u_1 inst✝ : CommMonoid M S : Submonoid M hS : S ≤ IsUnit.submonoid M src✝ : { x // x ∈ leftInv S } →* { x // x ∈ S } := fromCommLeftInv S x : { x // x ∈ S } ⊢ ↑x = ↑(Exists.choose (_ : ↑x ∈ IsUnit.submonoid M)) [PROOFSTEP] exact (hS x.prop).choose_spec.symm [GOAL] M : Type u_1 inst✝ : CommMonoid M S : Submonoid M hS : S ≤ IsUnit.submonoid M x : { x // x ∈ leftInv S } ⊢ ↑(↑(leftInvEquiv S hS) x) * ↑x = 1 [PROOFSTEP] simpa only [leftInvEquiv_apply, fromCommLeftInv] using fromLeftInv_mul S x [GOAL] M : Type u_1 inst✝ : CommMonoid M S : Submonoid M hS : S ≤ IsUnit.submonoid M x : { x // x ∈ leftInv S } ⊢ ↑x * ↑(↑(leftInvEquiv S hS) x) = 1 [PROOFSTEP] simp only [leftInvEquiv_apply, fromCommLeftInv, mul_fromLeftInv] [GOAL] M : Type u_1 inst✝ : CommMonoid M S : Submonoid M hS : S ≤ IsUnit.submonoid M x : { x // x ∈ S } ⊢ ↑(↑(MulEquiv.symm (leftInvEquiv S hS)) x) * ↑x = 1 [PROOFSTEP] convert S.mul_leftInvEquiv hS ((S.leftInvEquiv hS).symm x) [GOAL] case h.e'_2.h.e'_6.h.e'_3 M : Type u_1 inst✝ : CommMonoid M S : Submonoid M hS : S ≤ IsUnit.submonoid M x : { x // x ∈ S } ⊢ x = ↑(leftInvEquiv S hS) (↑(MulEquiv.symm (leftInvEquiv S hS)) x) [PROOFSTEP] simp [GOAL] M : Type u_1 inst✝ : CommMonoid M S : Submonoid M hS : S ≤ IsUnit.submonoid M x : { x // x ∈ S } ⊢ ↑x * ↑(↑(MulEquiv.symm (leftInvEquiv S hS)) x) = 1 [PROOFSTEP] convert S.leftInvEquiv_mul hS ((S.leftInvEquiv hS).symm x) [GOAL] case h.e'_2.h.e'_5.h.e'_3 M : Type u_1 inst✝ : CommMonoid M S : Submonoid M hS : S ≤ IsUnit.submonoid M x : { x // x ∈ S } ⊢ x = ↑(leftInvEquiv S hS) (↑(MulEquiv.symm (leftInvEquiv S hS)) x) [PROOFSTEP] simp [GOAL] M : Type u_1 inst✝ : Group M S : Submonoid M x : { x // x ∈ leftInv S } ⊢ ↑(fromLeftInv S x) = (↑x)⁻¹ [PROOFSTEP] rw [← mul_right_inj (x : M), mul_right_inv, mul_fromLeftInv] [GOAL] M : Type u_1 inst✝ : CommGroup M S : Submonoid M hS : S ≤ IsUnit.submonoid M x : { x // x ∈ S } ⊢ ↑(↑(MulEquiv.symm (leftInvEquiv S hS)) x) = (↑x)⁻¹ [PROOFSTEP] rw [← mul_right_inj (x : M), mul_right_inv, mul_leftInvEquiv_symm]
{"mathlib_filename": "Mathlib.GroupTheory.Submonoid.Inverses", "llama_tokens": 5458}
[GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : IsROrC 𝕜 inst✝ : NormedAddCommGroup E c : InnerProductSpace 𝕜 E x : E ⊢ 0 ≤ ↑re (inner x x) [PROOFSTEP] rw [← InnerProductSpace.norm_sq_eq_inner] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : IsROrC 𝕜 inst✝ : NormedAddCommGroup E c : InnerProductSpace 𝕜 E x : E ⊢ 0 ≤ ‖x‖ ^ 2 [PROOFSTEP] apply sq_nonneg [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝¹ : IsROrC 𝕜 inst✝ : NormedAddCommGroup E c : InnerProductSpace 𝕜 E x : E hx : inner x x = 0 ⊢ ‖x‖ ^ 2 = 0 [PROOFSTEP] rw [InnerProductSpace.norm_sq_eq_inner (𝕜 := 𝕜) x, hx, map_zero] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x : F ⊢ ↑im (inner x x) = 0 [PROOFSTEP] rw [← @ofReal_inj 𝕜, im_eq_conj_sub] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x : F ⊢ I * (↑(starRingEnd 𝕜) (inner x x) - inner x x) / 2 = ↑0 [PROOFSTEP] simp [inner_conj_symm] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x y z : F ⊢ inner x (y + z) = inner x y + inner x z [PROOFSTEP] rw [← inner_conj_symm, inner_add_left, RingHom.map_add] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x y z : F ⊢ ↑(starRingEnd 𝕜) (inner y x) + ↑(starRingEnd 𝕜) (inner z x) = inner x y + inner x z [PROOFSTEP] simp only [inner_conj_symm] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x : F ⊢ ↑(normSq x) = inner x x [PROOFSTEP] rw [ext_iff] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x : F ⊢ ↑re ↑(normSq x) = ↑re (inner x x) ∧ ↑im ↑(normSq x) = ↑im (inner x x) [PROOFSTEP] exact ⟨by simp only [ofReal_re]; rfl, by simp only [inner_self_im, ofReal_im]⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x : F ⊢ ↑re ↑(normSq x) = ↑re (inner x x) [PROOFSTEP] simp only [ofReal_re] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x : F ⊢ normSq x = ↑re (inner x x) [PROOFSTEP] rfl [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x : F ⊢ ↑im ↑(normSq x) = ↑im (inner x x) [PROOFSTEP] simp only [inner_self_im, ofReal_im] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x y : F ⊢ ↑re (inner x y) = ↑re (inner y x) [PROOFSTEP] rw [← inner_conj_symm, conj_re] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x y : F ⊢ ↑im (inner x y) = -↑im (inner y x) [PROOFSTEP] rw [← inner_conj_symm, conj_im] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x y : F r : 𝕜 ⊢ inner x (r • y) = r * inner x y [PROOFSTEP] rw [← inner_conj_symm, inner_smul_left] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x y : F r : 𝕜 ⊢ ↑(starRingEnd 𝕜) (↑(starRingEnd 𝕜) r * inner y x) = r * inner x y [PROOFSTEP] simp only [conj_conj, inner_conj_symm, RingHom.map_mul] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x : F ⊢ inner 0 x = 0 [PROOFSTEP] rw [← zero_smul 𝕜 (0 : F), inner_smul_left] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x : F ⊢ ↑(starRingEnd 𝕜) 0 * inner 0 x = 0 [PROOFSTEP] simp only [zero_mul, RingHom.map_zero] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x : F ⊢ inner x 0 = 0 [PROOFSTEP] rw [← inner_conj_symm, inner_zero_left] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x : F ⊢ ↑(starRingEnd 𝕜) 0 = 0 [PROOFSTEP] simp only [RingHom.map_zero] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x : F ⊢ x = 0 → inner x x = 0 [PROOFSTEP] rintro rfl [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F ⊢ inner 0 0 = 0 [PROOFSTEP] exact inner_zero_left _ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x : F ⊢ normSq x = 0 ↔ inner x x = 0 [PROOFSTEP] simp only [normSq, ext_iff, map_zero, inner_self_im, eq_self_iff_true, and_true_iff] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x : F ⊢ ↑(↑re (inner x x)) = inner x x [PROOFSTEP] rw [ext_iff, inner_self_im] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x : F ⊢ ↑re ↑(↑re (inner x x)) = ↑re (inner x x) ∧ ↑im ↑(↑re (inner x x)) = 0 [PROOFSTEP] norm_num [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x y : F ⊢ ‖inner x y‖ = ‖inner y x‖ [PROOFSTEP] rw [← inner_conj_symm, norm_conj] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x y : F ⊢ inner (-x) y = -inner x y [PROOFSTEP] rw [← neg_one_smul 𝕜 x, inner_smul_left] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x y : F ⊢ ↑(starRingEnd 𝕜) (-1) * inner x y = -inner x y [PROOFSTEP] simp [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x y : F ⊢ inner x (-y) = -inner x y [PROOFSTEP] rw [← inner_conj_symm, inner_neg_left] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x y : F ⊢ ↑(starRingEnd 𝕜) (-inner y x) = -inner x y [PROOFSTEP] simp only [RingHom.map_neg, inner_conj_symm] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x y z : F ⊢ inner (x - y) z = inner x z - inner y z [PROOFSTEP] simp [sub_eq_add_neg, inner_add_left, inner_neg_left] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x y z : F ⊢ inner x (y - z) = inner x y - inner x z [PROOFSTEP] simp [sub_eq_add_neg, inner_add_right, inner_neg_right] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x y : F ⊢ ↑re (inner x y * inner y x) = ‖inner x y * inner y x‖ [PROOFSTEP] rw [← inner_conj_symm, mul_comm] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x y : F ⊢ ↑re (inner y x * ↑(starRingEnd 𝕜) (inner y x)) = ‖inner y x * ↑(starRingEnd 𝕜) (inner y x)‖ [PROOFSTEP] exact re_eq_norm_of_mul_conj (inner y x) [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x y : F ⊢ inner (x + y) (x + y) = inner x x + inner x y + inner y x + inner y y [PROOFSTEP] simp only [inner_add_left, inner_add_right] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x y : F ⊢ inner x x + inner y x + (inner x y + inner y y) = inner x x + inner x y + inner y x + inner y y [PROOFSTEP] ring [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x y : F ⊢ inner (x - y) (x - y) = inner x x - inner x y - inner y x + inner y y [PROOFSTEP] simp only [inner_sub_left, inner_sub_right] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x y : F ⊢ inner x x - inner y x - (inner x y - inner y y) = inner x x - inner x y - inner y x + inner y y [PROOFSTEP] ring [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x y : F ⊢ normSq (inner x y • x - inner x x • y) = normSq x * (normSq x * normSq y - ‖inner x y‖ ^ 2) [PROOFSTEP] rw [← @ofReal_inj 𝕜, ofReal_normSq_eq_inner_self] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x y : F ⊢ inner (inner x y • x - inner x x • y) (inner x y • x - inner x x • y) = ↑(normSq x * (normSq x * normSq y - ‖inner x y‖ ^ 2)) [PROOFSTEP] simp only [inner_sub_sub_self, inner_smul_left, inner_smul_right, conj_ofReal, mul_sub, ← ofReal_normSq_eq_inner_self x, ← ofReal_normSq_eq_inner_self y] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x y : F ⊢ inner x y * (↑(starRingEnd 𝕜) (inner x y) * ↑(normSq x)) - ↑(normSq x) * (↑(starRingEnd 𝕜) (inner x y) * inner x y) - inner x y * (↑(normSq x) * inner y x) + ↑(normSq x) * (↑(normSq x) * ↑(normSq y)) = ↑(normSq x * (normSq x * normSq y) - normSq x * ‖inner x y‖ ^ 2) [PROOFSTEP] rw [← mul_assoc, mul_conj, IsROrC.conj_mul, normSq_eq_def', mul_left_comm, ← inner_conj_symm y, mul_conj, normSq_eq_def'] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x y : F ⊢ ↑(‖inner x y‖ ^ 2) * ↑(normSq x) - ↑(normSq x) * ↑(‖inner x y‖ ^ 2) - ↑(normSq x) * ↑(‖inner x y‖ ^ 2) + ↑(normSq x) * (↑(normSq x) * ↑(normSq y)) = ↑(normSq x * (normSq x * normSq y) - normSq x * ‖inner x y‖ ^ 2) [PROOFSTEP] push_cast [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x y : F ⊢ ↑‖inner x y‖ ^ 2 * ↑(normSq x) - ↑(normSq x) * ↑‖inner x y‖ ^ 2 - ↑(normSq x) * ↑‖inner x y‖ ^ 2 + ↑(normSq x) * (↑(normSq x) * ↑(normSq y)) = ↑(normSq x) * (↑(normSq x) * ↑(normSq y)) - ↑(normSq x) * ↑‖inner x y‖ ^ 2 [PROOFSTEP] ring [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x y : F ⊢ ‖inner x y‖ * ‖inner y x‖ ≤ ↑re (inner x x) * ↑re (inner y y) [PROOFSTEP] rcases eq_or_ne x 0 with (rfl | hx) [GOAL] case inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F y : F ⊢ ‖inner 0 y‖ * ‖inner y 0‖ ≤ ↑re (inner 0 0) * ↑re (inner y y) [PROOFSTEP] simpa only [inner_zero_left, map_zero, zero_mul, norm_zero] using le_rfl [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x y : F hx : x ≠ 0 ⊢ ‖inner x y‖ * ‖inner y x‖ ≤ ↑re (inner x x) * ↑re (inner y y) [PROOFSTEP] have hx' : 0 < normSqF x := inner_self_nonneg.lt_of_ne' (mt normSq_eq_zero.1 hx) [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x y : F hx : x ≠ 0 hx' : 0 < normSq x ⊢ ‖inner x y‖ * ‖inner y x‖ ≤ ↑re (inner x x) * ↑re (inner y y) [PROOFSTEP] rw [← sub_nonneg, ← mul_nonneg_iff_right_nonneg_of_pos hx', ← normSq, ← normSq, norm_inner_symm y, ← sq, ← cauchy_schwarz_aux] [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x y : F hx : x ≠ 0 hx' : 0 < normSq x ⊢ 0 ≤ normSq (inner x y • x - inner x x • y) [PROOFSTEP] exact inner_self_nonneg [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x : F ⊢ ↑re (inner x x) = ‖x‖ * ‖x‖ [PROOFSTEP] rw [norm_eq_sqrt_inner, ← sqrt_mul inner_self_nonneg (re ⟪x, x⟫), sqrt_mul_self inner_self_nonneg] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x y : F ⊢ ‖inner x y‖ * ‖inner x y‖ = ‖inner x y‖ * ‖inner y x‖ [PROOFSTEP] rw [norm_inner_symm] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x y : F ⊢ ↑re (inner x x) * ↑re (inner y y) = ‖x‖ * ‖y‖ * (‖x‖ * ‖y‖) [PROOFSTEP] simp only [inner_self_eq_norm_mul_norm] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x y : F ⊢ ‖x‖ * ‖x‖ * (‖y‖ * ‖y‖) = ‖x‖ * ‖y‖ * (‖x‖ * ‖y‖) [PROOFSTEP] ring [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F ⊢ (fun x => sqrt (↑re (inner x x))) 0 = 0 [PROOFSTEP] simp only [sqrt_zero, inner_zero_right, map_zero] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x y : F ⊢ (fun x => sqrt (↑re (inner x x))) (x + y) ≤ (fun x => sqrt (↑re (inner x x))) x + (fun x => sqrt (↑re (inner x x))) y [PROOFSTEP] have h₁ : ‖⟪x, y⟫‖ ≤ ‖x‖ * ‖y‖ := norm_inner_le_norm _ _ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x y : F h₁ : ‖inner x y‖ ≤ ‖x‖ * ‖y‖ ⊢ (fun x => sqrt (↑re (inner x x))) (x + y) ≤ (fun x => sqrt (↑re (inner x x))) x + (fun x => sqrt (↑re (inner x x))) y [PROOFSTEP] have h₂ : re ⟪x, y⟫ ≤ ‖⟪x, y⟫‖ := re_le_norm _ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x y : F h₁ : ‖inner x y‖ ≤ ‖x‖ * ‖y‖ h₂ : ↑re (inner x y) ≤ ‖inner x y‖ ⊢ (fun x => sqrt (↑re (inner x x))) (x + y) ≤ (fun x => sqrt (↑re (inner x x))) x + (fun x => sqrt (↑re (inner x x))) y [PROOFSTEP] have h₃ : re ⟪x, y⟫ ≤ ‖x‖ * ‖y‖ := h₂.trans h₁ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x y : F h₁ : ‖inner x y‖ ≤ ‖x‖ * ‖y‖ h₂ : ↑re (inner x y) ≤ ‖inner x y‖ h₃ : ↑re (inner x y) ≤ ‖x‖ * ‖y‖ ⊢ (fun x => sqrt (↑re (inner x x))) (x + y) ≤ (fun x => sqrt (↑re (inner x x))) x + (fun x => sqrt (↑re (inner x x))) y [PROOFSTEP] have h₄ : re ⟪y, x⟫ ≤ ‖x‖ * ‖y‖ := by rwa [← inner_conj_symm, conj_re] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x y : F h₁ : ‖inner x y‖ ≤ ‖x‖ * ‖y‖ h₂ : ↑re (inner x y) ≤ ‖inner x y‖ h₃ : ↑re (inner x y) ≤ ‖x‖ * ‖y‖ ⊢ ↑re (inner y x) ≤ ‖x‖ * ‖y‖ [PROOFSTEP] rwa [← inner_conj_symm, conj_re] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x y : F h₁ : ‖inner x y‖ ≤ ‖x‖ * ‖y‖ h₂ : ↑re (inner x y) ≤ ‖inner x y‖ h₃ : ↑re (inner x y) ≤ ‖x‖ * ‖y‖ h₄ : ↑re (inner y x) ≤ ‖x‖ * ‖y‖ ⊢ (fun x => sqrt (↑re (inner x x))) (x + y) ≤ (fun x => sqrt (↑re (inner x x))) x + (fun x => sqrt (↑re (inner x x))) y [PROOFSTEP] have : ‖x + y‖ * ‖x + y‖ ≤ (‖x‖ + ‖y‖) * (‖x‖ + ‖y‖) := by simp only [← inner_self_eq_norm_mul_norm, inner_add_add_self, mul_add, mul_comm, map_add] linarith [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x y : F h₁ : ‖inner x y‖ ≤ ‖x‖ * ‖y‖ h₂ : ↑re (inner x y) ≤ ‖inner x y‖ h₃ : ↑re (inner x y) ≤ ‖x‖ * ‖y‖ h₄ : ↑re (inner y x) ≤ ‖x‖ * ‖y‖ ⊢ ‖x + y‖ * ‖x + y‖ ≤ (‖x‖ + ‖y‖) * (‖x‖ + ‖y‖) [PROOFSTEP] simp only [← inner_self_eq_norm_mul_norm, inner_add_add_self, mul_add, mul_comm, map_add] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x y : F h₁ : ‖inner x y‖ ≤ ‖x‖ * ‖y‖ h₂ : ↑re (inner x y) ≤ ‖inner x y‖ h₃ : ↑re (inner x y) ≤ ‖x‖ * ‖y‖ h₄ : ↑re (inner y x) ≤ ‖x‖ * ‖y‖ ⊢ ↑re (inner x x) + ↑re (inner x y) + ↑re (inner y x) + ↑re (inner y y) ≤ ↑re (inner x x) + ‖x‖ * ‖y‖ + (‖x‖ * ‖y‖ + ↑re (inner y y)) [PROOFSTEP] linarith [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x y : F h₁ : ‖inner x y‖ ≤ ‖x‖ * ‖y‖ h₂ : ↑re (inner x y) ≤ ‖inner x y‖ h₃ : ↑re (inner x y) ≤ ‖x‖ * ‖y‖ h₄ : ↑re (inner y x) ≤ ‖x‖ * ‖y‖ this : ‖x + y‖ * ‖x + y‖ ≤ (‖x‖ + ‖y‖) * (‖x‖ + ‖y‖) ⊢ (fun x => sqrt (↑re (inner x x))) (x + y) ≤ (fun x => sqrt (↑re (inner x x))) x + (fun x => sqrt (↑re (inner x x))) y [PROOFSTEP] exact nonneg_le_nonneg_of_sq_le_sq (add_nonneg (sqrt_nonneg _) (sqrt_nonneg _)) this [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x : F ⊢ (fun x => sqrt (↑re (inner x x))) (-x) = (fun x => sqrt (↑re (inner x x))) x [PROOFSTEP] simp only [inner_neg_left, neg_neg, inner_neg_right] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F r : 𝕜 x : F ⊢ ‖r • x‖ ≤ ‖r‖ * ‖x‖ [PROOFSTEP] rw [norm_eq_sqrt_inner, inner_smul_left, inner_smul_right, ← mul_assoc] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F r : 𝕜 x : F ⊢ sqrt (↑re (↑(starRingEnd 𝕜) r * r * inner x x)) ≤ ‖r‖ * ‖x‖ [PROOFSTEP] rw [IsROrC.conj_mul, ofReal_mul_re, sqrt_mul, ← ofReal_normSq_eq_inner_self, ofReal_re] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F r : 𝕜 x : F ⊢ sqrt (↑IsROrC.normSq r) * sqrt (normSq x) ≤ ‖r‖ * ‖x‖ [PROOFSTEP] simp [sqrt_normSq_eq_norm, IsROrC.sqrt_normSq_eq_norm] [GOAL] case hx 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F r : 𝕜 x : F ⊢ 0 ≤ ↑IsROrC.normSq r [PROOFSTEP] exact normSq_nonneg r [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F this : NormedSpace 𝕜 F := Core.toNormedSpace x : F ⊢ ‖x‖ ^ 2 = ↑re (inner x x) [PROOFSTEP] have h₁ : ‖x‖ ^ 2 = sqrt (re (c.inner x x)) ^ 2 := rfl [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F this : NormedSpace 𝕜 F := Core.toNormedSpace x : F h₁ : ‖x‖ ^ 2 = sqrt (↑re (inner x x)) ^ 2 ⊢ ‖x‖ ^ 2 = ↑re (inner x x) [PROOFSTEP] have h₂ : 0 ≤ re (c.inner x x) := InnerProductSpace.Core.inner_self_nonneg [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : IsROrC 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F this : NormedSpace 𝕜 F := Core.toNormedSpace x : F h₁ : ‖x‖ ^ 2 = sqrt (↑re (inner x x)) ^ 2 h₂ : 0 ≤ ↑re (inner x x) ⊢ ‖x‖ ^ 2 = ↑re (inner x x) [PROOFSTEP] simp [h₁, sq_sqrt, h₂] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ inner x y = 0 ↔ inner y x = 0 [PROOFSTEP] rw [← inner_conj_symm] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ ↑(starRingEnd 𝕜) (inner y x) = 0 ↔ inner y x = 0 [PROOFSTEP] exact star_eq_zero [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x : E ⊢ ↑im (inner x x) = 0 [PROOFSTEP] rw [← @ofReal_inj 𝕜, im_eq_conj_sub] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x : E ⊢ I * (↑(starRingEnd 𝕜) (inner x x) - inner x x) / 2 = ↑0 [PROOFSTEP] simp [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y z : E ⊢ inner x (y + z) = inner x y + inner x z [PROOFSTEP] rw [← inner_conj_symm, inner_add_left, RingHom.map_add] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y z : E ⊢ ↑(starRingEnd 𝕜) (inner y x) + ↑(starRingEnd 𝕜) (inner z x) = inner x y + inner x z [PROOFSTEP] simp only [inner_conj_symm] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ ↑re (inner x y) = ↑re (inner y x) [PROOFSTEP] rw [← inner_conj_symm, conj_re] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ ↑im (inner x y) = -↑im (inner y x) [PROOFSTEP] rw [← inner_conj_symm, conj_im] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E r : ℝ ⊢ inner (↑r • x) y = r • inner x y [PROOFSTEP] rw [inner_smul_left, conj_ofReal, Algebra.smul_def] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E r : ℝ ⊢ ↑r * inner x y = ↑(algebraMap ℝ 𝕜) r * inner x y [PROOFSTEP] rfl [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E r : 𝕜 ⊢ inner x (r • y) = r * inner x y [PROOFSTEP] rw [← inner_conj_symm, inner_smul_left, RingHom.map_mul, conj_conj, inner_conj_symm] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E r : ℝ ⊢ inner x (↑r • y) = r • inner x y [PROOFSTEP] rw [inner_smul_right, Algebra.smul_def] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E r : ℝ ⊢ ↑r * inner x y = ↑(algebraMap ℝ 𝕜) r * inner x y [PROOFSTEP] rfl [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 l : ι →₀ 𝕜 v : ι → E x : E ⊢ inner (sum l fun i a => a • v i) x = sum l fun i a => ↑(starRingEnd 𝕜) a • inner (v i) x [PROOFSTEP] convert _root_.sum_inner (𝕜 := 𝕜) l.support (fun a => l a • v a) x [GOAL] case h.e'_3 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 l : ι →₀ 𝕜 v : ι → E x : E ⊢ (sum l fun i a => ↑(starRingEnd 𝕜) a • inner (v i) x) = ∑ i in l.support, inner (↑l i • v i) x [PROOFSTEP] simp only [inner_smul_left, Finsupp.sum, smul_eq_mul] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 l : ι →₀ 𝕜 v : ι → E x : E ⊢ inner x (sum l fun i a => a • v i) = sum l fun i a => a • inner x (v i) [PROOFSTEP] convert _root_.inner_sum (𝕜 := 𝕜) l.support (fun a => l a • v a) x [GOAL] case h.e'_3 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 l : ι →₀ 𝕜 v : ι → E x : E ⊢ (sum l fun i a => a • inner x (v i)) = ∑ i in l.support, inner x (↑l i • v i) [PROOFSTEP] simp only [inner_smul_right, Finsupp.sum, smul_eq_mul] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec : DecidableEq ι α : ι → Type u_5 inst✝¹ : (i : ι) → AddZeroClass (α i) inst✝ : (i : ι) → (x : α i) → Decidable (x ≠ 0) f : (i : ι) → α i → E l : Π₀ (i : ι), α i x : E ⊢ inner (sum l f) x = sum l fun i a => inner (f i a) x [PROOFSTEP] simp (config := { contextual := true }) only [DFinsupp.sum, _root_.sum_inner, smul_eq_mul] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec : DecidableEq ι α : ι → Type u_5 inst✝¹ : (i : ι) → AddZeroClass (α i) inst✝ : (i : ι) → (x : α i) → Decidable (x ≠ 0) f : (i : ι) → α i → E l : Π₀ (i : ι), α i x : E ⊢ inner x (sum l f) = sum l fun i a => inner x (f i a) [PROOFSTEP] simp (config := { contextual := true }) only [DFinsupp.sum, _root_.inner_sum, smul_eq_mul] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x : E ⊢ inner 0 x = 0 [PROOFSTEP] rw [← zero_smul 𝕜 (0 : E), inner_smul_left, RingHom.map_zero, zero_mul] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x : E ⊢ ↑re (inner 0 x) = 0 [PROOFSTEP] simp only [inner_zero_left, AddMonoidHom.map_zero] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x : E ⊢ inner x 0 = 0 [PROOFSTEP] rw [← inner_conj_symm, inner_zero_left, RingHom.map_zero] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x : E ⊢ ↑re (inner x 0) = 0 [PROOFSTEP] simp only [inner_zero_right, AddMonoidHom.map_zero] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x : E ⊢ inner x x = ↑‖x‖ ^ 2 [PROOFSTEP] rw [← inner_self_ofReal_re, ← norm_sq_eq_inner, ofReal_pow] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x : E ⊢ ↑re (inner x x) = ‖inner x x‖ [PROOFSTEP] conv_rhs => rw [← inner_self_ofReal_re] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x : E | ‖inner x x‖ [PROOFSTEP] rw [← inner_self_ofReal_re] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x : E | ‖inner x x‖ [PROOFSTEP] rw [← inner_self_ofReal_re] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x : E | ‖inner x x‖ [PROOFSTEP] rw [← inner_self_ofReal_re] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x : E ⊢ ↑re (inner x x) = ‖↑(↑re (inner x x))‖ [PROOFSTEP] symm [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x : E ⊢ ‖↑(↑re (inner x x))‖ = ↑re (inner x x) [PROOFSTEP] exact norm_of_nonneg inner_self_nonneg [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x : E ⊢ ↑‖inner x x‖ = inner x x [PROOFSTEP] rw [← inner_self_re_eq_norm] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x : E ⊢ ↑(↑re (inner x x)) = inner x x [PROOFSTEP] exact inner_self_ofReal_re _ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x : E ⊢ inner x x = 0 ↔ x = 0 [PROOFSTEP] rw [inner_self_eq_norm_sq_to_K, sq_eq_zero_iff, ofReal_eq_zero, norm_eq_zero] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x : E ⊢ ↑re (inner x x) ≤ 0 ↔ x = 0 [PROOFSTEP] rw [← norm_sq_eq_inner, (sq_nonneg _).le_iff_eq, sq_eq_zero_iff, norm_eq_zero] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ ‖inner x y‖ = ‖inner y x‖ [PROOFSTEP] rw [← inner_conj_symm, norm_conj] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ inner (-x) y = -inner x y [PROOFSTEP] rw [← neg_one_smul 𝕜 x, inner_smul_left] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ ↑(starRingEnd 𝕜) (-1) * inner x y = -inner x y [PROOFSTEP] simp [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ inner x (-y) = -inner x y [PROOFSTEP] rw [← inner_conj_symm, inner_neg_left] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ ↑(starRingEnd 𝕜) (-inner y x) = -inner x y [PROOFSTEP] simp only [RingHom.map_neg, inner_conj_symm] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ inner (-x) (-y) = inner x y [PROOFSTEP] simp [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y z : E ⊢ inner (x - y) z = inner x z - inner y z [PROOFSTEP] simp [sub_eq_add_neg, inner_add_left] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y z : E ⊢ inner x (y - z) = inner x y - inner x z [PROOFSTEP] simp [sub_eq_add_neg, inner_add_right] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ ↑re (inner x y * inner y x) = ‖inner x y * inner y x‖ [PROOFSTEP] rw [← inner_conj_symm, mul_comm] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ ↑re (inner y x * ↑(starRingEnd 𝕜) (inner y x)) = ‖inner y x * ↑(starRingEnd 𝕜) (inner y x)‖ [PROOFSTEP] exact re_eq_norm_of_mul_conj (inner y x) [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ inner (x + y) (x + y) = inner x x + inner x y + inner y x + inner y y [PROOFSTEP] simp only [inner_add_left, inner_add_right] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ inner x x + inner y x + (inner x y + inner y y) = inner x x + inner x y + inner y x + inner y y [PROOFSTEP] ring [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F ⊢ inner (x + y) (x + y) = inner x x + 2 * inner x y + inner y y [PROOFSTEP] have : ⟪y, x⟫_ℝ = ⟪x, y⟫_ℝ := by rw [← inner_conj_symm]; rfl [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F ⊢ inner y x = inner x y [PROOFSTEP] rw [← inner_conj_symm] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F ⊢ ↑(starRingEnd ℝ) (inner x y) = inner x y [PROOFSTEP] rfl [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F this : inner y x = inner x y ⊢ inner (x + y) (x + y) = inner x x + 2 * inner x y + inner y y [PROOFSTEP] simp only [inner_add_add_self, this, add_left_inj] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F this : inner y x = inner x y ⊢ inner x x + inner x y + inner x y = inner x x + 2 * inner x y [PROOFSTEP] ring [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ inner (x - y) (x - y) = inner x x - inner x y - inner y x + inner y y [PROOFSTEP] simp only [inner_sub_left, inner_sub_right] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ inner x x - inner y x - (inner x y - inner y y) = inner x x - inner x y - inner y x + inner y y [PROOFSTEP] ring [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F ⊢ inner (x - y) (x - y) = inner x x - 2 * inner x y + inner y y [PROOFSTEP] have : ⟪y, x⟫_ℝ = ⟪x, y⟫_ℝ := by rw [← inner_conj_symm]; rfl [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F ⊢ inner y x = inner x y [PROOFSTEP] rw [← inner_conj_symm] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F ⊢ ↑(starRingEnd ℝ) (inner x y) = inner x y [PROOFSTEP] rfl [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F this : inner y x = inner x y ⊢ inner (x - y) (x - y) = inner x x - 2 * inner x y + inner y y [PROOFSTEP] simp only [inner_sub_sub_self, this, add_left_inj] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F this : inner y x = inner x y ⊢ inner x x - inner x y - inner x y = inner x x - 2 * inner x y [PROOFSTEP] ring [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E h : ∀ (v : E), inner v x = inner v y ⊢ x = y [PROOFSTEP] rw [← sub_eq_zero, ← @inner_self_eq_zero 𝕜, inner_sub_right, sub_eq_zero, h (x - y)] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E h : ∀ (v : E), inner x v = inner y v ⊢ x = y [PROOFSTEP] rw [← sub_eq_zero, ← @inner_self_eq_zero 𝕜, inner_sub_left, sub_eq_zero, h (x - y)] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ inner (x + y) (x + y) + inner (x - y) (x - y) = 2 * (inner x x + inner y y) [PROOFSTEP] simp only [inner_add_add_self, inner_sub_sub_self] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ inner x x + inner x y + inner y x + inner y y + (inner x x - inner x y - inner y x + inner y y) = 2 * (inner x x + inner y y) [PROOFSTEP] ring [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F ⊢ inner x y * inner x y ≤ ‖inner x y‖ * ‖inner y x‖ [PROOFSTEP] rw [real_inner_comm y, ← norm_mul] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F ⊢ inner y x * inner y x ≤ ‖inner y x * inner y x‖ [PROOFSTEP] exact le_abs_self _ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 v : ι → E hz : ∀ (i : ι), v i ≠ 0 ho : ∀ (i j : ι), i ≠ j → inner (v i) (v j) = 0 ⊢ LinearIndependent 𝕜 v [PROOFSTEP] rw [linearIndependent_iff'] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 v : ι → E hz : ∀ (i : ι), v i ≠ 0 ho : ∀ (i j : ι), i ≠ j → inner (v i) (v j) = 0 ⊢ ∀ (s : Finset ι) (g : ι → 𝕜), ∑ i in s, g i • v i = 0 → ∀ (i : ι), i ∈ s → g i = 0 [PROOFSTEP] intro s g hg i hi [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 v : ι → E hz : ∀ (i : ι), v i ≠ 0 ho : ∀ (i j : ι), i ≠ j → inner (v i) (v j) = 0 s : Finset ι g : ι → 𝕜 hg : ∑ i in s, g i • v i = 0 i : ι hi : i ∈ s ⊢ g i = 0 [PROOFSTEP] have h' : g i * inner (v i) (v i) = inner (v i) (∑ j in s, g j • v j) := by rw [inner_sum] symm convert Finset.sum_eq_single (β := 𝕜) i ?_ ?_ · rw [inner_smul_right] · intro j _hj hji rw [inner_smul_right, ho i j hji.symm, mul_zero] · exact fun h => False.elim (h hi) [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 v : ι → E hz : ∀ (i : ι), v i ≠ 0 ho : ∀ (i j : ι), i ≠ j → inner (v i) (v j) = 0 s : Finset ι g : ι → 𝕜 hg : ∑ i in s, g i • v i = 0 i : ι hi : i ∈ s ⊢ g i * inner (v i) (v i) = inner (v i) (∑ j in s, g j • v j) [PROOFSTEP] rw [inner_sum] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 v : ι → E hz : ∀ (i : ι), v i ≠ 0 ho : ∀ (i j : ι), i ≠ j → inner (v i) (v j) = 0 s : Finset ι g : ι → 𝕜 hg : ∑ i in s, g i • v i = 0 i : ι hi : i ∈ s ⊢ g i * inner (v i) (v i) = ∑ i_1 in s, inner (v i) (g i_1 • v i_1) [PROOFSTEP] symm [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 v : ι → E hz : ∀ (i : ι), v i ≠ 0 ho : ∀ (i j : ι), i ≠ j → inner (v i) (v j) = 0 s : Finset ι g : ι → 𝕜 hg : ∑ i in s, g i • v i = 0 i : ι hi : i ∈ s ⊢ ∑ i_1 in s, inner (v i) (g i_1 • v i_1) = g i * inner (v i) (v i) [PROOFSTEP] convert Finset.sum_eq_single (β := 𝕜) i ?_ ?_ [GOAL] case h.e'_3 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 v : ι → E hz : ∀ (i : ι), v i ≠ 0 ho : ∀ (i j : ι), i ≠ j → inner (v i) (v j) = 0 s : Finset ι g : ι → 𝕜 hg : ∑ i in s, g i • v i = 0 i : ι hi : i ∈ s ⊢ g i * inner (v i) (v i) = inner (v i) (g i • v i) [PROOFSTEP] rw [inner_smul_right] [GOAL] case convert_3 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 v : ι → E hz : ∀ (i : ι), v i ≠ 0 ho : ∀ (i j : ι), i ≠ j → inner (v i) (v j) = 0 s : Finset ι g : ι → 𝕜 hg : ∑ i in s, g i • v i = 0 i : ι hi : i ∈ s ⊢ ∀ (b : ι), b ∈ s → b ≠ i → inner (v i) (g b • v b) = 0 [PROOFSTEP] intro j _hj hji [GOAL] case convert_3 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 v : ι → E hz : ∀ (i : ι), v i ≠ 0 ho : ∀ (i j : ι), i ≠ j → inner (v i) (v j) = 0 s : Finset ι g : ι → 𝕜 hg : ∑ i in s, g i • v i = 0 i : ι hi : i ∈ s j : ι _hj : j ∈ s hji : j ≠ i ⊢ inner (v i) (g j • v j) = 0 [PROOFSTEP] rw [inner_smul_right, ho i j hji.symm, mul_zero] [GOAL] case convert_4 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 v : ι → E hz : ∀ (i : ι), v i ≠ 0 ho : ∀ (i j : ι), i ≠ j → inner (v i) (v j) = 0 s : Finset ι g : ι → 𝕜 hg : ∑ i in s, g i • v i = 0 i : ι hi : i ∈ s ⊢ ¬i ∈ s → inner (v i) (g i • v i) = 0 [PROOFSTEP] exact fun h => False.elim (h hi) [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 v : ι → E hz : ∀ (i : ι), v i ≠ 0 ho : ∀ (i j : ι), i ≠ j → inner (v i) (v j) = 0 s : Finset ι g : ι → 𝕜 hg : ∑ i in s, g i • v i = 0 i : ι hi : i ∈ s h' : g i * inner (v i) (v i) = inner (v i) (∑ j in s, g j • v j) ⊢ g i = 0 [PROOFSTEP] simpa [hg, hz] using h' [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v : ι → E ⊢ Orthonormal 𝕜 v ↔ ∀ (i j : ι), inner (v i) (v j) = if i = j then 1 else 0 [PROOFSTEP] constructor [GOAL] case mp 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v : ι → E ⊢ Orthonormal 𝕜 v → ∀ (i j : ι), inner (v i) (v j) = if i = j then 1 else 0 [PROOFSTEP] intro hv i j [GOAL] case mp 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v : ι → E hv : Orthonormal 𝕜 v i j : ι ⊢ inner (v i) (v j) = if i = j then 1 else 0 [PROOFSTEP] split_ifs with h [GOAL] case pos 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v : ι → E hv : Orthonormal 𝕜 v i j : ι h : i = j ⊢ inner (v i) (v j) = 1 [PROOFSTEP] simp [h, inner_self_eq_norm_sq_to_K, hv.1] [GOAL] case neg 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v : ι → E hv : Orthonormal 𝕜 v i j : ι h : ¬i = j ⊢ inner (v i) (v j) = 0 [PROOFSTEP] exact hv.2 h [GOAL] case mpr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v : ι → E ⊢ (∀ (i j : ι), inner (v i) (v j) = if i = j then 1 else 0) → Orthonormal 𝕜 v [PROOFSTEP] intro h [GOAL] case mpr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v : ι → E h : ∀ (i j : ι), inner (v i) (v j) = if i = j then 1 else 0 ⊢ Orthonormal 𝕜 v [PROOFSTEP] constructor [GOAL] case mpr.left 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v : ι → E h : ∀ (i j : ι), inner (v i) (v j) = if i = j then 1 else 0 ⊢ ∀ (i : ι), ‖v i‖ = 1 [PROOFSTEP] intro i [GOAL] case mpr.left 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v : ι → E h : ∀ (i j : ι), inner (v i) (v j) = if i = j then 1 else 0 i : ι ⊢ ‖v i‖ = 1 [PROOFSTEP] have h' : ‖v i‖ ^ 2 = 1 ^ 2 := by simp [@norm_sq_eq_inner 𝕜, h i i] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v : ι → E h : ∀ (i j : ι), inner (v i) (v j) = if i = j then 1 else 0 i : ι ⊢ ‖v i‖ ^ 2 = 1 ^ 2 [PROOFSTEP] simp [@norm_sq_eq_inner 𝕜, h i i] [GOAL] case mpr.left 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v : ι → E h : ∀ (i j : ι), inner (v i) (v j) = if i = j then 1 else 0 i : ι h' : ‖v i‖ ^ 2 = 1 ^ 2 ⊢ ‖v i‖ = 1 [PROOFSTEP] have h₁ : 0 ≤ ‖v i‖ := norm_nonneg _ [GOAL] case mpr.left 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v : ι → E h : ∀ (i j : ι), inner (v i) (v j) = if i = j then 1 else 0 i : ι h' : ‖v i‖ ^ 2 = 1 ^ 2 h₁ : 0 ≤ ‖v i‖ ⊢ ‖v i‖ = 1 [PROOFSTEP] have h₂ : (0 : ℝ) ≤ 1 := zero_le_one [GOAL] case mpr.left 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v : ι → E h : ∀ (i j : ι), inner (v i) (v j) = if i = j then 1 else 0 i : ι h' : ‖v i‖ ^ 2 = 1 ^ 2 h₁ : 0 ≤ ‖v i‖ h₂ : 0 ≤ 1 ⊢ ‖v i‖ = 1 [PROOFSTEP] rwa [sq_eq_sq h₁ h₂] at h' [GOAL] case mpr.right 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v : ι → E h : ∀ (i j : ι), inner (v i) (v j) = if i = j then 1 else 0 ⊢ ∀ {i j : ι}, i ≠ j → inner (v i) (v j) = 0 [PROOFSTEP] intro i j hij [GOAL] case mpr.right 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v : ι → E h : ∀ (i j : ι), inner (v i) (v j) = if i = j then 1 else 0 i j : ι hij : i ≠ j ⊢ inner (v i) (v j) = 0 [PROOFSTEP] simpa [hij] using h i j [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι s : Set E ⊢ Orthonormal 𝕜 Subtype.val ↔ ∀ (v : E), v ∈ s → ∀ (w : E), w ∈ s → inner v w = if v = w then 1 else 0 [PROOFSTEP] rw [orthonormal_iff_ite] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι s : Set E ⊢ (∀ (i j : { x // x ∈ s }), inner ↑i ↑j = if i = j then 1 else 0) ↔ ∀ (v : E), v ∈ s → ∀ (w : E), w ∈ s → inner v w = if v = w then 1 else 0 [PROOFSTEP] constructor [GOAL] case mp 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι s : Set E ⊢ (∀ (i j : { x // x ∈ s }), inner ↑i ↑j = if i = j then 1 else 0) → ∀ (v : E), v ∈ s → ∀ (w : E), w ∈ s → inner v w = if v = w then 1 else 0 [PROOFSTEP] intro h v hv w hw [GOAL] case mp 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι s : Set E h : ∀ (i j : { x // x ∈ s }), inner ↑i ↑j = if i = j then 1 else 0 v : E hv : v ∈ s w : E hw : w ∈ s ⊢ inner v w = if v = w then 1 else 0 [PROOFSTEP] convert h ⟨v, hv⟩ ⟨w, hw⟩ using 1 [GOAL] case h.e'_3 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι s : Set E h : ∀ (i j : { x // x ∈ s }), inner ↑i ↑j = if i = j then 1 else 0 v : E hv : v ∈ s w : E hw : w ∈ s ⊢ (if v = w then 1 else 0) = if { val := v, property := hv } = { val := w, property := hw } then 1 else 0 [PROOFSTEP] simp [GOAL] case mpr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι s : Set E ⊢ (∀ (v : E), v ∈ s → ∀ (w : E), w ∈ s → inner v w = if v = w then 1 else 0) → ∀ (i j : { x // x ∈ s }), inner ↑i ↑j = if i = j then 1 else 0 [PROOFSTEP] rintro h ⟨v, hv⟩ ⟨w, hw⟩ [GOAL] case mpr.mk.mk 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι s : Set E h : ∀ (v : E), v ∈ s → ∀ (w : E), w ∈ s → inner v w = if v = w then 1 else 0 v : E hv : v ∈ s w : E hw : w ∈ s ⊢ inner ↑{ val := v, property := hv } ↑{ val := w, property := hw } = if { val := v, property := hv } = { val := w, property := hw } then 1 else 0 [PROOFSTEP] convert h v hv w hw using 1 [GOAL] case h.e'_3 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι s : Set E h : ∀ (v : E), v ∈ s → ∀ (w : E), w ∈ s → inner v w = if v = w then 1 else 0 v : E hv : v ∈ s w : E hw : w ∈ s ⊢ (if { val := v, property := hv } = { val := w, property := hw } then 1 else 0) = if v = w then 1 else 0 [PROOFSTEP] simp [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v : ι → E hv : Orthonormal 𝕜 v l : ι →₀ 𝕜 i : ι ⊢ inner (v i) (↑(Finsupp.total ι E 𝕜 v) l) = ↑l i [PROOFSTEP] classical! [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v : ι → E hv : Orthonormal 𝕜 v l : ι →₀ 𝕜 i : ι em✝ : (a : Prop) → Decidable a ⊢ inner (v i) (↑(Finsupp.total ι E 𝕜 v) l) = ↑l i [PROOFSTEP] simpa [Finsupp.total_apply, Finsupp.inner_sum, orthonormal_iff_ite.mp hv] using Eq.symm [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v : ι → E hv : Orthonormal 𝕜 v l : ι → 𝕜 s : Finset ι i : ι hi : i ∈ s ⊢ inner (v i) (∑ i in s, l i • v i) = l i [PROOFSTEP] classical! [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v : ι → E hv : Orthonormal 𝕜 v l : ι → 𝕜 s : Finset ι i : ι hi : i ∈ s em✝ : (a : Prop) → Decidable a ⊢ inner (v i) (∑ i in s, l i • v i) = l i [PROOFSTEP] simp [inner_sum, inner_smul_right, orthonormal_iff_ite.mp hv, hi] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v : ι → E hv : Orthonormal 𝕜 v l : ι →₀ 𝕜 i : ι ⊢ inner (↑(Finsupp.total ι E 𝕜 v) l) (v i) = ↑(starRingEnd ((fun x => 𝕜) i)) (↑l i) [PROOFSTEP] rw [← inner_conj_symm, hv.inner_right_finsupp] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v : ι → E hv : Orthonormal 𝕜 v l : ι → 𝕜 s : Finset ι i : ι hi : i ∈ s ⊢ inner (∑ i in s, l i • v i) (v i) = ↑(starRingEnd 𝕜) (l i) [PROOFSTEP] classical! [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v : ι → E hv : Orthonormal 𝕜 v l : ι → 𝕜 s : Finset ι i : ι hi : i ∈ s em✝ : (a : Prop) → Decidable a ⊢ inner (∑ i in s, l i • v i) (v i) = ↑(starRingEnd 𝕜) (l i) [PROOFSTEP] simp only [sum_inner, inner_smul_left, orthonormal_iff_ite.mp hv, hi, mul_boole, Finset.sum_ite_eq', if_true] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v : ι → E hv : Orthonormal 𝕜 v l₁ l₂ : ι →₀ 𝕜 ⊢ inner (↑(Finsupp.total ι E 𝕜 v) l₁) (↑(Finsupp.total ι E 𝕜 v) l₂) = Finsupp.sum l₁ fun i y => ↑(starRingEnd 𝕜) y * ↑l₂ i [PROOFSTEP] simp only [l₁.total_apply _, Finsupp.sum_inner, hv.inner_right_finsupp, smul_eq_mul] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v : ι → E hv : Orthonormal 𝕜 v l₁ l₂ : ι →₀ 𝕜 ⊢ inner (↑(Finsupp.total ι E 𝕜 v) l₁) (↑(Finsupp.total ι E 𝕜 v) l₂) = Finsupp.sum l₂ fun i y => ↑(starRingEnd ((fun x => 𝕜) i)) (↑l₁ i) * y [PROOFSTEP] simp only [l₂.total_apply _, Finsupp.inner_sum, hv.inner_left_finsupp, mul_comm, smul_eq_mul] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v : ι → E hv : Orthonormal 𝕜 v l₁ l₂ : ι → 𝕜 s : Finset ι ⊢ inner (∑ i in s, l₁ i • v i) (∑ i in s, l₂ i • v i) = ∑ i in s, ↑(starRingEnd 𝕜) (l₁ i) * l₂ i [PROOFSTEP] simp_rw [sum_inner, inner_smul_left] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v : ι → E hv : Orthonormal 𝕜 v l₁ l₂ : ι → 𝕜 s : Finset ι ⊢ ∑ x in s, ↑(starRingEnd 𝕜) (l₁ x) * inner (v x) (∑ i in s, l₂ i • v i) = ∑ x in s, ↑(starRingEnd 𝕜) (l₁ x) * l₂ x [PROOFSTEP] refine' Finset.sum_congr rfl fun i hi => _ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v : ι → E hv : Orthonormal 𝕜 v l₁ l₂ : ι → 𝕜 s : Finset ι i : ι hi : i ∈ s ⊢ ↑(starRingEnd 𝕜) (l₁ i) * inner (v i) (∑ i in s, l₂ i • v i) = ↑(starRingEnd 𝕜) (l₁ i) * l₂ i [PROOFSTEP] rw [hv.inner_right_sum l₂ hi] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι s : Finset ι v : ι → E hv : Orthonormal 𝕜 v a : ι → ι → 𝕜 ⊢ ∑ i in s, ∑ j in s, a i j • inner (v j) (v i) = ∑ k in s, a k k [PROOFSTEP] classical! [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι s : Finset ι v : ι → E hv : Orthonormal 𝕜 v a : ι → ι → 𝕜 em✝ : (a : Prop) → Decidable a ⊢ ∑ i in s, ∑ j in s, a i j • inner (v j) (v i) = ∑ k in s, a k k [PROOFSTEP] simp [orthonormal_iff_ite.mp hv, Finset.sum_ite_of_true] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v : ι → E hv : Orthonormal 𝕜 v ⊢ LinearIndependent 𝕜 v [PROOFSTEP] rw [linearIndependent_iff] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v : ι → E hv : Orthonormal 𝕜 v ⊢ ∀ (l : ι →₀ 𝕜), ↑(Finsupp.total ι E 𝕜 v) l = 0 → l = 0 [PROOFSTEP] intro l hl [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v : ι → E hv : Orthonormal 𝕜 v l : ι →₀ 𝕜 hl : ↑(Finsupp.total ι E 𝕜 v) l = 0 ⊢ l = 0 [PROOFSTEP] ext i [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v : ι → E hv : Orthonormal 𝕜 v l : ι →₀ 𝕜 hl : ↑(Finsupp.total ι E 𝕜 v) l = 0 i : ι ⊢ ↑l i = ↑0 i [PROOFSTEP] have key : ⟪v i, Finsupp.total ι E 𝕜 v l⟫ = ⟪v i, 0⟫ := by rw [hl] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v : ι → E hv : Orthonormal 𝕜 v l : ι →₀ 𝕜 hl : ↑(Finsupp.total ι E 𝕜 v) l = 0 i : ι ⊢ inner (v i) (↑(Finsupp.total ι E 𝕜 v) l) = inner (v i) 0 [PROOFSTEP] rw [hl] [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v : ι → E hv : Orthonormal 𝕜 v l : ι →₀ 𝕜 hl : ↑(Finsupp.total ι E 𝕜 v) l = 0 i : ι key : inner (v i) (↑(Finsupp.total ι E 𝕜 v) l) = inner (v i) 0 ⊢ ↑l i = ↑0 i [PROOFSTEP] simpa only [hv.inner_right_finsupp, inner_zero_right] using key [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι ι' : Type u_5 v : ι → E hv : Orthonormal 𝕜 v f : ι' → ι hf : Function.Injective f ⊢ Orthonormal 𝕜 (v ∘ f) [PROOFSTEP] classical! [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι ι' : Type u_5 v : ι → E hv : Orthonormal 𝕜 v f : ι' → ι hf : Function.Injective f em✝ : (a : Prop) → Decidable a ⊢ Orthonormal 𝕜 (v ∘ f) [PROOFSTEP] rw [orthonormal_iff_ite] at hv ⊢ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι ι' : Type u_5 v : ι → E f : ι' → ι hf : Function.Injective f em✝ : (a : Prop) → Decidable a hv : ∀ (i j : ι), inner (v i) (v j) = if i = j then 1 else 0 ⊢ ∀ (i j : ι'), inner ((v ∘ f) i) ((v ∘ f) j) = if i = j then 1 else 0 [PROOFSTEP] intro i j [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι ι' : Type u_5 v : ι → E f : ι' → ι hf : Function.Injective f em✝ : (a : Prop) → Decidable a hv : ∀ (i j : ι), inner (v i) (v j) = if i = j then 1 else 0 i j : ι' ⊢ inner ((v ∘ f) i) ((v ∘ f) j) = if i = j then 1 else 0 [PROOFSTEP] convert hv (f i) (f j) using 1 [GOAL] case h.e'_3 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι ι' : Type u_5 v : ι → E f : ι' → ι hf : Function.Injective f em✝ : (a : Prop) → Decidable a hv : ∀ (i j : ι), inner (v i) (v j) = if i = j then 1 else 0 i j : ι' ⊢ (if i = j then 1 else 0) = if f i = f j then 1 else 0 [PROOFSTEP] simp [hf.eq_iff] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v : ι → E hv : Function.Injective v ⊢ Orthonormal 𝕜 Subtype.val ↔ Orthonormal 𝕜 v [PROOFSTEP] let f : ι ≃ Set.range v := Equiv.ofInjective v hv [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v : ι → E hv : Function.Injective v f : ι ≃ ↑(Set.range v) := Equiv.ofInjective v hv ⊢ Orthonormal 𝕜 Subtype.val ↔ Orthonormal 𝕜 v [PROOFSTEP] refine' ⟨fun h => h.comp f f.injective, fun h => _⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v : ι → E hv : Function.Injective v f : ι ≃ ↑(Set.range v) := Equiv.ofInjective v hv h : Orthonormal 𝕜 v ⊢ Orthonormal 𝕜 Subtype.val [PROOFSTEP] rw [← Equiv.self_comp_ofInjective_symm hv] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v : ι → E hv : Function.Injective v f : ι ≃ ↑(Set.range v) := Equiv.ofInjective v hv h : Orthonormal 𝕜 v ⊢ Orthonormal 𝕜 (v ∘ ↑(Equiv.ofInjective v hv).symm) [PROOFSTEP] exact h.comp f.symm f.symm.injective [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v : ι → E hv : Orthonormal 𝕜 v s : Set ι i : ι hi : ¬i ∈ s l : ι →₀ 𝕜 hl : l ∈ Finsupp.supported 𝕜 𝕜 s ⊢ inner (↑(Finsupp.total ι E 𝕜 v) l) (v i) = 0 [PROOFSTEP] rw [Finsupp.mem_supported'] at hl [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v : ι → E hv : Orthonormal 𝕜 v s : Set ι i : ι hi : ¬i ∈ s l : ι →₀ 𝕜 hl : ∀ (x : ι), ¬x ∈ s → ↑l x = 0 ⊢ inner (↑(Finsupp.total ι E 𝕜 v) l) (v i) = 0 [PROOFSTEP] simp only [hv.inner_left_finsupp, hl i hi, map_zero] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v w : ι → E hv : Orthonormal 𝕜 v hw : ∀ (i : ι), w i = v i ∨ w i = -v i ⊢ Orthonormal 𝕜 w [PROOFSTEP] classical! [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v w : ι → E hv : Orthonormal 𝕜 v hw : ∀ (i : ι), w i = v i ∨ w i = -v i em✝ : (a : Prop) → Decidable a ⊢ Orthonormal 𝕜 w [PROOFSTEP] rw [orthonormal_iff_ite] at * [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v w : ι → E hw : ∀ (i : ι), w i = v i ∨ w i = -v i em✝ : (a : Prop) → Decidable a hv : ∀ (i j : ι), inner (v i) (v j) = if i = j then 1 else 0 ⊢ ∀ (i j : ι), inner (w i) (w j) = if i = j then 1 else 0 [PROOFSTEP] intro i j [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v w : ι → E hw : ∀ (i : ι), w i = v i ∨ w i = -v i em✝ : (a : Prop) → Decidable a hv : ∀ (i j : ι), inner (v i) (v j) = if i = j then 1 else 0 i j : ι ⊢ inner (w i) (w j) = if i = j then 1 else 0 [PROOFSTEP] cases' hw i with hi hi [GOAL] case inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v w : ι → E hw : ∀ (i : ι), w i = v i ∨ w i = -v i em✝ : (a : Prop) → Decidable a hv : ∀ (i j : ι), inner (v i) (v j) = if i = j then 1 else 0 i j : ι hi : w i = v i ⊢ inner (w i) (w j) = if i = j then 1 else 0 [PROOFSTEP] cases' hw j with hj hj [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v w : ι → E hw : ∀ (i : ι), w i = v i ∨ w i = -v i em✝ : (a : Prop) → Decidable a hv : ∀ (i j : ι), inner (v i) (v j) = if i = j then 1 else 0 i j : ι hi : w i = -v i ⊢ inner (w i) (w j) = if i = j then 1 else 0 [PROOFSTEP] cases' hw j with hj hj [GOAL] case inl.inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v w : ι → E hw : ∀ (i : ι), w i = v i ∨ w i = -v i em✝ : (a : Prop) → Decidable a hv : ∀ (i j : ι), inner (v i) (v j) = if i = j then 1 else 0 i j : ι hi : w i = v i hj : w j = v j ⊢ inner (w i) (w j) = if i = j then 1 else 0 [PROOFSTEP] replace hv := hv i j [GOAL] case inl.inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v w : ι → E hw : ∀ (i : ι), w i = v i ∨ w i = -v i em✝ : (a : Prop) → Decidable a hv : ∀ (i j : ι), inner (v i) (v j) = if i = j then 1 else 0 i j : ι hi : w i = v i hj : w j = -v j ⊢ inner (w i) (w j) = if i = j then 1 else 0 [PROOFSTEP] replace hv := hv i j [GOAL] case inr.inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v w : ι → E hw : ∀ (i : ι), w i = v i ∨ w i = -v i em✝ : (a : Prop) → Decidable a hv : ∀ (i j : ι), inner (v i) (v j) = if i = j then 1 else 0 i j : ι hi : w i = -v i hj : w j = v j ⊢ inner (w i) (w j) = if i = j then 1 else 0 [PROOFSTEP] replace hv := hv i j [GOAL] case inr.inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v w : ι → E hw : ∀ (i : ι), w i = v i ∨ w i = -v i em✝ : (a : Prop) → Decidable a hv : ∀ (i j : ι), inner (v i) (v j) = if i = j then 1 else 0 i j : ι hi : w i = -v i hj : w j = -v j ⊢ inner (w i) (w j) = if i = j then 1 else 0 [PROOFSTEP] replace hv := hv i j [GOAL] case inl.inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v w : ι → E hw : ∀ (i : ι), w i = v i ∨ w i = -v i em✝ : (a : Prop) → Decidable a i j : ι hi : w i = v i hj : w j = v j hv : inner (v i) (v j) = if i = j then 1 else 0 ⊢ inner (w i) (w j) = if i = j then 1 else 0 [PROOFSTEP] split_ifs at hv ⊢ with h [GOAL] case inl.inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v w : ι → E hw : ∀ (i : ι), w i = v i ∨ w i = -v i em✝ : (a : Prop) → Decidable a i j : ι hi : w i = v i hj : w j = -v j hv : inner (v i) (v j) = if i = j then 1 else 0 ⊢ inner (w i) (w j) = if i = j then 1 else 0 [PROOFSTEP] split_ifs at hv ⊢ with h [GOAL] case inr.inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v w : ι → E hw : ∀ (i : ι), w i = v i ∨ w i = -v i em✝ : (a : Prop) → Decidable a i j : ι hi : w i = -v i hj : w j = v j hv : inner (v i) (v j) = if i = j then 1 else 0 ⊢ inner (w i) (w j) = if i = j then 1 else 0 [PROOFSTEP] split_ifs at hv ⊢ with h [GOAL] case inr.inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v w : ι → E hw : ∀ (i : ι), w i = v i ∨ w i = -v i em✝ : (a : Prop) → Decidable a i j : ι hi : w i = -v i hj : w j = -v j hv : inner (v i) (v j) = if i = j then 1 else 0 ⊢ inner (w i) (w j) = if i = j then 1 else 0 [PROOFSTEP] split_ifs at hv ⊢ with h [GOAL] case pos 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v w : ι → E hw : ∀ (i : ι), w i = v i ∨ w i = -v i em✝ : (a : Prop) → Decidable a i j : ι hi : w i = v i hj : w j = v j h : i = j hv : inner (v i) (v j) = 1 ⊢ inner (w i) (w j) = 1 [PROOFSTEP] simpa only [hi, hj, h, inner_neg_right, inner_neg_left, neg_neg, eq_self_iff_true, neg_eq_zero] using hv [GOAL] case neg 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v w : ι → E hw : ∀ (i : ι), w i = v i ∨ w i = -v i em✝ : (a : Prop) → Decidable a i j : ι hi : w i = v i hj : w j = v j h : ¬i = j hv : inner (v i) (v j) = 0 ⊢ inner (w i) (w j) = 0 [PROOFSTEP] simpa only [hi, hj, h, inner_neg_right, inner_neg_left, neg_neg, eq_self_iff_true, neg_eq_zero] using hv [GOAL] case pos 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v w : ι → E hw : ∀ (i : ι), w i = v i ∨ w i = -v i em✝ : (a : Prop) → Decidable a i j : ι hi : w i = v i hj : w j = -v j h : i = j hv : inner (v i) (v j) = 1 ⊢ inner (w i) (w j) = 1 [PROOFSTEP] simpa only [hi, hj, h, inner_neg_right, inner_neg_left, neg_neg, eq_self_iff_true, neg_eq_zero] using hv [GOAL] case neg 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v w : ι → E hw : ∀ (i : ι), w i = v i ∨ w i = -v i em✝ : (a : Prop) → Decidable a i j : ι hi : w i = v i hj : w j = -v j h : ¬i = j hv : inner (v i) (v j) = 0 ⊢ inner (w i) (w j) = 0 [PROOFSTEP] simpa only [hi, hj, h, inner_neg_right, inner_neg_left, neg_neg, eq_self_iff_true, neg_eq_zero] using hv [GOAL] case pos 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v w : ι → E hw : ∀ (i : ι), w i = v i ∨ w i = -v i em✝ : (a : Prop) → Decidable a i j : ι hi : w i = -v i hj : w j = v j h : i = j hv : inner (v i) (v j) = 1 ⊢ inner (w i) (w j) = 1 [PROOFSTEP] simpa only [hi, hj, h, inner_neg_right, inner_neg_left, neg_neg, eq_self_iff_true, neg_eq_zero] using hv [GOAL] case neg 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v w : ι → E hw : ∀ (i : ι), w i = v i ∨ w i = -v i em✝ : (a : Prop) → Decidable a i j : ι hi : w i = -v i hj : w j = v j h : ¬i = j hv : inner (v i) (v j) = 0 ⊢ inner (w i) (w j) = 0 [PROOFSTEP] simpa only [hi, hj, h, inner_neg_right, inner_neg_left, neg_neg, eq_self_iff_true, neg_eq_zero] using hv [GOAL] case pos 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v w : ι → E hw : ∀ (i : ι), w i = v i ∨ w i = -v i em✝ : (a : Prop) → Decidable a i j : ι hi : w i = -v i hj : w j = -v j h : i = j hv : inner (v i) (v j) = 1 ⊢ inner (w i) (w j) = 1 [PROOFSTEP] simpa only [hi, hj, h, inner_neg_right, inner_neg_left, neg_neg, eq_self_iff_true, neg_eq_zero] using hv [GOAL] case neg 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v w : ι → E hw : ∀ (i : ι), w i = v i ∨ w i = -v i em✝ : (a : Prop) → Decidable a i j : ι hi : w i = -v i hj : w j = -v j h : ¬i = j hv : inner (v i) (v j) = 0 ⊢ inner (w i) (w j) = 0 [PROOFSTEP] simpa only [hi, hj, h, inner_neg_right, inner_neg_left, neg_neg, eq_self_iff_true, neg_eq_zero] using hv [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι ⊢ Orthonormal 𝕜 fun x => ↑x [PROOFSTEP] classical! [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι em✝ : (a : Prop) → Decidable a ⊢ Orthonormal 𝕜 fun x => ↑x [PROOFSTEP] simp [orthonormal_subtype_iff_ite] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι η : Type u_5 s : η → Set E hs : Directed (fun x x_1 => x ⊆ x_1) s h : ∀ (i : η), Orthonormal 𝕜 fun x => ↑x ⊢ Orthonormal 𝕜 fun x => ↑x [PROOFSTEP] classical! [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι η : Type u_5 s : η → Set E hs : Directed (fun x x_1 => x ⊆ x_1) s h : ∀ (i : η), Orthonormal 𝕜 fun x => ↑x em✝ : (a : Prop) → Decidable a ⊢ Orthonormal 𝕜 fun x => ↑x [PROOFSTEP] rw [orthonormal_subtype_iff_ite] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι η : Type u_5 s : η → Set E hs : Directed (fun x x_1 => x ⊆ x_1) s h : ∀ (i : η), Orthonormal 𝕜 fun x => ↑x em✝ : (a : Prop) → Decidable a ⊢ ∀ (v : E), v ∈ ⋃ (i : η), s i → ∀ (w : E), w ∈ ⋃ (i : η), s i → inner v w = if v = w then 1 else 0 [PROOFSTEP] rintro x ⟨_, ⟨i, rfl⟩, hxi⟩ y ⟨_, ⟨j, rfl⟩, hyj⟩ [GOAL] case intro.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι η : Type u_5 s : η → Set E hs : Directed (fun x x_1 => x ⊆ x_1) s h : ∀ (i : η), Orthonormal 𝕜 fun x => ↑x em✝ : (a : Prop) → Decidable a x : E i : η hxi : x ∈ (fun i => s i) i y : E j : η hyj : y ∈ (fun i => s i) j ⊢ inner x y = if x = y then 1 else 0 [PROOFSTEP] obtain ⟨k, hik, hjk⟩ := hs i j [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι η : Type u_5 s : η → Set E hs : Directed (fun x x_1 => x ⊆ x_1) s h : ∀ (i : η), Orthonormal 𝕜 fun x => ↑x em✝ : (a : Prop) → Decidable a x : E i : η hxi : x ∈ (fun i => s i) i y : E j : η hyj : y ∈ (fun i => s i) j k : η hik : s i ⊆ s k hjk : s j ⊆ s k ⊢ inner x y = if x = y then 1 else 0 [PROOFSTEP] have h_orth : Orthonormal 𝕜 (fun x => x : s k → E) := h k [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι η : Type u_5 s : η → Set E hs : Directed (fun x x_1 => x ⊆ x_1) s h : ∀ (i : η), Orthonormal 𝕜 fun x => ↑x em✝ : (a : Prop) → Decidable a x : E i : η hxi : x ∈ (fun i => s i) i y : E j : η hyj : y ∈ (fun i => s i) j k : η hik : s i ⊆ s k hjk : s j ⊆ s k h_orth : Orthonormal 𝕜 fun x => ↑x ⊢ inner x y = if x = y then 1 else 0 [PROOFSTEP] rw [orthonormal_subtype_iff_ite] at h_orth [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι η : Type u_5 s : η → Set E hs : Directed (fun x x_1 => x ⊆ x_1) s h : ∀ (i : η), Orthonormal 𝕜 fun x => ↑x em✝ : (a : Prop) → Decidable a x : E i : η hxi : x ∈ (fun i => s i) i y : E j : η hyj : y ∈ (fun i => s i) j k : η hik : s i ⊆ s k hjk : s j ⊆ s k h_orth : ∀ (v : E), v ∈ s k → ∀ (w : E), w ∈ s k → inner v w = if v = w then 1 else 0 ⊢ inner x y = if x = y then 1 else 0 [PROOFSTEP] exact h_orth x (hik hxi) y (hjk hyj) [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι s : Set (Set E) hs : DirectedOn (fun x x_1 => x ⊆ x_1) s h : ∀ (a : Set E), a ∈ s → Orthonormal 𝕜 fun x => ↑x ⊢ Orthonormal 𝕜 fun x => ↑x [PROOFSTEP] rw [Set.sUnion_eq_iUnion] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι s : Set (Set E) hs : DirectedOn (fun x x_1 => x ⊆ x_1) s h : ∀ (a : Set E), a ∈ s → Orthonormal 𝕜 fun x => ↑x ⊢ Orthonormal 𝕜 fun x => ↑x [PROOFSTEP] exact orthonormal_iUnion_of_directed hs.directed_val (by simpa using h) [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι s : Set (Set E) hs : DirectedOn (fun x x_1 => x ⊆ x_1) s h : ∀ (a : Set E), a ∈ s → Orthonormal 𝕜 fun x => ↑x ⊢ ∀ (i : ↑s), Orthonormal 𝕜 fun x => ↑x [PROOFSTEP] simpa using h [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι s : Set E hs : Orthonormal 𝕜 Subtype.val ⊢ ∃ w _hw, Orthonormal 𝕜 Subtype.val ∧ ∀ (u : Set E), u ⊇ w → Orthonormal 𝕜 Subtype.val → u = w [PROOFSTEP] have := zorn_subset_nonempty {b | Orthonormal 𝕜 (Subtype.val : b → E)} ?_ _ hs [GOAL] case refine_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι s : Set E hs : Orthonormal 𝕜 Subtype.val this : ∃ m, m ∈ {b | Orthonormal 𝕜 Subtype.val} ∧ s ⊆ m ∧ ∀ (a : Set E), a ∈ {b | Orthonormal 𝕜 Subtype.val} → m ⊆ a → a = m ⊢ ∃ w _hw, Orthonormal 𝕜 Subtype.val ∧ ∀ (u : Set E), u ⊇ w → Orthonormal 𝕜 Subtype.val → u = w case refine_1 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι s : Set E hs : Orthonormal 𝕜 Subtype.val ⊢ ∀ (c : Set (Set E)), c ⊆ {b | Orthonormal 𝕜 Subtype.val} → IsChain (fun x x_1 => x ⊆ x_1) c → Set.Nonempty c → ∃ ub, ub ∈ {b | Orthonormal 𝕜 Subtype.val} ∧ ∀ (s : Set E), s ∈ c → s ⊆ ub [PROOFSTEP] obtain ⟨b, bi, sb, h⟩ := this [GOAL] case refine_2.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι s : Set E hs : Orthonormal 𝕜 Subtype.val b : Set E bi : b ∈ {b | Orthonormal 𝕜 Subtype.val} sb : s ⊆ b h : ∀ (a : Set E), a ∈ {b | Orthonormal 𝕜 Subtype.val} → b ⊆ a → a = b ⊢ ∃ w _hw, Orthonormal 𝕜 Subtype.val ∧ ∀ (u : Set E), u ⊇ w → Orthonormal 𝕜 Subtype.val → u = w [PROOFSTEP] refine' ⟨b, sb, bi, _⟩ [GOAL] case refine_2.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι s : Set E hs : Orthonormal 𝕜 Subtype.val b : Set E bi : b ∈ {b | Orthonormal 𝕜 Subtype.val} sb : s ⊆ b h : ∀ (a : Set E), a ∈ {b | Orthonormal 𝕜 Subtype.val} → b ⊆ a → a = b ⊢ ∀ (u : Set E), u ⊇ b → Orthonormal 𝕜 Subtype.val → u = b [PROOFSTEP] exact fun u hus hu => h u hu hus [GOAL] case refine_1 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι s : Set E hs : Orthonormal 𝕜 Subtype.val ⊢ ∀ (c : Set (Set E)), c ⊆ {b | Orthonormal 𝕜 Subtype.val} → IsChain (fun x x_1 => x ⊆ x_1) c → Set.Nonempty c → ∃ ub, ub ∈ {b | Orthonormal 𝕜 Subtype.val} ∧ ∀ (s : Set E), s ∈ c → s ⊆ ub [PROOFSTEP] refine' fun c hc cc _c0 => ⟨⋃₀ c, _, _⟩ [GOAL] case refine_1.refine'_1 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι s : Set E hs : Orthonormal 𝕜 Subtype.val c : Set (Set E) hc : c ⊆ {b | Orthonormal 𝕜 Subtype.val} cc : IsChain (fun x x_1 => x ⊆ x_1) c _c0 : Set.Nonempty c ⊢ ⋃₀ c ∈ {b | Orthonormal 𝕜 Subtype.val} [PROOFSTEP] exact orthonormal_sUnion_of_directed cc.directedOn fun x xc => hc xc [GOAL] case refine_1.refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι s : Set E hs : Orthonormal 𝕜 Subtype.val c : Set (Set E) hc : c ⊆ {b | Orthonormal 𝕜 Subtype.val} cc : IsChain (fun x x_1 => x ⊆ x_1) c _c0 : Set.Nonempty c ⊢ ∀ (s : Set E), s ∈ c → s ⊆ ⋃₀ c [PROOFSTEP] exact fun _ => Set.subset_sUnion_of_mem [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v : ι → E hv : Orthonormal 𝕜 v i : ι ⊢ v i ≠ 0 [PROOFSTEP] have : ‖v i‖ ≠ 0 := by rw [hv.1 i] norm_num [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v : ι → E hv : Orthonormal 𝕜 v i : ι ⊢ ‖v i‖ ≠ 0 [PROOFSTEP] rw [hv.1 i] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v : ι → E hv : Orthonormal 𝕜 v i : ι ⊢ 1 ≠ 0 [PROOFSTEP] norm_num [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι v : ι → E hv : Orthonormal 𝕜 v i : ι this : ‖v i‖ ≠ 0 ⊢ v i ≠ 0 [PROOFSTEP] simpa using this [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x : E ⊢ ↑re (inner x x) = ‖x‖ * ‖x‖ [PROOFSTEP] rw [@norm_eq_sqrt_inner 𝕜, ← sqrt_mul inner_self_nonneg (re ⟪x, x⟫), sqrt_mul_self inner_self_nonneg] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x : E ⊢ ↑re (inner x x) = ‖x‖ ^ 2 [PROOFSTEP] rw [pow_two, inner_self_eq_norm_mul_norm] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x : F ⊢ inner x x = ‖x‖ * ‖x‖ [PROOFSTEP] have h := @inner_self_eq_norm_mul_norm ℝ F _ _ _ x [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x : F h : ↑re (inner x x) = ‖x‖ * ‖x‖ ⊢ inner x x = ‖x‖ * ‖x‖ [PROOFSTEP] simpa using h [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x : F ⊢ inner x x = ‖x‖ ^ 2 [PROOFSTEP] rw [pow_two, real_inner_self_eq_norm_mul_norm] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ ‖x + y‖ ^ 2 = ‖x‖ ^ 2 + 2 * ↑re (inner x y) + ‖y‖ ^ 2 [PROOFSTEP] repeat' rw [sq (M := ℝ), ← @inner_self_eq_norm_mul_norm 𝕜] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ ‖x + y‖ ^ 2 = ‖x‖ ^ 2 + 2 * ↑re (inner x y) + ‖y‖ ^ 2 [PROOFSTEP] rw [sq (M := ℝ), ← @inner_self_eq_norm_mul_norm 𝕜] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ ↑re (inner (x + y) (x + y)) = ‖x‖ ^ 2 + 2 * ↑re (inner x y) + ‖y‖ ^ 2 [PROOFSTEP] rw [sq (M := ℝ), ← @inner_self_eq_norm_mul_norm 𝕜] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ ↑re (inner (x + y) (x + y)) = ↑re (inner x x) + 2 * ↑re (inner x y) + ‖y‖ ^ 2 [PROOFSTEP] rw [sq (M := ℝ), ← @inner_self_eq_norm_mul_norm 𝕜] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ ↑re (inner (x + y) (x + y)) = ↑re (inner x x) + 2 * ↑re (inner x y) + ↑re (inner y y) [PROOFSTEP] rw [sq (M := ℝ), ← @inner_self_eq_norm_mul_norm 𝕜] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ ↑re (inner (x + y) (x + y)) = ↑re (inner x x) + 2 * ↑re (inner x y) + ↑re (inner y y) [PROOFSTEP] rw [inner_add_add_self, two_mul] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ ↑re (inner x x + inner x y + inner y x + inner y y) = ↑re (inner x x) + (↑re (inner x y) + ↑re (inner x y)) + ↑re (inner y y) [PROOFSTEP] simp only [add_assoc, add_left_inj, add_right_inj, AddMonoidHom.map_add] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ ↑re (inner y x) = ↑re (inner x y) [PROOFSTEP] rw [← inner_conj_symm, conj_re] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F ⊢ ‖x + y‖ ^ 2 = ‖x‖ ^ 2 + 2 * inner x y + ‖y‖ ^ 2 [PROOFSTEP] have h := @norm_add_sq ℝ _ _ _ _ x y [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F h : ‖x + y‖ ^ 2 = ‖x‖ ^ 2 + 2 * ↑re (inner x y) + ‖y‖ ^ 2 ⊢ ‖x + y‖ ^ 2 = ‖x‖ ^ 2 + 2 * inner x y + ‖y‖ ^ 2 [PROOFSTEP] simpa using h [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ ‖x + y‖ * ‖x + y‖ = ‖x‖ * ‖x‖ + 2 * ↑re (inner x y) + ‖y‖ * ‖y‖ [PROOFSTEP] repeat' rw [← sq (M := ℝ)] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ ‖x + y‖ * ‖x + y‖ = ‖x‖ * ‖x‖ + 2 * ↑re (inner x y) + ‖y‖ * ‖y‖ [PROOFSTEP] rw [← sq (M := ℝ)] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ ‖x + y‖ ^ 2 = ‖x‖ * ‖x‖ + 2 * ↑re (inner x y) + ‖y‖ * ‖y‖ [PROOFSTEP] rw [← sq (M := ℝ)] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ ‖x + y‖ ^ 2 = ‖x‖ ^ 2 + 2 * ↑re (inner x y) + ‖y‖ * ‖y‖ [PROOFSTEP] rw [← sq (M := ℝ)] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ ‖x + y‖ ^ 2 = ‖x‖ ^ 2 + 2 * ↑re (inner x y) + ‖y‖ ^ 2 [PROOFSTEP] rw [← sq (M := ℝ)] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ ‖x + y‖ ^ 2 = ‖x‖ ^ 2 + 2 * ↑re (inner x y) + ‖y‖ ^ 2 [PROOFSTEP] exact norm_add_sq _ _ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F ⊢ ‖x + y‖ * ‖x + y‖ = ‖x‖ * ‖x‖ + 2 * inner x y + ‖y‖ * ‖y‖ [PROOFSTEP] have h := @norm_add_mul_self ℝ _ _ _ _ x y [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F h : ‖x + y‖ * ‖x + y‖ = ‖x‖ * ‖x‖ + 2 * ↑re (inner x y) + ‖y‖ * ‖y‖ ⊢ ‖x + y‖ * ‖x + y‖ = ‖x‖ * ‖x‖ + 2 * inner x y + ‖y‖ * ‖y‖ [PROOFSTEP] simpa using h [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ ‖x - y‖ ^ 2 = ‖x‖ ^ 2 - 2 * ↑re (inner x y) + ‖y‖ ^ 2 [PROOFSTEP] rw [sub_eq_add_neg, @norm_add_sq 𝕜 _ _ _ _ x (-y), norm_neg, inner_neg_right, map_neg, mul_neg, sub_eq_add_neg] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ ‖x - y‖ * ‖x - y‖ = ‖x‖ * ‖x‖ - 2 * ↑re (inner x y) + ‖y‖ * ‖y‖ [PROOFSTEP] repeat' rw [← sq (M := ℝ)] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ ‖x - y‖ * ‖x - y‖ = ‖x‖ * ‖x‖ - 2 * ↑re (inner x y) + ‖y‖ * ‖y‖ [PROOFSTEP] rw [← sq (M := ℝ)] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ ‖x - y‖ ^ 2 = ‖x‖ * ‖x‖ - 2 * ↑re (inner x y) + ‖y‖ * ‖y‖ [PROOFSTEP] rw [← sq (M := ℝ)] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ ‖x - y‖ ^ 2 = ‖x‖ ^ 2 - 2 * ↑re (inner x y) + ‖y‖ * ‖y‖ [PROOFSTEP] rw [← sq (M := ℝ)] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ ‖x - y‖ ^ 2 = ‖x‖ ^ 2 - 2 * ↑re (inner x y) + ‖y‖ ^ 2 [PROOFSTEP] rw [← sq (M := ℝ)] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ ‖x - y‖ ^ 2 = ‖x‖ ^ 2 - 2 * ↑re (inner x y) + ‖y‖ ^ 2 [PROOFSTEP] exact norm_sub_sq _ _ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F ⊢ ‖x - y‖ * ‖x - y‖ = ‖x‖ * ‖x‖ - 2 * inner x y + ‖y‖ * ‖y‖ [PROOFSTEP] have h := @norm_sub_mul_self ℝ _ _ _ _ x y [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F h : ‖x - y‖ * ‖x - y‖ = ‖x‖ * ‖x‖ - 2 * ↑re (inner x y) + ‖y‖ * ‖y‖ ⊢ ‖x - y‖ * ‖x - y‖ = ‖x‖ * ‖x‖ - 2 * inner x y + ‖y‖ * ‖y‖ [PROOFSTEP] simpa using h [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ ‖inner x y‖ ≤ ‖x‖ * ‖y‖ [PROOFSTEP] rw [norm_eq_sqrt_inner (𝕜 := 𝕜) x, norm_eq_sqrt_inner (𝕜 := 𝕜) y] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ ‖inner x y‖ ≤ sqrt (↑re (inner x x)) * sqrt (↑re (inner y y)) [PROOFSTEP] letI : InnerProductSpace.Core 𝕜 E := InnerProductSpace.toCore [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E this : InnerProductSpace.Core 𝕜 E := InnerProductSpace.toCore ⊢ ‖inner x y‖ ≤ sqrt (↑re (inner x x)) * sqrt (↑re (inner y y)) [PROOFSTEP] exact InnerProductSpace.Core.norm_inner_le_norm x y [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ ‖x + y‖ * ‖x + y‖ + ‖x - y‖ * ‖x - y‖ = 2 * (‖x‖ * ‖x‖ + ‖y‖ * ‖y‖) [PROOFSTEP] simp only [← @inner_self_eq_norm_mul_norm 𝕜] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ ↑re (inner (x + y) (x + y)) + ↑re (inner (x - y) (x - y)) = 2 * (↑re (inner x x) + ↑re (inner y y)) [PROOFSTEP] rw [← re.map_add, parallelogram_law, two_mul, two_mul] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ ↑re (inner x x + inner y y + (inner x x + inner y y)) = ↑re (inner x x) + ↑re (inner y y) + (↑re (inner x x) + ↑re (inner y y)) [PROOFSTEP] simp only [re.map_add] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ ↑re (inner x y) = (‖x + y‖ * ‖x + y‖ - ‖x‖ * ‖x‖ - ‖y‖ * ‖y‖) / 2 [PROOFSTEP] rw [@norm_add_mul_self 𝕜] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ ↑re (inner x y) = (‖x‖ * ‖x‖ + 2 * ↑re (inner x y) + ‖y‖ * ‖y‖ - ‖x‖ * ‖x‖ - ‖y‖ * ‖y‖) / 2 [PROOFSTEP] ring [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ ↑re (inner x y) = (‖x‖ * ‖x‖ + ‖y‖ * ‖y‖ - ‖x - y‖ * ‖x - y‖) / 2 [PROOFSTEP] rw [@norm_sub_mul_self 𝕜] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ ↑re (inner x y) = (‖x‖ * ‖x‖ + ‖y‖ * ‖y‖ - (‖x‖ * ‖x‖ - 2 * ↑re (inner x y) + ‖y‖ * ‖y‖)) / 2 [PROOFSTEP] ring [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ ↑re (inner x y) = (‖x + y‖ * ‖x + y‖ - ‖x - y‖ * ‖x - y‖) / 4 [PROOFSTEP] rw [@norm_add_mul_self 𝕜, @norm_sub_mul_self 𝕜] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ ↑re (inner x y) = (‖x‖ * ‖x‖ + 2 * ↑re (inner x y) + ‖y‖ * ‖y‖ - (‖x‖ * ‖x‖ - 2 * ↑re (inner x y) + ‖y‖ * ‖y‖)) / 4 [PROOFSTEP] ring [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ ↑im (inner x y) = (‖x - I • y‖ * ‖x - I • y‖ - ‖x + I • y‖ * ‖x + I • y‖) / 4 [PROOFSTEP] simp only [@norm_add_mul_self 𝕜, @norm_sub_mul_self 𝕜, inner_smul_right, I_mul_re] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ ↑im (inner x y) = (‖x‖ * ‖x‖ - 2 * -↑im (inner x y) + ‖I • y‖ * ‖I • y‖ - (‖x‖ * ‖x‖ + 2 * -↑im (inner x y) + ‖I • y‖ * ‖I • y‖)) / 4 [PROOFSTEP] ring [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ inner x y = (↑‖x + y‖ ^ 2 - ↑‖x - y‖ ^ 2 + (↑‖x - I • y‖ ^ 2 - ↑‖x + I • y‖ ^ 2) * I) / 4 [PROOFSTEP] rw [← re_add_im ⟪x, y⟫, re_inner_eq_norm_add_mul_self_sub_norm_sub_mul_self_div_four, im_inner_eq_norm_sub_i_smul_mul_self_sub_norm_add_i_smul_mul_self_div_four] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ ↑((‖x + y‖ * ‖x + y‖ - ‖x - y‖ * ‖x - y‖) / 4) + ↑((‖x - I • y‖ * ‖x - I • y‖ - ‖x + I • y‖ * ‖x + I • y‖) / 4) * I = (↑‖x + y‖ ^ 2 - ↑‖x - y‖ ^ 2 + (↑‖x - I • y‖ ^ 2 - ↑‖x + I • y‖ ^ 2) * I) / 4 [PROOFSTEP] push_cast [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ (↑‖x + y‖ * ↑‖x + y‖ - ↑‖x - y‖ * ↑‖x - y‖) / 4 + (↑‖x - I • y‖ * ↑‖x - I • y‖ - ↑‖x + I • y‖ * ↑‖x + I • y‖) / 4 * I = (↑‖x + y‖ ^ 2 - ↑‖x - y‖ ^ 2 + (↑‖x - I • y‖ ^ 2 - ↑‖x + I • y‖ ^ 2) * I) / 4 [PROOFSTEP] simp only [sq, ← mul_div_right_comm, ← add_div] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F hx : x ≠ 0 hy : y ≠ 0 R : ℝ hx' : ‖x‖ ≠ 0 hy' : ‖y‖ ≠ 0 ⊢ dist ((R / ‖x‖) ^ 2 • x) ((R / ‖y‖) ^ 2 • y) = sqrt (‖(R / ‖x‖) ^ 2 • x - (R / ‖y‖) ^ 2 • y‖ ^ 2) [PROOFSTEP] rw [dist_eq_norm, sqrt_sq (norm_nonneg _)] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F hx : x ≠ 0 hy : y ≠ 0 R : ℝ hx' : ‖x‖ ≠ 0 hy' : ‖y‖ ≠ 0 ⊢ ‖(R / ‖x‖) ^ 2 • x - (R / ‖y‖) ^ 2 • y‖ ^ 2 = (R ^ 2 / (‖x‖ * ‖y‖)) ^ 2 * ‖x - y‖ ^ 2 [PROOFSTEP] field_simp [sq, norm_sub_mul_self_real, norm_smul, real_inner_smul_left, inner_smul_right, Real.norm_of_nonneg (mul_self_nonneg _)] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F hx : x ≠ 0 hy : y ≠ 0 R : ℝ hx' : ‖x‖ ≠ 0 hy' : ‖y‖ ≠ 0 ⊢ ((R * R * ‖x‖ * (R * R * ‖x‖) * (‖y‖ * ‖y‖ * (‖x‖ * ‖x‖)) - ‖x‖ * ‖x‖ * (‖x‖ * ‖x‖) * (2 * (R * R * (R * R * inner x y)))) * (‖y‖ * ‖y‖ * (‖y‖ * ‖y‖)) + R * R * ‖y‖ * (R * R * ‖y‖) * (‖x‖ * ‖x‖ * (‖x‖ * ‖x‖) * (‖y‖ * ‖y‖ * (‖x‖ * ‖x‖)))) * (‖x‖ * ‖y‖ * (‖x‖ * ‖y‖)) = R * R * (R * R) * (‖x‖ * ‖x‖ - 2 * inner x y + ‖y‖ * ‖y‖) * (‖x‖ * ‖x‖ * (‖x‖ * ‖x‖) * (‖y‖ * ‖y‖ * (‖x‖ * ‖x‖)) * (‖y‖ * ‖y‖ * (‖y‖ * ‖y‖))) [PROOFSTEP] ring [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F hx : x ≠ 0 hy : y ≠ 0 R : ℝ hx' : ‖x‖ ≠ 0 hy' : ‖y‖ ≠ 0 ⊢ sqrt ((R ^ 2 / (‖x‖ * ‖y‖)) ^ 2 * ‖x - y‖ ^ 2) = R ^ 2 / (‖x‖ * ‖y‖) * dist x y [PROOFSTEP] rw [sqrt_mul (sq_nonneg _), sqrt_sq (norm_nonneg _), sqrt_sq (div_nonneg (sq_nonneg _) (mul_nonneg (norm_nonneg _) (norm_nonneg _))), dist_eq_norm] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ε : ℝ hε : 0 < ε ⊢ ∃ δ, 0 < δ ∧ ∀ ⦃x : F⦄, ‖x‖ = 1 → ∀ ⦃y : F⦄, ‖y‖ = 1 → ε ≤ ‖x - y‖ → ‖x + y‖ ≤ 2 - δ [PROOFSTEP] refine' ⟨2 - sqrt (4 - ε ^ 2), sub_pos_of_lt <| (sqrt_lt' zero_lt_two).2 _, fun x hx y hy hxy => _⟩ [GOAL] case refine'_1 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ε : ℝ hε : 0 < ε ⊢ 4 - ε ^ 2 < 2 ^ 2 [PROOFSTEP] norm_num [GOAL] case refine'_1 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ε : ℝ hε : 0 < ε ⊢ 0 < ε ^ 2 [PROOFSTEP] exact pow_pos hε _ [GOAL] case refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ε : ℝ hε : 0 < ε x : F hx : ‖x‖ = 1 y : F hy : ‖y‖ = 1 hxy : ε ≤ ‖x - y‖ ⊢ ‖x + y‖ ≤ 2 - (2 - sqrt (4 - ε ^ 2)) [PROOFSTEP] rw [sub_sub_cancel] [GOAL] case refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ε : ℝ hε : 0 < ε x : F hx : ‖x‖ = 1 y : F hy : ‖y‖ = 1 hxy : ε ≤ ‖x - y‖ ⊢ ‖x + y‖ ≤ sqrt (4 - ε ^ 2) [PROOFSTEP] refine' le_sqrt_of_sq_le _ [GOAL] case refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ε : ℝ hε : 0 < ε x : F hx : ‖x‖ = 1 y : F hy : ‖y‖ = 1 hxy : ε ≤ ‖x - y‖ ⊢ ‖x + y‖ ^ 2 ≤ 4 - ε ^ 2 [PROOFSTEP] rw [sq, eq_sub_iff_add_eq.2 (parallelogram_law_with_norm ℝ x y), ← sq ‖x - y‖, hx, hy] [GOAL] case refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ε : ℝ hε : 0 < ε x : F hx : ‖x‖ = 1 y : F hy : ‖y‖ = 1 hxy : ε ≤ ‖x - y‖ ⊢ 2 * (1 * 1 + 1 * 1) - ‖x - y‖ ^ 2 ≤ 4 - ε ^ 2 [PROOFSTEP] ring_nf [GOAL] case refine'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ε : ℝ hε : 0 < ε x : F hx : ‖x‖ = 1 y : F hy : ‖y‖ = 1 hxy : ε ≤ ‖x - y‖ ⊢ 4 - ‖x - y‖ ^ 2 ≤ 4 - ε ^ 2 [PROOFSTEP] exact sub_le_sub_left (pow_le_pow_of_le_left hε.le hxy _) 4 [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E V : Type u_4 inst✝¹ : NormedAddCommGroup V inst✝ : InnerProductSpace ℂ V T : V →ₗ[ℂ] V x y : V ⊢ inner (↑T y) x = (inner (↑T (x + y)) (x + y) - inner (↑T (x - y)) (x - y) + Complex.I * inner (↑T (x + Complex.I • y)) (x + Complex.I • y) - Complex.I * inner (↑T (x - Complex.I • y)) (x - Complex.I • y)) / 4 [PROOFSTEP] simp only [map_add, map_sub, inner_add_left, inner_add_right, LinearMap.map_smul, inner_smul_left, inner_smul_right, Complex.conj_I, ← pow_two, Complex.I_sq, inner_sub_left, inner_sub_right, mul_add, ← mul_assoc, mul_neg, neg_neg, sub_neg_eq_add, one_mul, neg_one_mul, mul_sub, sub_sub] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E V : Type u_4 inst✝¹ : NormedAddCommGroup V inst✝ : InnerProductSpace ℂ V T : V →ₗ[ℂ] V x y : V ⊢ inner (↑T y) x = (inner (↑T x) x + inner (↑T y) x + (inner (↑T x) y + inner (↑T y) y) - (inner (↑T x) x - (inner (↑T y) x + (inner (↑T x) y - inner (↑T y) y))) + (Complex.I * inner (↑T x) x + inner (↑T y) x + (-inner (↑T x) y + Complex.I * inner (↑T y) y)) - (Complex.I * inner (↑T x) x - (inner (↑T y) x + (-inner (↑T x) y - Complex.I * inner (↑T y) y)))) / 4 [PROOFSTEP] ring [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E V : Type u_4 inst✝¹ : NormedAddCommGroup V inst✝ : InnerProductSpace ℂ V T : V →ₗ[ℂ] V x y : V ⊢ inner (↑T x) y = (inner (↑T (x + y)) (x + y) - inner (↑T (x - y)) (x - y) - Complex.I * inner (↑T (x + Complex.I • y)) (x + Complex.I • y) + Complex.I * inner (↑T (x - Complex.I • y)) (x - Complex.I • y)) / 4 [PROOFSTEP] simp only [map_add, map_sub, inner_add_left, inner_add_right, LinearMap.map_smul, inner_smul_left, inner_smul_right, Complex.conj_I, ← pow_two, Complex.I_sq, inner_sub_left, inner_sub_right, mul_add, ← mul_assoc, mul_neg, neg_neg, sub_neg_eq_add, one_mul, neg_one_mul, mul_sub, sub_sub] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E V : Type u_4 inst✝¹ : NormedAddCommGroup V inst✝ : InnerProductSpace ℂ V T : V →ₗ[ℂ] V x y : V ⊢ inner (↑T x) y = (inner (↑T x) x + inner (↑T y) x + (inner (↑T x) y + inner (↑T y) y) - (inner (↑T x) x - (inner (↑T y) x + (inner (↑T x) y - inner (↑T y) y)) + (Complex.I * inner (↑T x) x + inner (↑T y) x + (-inner (↑T x) y + Complex.I * inner (↑T y) y))) + (Complex.I * inner (↑T x) x - (inner (↑T y) x + (-inner (↑T x) y - Complex.I * inner (↑T y) y)))) / 4 [PROOFSTEP] ring [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E V : Type u_4 inst✝¹ : NormedAddCommGroup V inst✝ : InnerProductSpace ℂ V T : V →ₗ[ℂ] V ⊢ (∀ (x : V), inner (↑T x) x = 0) ↔ T = 0 [PROOFSTEP] constructor [GOAL] case mp 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E V : Type u_4 inst✝¹ : NormedAddCommGroup V inst✝ : InnerProductSpace ℂ V T : V →ₗ[ℂ] V ⊢ (∀ (x : V), inner (↑T x) x = 0) → T = 0 [PROOFSTEP] intro hT [GOAL] case mp 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E V : Type u_4 inst✝¹ : NormedAddCommGroup V inst✝ : InnerProductSpace ℂ V T : V →ₗ[ℂ] V hT : ∀ (x : V), inner (↑T x) x = 0 ⊢ T = 0 [PROOFSTEP] ext x [GOAL] case mp.h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E V : Type u_4 inst✝¹ : NormedAddCommGroup V inst✝ : InnerProductSpace ℂ V T : V →ₗ[ℂ] V hT : ∀ (x : V), inner (↑T x) x = 0 x : V ⊢ ↑T x = ↑0 x [PROOFSTEP] simp only [LinearMap.zero_apply, ← @inner_self_eq_zero ℂ V] [GOAL] case mp.h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E V : Type u_4 inst✝¹ : NormedAddCommGroup V inst✝ : InnerProductSpace ℂ V T : V →ₗ[ℂ] V hT : ∀ (x : V), inner (↑T x) x = 0 x : V ⊢ inner (↑T x) (↑T x) = 0 [PROOFSTEP] simp (config := { singlePass := true }) only [inner_map_polarization] [GOAL] case mp.h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E V : Type u_4 inst✝¹ : NormedAddCommGroup V inst✝ : InnerProductSpace ℂ V T : V →ₗ[ℂ] V hT : ∀ (x : V), inner (↑T x) x = 0 x : V ⊢ (inner (↑T (↑T x + x)) (↑T x + x) - inner (↑T (↑T x - x)) (↑T x - x) + Complex.I * inner (↑T (↑T x + Complex.I • x)) (↑T x + Complex.I • x) - Complex.I * inner (↑T (↑T x - Complex.I • x)) (↑T x - Complex.I • x)) / 4 = 0 [PROOFSTEP] simp only [hT] [GOAL] case mp.h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E V : Type u_4 inst✝¹ : NormedAddCommGroup V inst✝ : InnerProductSpace ℂ V T : V →ₗ[ℂ] V hT : ∀ (x : V), inner (↑T x) x = 0 x : V ⊢ (0 - 0 + Complex.I * 0 - Complex.I * 0) / 4 = 0 [PROOFSTEP] norm_num [GOAL] case mpr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E V : Type u_4 inst✝¹ : NormedAddCommGroup V inst✝ : InnerProductSpace ℂ V T : V →ₗ[ℂ] V ⊢ T = 0 → ∀ (x : V), inner (↑T x) x = 0 [PROOFSTEP] rintro rfl x [GOAL] case mpr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E V : Type u_4 inst✝¹ : NormedAddCommGroup V inst✝ : InnerProductSpace ℂ V x : V ⊢ inner (↑0 x) x = 0 [PROOFSTEP] simp only [LinearMap.zero_apply, inner_zero_left] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E V : Type u_4 inst✝¹ : NormedAddCommGroup V inst✝ : InnerProductSpace ℂ V S T : V →ₗ[ℂ] V ⊢ (∀ (x : V), inner (↑S x) x = inner (↑T x) x) ↔ S = T [PROOFSTEP] rw [← sub_eq_zero, ← inner_map_self_eq_zero] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E V : Type u_4 inst✝¹ : NormedAddCommGroup V inst✝ : InnerProductSpace ℂ V S T : V →ₗ[ℂ] V ⊢ (∀ (x : V), inner (↑S x) x = inner (↑T x) x) ↔ ∀ (x : V), inner (↑(S - T) x) x = 0 [PROOFSTEP] refine' forall_congr' fun x => _ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E V : Type u_4 inst✝¹ : NormedAddCommGroup V inst✝ : InnerProductSpace ℂ V S T : V →ₗ[ℂ] V x : V ⊢ inner (↑S x) x = inner (↑T x) x ↔ inner (↑(S - T) x) x = 0 [PROOFSTEP] rw [LinearMap.sub_apply, inner_sub_left, sub_eq_zero] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁸ : IsROrC 𝕜 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace 𝕜 E inst✝⁵ : NormedAddCommGroup F inst✝⁴ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 ι' : Type u_5 ι'' : Type u_6 E' : Type u_7 inst✝³ : NormedAddCommGroup E' inst✝² : InnerProductSpace 𝕜 E' E'' : Type u_8 inst✝¹ : NormedAddCommGroup E'' inst✝ : InnerProductSpace 𝕜 E'' f : E →ₗᵢ[𝕜] E' x y : E ⊢ inner (↑f x) (↑f y) = inner x y [PROOFSTEP] simp [inner_eq_sum_norm_sq_div_four, ← f.norm_map] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁸ : IsROrC 𝕜 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace 𝕜 E inst✝⁵ : NormedAddCommGroup F inst✝⁴ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 ι' : Type u_5 ι'' : Type u_6 E' : Type u_7 inst✝³ : NormedAddCommGroup E' inst✝² : InnerProductSpace 𝕜 E' E'' : Type u_8 inst✝¹ : NormedAddCommGroup E'' inst✝ : InnerProductSpace 𝕜 E'' f : E →ₗ[𝕜] E' h : ∀ (x y : E), inner (↑f x) (↑f y) = inner x y x : E ⊢ ‖↑f x‖ = ‖x‖ [PROOFSTEP] simp only [@norm_eq_sqrt_inner 𝕜, h] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁸ : IsROrC 𝕜 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace 𝕜 E inst✝⁵ : NormedAddCommGroup F inst✝⁴ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 ι' : Type u_5 ι'' : Type u_6 E' : Type u_7 inst✝³ : NormedAddCommGroup E' inst✝² : InnerProductSpace 𝕜 E' E'' : Type u_8 inst✝¹ : NormedAddCommGroup E'' inst✝ : InnerProductSpace 𝕜 E'' v : ι → E f : E →ₗᵢ[𝕜] E' ⊢ Orthonormal 𝕜 (↑f ∘ v) ↔ Orthonormal 𝕜 v [PROOFSTEP] classical simp_rw [orthonormal_iff_ite, Function.comp_apply, LinearIsometry.inner_map_map] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁸ : IsROrC 𝕜 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace 𝕜 E inst✝⁵ : NormedAddCommGroup F inst✝⁴ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 ι' : Type u_5 ι'' : Type u_6 E' : Type u_7 inst✝³ : NormedAddCommGroup E' inst✝² : InnerProductSpace 𝕜 E' E'' : Type u_8 inst✝¹ : NormedAddCommGroup E'' inst✝ : InnerProductSpace 𝕜 E'' v : ι → E f : E →ₗᵢ[𝕜] E' ⊢ Orthonormal 𝕜 (↑f ∘ v) ↔ Orthonormal 𝕜 v [PROOFSTEP] simp_rw [orthonormal_iff_ite, Function.comp_apply, LinearIsometry.inner_map_map] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁸ : IsROrC 𝕜 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace 𝕜 E inst✝⁵ : NormedAddCommGroup F inst✝⁴ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 ι' : Type u_5 ι'' : Type u_6 E' : Type u_7 inst✝³ : NormedAddCommGroup E' inst✝² : InnerProductSpace 𝕜 E' E'' : Type u_8 inst✝¹ : NormedAddCommGroup E'' inst✝ : InnerProductSpace 𝕜 E'' v : ι → E hv : Orthonormal 𝕜 v f : E →ₗᵢ[𝕜] E' ⊢ Orthonormal 𝕜 (↑f ∘ v) [PROOFSTEP] rwa [f.orthonormal_comp_iff] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁸ : IsROrC 𝕜 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace 𝕜 E inst✝⁵ : NormedAddCommGroup F inst✝⁴ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 ι' : Type u_5 ι'' : Type u_6 E' : Type u_7 inst✝³ : NormedAddCommGroup E' inst✝² : InnerProductSpace 𝕜 E' E'' : Type u_8 inst✝¹ : NormedAddCommGroup E'' inst✝ : InnerProductSpace 𝕜 E'' f : E →ₗ[𝕜] E' v : Basis ι 𝕜 E hv : Orthonormal 𝕜 ↑v hf : Orthonormal 𝕜 (↑f ∘ ↑v) x y : E ⊢ inner (↑f x) (↑f y) = inner x y [PROOFSTEP] classical rw [← v.total_repr x, ← v.total_repr y, Finsupp.apply_total, Finsupp.apply_total, hv.inner_finsupp_eq_sum_left, hf.inner_finsupp_eq_sum_left] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁸ : IsROrC 𝕜 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace 𝕜 E inst✝⁵ : NormedAddCommGroup F inst✝⁴ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 ι' : Type u_5 ι'' : Type u_6 E' : Type u_7 inst✝³ : NormedAddCommGroup E' inst✝² : InnerProductSpace 𝕜 E' E'' : Type u_8 inst✝¹ : NormedAddCommGroup E'' inst✝ : InnerProductSpace 𝕜 E'' f : E →ₗ[𝕜] E' v : Basis ι 𝕜 E hv : Orthonormal 𝕜 ↑v hf : Orthonormal 𝕜 (↑f ∘ ↑v) x y : E ⊢ inner (↑f x) (↑f y) = inner x y [PROOFSTEP] rw [← v.total_repr x, ← v.total_repr y, Finsupp.apply_total, Finsupp.apply_total, hv.inner_finsupp_eq_sum_left, hf.inner_finsupp_eq_sum_left] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁸ : IsROrC 𝕜 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace 𝕜 E inst✝⁵ : NormedAddCommGroup F inst✝⁴ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 ι' : Type u_5 ι'' : Type u_6 E' : Type u_7 inst✝³ : NormedAddCommGroup E' inst✝² : InnerProductSpace 𝕜 E' E'' : Type u_8 inst✝¹ : NormedAddCommGroup E'' inst✝ : InnerProductSpace 𝕜 E'' f : E ≃ₗ[𝕜] E' v : Basis ι 𝕜 E hv : Orthonormal 𝕜 ↑v hf : Orthonormal 𝕜 (↑f ∘ ↑v) x y : E ⊢ inner (↑f x) (↑f y) = inner x y [PROOFSTEP] rw [← LinearEquiv.coe_coe] at hf [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁸ : IsROrC 𝕜 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace 𝕜 E inst✝⁵ : NormedAddCommGroup F inst✝⁴ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 ι' : Type u_5 ι'' : Type u_6 E' : Type u_7 inst✝³ : NormedAddCommGroup E' inst✝² : InnerProductSpace 𝕜 E' E'' : Type u_8 inst✝¹ : NormedAddCommGroup E'' inst✝ : InnerProductSpace 𝕜 E'' f : E ≃ₗ[𝕜] E' v : Basis ι 𝕜 E hv : Orthonormal 𝕜 ↑v hf : Orthonormal 𝕜 (↑↑f ∘ ↑v) x y : E ⊢ inner (↑f x) (↑f y) = inner x y [PROOFSTEP] classical rw [← v.total_repr x, ← v.total_repr y, ← LinearEquiv.coe_coe f, Finsupp.apply_total, Finsupp.apply_total, hv.inner_finsupp_eq_sum_left, hf.inner_finsupp_eq_sum_left] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁸ : IsROrC 𝕜 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace 𝕜 E inst✝⁵ : NormedAddCommGroup F inst✝⁴ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 ι' : Type u_5 ι'' : Type u_6 E' : Type u_7 inst✝³ : NormedAddCommGroup E' inst✝² : InnerProductSpace 𝕜 E' E'' : Type u_8 inst✝¹ : NormedAddCommGroup E'' inst✝ : InnerProductSpace 𝕜 E'' f : E ≃ₗ[𝕜] E' v : Basis ι 𝕜 E hv : Orthonormal 𝕜 ↑v hf : Orthonormal 𝕜 (↑↑f ∘ ↑v) x y : E ⊢ inner (↑f x) (↑f y) = inner x y [PROOFSTEP] rw [← v.total_repr x, ← v.total_repr y, ← LinearEquiv.coe_coe f, Finsupp.apply_total, Finsupp.apply_total, hv.inner_finsupp_eq_sum_left, hf.inner_finsupp_eq_sum_left] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁸ : IsROrC 𝕜 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace 𝕜 E inst✝⁵ : NormedAddCommGroup F inst✝⁴ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 ι' : Type u_5 ι'' : Type u_6 E' : Type u_7 inst✝³ : NormedAddCommGroup E' inst✝² : InnerProductSpace 𝕜 E' E'' : Type u_8 inst✝¹ : NormedAddCommGroup E'' inst✝ : InnerProductSpace 𝕜 E'' v : Basis ι 𝕜 E hv : Orthonormal 𝕜 ↑v v' : Basis ι' 𝕜 E' hv' : Orthonormal 𝕜 ↑v' e : ι ≃ ι' ⊢ Orthonormal 𝕜 (↑(Basis.equiv v v' e) ∘ ↑v) [PROOFSTEP] have h : v.equiv v' e ∘ v = v' ∘ e := by ext i simp [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁸ : IsROrC 𝕜 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace 𝕜 E inst✝⁵ : NormedAddCommGroup F inst✝⁴ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 ι' : Type u_5 ι'' : Type u_6 E' : Type u_7 inst✝³ : NormedAddCommGroup E' inst✝² : InnerProductSpace 𝕜 E' E'' : Type u_8 inst✝¹ : NormedAddCommGroup E'' inst✝ : InnerProductSpace 𝕜 E'' v : Basis ι 𝕜 E hv : Orthonormal 𝕜 ↑v v' : Basis ι' 𝕜 E' hv' : Orthonormal 𝕜 ↑v' e : ι ≃ ι' ⊢ ↑(Basis.equiv v v' e) ∘ ↑v = ↑v' ∘ ↑e [PROOFSTEP] ext i [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁸ : IsROrC 𝕜 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace 𝕜 E inst✝⁵ : NormedAddCommGroup F inst✝⁴ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 ι' : Type u_5 ι'' : Type u_6 E' : Type u_7 inst✝³ : NormedAddCommGroup E' inst✝² : InnerProductSpace 𝕜 E' E'' : Type u_8 inst✝¹ : NormedAddCommGroup E'' inst✝ : InnerProductSpace 𝕜 E'' v : Basis ι 𝕜 E hv : Orthonormal 𝕜 ↑v v' : Basis ι' 𝕜 E' hv' : Orthonormal 𝕜 ↑v' e : ι ≃ ι' i : ι ⊢ (↑(Basis.equiv v v' e) ∘ ↑v) i = (↑v' ∘ ↑e) i [PROOFSTEP] simp [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁸ : IsROrC 𝕜 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace 𝕜 E inst✝⁵ : NormedAddCommGroup F inst✝⁴ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 ι' : Type u_5 ι'' : Type u_6 E' : Type u_7 inst✝³ : NormedAddCommGroup E' inst✝² : InnerProductSpace 𝕜 E' E'' : Type u_8 inst✝¹ : NormedAddCommGroup E'' inst✝ : InnerProductSpace 𝕜 E'' v : Basis ι 𝕜 E hv : Orthonormal 𝕜 ↑v v' : Basis ι' 𝕜 E' hv' : Orthonormal 𝕜 ↑v' e : ι ≃ ι' h : ↑(Basis.equiv v v' e) ∘ ↑v = ↑v' ∘ ↑e ⊢ Orthonormal 𝕜 (↑(Basis.equiv v v' e) ∘ ↑v) [PROOFSTEP] rw [h] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁸ : IsROrC 𝕜 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace 𝕜 E inst✝⁵ : NormedAddCommGroup F inst✝⁴ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 ι' : Type u_5 ι'' : Type u_6 E' : Type u_7 inst✝³ : NormedAddCommGroup E' inst✝² : InnerProductSpace 𝕜 E' E'' : Type u_8 inst✝¹ : NormedAddCommGroup E'' inst✝ : InnerProductSpace 𝕜 E'' v : Basis ι 𝕜 E hv : Orthonormal 𝕜 ↑v v' : Basis ι' 𝕜 E' hv' : Orthonormal 𝕜 ↑v' e : ι ≃ ι' h : ↑(Basis.equiv v v' e) ∘ ↑v = ↑v' ∘ ↑e ⊢ Orthonormal 𝕜 (↑v' ∘ ↑e) [PROOFSTEP] classical exact hv'.comp _ e.injective [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁸ : IsROrC 𝕜 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace 𝕜 E inst✝⁵ : NormedAddCommGroup F inst✝⁴ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 ι' : Type u_5 ι'' : Type u_6 E' : Type u_7 inst✝³ : NormedAddCommGroup E' inst✝² : InnerProductSpace 𝕜 E' E'' : Type u_8 inst✝¹ : NormedAddCommGroup E'' inst✝ : InnerProductSpace 𝕜 E'' v : Basis ι 𝕜 E hv : Orthonormal 𝕜 ↑v v' : Basis ι' 𝕜 E' hv' : Orthonormal 𝕜 ↑v' e : ι ≃ ι' h : ↑(Basis.equiv v v' e) ∘ ↑v = ↑v' ∘ ↑e ⊢ Orthonormal 𝕜 (↑v' ∘ ↑e) [PROOFSTEP] exact hv'.comp _ e.injective [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁸ : IsROrC 𝕜 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace 𝕜 E inst✝⁵ : NormedAddCommGroup F inst✝⁴ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 ι' : Type u_5 ι'' : Type u_6 E' : Type u_7 inst✝³ : NormedAddCommGroup E' inst✝² : InnerProductSpace 𝕜 E' E'' : Type u_8 inst✝¹ : NormedAddCommGroup E'' inst✝ : InnerProductSpace 𝕜 E'' v : Basis ι 𝕜 E hv : Orthonormal 𝕜 ↑v i : ι ⊢ ↑(equiv hv hv (Equiv.refl ι)) (↑v i) = ↑(LinearIsometryEquiv.refl 𝕜 E) (↑v i) [PROOFSTEP] simp only [Orthonormal.equiv_apply, Equiv.coe_refl, id.def, LinearIsometryEquiv.coe_refl] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁸ : IsROrC 𝕜 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace 𝕜 E inst✝⁵ : NormedAddCommGroup F inst✝⁴ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 ι' : Type u_5 ι'' : Type u_6 E' : Type u_7 inst✝³ : NormedAddCommGroup E' inst✝² : InnerProductSpace 𝕜 E' E'' : Type u_8 inst✝¹ : NormedAddCommGroup E'' inst✝ : InnerProductSpace 𝕜 E'' v : Basis ι 𝕜 E hv : Orthonormal 𝕜 ↑v v' : Basis ι' 𝕜 E' hv' : Orthonormal 𝕜 ↑v' e : ι ≃ ι' i : ι' ⊢ ↑(equiv hv hv' e) (↑(LinearIsometryEquiv.symm (equiv hv hv' e)) (↑v' i)) = ↑(equiv hv hv' e) (↑(equiv hv' hv e.symm) (↑v' i)) [PROOFSTEP] simp only [LinearIsometryEquiv.apply_symm_apply, Orthonormal.equiv_apply, e.apply_symm_apply] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁸ : IsROrC 𝕜 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace 𝕜 E inst✝⁵ : NormedAddCommGroup F inst✝⁴ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 ι' : Type u_5 ι'' : Type u_6 E' : Type u_7 inst✝³ : NormedAddCommGroup E' inst✝² : InnerProductSpace 𝕜 E' E'' : Type u_8 inst✝¹ : NormedAddCommGroup E'' inst✝ : InnerProductSpace 𝕜 E'' v : Basis ι 𝕜 E hv : Orthonormal 𝕜 ↑v v' : Basis ι' 𝕜 E' hv' : Orthonormal 𝕜 ↑v' e : ι ≃ ι' v'' : Basis ι'' 𝕜 E'' hv'' : Orthonormal 𝕜 ↑v'' e' : ι' ≃ ι'' i : ι ⊢ ↑(LinearIsometryEquiv.trans (equiv hv hv' e) (equiv hv' hv'' e')) (↑v i) = ↑(equiv hv hv'' (e.trans e')) (↑v i) [PROOFSTEP] simp only [LinearIsometryEquiv.trans_apply, Orthonormal.equiv_apply, e.coe_trans, Function.comp_apply] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F ⊢ ‖x + y‖ * ‖x + y‖ = ‖x‖ * ‖x‖ + ‖y‖ * ‖y‖ ↔ inner x y = 0 [PROOFSTEP] rw [@norm_add_mul_self ℝ, add_right_cancel_iff, add_right_eq_self, mul_eq_zero] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F ⊢ 2 = 0 ∨ ↑re (inner x y) = 0 ↔ inner x y = 0 [PROOFSTEP] norm_num [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F ⊢ ‖x + y‖ = sqrt (‖x‖ * ‖x‖ + ‖y‖ * ‖y‖) ↔ inner x y = 0 [PROOFSTEP] rw [← norm_add_sq_eq_norm_sq_add_norm_sq_iff_real_inner_eq_zero, eq_comm, sqrt_eq_iff_mul_self_eq (add_nonneg (mul_self_nonneg _) (mul_self_nonneg _)) (norm_nonneg _)] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E h : inner x y = 0 ⊢ ‖x + y‖ * ‖x + y‖ = ‖x‖ * ‖x‖ + ‖y‖ * ‖y‖ [PROOFSTEP] rw [@norm_add_mul_self 𝕜, add_right_cancel_iff, add_right_eq_self, mul_eq_zero] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E h : inner x y = 0 ⊢ 2 = 0 ∨ ↑re (inner x y) = 0 [PROOFSTEP] apply Or.inr [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E h : inner x y = 0 ⊢ ↑re (inner x y) = 0 [PROOFSTEP] simp only [h, zero_re'] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F ⊢ ‖x - y‖ * ‖x - y‖ = ‖x‖ * ‖x‖ + ‖y‖ * ‖y‖ ↔ inner x y = 0 [PROOFSTEP] rw [@norm_sub_mul_self ℝ, add_right_cancel_iff, sub_eq_add_neg, add_right_eq_self, neg_eq_zero, mul_eq_zero] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F ⊢ 2 = 0 ∨ ↑re (inner x y) = 0 ↔ inner x y = 0 [PROOFSTEP] norm_num [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F ⊢ ‖x - y‖ = sqrt (‖x‖ * ‖x‖ + ‖y‖ * ‖y‖) ↔ inner x y = 0 [PROOFSTEP] rw [← norm_sub_sq_eq_norm_sq_add_norm_sq_iff_real_inner_eq_zero, eq_comm, sqrt_eq_iff_mul_self_eq (add_nonneg (mul_self_nonneg _) (mul_self_nonneg _)) (norm_nonneg _)] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F ⊢ inner (x + y) (x - y) = 0 ↔ ‖x‖ = ‖y‖ [PROOFSTEP] conv_rhs => rw [← mul_self_inj_of_nonneg (norm_nonneg _) (norm_nonneg _)] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F | ‖x‖ = ‖y‖ [PROOFSTEP] rw [← mul_self_inj_of_nonneg (norm_nonneg _) (norm_nonneg _)] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F | ‖x‖ = ‖y‖ [PROOFSTEP] rw [← mul_self_inj_of_nonneg (norm_nonneg _) (norm_nonneg _)] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F | ‖x‖ = ‖y‖ [PROOFSTEP] rw [← mul_self_inj_of_nonneg (norm_nonneg _) (norm_nonneg _)] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F ⊢ inner (x + y) (x - y) = 0 ↔ ‖x‖ * ‖x‖ = ‖y‖ * ‖y‖ [PROOFSTEP] simp only [← @inner_self_eq_norm_mul_norm ℝ, inner_add_left, inner_sub_right, real_inner_comm y x, sub_eq_zero, re_to_real] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F ⊢ inner x x + inner y x = inner y x + inner y y ↔ inner x x = inner y y [PROOFSTEP] constructor [GOAL] case mp 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F ⊢ inner x x + inner y x = inner y x + inner y y → inner x x = inner y y [PROOFSTEP] intro h [GOAL] case mp 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F h : inner x x + inner y x = inner y x + inner y y ⊢ inner x x = inner y y [PROOFSTEP] rw [add_comm] at h [GOAL] case mp 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F h : inner y x + inner x x = inner y x + inner y y ⊢ inner x x = inner y y [PROOFSTEP] linarith [GOAL] case mpr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F ⊢ inner x x = inner y y → inner x x + inner y x = inner y x + inner y y [PROOFSTEP] intro h [GOAL] case mpr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F h : inner x x = inner y y ⊢ inner x x + inner y x = inner y x + inner y y [PROOFSTEP] linarith [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E v w : E h : inner v w = 0 ⊢ ‖w - v‖ = ‖w + v‖ [PROOFSTEP] rw [← mul_self_inj_of_nonneg (norm_nonneg _) (norm_nonneg _)] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E v w : E h : inner v w = 0 ⊢ ‖w - v‖ * ‖w - v‖ = ‖w + v‖ * ‖w + v‖ [PROOFSTEP] simp only [h, ← @inner_self_eq_norm_mul_norm 𝕜, sub_neg_eq_add, sub_zero, map_sub, zero_re', zero_sub, add_zero, map_add, inner_add_right, inner_sub_left, inner_sub_right, inner_re_symm, zero_add] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F ⊢ |inner x y / (‖x‖ * ‖y‖)| ≤ 1 [PROOFSTEP] rw [abs_div, abs_mul, abs_norm, abs_norm] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F ⊢ |inner x y| / (‖x‖ * ‖y‖) ≤ 1 [PROOFSTEP] exact div_le_one_of_le (abs_real_inner_le_norm x y) (mul_nonneg (norm_nonneg _) (norm_nonneg _)) -- porting note: was `(by positivity)` [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x : F r : ℝ ⊢ inner (r • x) x = r * (‖x‖ * ‖x‖) [PROOFSTEP] rw [real_inner_smul_left, ← real_inner_self_eq_norm_mul_norm] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x : F r : ℝ ⊢ inner x (r • x) = r * (‖x‖ * ‖x‖) [PROOFSTEP] rw [inner_smul_right, ← real_inner_self_eq_norm_mul_norm] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x : E r : 𝕜 hx : x ≠ 0 hr : r ≠ 0 ⊢ ‖inner x (r • x)‖ / (‖x‖ * ‖r • x‖) = 1 [PROOFSTEP] have hx' : ‖x‖ ≠ 0 := by simp [hx] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x : E r : 𝕜 hx : x ≠ 0 hr : r ≠ 0 ⊢ ‖x‖ ≠ 0 [PROOFSTEP] simp [hx] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x : E r : 𝕜 hx : x ≠ 0 hr : r ≠ 0 hx' : ‖x‖ ≠ 0 ⊢ ‖inner x (r • x)‖ / (‖x‖ * ‖r • x‖) = 1 [PROOFSTEP] have hr' : ‖r‖ ≠ 0 := by simp [hr] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x : E r : 𝕜 hx : x ≠ 0 hr : r ≠ 0 hx' : ‖x‖ ≠ 0 ⊢ ‖r‖ ≠ 0 [PROOFSTEP] simp [hr] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x : E r : 𝕜 hx : x ≠ 0 hr : r ≠ 0 hx' : ‖x‖ ≠ 0 hr' : ‖r‖ ≠ 0 ⊢ ‖inner x (r • x)‖ / (‖x‖ * ‖r • x‖) = 1 [PROOFSTEP] rw [inner_smul_right, norm_mul, ← inner_self_re_eq_norm, inner_self_eq_norm_mul_norm, norm_smul] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x : E r : 𝕜 hx : x ≠ 0 hr : r ≠ 0 hx' : ‖x‖ ≠ 0 hr' : ‖r‖ ≠ 0 ⊢ ‖r‖ * (‖x‖ * ‖x‖) / (‖x‖ * (‖r‖ * ‖x‖)) = 1 [PROOFSTEP] rw [← mul_assoc, ← div_div, mul_div_cancel _ hx', ← div_div, mul_comm, mul_div_cancel _ hr', div_self hx'] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x : F r : ℝ hx : x ≠ 0 hr : 0 < r ⊢ inner x (r • x) / (‖x‖ * ‖r • x‖) = 1 [PROOFSTEP] rw [real_inner_smul_self_right, norm_smul, Real.norm_eq_abs, ← mul_assoc ‖x‖, mul_comm _ |r|, mul_assoc, abs_of_nonneg hr.le, div_self] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x : F r : ℝ hx : x ≠ 0 hr : 0 < r ⊢ r * (‖x‖ * ‖x‖) ≠ 0 [PROOFSTEP] exact mul_ne_zero hr.ne' (mul_self_ne_zero.2 (norm_ne_zero_iff.2 hx)) [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x : F r : ℝ hx : x ≠ 0 hr : r < 0 ⊢ inner x (r • x) / (‖x‖ * ‖r • x‖) = -1 [PROOFSTEP] rw [real_inner_smul_self_right, norm_smul, Real.norm_eq_abs, ← mul_assoc ‖x‖, mul_comm _ |r|, mul_assoc, abs_of_neg hr, neg_mul, div_neg_eq_neg_div, div_self] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x : F r : ℝ hx : x ≠ 0 hr : r < 0 ⊢ r * (‖x‖ * ‖x‖) ≠ 0 [PROOFSTEP] exact mul_ne_zero hr.ne (mul_self_ne_zero.2 (norm_ne_zero_iff.2 hx)) [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ List.TFAE [‖inner x y‖ = ‖x‖ * ‖y‖, x = 0 ∨ y = (inner x y / inner x x) • x, x = 0 ∨ ∃ r, y = r • x, x = 0 ∨ y ∈ Submodule.span 𝕜 {x}] [PROOFSTEP] tfae_have 1 → 2 [GOAL] case tfae_1_to_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ ‖inner x y‖ = ‖x‖ * ‖y‖ → x = 0 ∨ y = (inner x y / inner x x) • x [PROOFSTEP] refine' fun h => or_iff_not_imp_left.2 fun hx₀ => _ [GOAL] case tfae_1_to_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E h : ‖inner x y‖ = ‖x‖ * ‖y‖ hx₀ : ¬x = 0 ⊢ y = (inner x y / inner x x) • x [PROOFSTEP] have : ‖x‖ ^ 2 ≠ 0 := pow_ne_zero _ (norm_ne_zero_iff.2 hx₀) [GOAL] case tfae_1_to_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E h : ‖inner x y‖ = ‖x‖ * ‖y‖ hx₀ : ¬x = 0 this : ‖x‖ ^ 2 ≠ 0 ⊢ y = (inner x y / inner x x) • x [PROOFSTEP] rw [← sq_eq_sq (norm_nonneg _) (mul_nonneg (norm_nonneg _) (norm_nonneg _)), mul_pow, ← mul_right_inj' this, eq_comm, ← sub_eq_zero, ← mul_sub] at h [GOAL] case tfae_1_to_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E h✝ : ‖x‖ ^ 2 * (‖x‖ ^ 2 * ‖y‖ ^ 2) = ‖x‖ ^ 2 * ‖inner x y‖ ^ 2 h : ‖x‖ ^ 2 * (‖x‖ ^ 2 * ‖y‖ ^ 2 - ‖inner x y‖ ^ 2) = 0 hx₀ : ¬x = 0 this : ‖x‖ ^ 2 ≠ 0 ⊢ y = (inner x y / inner x x) • x [PROOFSTEP] simp only [@norm_sq_eq_inner 𝕜] at h [GOAL] case tfae_1_to_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E h✝ : ‖x‖ ^ 2 * (‖x‖ ^ 2 * ‖y‖ ^ 2) = ‖x‖ ^ 2 * ‖inner x y‖ ^ 2 hx₀ : ¬x = 0 this : ‖x‖ ^ 2 ≠ 0 h : ↑re (inner x x) * (↑re (inner x x) * ↑re (inner y y) - ‖inner x y‖ ^ 2) = 0 ⊢ y = (inner x y / inner x x) • x [PROOFSTEP] letI : InnerProductSpace.Core 𝕜 E := InnerProductSpace.toCore [GOAL] case tfae_1_to_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E h✝ : ‖x‖ ^ 2 * (‖x‖ ^ 2 * ‖y‖ ^ 2) = ‖x‖ ^ 2 * ‖inner x y‖ ^ 2 hx₀ : ¬x = 0 this✝ : ‖x‖ ^ 2 ≠ 0 h : ↑re (inner x x) * (↑re (inner x x) * ↑re (inner y y) - ‖inner x y‖ ^ 2) = 0 this : InnerProductSpace.Core 𝕜 E := InnerProductSpace.toCore ⊢ y = (inner x y / inner x x) • x [PROOFSTEP] erw [← InnerProductSpace.Core.cauchy_schwarz_aux, InnerProductSpace.Core.normSq_eq_zero, sub_eq_zero] at h [GOAL] case tfae_1_to_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E h✝ : ‖x‖ ^ 2 * (‖x‖ ^ 2 * ‖y‖ ^ 2) = ‖x‖ ^ 2 * ‖inner x y‖ ^ 2 hx₀ : ¬x = 0 this✝ : ‖x‖ ^ 2 ≠ 0 this : InnerProductSpace.Core 𝕜 E := InnerProductSpace.toCore h : inner x y • x = inner x x • y ⊢ y = (inner x y / inner x x) • x [PROOFSTEP] rw [div_eq_inv_mul, mul_smul, h, inv_smul_smul₀] [GOAL] case tfae_1_to_2.hc 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E h✝ : ‖x‖ ^ 2 * (‖x‖ ^ 2 * ‖y‖ ^ 2) = ‖x‖ ^ 2 * ‖inner x y‖ ^ 2 hx₀ : ¬x = 0 this✝ : ‖x‖ ^ 2 ≠ 0 this : InnerProductSpace.Core 𝕜 E := InnerProductSpace.toCore h : inner x y • x = inner x x • y ⊢ inner x x ≠ 0 [PROOFSTEP] rwa [inner_self_ne_zero] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E tfae_1_to_2 : ‖inner x y‖ = ‖x‖ * ‖y‖ → x = 0 ∨ y = (inner x y / inner x x) • x ⊢ List.TFAE [‖inner x y‖ = ‖x‖ * ‖y‖, x = 0 ∨ y = (inner x y / inner x x) • x, x = 0 ∨ ∃ r, y = r • x, x = 0 ∨ y ∈ Submodule.span 𝕜 {x}] [PROOFSTEP] tfae_have 2 → 3 [GOAL] case tfae_2_to_3 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E tfae_1_to_2 : ‖inner x y‖ = ‖x‖ * ‖y‖ → x = 0 ∨ y = (inner x y / inner x x) • x ⊢ x = 0 ∨ y = (inner x y / inner x x) • x → x = 0 ∨ ∃ r, y = r • x 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E tfae_1_to_2 : ‖inner x y‖ = ‖x‖ * ‖y‖ → x = 0 ∨ y = (inner x y / inner x x) • x tfae_2_to_3 : x = 0 ∨ y = (inner x y / inner x x) • x → x = 0 ∨ ∃ r, y = r • x ⊢ List.TFAE [‖inner x y‖ = ‖x‖ * ‖y‖, x = 0 ∨ y = (inner x y / inner x x) • x, x = 0 ∨ ∃ r, y = r • x, x = 0 ∨ y ∈ Submodule.span 𝕜 {x}] [PROOFSTEP] exact fun h => h.imp_right fun h' => ⟨_, h'⟩ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E tfae_1_to_2 : ‖inner x y‖ = ‖x‖ * ‖y‖ → x = 0 ∨ y = (inner x y / inner x x) • x tfae_2_to_3 : x = 0 ∨ y = (inner x y / inner x x) • x → x = 0 ∨ ∃ r, y = r • x ⊢ List.TFAE [‖inner x y‖ = ‖x‖ * ‖y‖, x = 0 ∨ y = (inner x y / inner x x) • x, x = 0 ∨ ∃ r, y = r • x, x = 0 ∨ y ∈ Submodule.span 𝕜 {x}] [PROOFSTEP] tfae_have 3 → 1 [GOAL] case tfae_3_to_1 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E tfae_1_to_2 : ‖inner x y‖ = ‖x‖ * ‖y‖ → x = 0 ∨ y = (inner x y / inner x x) • x tfae_2_to_3 : x = 0 ∨ y = (inner x y / inner x x) • x → x = 0 ∨ ∃ r, y = r • x ⊢ (x = 0 ∨ ∃ r, y = r • x) → ‖inner x y‖ = ‖x‖ * ‖y‖ [PROOFSTEP] rintro (rfl | ⟨r, rfl⟩) [GOAL] case tfae_3_to_1.inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E y : E tfae_1_to_2 : ‖inner 0 y‖ = ‖0‖ * ‖y‖ → 0 = 0 ∨ y = (inner 0 y / inner 0 0) • 0 tfae_2_to_3 : 0 = 0 ∨ y = (inner 0 y / inner 0 0) • 0 → 0 = 0 ∨ ∃ r, y = r • 0 ⊢ ‖inner 0 y‖ = ‖0‖ * ‖y‖ [PROOFSTEP] simp [inner_smul_right, norm_smul, inner_self_eq_norm_sq_to_K, inner_self_eq_norm_mul_norm, sq, mul_left_comm] [GOAL] case tfae_3_to_1.inr.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x : E r : 𝕜 tfae_1_to_2 : ‖inner x (r • x)‖ = ‖x‖ * ‖r • x‖ → x = 0 ∨ r • x = (inner x (r • x) / inner x x) • x tfae_2_to_3 : x = 0 ∨ r • x = (inner x (r • x) / inner x x) • x → x = 0 ∨ ∃ r_1, r • x = r_1 • x ⊢ ‖inner x (r • x)‖ = ‖x‖ * ‖r • x‖ [PROOFSTEP] simp [inner_smul_right, norm_smul, inner_self_eq_norm_sq_to_K, inner_self_eq_norm_mul_norm, sq, mul_left_comm] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E tfae_1_to_2 : ‖inner x y‖ = ‖x‖ * ‖y‖ → x = 0 ∨ y = (inner x y / inner x x) • x tfae_2_to_3 : x = 0 ∨ y = (inner x y / inner x x) • x → x = 0 ∨ ∃ r, y = r • x tfae_3_to_1 : (x = 0 ∨ ∃ r, y = r • x) → ‖inner x y‖ = ‖x‖ * ‖y‖ ⊢ List.TFAE [‖inner x y‖ = ‖x‖ * ‖y‖, x = 0 ∨ y = (inner x y / inner x x) • x, x = 0 ∨ ∃ r, y = r • x, x = 0 ∨ y ∈ Submodule.span 𝕜 {x}] [PROOFSTEP] tfae_have 3 ↔ 4 [GOAL] case tfae_3_iff_4 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E tfae_1_to_2 : ‖inner x y‖ = ‖x‖ * ‖y‖ → x = 0 ∨ y = (inner x y / inner x x) • x tfae_2_to_3 : x = 0 ∨ y = (inner x y / inner x x) • x → x = 0 ∨ ∃ r, y = r • x tfae_3_to_1 : (x = 0 ∨ ∃ r, y = r • x) → ‖inner x y‖ = ‖x‖ * ‖y‖ ⊢ (x = 0 ∨ ∃ r, y = r • x) ↔ x = 0 ∨ y ∈ Submodule.span 𝕜 {x} [PROOFSTEP] simp only [Submodule.mem_span_singleton, eq_comm] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E tfae_1_to_2 : ‖inner x y‖ = ‖x‖ * ‖y‖ → x = 0 ∨ y = (inner x y / inner x x) • x tfae_2_to_3 : x = 0 ∨ y = (inner x y / inner x x) • x → x = 0 ∨ ∃ r, y = r • x tfae_3_to_1 : (x = 0 ∨ ∃ r, y = r • x) → ‖inner x y‖ = ‖x‖ * ‖y‖ tfae_3_iff_4 : (x = 0 ∨ ∃ r, y = r • x) ↔ x = 0 ∨ y ∈ Submodule.span 𝕜 {x} ⊢ List.TFAE [‖inner x y‖ = ‖x‖ * ‖y‖, x = 0 ∨ y = (inner x y / inner x x) • x, x = 0 ∨ ∃ r, y = r • x, x = 0 ∨ y ∈ Submodule.span 𝕜 {x}] [PROOFSTEP] tfae_finish [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ ‖inner x y / (↑‖x‖ * ↑‖y‖)‖ = 1 ↔ x ≠ 0 ∧ ∃ r, r ≠ 0 ∧ y = r • x [PROOFSTEP] constructor [GOAL] case mp 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ ‖inner x y / (↑‖x‖ * ↑‖y‖)‖ = 1 → x ≠ 0 ∧ ∃ r, r ≠ 0 ∧ y = r • x [PROOFSTEP] intro h [GOAL] case mp 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E h : ‖inner x y / (↑‖x‖ * ↑‖y‖)‖ = 1 ⊢ x ≠ 0 ∧ ∃ r, r ≠ 0 ∧ y = r • x [PROOFSTEP] have hx₀ : x ≠ 0 := fun h₀ => by simp [h₀] at h [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E h : ‖inner x y / (↑‖x‖ * ↑‖y‖)‖ = 1 h₀ : x = 0 ⊢ False [PROOFSTEP] simp [h₀] at h [GOAL] case mp 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E h : ‖inner x y / (↑‖x‖ * ↑‖y‖)‖ = 1 hx₀ : x ≠ 0 ⊢ x ≠ 0 ∧ ∃ r, r ≠ 0 ∧ y = r • x [PROOFSTEP] have hy₀ : y ≠ 0 := fun h₀ => by simp [h₀] at h [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E h : ‖inner x y / (↑‖x‖ * ↑‖y‖)‖ = 1 hx₀ : x ≠ 0 h₀ : y = 0 ⊢ False [PROOFSTEP] simp [h₀] at h [GOAL] case mp 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E h : ‖inner x y / (↑‖x‖ * ↑‖y‖)‖ = 1 hx₀ : x ≠ 0 hy₀ : y ≠ 0 ⊢ x ≠ 0 ∧ ∃ r, r ≠ 0 ∧ y = r • x [PROOFSTEP] refine' ⟨hx₀, (norm_inner_eq_norm_iff hx₀ hy₀).1 <| eq_of_div_eq_one _⟩ [GOAL] case mp 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E h : ‖inner x y / (↑‖x‖ * ↑‖y‖)‖ = 1 hx₀ : x ≠ 0 hy₀ : y ≠ 0 ⊢ ‖inner x y‖ / (‖x‖ * ‖y‖) = 1 [PROOFSTEP] simpa using h [GOAL] case mpr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ (x ≠ 0 ∧ ∃ r, r ≠ 0 ∧ y = r • x) → ‖inner x y / (↑‖x‖ * ↑‖y‖)‖ = 1 [PROOFSTEP] rintro ⟨hx, ⟨r, ⟨hr, rfl⟩⟩⟩ [GOAL] case mpr.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x : E hx : x ≠ 0 r : 𝕜 hr : r ≠ 0 ⊢ ‖inner x (r • x) / (↑‖x‖ * ↑‖r • x‖)‖ = 1 [PROOFSTEP] simp only [norm_div, norm_mul, norm_ofReal, abs_norm] [GOAL] case mpr.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x : E hx : x ≠ 0 r : 𝕜 hr : r ≠ 0 ⊢ ‖inner x (r • x)‖ / (‖x‖ * ‖r • x‖) = 1 [PROOFSTEP] exact norm_inner_div_norm_mul_norm_eq_one_of_ne_zero_of_ne_zero_mul hx hr [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E h₀ : x ≠ 0 ⊢ inner x y = ↑‖x‖ * ↑‖y‖ ↔ (↑‖y‖ / ↑‖x‖) • x = y [PROOFSTEP] have h₀' := h₀ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E h₀ h₀' : x ≠ 0 ⊢ inner x y = ↑‖x‖ * ↑‖y‖ ↔ (↑‖y‖ / ↑‖x‖) • x = y [PROOFSTEP] rw [← norm_ne_zero_iff, Ne.def, ← @ofReal_eq_zero 𝕜] at h₀' [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E h₀ : x ≠ 0 h₀' : ¬↑‖x‖ = 0 ⊢ inner x y = ↑‖x‖ * ↑‖y‖ ↔ (↑‖y‖ / ↑‖x‖) • x = y [PROOFSTEP] constructor [GOAL] case mp 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E h₀ : x ≠ 0 h₀' : ¬↑‖x‖ = 0 ⊢ inner x y = ↑‖x‖ * ↑‖y‖ → (↑‖y‖ / ↑‖x‖) • x = y [PROOFSTEP] intro h [GOAL] case mpr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E h₀ : x ≠ 0 h₀' : ¬↑‖x‖ = 0 ⊢ (↑‖y‖ / ↑‖x‖) • x = y → inner x y = ↑‖x‖ * ↑‖y‖ [PROOFSTEP] intro h [GOAL] case mp 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E h₀ : x ≠ 0 h₀' : ¬↑‖x‖ = 0 h : inner x y = ↑‖x‖ * ↑‖y‖ ⊢ (↑‖y‖ / ↑‖x‖) • x = y [PROOFSTEP] have : x = 0 ∨ y = (⟪x, y⟫ / ⟪x, x⟫ : 𝕜) • x := ((@norm_inner_eq_norm_tfae 𝕜 _ _ _ _ x y).out 0 1).1 (by simp [h]) [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E h₀ : x ≠ 0 h₀' : ¬↑‖x‖ = 0 h : inner x y = ↑‖x‖ * ↑‖y‖ ⊢ ‖inner x y‖ = ‖x‖ * ‖y‖ [PROOFSTEP] simp [h] [GOAL] case mp 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E h₀ : x ≠ 0 h₀' : ¬↑‖x‖ = 0 h : inner x y = ↑‖x‖ * ↑‖y‖ this : x = 0 ∨ y = (inner x y / inner x x) • x ⊢ (↑‖y‖ / ↑‖x‖) • x = y [PROOFSTEP] rw [this.resolve_left h₀, h] [GOAL] case mp 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E h₀ : x ≠ 0 h₀' : ¬↑‖x‖ = 0 h : inner x y = ↑‖x‖ * ↑‖y‖ this : x = 0 ∨ y = (inner x y / inner x x) • x ⊢ (↑‖(↑‖x‖ * ↑‖y‖ / inner x x) • x‖ / ↑‖x‖) • x = (↑‖x‖ * ↑‖y‖ / inner x x) • x [PROOFSTEP] simp [norm_smul, inner_self_ofReal_norm, mul_div_cancel _ h₀'] [GOAL] case mpr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E h₀ : x ≠ 0 h₀' : ¬↑‖x‖ = 0 h : (↑‖y‖ / ↑‖x‖) • x = y ⊢ inner x y = ↑‖x‖ * ↑‖y‖ [PROOFSTEP] conv_lhs => rw [← h, inner_smul_right, inner_self_eq_norm_sq_to_K] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E h₀ : x ≠ 0 h₀' : ¬↑‖x‖ = 0 h : (↑‖y‖ / ↑‖x‖) • x = y | inner x y [PROOFSTEP] rw [← h, inner_smul_right, inner_self_eq_norm_sq_to_K] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E h₀ : x ≠ 0 h₀' : ¬↑‖x‖ = 0 h : (↑‖y‖ / ↑‖x‖) • x = y | inner x y [PROOFSTEP] rw [← h, inner_smul_right, inner_self_eq_norm_sq_to_K] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E h₀ : x ≠ 0 h₀' : ¬↑‖x‖ = 0 h : (↑‖y‖ / ↑‖x‖) • x = y | inner x y [PROOFSTEP] rw [← h, inner_smul_right, inner_self_eq_norm_sq_to_K] [GOAL] case mpr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E h₀ : x ≠ 0 h₀' : ¬↑‖x‖ = 0 h : (↑‖y‖ / ↑‖x‖) • x = y ⊢ ↑‖y‖ / ↑‖x‖ * ↑‖x‖ ^ 2 = ↑‖x‖ * ↑‖y‖ [PROOFSTEP] field_simp [sq, mul_left_comm] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ inner x y = ↑‖x‖ * ↑‖y‖ ↔ ↑‖y‖ • x = ↑‖x‖ • y [PROOFSTEP] rcases eq_or_ne x 0 with (rfl | h₀) [GOAL] case inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E y : E ⊢ inner 0 y = ↑‖0‖ * ↑‖y‖ ↔ ↑‖y‖ • 0 = ↑‖0‖ • y [PROOFSTEP] simp [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E h₀ : x ≠ 0 ⊢ inner x y = ↑‖x‖ * ↑‖y‖ ↔ ↑‖y‖ • x = ↑‖x‖ • y [PROOFSTEP] rw [inner_eq_norm_mul_iff_div h₀, div_eq_inv_mul, mul_smul, inv_smul_eq_iff₀] [GOAL] case inr.ha 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E h₀ : x ≠ 0 ⊢ ↑‖x‖ ≠ 0 [PROOFSTEP] rwa [Ne.def, ofReal_eq_zero, norm_eq_zero] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F ⊢ inner x y / (‖x‖ * ‖y‖) = 1 ↔ x ≠ 0 ∧ ∃ r, 0 < r ∧ y = r • x [PROOFSTEP] constructor [GOAL] case mp 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F ⊢ inner x y / (‖x‖ * ‖y‖) = 1 → x ≠ 0 ∧ ∃ r, 0 < r ∧ y = r • x [PROOFSTEP] intro h [GOAL] case mp 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F h : inner x y / (‖x‖ * ‖y‖) = 1 ⊢ x ≠ 0 ∧ ∃ r, 0 < r ∧ y = r • x [PROOFSTEP] have hx₀ : x ≠ 0 := fun h₀ => by simp [h₀] at h [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F h : inner x y / (‖x‖ * ‖y‖) = 1 h₀ : x = 0 ⊢ False [PROOFSTEP] simp [h₀] at h [GOAL] case mp 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F h : inner x y / (‖x‖ * ‖y‖) = 1 hx₀ : x ≠ 0 ⊢ x ≠ 0 ∧ ∃ r, 0 < r ∧ y = r • x [PROOFSTEP] have hy₀ : y ≠ 0 := fun h₀ => by simp [h₀] at h [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F h : inner x y / (‖x‖ * ‖y‖) = 1 hx₀ : x ≠ 0 h₀ : y = 0 ⊢ False [PROOFSTEP] simp [h₀] at h [GOAL] case mp 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F h : inner x y / (‖x‖ * ‖y‖) = 1 hx₀ : x ≠ 0 hy₀ : y ≠ 0 ⊢ x ≠ 0 ∧ ∃ r, 0 < r ∧ y = r • x [PROOFSTEP] refine' ⟨hx₀, ‖y‖ / ‖x‖, div_pos (norm_pos_iff.2 hy₀) (norm_pos_iff.2 hx₀), _⟩ [GOAL] case mp 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F h : inner x y / (‖x‖ * ‖y‖) = 1 hx₀ : x ≠ 0 hy₀ : y ≠ 0 ⊢ y = (‖y‖ / ‖x‖) • x [PROOFSTEP] exact ((inner_eq_norm_mul_iff_div hx₀).1 (eq_of_div_eq_one h)).symm [GOAL] case mpr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F ⊢ (x ≠ 0 ∧ ∃ r, 0 < r ∧ y = r • x) → inner x y / (‖x‖ * ‖y‖) = 1 [PROOFSTEP] rintro ⟨hx, ⟨r, ⟨hr, rfl⟩⟩⟩ [GOAL] case mpr.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x : F hx : x ≠ 0 r : ℝ hr : 0 < r ⊢ inner x (r • x) / (‖x‖ * ‖r • x‖) = 1 [PROOFSTEP] exact real_inner_div_norm_mul_norm_eq_one_of_ne_zero_of_pos_mul hx hr [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F ⊢ inner x y / (‖x‖ * ‖y‖) = -1 ↔ x ≠ 0 ∧ ∃ r, r < 0 ∧ y = r • x [PROOFSTEP] rw [← neg_eq_iff_eq_neg, ← neg_div, ← inner_neg_right, ← norm_neg y, real_inner_div_norm_mul_norm_eq_one_iff, (@neg_surjective ℝ _).exists] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F ⊢ (x ≠ 0 ∧ ∃ x_1, 0 < -x_1 ∧ -y = -x_1 • x) ↔ x ≠ 0 ∧ ∃ r, r < 0 ∧ y = r • x [PROOFSTEP] refine' Iff.rfl.and (exists_congr fun r => _) [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F r : ℝ ⊢ 0 < -r ∧ -y = -r • x ↔ r < 0 ∧ y = r • x [PROOFSTEP] rw [neg_pos, neg_smul, neg_inj] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E hx : ‖x‖ = 1 hy : ‖y‖ = 1 ⊢ inner x y = 1 ↔ x = y [PROOFSTEP] convert inner_eq_norm_mul_iff (𝕜 := 𝕜) (E := E) using 2 [GOAL] case h.e'_1.h.e'_3 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E hx : ‖x‖ = 1 hy : ‖y‖ = 1 ⊢ 1 = ↑‖x‖ * ↑‖y‖ [PROOFSTEP] simp [hx, hy] [GOAL] case h.e'_2.h.e'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E hx : ‖x‖ = 1 hy : ‖y‖ = 1 ⊢ x = ↑‖y‖ • x [PROOFSTEP] simp [hx, hy] [GOAL] case h.e'_2.h.e'_3 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E hx : ‖x‖ = 1 hy : ‖y‖ = 1 ⊢ y = ↑‖x‖ • y [PROOFSTEP] simp [hx, hy] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F hx : ‖x‖ = 1 hy : ‖y‖ = 1 ⊢ inner x y < 1 ↔ x ≠ y [PROOFSTEP] convert inner_lt_norm_mul_iff_real (F := F) [GOAL] case h.e'_1.h.e'_4 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F hx : ‖x‖ = 1 hy : ‖y‖ = 1 ⊢ 1 = ‖x‖ * ‖y‖ [PROOFSTEP] simp [hx, hy] [GOAL] case h.e'_2.h.e'_2 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F hx : ‖x‖ = 1 hy : ‖y‖ = 1 ⊢ x = ‖y‖ • x [PROOFSTEP] simp [hx, hy] [GOAL] case h.e'_2.h.e'_3 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : F hx : ‖x‖ = 1 hy : ‖y‖ = 1 ⊢ y = ‖x‖ • y [PROOFSTEP] simp [hx, hy] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι₁ : Type u_4 s₁ : Finset ι₁ w₁ : ι₁ → ℝ v₁ : ι₁ → F h₁ : ∑ i in s₁, w₁ i = 0 ι₂ : Type u_5 s₂ : Finset ι₂ w₂ : ι₂ → ℝ v₂ : ι₂ → F h₂ : ∑ i in s₂, w₂ i = 0 ⊢ inner (∑ i₁ in s₁, w₁ i₁ • v₁ i₁) (∑ i₂ in s₂, w₂ i₂ • v₂ i₂) = (-∑ i₁ in s₁, ∑ i₂ in s₂, w₁ i₁ * w₂ i₂ * (‖v₁ i₁ - v₂ i₂‖ * ‖v₁ i₁ - v₂ i₂‖)) / 2 [PROOFSTEP] simp_rw [sum_inner, inner_sum, real_inner_smul_left, real_inner_smul_right, real_inner_eq_norm_mul_self_add_norm_mul_self_sub_norm_sub_mul_self_div_two, ← div_sub_div_same, ← div_add_div_same, mul_sub_left_distrib, left_distrib, Finset.sum_sub_distrib, Finset.sum_add_distrib, ← Finset.mul_sum, ← Finset.sum_mul, h₁, h₂, zero_mul, mul_zero, Finset.sum_const_zero, zero_add, zero_sub, Finset.mul_sum, neg_div, Finset.sum_div, mul_div_assoc, mul_assoc] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ ‖↑(↑(innerₛₗ 𝕜) x) y‖ ≤ 1 * ‖x‖ * ‖y‖ [PROOFSTEP] simp only [norm_inner_le_norm, one_mul, innerₛₗ_apply] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x : E ⊢ ‖↑(innerSL 𝕜) x‖ = ‖x‖ [PROOFSTEP] refine' le_antisymm ((innerSL 𝕜 x).op_norm_le_bound (norm_nonneg _) fun y => norm_inner_le_norm _ _) _ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x : E ⊢ ‖x‖ ≤ ‖↑(innerSL 𝕜) x‖ [PROOFSTEP] rcases eq_or_ne x 0 with (rfl | h) [GOAL] case inl 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ⊢ ‖0‖ ≤ ‖↑(innerSL 𝕜) 0‖ [PROOFSTEP] simp [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x : E h : x ≠ 0 ⊢ ‖x‖ ≤ ‖↑(innerSL 𝕜) x‖ [PROOFSTEP] refine' (mul_le_mul_right (norm_pos_iff.2 h)).mp _ [GOAL] case inr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x : E h : x ≠ 0 ⊢ ‖x‖ * ‖x‖ ≤ ‖↑(innerSL 𝕜) x‖ * ‖x‖ [PROOFSTEP] calc ‖x‖ * ‖x‖ = ‖(⟪x, x⟫ : 𝕜)‖ := by rw [← sq, inner_self_eq_norm_sq_to_K, norm_pow, norm_ofReal, abs_norm] _ ≤ ‖innerSL 𝕜 x‖ * ‖x‖ := (innerSL 𝕜 x).le_op_norm _ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x : E h : x ≠ 0 ⊢ ‖x‖ * ‖x‖ = ‖inner x x‖ [PROOFSTEP] rw [← sq, inner_self_eq_norm_sq_to_K, norm_pow, norm_ofReal, abs_norm] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E E' : Type u_4 inst✝¹ : NormedAddCommGroup E' inst✝ : InnerProductSpace 𝕜 E' f : E →L[𝕜] E' v : E' ⊢ ‖↑(↑toSesqForm f) v‖ ≤ ‖f‖ * ‖v‖ [PROOFSTEP] refine' op_norm_le_bound _ (mul_nonneg (norm_nonneg _) (norm_nonneg _)) _ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E E' : Type u_4 inst✝¹ : NormedAddCommGroup E' inst✝ : InnerProductSpace 𝕜 E' f : E →L[𝕜] E' v : E' ⊢ ∀ (x : E), ‖↑(↑(↑toSesqForm f) v) x‖ ≤ ‖f‖ * ‖v‖ * ‖x‖ [PROOFSTEP] intro x [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E E' : Type u_4 inst✝¹ : NormedAddCommGroup E' inst✝ : InnerProductSpace 𝕜 E' f : E →L[𝕜] E' v : E' x : E ⊢ ‖↑(↑(↑toSesqForm f) v) x‖ ≤ ‖f‖ * ‖v‖ * ‖x‖ [PROOFSTEP] have h₁ : ‖f x‖ ≤ ‖f‖ * ‖x‖ := le_op_norm _ _ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E E' : Type u_4 inst✝¹ : NormedAddCommGroup E' inst✝ : InnerProductSpace 𝕜 E' f : E →L[𝕜] E' v : E' x : E h₁ : ‖↑f x‖ ≤ ‖f‖ * ‖x‖ ⊢ ‖↑(↑(↑toSesqForm f) v) x‖ ≤ ‖f‖ * ‖v‖ * ‖x‖ [PROOFSTEP] have h₂ := @norm_inner_le_norm 𝕜 E' _ _ _ v (f x) [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E E' : Type u_4 inst✝¹ : NormedAddCommGroup E' inst✝ : InnerProductSpace 𝕜 E' f : E →L[𝕜] E' v : E' x : E h₁ : ‖↑f x‖ ≤ ‖f‖ * ‖x‖ h₂ : ‖inner v (↑f x)‖ ≤ ‖v‖ * ‖↑f x‖ ⊢ ‖↑(↑(↑toSesqForm f) v) x‖ ≤ ‖f‖ * ‖v‖ * ‖x‖ [PROOFSTEP] calc ‖⟪v, f x⟫‖ ≤ ‖v‖ * ‖f x‖ := h₂ _ ≤ ‖v‖ * (‖f‖ * ‖x‖) := (mul_le_mul_of_nonneg_left h₁ (norm_nonneg v)) _ = ‖f‖ * ‖v‖ * ‖x‖ := by ring [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E E' : Type u_4 inst✝¹ : NormedAddCommGroup E' inst✝ : InnerProductSpace 𝕜 E' f : E →L[𝕜] E' v : E' x : E h₁ : ‖↑f x‖ ≤ ‖f‖ * ‖x‖ h₂ : ‖inner v (↑f x)‖ ≤ ‖v‖ * ‖↑f x‖ ⊢ ‖v‖ * (‖f‖ * ‖x‖) = ‖f‖ * ‖v‖ * ‖x‖ [PROOFSTEP] ring [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁵ : IsROrC 𝕜 inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace 𝕜 E inst✝² : NormedAddCommGroup F inst✝¹ : InnerProductSpace ℝ F dec_E : DecidableEq E inst✝ : NormedSpace ℝ E r : ℝ x y : E ⊢ inner (r • x, y).fst (r • x, y).snd = r • inner (x, y).fst (x, y).snd [PROOFSTEP] simp only [← algebraMap_smul 𝕜 r x, algebraMap_eq_ofReal, inner_smul_real_left] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁵ : IsROrC 𝕜 inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace 𝕜 E inst✝² : NormedAddCommGroup F inst✝¹ : InnerProductSpace ℝ F dec_E : DecidableEq E inst✝ : NormedSpace ℝ E r : ℝ x y : E ⊢ inner (x, r • y).fst (x, r • y).snd = r • inner (x, y).fst (x, y).snd [PROOFSTEP] simp only [← algebraMap_smul 𝕜 r y, algebraMap_eq_ofReal, inner_smul_real_right] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁵ : IsROrC 𝕜 inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace 𝕜 E inst✝² : NormedAddCommGroup F inst✝¹ : InnerProductSpace ℝ F dec_E : DecidableEq E inst✝ : NormedSpace ℝ E x y : E ⊢ ‖inner (x, y).fst (x, y).snd‖ ≤ 1 * ‖x‖ * ‖y‖ [PROOFSTEP] rw [one_mul] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁵ : IsROrC 𝕜 inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace 𝕜 E inst✝² : NormedAddCommGroup F inst✝¹ : InnerProductSpace ℝ F dec_E : DecidableEq E inst✝ : NormedSpace ℝ E x y : E ⊢ ‖inner (x, y).fst (x, y).snd‖ ≤ ‖x‖ * ‖y‖ [PROOFSTEP] exact norm_inner_le_norm x y [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 x : E v : ι → E s : Finset ι hv : Orthonormal 𝕜 v ⊢ ∑ i in s, ‖inner (v i) x‖ ^ 2 ≤ ‖x‖ ^ 2 [PROOFSTEP] have h₂ : (∑ i in s, ∑ j in s, ⟪v i, x⟫ * ⟪x, v j⟫ * ⟪v j, v i⟫) = (∑ k in s, ⟪v k, x⟫ * ⟪x, v k⟫ : 𝕜) := by classical exact hv.inner_left_right_finset [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 x : E v : ι → E s : Finset ι hv : Orthonormal 𝕜 v ⊢ ∑ i in s, ∑ j in s, inner (v i) x * inner x (v j) * inner (v j) (v i) = ∑ k in s, inner (v k) x * inner x (v k) [PROOFSTEP] classical exact hv.inner_left_right_finset [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 x : E v : ι → E s : Finset ι hv : Orthonormal 𝕜 v ⊢ ∑ i in s, ∑ j in s, inner (v i) x * inner x (v j) * inner (v j) (v i) = ∑ k in s, inner (v k) x * inner x (v k) [PROOFSTEP] exact hv.inner_left_right_finset [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 x : E v : ι → E s : Finset ι hv : Orthonormal 𝕜 v h₂ : ∑ i in s, ∑ j in s, inner (v i) x * inner x (v j) * inner (v j) (v i) = ∑ k in s, inner (v k) x * inner x (v k) ⊢ ∑ i in s, ‖inner (v i) x‖ ^ 2 ≤ ‖x‖ ^ 2 [PROOFSTEP] have h₃ : ∀ z : 𝕜, re (z * conj z) = ‖z‖ ^ 2 := by intro z simp only [mul_conj, normSq_eq_def'] norm_cast [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 x : E v : ι → E s : Finset ι hv : Orthonormal 𝕜 v h₂ : ∑ i in s, ∑ j in s, inner (v i) x * inner x (v j) * inner (v j) (v i) = ∑ k in s, inner (v k) x * inner x (v k) ⊢ ∀ (z : 𝕜), ↑re (z * ↑(starRingEnd 𝕜) z) = ‖z‖ ^ 2 [PROOFSTEP] intro z [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 x : E v : ι → E s : Finset ι hv : Orthonormal 𝕜 v h₂ : ∑ i in s, ∑ j in s, inner (v i) x * inner x (v j) * inner (v j) (v i) = ∑ k in s, inner (v k) x * inner x (v k) z : 𝕜 ⊢ ↑re (z * ↑(starRingEnd 𝕜) z) = ‖z‖ ^ 2 [PROOFSTEP] simp only [mul_conj, normSq_eq_def'] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 x : E v : ι → E s : Finset ι hv : Orthonormal 𝕜 v h₂ : ∑ i in s, ∑ j in s, inner (v i) x * inner x (v j) * inner (v j) (v i) = ∑ k in s, inner (v k) x * inner x (v k) z : 𝕜 ⊢ ↑re ↑(‖z‖ ^ 2) = ‖z‖ ^ 2 [PROOFSTEP] norm_cast [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 x : E v : ι → E s : Finset ι hv : Orthonormal 𝕜 v h₂ : ∑ i in s, ∑ j in s, inner (v i) x * inner x (v j) * inner (v j) (v i) = ∑ k in s, inner (v k) x * inner x (v k) h₃ : ∀ (z : 𝕜), ↑re (z * ↑(starRingEnd 𝕜) z) = ‖z‖ ^ 2 ⊢ ∑ i in s, ‖inner (v i) x‖ ^ 2 ≤ ‖x‖ ^ 2 [PROOFSTEP] suffices hbf : ‖x - ∑ i in s, ⟪v i, x⟫ • v i‖ ^ 2 = ‖x‖ ^ 2 - ∑ i in s, ‖⟪v i, x⟫‖ ^ 2 [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 x : E v : ι → E s : Finset ι hv : Orthonormal 𝕜 v h₂ : ∑ i in s, ∑ j in s, inner (v i) x * inner x (v j) * inner (v j) (v i) = ∑ k in s, inner (v k) x * inner x (v k) h₃ : ∀ (z : 𝕜), ↑re (z * ↑(starRingEnd 𝕜) z) = ‖z‖ ^ 2 hbf : ‖x - ∑ i in s, inner (v i) x • v i‖ ^ 2 = ‖x‖ ^ 2 - ∑ i in s, ‖inner (v i) x‖ ^ 2 ⊢ ∑ i in s, ‖inner (v i) x‖ ^ 2 ≤ ‖x‖ ^ 2 [PROOFSTEP] rw [← sub_nonneg, ← hbf] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 x : E v : ι → E s : Finset ι hv : Orthonormal 𝕜 v h₂ : ∑ i in s, ∑ j in s, inner (v i) x * inner x (v j) * inner (v j) (v i) = ∑ k in s, inner (v k) x * inner x (v k) h₃ : ∀ (z : 𝕜), ↑re (z * ↑(starRingEnd 𝕜) z) = ‖z‖ ^ 2 hbf : ‖x - ∑ i in s, inner (v i) x • v i‖ ^ 2 = ‖x‖ ^ 2 - ∑ i in s, ‖inner (v i) x‖ ^ 2 ⊢ 0 ≤ ‖x - ∑ i in s, inner (v i) x • v i‖ ^ 2 [PROOFSTEP] simp only [norm_nonneg, pow_nonneg] [GOAL] case hbf 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 x : E v : ι → E s : Finset ι hv : Orthonormal 𝕜 v h₂ : ∑ i in s, ∑ j in s, inner (v i) x * inner x (v j) * inner (v j) (v i) = ∑ k in s, inner (v k) x * inner x (v k) h₃ : ∀ (z : 𝕜), ↑re (z * ↑(starRingEnd 𝕜) z) = ‖z‖ ^ 2 ⊢ ‖x - ∑ i in s, inner (v i) x • v i‖ ^ 2 = ‖x‖ ^ 2 - ∑ i in s, ‖inner (v i) x‖ ^ 2 [PROOFSTEP] rw [@norm_sub_sq 𝕜, sub_add] [GOAL] case hbf 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 x : E v : ι → E s : Finset ι hv : Orthonormal 𝕜 v h₂ : ∑ i in s, ∑ j in s, inner (v i) x * inner x (v j) * inner (v j) (v i) = ∑ k in s, inner (v k) x * inner x (v k) h₃ : ∀ (z : 𝕜), ↑re (z * ↑(starRingEnd 𝕜) z) = ‖z‖ ^ 2 ⊢ ‖x‖ ^ 2 - (2 * ↑re (inner x (∑ i in s, inner (v i) x • v i)) - ‖∑ i in s, inner (v i) x • v i‖ ^ 2) = ‖x‖ ^ 2 - ∑ i in s, ‖inner (v i) x‖ ^ 2 [PROOFSTEP] classical simp only [@InnerProductSpace.norm_sq_eq_inner 𝕜, _root_.inner_sum, _root_.sum_inner] simp only [inner_smul_right, two_mul, inner_smul_left, inner_conj_symm, ← mul_assoc, h₂, add_sub_cancel, sub_right_inj] simp only [map_sum, ← inner_conj_symm x, ← h₃] [GOAL] case hbf 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 x : E v : ι → E s : Finset ι hv : Orthonormal 𝕜 v h₂ : ∑ i in s, ∑ j in s, inner (v i) x * inner x (v j) * inner (v j) (v i) = ∑ k in s, inner (v k) x * inner x (v k) h₃ : ∀ (z : 𝕜), ↑re (z * ↑(starRingEnd 𝕜) z) = ‖z‖ ^ 2 ⊢ ‖x‖ ^ 2 - (2 * ↑re (inner x (∑ i in s, inner (v i) x • v i)) - ‖∑ i in s, inner (v i) x • v i‖ ^ 2) = ‖x‖ ^ 2 - ∑ i in s, ‖inner (v i) x‖ ^ 2 [PROOFSTEP] simp only [@InnerProductSpace.norm_sq_eq_inner 𝕜, _root_.inner_sum, _root_.sum_inner] [GOAL] case hbf 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 x : E v : ι → E s : Finset ι hv : Orthonormal 𝕜 v h₂ : ∑ i in s, ∑ j in s, inner (v i) x * inner x (v j) * inner (v j) (v i) = ∑ k in s, inner (v k) x * inner x (v k) h₃ : ∀ (z : 𝕜), ↑re (z * ↑(starRingEnd 𝕜) z) = ‖z‖ ^ 2 ⊢ ↑re (inner x x) - (2 * ↑re (∑ i in s, inner x (inner (v i) x • v i)) - ↑re (∑ x_1 in s, ∑ i in s, inner (inner (v i) x • v i) (inner (v x_1) x • v x_1))) = ↑re (inner x x) - ∑ i in s, ‖inner (v i) x‖ ^ 2 [PROOFSTEP] simp only [inner_smul_right, two_mul, inner_smul_left, inner_conj_symm, ← mul_assoc, h₂, add_sub_cancel, sub_right_inj] [GOAL] case hbf 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 x : E v : ι → E s : Finset ι hv : Orthonormal 𝕜 v h₂ : ∑ i in s, ∑ j in s, inner (v i) x * inner x (v j) * inner (v j) (v i) = ∑ k in s, inner (v k) x * inner x (v k) h₃ : ∀ (z : 𝕜), ↑re (z * ↑(starRingEnd 𝕜) z) = ‖z‖ ^ 2 ⊢ ↑re (∑ x_1 in s, inner (v x_1) x * inner x (v x_1)) = ∑ i in s, ‖inner (v i) x‖ ^ 2 [PROOFSTEP] simp only [map_sum, ← inner_conj_symm x, ← h₃] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 x : E v : ι → E hv : Orthonormal 𝕜 v ⊢ ∑' (i : ι), ‖inner (v i) x‖ ^ 2 ≤ ‖x‖ ^ 2 [PROOFSTEP] refine' tsum_le_of_sum_le' _ fun s => hv.sum_inner_products_le x [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 x : E v : ι → E hv : Orthonormal 𝕜 v ⊢ 0 ≤ ‖x‖ ^ 2 [PROOFSTEP] simp only [norm_nonneg, pow_nonneg] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 x : E v : ι → E hv : Orthonormal 𝕜 v ⊢ Summable fun i => ‖inner (v i) x‖ ^ 2 [PROOFSTEP] use⨆ s : Finset ι, ∑ i in s, ‖⟪v i, x⟫‖ ^ 2 [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 x : E v : ι → E hv : Orthonormal 𝕜 v ⊢ HasSum (fun i => ‖inner (v i) x‖ ^ 2) (⨆ (s : Finset ι), ∑ i in s, ‖inner (v i) x‖ ^ 2) [PROOFSTEP] apply hasSum_of_isLUB_of_nonneg [GOAL] case h.h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 x : E v : ι → E hv : Orthonormal 𝕜 v ⊢ ∀ (i : ι), 0 ≤ ‖inner (v i) x‖ ^ 2 [PROOFSTEP] intro b [GOAL] case h.h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 x : E v : ι → E hv : Orthonormal 𝕜 v b : ι ⊢ 0 ≤ ‖inner (v b) x‖ ^ 2 [PROOFSTEP] simp only [norm_nonneg, pow_nonneg] [GOAL] case h.hf 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 x : E v : ι → E hv : Orthonormal 𝕜 v ⊢ IsLUB (Set.range fun s => ∑ i in s, ‖inner (v i) x‖ ^ 2) (⨆ (s : Finset ι), ∑ i in s, ‖inner (v i) x‖ ^ 2) [PROOFSTEP] refine' isLUB_ciSup _ [GOAL] case h.hf 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 x : E v : ι → E hv : Orthonormal 𝕜 v ⊢ BddAbove (Set.range fun s => ∑ i in s, ‖inner (v i) x‖ ^ 2) [PROOFSTEP] use‖x‖ ^ 2 [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 x : E v : ι → E hv : Orthonormal 𝕜 v ⊢ ‖x‖ ^ 2 ∈ upperBounds (Set.range fun s => ∑ i in s, ‖inner (v i) x‖ ^ 2) [PROOFSTEP] rintro y ⟨s, rfl⟩ [GOAL] case h.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 x : E v : ι → E hv : Orthonormal 𝕜 v s : Finset ι ⊢ (fun s => ∑ i in s, ‖inner (v i) x‖ ^ 2) s ≤ ‖x‖ ^ 2 [PROOFSTEP] exact hv.sum_inner_products_le x [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x : 𝕜 ⊢ ‖x‖ ^ 2 = ↑re (inner x x) [PROOFSTEP] simp only [inner] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x : 𝕜 ⊢ ‖x‖ ^ 2 = ↑re (↑(starRingEnd 𝕜) x * x) [PROOFSTEP] rw [mul_comm, mul_conj, ofReal_re, normSq_eq_def'] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : 𝕜 ⊢ ↑(starRingEnd 𝕜) (inner y x) = inner x y [PROOFSTEP] simp only [mul_comm, map_mul, starRingEnd_self_apply] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y z : 𝕜 ⊢ inner (x + y) z = inner x z + inner y z [PROOFSTEP] simp only [add_mul, map_add] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y z : 𝕜 ⊢ inner (z • x) y = ↑(starRingEnd 𝕜) z * inner x y [PROOFSTEP] simp only [mul_assoc, smul_eq_mul, map_mul] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) v : ι → E hv : Orthonormal 𝕜 v i j : ι hij : i ≠ j a : (fun _i => 𝕜) i b : (fun _i => 𝕜) j ⊢ inner (↑((fun i => LinearIsometry.toSpanSingleton 𝕜 E (_ : ‖v i‖ = 1)) i) a) (↑((fun i => LinearIsometry.toSpanSingleton 𝕜 E (_ : ‖v i‖ = 1)) j) b) = 0 [PROOFSTEP] simp [inner_smul_left, inner_smul_right, hv.2 hij] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) i j : ι v : G i w : G j ⊢ inner (↑(V i) v) (↑(V j) w) = if i = j then inner (↑(V i) v) (↑(V j) w) else 0 [PROOFSTEP] split_ifs with h [GOAL] case pos 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) i j : ι v : G i w : G j h : i = j ⊢ inner (↑(V i) v) (↑(V j) w) = inner (↑(V i) v) (↑(V j) w) [PROOFSTEP] rfl [GOAL] case neg 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) i j : ι v : G i w : G j h : ¬i = j ⊢ inner (↑(V i) v) (↑(V j) w) = 0 [PROOFSTEP] exact hV h v w [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) l : ⨁ (i : ι), G i i : ι v : G i ⊢ (DFinsupp.sum l fun j w => if i = j then inner (↑(V i) v) (↑(V j) w) else 0) = inner v (↑l i) [PROOFSTEP] simp only [DFinsupp.sum, Submodule.coe_inner, Finset.sum_ite_eq, ite_eq_left_iff, DFinsupp.mem_support_toFun] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) l : ⨁ (i : ι), G i i : ι v : G i ⊢ (if ↑l i ≠ 0 then inner (↑(V i) v) (↑(V i) (↑l i)) else 0) = inner v (↑l i) [PROOFSTEP] split_ifs with h [GOAL] case pos 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) l : ⨁ (i : ι), G i i : ι v : G i h : ↑l i ≠ 0 ⊢ inner (↑(V i) v) (↑(V i) (↑l i)) = inner v (↑l i) [PROOFSTEP] simp only [LinearIsometry.inner_map_map] [GOAL] case neg 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) l : ⨁ (i : ι), G i i : ι v : G i h : ¬↑l i ≠ 0 ⊢ 0 = inner v (↑l i) [PROOFSTEP] simp only [of_not_not h, inner_zero_right] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) inst✝ : Fintype ι l : (i : ι) → G i i : ι v : G i ⊢ inner (↑(V i) v) (∑ j : ι, ↑(V j) (l j)) = inner v (l i) [PROOFSTEP] classical! [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) inst✝ : Fintype ι l : (i : ι) → G i i : ι v : G i em✝ : (a : Prop) → Decidable a ⊢ inner (↑(V i) v) (∑ j : ι, ↑(V j) (l j)) = inner v (l i) [PROOFSTEP] calc ⟪V i v, ∑ j : ι, V j (l j)⟫ = ∑ j : ι, ⟪V i v, V j (l j)⟫ := by rw [inner_sum] _ = ∑ j, ite (i = j) ⟪V i v, V j (l j)⟫ 0 := (congr_arg (Finset.sum Finset.univ) <| funext fun j => hV.eq_ite v (l j)) _ = ⟪v, l i⟫ := by simp only [Finset.sum_ite_eq, Finset.mem_univ, (V i).inner_map_map, if_true] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) inst✝ : Fintype ι l : (i : ι) → G i i : ι v : G i em✝ : (a : Prop) → Decidable a ⊢ inner (↑(V i) v) (∑ j : ι, ↑(V j) (l j)) = ∑ j : ι, inner (↑(V i) v) (↑(V j) (l j)) [PROOFSTEP] rw [inner_sum] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) inst✝ : Fintype ι l : (i : ι) → G i i : ι v : G i em✝ : (a : Prop) → Decidable a ⊢ (∑ j : ι, if i = j then inner (↑(V i) v) (↑(V j) (l j)) else 0) = inner v (l i) [PROOFSTEP] simp only [Finset.sum_ite_eq, Finset.mem_univ, (V i).inner_map_map, if_true] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) l₁ l₂ : (i : ι) → G i s : Finset ι ⊢ inner (∑ i in s, ↑(V i) (l₁ i)) (∑ j in s, ↑(V j) (l₂ j)) = ∑ i in s, inner (l₁ i) (l₂ i) [PROOFSTEP] classical! [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) l₁ l₂ : (i : ι) → G i s : Finset ι em✝ : (a : Prop) → Decidable a ⊢ inner (∑ i in s, ↑(V i) (l₁ i)) (∑ j in s, ↑(V j) (l₂ j)) = ∑ i in s, inner (l₁ i) (l₂ i) [PROOFSTEP] calc ⟪∑ i in s, V i (l₁ i), ∑ j in s, V j (l₂ j)⟫ = ∑ j in s, ∑ i in s, ⟪V i (l₁ i), V j (l₂ j)⟫ := by simp only [_root_.sum_inner, _root_.inner_sum] _ = ∑ j in s, ∑ i in s, ite (i = j) ⟪V i (l₁ i), V j (l₂ j)⟫ 0 := by congr with i congr with j apply hV.eq_ite _ = ∑ i in s, ⟪l₁ i, l₂ i⟫ := by simp only [Finset.sum_ite_of_true, Finset.sum_ite_eq', LinearIsometry.inner_map_map, imp_self, imp_true_iff] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) l₁ l₂ : (i : ι) → G i s : Finset ι em✝ : (a : Prop) → Decidable a ⊢ inner (∑ i in s, ↑(V i) (l₁ i)) (∑ j in s, ↑(V j) (l₂ j)) = ∑ j in s, ∑ i in s, inner (↑(V i) (l₁ i)) (↑(V j) (l₂ j)) [PROOFSTEP] simp only [_root_.sum_inner, _root_.inner_sum] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) l₁ l₂ : (i : ι) → G i s : Finset ι em✝ : (a : Prop) → Decidable a ⊢ ∑ j in s, ∑ i in s, inner (↑(V i) (l₁ i)) (↑(V j) (l₂ j)) = ∑ j in s, ∑ i in s, if i = j then inner (↑(V i) (l₁ i)) (↑(V j) (l₂ j)) else 0 [PROOFSTEP] congr with i [GOAL] case e_f.h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) l₁ l₂ : (i : ι) → G i s : Finset ι em✝ : (a : Prop) → Decidable a i : ι ⊢ ∑ i_1 in s, inner (↑(V i_1) (l₁ i_1)) (↑(V i) (l₂ i)) = ∑ i_1 in s, if i_1 = i then inner (↑(V i_1) (l₁ i_1)) (↑(V i) (l₂ i)) else 0 [PROOFSTEP] congr with j [GOAL] case e_f.h.e_f.h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) l₁ l₂ : (i : ι) → G i s : Finset ι em✝ : (a : Prop) → Decidable a i j : ι ⊢ inner (↑(V j) (l₁ j)) (↑(V i) (l₂ i)) = if j = i then inner (↑(V j) (l₁ j)) (↑(V i) (l₂ i)) else 0 [PROOFSTEP] apply hV.eq_ite [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) l₁ l₂ : (i : ι) → G i s : Finset ι em✝ : (a : Prop) → Decidable a ⊢ (∑ j in s, ∑ i in s, if i = j then inner (↑(V i) (l₁ i)) (↑(V j) (l₂ j)) else 0) = ∑ i in s, inner (l₁ i) (l₂ i) [PROOFSTEP] simp only [Finset.sum_ite_of_true, Finset.sum_ite_eq', LinearIsometry.inner_map_map, imp_self, imp_true_iff] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) l : (i : ι) → G i s : Finset ι ⊢ ‖∑ i in s, ↑(V i) (l i)‖ ^ 2 = ∑ i in s, ‖l i‖ ^ 2 [PROOFSTEP] have : ((‖∑ i in s, V i (l i)‖ : ℝ) : 𝕜) ^ 2 = ∑ i in s, ((‖l i‖ : ℝ) : 𝕜) ^ 2 := by simp only [← inner_self_eq_norm_sq_to_K, hV.inner_sum] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) l : (i : ι) → G i s : Finset ι ⊢ ↑‖∑ i in s, ↑(V i) (l i)‖ ^ 2 = ∑ i in s, ↑‖l i‖ ^ 2 [PROOFSTEP] simp only [← inner_self_eq_norm_sq_to_K, hV.inner_sum] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) l : (i : ι) → G i s : Finset ι this : ↑‖∑ i in s, ↑(V i) (l i)‖ ^ 2 = ∑ i in s, ↑‖l i‖ ^ 2 ⊢ ‖∑ i in s, ↑(V i) (l i)‖ ^ 2 = ∑ i in s, ‖l i‖ ^ 2 [PROOFSTEP] exact_mod_cast this [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) α : ι → Type u_6 v_family : (i : ι) → α i → G i hv_family : ∀ (i : ι), Orthonormal 𝕜 (v_family i) ⊢ Orthonormal 𝕜 fun a => ↑(V a.fst) (v_family a.fst a.snd) [PROOFSTEP] constructor [GOAL] case left 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) α : ι → Type u_6 v_family : (i : ι) → α i → G i hv_family : ∀ (i : ι), Orthonormal 𝕜 (v_family i) ⊢ ∀ (i : (i : ι) × α i), ‖(fun a => ↑(V a.fst) (v_family a.fst a.snd)) i‖ = 1 [PROOFSTEP] rintro ⟨i, v⟩ [GOAL] case left.mk 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) α : ι → Type u_6 v_family : (i : ι) → α i → G i hv_family : ∀ (i : ι), Orthonormal 𝕜 (v_family i) i : ι v : α i ⊢ ‖(fun a => ↑(V a.fst) (v_family a.fst a.snd)) { fst := i, snd := v }‖ = 1 [PROOFSTEP] simpa only [LinearIsometry.norm_map] using (hv_family i).left v [GOAL] case right 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) α : ι → Type u_6 v_family : (i : ι) → α i → G i hv_family : ∀ (i : ι), Orthonormal 𝕜 (v_family i) ⊢ ∀ {i j : (i : ι) × α i}, i ≠ j → inner ((fun a => ↑(V a.fst) (v_family a.fst a.snd)) i) ((fun a => ↑(V a.fst) (v_family a.fst a.snd)) j) = 0 [PROOFSTEP] rintro ⟨i, v⟩ ⟨j, w⟩ hvw [GOAL] case right.mk.mk 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) α : ι → Type u_6 v_family : (i : ι) → α i → G i hv_family : ∀ (i : ι), Orthonormal 𝕜 (v_family i) i : ι v : α i j : ι w : α j hvw : { fst := i, snd := v } ≠ { fst := j, snd := w } ⊢ inner ((fun a => ↑(V a.fst) (v_family a.fst a.snd)) { fst := i, snd := v }) ((fun a => ↑(V a.fst) (v_family a.fst a.snd)) { fst := j, snd := w }) = 0 [PROOFSTEP] by_cases hij : i = j [GOAL] case pos 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) α : ι → Type u_6 v_family : (i : ι) → α i → G i hv_family : ∀ (i : ι), Orthonormal 𝕜 (v_family i) i : ι v : α i j : ι w : α j hvw : { fst := i, snd := v } ≠ { fst := j, snd := w } hij : i = j ⊢ inner ((fun a => ↑(V a.fst) (v_family a.fst a.snd)) { fst := i, snd := v }) ((fun a => ↑(V a.fst) (v_family a.fst a.snd)) { fst := j, snd := w }) = 0 [PROOFSTEP] subst hij [GOAL] case pos 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) α : ι → Type u_6 v_family : (i : ι) → α i → G i hv_family : ∀ (i : ι), Orthonormal 𝕜 (v_family i) i : ι v w : α i hvw : { fst := i, snd := v } ≠ { fst := i, snd := w } ⊢ inner ((fun a => ↑(V a.fst) (v_family a.fst a.snd)) { fst := i, snd := v }) ((fun a => ↑(V a.fst) (v_family a.fst a.snd)) { fst := i, snd := w }) = 0 [PROOFSTEP] have : v ≠ w := fun h => by subst h exact hvw rfl [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) α : ι → Type u_6 v_family : (i : ι) → α i → G i hv_family : ∀ (i : ι), Orthonormal 𝕜 (v_family i) i : ι v w : α i hvw : { fst := i, snd := v } ≠ { fst := i, snd := w } h : v = w ⊢ False [PROOFSTEP] subst h [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) α : ι → Type u_6 v_family : (i : ι) → α i → G i hv_family : ∀ (i : ι), Orthonormal 𝕜 (v_family i) i : ι v : α i hvw : { fst := i, snd := v } ≠ { fst := i, snd := v } ⊢ False [PROOFSTEP] exact hvw rfl [GOAL] case pos 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) α : ι → Type u_6 v_family : (i : ι) → α i → G i hv_family : ∀ (i : ι), Orthonormal 𝕜 (v_family i) i : ι v w : α i hvw : { fst := i, snd := v } ≠ { fst := i, snd := w } this : v ≠ w ⊢ inner ((fun a => ↑(V a.fst) (v_family a.fst a.snd)) { fst := i, snd := v }) ((fun a => ↑(V a.fst) (v_family a.fst a.snd)) { fst := i, snd := w }) = 0 [PROOFSTEP] simpa only [LinearIsometry.inner_map_map] using (hv_family i).2 this [GOAL] case neg 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) α : ι → Type u_6 v_family : (i : ι) → α i → G i hv_family : ∀ (i : ι), Orthonormal 𝕜 (v_family i) i : ι v : α i j : ι w : α j hvw : { fst := i, snd := v } ≠ { fst := j, snd := w } hij : ¬i = j ⊢ inner ((fun a => ↑(V a.fst) (v_family a.fst a.snd)) { fst := i, snd := v }) ((fun a => ↑(V a.fst) (v_family a.fst a.snd)) { fst := j, snd := w }) = 0 [PROOFSTEP] exact hV hij (v_family i v) (v_family j w) [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) f : (i : ι) → G i s₁ s₂ : Finset ι ⊢ ‖∑ i in s₁, ↑(V i) (f i) - ∑ i in s₂, ↑(V i) (f i)‖ ^ 2 = ∑ i in s₁ \ s₂, ‖f i‖ ^ 2 + ∑ i in s₂ \ s₁, ‖f i‖ ^ 2 [PROOFSTEP] rw [← Finset.sum_sdiff_sub_sum_sdiff, sub_eq_add_neg, ← Finset.sum_neg_distrib] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) f : (i : ι) → G i s₁ s₂ : Finset ι ⊢ ‖∑ x in s₁ \ s₂, ↑(V x) (f x) + ∑ x in s₂ \ s₁, -↑(V x) (f x)‖ ^ 2 = ∑ i in s₁ \ s₂, ‖f i‖ ^ 2 + ∑ i in s₂ \ s₁, ‖f i‖ ^ 2 [PROOFSTEP] let F : ∀ i, G i := fun i => if i ∈ s₁ then f i else -f i [GOAL] 𝕜 : Type u_1 E : Type u_2 F✝ : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F✝ inst✝² : InnerProductSpace ℝ F✝ dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) f : (i : ι) → G i s₁ s₂ : Finset ι F : (i : ι) → G i := fun i => if i ∈ s₁ then f i else -f i ⊢ ‖∑ x in s₁ \ s₂, ↑(V x) (f x) + ∑ x in s₂ \ s₁, -↑(V x) (f x)‖ ^ 2 = ∑ i in s₁ \ s₂, ‖f i‖ ^ 2 + ∑ i in s₂ \ s₁, ‖f i‖ ^ 2 [PROOFSTEP] have hF₁ : ∀ i ∈ s₁ \ s₂, F i = f i := fun i hi => if_pos (Finset.sdiff_subset _ _ hi) [GOAL] 𝕜 : Type u_1 E : Type u_2 F✝ : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F✝ inst✝² : InnerProductSpace ℝ F✝ dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) f : (i : ι) → G i s₁ s₂ : Finset ι F : (i : ι) → G i := fun i => if i ∈ s₁ then f i else -f i hF₁ : ∀ (i : ι), i ∈ s₁ \ s₂ → F i = f i ⊢ ‖∑ x in s₁ \ s₂, ↑(V x) (f x) + ∑ x in s₂ \ s₁, -↑(V x) (f x)‖ ^ 2 = ∑ i in s₁ \ s₂, ‖f i‖ ^ 2 + ∑ i in s₂ \ s₁, ‖f i‖ ^ 2 [PROOFSTEP] have hF₂ : ∀ i ∈ s₂ \ s₁, F i = -f i := fun i hi => if_neg (Finset.mem_sdiff.mp hi).2 [GOAL] 𝕜 : Type u_1 E : Type u_2 F✝ : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F✝ inst✝² : InnerProductSpace ℝ F✝ dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) f : (i : ι) → G i s₁ s₂ : Finset ι F : (i : ι) → G i := fun i => if i ∈ s₁ then f i else -f i hF₁ : ∀ (i : ι), i ∈ s₁ \ s₂ → F i = f i hF₂ : ∀ (i : ι), i ∈ s₂ \ s₁ → F i = -f i ⊢ ‖∑ x in s₁ \ s₂, ↑(V x) (f x) + ∑ x in s₂ \ s₁, -↑(V x) (f x)‖ ^ 2 = ∑ i in s₁ \ s₂, ‖f i‖ ^ 2 + ∑ i in s₂ \ s₁, ‖f i‖ ^ 2 [PROOFSTEP] have hF : ∀ i, ‖F i‖ = ‖f i‖ := by intro i dsimp only split_ifs <;> simp only [eq_self_iff_true, norm_neg] [GOAL] 𝕜 : Type u_1 E : Type u_2 F✝ : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F✝ inst✝² : InnerProductSpace ℝ F✝ dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) f : (i : ι) → G i s₁ s₂ : Finset ι F : (i : ι) → G i := fun i => if i ∈ s₁ then f i else -f i hF₁ : ∀ (i : ι), i ∈ s₁ \ s₂ → F i = f i hF₂ : ∀ (i : ι), i ∈ s₂ \ s₁ → F i = -f i ⊢ ∀ (i : ι), ‖F i‖ = ‖f i‖ [PROOFSTEP] intro i [GOAL] 𝕜 : Type u_1 E : Type u_2 F✝ : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F✝ inst✝² : InnerProductSpace ℝ F✝ dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) f : (i : ι) → G i s₁ s₂ : Finset ι F : (i : ι) → G i := fun i => if i ∈ s₁ then f i else -f i hF₁ : ∀ (i : ι), i ∈ s₁ \ s₂ → F i = f i hF₂ : ∀ (i : ι), i ∈ s₂ \ s₁ → F i = -f i i : ι ⊢ ‖F i‖ = ‖f i‖ [PROOFSTEP] dsimp only [GOAL] 𝕜 : Type u_1 E : Type u_2 F✝ : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F✝ inst✝² : InnerProductSpace ℝ F✝ dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) f : (i : ι) → G i s₁ s₂ : Finset ι F : (i : ι) → G i := fun i => if i ∈ s₁ then f i else -f i hF₁ : ∀ (i : ι), i ∈ s₁ \ s₂ → F i = f i hF₂ : ∀ (i : ι), i ∈ s₂ \ s₁ → F i = -f i i : ι ⊢ ‖if i ∈ s₁ then f i else -f i‖ = ‖f i‖ [PROOFSTEP] split_ifs [GOAL] case pos 𝕜 : Type u_1 E : Type u_2 F✝ : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F✝ inst✝² : InnerProductSpace ℝ F✝ dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) f : (i : ι) → G i s₁ s₂ : Finset ι F : (i : ι) → G i := fun i => if i ∈ s₁ then f i else -f i hF₁ : ∀ (i : ι), i ∈ s₁ \ s₂ → F i = f i hF₂ : ∀ (i : ι), i ∈ s₂ \ s₁ → F i = -f i i : ι h✝ : i ∈ s₁ ⊢ ‖f i‖ = ‖f i‖ [PROOFSTEP] simp only [eq_self_iff_true, norm_neg] [GOAL] case neg 𝕜 : Type u_1 E : Type u_2 F✝ : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F✝ inst✝² : InnerProductSpace ℝ F✝ dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) f : (i : ι) → G i s₁ s₂ : Finset ι F : (i : ι) → G i := fun i => if i ∈ s₁ then f i else -f i hF₁ : ∀ (i : ι), i ∈ s₁ \ s₂ → F i = f i hF₂ : ∀ (i : ι), i ∈ s₂ \ s₁ → F i = -f i i : ι h✝ : ¬i ∈ s₁ ⊢ ‖-f i‖ = ‖f i‖ [PROOFSTEP] simp only [eq_self_iff_true, norm_neg] [GOAL] 𝕜 : Type u_1 E : Type u_2 F✝ : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F✝ inst✝² : InnerProductSpace ℝ F✝ dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) f : (i : ι) → G i s₁ s₂ : Finset ι F : (i : ι) → G i := fun i => if i ∈ s₁ then f i else -f i hF₁ : ∀ (i : ι), i ∈ s₁ \ s₂ → F i = f i hF₂ : ∀ (i : ι), i ∈ s₂ \ s₁ → F i = -f i hF : ∀ (i : ι), ‖F i‖ = ‖f i‖ ⊢ ‖∑ x in s₁ \ s₂, ↑(V x) (f x) + ∑ x in s₂ \ s₁, -↑(V x) (f x)‖ ^ 2 = ∑ i in s₁ \ s₂, ‖f i‖ ^ 2 + ∑ i in s₂ \ s₁, ‖f i‖ ^ 2 [PROOFSTEP] have : ‖(∑ i in s₁ \ s₂, V i (F i)) + ∑ i in s₂ \ s₁, V i (F i)‖ ^ 2 = (∑ i in s₁ \ s₂, ‖F i‖ ^ 2) + ∑ i in s₂ \ s₁, ‖F i‖ ^ 2 := by have hs : Disjoint (s₁ \ s₂) (s₂ \ s₁) := disjoint_sdiff_sdiff simpa only [Finset.sum_union hs] using hV.norm_sum F (s₁ \ s₂ ∪ s₂ \ s₁) [GOAL] 𝕜 : Type u_1 E : Type u_2 F✝ : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F✝ inst✝² : InnerProductSpace ℝ F✝ dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) f : (i : ι) → G i s₁ s₂ : Finset ι F : (i : ι) → G i := fun i => if i ∈ s₁ then f i else -f i hF₁ : ∀ (i : ι), i ∈ s₁ \ s₂ → F i = f i hF₂ : ∀ (i : ι), i ∈ s₂ \ s₁ → F i = -f i hF : ∀ (i : ι), ‖F i‖ = ‖f i‖ ⊢ ‖∑ i in s₁ \ s₂, ↑(V i) (F i) + ∑ i in s₂ \ s₁, ↑(V i) (F i)‖ ^ 2 = ∑ i in s₁ \ s₂, ‖F i‖ ^ 2 + ∑ i in s₂ \ s₁, ‖F i‖ ^ 2 [PROOFSTEP] have hs : Disjoint (s₁ \ s₂) (s₂ \ s₁) := disjoint_sdiff_sdiff [GOAL] 𝕜 : Type u_1 E : Type u_2 F✝ : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F✝ inst✝² : InnerProductSpace ℝ F✝ dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) f : (i : ι) → G i s₁ s₂ : Finset ι F : (i : ι) → G i := fun i => if i ∈ s₁ then f i else -f i hF₁ : ∀ (i : ι), i ∈ s₁ \ s₂ → F i = f i hF₂ : ∀ (i : ι), i ∈ s₂ \ s₁ → F i = -f i hF : ∀ (i : ι), ‖F i‖ = ‖f i‖ hs : Disjoint (s₁ \ s₂) (s₂ \ s₁) ⊢ ‖∑ i in s₁ \ s₂, ↑(V i) (F i) + ∑ i in s₂ \ s₁, ↑(V i) (F i)‖ ^ 2 = ∑ i in s₁ \ s₂, ‖F i‖ ^ 2 + ∑ i in s₂ \ s₁, ‖F i‖ ^ 2 [PROOFSTEP] simpa only [Finset.sum_union hs] using hV.norm_sum F (s₁ \ s₂ ∪ s₂ \ s₁) [GOAL] 𝕜 : Type u_1 E : Type u_2 F✝ : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F✝ inst✝² : InnerProductSpace ℝ F✝ dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) f : (i : ι) → G i s₁ s₂ : Finset ι F : (i : ι) → G i := fun i => if i ∈ s₁ then f i else -f i hF₁ : ∀ (i : ι), i ∈ s₁ \ s₂ → F i = f i hF₂ : ∀ (i : ι), i ∈ s₂ \ s₁ → F i = -f i hF : ∀ (i : ι), ‖F i‖ = ‖f i‖ this : ‖∑ i in s₁ \ s₂, ↑(V i) (F i) + ∑ i in s₂ \ s₁, ↑(V i) (F i)‖ ^ 2 = ∑ i in s₁ \ s₂, ‖F i‖ ^ 2 + ∑ i in s₂ \ s₁, ‖F i‖ ^ 2 ⊢ ‖∑ x in s₁ \ s₂, ↑(V x) (f x) + ∑ x in s₂ \ s₁, -↑(V x) (f x)‖ ^ 2 = ∑ i in s₁ \ s₂, ‖f i‖ ^ 2 + ∑ i in s₂ \ s₁, ‖f i‖ ^ 2 [PROOFSTEP] convert this using 4 [GOAL] case h.e'_2.h.e'_5.h.e'_3.h.e'_5 𝕜 : Type u_1 E : Type u_2 F✝ : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F✝ inst✝² : InnerProductSpace ℝ F✝ dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) f : (i : ι) → G i s₁ s₂ : Finset ι F : (i : ι) → G i := fun i => if i ∈ s₁ then f i else -f i hF₁ : ∀ (i : ι), i ∈ s₁ \ s₂ → F i = f i hF₂ : ∀ (i : ι), i ∈ s₂ \ s₁ → F i = -f i hF : ∀ (i : ι), ‖F i‖ = ‖f i‖ this : ‖∑ i in s₁ \ s₂, ↑(V i) (F i) + ∑ i in s₂ \ s₁, ↑(V i) (F i)‖ ^ 2 = ∑ i in s₁ \ s₂, ‖F i‖ ^ 2 + ∑ i in s₂ \ s₁, ‖F i‖ ^ 2 ⊢ ∑ x in s₁ \ s₂, ↑(V x) (f x) = ∑ i in s₁ \ s₂, ↑(V i) (F i) [PROOFSTEP] refine' Finset.sum_congr rfl fun i hi => _ [GOAL] case h.e'_2.h.e'_5.h.e'_3.h.e'_5 𝕜 : Type u_1 E : Type u_2 F✝ : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F✝ inst✝² : InnerProductSpace ℝ F✝ dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) f : (i : ι) → G i s₁ s₂ : Finset ι F : (i : ι) → G i := fun i => if i ∈ s₁ then f i else -f i hF₁ : ∀ (i : ι), i ∈ s₁ \ s₂ → F i = f i hF₂ : ∀ (i : ι), i ∈ s₂ \ s₁ → F i = -f i hF : ∀ (i : ι), ‖F i‖ = ‖f i‖ this : ‖∑ i in s₁ \ s₂, ↑(V i) (F i) + ∑ i in s₂ \ s₁, ↑(V i) (F i)‖ ^ 2 = ∑ i in s₁ \ s₂, ‖F i‖ ^ 2 + ∑ i in s₂ \ s₁, ‖F i‖ ^ 2 i : ι hi : i ∈ s₁ \ s₂ ⊢ ↑(V i) (f i) = ↑(V i) (F i) [PROOFSTEP] simp only [hF₁ i hi] [GOAL] case h.e'_2.h.e'_5.h.e'_3.h.e'_6 𝕜 : Type u_1 E : Type u_2 F✝ : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F✝ inst✝² : InnerProductSpace ℝ F✝ dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) f : (i : ι) → G i s₁ s₂ : Finset ι F : (i : ι) → G i := fun i => if i ∈ s₁ then f i else -f i hF₁ : ∀ (i : ι), i ∈ s₁ \ s₂ → F i = f i hF₂ : ∀ (i : ι), i ∈ s₂ \ s₁ → F i = -f i hF : ∀ (i : ι), ‖F i‖ = ‖f i‖ this : ‖∑ i in s₁ \ s₂, ↑(V i) (F i) + ∑ i in s₂ \ s₁, ↑(V i) (F i)‖ ^ 2 = ∑ i in s₁ \ s₂, ‖F i‖ ^ 2 + ∑ i in s₂ \ s₁, ‖F i‖ ^ 2 ⊢ ∑ x in s₂ \ s₁, -↑(V x) (f x) = ∑ i in s₂ \ s₁, ↑(V i) (F i) [PROOFSTEP] refine' Finset.sum_congr rfl fun i hi => _ [GOAL] case h.e'_2.h.e'_5.h.e'_3.h.e'_6 𝕜 : Type u_1 E : Type u_2 F✝ : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F✝ inst✝² : InnerProductSpace ℝ F✝ dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) f : (i : ι) → G i s₁ s₂ : Finset ι F : (i : ι) → G i := fun i => if i ∈ s₁ then f i else -f i hF₁ : ∀ (i : ι), i ∈ s₁ \ s₂ → F i = f i hF₂ : ∀ (i : ι), i ∈ s₂ \ s₁ → F i = -f i hF : ∀ (i : ι), ‖F i‖ = ‖f i‖ this : ‖∑ i in s₁ \ s₂, ↑(V i) (F i) + ∑ i in s₂ \ s₁, ↑(V i) (F i)‖ ^ 2 = ∑ i in s₁ \ s₂, ‖F i‖ ^ 2 + ∑ i in s₂ \ s₁, ‖F i‖ ^ 2 i : ι hi : i ∈ s₂ \ s₁ ⊢ -↑(V i) (f i) = ↑(V i) (F i) [PROOFSTEP] simp only [hF₂ i hi, LinearIsometry.map_neg] [GOAL] case h.e'_3.h.e'_5.a.h.e'_5 𝕜 : Type u_1 E : Type u_2 F✝ : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F✝ inst✝² : InnerProductSpace ℝ F✝ dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) f : (i : ι) → G i s₁ s₂ : Finset ι F : (i : ι) → G i := fun i => if i ∈ s₁ then f i else -f i hF₁ : ∀ (i : ι), i ∈ s₁ \ s₂ → F i = f i hF₂ : ∀ (i : ι), i ∈ s₂ \ s₁ → F i = -f i hF : ∀ (i : ι), ‖F i‖ = ‖f i‖ this : ‖∑ i in s₁ \ s₂, ↑(V i) (F i) + ∑ i in s₂ \ s₁, ↑(V i) (F i)‖ ^ 2 = ∑ i in s₁ \ s₂, ‖F i‖ ^ 2 + ∑ i in s₂ \ s₁, ‖F i‖ ^ 2 x✝ : ι a✝ : x✝ ∈ s₁ \ s₂ ⊢ ‖f x✝‖ = ‖F x✝‖ [PROOFSTEP] simp only [hF] [GOAL] case h.e'_3.h.e'_6.a.h.e'_5 𝕜 : Type u_1 E : Type u_2 F✝ : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F✝ inst✝² : InnerProductSpace ℝ F✝ dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) f : (i : ι) → G i s₁ s₂ : Finset ι F : (i : ι) → G i := fun i => if i ∈ s₁ then f i else -f i hF₁ : ∀ (i : ι), i ∈ s₁ \ s₂ → F i = f i hF₂ : ∀ (i : ι), i ∈ s₂ \ s₁ → F i = -f i hF : ∀ (i : ι), ‖F i‖ = ‖f i‖ this : ‖∑ i in s₁ \ s₂, ↑(V i) (F i) + ∑ i in s₂ \ s₁, ↑(V i) (F i)‖ ^ 2 = ∑ i in s₁ \ s₂, ‖F i‖ ^ 2 + ∑ i in s₂ \ s₁, ‖F i‖ ^ 2 x✝ : ι a✝ : x✝ ∈ s₂ \ s₁ ⊢ ‖f x✝‖ = ‖F x✝‖ [PROOFSTEP] simp only [hF] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) inst✝ : CompleteSpace E f : (i : ι) → G i ⊢ (Summable fun i => ↑(V i) (f i)) ↔ Summable fun i => ‖f i‖ ^ 2 [PROOFSTEP] classical clear dec_ι simp only [summable_iff_cauchySeq_finset, NormedAddCommGroup.cauchySeq_iff, Real.norm_eq_abs] constructor · intro hf ε hε obtain ⟨a, H⟩ := hf _ (sqrt_pos.mpr hε) use a intro s₁ hs₁ s₂ hs₂ rw [← Finset.sum_sdiff_sub_sum_sdiff] refine' (abs_sub _ _).trans_lt _ have : ∀ i, 0 ≤ ‖f i‖ ^ 2 := fun i : ι => sq_nonneg _ simp only [Finset.abs_sum_of_nonneg' this] have : ((∑ i in s₁ \ s₂, ‖f i‖ ^ 2) + ∑ i in s₂ \ s₁, ‖f i‖ ^ 2) < sqrt ε ^ 2 := by rw [← hV.norm_sq_diff_sum, sq_lt_sq, abs_of_nonneg (sqrt_nonneg _), abs_of_nonneg (norm_nonneg _)] exact H s₁ hs₁ s₂ hs₂ have hη := sq_sqrt (le_of_lt hε) linarith · intro hf ε hε have hε' : 0 < ε ^ 2 / 2 := half_pos (sq_pos_of_pos hε) obtain ⟨a, H⟩ := hf _ hε' use a intro s₁ hs₁ s₂ hs₂ refine' (abs_lt_of_sq_lt_sq' _ (le_of_lt hε)).2 have has : a ≤ s₁ ⊓ s₂ := le_inf hs₁ hs₂ rw [hV.norm_sq_diff_sum] have Hs₁ : ∑ x : ι in s₁ \ s₂, ‖f x‖ ^ 2 < ε ^ 2 / 2 := by convert H _ hs₁ _ has have : s₁ ⊓ s₂ ⊆ s₁ := Finset.inter_subset_left _ _ rw [← Finset.sum_sdiff this, add_tsub_cancel_right, Finset.abs_sum_of_nonneg'] · simp · exact fun i => sq_nonneg _ have Hs₂ : ∑ x : ι in s₂ \ s₁, ‖f x‖ ^ 2 < ε ^ 2 / 2 := by convert H _ hs₂ _ has have : s₁ ⊓ s₂ ⊆ s₂ := Finset.inter_subset_right _ _ rw [← Finset.sum_sdiff this, add_tsub_cancel_right, Finset.abs_sum_of_nonneg'] · simp · exact fun i => sq_nonneg _ linarith [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) inst✝ : CompleteSpace E f : (i : ι) → G i ⊢ (Summable fun i => ↑(V i) (f i)) ↔ Summable fun i => ‖f i‖ ^ 2 [PROOFSTEP] clear dec_ι [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 G : ι → Type u_5 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) inst✝ : CompleteSpace E f : (i : ι) → G i ⊢ (Summable fun i => ↑(V i) (f i)) ↔ Summable fun i => ‖f i‖ ^ 2 [PROOFSTEP] simp only [summable_iff_cauchySeq_finset, NormedAddCommGroup.cauchySeq_iff, Real.norm_eq_abs] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 G : ι → Type u_5 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) inst✝ : CompleteSpace E f : (i : ι) → G i ⊢ (∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < ε) ↔ ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε [PROOFSTEP] constructor [GOAL] case mp 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 G : ι → Type u_5 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) inst✝ : CompleteSpace E f : (i : ι) → G i ⊢ (∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < ε) → ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε [PROOFSTEP] intro hf ε hε [GOAL] case mp 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 G : ι → Type u_5 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) inst✝ : CompleteSpace E f : (i : ι) → G i hf : ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < ε ε : ℝ hε : ε > 0 ⊢ ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε [PROOFSTEP] obtain ⟨a, H⟩ := hf _ (sqrt_pos.mpr hε) [GOAL] case mp.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 G : ι → Type u_5 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) inst✝ : CompleteSpace E f : (i : ι) → G i hf : ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < ε ε : ℝ hε : ε > 0 a : Finset ι H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < sqrt ε ⊢ ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε [PROOFSTEP] use a [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 G : ι → Type u_5 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) inst✝ : CompleteSpace E f : (i : ι) → G i hf : ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < ε ε : ℝ hε : ε > 0 a : Finset ι H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < sqrt ε ⊢ ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε [PROOFSTEP] intro s₁ hs₁ s₂ hs₂ [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 G : ι → Type u_5 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) inst✝ : CompleteSpace E f : (i : ι) → G i hf : ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < ε ε : ℝ hε : ε > 0 a : Finset ι H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < sqrt ε s₁ : Finset ι hs₁ : a ≤ s₁ s₂ : Finset ι hs₂ : a ≤ s₂ ⊢ |∑ i in s₁, ‖f i‖ ^ 2 - ∑ i in s₂, ‖f i‖ ^ 2| < ε [PROOFSTEP] rw [← Finset.sum_sdiff_sub_sum_sdiff] [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 G : ι → Type u_5 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) inst✝ : CompleteSpace E f : (i : ι) → G i hf : ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < ε ε : ℝ hε : ε > 0 a : Finset ι H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < sqrt ε s₁ : Finset ι hs₁ : a ≤ s₁ s₂ : Finset ι hs₂ : a ≤ s₂ ⊢ |∑ x in s₁ \ s₂, ‖f x‖ ^ 2 - ∑ x in s₂ \ s₁, ‖f x‖ ^ 2| < ε [PROOFSTEP] refine' (abs_sub _ _).trans_lt _ [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 G : ι → Type u_5 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) inst✝ : CompleteSpace E f : (i : ι) → G i hf : ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < ε ε : ℝ hε : ε > 0 a : Finset ι H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < sqrt ε s₁ : Finset ι hs₁ : a ≤ s₁ s₂ : Finset ι hs₂ : a ≤ s₂ ⊢ |∑ x in s₁ \ s₂, ‖f x‖ ^ 2| + |∑ x in s₂ \ s₁, ‖f x‖ ^ 2| < ε [PROOFSTEP] have : ∀ i, 0 ≤ ‖f i‖ ^ 2 := fun i : ι => sq_nonneg _ [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 G : ι → Type u_5 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) inst✝ : CompleteSpace E f : (i : ι) → G i hf : ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < ε ε : ℝ hε : ε > 0 a : Finset ι H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < sqrt ε s₁ : Finset ι hs₁ : a ≤ s₁ s₂ : Finset ι hs₂ : a ≤ s₂ this : ∀ (i : ι), 0 ≤ ‖f i‖ ^ 2 ⊢ |∑ x in s₁ \ s₂, ‖f x‖ ^ 2| + |∑ x in s₂ \ s₁, ‖f x‖ ^ 2| < ε [PROOFSTEP] simp only [Finset.abs_sum_of_nonneg' this] [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 G : ι → Type u_5 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) inst✝ : CompleteSpace E f : (i : ι) → G i hf : ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < ε ε : ℝ hε : ε > 0 a : Finset ι H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < sqrt ε s₁ : Finset ι hs₁ : a ≤ s₁ s₂ : Finset ι hs₂ : a ≤ s₂ this : ∀ (i : ι), 0 ≤ ‖f i‖ ^ 2 ⊢ ∑ x in s₁ \ s₂, ‖f x‖ ^ 2 + ∑ x in s₂ \ s₁, ‖f x‖ ^ 2 < ε [PROOFSTEP] have : ((∑ i in s₁ \ s₂, ‖f i‖ ^ 2) + ∑ i in s₂ \ s₁, ‖f i‖ ^ 2) < sqrt ε ^ 2 := by rw [← hV.norm_sq_diff_sum, sq_lt_sq, abs_of_nonneg (sqrt_nonneg _), abs_of_nonneg (norm_nonneg _)] exact H s₁ hs₁ s₂ hs₂ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 G : ι → Type u_5 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) inst✝ : CompleteSpace E f : (i : ι) → G i hf : ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < ε ε : ℝ hε : ε > 0 a : Finset ι H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < sqrt ε s₁ : Finset ι hs₁ : a ≤ s₁ s₂ : Finset ι hs₂ : a ≤ s₂ this : ∀ (i : ι), 0 ≤ ‖f i‖ ^ 2 ⊢ ∑ i in s₁ \ s₂, ‖f i‖ ^ 2 + ∑ i in s₂ \ s₁, ‖f i‖ ^ 2 < sqrt ε ^ 2 [PROOFSTEP] rw [← hV.norm_sq_diff_sum, sq_lt_sq, abs_of_nonneg (sqrt_nonneg _), abs_of_nonneg (norm_nonneg _)] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 G : ι → Type u_5 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) inst✝ : CompleteSpace E f : (i : ι) → G i hf : ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < ε ε : ℝ hε : ε > 0 a : Finset ι H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < sqrt ε s₁ : Finset ι hs₁ : a ≤ s₁ s₂ : Finset ι hs₂ : a ≤ s₂ this : ∀ (i : ι), 0 ≤ ‖f i‖ ^ 2 ⊢ ‖∑ i in s₁, ↑(V i) (f i) - ∑ i in s₂, ↑(V i) (f i)‖ < sqrt ε [PROOFSTEP] exact H s₁ hs₁ s₂ hs₂ [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 G : ι → Type u_5 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) inst✝ : CompleteSpace E f : (i : ι) → G i hf : ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < ε ε : ℝ hε : ε > 0 a : Finset ι H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < sqrt ε s₁ : Finset ι hs₁ : a ≤ s₁ s₂ : Finset ι hs₂ : a ≤ s₂ this✝ : ∀ (i : ι), 0 ≤ ‖f i‖ ^ 2 this : ∑ i in s₁ \ s₂, ‖f i‖ ^ 2 + ∑ i in s₂ \ s₁, ‖f i‖ ^ 2 < sqrt ε ^ 2 ⊢ ∑ x in s₁ \ s₂, ‖f x‖ ^ 2 + ∑ x in s₂ \ s₁, ‖f x‖ ^ 2 < ε [PROOFSTEP] have hη := sq_sqrt (le_of_lt hε) [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 G : ι → Type u_5 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) inst✝ : CompleteSpace E f : (i : ι) → G i hf : ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < ε ε : ℝ hε : ε > 0 a : Finset ι H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < sqrt ε s₁ : Finset ι hs₁ : a ≤ s₁ s₂ : Finset ι hs₂ : a ≤ s₂ this✝ : ∀ (i : ι), 0 ≤ ‖f i‖ ^ 2 this : ∑ i in s₁ \ s₂, ‖f i‖ ^ 2 + ∑ i in s₂ \ s₁, ‖f i‖ ^ 2 < sqrt ε ^ 2 hη : sqrt ε ^ 2 = ε ⊢ ∑ x in s₁ \ s₂, ‖f x‖ ^ 2 + ∑ x in s₂ \ s₁, ‖f x‖ ^ 2 < ε [PROOFSTEP] linarith [GOAL] case mpr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 G : ι → Type u_5 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) inst✝ : CompleteSpace E f : (i : ι) → G i ⊢ (∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε) → ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < ε [PROOFSTEP] intro hf ε hε [GOAL] case mpr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 G : ι → Type u_5 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) inst✝ : CompleteSpace E f : (i : ι) → G i hf : ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ε : ℝ hε : ε > 0 ⊢ ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < ε [PROOFSTEP] have hε' : 0 < ε ^ 2 / 2 := half_pos (sq_pos_of_pos hε) [GOAL] case mpr 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 G : ι → Type u_5 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) inst✝ : CompleteSpace E f : (i : ι) → G i hf : ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ε : ℝ hε : ε > 0 hε' : 0 < ε ^ 2 / 2 ⊢ ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < ε [PROOFSTEP] obtain ⟨a, H⟩ := hf _ hε' [GOAL] case mpr.intro 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 G : ι → Type u_5 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) inst✝ : CompleteSpace E f : (i : ι) → G i hf : ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ε : ℝ hε : ε > 0 hε' : 0 < ε ^ 2 / 2 a : Finset ι H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ^ 2 / 2 ⊢ ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < ε [PROOFSTEP] use a [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 G : ι → Type u_5 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) inst✝ : CompleteSpace E f : (i : ι) → G i hf : ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ε : ℝ hε : ε > 0 hε' : 0 < ε ^ 2 / 2 a : Finset ι H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ^ 2 / 2 ⊢ ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → ‖∑ b in m, ↑(V b) (f b) - ∑ b in n, ↑(V b) (f b)‖ < ε [PROOFSTEP] intro s₁ hs₁ s₂ hs₂ [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 G : ι → Type u_5 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) inst✝ : CompleteSpace E f : (i : ι) → G i hf : ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ε : ℝ hε : ε > 0 hε' : 0 < ε ^ 2 / 2 a : Finset ι H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ^ 2 / 2 s₁ : Finset ι hs₁ : a ≤ s₁ s₂ : Finset ι hs₂ : a ≤ s₂ ⊢ ‖∑ b in s₁, ↑(V b) (f b) - ∑ b in s₂, ↑(V b) (f b)‖ < ε [PROOFSTEP] refine' (abs_lt_of_sq_lt_sq' _ (le_of_lt hε)).2 [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 G : ι → Type u_5 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) inst✝ : CompleteSpace E f : (i : ι) → G i hf : ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ε : ℝ hε : ε > 0 hε' : 0 < ε ^ 2 / 2 a : Finset ι H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ^ 2 / 2 s₁ : Finset ι hs₁ : a ≤ s₁ s₂ : Finset ι hs₂ : a ≤ s₂ ⊢ ‖∑ b in s₁, ↑(V b) (f b) - ∑ b in s₂, ↑(V b) (f b)‖ ^ 2 < ε ^ 2 [PROOFSTEP] have has : a ≤ s₁ ⊓ s₂ := le_inf hs₁ hs₂ [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 G : ι → Type u_5 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) inst✝ : CompleteSpace E f : (i : ι) → G i hf : ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ε : ℝ hε : ε > 0 hε' : 0 < ε ^ 2 / 2 a : Finset ι H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ^ 2 / 2 s₁ : Finset ι hs₁ : a ≤ s₁ s₂ : Finset ι hs₂ : a ≤ s₂ has : a ≤ s₁ ⊓ s₂ ⊢ ‖∑ b in s₁, ↑(V b) (f b) - ∑ b in s₂, ↑(V b) (f b)‖ ^ 2 < ε ^ 2 [PROOFSTEP] rw [hV.norm_sq_diff_sum] [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 G : ι → Type u_5 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) inst✝ : CompleteSpace E f : (i : ι) → G i hf : ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ε : ℝ hε : ε > 0 hε' : 0 < ε ^ 2 / 2 a : Finset ι H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ^ 2 / 2 s₁ : Finset ι hs₁ : a ≤ s₁ s₂ : Finset ι hs₂ : a ≤ s₂ has : a ≤ s₁ ⊓ s₂ ⊢ ∑ i in s₁ \ s₂, ‖f i‖ ^ 2 + ∑ i in s₂ \ s₁, ‖f i‖ ^ 2 < ε ^ 2 [PROOFSTEP] have Hs₁ : ∑ x : ι in s₁ \ s₂, ‖f x‖ ^ 2 < ε ^ 2 / 2 := by convert H _ hs₁ _ has have : s₁ ⊓ s₂ ⊆ s₁ := Finset.inter_subset_left _ _ rw [← Finset.sum_sdiff this, add_tsub_cancel_right, Finset.abs_sum_of_nonneg'] · simp · exact fun i => sq_nonneg _ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 G : ι → Type u_5 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) inst✝ : CompleteSpace E f : (i : ι) → G i hf : ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ε : ℝ hε : ε > 0 hε' : 0 < ε ^ 2 / 2 a : Finset ι H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ^ 2 / 2 s₁ : Finset ι hs₁ : a ≤ s₁ s₂ : Finset ι hs₂ : a ≤ s₂ has : a ≤ s₁ ⊓ s₂ ⊢ ∑ x in s₁ \ s₂, ‖f x‖ ^ 2 < ε ^ 2 / 2 [PROOFSTEP] convert H _ hs₁ _ has [GOAL] case h.e'_3 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 G : ι → Type u_5 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) inst✝ : CompleteSpace E f : (i : ι) → G i hf : ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ε : ℝ hε : ε > 0 hε' : 0 < ε ^ 2 / 2 a : Finset ι H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ^ 2 / 2 s₁ : Finset ι hs₁ : a ≤ s₁ s₂ : Finset ι hs₂ : a ≤ s₂ has : a ≤ s₁ ⊓ s₂ ⊢ ∑ x in s₁ \ s₂, ‖f x‖ ^ 2 = |∑ i in s₁, ‖f i‖ ^ 2 - ∑ i in s₁ ⊓ s₂, ‖f i‖ ^ 2| [PROOFSTEP] have : s₁ ⊓ s₂ ⊆ s₁ := Finset.inter_subset_left _ _ [GOAL] case h.e'_3 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 G : ι → Type u_5 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) inst✝ : CompleteSpace E f : (i : ι) → G i hf : ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ε : ℝ hε : ε > 0 hε' : 0 < ε ^ 2 / 2 a : Finset ι H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ^ 2 / 2 s₁ : Finset ι hs₁ : a ≤ s₁ s₂ : Finset ι hs₂ : a ≤ s₂ has : a ≤ s₁ ⊓ s₂ this : s₁ ⊓ s₂ ⊆ s₁ ⊢ ∑ x in s₁ \ s₂, ‖f x‖ ^ 2 = |∑ i in s₁, ‖f i‖ ^ 2 - ∑ i in s₁ ⊓ s₂, ‖f i‖ ^ 2| [PROOFSTEP] rw [← Finset.sum_sdiff this, add_tsub_cancel_right, Finset.abs_sum_of_nonneg'] [GOAL] case h.e'_3 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 G : ι → Type u_5 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) inst✝ : CompleteSpace E f : (i : ι) → G i hf : ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ε : ℝ hε : ε > 0 hε' : 0 < ε ^ 2 / 2 a : Finset ι H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ^ 2 / 2 s₁ : Finset ι hs₁ : a ≤ s₁ s₂ : Finset ι hs₂ : a ≤ s₂ has : a ≤ s₁ ⊓ s₂ this : s₁ ⊓ s₂ ⊆ s₁ ⊢ ∑ x in s₁ \ s₂, ‖f x‖ ^ 2 = ∑ i in s₁ \ (s₁ ⊓ s₂), ‖f i‖ ^ 2 [PROOFSTEP] simp [GOAL] case h.e'_3 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 G : ι → Type u_5 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) inst✝ : CompleteSpace E f : (i : ι) → G i hf : ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ε : ℝ hε : ε > 0 hε' : 0 < ε ^ 2 / 2 a : Finset ι H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ^ 2 / 2 s₁ : Finset ι hs₁ : a ≤ s₁ s₂ : Finset ι hs₂ : a ≤ s₂ has : a ≤ s₁ ⊓ s₂ this : s₁ ⊓ s₂ ⊆ s₁ ⊢ ∀ (i : ι), 0 ≤ ‖f i‖ ^ 2 [PROOFSTEP] exact fun i => sq_nonneg _ [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 G : ι → Type u_5 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) inst✝ : CompleteSpace E f : (i : ι) → G i hf : ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ε : ℝ hε : ε > 0 hε' : 0 < ε ^ 2 / 2 a : Finset ι H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ^ 2 / 2 s₁ : Finset ι hs₁ : a ≤ s₁ s₂ : Finset ι hs₂ : a ≤ s₂ has : a ≤ s₁ ⊓ s₂ Hs₁ : ∑ x in s₁ \ s₂, ‖f x‖ ^ 2 < ε ^ 2 / 2 ⊢ ∑ i in s₁ \ s₂, ‖f i‖ ^ 2 + ∑ i in s₂ \ s₁, ‖f i‖ ^ 2 < ε ^ 2 [PROOFSTEP] have Hs₂ : ∑ x : ι in s₂ \ s₁, ‖f x‖ ^ 2 < ε ^ 2 / 2 := by convert H _ hs₂ _ has have : s₁ ⊓ s₂ ⊆ s₂ := Finset.inter_subset_right _ _ rw [← Finset.sum_sdiff this, add_tsub_cancel_right, Finset.abs_sum_of_nonneg'] · simp · exact fun i => sq_nonneg _ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 G : ι → Type u_5 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) inst✝ : CompleteSpace E f : (i : ι) → G i hf : ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ε : ℝ hε : ε > 0 hε' : 0 < ε ^ 2 / 2 a : Finset ι H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ^ 2 / 2 s₁ : Finset ι hs₁ : a ≤ s₁ s₂ : Finset ι hs₂ : a ≤ s₂ has : a ≤ s₁ ⊓ s₂ Hs₁ : ∑ x in s₁ \ s₂, ‖f x‖ ^ 2 < ε ^ 2 / 2 ⊢ ∑ x in s₂ \ s₁, ‖f x‖ ^ 2 < ε ^ 2 / 2 [PROOFSTEP] convert H _ hs₂ _ has [GOAL] case h.e'_3 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 G : ι → Type u_5 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) inst✝ : CompleteSpace E f : (i : ι) → G i hf : ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ε : ℝ hε : ε > 0 hε' : 0 < ε ^ 2 / 2 a : Finset ι H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ^ 2 / 2 s₁ : Finset ι hs₁ : a ≤ s₁ s₂ : Finset ι hs₂ : a ≤ s₂ has : a ≤ s₁ ⊓ s₂ Hs₁ : ∑ x in s₁ \ s₂, ‖f x‖ ^ 2 < ε ^ 2 / 2 ⊢ ∑ x in s₂ \ s₁, ‖f x‖ ^ 2 = |∑ i in s₂, ‖f i‖ ^ 2 - ∑ i in s₁ ⊓ s₂, ‖f i‖ ^ 2| [PROOFSTEP] have : s₁ ⊓ s₂ ⊆ s₂ := Finset.inter_subset_right _ _ [GOAL] case h.e'_3 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 G : ι → Type u_5 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) inst✝ : CompleteSpace E f : (i : ι) → G i hf : ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ε : ℝ hε : ε > 0 hε' : 0 < ε ^ 2 / 2 a : Finset ι H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ^ 2 / 2 s₁ : Finset ι hs₁ : a ≤ s₁ s₂ : Finset ι hs₂ : a ≤ s₂ has : a ≤ s₁ ⊓ s₂ Hs₁ : ∑ x in s₁ \ s₂, ‖f x‖ ^ 2 < ε ^ 2 / 2 this : s₁ ⊓ s₂ ⊆ s₂ ⊢ ∑ x in s₂ \ s₁, ‖f x‖ ^ 2 = |∑ i in s₂, ‖f i‖ ^ 2 - ∑ i in s₁ ⊓ s₂, ‖f i‖ ^ 2| [PROOFSTEP] rw [← Finset.sum_sdiff this, add_tsub_cancel_right, Finset.abs_sum_of_nonneg'] [GOAL] case h.e'_3 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 G : ι → Type u_5 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) inst✝ : CompleteSpace E f : (i : ι) → G i hf : ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ε : ℝ hε : ε > 0 hε' : 0 < ε ^ 2 / 2 a : Finset ι H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ^ 2 / 2 s₁ : Finset ι hs₁ : a ≤ s₁ s₂ : Finset ι hs₂ : a ≤ s₂ has : a ≤ s₁ ⊓ s₂ Hs₁ : ∑ x in s₁ \ s₂, ‖f x‖ ^ 2 < ε ^ 2 / 2 this : s₁ ⊓ s₂ ⊆ s₂ ⊢ ∑ x in s₂ \ s₁, ‖f x‖ ^ 2 = ∑ i in s₂ \ (s₁ ⊓ s₂), ‖f i‖ ^ 2 [PROOFSTEP] simp [GOAL] case h.e'_3 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 G : ι → Type u_5 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) inst✝ : CompleteSpace E f : (i : ι) → G i hf : ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ε : ℝ hε : ε > 0 hε' : 0 < ε ^ 2 / 2 a : Finset ι H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ^ 2 / 2 s₁ : Finset ι hs₁ : a ≤ s₁ s₂ : Finset ι hs₂ : a ≤ s₂ has : a ≤ s₁ ⊓ s₂ Hs₁ : ∑ x in s₁ \ s₂, ‖f x‖ ^ 2 < ε ^ 2 / 2 this : s₁ ⊓ s₂ ⊆ s₂ ⊢ ∀ (i : ι), 0 ≤ ‖f i‖ ^ 2 [PROOFSTEP] exact fun i => sq_nonneg _ [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 G : ι → Type u_5 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) inst✝ : CompleteSpace E f : (i : ι) → G i hf : ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (m : Finset ι), N ≤ m → ∀ (n : Finset ι), N ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ε : ℝ hε : ε > 0 hε' : 0 < ε ^ 2 / 2 a : Finset ι H : ∀ (m : Finset ι), a ≤ m → ∀ (n : Finset ι), a ≤ n → |∑ i in m, ‖f i‖ ^ 2 - ∑ i in n, ‖f i‖ ^ 2| < ε ^ 2 / 2 s₁ : Finset ι hs₁ : a ≤ s₁ s₂ : Finset ι hs₂ : a ≤ s₂ has : a ≤ s₁ ⊓ s₂ Hs₁ : ∑ x in s₁ \ s₂, ‖f x‖ ^ 2 < ε ^ 2 / 2 Hs₂ : ∑ x in s₂ \ s₁, ‖f x‖ ^ 2 < ε ^ 2 / 2 ⊢ ∑ i in s₁ \ s₂, ‖f i‖ ^ 2 + ∑ i in s₂ \ s₁, ‖f i‖ ^ 2 < ε ^ 2 [PROOFSTEP] linarith [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V✝ : (i : ι) → G i →ₗᵢ[𝕜] E hV✝ : OrthogonalFamily 𝕜 G V✝ dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) V : ι → Submodule 𝕜 E hV : OrthogonalFamily 𝕜 (fun i => { x // x ∈ V i }) fun i => Submodule.subtypeₗᵢ (V i) ⊢ CompleteLattice.Independent V [PROOFSTEP] classical! [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V✝ : (i : ι) → G i →ₗᵢ[𝕜] E hV✝ : OrthogonalFamily 𝕜 G V✝ dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) V : ι → Submodule 𝕜 E hV : OrthogonalFamily 𝕜 (fun i => { x // x ∈ V i }) fun i => Submodule.subtypeₗᵢ (V i) em✝ : (a : Prop) → Decidable a ⊢ CompleteLattice.Independent V [PROOFSTEP] apply CompleteLattice.independent_of_dfinsupp_lsum_injective [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V✝ : (i : ι) → G i →ₗᵢ[𝕜] E hV✝ : OrthogonalFamily 𝕜 G V✝ dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) V : ι → Submodule 𝕜 E hV : OrthogonalFamily 𝕜 (fun i => { x // x ∈ V i }) fun i => Submodule.subtypeₗᵢ (V i) em✝ : (a : Prop) → Decidable a ⊢ Function.Injective ↑(↑(DFinsupp.lsum ℕ) fun i => Submodule.subtype (V i)) [PROOFSTEP] refine LinearMap.ker_eq_bot.mp ?_ [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V✝ : (i : ι) → G i →ₗᵢ[𝕜] E hV✝ : OrthogonalFamily 𝕜 G V✝ dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) V : ι → Submodule 𝕜 E hV : OrthogonalFamily 𝕜 (fun i => { x // x ∈ V i }) fun i => Submodule.subtypeₗᵢ (V i) em✝ : (a : Prop) → Decidable a ⊢ LinearMap.ker (↑(DFinsupp.lsum ℕ) fun i => Submodule.subtype (V i)) = ⊥ [PROOFSTEP] rw [Submodule.eq_bot_iff] [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V✝ : (i : ι) → G i →ₗᵢ[𝕜] E hV✝ : OrthogonalFamily 𝕜 G V✝ dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) V : ι → Submodule 𝕜 E hV : OrthogonalFamily 𝕜 (fun i => { x // x ∈ V i }) fun i => Submodule.subtypeₗᵢ (V i) em✝ : (a : Prop) → Decidable a ⊢ ∀ (x : Π₀ (i : ι), { x // x ∈ V i }), x ∈ LinearMap.ker (↑(DFinsupp.lsum ℕ) fun i => Submodule.subtype (V i)) → x = 0 [PROOFSTEP] intro v hv [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V✝ : (i : ι) → G i →ₗᵢ[𝕜] E hV✝ : OrthogonalFamily 𝕜 G V✝ dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) V : ι → Submodule 𝕜 E hV : OrthogonalFamily 𝕜 (fun i => { x // x ∈ V i }) fun i => Submodule.subtypeₗᵢ (V i) em✝ : (a : Prop) → Decidable a v : Π₀ (i : ι), { x // x ∈ V i } hv : v ∈ LinearMap.ker (↑(DFinsupp.lsum ℕ) fun i => Submodule.subtype (V i)) ⊢ v = 0 [PROOFSTEP] rw [LinearMap.mem_ker] at hv [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V✝ : (i : ι) → G i →ₗᵢ[𝕜] E hV✝ : OrthogonalFamily 𝕜 G V✝ dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) V : ι → Submodule 𝕜 E hV : OrthogonalFamily 𝕜 (fun i => { x // x ∈ V i }) fun i => Submodule.subtypeₗᵢ (V i) em✝ : (a : Prop) → Decidable a v : Π₀ (i : ι), { x // x ∈ V i } hv : ↑(↑(DFinsupp.lsum ℕ) fun i => Submodule.subtype (V i)) v = 0 ⊢ v = 0 [PROOFSTEP] ext i [GOAL] case h.h.a 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V✝ : (i : ι) → G i →ₗᵢ[𝕜] E hV✝ : OrthogonalFamily 𝕜 G V✝ dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) V : ι → Submodule 𝕜 E hV : OrthogonalFamily 𝕜 (fun i => { x // x ∈ V i }) fun i => Submodule.subtypeₗᵢ (V i) em✝ : (a : Prop) → Decidable a v : Π₀ (i : ι), { x // x ∈ V i } hv : ↑(↑(DFinsupp.lsum ℕ) fun i => Submodule.subtype (V i)) v = 0 i : ι ⊢ ↑(↑v i) = ↑(↑0 i) [PROOFSTEP] suffices ⟪(v i : E), v i⟫ = 0 by simpa only [inner_self_eq_zero] using this [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V✝ : (i : ι) → G i →ₗᵢ[𝕜] E hV✝ : OrthogonalFamily 𝕜 G V✝ dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) V : ι → Submodule 𝕜 E hV : OrthogonalFamily 𝕜 (fun i => { x // x ∈ V i }) fun i => Submodule.subtypeₗᵢ (V i) em✝ : (a : Prop) → Decidable a v : Π₀ (i : ι), { x // x ∈ V i } hv : ↑(↑(DFinsupp.lsum ℕ) fun i => Submodule.subtype (V i)) v = 0 i : ι this : inner ↑(↑v i) ↑(↑v i) = 0 ⊢ ↑(↑v i) = ↑(↑0 i) [PROOFSTEP] simpa only [inner_self_eq_zero] using this [GOAL] case h.h.a 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V✝ : (i : ι) → G i →ₗᵢ[𝕜] E hV✝ : OrthogonalFamily 𝕜 G V✝ dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) V : ι → Submodule 𝕜 E hV : OrthogonalFamily 𝕜 (fun i => { x // x ∈ V i }) fun i => Submodule.subtypeₗᵢ (V i) em✝ : (a : Prop) → Decidable a v : Π₀ (i : ι), { x // x ∈ V i } hv : ↑(↑(DFinsupp.lsum ℕ) fun i => Submodule.subtype (V i)) v = 0 i : ι ⊢ inner ↑(↑v i) ↑(↑v i) = 0 [PROOFSTEP] calc ⟪(v i : E), v i⟫ = ⟪(v i : E), DFinsupp.lsum ℕ (fun i => (V i).subtype) v⟫ := by simpa only [DFinsupp.sumAddHom_apply, DFinsupp.lsum_apply_apply] using (hV.inner_right_dfinsupp v i (v i)).symm _ = 0 := by simp only [hv, inner_zero_right] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V✝ : (i : ι) → G i →ₗᵢ[𝕜] E hV✝ : OrthogonalFamily 𝕜 G V✝ dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) V : ι → Submodule 𝕜 E hV : OrthogonalFamily 𝕜 (fun i => { x // x ∈ V i }) fun i => Submodule.subtypeₗᵢ (V i) em✝ : (a : Prop) → Decidable a v : Π₀ (i : ι), { x // x ∈ V i } hv : ↑(↑(DFinsupp.lsum ℕ) fun i => Submodule.subtype (V i)) v = 0 i : ι ⊢ inner ↑(↑v i) ↑(↑v i) = inner (↑(↑v i)) (↑(↑(DFinsupp.lsum ℕ) fun i => Submodule.subtype (V i)) v) [PROOFSTEP] simpa only [DFinsupp.sumAddHom_apply, DFinsupp.lsum_apply_apply] using (hV.inner_right_dfinsupp v i (v i)).symm [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V✝ : (i : ι) → G i →ₗᵢ[𝕜] E hV✝ : OrthogonalFamily 𝕜 G V✝ dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) V : ι → Submodule 𝕜 E hV : OrthogonalFamily 𝕜 (fun i => { x // x ∈ V i }) fun i => Submodule.subtypeₗᵢ (V i) em✝ : (a : Prop) → Decidable a v : Π₀ (i : ι), { x // x ∈ V i } hv : ↑(↑(DFinsupp.lsum ℕ) fun i => Submodule.subtype (V i)) v = 0 i : ι ⊢ inner (↑(↑v i)) (↑(↑(DFinsupp.lsum ℕ) fun i => Submodule.subtype (V i)) v) = 0 [PROOFSTEP] simp only [hv, inner_zero_right] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E ι : Type u_4 dec_ι : DecidableEq ι G : ι → Type u_5 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V✝ : (i : ι) → G i →ₗᵢ[𝕜] E hV✝ : OrthogonalFamily 𝕜 G V✝ dec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0) V : ι → Submodule 𝕜 E hV : OrthogonalFamily 𝕜 (fun i => { x // x ∈ V i }) fun i => Submodule.subtypeₗᵢ (V i) hV_sum : IsInternal fun i => V i α : ι → Type u_6 v_family : (i : ι) → Basis (α i) 𝕜 { x // x ∈ V i } hv_family : ∀ (i : ι), Orthonormal 𝕜 ↑(v_family i) ⊢ Orthonormal 𝕜 ↑(collectedBasis hV_sum v_family) [PROOFSTEP] simpa only [hV_sum.collectedBasis_coe] using hV.orthonormal_sigma_orthonormal hv_family [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E G : Type u_4 src✝¹ : Inner ℝ E := Inner.isROrCToReal 𝕜 E src✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E x y z : E ⊢ inner (x + y) z = inner x z + inner y z [PROOFSTEP] change re ⟪x + y, z⟫ = re ⟪x, z⟫ + re ⟪y, z⟫ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E G : Type u_4 src✝¹ : Inner ℝ E := Inner.isROrCToReal 𝕜 E src✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E x y z : E ⊢ ↑re (inner (x + y) z) = ↑re (inner x z) + ↑re (inner y z) [PROOFSTEP] simp only [inner_add_left, map_add] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E G : Type u_4 src✝¹ : Inner ℝ E := Inner.isROrCToReal 𝕜 E src✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E x y : E r : ℝ ⊢ inner (r • x) y = ↑(starRingEnd ℝ) r * inner x y [PROOFSTEP] change re ⟪(r : 𝕜) • x, y⟫ = r * re ⟪x, y⟫ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E G : Type u_4 src✝¹ : Inner ℝ E := Inner.isROrCToReal 𝕜 E src✝ : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ 𝕜 E x y : E r : ℝ ⊢ ↑re (inner (↑r • x) y) = r * ↑re (inner x y) [PROOFSTEP] simp only [inner_smul_left, conj_ofReal, ofReal_mul_re] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E G : Type u_4 x : E ⊢ inner x (I • x) = 0 [PROOFSTEP] simp [real_inner_eq_re_inner 𝕜, inner_smul_right] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace 𝕜 E inst✝³ : NormedAddCommGroup F inst✝² : InnerProductSpace ℝ F dec_E : DecidableEq E G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : InnerProductSpace ℝ G f : G ≃ₗᵢ[ℝ] ℂ x y : G ⊢ inner x y = (↑(starRingEnd ℂ) (↑f x) * ↑f y).re [PROOFSTEP] rw [← Complex.inner, f.inner_map_map] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E T : E →L[𝕜] E x : E c : 𝕜 ⊢ reApplyInnerSelf T (c • x) = ‖c‖ ^ 2 * reApplyInnerSelf T x [PROOFSTEP] simp only [ContinuousLinearMap.map_smul, ContinuousLinearMap.reApplyInnerSelf_apply, inner_smul_left, inner_smul_right, ← mul_assoc, mul_conj, normSq_eq_def', ← smul_re, Algebra.smul_def (‖c‖ ^ 2) ⟪T x, x⟫, algebraMap_eq_ofReal] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ⊢ Continuous (uncurry inner) [PROOFSTEP] let inner' : E →+ E →+ 𝕜 := { toFun := fun x => (innerₛₗ 𝕜 x).toAddMonoidHom map_zero' := by ext x; exact inner_zero_left _ map_add' := fun x y => by ext z; exact inner_add_left _ _ _ } [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E ⊢ (fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x)) 0 = 0 [PROOFSTEP] ext x [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x : E ⊢ ↑((fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x)) 0) x = ↑0 x [PROOFSTEP] exact inner_zero_left _ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : E ⊢ ZeroHom.toFun { toFun := fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x), map_zero' := (_ : (fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x)) 0 = 0) } (x + y) = ZeroHom.toFun { toFun := fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x), map_zero' := (_ : (fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x)) 0 = 0) } x + ZeroHom.toFun { toFun := fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x), map_zero' := (_ : (fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x)) 0 = 0) } y [PROOFSTEP] ext z [GOAL] case h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y z : E ⊢ ↑(ZeroHom.toFun { toFun := fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x), map_zero' := (_ : (fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x)) 0 = 0) } (x + y)) z = ↑(ZeroHom.toFun { toFun := fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x), map_zero' := (_ : (fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x)) 0 = 0) } x + ZeroHom.toFun { toFun := fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x), map_zero' := (_ : (fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x)) 0 = 0) } y) z [PROOFSTEP] exact inner_add_left _ _ _ [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E inner' : E →+ E →+ 𝕜 := { toZeroHom := { toFun := fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x), map_zero' := (_ : (fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x)) 0 = 0) }, map_add' := (_ : ∀ (x y : E), ZeroHom.toFun { toFun := fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x), map_zero' := (_ : (fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x)) 0 = 0) } (x + y) = ZeroHom.toFun { toFun := fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x), map_zero' := (_ : (fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x)) 0 = 0) } x + ZeroHom.toFun { toFun := fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x), map_zero' := (_ : (fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x)) 0 = 0) } y) } ⊢ Continuous (uncurry inner) [PROOFSTEP] have : Continuous fun p : E × E => inner' p.1 p.2 := continuous_inner [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E inner' : E →+ E →+ 𝕜 := { toZeroHom := { toFun := fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x), map_zero' := (_ : (fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x)) 0 = 0) }, map_add' := (_ : ∀ (x y : E), ZeroHom.toFun { toFun := fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x), map_zero' := (_ : (fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x)) 0 = 0) } (x + y) = ZeroHom.toFun { toFun := fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x), map_zero' := (_ : (fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x)) 0 = 0) } x + ZeroHom.toFun { toFun := fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x), map_zero' := (_ : (fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x)) 0 = 0) } y) } this : Continuous fun p => ↑(↑inner' p.fst) p.snd ⊢ Continuous (uncurry inner) [PROOFSTEP] rw [Completion.toInner, inner, uncurry_curry _] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E inner' : E →+ E →+ 𝕜 := { toZeroHom := { toFun := fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x), map_zero' := (_ : (fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x)) 0 = 0) }, map_add' := (_ : ∀ (x y : E), ZeroHom.toFun { toFun := fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x), map_zero' := (_ : (fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x)) 0 = 0) } (x + y) = ZeroHom.toFun { toFun := fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x), map_zero' := (_ : (fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x)) 0 = 0) } x + ZeroHom.toFun { toFun := fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x), map_zero' := (_ : (fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x)) 0 = 0) } y) } this : Continuous fun p => ↑(↑inner' p.fst) p.snd ⊢ Continuous (DenseInducing.extend (_ : DenseInducing fun p => (↑E p.fst, ↑E p.snd)) (uncurry inner)) [PROOFSTEP] change Continuous (((denseInducing_toCompl E).prod (denseInducing_toCompl E)).extend fun p : E × E => inner' p.1 p.2) [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E inner' : E →+ E →+ 𝕜 := { toZeroHom := { toFun := fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x), map_zero' := (_ : (fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x)) 0 = 0) }, map_add' := (_ : ∀ (x y : E), ZeroHom.toFun { toFun := fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x), map_zero' := (_ : (fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x)) 0 = 0) } (x + y) = ZeroHom.toFun { toFun := fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x), map_zero' := (_ : (fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x)) 0 = 0) } x + ZeroHom.toFun { toFun := fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x), map_zero' := (_ : (fun x => LinearMap.toAddMonoidHom (↑(innerₛₗ 𝕜) x)) 0 = 0) } y) } this : Continuous fun p => ↑(↑inner' p.fst) p.snd ⊢ Continuous (DenseInducing.extend (_ : DenseInducing fun p => (↑toCompl p.fst, ↑toCompl p.snd)) fun p => ↑(↑inner' p.fst) p.snd) [PROOFSTEP] exact (denseInducing_toCompl E).extend_Z_bilin (denseInducing_toCompl E) this [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x : Completion E a : E ⊢ ‖↑E a‖ ^ 2 = ↑re (inner (↑E a) (↑E a)) [PROOFSTEP] simp only [norm_coe, inner_coe, inner_self_eq_norm_sq] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : Completion E a b : E ⊢ ↑(starRingEnd 𝕜) (inner (↑E b) (↑E a)) = inner (↑E a) (↑E b) [PROOFSTEP] simp only [inner_coe, inner_conj_symm] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y z : Completion E a b c : E ⊢ inner (↑E a + ↑E b) (↑E c) = inner (↑E a) (↑E c) + inner (↑E b) (↑E c) [PROOFSTEP] simp only [← coe_add, inner_coe, inner_add_left] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁴ : IsROrC 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F dec_E : DecidableEq E x y : Completion E c : 𝕜 a b : E ⊢ inner (c • ↑E a) (↑E b) = ↑(starRingEnd 𝕜) c * inner (↑E a) (↑E b) [PROOFSTEP] simp only [← coe_smul c a, inner_coe, inner_smul_left]
{"mathlib_filename": "Mathlib.Analysis.InnerProductSpace.Basic", "llama_tokens": 154274}
{"mathlib_filename": "Mathlib.GroupTheory.Perm.Subgroup", "llama_tokens": 0}
[GOAL] α : Type u_1 inst✝ : DecidableEq α x y : α ⊢ optionCongr (swap x y) = swap (some x) (some y) [PROOFSTEP] ext (_ | i) [GOAL] case H.none.a α : Type u_1 inst✝ : DecidableEq α x y a✝ : α ⊢ a✝ ∈ ↑(optionCongr (swap x y)) none ↔ a✝ ∈ ↑(swap (some x) (some y)) none [PROOFSTEP] simp [swap_apply_of_ne_of_ne] [GOAL] case H.some.a α : Type u_1 inst✝ : DecidableEq α x y i a✝ : α ⊢ a✝ ∈ ↑(optionCongr (swap x y)) (some i) ↔ a✝ ∈ ↑(swap (some x) (some y)) (some i) [PROOFSTEP] by_cases hx : i = x [GOAL] case pos α : Type u_1 inst✝ : DecidableEq α x y i a✝ : α hx : i = x ⊢ a✝ ∈ ↑(optionCongr (swap x y)) (some i) ↔ a✝ ∈ ↑(swap (some x) (some y)) (some i) case neg α : Type u_1 inst✝ : DecidableEq α x y i a✝ : α hx : ¬i = x ⊢ a✝ ∈ ↑(optionCongr (swap x y)) (some i) ↔ a✝ ∈ ↑(swap (some x) (some y)) (some i) [PROOFSTEP] simp [hx, swap_apply_of_ne_of_ne] [GOAL] case neg α : Type u_1 inst✝ : DecidableEq α x y i a✝ : α hx : ¬i = x ⊢ a✝ ∈ ↑(optionCongr (swap x y)) (some i) ↔ a✝ ∈ ↑(swap (some x) (some y)) (some i) [PROOFSTEP] by_cases hy : i = y [GOAL] case pos α : Type u_1 inst✝ : DecidableEq α x y i a✝ : α hx : ¬i = x hy : i = y ⊢ a✝ ∈ ↑(optionCongr (swap x y)) (some i) ↔ a✝ ∈ ↑(swap (some x) (some y)) (some i) [PROOFSTEP] simp [hx, hy, swap_apply_of_ne_of_ne] [GOAL] case neg α : Type u_1 inst✝ : DecidableEq α x y i a✝ : α hx : ¬i = x hy : ¬i = y ⊢ a✝ ∈ ↑(optionCongr (swap x y)) (some i) ↔ a✝ ∈ ↑(swap (some x) (some y)) (some i) [PROOFSTEP] simp [hx, hy, swap_apply_of_ne_of_ne] [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α e : Perm α ⊢ ↑Perm.sign (optionCongr e) = ↑Perm.sign e [PROOFSTEP] refine Perm.swap_induction_on e ?_ ?_ [GOAL] case refine_1 α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α e : Perm α ⊢ ↑Perm.sign (optionCongr 1) = ↑Perm.sign 1 [PROOFSTEP] simp [Perm.one_def] [GOAL] case refine_2 α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α e : Perm α ⊢ ∀ (f : Perm α) (x y : α), x ≠ y → ↑Perm.sign (optionCongr f) = ↑Perm.sign f → ↑Perm.sign (optionCongr (swap x y * f)) = ↑Perm.sign (swap x y * f) [PROOFSTEP] intro f x y hne h [GOAL] case refine_2 α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α e f : Perm α x y : α hne : x ≠ y h : ↑Perm.sign (optionCongr f) = ↑Perm.sign f ⊢ ↑Perm.sign (optionCongr (swap x y * f)) = ↑Perm.sign (swap x y * f) [PROOFSTEP] simp [h, hne, Perm.mul_def, ← Equiv.optionCongr_trans] [GOAL] α : Type u_1 inst✝ : DecidableEq α σ : Perm (Option α) ⊢ optionCongr (removeNone σ) = swap none (↑σ none) * σ [PROOFSTEP] ext1 x [GOAL] case H α : Type u_1 inst✝ : DecidableEq α σ : Perm (Option α) x : Option α ⊢ ↑(optionCongr (removeNone σ)) x = ↑(swap none (↑σ none) * σ) x [PROOFSTEP] have : Option.map (⇑(removeNone σ)) x = (swap none (σ none)) (σ x) := by cases' x with x · simp · cases h : σ (some _) · simp [removeNone_none _ h] · have hn : σ (some x) ≠ none := by simp [h] have hσn : σ (some x) ≠ σ none := σ.injective.ne (by simp) simp [removeNone_some _ ⟨_, h⟩, ← h, swap_apply_of_ne_of_ne hn hσn] [GOAL] α : Type u_1 inst✝ : DecidableEq α σ : Perm (Option α) x : Option α ⊢ Option.map (↑(removeNone σ)) x = ↑(swap none (↑σ none)) (↑σ x) [PROOFSTEP] cases' x with x [GOAL] case none α : Type u_1 inst✝ : DecidableEq α σ : Perm (Option α) ⊢ Option.map (↑(removeNone σ)) none = ↑(swap none (↑σ none)) (↑σ none) [PROOFSTEP] simp [GOAL] case some α : Type u_1 inst✝ : DecidableEq α σ : Perm (Option α) x : α ⊢ Option.map (↑(removeNone σ)) (some x) = ↑(swap none (↑σ none)) (↑σ (some x)) [PROOFSTEP] cases h : σ (some _) [GOAL] case some.none α : Type u_1 inst✝ : DecidableEq α σ : Perm (Option α) x : α h : ↑σ (some x) = none ⊢ Option.map (↑(removeNone σ)) (some x) = ↑(swap none (↑σ none)) none [PROOFSTEP] simp [removeNone_none _ h] [GOAL] case some.some α : Type u_1 inst✝ : DecidableEq α σ : Perm (Option α) x val✝ : α h : ↑σ (some x) = some val✝ ⊢ Option.map (↑(removeNone σ)) (some x) = ↑(swap none (↑σ none)) (some val✝) [PROOFSTEP] have hn : σ (some x) ≠ none := by simp [h] [GOAL] α : Type u_1 inst✝ : DecidableEq α σ : Perm (Option α) x val✝ : α h : ↑σ (some x) = some val✝ ⊢ ↑σ (some x) ≠ none [PROOFSTEP] simp [h] [GOAL] case some.some α : Type u_1 inst✝ : DecidableEq α σ : Perm (Option α) x val✝ : α h : ↑σ (some x) = some val✝ hn : ↑σ (some x) ≠ none ⊢ Option.map (↑(removeNone σ)) (some x) = ↑(swap none (↑σ none)) (some val✝) [PROOFSTEP] have hσn : σ (some x) ≠ σ none := σ.injective.ne (by simp) [GOAL] α : Type u_1 inst✝ : DecidableEq α σ : Perm (Option α) x val✝ : α h : ↑σ (some x) = some val✝ hn : ↑σ (some x) ≠ none ⊢ some x ≠ none [PROOFSTEP] simp [GOAL] case some.some α : Type u_1 inst✝ : DecidableEq α σ : Perm (Option α) x val✝ : α h : ↑σ (some x) = some val✝ hn : ↑σ (some x) ≠ none hσn : ↑σ (some x) ≠ ↑σ none ⊢ Option.map (↑(removeNone σ)) (some x) = ↑(swap none (↑σ none)) (some val✝) [PROOFSTEP] simp [removeNone_some _ ⟨_, h⟩, ← h, swap_apply_of_ne_of_ne hn hσn] [GOAL] case H α : Type u_1 inst✝ : DecidableEq α σ : Perm (Option α) x : Option α this : Option.map (↑(removeNone σ)) x = ↑(swap none (↑σ none)) (↑σ x) ⊢ ↑(optionCongr (removeNone σ)) x = ↑(swap none (↑σ none) * σ) x [PROOFSTEP] simpa using this [GOAL] α : Type u_1 inst✝ : DecidableEq α σ : Perm (Option α) ⊢ (fun i => swap none i.fst * optionCongr i.snd) ((fun σ => (↑σ none, removeNone σ)) σ) = σ [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : DecidableEq α x✝ : Option α × Perm α x : Option α σ : Perm α ⊢ (fun σ => (↑σ none, removeNone σ)) ((fun i => swap none i.fst * optionCongr i.snd) (x, σ)) = (x, σ) [PROOFSTEP] have : removeNone (swap none x * σ.optionCongr) = σ := Equiv.optionCongr_injective (by simp [← mul_assoc]) [GOAL] α : Type u_1 inst✝ : DecidableEq α x✝ : Option α × Perm α x : Option α σ : Perm α ⊢ optionCongr (removeNone (swap none x * optionCongr σ)) = optionCongr σ [PROOFSTEP] simp [← mul_assoc] [GOAL] α : Type u_1 inst✝ : DecidableEq α x✝ : Option α × Perm α x : Option α σ : Perm α this : removeNone (swap none x * optionCongr σ) = σ ⊢ (fun σ => (↑σ none, removeNone σ)) ((fun i => swap none i.fst * optionCongr i.snd) (x, σ)) = (x, σ) [PROOFSTEP] simp [← Perm.eq_inv_iff_eq, this] [GOAL] α : Type u_1 inst✝ : DecidableEq α e : Perm α i : Option α ⊢ ↑(↑decomposeOption.symm (none, e)) i = Option.map (↑e) i [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α e : Perm α ⊢ ↑sign (↑decomposeOption.symm (none, e)) = ↑sign e [PROOFSTEP] simp
{"mathlib_filename": "Mathlib.GroupTheory.Perm.Option", "llama_tokens": 3221}
[GOAL] α : Type u_1 inst✝ : Semigroup α s : Set α a b : α ⊢ a *l (b *l s) = a * b *l s [PROOFSTEP] simp [leftCoset, rightCoset, (image_comp _ _ _).symm, Function.comp, mul_assoc] [GOAL] α : Type u_1 inst✝ : Semigroup α s : Set α a b : α ⊢ s *r a *r b = s *r (a * b) [PROOFSTEP] simp [leftCoset, rightCoset, (image_comp _ _ _).symm, Function.comp, mul_assoc] [GOAL] α : Type u_1 inst✝ : Semigroup α s : Set α a b : α ⊢ a *l s *r b = a *l (s *r b) [PROOFSTEP] simp [leftCoset, rightCoset, (image_comp _ _ _).symm, Function.comp, mul_assoc] [GOAL] α : Type u_1 inst✝ : Monoid α s : Set α ⊢ ∀ (x : α), x ∈ 1 *l s ↔ x ∈ s [PROOFSTEP] simp [leftCoset] [GOAL] α : Type u_1 inst✝ : Monoid α s : Set α ⊢ ∀ (x : α), x ∈ s *r 1 ↔ x ∈ s [PROOFSTEP] simp [rightCoset] [GOAL] α : Type u_1 inst✝ : Monoid α s : Submonoid α a : α this : a * 1 ∈ a *l ↑s ⊢ a ∈ a *l ↑s [PROOFSTEP] simpa [GOAL] α : Type u_1 inst✝ : Monoid α s : Submonoid α a : α this : 1 * a ∈ ↑s *r a ⊢ a ∈ ↑s *r a [PROOFSTEP] simpa [GOAL] α : Type u_1 inst✝ : Monoid α s : Submonoid α a : α ha : a *l ↑s = ↑s ⊢ a ∈ s [PROOFSTEP] rw [← SetLike.mem_coe, ← ha] [GOAL] α : Type u_1 inst✝ : Monoid α s : Submonoid α a : α ha : a *l ↑s = ↑s ⊢ a ∈ a *l ↑s [PROOFSTEP] exact mem_own_leftCoset s a [GOAL] α : Type u_1 inst✝ : Monoid α s : Submonoid α a : α ha : ↑s *r a = ↑s ⊢ a ∈ s [PROOFSTEP] rw [← SetLike.mem_coe, ← ha] [GOAL] α : Type u_1 inst✝ : Monoid α s : Submonoid α a : α ha : ↑s *r a = ↑s ⊢ a ∈ ↑s *r a [PROOFSTEP] exact mem_own_rightCoset s a [GOAL] α : Type u_1 inst✝ : Group α s : Set α x a : α x✝ : x ∈ a *l s b : α hb : b ∈ s Eq : (fun x => a * x) b = x ⊢ a⁻¹ * x ∈ s [PROOFSTEP] simp [Eq.symm, hb] [GOAL] α : Type u_1 inst✝ : Group α s : Set α x a : α h : a⁻¹ * x ∈ s ⊢ (fun x => a * x) (a⁻¹ * x) = x [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : Group α s : Set α x a : α x✝ : x ∈ s *r a b : α hb : b ∈ s Eq : (fun x => x * a) b = x ⊢ x * a⁻¹ ∈ s [PROOFSTEP] simp [Eq.symm, hb] [GOAL] α : Type u_1 inst✝ : Group α s : Set α x a : α h : x * a⁻¹ ∈ s ⊢ (fun x => x * a) (x * a⁻¹) = x [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : Group α s : Subgroup α a : α ha : a ∈ s ⊢ ∀ (x : α), x ∈ a *l ↑s ↔ x ∈ ↑s [PROOFSTEP] simp [mem_leftCoset_iff, mul_mem_cancel_left (s.inv_mem ha)] [GOAL] α : Type u_1 inst✝ : Group α s : Subgroup α a : α ha : a ∈ s b : α ⊢ b ∈ ↑s *r a ↔ b ∈ ↑s [PROOFSTEP] simp [mem_rightCoset_iff, mul_mem_cancel_right (s.inv_mem ha)] [GOAL] α : Type u_1 inst✝ : Group α s : Subgroup α N : Normal s g a : α ⊢ a ∈ g *l ↑s ↔ a ∈ ↑s *r g [PROOFSTEP] simp [mem_leftCoset_iff, mem_rightCoset_iff] [GOAL] α : Type u_1 inst✝ : Group α s : Subgroup α N : Normal s g a : α ⊢ g⁻¹ * a ∈ s ↔ a * g⁻¹ ∈ s [PROOFSTEP] rw [N.mem_comm_iff] [GOAL] α : Type u_1 inst✝ : Group α s : Subgroup α h : ∀ (g : α), g *l ↑s = ↑s *r g a : α ha : a ∈ s g : α ⊢ g * a * g⁻¹ ∈ ↑s [PROOFSTEP] rw [← mem_rightCoset_iff, ← h] [GOAL] α : Type u_1 inst✝ : Group α s : Subgroup α h : ∀ (g : α), g *l ↑s = ↑s *r g a : α ha : a ∈ s g : α ⊢ g * a ∈ g *l ↑s [PROOFSTEP] exact mem_leftCoset g ha [GOAL] α : Type u_1 inst✝ : Group α s : Subgroup α x y : α ⊢ x *l ↑s = y *l ↑s ↔ x⁻¹ * y ∈ s [PROOFSTEP] rw [Set.ext_iff] [GOAL] α : Type u_1 inst✝ : Group α s : Subgroup α x y : α ⊢ (∀ (x_1 : α), x_1 ∈ x *l ↑s ↔ x_1 ∈ y *l ↑s) ↔ x⁻¹ * y ∈ s [PROOFSTEP] simp_rw [mem_leftCoset_iff, SetLike.mem_coe] [GOAL] α : Type u_1 inst✝ : Group α s : Subgroup α x y : α ⊢ (∀ (x_1 : α), x⁻¹ * x_1 ∈ s ↔ y⁻¹ * x_1 ∈ s) ↔ x⁻¹ * y ∈ s [PROOFSTEP] constructor [GOAL] case mp α : Type u_1 inst✝ : Group α s : Subgroup α x y : α ⊢ (∀ (x_1 : α), x⁻¹ * x_1 ∈ s ↔ y⁻¹ * x_1 ∈ s) → x⁻¹ * y ∈ s [PROOFSTEP] intro h [GOAL] case mp α : Type u_1 inst✝ : Group α s : Subgroup α x y : α h : ∀ (x_1 : α), x⁻¹ * x_1 ∈ s ↔ y⁻¹ * x_1 ∈ s ⊢ x⁻¹ * y ∈ s [PROOFSTEP] apply (h y).mpr [GOAL] case mp α : Type u_1 inst✝ : Group α s : Subgroup α x y : α h : ∀ (x_1 : α), x⁻¹ * x_1 ∈ s ↔ y⁻¹ * x_1 ∈ s ⊢ y⁻¹ * y ∈ s [PROOFSTEP] rw [mul_left_inv] [GOAL] case mp α : Type u_1 inst✝ : Group α s : Subgroup α x y : α h : ∀ (x_1 : α), x⁻¹ * x_1 ∈ s ↔ y⁻¹ * x_1 ∈ s ⊢ 1 ∈ s [PROOFSTEP] exact s.one_mem [GOAL] case mpr α : Type u_1 inst✝ : Group α s : Subgroup α x y : α ⊢ x⁻¹ * y ∈ s → ∀ (x_1 : α), x⁻¹ * x_1 ∈ s ↔ y⁻¹ * x_1 ∈ s [PROOFSTEP] intro h z [GOAL] case mpr α : Type u_1 inst✝ : Group α s : Subgroup α x y : α h : x⁻¹ * y ∈ s z : α ⊢ x⁻¹ * z ∈ s ↔ y⁻¹ * z ∈ s [PROOFSTEP] rw [← mul_inv_cancel_right x⁻¹ y] [GOAL] case mpr α : Type u_1 inst✝ : Group α s : Subgroup α x y : α h : x⁻¹ * y ∈ s z : α ⊢ x⁻¹ * y * y⁻¹ * z ∈ s ↔ y⁻¹ * z ∈ s [PROOFSTEP] rw [mul_assoc] [GOAL] case mpr α : Type u_1 inst✝ : Group α s : Subgroup α x y : α h : x⁻¹ * y ∈ s z : α ⊢ x⁻¹ * y * (y⁻¹ * z) ∈ s ↔ y⁻¹ * z ∈ s [PROOFSTEP] exact s.mul_mem_cancel_left h [GOAL] α : Type u_1 inst✝ : Group α s : Subgroup α x y : α ⊢ ↑s *r x = ↑s *r y ↔ y * x⁻¹ ∈ s [PROOFSTEP] rw [Set.ext_iff] [GOAL] α : Type u_1 inst✝ : Group α s : Subgroup α x y : α ⊢ (∀ (x_1 : α), x_1 ∈ ↑s *r x ↔ x_1 ∈ ↑s *r y) ↔ y * x⁻¹ ∈ s [PROOFSTEP] simp_rw [mem_rightCoset_iff, SetLike.mem_coe] [GOAL] α : Type u_1 inst✝ : Group α s : Subgroup α x y : α ⊢ (∀ (x_1 : α), x_1 * x⁻¹ ∈ s ↔ x_1 * y⁻¹ ∈ s) ↔ y * x⁻¹ ∈ s [PROOFSTEP] constructor [GOAL] case mp α : Type u_1 inst✝ : Group α s : Subgroup α x y : α ⊢ (∀ (x_1 : α), x_1 * x⁻¹ ∈ s ↔ x_1 * y⁻¹ ∈ s) → y * x⁻¹ ∈ s [PROOFSTEP] intro h [GOAL] case mp α : Type u_1 inst✝ : Group α s : Subgroup α x y : α h : ∀ (x_1 : α), x_1 * x⁻¹ ∈ s ↔ x_1 * y⁻¹ ∈ s ⊢ y * x⁻¹ ∈ s [PROOFSTEP] apply (h y).mpr [GOAL] case mp α : Type u_1 inst✝ : Group α s : Subgroup α x y : α h : ∀ (x_1 : α), x_1 * x⁻¹ ∈ s ↔ x_1 * y⁻¹ ∈ s ⊢ y * y⁻¹ ∈ s [PROOFSTEP] rw [mul_right_inv] [GOAL] case mp α : Type u_1 inst✝ : Group α s : Subgroup α x y : α h : ∀ (x_1 : α), x_1 * x⁻¹ ∈ s ↔ x_1 * y⁻¹ ∈ s ⊢ 1 ∈ s [PROOFSTEP] exact s.one_mem [GOAL] case mpr α : Type u_1 inst✝ : Group α s : Subgroup α x y : α ⊢ y * x⁻¹ ∈ s → ∀ (x_1 : α), x_1 * x⁻¹ ∈ s ↔ x_1 * y⁻¹ ∈ s [PROOFSTEP] intro h z [GOAL] case mpr α : Type u_1 inst✝ : Group α s : Subgroup α x y : α h : y * x⁻¹ ∈ s z : α ⊢ z * x⁻¹ ∈ s ↔ z * y⁻¹ ∈ s [PROOFSTEP] rw [← inv_mul_cancel_left y x⁻¹] [GOAL] case mpr α : Type u_1 inst✝ : Group α s : Subgroup α x y : α h : y * x⁻¹ ∈ s z : α ⊢ z * (y⁻¹ * (y * x⁻¹)) ∈ s ↔ z * y⁻¹ ∈ s [PROOFSTEP] rw [← mul_assoc] [GOAL] case mpr α : Type u_1 inst✝ : Group α s : Subgroup α x y : α h : y * x⁻¹ ∈ s z : α ⊢ z * y⁻¹ * (y * x⁻¹) ∈ s ↔ z * y⁻¹ ∈ s [PROOFSTEP] exact s.mul_mem_cancel_right h [GOAL] α : Type u_1 inst✝ : Group α s : Subgroup α x y : α ⊢ (∃ a, y * ↑a = x) ↔ ∃ a, x⁻¹ * y = ↑a⁻¹ [PROOFSTEP] simp only [inv_mul_eq_iff_eq_mul, Subgroup.coe_inv, eq_mul_inv_iff_mul_eq] [GOAL] α : Type u_1 inst✝ : Group α s : Subgroup α x y : α ⊢ (∃ a, x⁻¹ * y = ↑a⁻¹) ↔ x⁻¹ * y ∈ s [PROOFSTEP] simp [exists_inv_mem_iff_exists_mem] [GOAL] α : Type u_1 inst✝ : Group α s : Subgroup α ⊢ ∀ (a b : α), Setoid.r a b = (a⁻¹ * b ∈ s) [PROOFSTEP] simp only [eq_iff_iff] [GOAL] α : Type u_1 inst✝ : Group α s : Subgroup α ⊢ ∀ (a b : α), Setoid.r a b ↔ a⁻¹ * b ∈ s [PROOFSTEP] apply leftRel_apply [GOAL] α : Type u_1 inst✝ : Group α s : Subgroup α ⊢ Setoid.r = LeftCosetEquivalence ↑s [PROOFSTEP] ext [GOAL] case h.h.a α : Type u_1 inst✝ : Group α s : Subgroup α x✝¹ x✝ : α ⊢ Setoid.r x✝¹ x✝ ↔ LeftCosetEquivalence (↑s) x✝¹ x✝ [PROOFSTEP] rw [leftRel_eq] [GOAL] case h.h.a α : Type u_1 inst✝ : Group α s : Subgroup α x✝¹ x✝ : α ⊢ (fun x y => x⁻¹ * y ∈ s) x✝¹ x✝ ↔ LeftCosetEquivalence (↑s) x✝¹ x✝ [PROOFSTEP] exact (leftCoset_eq_iff s).symm [GOAL] α : Type u_1 inst✝¹ : Group α s : Subgroup α inst✝ : DecidablePred fun x => x ∈ s x y : α ⊢ Decidable (Setoid.r x y) [PROOFSTEP] rw [leftRel_eq] [GOAL] α : Type u_1 inst✝¹ : Group α s : Subgroup α inst✝ : DecidablePred fun x => x ∈ s x y : α ⊢ Decidable ((fun x y => x⁻¹ * y ∈ s) x y) [PROOFSTEP] exact ‹DecidablePred (· ∈ s)› _ [GOAL] α : Type u_1 inst✝ : Group α s : Subgroup α x y : α ⊢ (∃ a, ↑a * y = x) ↔ ∃ a, y * x⁻¹ = ↑a⁻¹ [PROOFSTEP] simp only [mul_inv_eq_iff_eq_mul, Subgroup.coe_inv, eq_inv_mul_iff_mul_eq] [GOAL] α : Type u_1 inst✝ : Group α s : Subgroup α x y : α ⊢ (∃ a, y * x⁻¹ = ↑a⁻¹) ↔ y * x⁻¹ ∈ s [PROOFSTEP] simp [exists_inv_mem_iff_exists_mem] [GOAL] α : Type u_1 inst✝ : Group α s : Subgroup α ⊢ ∀ (a b : α), Setoid.r a b = (b * a⁻¹ ∈ s) [PROOFSTEP] simp only [eq_iff_iff] [GOAL] α : Type u_1 inst✝ : Group α s : Subgroup α ⊢ ∀ (a b : α), Setoid.r a b ↔ b * a⁻¹ ∈ s [PROOFSTEP] apply rightRel_apply [GOAL] α : Type u_1 inst✝ : Group α s : Subgroup α ⊢ Setoid.r = RightCosetEquivalence ↑s [PROOFSTEP] ext [GOAL] case h.h.a α : Type u_1 inst✝ : Group α s : Subgroup α x✝¹ x✝ : α ⊢ Setoid.r x✝¹ x✝ ↔ RightCosetEquivalence (↑s) x✝¹ x✝ [PROOFSTEP] rw [rightRel_eq] [GOAL] case h.h.a α : Type u_1 inst✝ : Group α s : Subgroup α x✝¹ x✝ : α ⊢ (fun x y => y * x⁻¹ ∈ s) x✝¹ x✝ ↔ RightCosetEquivalence (↑s) x✝¹ x✝ [PROOFSTEP] exact (rightCoset_eq_iff s).symm [GOAL] α : Type u_1 inst✝¹ : Group α s : Subgroup α inst✝ : DecidablePred fun x => x ∈ s x y : α ⊢ Decidable (Setoid.r x y) [PROOFSTEP] rw [rightRel_eq] [GOAL] α : Type u_1 inst✝¹ : Group α s : Subgroup α inst✝ : DecidablePred fun x => x ∈ s x y : α ⊢ Decidable ((fun x y => y * x⁻¹ ∈ s) x y) [PROOFSTEP] exact ‹DecidablePred (· ∈ s)› _ [GOAL] α : Type u_1 inst✝ : Group α s : Subgroup α a b : α ⊢ Setoid.r a b → Setoid.r ((fun g => g⁻¹) a) ((fun g => g⁻¹) b) [PROOFSTEP] rw [leftRel_apply, rightRel_apply] [GOAL] α : Type u_1 inst✝ : Group α s : Subgroup α a b : α ⊢ b * a⁻¹ ∈ s → ((fun g => g⁻¹) a)⁻¹ * (fun g => g⁻¹) b ∈ s [PROOFSTEP] exact fun h => (congr_arg (· ∈ s) (by simp [mul_assoc])).mp (s.inv_mem h) -- porting note: replace with `by group` [GOAL] α : Type u_1 inst✝ : Group α s : Subgroup α a b : α h : b * a⁻¹ ∈ s ⊢ (b * a⁻¹)⁻¹ = ((fun g => g⁻¹) a)⁻¹ * (fun g => g⁻¹) b [PROOFSTEP] simp [mul_assoc] [GOAL] α : Type u_1 inst✝ : Group α s : Subgroup α a b : α ⊢ Setoid.r a b → Setoid.r ((fun g => g⁻¹) a) ((fun g => g⁻¹) b) [PROOFSTEP] rw [leftRel_apply, rightRel_apply] [GOAL] α : Type u_1 inst✝ : Group α s : Subgroup α a b : α ⊢ a⁻¹ * b ∈ s → (fun g => g⁻¹) b * ((fun g => g⁻¹) a)⁻¹ ∈ s [PROOFSTEP] exact fun h => (congr_arg (· ∈ s) (by simp [mul_assoc])).mp (s.inv_mem h) -- porting note: replace with `by group` [GOAL] α : Type u_1 inst✝ : Group α s : Subgroup α a b : α h : a⁻¹ * b ∈ s ⊢ (a⁻¹ * b)⁻¹ = (fun g => g⁻¹) b * ((fun g => g⁻¹) a)⁻¹ [PROOFSTEP] simp [mul_assoc] [GOAL] α : Type u_1 inst✝ : Group α s : Subgroup α g✝ : Quotient (rightRel s) g : α ⊢ Setoid.r ((fun g => g⁻¹) ((fun g => g⁻¹) g)) g [PROOFSTEP] simp only [inv_inv] [GOAL] α : Type u_1 inst✝ : Group α s : Subgroup α g✝ : Quotient (rightRel s) g : α ⊢ Setoid.r g g [PROOFSTEP] exact Quotient.exact' rfl [GOAL] α : Type u_1 inst✝ : Group α s : Subgroup α g✝ : α ⧸ s g : α ⊢ Setoid.r ((fun g => g⁻¹) ((fun g => g⁻¹) g)) g [PROOFSTEP] simp only [inv_inv] [GOAL] α : Type u_1 inst✝ : Group α s : Subgroup α g✝ : α ⧸ s g : α ⊢ Setoid.r g g [PROOFSTEP] exact Quotient.exact' rfl [GOAL] α : Type u_1 inst✝ : Group α s : Subgroup α a b : α ⊢ Setoid.r a b ↔ a⁻¹ * b ∈ s [PROOFSTEP] rw [leftRel_apply] [GOAL] α : Type u_1 inst✝ : Group α s : Subgroup α g : α ⊢ Quotient.out' ↑g = g * ↑{ val := g⁻¹ * Quotient.out' ↑g, property := (_ : g⁻¹ * Quotient.out' ↑g ∈ s) } [PROOFSTEP] rw [mul_inv_cancel_left] [GOAL] α : Type u_1 inst✝ : Group α s : Subgroup α a✝ b a : α hb : b ∈ s ⊢ ↑(a * b) = ↑a [PROOFSTEP] rwa [eq', mul_inv_rev, inv_mul_cancel_right, s.inv_mem_iff] [GOAL] α : Type u_1 inst✝ : Group α s✝ : Subgroup α a b : α s : Subgroup α g z : α ⊢ z ∈ {x | ↑x = ↑g} ↔ z ∈ g *l ↑s [PROOFSTEP] rw [mem_leftCoset_iff, Set.mem_setOf_eq, eq_comm, QuotientGroup.eq, SetLike.mem_coe] [GOAL] α : Type u_1 inst✝ : Group α s✝ : Subgroup α a b : α N : Subgroup α s : Set α ⊢ mk ⁻¹' (mk '' s) = ⋃ (x : { x // x ∈ N }), (fun x_1 => x_1 * ↑x) ⁻¹' s [PROOFSTEP] ext x [GOAL] case h α : Type u_1 inst✝ : Group α s✝ : Subgroup α a b : α N : Subgroup α s : Set α x : α ⊢ x ∈ mk ⁻¹' (mk '' s) ↔ x ∈ ⋃ (x : { x // x ∈ N }), (fun x_1 => x_1 * ↑x) ⁻¹' s [PROOFSTEP] simp only [QuotientGroup.eq, SetLike.exists, exists_prop, Set.mem_preimage, Set.mem_iUnion, Set.mem_image, ← eq_inv_mul_iff_mul_eq] [GOAL] case h α : Type u_1 inst✝ : Group α s✝ : Subgroup α a b : α N : Subgroup α s : Set α x : α ⊢ (∃ x_1, x_1 ∈ s ∧ x_1⁻¹ * x ∈ N) ↔ ∃ x_1, x_1 ∈ N ∧ x * x_1 ∈ s [PROOFSTEP] exact ⟨fun ⟨y, hs, hN⟩ => ⟨_, N.inv_mem hN, by simpa using hs⟩, fun ⟨z, hz, hxz⟩ => ⟨x * z, hxz, by simpa using hz⟩⟩ [GOAL] α : Type u_1 inst✝ : Group α s✝ : Subgroup α a b : α N : Subgroup α s : Set α x : α x✝ : ∃ x_1, x_1 ∈ s ∧ x_1⁻¹ * x ∈ N y : α hs : y ∈ s hN : y⁻¹ * x ∈ N ⊢ x * (y⁻¹ * x)⁻¹ ∈ s [PROOFSTEP] simpa using hs [GOAL] α : Type u_1 inst✝ : Group α s✝ : Subgroup α a b : α N : Subgroup α s : Set α x : α x✝ : ∃ x_1, x_1 ∈ N ∧ x * x_1 ∈ s z : α hz : z ∈ N hxz : x * z ∈ s ⊢ (x * z)⁻¹ * x ∈ N [PROOFSTEP] simpa using hz [GOAL] α : Type u_1 inst✝ : Group α s✝ : Subgroup α a b : α N : Subgroup α s : Set α ⊢ mk ⁻¹' (mk '' s) = ⋃ (x : { x // x ∈ N }), (fun x_1 => x_1 * ↑x) '' s [PROOFSTEP] rw [preimage_image_mk, iUnion_congr_of_surjective (·⁻¹) inv_surjective] [GOAL] α : Type u_1 inst✝ : Group α s✝ : Subgroup α a b : α N : Subgroup α s : Set α ⊢ ∀ (x : { x // x ∈ N }), (fun x_1 => x_1 * ↑x⁻¹) '' s = (fun x_1 => x_1 * ↑x) ⁻¹' s [PROOFSTEP] exact fun x ↦ image_mul_right' [GOAL] α : Type u_1 inst✝ : Group α s : Subgroup α g : α x✝ : ↑(g *l ↑s) x : α hx : x ∈ g *l ↑s ⊢ ↑((fun x => { val := g * ↑x, property := (_ : ∃ a, a ∈ ↑s ∧ (fun x => g * x) a = g * ↑x) }) ((fun x => { val := g⁻¹ * ↑x, property := (_ : g⁻¹ * ↑x ∈ ↑s) }) { val := x, property := hx })) = ↑{ val := x, property := hx } [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : Group α s : Subgroup α g✝ : α x✝ : { x // x ∈ s } g : α hg : g ∈ s ⊢ ↑((fun x => { val := g✝⁻¹ * ↑x, property := (_ : g✝⁻¹ * ↑x ∈ ↑s) }) ((fun x => { val := g✝ * ↑x, property := (_ : ∃ a, a ∈ ↑s ∧ (fun x => g✝ * x) a = g✝ * ↑x) }) { val := g, property := hg })) = ↑{ val := g, property := hg } [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : Group α s : Subgroup α g : α x✝ : ↑(↑s *r g) x : α hx : x ∈ ↑s *r g ⊢ ↑((fun x => { val := ↑x * g, property := (_ : ∃ a, a ∈ ↑s ∧ (fun x => x * g) a = ↑x * g) }) ((fun x => { val := ↑x * g⁻¹, property := (_ : ↑x * g⁻¹ ∈ ↑s) }) { val := x, property := hx })) = ↑{ val := x, property := hx } [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : Group α s : Subgroup α g✝ : α x✝ : { x // x ∈ s } g : α hg : g ∈ s ⊢ ↑((fun x => { val := ↑x * g✝⁻¹, property := (_ : ↑x * g✝⁻¹ ∈ ↑s) }) ((fun x => { val := ↑x * g✝, property := (_ : ∃ a, a ∈ ↑s ∧ (fun x => x * g✝) a = ↑x * g✝) }) { val := g, property := hg })) = ↑{ val := g, property := hg } [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : Group α s : Subgroup α L : α ⧸ s ⊢ { x // ↑x = L } ≃ ↑(Quotient.out' L *l ↑s) [PROOFSTEP] rw [← eq_class_eq_leftCoset] [GOAL] α : Type u_1 inst✝ : Group α s : Subgroup α L : α ⧸ s ⊢ { x // ↑x = L } ≃ ↑{x | ↑x = ↑(Quotient.out' L)} [PROOFSTEP] show (_root_.Subtype fun x : α => Quotient.mk'' x = L) ≃ _root_.Subtype fun x : α => Quotient.mk'' x = Quotient.mk'' _ [GOAL] α : Type u_1 inst✝ : Group α s : Subgroup α L : α ⧸ s ⊢ { x // Quotient.mk'' x = L } ≃ { x // Quotient.mk'' x = Quotient.mk'' (Quotient.out' L) } [PROOFSTEP] simp [-Quotient.eq''] [GOAL] α : Type u_1 inst✝ : Group α s : Subgroup α L : α ⧸ s ⊢ { x // Quotient.mk'' x = L } ≃ { x // Quotient.mk'' x = L } [PROOFSTEP] rfl [GOAL] α : Type u_1 inst✝ : Group α s t : Subgroup α h_le : s ≤ t f : α ⧸ t → α hf : Function.RightInverse f QuotientGroup.mk a : α ⧸ s b c : α h : Setoid.r b c ⊢ Setoid.r ((fun g => { val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g ∈ t) }) b) ((fun g => { val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g ∈ t) }) c) [PROOFSTEP] rw [leftRel_apply] [GOAL] α : Type u_1 inst✝ : Group α s t : Subgroup α h_le : s ≤ t f : α ⧸ t → α hf : Function.RightInverse f QuotientGroup.mk a : α ⧸ s b c : α h : Setoid.r b c ⊢ ((fun g => { val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g ∈ t) }) b)⁻¹ * (fun g => { val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g ∈ t) }) c ∈ subgroupOf s t [PROOFSTEP] change ((f b)⁻¹ * b)⁻¹ * ((f c)⁻¹ * c) ∈ s [GOAL] α : Type u_1 inst✝ : Group α s t : Subgroup α h_le : s ≤ t f : α ⧸ t → α hf : Function.RightInverse f QuotientGroup.mk a : α ⧸ s b c : α h : Setoid.r b c ⊢ ((f ↑b)⁻¹ * b)⁻¹ * ((f ↑c)⁻¹ * c) ∈ s [PROOFSTEP] have key : f b = f c := congr_arg f (Quotient.sound' (leftRel_apply.mpr (h_le (leftRel_apply.mp h)))) [GOAL] α : Type u_1 inst✝ : Group α s t : Subgroup α h_le : s ≤ t f : α ⧸ t → α hf : Function.RightInverse f QuotientGroup.mk a : α ⧸ s b c : α h : Setoid.r b c key : f ↑b = f ↑c ⊢ ((f ↑b)⁻¹ * b)⁻¹ * ((f ↑c)⁻¹ * c) ∈ s [PROOFSTEP] rwa [key, mul_inv_rev, inv_inv, mul_assoc, mul_inv_cancel_left, ← leftRel_apply] [GOAL] α : Type u_1 inst✝ : Group α s t : Subgroup α h_le : s ≤ t f : α ⧸ t → α hf : Function.RightInverse f QuotientGroup.mk a : (α ⧸ t) × { x // x ∈ t } ⧸ subgroupOf s t ⊢ α ⧸ s [PROOFSTEP] refine a.2.map' (fun (b : { x // x ∈ t }) => f a.1 * b) fun b c h => by rw [leftRel_apply] at h ⊢ change (f a.1 * b)⁻¹ * (f a.1 * c) ∈ s rwa [mul_inv_rev, mul_assoc, inv_mul_cancel_left] [GOAL] α : Type u_1 inst✝ : Group α s t : Subgroup α h_le : s ≤ t f : α ⧸ t → α hf : Function.RightInverse f QuotientGroup.mk a : (α ⧸ t) × { x // x ∈ t } ⧸ subgroupOf s t b c : { x // x ∈ t } h : Setoid.r b c ⊢ Setoid.r ((fun b => f a.fst * ↑b) b) ((fun b => f a.fst * ↑b) c) [PROOFSTEP] rw [leftRel_apply] at h ⊢ [GOAL] α : Type u_1 inst✝ : Group α s t : Subgroup α h_le : s ≤ t f : α ⧸ t → α hf : Function.RightInverse f QuotientGroup.mk a : (α ⧸ t) × { x // x ∈ t } ⧸ subgroupOf s t b c : { x // x ∈ t } h : b⁻¹ * c ∈ subgroupOf s t ⊢ ((fun b => f a.fst * ↑b) b)⁻¹ * (fun b => f a.fst * ↑b) c ∈ s [PROOFSTEP] change (f a.1 * b)⁻¹ * (f a.1 * c) ∈ s [GOAL] α : Type u_1 inst✝ : Group α s t : Subgroup α h_le : s ≤ t f : α ⧸ t → α hf : Function.RightInverse f QuotientGroup.mk a : (α ⧸ t) × { x // x ∈ t } ⧸ subgroupOf s t b c : { x // x ∈ t } h : b⁻¹ * c ∈ subgroupOf s t ⊢ (f a.fst * ↑b)⁻¹ * (f a.fst * ↑c) ∈ s [PROOFSTEP] rwa [mul_inv_rev, mul_assoc, inv_mul_cancel_left] [GOAL] α : Type u_1 inst✝ : Group α s t : Subgroup α h_le : s ≤ t f : α ⧸ t → α hf : Function.RightInverse f QuotientGroup.mk ⊢ LeftInverse (fun a => Quotient.map' (fun b => f a.fst * ↑b) (_ : ∀ (b c : { x // x ∈ t }), Setoid.r b c → Setoid.r ((fun b => f a.fst * ↑b) b) ((fun b => f a.fst * ↑b) c)) a.snd) fun a => (Quotient.map' id (_ : ∀ (b c : α), Setoid.r b c → Setoid.r (id b) (id c)) a, Quotient.map' (fun g => { val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g ∈ t) }) (_ : ∀ (b c : α), Setoid.r b c → Setoid.r ((fun g => { val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g ∈ t) }) b) ((fun g => { val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g ∈ t) }) c)) a) [PROOFSTEP] refine' Quotient.ind' fun a => _ [GOAL] α : Type u_1 inst✝ : Group α s t : Subgroup α h_le : s ≤ t f : α ⧸ t → α hf : Function.RightInverse f QuotientGroup.mk a : α ⊢ (fun a => Quotient.map' (fun b => f a.fst * ↑b) (_ : ∀ (b c : { x // x ∈ t }), Setoid.r b c → Setoid.r ((fun b => f a.fst * ↑b) b) ((fun b => f a.fst * ↑b) c)) a.snd) ((fun a => (Quotient.map' id (_ : ∀ (b c : α), Setoid.r b c → Setoid.r (id b) (id c)) a, Quotient.map' (fun g => { val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g ∈ t) }) (_ : ∀ (b c : α), Setoid.r b c → Setoid.r ((fun g => { val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g ∈ t) }) b) ((fun g => { val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g ∈ t) }) c)) a)) (Quotient.mk'' a)) = Quotient.mk'' a [PROOFSTEP] simp_rw [Quotient.map'_mk'', id.def, mul_inv_cancel_left] [GOAL] α : Type u_1 inst✝ : Group α s t : Subgroup α h_le : s ≤ t f : α ⧸ t → α hf : Function.RightInverse f QuotientGroup.mk ⊢ Function.RightInverse (fun a => Quotient.map' (fun b => f a.fst * ↑b) (_ : ∀ (b c : { x // x ∈ t }), Setoid.r b c → Setoid.r ((fun b => f a.fst * ↑b) b) ((fun b => f a.fst * ↑b) c)) a.snd) fun a => (Quotient.map' id (_ : ∀ (b c : α), Setoid.r b c → Setoid.r (id b) (id c)) a, Quotient.map' (fun g => { val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g ∈ t) }) (_ : ∀ (b c : α), Setoid.r b c → Setoid.r ((fun g => { val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g ∈ t) }) b) ((fun g => { val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g ∈ t) }) c)) a) [PROOFSTEP] refine' Prod.rec _ [GOAL] α : Type u_1 inst✝ : Group α s t : Subgroup α h_le : s ≤ t f : α ⧸ t → α hf : Function.RightInverse f QuotientGroup.mk ⊢ ∀ (fst : α ⧸ t) (snd : { x // x ∈ t } ⧸ subgroupOf s t), (fun a => (Quotient.map' id (_ : ∀ (b c : α), Setoid.r b c → Setoid.r (id b) (id c)) a, Quotient.map' (fun g => { val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g ∈ t) }) (_ : ∀ (b c : α), Setoid.r b c → Setoid.r ((fun g => { val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g ∈ t) }) b) ((fun g => { val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g ∈ t) }) c)) a)) ((fun a => Quotient.map' (fun b => f a.fst * ↑b) (_ : ∀ (b c : { x // x ∈ t }), Setoid.r b c → Setoid.r ((fun b => f a.fst * ↑b) b) ((fun b => f a.fst * ↑b) c)) a.snd) (fst, snd)) = (fst, snd) [PROOFSTEP] refine' Quotient.ind' fun a => _ [GOAL] α : Type u_1 inst✝ : Group α s t : Subgroup α h_le : s ≤ t f : α ⧸ t → α hf : Function.RightInverse f QuotientGroup.mk a : α ⊢ ∀ (snd : { x // x ∈ t } ⧸ subgroupOf s t), (fun a => (Quotient.map' id (_ : ∀ (b c : α), Setoid.r b c → Setoid.r (id b) (id c)) a, Quotient.map' (fun g => { val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g ∈ t) }) (_ : ∀ (b c : α), Setoid.r b c → Setoid.r ((fun g => { val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g ∈ t) }) b) ((fun g => { val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g ∈ t) }) c)) a)) ((fun a => Quotient.map' (fun b => f a.fst * ↑b) (_ : ∀ (b c : { x // x ∈ t }), Setoid.r b c → Setoid.r ((fun b => f a.fst * ↑b) b) ((fun b => f a.fst * ↑b) c)) a.snd) (Quotient.mk'' a, snd)) = (Quotient.mk'' a, snd) [PROOFSTEP] refine' Quotient.ind' fun b => _ [GOAL] α : Type u_1 inst✝ : Group α s t : Subgroup α h_le : s ≤ t f : α ⧸ t → α hf : Function.RightInverse f QuotientGroup.mk a : α b : { x // x ∈ t } ⊢ (fun a => (Quotient.map' id (_ : ∀ (b c : α), Setoid.r b c → Setoid.r (id b) (id c)) a, Quotient.map' (fun g => { val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g ∈ t) }) (_ : ∀ (b c : α), Setoid.r b c → Setoid.r ((fun g => { val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g ∈ t) }) b) ((fun g => { val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g ∈ t) }) c)) a)) ((fun a => Quotient.map' (fun b => f a.fst * ↑b) (_ : ∀ (b c : { x // x ∈ t }), Setoid.r b c → Setoid.r ((fun b => f a.fst * ↑b) b) ((fun b => f a.fst * ↑b) c)) a.snd) (Quotient.mk'' a, Quotient.mk'' b)) = (Quotient.mk'' a, Quotient.mk'' b) [PROOFSTEP] have key : Quotient.mk'' (f (Quotient.mk'' a) * b) = Quotient.mk'' a := (QuotientGroup.mk_mul_of_mem (f a) b.2).trans (hf a) [GOAL] α : Type u_1 inst✝ : Group α s t : Subgroup α h_le : s ≤ t f : α ⧸ t → α hf : Function.RightInverse f QuotientGroup.mk a : α b : { x // x ∈ t } key : Quotient.mk'' (f (Quotient.mk'' a) * ↑b) = Quotient.mk'' a ⊢ (fun a => (Quotient.map' id (_ : ∀ (b c : α), Setoid.r b c → Setoid.r (id b) (id c)) a, Quotient.map' (fun g => { val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g ∈ t) }) (_ : ∀ (b c : α), Setoid.r b c → Setoid.r ((fun g => { val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g ∈ t) }) b) ((fun g => { val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g ∈ t) }) c)) a)) ((fun a => Quotient.map' (fun b => f a.fst * ↑b) (_ : ∀ (b c : { x // x ∈ t }), Setoid.r b c → Setoid.r ((fun b => f a.fst * ↑b) b) ((fun b => f a.fst * ↑b) c)) a.snd) (Quotient.mk'' a, Quotient.mk'' b)) = (Quotient.mk'' a, Quotient.mk'' b) [PROOFSTEP] simp_rw [Quotient.map'_mk'', id.def, key, inv_mul_cancel_left] [GOAL] α : Type u_1 inst✝ : Group α s t H : Subgroup α h : s ≤ t a b : { x // x ∈ s } ⊢ Setoid.r a b → Setoid.r (↑(inclusion h) a) (↑(inclusion h) b) [PROOFSTEP] simp_rw [leftRel_eq] [GOAL] α : Type u_1 inst✝ : Group α s t H : Subgroup α h : s ≤ t a b : { x // x ∈ s } ⊢ a⁻¹ * b ∈ subgroupOf H s → (↑(inclusion h) a)⁻¹ * ↑(inclusion h) b ∈ subgroupOf H t [PROOFSTEP] exact id [GOAL] α : Type u_1 inst✝ : Group α s t H : Subgroup α h : s ≤ t ⊢ ∀ (a₁ a₂ : { x // x ∈ s }), Quotient.map' ↑(inclusion h) (_ : ∀ (a b : { x // x ∈ s }), Setoid.r a b → Setoid.r (↑(inclusion h) a) (↑(inclusion h) b)) (Quotient.mk'' a₁) = Quotient.map' ↑(inclusion h) (_ : ∀ (a b : { x // x ∈ s }), Setoid.r a b → Setoid.r (↑(inclusion h) a) (↑(inclusion h) b)) (Quotient.mk'' a₂) → Quotient.mk'' a₁ = Quotient.mk'' a₂ [PROOFSTEP] intro a b h [GOAL] α : Type u_1 inst✝ : Group α s t H : Subgroup α h✝ : s ≤ t a b : { x // x ∈ s } h : Quotient.map' ↑(inclusion h✝) (_ : ∀ (a b : { x // x ∈ s }), Setoid.r a b → Setoid.r (↑(inclusion h✝) a) (↑(inclusion h✝) b)) (Quotient.mk'' a) = Quotient.map' ↑(inclusion h✝) (_ : ∀ (a b : { x // x ∈ s }), Setoid.r a b → Setoid.r (↑(inclusion h✝) a) (↑(inclusion h✝) b)) (Quotient.mk'' b) ⊢ Quotient.mk'' a = Quotient.mk'' b [PROOFSTEP] simpa only [Quotient.map'_mk'', eq'] using h [GOAL] α : Type u_1 inst✝ : Group α s t H : Subgroup α h : s ≤ t a b : { x // x ∈ H } ⊢ Setoid.r a b → Setoid.r (id a) (id b) [PROOFSTEP] simp_rw [leftRel_eq] [GOAL] α : Type u_1 inst✝ : Group α s t H : Subgroup α h : s ≤ t a b : { x // x ∈ H } ⊢ a⁻¹ * b ∈ subgroupOf s H → (id a)⁻¹ * id b ∈ subgroupOf t H [PROOFSTEP] apply h [GOAL] α : Type u_1 inst✝ : Group α s t : Subgroup α h : s ≤ t a b : α ⊢ Setoid.r a b → Setoid.r (id a) (id b) [PROOFSTEP] simp_rw [leftRel_eq] [GOAL] α : Type u_1 inst✝ : Group α s t : Subgroup α h : s ≤ t a b : α ⊢ a⁻¹ * b ∈ s → (id a)⁻¹ * id b ∈ t [PROOFSTEP] apply h [GOAL] α : Type u_1 inst✝ : Group α s t : Subgroup α ι : Type u_2 f : ι → Subgroup α H : Subgroup α ⊢ ∀ (a₁ a₂ : { x // x ∈ H }), (fun q i => quotientSubgroupOfMapOfLE H (_ : iInf f ≤ f i) q) (Quotient.mk'' a₁) = (fun q i => quotientSubgroupOfMapOfLE H (_ : iInf f ≤ f i) q) (Quotient.mk'' a₂) → Quotient.mk'' a₁ = Quotient.mk'' a₂ [PROOFSTEP] simp_rw [funext_iff, quotientSubgroupOfMapOfLE_apply_mk, eq', mem_subgroupOf, mem_iInf, imp_self, forall_const] [GOAL] α : Type u_1 inst✝ : Group α s t : Subgroup α ι : Type u_2 f : ι → Subgroup α ⊢ ∀ (a₁ a₂ : α), (fun q i => quotientMapOfLE (_ : iInf f ≤ f i) q) (Quotient.mk'' a₁) = (fun q i => quotientMapOfLE (_ : iInf f ≤ f i) q) (Quotient.mk'' a₂) → Quotient.mk'' a₁ = Quotient.mk'' a₂ [PROOFSTEP] simp_rw [funext_iff, quotientMapOfLE_apply_mk, eq', mem_iInf, imp_self, forall_const] [GOAL] α : Type u_1 inst✝³ : Group α s✝ t : Subgroup α inst✝² : Fintype α s : Subgroup α inst✝¹ : Fintype { x // x ∈ s } inst✝ : DecidablePred fun a => a ∈ s ⊢ Fintype.card α = Fintype.card (α ⧸ s) * Fintype.card { x // x ∈ s } [PROOFSTEP] rw [← Fintype.card_prod] [GOAL] α : Type u_1 inst✝³ : Group α s✝ t : Subgroup α inst✝² : Fintype α s : Subgroup α inst✝¹ : Fintype { x // x ∈ s } inst✝ : DecidablePred fun a => a ∈ s ⊢ Fintype.card α = Fintype.card ((α ⧸ s) × { x // x ∈ s }) [PROOFSTEP] exact Fintype.card_congr Subgroup.groupEquivQuotientProdSubgroup [GOAL] α : Type u_1 inst✝² : Group α s✝ t : Subgroup α inst✝¹ : Fintype α s : Subgroup α inst✝ : Fintype { x // x ∈ s } ⊢ Fintype.card { x // x ∈ s } ∣ Fintype.card α [PROOFSTEP] classical simp [card_eq_card_quotient_mul_card_subgroup s, @dvd_mul_left ℕ] [GOAL] α : Type u_1 inst✝² : Group α s✝ t : Subgroup α inst✝¹ : Fintype α s : Subgroup α inst✝ : Fintype { x // x ∈ s } ⊢ Fintype.card { x // x ∈ s } ∣ Fintype.card α [PROOFSTEP] simp [card_eq_card_quotient_mul_card_subgroup s, @dvd_mul_left ℕ] [GOAL] α : Type u_1 inst✝² : Group α s✝ t : Subgroup α inst✝¹ : Fintype α s : Subgroup α inst✝ : DecidablePred fun x => x ∈ s ⊢ Fintype.card (α ⧸ s) ∣ Fintype.card α [PROOFSTEP] simp [card_eq_card_quotient_mul_card_subgroup s, @dvd_mul_right ℕ] [GOAL] α : Type u_1 inst✝³ : Group α s t : Subgroup α H : Type u_2 inst✝² : Group H inst✝¹ : Fintype α inst✝ : Fintype H f : α →* H hf : Injective ↑f ⊢ card α ∣ card H [PROOFSTEP] classical calc card α = card (f.range : Subgroup H) := card_congr (Equiv.ofInjective f hf) _ ∣ card H := card_subgroup_dvd_card _ [GOAL] α : Type u_1 inst✝³ : Group α s t : Subgroup α H : Type u_2 inst✝² : Group H inst✝¹ : Fintype α inst✝ : Fintype H f : α →* H hf : Injective ↑f ⊢ card α ∣ card H [PROOFSTEP] calc card α = card (f.range : Subgroup H) := card_congr (Equiv.ofInjective f hf) _ ∣ card H := card_subgroup_dvd_card _ [GOAL] α : Type u_1 inst✝³ : Group α s t : Subgroup α H : Type u_2 inst✝² : Group H K : Subgroup H inst✝¹ : Fintype { x // x ∈ K } f : α →* H inst✝ : Fintype { x // x ∈ comap f K } hf : Injective ↑f ⊢ card { x // x ∈ comap f K } ∣ card { x // x ∈ K } [PROOFSTEP] haveI : Fintype ((K.comap f).map f) := Fintype.ofEquiv _ (equivMapOfInjective _ _ hf).toEquiv [GOAL] α : Type u_1 inst✝³ : Group α s t : Subgroup α H : Type u_2 inst✝² : Group H K : Subgroup H inst✝¹ : Fintype { x // x ∈ K } f : α →* H inst✝ : Fintype { x // x ∈ comap f K } hf : Injective ↑f this : Fintype { x // x ∈ map f (comap f K) } ⊢ card { x // x ∈ comap f K } ∣ card { x // x ∈ K } [PROOFSTEP] calc Fintype.card (K.comap f) = Fintype.card ((K.comap f).map f) := Fintype.card_congr (equivMapOfInjective _ _ hf).toEquiv _ ∣ Fintype.card K := card_dvd_of_le (map_comap_le _ _) [GOAL] α : Type u_1 inst✝ : Group α s : Subgroup α t : Set (α ⧸ s) a : { x // x ∈ s } × ↑t ⊢ ↑(Quotient.out' ↑a.snd * ↑a.fst) ∈ t [PROOFSTEP] rw [mk_mul_of_mem _ a.1.2, out_eq'] [GOAL] α : Type u_1 inst✝ : Group α s : Subgroup α t : Set (α ⧸ s) a : { x // x ∈ s } × ↑t ⊢ ↑a.snd ∈ t [PROOFSTEP] exact a.2.2 [GOAL] α : Type u_1 inst✝ : Group α s : Subgroup α t : Set (α ⧸ s) x✝ : ↑(mk ⁻¹' t) a : α ha : a ∈ mk ⁻¹' t ⊢ Quotient.out' ↑((fun a => ({ val := (Quotient.out' ↑↑a)⁻¹ * ↑a, property := (_ : (Quotient.out' ↑↑a)⁻¹ * ↑a ∈ s) }, { val := ↑↑a, property := (_ : ↑a ∈ mk ⁻¹' t) })) { val := a, property := ha }).snd * ↑((fun a => ({ val := (Quotient.out' ↑↑a)⁻¹ * ↑a, property := (_ : (Quotient.out' ↑↑a)⁻¹ * ↑a ∈ s) }, { val := ↑↑a, property := (_ : ↑a ∈ mk ⁻¹' t) })) { val := a, property := ha }).fst = a [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : Group α s : Subgroup α t : Set (α ⧸ s) x✝ : { x // x ∈ s } × ↑t a : α ha : a ∈ s x : α ⧸ s hx : x ∈ t ⊢ (fun a => ({ val := (Quotient.out' ↑↑a)⁻¹ * ↑a, property := (_ : (Quotient.out' ↑↑a)⁻¹ * ↑a ∈ s) }, { val := ↑↑a, property := (_ : ↑a ∈ mk ⁻¹' t) })) ((fun a => { val := Quotient.out' ↑a.snd * ↑a.fst, property := (_ : ↑(Quotient.out' ↑a.snd * ↑a.fst) ∈ t) }) ({ val := a, property := ha }, { val := x, property := hx })) = ({ val := a, property := ha }, { val := x, property := hx }) [PROOFSTEP] ext [GOAL] case h₁.a α : Type u_1 inst✝ : Group α s : Subgroup α t : Set (α ⧸ s) x✝ : { x // x ∈ s } × ↑t a : α ha : a ∈ s x : α ⧸ s hx : x ∈ t ⊢ ↑((fun a => ({ val := (Quotient.out' ↑↑a)⁻¹ * ↑a, property := (_ : (Quotient.out' ↑↑a)⁻¹ * ↑a ∈ s) }, { val := ↑↑a, property := (_ : ↑a ∈ mk ⁻¹' t) })) ((fun a => { val := Quotient.out' ↑a.snd * ↑a.fst, property := (_ : ↑(Quotient.out' ↑a.snd * ↑a.fst) ∈ t) }) ({ val := a, property := ha }, { val := x, property := hx }))).fst = ↑({ val := a, property := ha }, { val := x, property := hx }).fst [PROOFSTEP] simp [ha] [GOAL] case h₂.a α : Type u_1 inst✝ : Group α s : Subgroup α t : Set (α ⧸ s) x✝ : { x // x ∈ s } × ↑t a : α ha : a ∈ s x : α ⧸ s hx : x ∈ t ⊢ ↑((fun a => ({ val := (Quotient.out' ↑↑a)⁻¹ * ↑a, property := (_ : (Quotient.out' ↑↑a)⁻¹ * ↑a ∈ s) }, { val := ↑↑a, property := (_ : ↑a ∈ mk ⁻¹' t) })) ((fun a => { val := Quotient.out' ↑a.snd * ↑a.fst, property := (_ : ↑(Quotient.out' ↑a.snd * ↑a.fst) ∈ t) }) ({ val := a, property := ha }, { val := x, property := hx }))).snd = ↑({ val := a, property := ha }, { val := x, property := hx }).snd [PROOFSTEP] simp [ha]
{"mathlib_filename": "Mathlib.GroupTheory.Coset", "llama_tokens": 17642}
[GOAL] G : Type u inst✝¹ : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝ : Group H a b c d : G hab : Setoid.r a b hcd : Setoid.r c d ⊢ Setoid.r (a * c) (b * d) [PROOFSTEP] rw [leftRel_eq] at hab hcd ⊢ [GOAL] G : Type u inst✝¹ : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝ : Group H a b c d : G hab : a⁻¹ * b ∈ N hcd : c⁻¹ * d ∈ N ⊢ (fun x y => x⁻¹ * y ∈ N) (a * c) (b * d) [PROOFSTEP] dsimp only [GOAL] G : Type u inst✝¹ : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝ : Group H a b c d : G hab : a⁻¹ * b ∈ N hcd : c⁻¹ * d ∈ N ⊢ (a * c)⁻¹ * (b * d) ∈ N [PROOFSTEP] calc (a * c)⁻¹ * (b * d) = c⁻¹ * (a⁻¹ * b) * c⁻¹⁻¹ * (c⁻¹ * d) := by simp only [mul_inv_rev, mul_assoc, inv_mul_cancel_left] _ ∈ N := N.mul_mem (nN.conj_mem _ hab _) hcd [GOAL] G : Type u inst✝¹ : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝ : Group H a b c d : G hab : a⁻¹ * b ∈ N hcd : c⁻¹ * d ∈ N ⊢ (a * c)⁻¹ * (b * d) = c⁻¹ * (a⁻¹ * b) * c⁻¹⁻¹ * (c⁻¹ * d) [PROOFSTEP] simp only [mul_inv_rev, mul_assoc, inv_mul_cancel_left] [GOAL] G : Type u inst✝¹ : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝ : Group H x y : G ⊢ x⁻¹ * y ∈ N ↔ ∃ z, z ∈ N ∧ x * z = y [PROOFSTEP] simp only [← _root_.eq_inv_mul_iff_mul_eq, exists_prop, exists_eq_right] [GOAL] G : Type u inst✝¹ : Group G N✝ : Subgroup G nN✝ : Subgroup.Normal N✝ H : Type v inst✝ : Group H N : Subgroup G nN : Subgroup.Normal N x : G ⊢ ↑x = 1 ↔ x ∈ N [PROOFSTEP] refine' QuotientGroup.eq.trans _ [GOAL] G : Type u inst✝¹ : Group G N✝ : Subgroup G nN✝ : Subgroup.Normal N✝ H : Type v inst✝ : Group H N : Subgroup G nN : Subgroup.Normal N x : G ⊢ x⁻¹ * 1 ∈ N ↔ x ∈ N [PROOFSTEP] rw [mul_one, Subgroup.inv_mem_iff] [GOAL] G : Type u inst✝³ : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝² : Group H I : Type w inst✝¹ : Group I f : G →* H inst✝ : Subgroup.Normal (MonoidHom.range f) g : H →* I h : MonoidHom.comp (mk' (MonoidHom.range f)) (Subgroup.subtype (MonoidHom.ker g)) = 1 x : H hx : x ∈ MonoidHom.ker g ⊢ ↑x = 1 [PROOFSTEP] exact FunLike.congr_fun h ⟨x, hx⟩ [GOAL] G : Type u inst✝¹ : Group G N✝ : Subgroup G nN✝ : Subgroup.Normal N✝ H : Type v inst✝ : Group H N : Subgroup G nN : Subgroup.Normal N x y : G ⊢ ↑x = ↑y ↔ x / y ∈ N [PROOFSTEP] refine' eq_comm.trans (QuotientGroup.eq.trans _) [GOAL] G : Type u inst✝¹ : Group G N✝ : Subgroup G nN✝ : Subgroup.Normal N✝ H : Type v inst✝ : Group H N : Subgroup G nN : Subgroup.Normal N x y : G ⊢ y⁻¹ * x ∈ N ↔ x / y ∈ N [PROOFSTEP] rw [nN.mem_comm_iff, div_eq_mul_inv] [GOAL] G : Type u inst✝¹ : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝ : Group H φ : G →* H HN : ∀ (x : G), x ∈ N → ↑φ x = 1 x y : G h : ↑(QuotientGroup.con N) x y ⊢ ↑(Con.ker φ) x y [PROOFSTEP] simp only [QuotientGroup.con, leftRel_apply, Con.rel_mk] at h [GOAL] G : Type u inst✝¹ : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝ : Group H φ : G →* H HN : ∀ (x : G), x ∈ N → ↑φ x = 1 x y : G h : x⁻¹ * y ∈ N ⊢ ↑(Con.ker φ) x y [PROOFSTEP] rw [Con.ker_rel] [GOAL] G : Type u inst✝¹ : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝ : Group H φ : G →* H HN : ∀ (x : G), x ∈ N → ↑φ x = 1 x y : G h : x⁻¹ * y ∈ N ⊢ ↑φ x = ↑φ y [PROOFSTEP] calc φ x = φ (y * (x⁻¹ * y)⁻¹) := by rw [mul_inv_rev, inv_inv, mul_inv_cancel_left] _ = φ y := by rw [φ.map_mul, HN _ (N.inv_mem h), mul_one] [GOAL] G : Type u inst✝¹ : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝ : Group H φ : G →* H HN : ∀ (x : G), x ∈ N → ↑φ x = 1 x y : G h : x⁻¹ * y ∈ N ⊢ ↑φ x = ↑φ (y * (x⁻¹ * y)⁻¹) [PROOFSTEP] rw [mul_inv_rev, inv_inv, mul_inv_cancel_left] [GOAL] G : Type u inst✝¹ : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝ : Group H φ : G →* H HN : ∀ (x : G), x ∈ N → ↑φ x = 1 x y : G h : x⁻¹ * y ∈ N ⊢ ↑φ (y * (x⁻¹ * y)⁻¹) = ↑φ y [PROOFSTEP] rw [φ.map_mul, HN _ (N.inv_mem h), mul_one] [GOAL] G : Type u inst✝² : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝¹ : Group H M : Subgroup H inst✝ : Subgroup.Normal M f : G →* H h : N ≤ Subgroup.comap f M ⊢ G ⧸ N →* H ⧸ M [PROOFSTEP] refine' QuotientGroup.lift N ((mk' M).comp f) _ [GOAL] G : Type u inst✝² : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝¹ : Group H M : Subgroup H inst✝ : Subgroup.Normal M f : G →* H h : N ≤ Subgroup.comap f M ⊢ ∀ (x : G), x ∈ N → ↑(MonoidHom.comp (mk' M) f) x = 1 [PROOFSTEP] intro x hx [GOAL] G : Type u inst✝² : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝¹ : Group H M : Subgroup H inst✝ : Subgroup.Normal M f : G →* H h : N ≤ Subgroup.comap f M x : G hx : x ∈ N ⊢ ↑(MonoidHom.comp (mk' M) f) x = 1 [PROOFSTEP] refine' QuotientGroup.eq.2 _ [GOAL] G : Type u inst✝² : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝¹ : Group H M : Subgroup H inst✝ : Subgroup.Normal M f : G →* H h : N ≤ Subgroup.comap f M x : G hx : x ∈ N ⊢ (↑f x)⁻¹ * 1 ∈ M [PROOFSTEP] rw [mul_one, Subgroup.inv_mem_iff] [GOAL] G : Type u inst✝² : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝¹ : Group H M : Subgroup H inst✝ : Subgroup.Normal M f : G →* H h : N ≤ Subgroup.comap f M x : G hx : x ∈ N ⊢ ↑f x ∈ M [PROOFSTEP] exact h hx [GOAL] G : Type u inst✝⁴ : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝³ : Group H I : Type u_1 inst✝² : Group I M : Subgroup H O : Subgroup I inst✝¹ : Subgroup.Normal M inst✝ : Subgroup.Normal O f : G →* H g : H →* I hf : N ≤ Subgroup.comap f M hg : M ≤ Subgroup.comap g O hgf : optParam (N ≤ Subgroup.comap (MonoidHom.comp g f) O) (_ : N ≤ Subgroup.comap (MonoidHom.comp g f) O) x : G ⧸ N ⊢ ↑(map M O g hg) (↑(map N M f hf) x) = ↑(map N O (MonoidHom.comp g f) hgf) x [PROOFSTEP] refine' induction_on' x fun x => _ [GOAL] G : Type u inst✝⁴ : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝³ : Group H I : Type u_1 inst✝² : Group I M : Subgroup H O : Subgroup I inst✝¹ : Subgroup.Normal M inst✝ : Subgroup.Normal O f : G →* H g : H →* I hf : N ≤ Subgroup.comap f M hg : M ≤ Subgroup.comap g O hgf : optParam (N ≤ Subgroup.comap (MonoidHom.comp g f) O) (_ : N ≤ Subgroup.comap (MonoidHom.comp g f) O) x✝ : G ⧸ N x : G ⊢ ↑(map M O g hg) (↑(map N M f hf) ↑x) = ↑(map N O (MonoidHom.comp g f) hgf) ↑x [PROOFSTEP] simp only [map_mk, MonoidHom.comp_apply] [GOAL] G : Type u inst✝³ : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝² : Group H G' : Subgroup G H' : Subgroup H inst✝¹ : Subgroup.Normal G' inst✝ : Subgroup.Normal H' e : G ≃* H he : Subgroup.map (↑e) G' = H' src✝ : G ⧸ G' →* H ⧸ H' := map G' H' ↑e (_ : G' ≤ Subgroup.comap (↑e) H') x : G ⧸ G' ⊢ ↑(map H' G' ↑(MulEquiv.symm e) (_ : H' ≤ Subgroup.comap (↑(MulEquiv.symm e)) G')) (↑(map G' H' ↑e (_ : G' ≤ Subgroup.comap (↑e) H')) x) = x [PROOFSTEP] rw [map_map G' H' G' e e.symm (he ▸ G'.le_comap_map (e : G →* H)) (he ▸ (G'.map_equiv_eq_comap_symm e).le)] [GOAL] G : Type u inst✝³ : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝² : Group H G' : Subgroup G H' : Subgroup H inst✝¹ : Subgroup.Normal G' inst✝ : Subgroup.Normal H' e : G ≃* H he : Subgroup.map (↑e) G' = H' src✝ : G ⧸ G' →* H ⧸ H' := map G' H' ↑e (_ : G' ≤ Subgroup.comap (↑e) H') x : G ⧸ G' ⊢ ↑(map G' G' (MonoidHom.comp ↑(MulEquiv.symm e) ↑e) (_ : G' ≤ Subgroup.comap (MonoidHom.comp ↑(MulEquiv.symm e) ↑e) G')) x = x [PROOFSTEP] simp only [map_map, ← MulEquiv.coe_monoidHom_trans, MulEquiv.self_trans_symm, MulEquiv.coe_monoidHom_refl, map_id_apply] [GOAL] G : Type u inst✝³ : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝² : Group H G' : Subgroup G H' : Subgroup H inst✝¹ : Subgroup.Normal G' inst✝ : Subgroup.Normal H' e : G ≃* H he : Subgroup.map (↑e) G' = H' src✝ : G ⧸ G' →* H ⧸ H' := map G' H' ↑e (_ : G' ≤ Subgroup.comap (↑e) H') x : H ⧸ H' ⊢ ↑(map G' H' ↑e (_ : G' ≤ Subgroup.comap (↑e) H')) (↑(map H' G' ↑(MulEquiv.symm e) (_ : H' ≤ Subgroup.comap (↑(MulEquiv.symm e)) G')) x) = x [PROOFSTEP] rw [map_map H' G' H' e.symm e (he ▸ (G'.map_equiv_eq_comap_symm e).le) (he ▸ G'.le_comap_map (e : G →* H))] [GOAL] G : Type u inst✝³ : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝² : Group H G' : Subgroup G H' : Subgroup H inst✝¹ : Subgroup.Normal G' inst✝ : Subgroup.Normal H' e : G ≃* H he : Subgroup.map (↑e) G' = H' src✝ : G ⧸ G' →* H ⧸ H' := map G' H' ↑e (_ : G' ≤ Subgroup.comap (↑e) H') x : H ⧸ H' ⊢ ↑(map H' H' (MonoidHom.comp ↑e ↑(MulEquiv.symm e)) (_ : H' ≤ Subgroup.comap (MonoidHom.comp ↑e ↑(MulEquiv.symm e)) H')) x = x [PROOFSTEP] simp only [← MulEquiv.coe_monoidHom_trans, MulEquiv.symm_trans_self, MulEquiv.coe_monoidHom_refl, map_id_apply] [GOAL] G : Type u inst✝³ : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝² : Group H G' : Subgroup G H' : Subgroup H inst✝¹ : Subgroup.Normal G' inst✝ : Subgroup.Normal H' he : optParam (Subgroup.map (↑(MulEquiv.refl G)) G' = G') (_ : Subgroup.map (MonoidHom.id G) G' = G') ⊢ congr G' G' (MulEquiv.refl G) he = MulEquiv.refl (G ⧸ G') [PROOFSTEP] ext ⟨x⟩ [GOAL] case h.mk G : Type u inst✝³ : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝² : Group H G' : Subgroup G H' : Subgroup H inst✝¹ : Subgroup.Normal G' inst✝ : Subgroup.Normal H' he : optParam (Subgroup.map (↑(MulEquiv.refl G)) G' = G') (_ : Subgroup.map (MonoidHom.id G) G' = G') x✝ : G ⧸ G' x : G ⊢ ↑(congr G' G' (MulEquiv.refl G) he) (Quot.mk Setoid.r x) = ↑(MulEquiv.refl (G ⧸ G')) (Quot.mk Setoid.r x) [PROOFSTEP] rfl [GOAL] G : Type u inst✝¹ : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝ : Group H φ : G →* H a✝ b✝ : G ⧸ ker φ a b : G h : ↑φ a = ↑φ b ⊢ Setoid.r a b [PROOFSTEP] rw [leftRel_apply, mem_ker, φ.map_mul, ← h, φ.map_inv, inv_mul_self] [GOAL] G : Type u inst✝¹ : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝ : Group H φ : G →* H g : G hg : g ∈ ker φ ⊢ g ∈ ker (rangeRestrict φ) [PROOFSTEP] rwa [ker_rangeRestrict] [GOAL] G : Type u inst✝¹ : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝ : Group H φ : G →* H a✝ b✝ : G ⧸ ker φ a b : G h : ↑(rangeRestrict φ) a = ↑(rangeRestrict φ) b ⊢ Setoid.r a b [PROOFSTEP] rw [leftRel_apply, ← ker_rangeRestrict, mem_ker, φ.rangeRestrict.map_mul, ← h, φ.rangeRestrict.map_inv, inv_mul_self] [GOAL] G : Type u inst✝¹ : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝ : Group H φ : G →* H ⊢ Surjective ↑(rangeKerLift φ) [PROOFSTEP] rintro ⟨_, g, rfl⟩ [GOAL] case mk.intro G : Type u inst✝¹ : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝ : Group H φ : G →* H g : G ⊢ ∃ a, ↑(rangeKerLift φ) a = { val := ↑φ g, property := (_ : ∃ y, ↑φ y = ↑φ g) } [PROOFSTEP] use mk g [GOAL] case h G : Type u inst✝¹ : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝ : Group H φ : G →* H g : G ⊢ ↑(rangeKerLift φ) ↑g = { val := ↑φ g, property := (_ : ∃ y, ↑φ y = ↑φ g) } [PROOFSTEP] rfl [GOAL] G : Type u inst✝¹ : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝ : Group H φ : G →* H ψ : H → G hφ : Function.RightInverse ψ ↑φ src✝ : G ⧸ ker φ →* H := kerLift φ x : G ⧸ ker φ ⊢ ↑(kerLift φ) ((mk ∘ ψ) (↑(kerLift φ) x)) = ↑(kerLift φ) x [PROOFSTEP] rw [Function.comp_apply, kerLift_mk', hφ] [GOAL] G : Type u inst✝¹ : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝ : Group H φ : G →* H A' A B' B : Subgroup G hAN : Subgroup.Normal (Subgroup.subgroupOf A' A) hBN : Subgroup.Normal (Subgroup.subgroupOf B' B) h' : A' = B' h : A = B ⊢ MonoidHom.comp (quotientMapSubgroupOfOfLe (_ : B' ≤ A') (_ : B ≤ A)) (quotientMapSubgroupOfOfLe (_ : A' ≤ B') (_ : A ≤ B)) = MonoidHom.id ({ x // x ∈ A } ⧸ Subgroup.subgroupOf A' A) [PROOFSTEP] ext ⟨x, hx⟩ [GOAL] case h.h.mk G : Type u inst✝¹ : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝ : Group H φ : G →* H A' A B' B : Subgroup G hAN : Subgroup.Normal (Subgroup.subgroupOf A' A) hBN : Subgroup.Normal (Subgroup.subgroupOf B' B) h' : A' = B' h : A = B x : G hx : x ∈ A ⊢ ↑(MonoidHom.comp (MonoidHom.comp (quotientMapSubgroupOfOfLe (_ : B' ≤ A') (_ : B ≤ A)) (quotientMapSubgroupOfOfLe (_ : A' ≤ B') (_ : A ≤ B))) (mk' (Subgroup.subgroupOf A' A))) { val := x, property := hx } = ↑(MonoidHom.comp (MonoidHom.id ({ x // x ∈ A } ⧸ Subgroup.subgroupOf A' A)) (mk' (Subgroup.subgroupOf A' A))) { val := x, property := hx } [PROOFSTEP] rfl [GOAL] G : Type u inst✝¹ : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝ : Group H φ : G →* H A' A B' B : Subgroup G hAN : Subgroup.Normal (Subgroup.subgroupOf A' A) hBN : Subgroup.Normal (Subgroup.subgroupOf B' B) h' : A' = B' h : A = B ⊢ MonoidHom.comp (quotientMapSubgroupOfOfLe (_ : A' ≤ B') (_ : A ≤ B)) (quotientMapSubgroupOfOfLe (_ : B' ≤ A') (_ : B ≤ A)) = MonoidHom.id ({ x // x ∈ B } ⧸ Subgroup.subgroupOf B' B) [PROOFSTEP] ext ⟨x, hx⟩ [GOAL] case h.h.mk G : Type u inst✝¹ : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝ : Group H φ : G →* H A' A B' B : Subgroup G hAN : Subgroup.Normal (Subgroup.subgroupOf A' A) hBN : Subgroup.Normal (Subgroup.subgroupOf B' B) h' : A' = B' h : A = B x : G hx : x ∈ B ⊢ ↑(MonoidHom.comp (MonoidHom.comp (quotientMapSubgroupOfOfLe (_ : A' ≤ B') (_ : A ≤ B)) (quotientMapSubgroupOfOfLe (_ : B' ≤ A') (_ : B ≤ A))) (mk' (Subgroup.subgroupOf B' B))) { val := x, property := hx } = ↑(MonoidHom.comp (MonoidHom.id ({ x // x ∈ B } ⧸ Subgroup.subgroupOf B' B)) (mk' (Subgroup.subgroupOf B' B))) { val := x, property := hx } [PROOFSTEP] rfl [GOAL] G : Type u inst✝⁴ : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝³ : Group H φ : G →* H A B C : Type u inst✝² : CommGroup A inst✝¹ : CommGroup B inst✝ : CommGroup C f : A →* B g✝ : B →* A e : A ≃* B d : B ≃* C n : ℤ g : A x✝ : g ∈ range (zpowGroupHom n) h : A hg : h ^ n = g ⊢ ↑(zpowGroupHom n) (↑f h) = ↑f g [PROOFSTEP] simp only [← hg, map_zpow, zpowGroupHom_apply] [GOAL] G : Type u inst✝⁴ : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝³ : Group H φ : G →* H A B C : Type u inst✝² : CommGroup A inst✝¹ : CommGroup B inst✝ : CommGroup C f : A →* B g : B →* A e : A ≃* B d : B ≃* C n : ℤ ⊢ MulEquiv.refl (A ⧸ range (zpowGroupHom n)) = equivQuotientZPowOfEquiv (MulEquiv.refl A) n [PROOFSTEP] ext x [GOAL] case h G : Type u inst✝⁴ : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝³ : Group H φ : G →* H A B C : Type u inst✝² : CommGroup A inst✝¹ : CommGroup B inst✝ : CommGroup C f : A →* B g : B →* A e : A ≃* B d : B ≃* C n : ℤ x : A ⧸ range (zpowGroupHom n) ⊢ ↑(MulEquiv.refl (A ⧸ range (zpowGroupHom n))) x = ↑(equivQuotientZPowOfEquiv (MulEquiv.refl A) n) x [PROOFSTEP] rw [← Quotient.out_eq' x] [GOAL] case h G : Type u inst✝⁴ : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝³ : Group H φ : G →* H A B C : Type u inst✝² : CommGroup A inst✝¹ : CommGroup B inst✝ : CommGroup C f : A →* B g : B →* A e : A ≃* B d : B ≃* C n : ℤ x : A ⧸ range (zpowGroupHom n) ⊢ ↑(MulEquiv.refl (A ⧸ range (zpowGroupHom n))) (Quotient.mk'' (Quotient.out' x)) = ↑(equivQuotientZPowOfEquiv (MulEquiv.refl A) n) (Quotient.mk'' (Quotient.out' x)) [PROOFSTEP] rfl [GOAL] G : Type u inst✝⁴ : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝³ : Group H φ : G →* H A B C : Type u inst✝² : CommGroup A inst✝¹ : CommGroup B inst✝ : CommGroup C f : A →* B g : B →* A e : A ≃* B d : B ≃* C n : ℤ ⊢ MulEquiv.trans (equivQuotientZPowOfEquiv e n) (equivQuotientZPowOfEquiv d n) = equivQuotientZPowOfEquiv (MulEquiv.trans e d) n [PROOFSTEP] ext x [GOAL] case h G : Type u inst✝⁴ : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝³ : Group H φ : G →* H A B C : Type u inst✝² : CommGroup A inst✝¹ : CommGroup B inst✝ : CommGroup C f : A →* B g : B →* A e : A ≃* B d : B ≃* C n : ℤ x : A ⧸ range (zpowGroupHom n) ⊢ ↑(MulEquiv.trans (equivQuotientZPowOfEquiv e n) (equivQuotientZPowOfEquiv d n)) x = ↑(equivQuotientZPowOfEquiv (MulEquiv.trans e d) n) x [PROOFSTEP] rw [← Quotient.out_eq' x] [GOAL] case h G : Type u inst✝⁴ : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝³ : Group H φ : G →* H A B C : Type u inst✝² : CommGroup A inst✝¹ : CommGroup B inst✝ : CommGroup C f : A →* B g : B →* A e : A ≃* B d : B ≃* C n : ℤ x : A ⧸ range (zpowGroupHom n) ⊢ ↑(MulEquiv.trans (equivQuotientZPowOfEquiv e n) (equivQuotientZPowOfEquiv d n)) (Quotient.mk'' (Quotient.out' x)) = ↑(equivQuotientZPowOfEquiv (MulEquiv.trans e d) n) (Quotient.mk'' (Quotient.out' x)) [PROOFSTEP] rfl [GOAL] G : Type u inst✝² : Group G N✝ : Subgroup G nN : Normal N✝ H✝ : Type v inst✝¹ : Group H✝ φ✝ : G →* H✝ H N : Subgroup G inst✝ : Normal N φ : { x // x ∈ H } →* { x // x ∈ H ⊔ N } ⧸ subgroupOf N (H ⊔ N) := MonoidHom.comp (mk' (subgroupOf N (H ⊔ N))) (inclusion (_ : H ≤ H ⊔ N)) x : { x // x ∈ H ⊔ N } ⧸ subgroupOf N (H ⊔ N) ⊢ ∀ (a : { x // x ∈ H ⊔ N }), ∃ a_1, ↑φ a_1 = Quotient.mk'' a [PROOFSTEP] rintro ⟨y, hy : y ∈ (H ⊔ N)⟩ [GOAL] case mk G : Type u inst✝² : Group G N✝ : Subgroup G nN : Normal N✝ H✝ : Type v inst✝¹ : Group H✝ φ✝ : G →* H✝ H N : Subgroup G inst✝ : Normal N φ : { x // x ∈ H } →* { x // x ∈ H ⊔ N } ⧸ subgroupOf N (H ⊔ N) := MonoidHom.comp (mk' (subgroupOf N (H ⊔ N))) (inclusion (_ : H ≤ H ⊔ N)) x : { x // x ∈ H ⊔ N } ⧸ subgroupOf N (H ⊔ N) y : G hy : y ∈ H ⊔ N ⊢ ∃ a, ↑φ a = Quotient.mk'' { val := y, property := hy } [PROOFSTEP] rw [← SetLike.mem_coe] at hy [GOAL] case mk G : Type u inst✝² : Group G N✝ : Subgroup G nN : Normal N✝ H✝ : Type v inst✝¹ : Group H✝ φ✝ : G →* H✝ H N : Subgroup G inst✝ : Normal N φ : { x // x ∈ H } →* { x // x ∈ H ⊔ N } ⧸ subgroupOf N (H ⊔ N) := MonoidHom.comp (mk' (subgroupOf N (H ⊔ N))) (inclusion (_ : H ≤ H ⊔ N)) x : { x // x ∈ H ⊔ N } ⧸ subgroupOf N (H ⊔ N) y : G hy✝ : y ∈ H ⊔ N hy : y ∈ ↑(H ⊔ N) ⊢ ∃ a, ↑φ a = Quotient.mk'' { val := y, property := hy✝ } [PROOFSTEP] rw [mul_normal H N] at hy [GOAL] case mk G : Type u inst✝² : Group G N✝ : Subgroup G nN : Normal N✝ H✝ : Type v inst✝¹ : Group H✝ φ✝ : G →* H✝ H N : Subgroup G inst✝ : Normal N φ : { x // x ∈ H } →* { x // x ∈ H ⊔ N } ⧸ subgroupOf N (H ⊔ N) := MonoidHom.comp (mk' (subgroupOf N (H ⊔ N))) (inclusion (_ : H ≤ H ⊔ N)) x : { x // x ∈ H ⊔ N } ⧸ subgroupOf N (H ⊔ N) y : G hy✝ : y ∈ H ⊔ N hy : y ∈ ↑H * ↑N ⊢ ∃ a, ↑φ a = Quotient.mk'' { val := y, property := hy✝ } [PROOFSTEP] rcases hy with ⟨h, n, hh, hn, rfl⟩ [GOAL] case mk.intro.intro.intro.intro G : Type u inst✝² : Group G N✝ : Subgroup G nN : Normal N✝ H✝ : Type v inst✝¹ : Group H✝ φ✝ : G →* H✝ H N : Subgroup G inst✝ : Normal N φ : { x // x ∈ H } →* { x // x ∈ H ⊔ N } ⧸ subgroupOf N (H ⊔ N) := MonoidHom.comp (mk' (subgroupOf N (H ⊔ N))) (inclusion (_ : H ≤ H ⊔ N)) x : { x // x ∈ H ⊔ N } ⧸ subgroupOf N (H ⊔ N) h n : G hh : h ∈ ↑H hn : n ∈ ↑N hy : (fun x x_1 => x * x_1) h n ∈ H ⊔ N ⊢ ∃ a, ↑φ a = Quotient.mk'' { val := (fun x x_1 => x * x_1) h n, property := hy } [PROOFSTEP] use⟨h, hh⟩ [GOAL] case h G : Type u inst✝² : Group G N✝ : Subgroup G nN : Normal N✝ H✝ : Type v inst✝¹ : Group H✝ φ✝ : G →* H✝ H N : Subgroup G inst✝ : Normal N φ : { x // x ∈ H } →* { x // x ∈ H ⊔ N } ⧸ subgroupOf N (H ⊔ N) := MonoidHom.comp (mk' (subgroupOf N (H ⊔ N))) (inclusion (_ : H ≤ H ⊔ N)) x : { x // x ∈ H ⊔ N } ⧸ subgroupOf N (H ⊔ N) h n : G hh : h ∈ ↑H hn : n ∈ ↑N hy : (fun x x_1 => x * x_1) h n ∈ H ⊔ N ⊢ ↑φ { val := h, property := hh } = Quotient.mk'' { val := (fun x x_1 => x * x_1) h n, property := hy } [PROOFSTEP] let _ : Setoid ↑(H ⊔ N) := (@leftRel ↑(H ⊔ N) (H ⊔ N : Subgroup G).toGroup (N.subgroupOf (H ⊔ N))) -- porting note: Lean couldn't find this automatically [GOAL] case h G : Type u inst✝² : Group G N✝ : Subgroup G nN : Normal N✝ H✝ : Type v inst✝¹ : Group H✝ φ✝ : G →* H✝ H N : Subgroup G inst✝ : Normal N φ : { x // x ∈ H } →* { x // x ∈ H ⊔ N } ⧸ subgroupOf N (H ⊔ N) := MonoidHom.comp (mk' (subgroupOf N (H ⊔ N))) (inclusion (_ : H ≤ H ⊔ N)) x : { x // x ∈ H ⊔ N } ⧸ subgroupOf N (H ⊔ N) h n : G hh : h ∈ ↑H hn : n ∈ ↑N hy : (fun x x_1 => x * x_1) h n ∈ H ⊔ N x✝ : Setoid { x // x ∈ H ⊔ N } := leftRel (subgroupOf N (H ⊔ N)) ⊢ ↑φ { val := h, property := hh } = Quotient.mk'' { val := (fun x x_1 => x * x_1) h n, property := hy } [PROOFSTEP] refine Quotient.eq.mpr ?_ [GOAL] case h G : Type u inst✝² : Group G N✝ : Subgroup G nN : Normal N✝ H✝ : Type v inst✝¹ : Group H✝ φ✝ : G →* H✝ H N : Subgroup G inst✝ : Normal N φ : { x // x ∈ H } →* { x // x ∈ H ⊔ N } ⧸ subgroupOf N (H ⊔ N) := MonoidHom.comp (mk' (subgroupOf N (H ⊔ N))) (inclusion (_ : H ≤ H ⊔ N)) x : { x // x ∈ H ⊔ N } ⧸ subgroupOf N (H ⊔ N) h n : G hh : h ∈ ↑H hn : n ∈ ↑N hy : (fun x x_1 => x * x_1) h n ∈ H ⊔ N x✝ : Setoid { x // x ∈ H ⊔ N } := leftRel (subgroupOf N (H ⊔ N)) ⊢ ↑(inclusion (_ : H ≤ H ⊔ N)) { val := h, property := hh } ≈ { val := (fun x x_1 => x * x_1) h n, property := hy } [PROOFSTEP] change Setoid.r _ _ [GOAL] case h G : Type u inst✝² : Group G N✝ : Subgroup G nN : Normal N✝ H✝ : Type v inst✝¹ : Group H✝ φ✝ : G →* H✝ H N : Subgroup G inst✝ : Normal N φ : { x // x ∈ H } →* { x // x ∈ H ⊔ N } ⧸ subgroupOf N (H ⊔ N) := MonoidHom.comp (mk' (subgroupOf N (H ⊔ N))) (inclusion (_ : H ≤ H ⊔ N)) x : { x // x ∈ H ⊔ N } ⧸ subgroupOf N (H ⊔ N) h n : G hh : h ∈ ↑H hn : n ∈ ↑N hy : (fun x x_1 => x * x_1) h n ∈ H ⊔ N x✝ : Setoid { x // x ∈ H ⊔ N } := leftRel (subgroupOf N (H ⊔ N)) ⊢ Setoid.r (↑(inclusion (_ : H ≤ H ⊔ N)) { val := h, property := hh }) { val := (fun x x_1 => x * x_1) h n, property := hy } [PROOFSTEP] rw [leftRel_apply] [GOAL] case h G : Type u inst✝² : Group G N✝ : Subgroup G nN : Normal N✝ H✝ : Type v inst✝¹ : Group H✝ φ✝ : G →* H✝ H N : Subgroup G inst✝ : Normal N φ : { x // x ∈ H } →* { x // x ∈ H ⊔ N } ⧸ subgroupOf N (H ⊔ N) := MonoidHom.comp (mk' (subgroupOf N (H ⊔ N))) (inclusion (_ : H ≤ H ⊔ N)) x : { x // x ∈ H ⊔ N } ⧸ subgroupOf N (H ⊔ N) h n : G hh : h ∈ ↑H hn : n ∈ ↑N hy : (fun x x_1 => x * x_1) h n ∈ H ⊔ N x✝ : Setoid { x // x ∈ H ⊔ N } := leftRel (subgroupOf N (H ⊔ N)) ⊢ (↑(inclusion (_ : H ≤ H ⊔ N)) { val := h, property := hh })⁻¹ * { val := (fun x x_1 => x * x_1) h n, property := hy } ∈ subgroupOf N (H ⊔ N) [PROOFSTEP] change h⁻¹ * (h * n) ∈ N [GOAL] case h G : Type u inst✝² : Group G N✝ : Subgroup G nN : Normal N✝ H✝ : Type v inst✝¹ : Group H✝ φ✝ : G →* H✝ H N : Subgroup G inst✝ : Normal N φ : { x // x ∈ H } →* { x // x ∈ H ⊔ N } ⧸ subgroupOf N (H ⊔ N) := MonoidHom.comp (mk' (subgroupOf N (H ⊔ N))) (inclusion (_ : H ≤ H ⊔ N)) x : { x // x ∈ H ⊔ N } ⧸ subgroupOf N (H ⊔ N) h n : G hh : h ∈ ↑H hn : n ∈ ↑N hy : (fun x x_1 => x * x_1) h n ∈ H ⊔ N x✝ : Setoid { x // x ∈ H ⊔ N } := leftRel (subgroupOf N (H ⊔ N)) ⊢ h⁻¹ * (h * n) ∈ N [PROOFSTEP] rwa [← mul_assoc, inv_mul_self, one_mul] [GOAL] G : Type u inst✝² : Group G N✝ : Subgroup G nN : Normal N✝ H✝ : Type v inst✝¹ : Group H✝ φ✝ : G →* H✝ H N : Subgroup G inst✝ : Normal N φ : { x // x ∈ H } →* { x // x ∈ H ⊔ N } ⧸ subgroupOf N (H ⊔ N) := MonoidHom.comp (mk' (subgroupOf N (H ⊔ N))) (inclusion (_ : H ≤ H ⊔ N)) φ_surjective : Surjective ↑φ ⊢ subgroupOf N H = ker φ [PROOFSTEP] simp [← comap_ker] [GOAL] G : Type u inst✝¹ : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝ : Group H φ : G →* H M : Subgroup G nM : Subgroup.Normal M h : N ≤ M ⊢ ∀ (x : G ⧸ N), x ∈ Subgroup.map (mk' N) M → ↑(map N M (MonoidHom.id G) h) x = 1 [PROOFSTEP] rintro _ ⟨x, hx, rfl⟩ [GOAL] case intro.intro G : Type u inst✝¹ : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝ : Group H φ : G →* H M : Subgroup G nM : Subgroup.Normal M h : N ≤ M x : G hx : x ∈ ↑M ⊢ ↑(map N M (MonoidHom.id G) h) (↑(mk' N) x) = 1 [PROOFSTEP] rw [map_mk' N M _ _ x] [GOAL] case intro.intro G : Type u inst✝¹ : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝ : Group H φ : G →* H M : Subgroup G nM : Subgroup.Normal M h : N ≤ M x : G hx : x ∈ ↑M ⊢ ↑(↑(MonoidHom.id G) x) = 1 [PROOFSTEP] exact (QuotientGroup.eq_one_iff _).mpr hx [GOAL] G : Type u inst✝¹ : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝ : Group H φ : G →* H M : Subgroup G nM : Subgroup.Normal M h : N ≤ M ⊢ MonoidHom.comp (map M (Subgroup.map (mk' N) M) (mk' N) (_ : M ≤ Subgroup.comap (mk' N) (Subgroup.map (mk' N) M))) (quotientQuotientEquivQuotientAux N M h) = MonoidHom.id ((G ⧸ N) ⧸ Subgroup.map (mk' N) M) [PROOFSTEP] ext [GOAL] case h.h.h G : Type u inst✝¹ : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝ : Group H φ : G →* H M : Subgroup G nM : Subgroup.Normal M h : N ≤ M x✝ : G ⊢ ↑(MonoidHom.comp (MonoidHom.comp (MonoidHom.comp (map M (Subgroup.map (mk' N) M) (mk' N) (_ : M ≤ Subgroup.comap (mk' N) (Subgroup.map (mk' N) M))) (quotientQuotientEquivQuotientAux N M h)) (mk' (Subgroup.map (mk' N) M))) (mk' N)) x✝ = ↑(MonoidHom.comp (MonoidHom.comp (MonoidHom.id ((G ⧸ N) ⧸ Subgroup.map (mk' N) M)) (mk' (Subgroup.map (mk' N) M))) (mk' N)) x✝ [PROOFSTEP] simp [GOAL] G : Type u inst✝¹ : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝ : Group H φ : G →* H M : Subgroup G nM : Subgroup.Normal M h : N ≤ M ⊢ MonoidHom.comp (quotientQuotientEquivQuotientAux N M h) (map M (Subgroup.map (mk' N) M) (mk' N) (_ : M ≤ Subgroup.comap (mk' N) (Subgroup.map (mk' N) M))) = MonoidHom.id (G ⧸ M) [PROOFSTEP] ext [GOAL] case h.h G : Type u inst✝¹ : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝ : Group H φ : G →* H M : Subgroup G nM : Subgroup.Normal M h : N ≤ M x✝ : G ⊢ ↑(MonoidHom.comp (MonoidHom.comp (quotientQuotientEquivQuotientAux N M h) (map M (Subgroup.map (mk' N) M) (mk' N) (_ : M ≤ Subgroup.comap (mk' N) (Subgroup.map (mk' N) M)))) (mk' M)) x✝ = ↑(MonoidHom.comp (MonoidHom.id (G ⧸ M)) (mk' M)) x✝ [PROOFSTEP] simp [GOAL] G : Type u inst✝¹ : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝ : Group H φ : G →* H ⊢ Subsingleton (G ⧸ ⊤) [PROOFSTEP] dsimp [HasQuotient.Quotient, QuotientGroup.instHasQuotientSubgroup, Quotient] [GOAL] G : Type u inst✝¹ : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝ : Group H φ : G →* H ⊢ Subsingleton (Quot Setoid.r) [PROOFSTEP] rw [leftRel_eq] [GOAL] G : Type u inst✝¹ : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝ : Group H φ : G →* H ⊢ Subsingleton (Quot fun x y => x⁻¹ * y ∈ ⊤) [PROOFSTEP] exact Trunc.instSubsingletonTrunc [GOAL] G : Type u inst✝¹ : Group G N : Subgroup G nN : Subgroup.Normal N H✝ : Type v inst✝ : Group H✝ φ : G →* H✝ H : Subgroup G h : Subsingleton (G ⧸ H) x : G x✝ : x ∈ ⊤ ⊢ x ∈ H [PROOFSTEP] have this : 1⁻¹ * x ∈ H := QuotientGroup.eq.1 (Subsingleton.elim _ _) [GOAL] G : Type u inst✝¹ : Group G N : Subgroup G nN : Subgroup.Normal N H✝ : Type v inst✝ : Group H✝ φ : G →* H✝ H : Subgroup G h : Subsingleton (G ⧸ H) x : G x✝ : x ∈ ⊤ this : 1⁻¹ * x ∈ H ⊢ x ∈ H [PROOFSTEP] rwa [inv_one, one_mul] at this [GOAL] G : Type u inst✝³ : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝² : Group H φ : G →* H H₁ : Subgroup G inst✝¹ : Subgroup.Normal H₁ H₂ : Subgroup (G ⧸ H₁) inst✝ : Subgroup.Normal H₂ ⊢ Subgroup.comap (mk' H₁) (Subgroup.comap (mk' H₂) (Subgroup.center ((G ⧸ H₁) ⧸ H₂))) = Subgroup.comap (mk' (Subgroup.comap (mk' H₁) H₂)) (Subgroup.center (G ⧸ Subgroup.comap (mk' H₁) H₂)) [PROOFSTEP] ext x [GOAL] case h G : Type u inst✝³ : Group G N : Subgroup G nN : Subgroup.Normal N H : Type v inst✝² : Group H φ : G →* H H₁ : Subgroup G inst✝¹ : Subgroup.Normal H₁ H₂ : Subgroup (G ⧸ H₁) inst✝ : Subgroup.Normal H₂ x : G ⊢ x ∈ Subgroup.comap (mk' H₁) (Subgroup.comap (mk' H₂) (Subgroup.center ((G ⧸ H₁) ⧸ H₂))) ↔ x ∈ Subgroup.comap (mk' (Subgroup.comap (mk' H₁) H₂)) (Subgroup.center (G ⧸ Subgroup.comap (mk' H₁) H₂)) [PROOFSTEP] simp only [mk'_apply, Subgroup.mem_comap, Subgroup.mem_center_iff, forall_mk, ← mk_mul, eq_iff_div_mem, mk_div]
{"mathlib_filename": "Mathlib.GroupTheory.QuotientGroup", "llama_tokens": 14555}
{"mathlib_filename": "Mathlib.GroupTheory.Perm.ViaEmbedding", "llama_tokens": 0}
[GOAL] ι : Sort u_1 M : Type u_2 A : Type u_3 B : Type u_4 inst✝ : Mul M S : ι → Subsemigroup M hS : Directed (fun x x_1 => x ≤ x_1) S x : M ⊢ x ∈ ⨆ (i : ι), S i ↔ ∃ i, x ∈ S i [PROOFSTEP] refine' ⟨_, fun ⟨i, hi⟩ => (SetLike.le_def.1 <| le_iSup S i) hi⟩ [GOAL] ι : Sort u_1 M : Type u_2 A : Type u_3 B : Type u_4 inst✝ : Mul M S : ι → Subsemigroup M hS : Directed (fun x x_1 => x ≤ x_1) S x : M ⊢ x ∈ ⨆ (i : ι), S i → ∃ i, x ∈ S i [PROOFSTEP] suffices x ∈ closure (⋃ i, (S i : Set M)) → ∃ i, x ∈ S i by simpa only [closure_iUnion, closure_eq (S _)] using this [GOAL] ι : Sort u_1 M : Type u_2 A : Type u_3 B : Type u_4 inst✝ : Mul M S : ι → Subsemigroup M hS : Directed (fun x x_1 => x ≤ x_1) S x : M this : x ∈ closure (⋃ (i : ι), ↑(S i)) → ∃ i, x ∈ S i ⊢ x ∈ ⨆ (i : ι), S i → ∃ i, x ∈ S i [PROOFSTEP] simpa only [closure_iUnion, closure_eq (S _)] using this [GOAL] ι : Sort u_1 M : Type u_2 A : Type u_3 B : Type u_4 inst✝ : Mul M S : ι → Subsemigroup M hS : Directed (fun x x_1 => x ≤ x_1) S x : M ⊢ x ∈ closure (⋃ (i : ι), ↑(S i)) → ∃ i, x ∈ S i [PROOFSTEP] refine' fun hx => closure_induction hx (fun y hy => mem_iUnion.mp hy) _ [GOAL] ι : Sort u_1 M : Type u_2 A : Type u_3 B : Type u_4 inst✝ : Mul M S : ι → Subsemigroup M hS : Directed (fun x x_1 => x ≤ x_1) S x : M hx : x ∈ closure (⋃ (i : ι), ↑(S i)) ⊢ ∀ (x y : M), (∃ i, x ∈ S i) → (∃ i, y ∈ S i) → ∃ i, x * y ∈ S i [PROOFSTEP] rintro x y ⟨i, hi⟩ ⟨j, hj⟩ [GOAL] case intro.intro ι : Sort u_1 M : Type u_2 A : Type u_3 B : Type u_4 inst✝ : Mul M S : ι → Subsemigroup M hS : Directed (fun x x_1 => x ≤ x_1) S x✝ : M hx : x✝ ∈ closure (⋃ (i : ι), ↑(S i)) x y : M i : ι hi : x ∈ S i j : ι hj : y ∈ S j ⊢ ∃ i, x * y ∈ S i [PROOFSTEP] rcases hS i j with ⟨k, hki, hkj⟩ [GOAL] case intro.intro.intro.intro ι : Sort u_1 M : Type u_2 A : Type u_3 B : Type u_4 inst✝ : Mul M S : ι → Subsemigroup M hS : Directed (fun x x_1 => x ≤ x_1) S x✝ : M hx : x✝ ∈ closure (⋃ (i : ι), ↑(S i)) x y : M i : ι hi : x ∈ S i j : ι hj : y ∈ S j k : ι hki : S i ≤ S k hkj : S j ≤ S k ⊢ ∃ i, x * y ∈ S i [PROOFSTEP] exact ⟨k, (S k).mul_mem (hki hi) (hkj hj)⟩ [GOAL] ι : Sort u_1 M : Type u_2 A : Type u_3 B : Type u_4 inst✝ : Mul M S : ι → Subsemigroup M hS : Directed (fun x x_1 => x ≤ x_1) S x : M ⊢ x ∈ ↑(⨆ (i : ι), S i) ↔ x ∈ ⋃ (i : ι), ↑(S i) [PROOFSTEP] simp [mem_iSup_of_directed hS] [GOAL] ι : Sort u_1 M : Type u_2 A : Type u_3 B : Type u_4 inst✝ : Mul M S : Set (Subsemigroup M) hS : DirectedOn (fun x x_1 => x ≤ x_1) S x : M ⊢ x ∈ sSup S ↔ ∃ s, s ∈ S ∧ x ∈ s [PROOFSTEP] simp only [sSup_eq_iSup', mem_iSup_of_directed hS.directed_val, SetCoe.exists, Subtype.coe_mk, exists_prop] [GOAL] ι : Sort u_1 M : Type u_2 A : Type u_3 B : Type u_4 inst✝ : Mul M S : Set (Subsemigroup M) hS : DirectedOn (fun x x_1 => x ≤ x_1) S x : M ⊢ x ∈ ↑(sSup S) ↔ x ∈ ⋃ (s : Subsemigroup M) (_ : s ∈ S), ↑s [PROOFSTEP] simp [mem_sSup_of_directed_on hS] [GOAL] ι : Sort u_1 M : Type u_2 A : Type u_3 B : Type u_4 inst✝ : Mul M S T : Subsemigroup M ⊢ ∀ {x : M}, x ∈ S → x ∈ S ⊔ T [PROOFSTEP] have : S ≤ S ⊔ T := le_sup_left [GOAL] ι : Sort u_1 M : Type u_2 A : Type u_3 B : Type u_4 inst✝ : Mul M S T : Subsemigroup M this : S ≤ S ⊔ T ⊢ ∀ {x : M}, x ∈ S → x ∈ S ⊔ T [PROOFSTEP] tauto [GOAL] ι : Sort u_1 M : Type u_2 A : Type u_3 B : Type u_4 inst✝ : Mul M S T : Subsemigroup M ⊢ ∀ {x : M}, x ∈ T → x ∈ S ⊔ T [PROOFSTEP] have : T ≤ S ⊔ T := le_sup_right [GOAL] ι : Sort u_1 M : Type u_2 A : Type u_3 B : Type u_4 inst✝ : Mul M S T : Subsemigroup M this : T ≤ S ⊔ T ⊢ ∀ {x : M}, x ∈ T → x ∈ S ⊔ T [PROOFSTEP] tauto [GOAL] ι : Sort u_1 M : Type u_2 A : Type u_3 B : Type u_4 inst✝ : Mul M S : ι → Subsemigroup M i : ι ⊢ ∀ {x : M}, x ∈ S i → x ∈ iSup S [PROOFSTEP] have : S i ≤ iSup S := le_iSup _ _ [GOAL] ι : Sort u_1 M : Type u_2 A : Type u_3 B : Type u_4 inst✝ : Mul M S : ι → Subsemigroup M i : ι this : S i ≤ iSup S ⊢ ∀ {x : M}, x ∈ S i → x ∈ iSup S [PROOFSTEP] tauto [GOAL] ι : Sort u_1 M : Type u_2 A : Type u_3 B : Type u_4 inst✝ : Mul M S : Set (Subsemigroup M) s : Subsemigroup M hs : s ∈ S ⊢ ∀ {x : M}, x ∈ s → x ∈ sSup S [PROOFSTEP] have : s ≤ sSup S := le_sSup hs [GOAL] ι : Sort u_1 M : Type u_2 A : Type u_3 B : Type u_4 inst✝ : Mul M S : Set (Subsemigroup M) s : Subsemigroup M hs : s ∈ S this : s ≤ sSup S ⊢ ∀ {x : M}, x ∈ s → x ∈ sSup S [PROOFSTEP] tauto [GOAL] ι : Sort u_1 M : Type u_2 A : Type u_3 B : Type u_4 inst✝ : Mul M S : ι → Subsemigroup M C : M → Prop x₁ : M hx₁ : x₁ ∈ ⨆ (i : ι), S i hp : ∀ (i : ι) (x₂ : M), x₂ ∈ S i → C x₂ hmul : ∀ (x y : M), C x → C y → C (x * y) ⊢ C x₁ [PROOFSTEP] rw [iSup_eq_closure] at hx₁ [GOAL] ι : Sort u_1 M : Type u_2 A : Type u_3 B : Type u_4 inst✝ : Mul M S : ι → Subsemigroup M C : M → Prop x₁ : M hx₁ : x₁ ∈ closure (⋃ (i : ι), ↑(S i)) hp : ∀ (i : ι) (x₂ : M), x₂ ∈ S i → C x₂ hmul : ∀ (x y : M), C x → C y → C (x * y) ⊢ C x₁ [PROOFSTEP] refine' closure_induction hx₁ (fun x₂ hx₂ => _) hmul [GOAL] ι : Sort u_1 M : Type u_2 A : Type u_3 B : Type u_4 inst✝ : Mul M S : ι → Subsemigroup M C : M → Prop x₁ : M hx₁ : x₁ ∈ closure (⋃ (i : ι), ↑(S i)) hp : ∀ (i : ι) (x₂ : M), x₂ ∈ S i → C x₂ hmul : ∀ (x y : M), C x → C y → C (x * y) x₂ : M hx₂ : x₂ ∈ ⋃ (i : ι), ↑(S i) ⊢ C x₂ [PROOFSTEP] obtain ⟨i, hi⟩ := Set.mem_iUnion.mp hx₂ [GOAL] case intro ι : Sort u_1 M : Type u_2 A : Type u_3 B : Type u_4 inst✝ : Mul M S : ι → Subsemigroup M C : M → Prop x₁ : M hx₁ : x₁ ∈ closure (⋃ (i : ι), ↑(S i)) hp : ∀ (i : ι) (x₂ : M), x₂ ∈ S i → C x₂ hmul : ∀ (x y : M), C x → C y → C (x * y) x₂ : M hx₂ : x₂ ∈ ⋃ (i : ι), ↑(S i) i : ι hi : x₂ ∈ ↑(S i) ⊢ C x₂ [PROOFSTEP] exact hp _ _ hi [GOAL] ι : Sort u_1 M : Type u_2 A : Type u_3 B : Type u_4 inst✝ : Mul M S : ι → Subsemigroup M C : (x : M) → x ∈ ⨆ (i : ι), S i → Prop hp : ∀ (i : ι) (x : M) (hxS : x ∈ S i), C x (_ : x ∈ ⨆ (i : ι), S i) hmul : ∀ (x y : M) (hx : x ∈ ⨆ (i : ι), S i) (hy : y ∈ ⨆ (i : ι), S i), C x hx → C y hy → C (x * y) (_ : x * y ∈ ⨆ (i : ι), S i) x₁ : M hx₁ : x₁ ∈ ⨆ (i : ι), S i ⊢ C x₁ hx₁ [PROOFSTEP] refine Exists.elim ?_ fun (hx₁' : x₁ ∈ ⨆ i, S i) (hc : C x₁ hx₁') => hc [GOAL] ι : Sort u_1 M : Type u_2 A : Type u_3 B : Type u_4 inst✝ : Mul M S : ι → Subsemigroup M C : (x : M) → x ∈ ⨆ (i : ι), S i → Prop hp : ∀ (i : ι) (x : M) (hxS : x ∈ S i), C x (_ : x ∈ ⨆ (i : ι), S i) hmul : ∀ (x y : M) (hx : x ∈ ⨆ (i : ι), S i) (hy : y ∈ ⨆ (i : ι), S i), C x hx → C y hy → C (x * y) (_ : x * y ∈ ⨆ (i : ι), S i) x₁ : M hx₁ : x₁ ∈ ⨆ (i : ι), S i ⊢ ∃ x, C x₁ x [PROOFSTEP] refine @iSup_induction _ _ _ S (fun x' => ∃ hx'', C x' hx'') _ hx₁ (fun i x₂ hx₂ => ?_) fun x₃ y => ?_ [GOAL] case refine_1 ι : Sort u_1 M : Type u_2 A : Type u_3 B : Type u_4 inst✝ : Mul M S : ι → Subsemigroup M C : (x : M) → x ∈ ⨆ (i : ι), S i → Prop hp : ∀ (i : ι) (x : M) (hxS : x ∈ S i), C x (_ : x ∈ ⨆ (i : ι), S i) hmul : ∀ (x y : M) (hx : x ∈ ⨆ (i : ι), S i) (hy : y ∈ ⨆ (i : ι), S i), C x hx → C y hy → C (x * y) (_ : x * y ∈ ⨆ (i : ι), S i) x₁ : M hx₁ : x₁ ∈ ⨆ (i : ι), S i i : ι x₂ : M hx₂ : x₂ ∈ S i ⊢ (fun x' => ∃ hx'', C x' hx'') x₂ [PROOFSTEP] exact ⟨_, hp _ _ hx₂⟩ [GOAL] case refine_2 ι : Sort u_1 M : Type u_2 A : Type u_3 B : Type u_4 inst✝ : Mul M S : ι → Subsemigroup M C : (x : M) → x ∈ ⨆ (i : ι), S i → Prop hp : ∀ (i : ι) (x : M) (hxS : x ∈ S i), C x (_ : x ∈ ⨆ (i : ι), S i) hmul : ∀ (x y : M) (hx : x ∈ ⨆ (i : ι), S i) (hy : y ∈ ⨆ (i : ι), S i), C x hx → C y hy → C (x * y) (_ : x * y ∈ ⨆ (i : ι), S i) x₁ : M hx₁ : x₁ ∈ ⨆ (i : ι), S i x₃ y : M ⊢ (fun x' => ∃ hx'', C x' hx'') x₃ → (fun x' => ∃ hx'', C x' hx'') y → (fun x' => ∃ hx'', C x' hx'') (x₃ * y) [PROOFSTEP] rintro ⟨_, Cx⟩ ⟨_, Cy⟩ [GOAL] case refine_2.intro.intro ι : Sort u_1 M : Type u_2 A : Type u_3 B : Type u_4 inst✝ : Mul M S : ι → Subsemigroup M C : (x : M) → x ∈ ⨆ (i : ι), S i → Prop hp : ∀ (i : ι) (x : M) (hxS : x ∈ S i), C x (_ : x ∈ ⨆ (i : ι), S i) hmul : ∀ (x y : M) (hx : x ∈ ⨆ (i : ι), S i) (hy : y ∈ ⨆ (i : ι), S i), C x hx → C y hy → C (x * y) (_ : x * y ∈ ⨆ (i : ι), S i) x₁ : M hx₁ : x₁ ∈ ⨆ (i : ι), S i x₃ y : M w✝¹ : x₃ ∈ ⨆ (i : ι), S i Cx : C x₃ w✝¹ w✝ : y ∈ ⨆ (i : ι), S i Cy : C y w✝ ⊢ ∃ hx'', C (x₃ * y) hx'' [PROOFSTEP] exact ⟨_, hmul _ _ _ _ Cx Cy⟩
{"mathlib_filename": "Mathlib.GroupTheory.Subsemigroup.Membership", "llama_tokens": 4819}
[GOAL] M : Type u_1 S T : Set M inst✝ : MulOneClass M ⊢ 1 ∈ centralizer S [PROOFSTEP] simp [mem_centralizer_iff] [GOAL] M : Type u_1 S T : Set M inst✝ : MulZeroClass M ⊢ 0 ∈ centralizer S [PROOFSTEP] simp [mem_centralizer_iff] [GOAL] M : Type u_1 S T : Set M a b : M inst✝ : Semigroup M ha : a ∈ centralizer S hb : b ∈ centralizer S g : M hg : g ∈ S ⊢ g * (a * b) = a * b * g [PROOFSTEP] rw [mul_assoc, ← hb g hg, ← mul_assoc, ha g hg, mul_assoc] [GOAL] M : Type u_1 S T : Set M a b : M inst✝ : Group M ha : a ∈ centralizer S g : M hg : g ∈ S ⊢ g * a⁻¹ = a⁻¹ * g [PROOFSTEP] rw [mul_inv_eq_iff_eq_mul, mul_assoc, eq_inv_mul_iff_mul_eq, ha g hg] [GOAL] M : Type u_1 S T : Set M a b : M inst✝ : Distrib M ha : a ∈ centralizer S hb : b ∈ centralizer S c : M hc : c ∈ S ⊢ c * (a + b) = (a + b) * c [PROOFSTEP] rw [add_mul, mul_add, ha c hc, hb c hc] [GOAL] M : Type u_1 S T : Set M a b : M inst✝¹ : Mul M inst✝ : HasDistribNeg M ha : a ∈ centralizer S c : M hc : c ∈ S ⊢ c * -a = -a * c [PROOFSTEP] rw [mul_neg, ha c hc, neg_mul] [GOAL] M : Type u_1 S T : Set M a b : M inst✝ : GroupWithZero M ha : a ∈ centralizer S h : a = 0 ⊢ a⁻¹ ∈ centralizer S [PROOFSTEP] rw [h, inv_zero] [GOAL] M : Type u_1 S T : Set M a b : M inst✝ : GroupWithZero M ha : a ∈ centralizer S h : a = 0 ⊢ 0 ∈ centralizer S [PROOFSTEP] exact zero_mem_centralizer S [GOAL] M : Type u_1 S T : Set M a b : M inst✝ : GroupWithZero M ha : a ∈ centralizer S ha0 : a ≠ 0 c : M hc : c ∈ S ⊢ c * a⁻¹ = a⁻¹ * c [PROOFSTEP] rw [mul_inv_eq_iff_eq_mul₀ ha0, mul_assoc, eq_inv_mul_iff_mul_eq₀ ha0, ha c hc] [GOAL] M : Type u_1 S T : Set M a b : M inst✝ : Group M ha : a ∈ centralizer S hb : b ∈ centralizer S ⊢ a / b ∈ centralizer S [PROOFSTEP] rw [div_eq_mul_inv] [GOAL] M : Type u_1 S T : Set M a b : M inst✝ : Group M ha : a ∈ centralizer S hb : b ∈ centralizer S ⊢ a * b⁻¹ ∈ centralizer S [PROOFSTEP] exact mul_mem_centralizer ha (inv_mem_centralizer hb) [GOAL] M : Type u_1 S T : Set M a b : M inst✝ : GroupWithZero M ha : a ∈ centralizer S hb : b ∈ centralizer S ⊢ a / b ∈ centralizer S [PROOFSTEP] rw [div_eq_mul_inv] [GOAL] M : Type u_1 S T : Set M a b : M inst✝ : GroupWithZero M ha : a ∈ centralizer S hb : b ∈ centralizer S ⊢ a * b⁻¹ ∈ centralizer S [PROOFSTEP] exact mul_mem_centralizer ha (inv_mem_centralizer₀ hb)
{"mathlib_filename": "Mathlib.GroupTheory.Subsemigroup.Centralizer", "llama_tokens": 1154}
[GOAL] M : Type u_1 inst✝ : MulOneClass M ⊢ 1 ∈ center M [PROOFSTEP] simp [mem_center_iff] [GOAL] M : Type u_1 inst✝ : MulZeroClass M ⊢ 0 ∈ center M [PROOFSTEP] simp [mem_center_iff] [GOAL] M : Type u_1 inst✝ : Semigroup M a b : M ha : a ∈ center M hb : b ∈ center M g : M ⊢ g * (a * b) = a * b * g [PROOFSTEP] rw [mul_assoc, ← hb g, ← mul_assoc, ha g, mul_assoc] [GOAL] M : Type u_1 inst✝ : Group M a : M ha : a ∈ center M g : M ⊢ g * a⁻¹ = a⁻¹ * g [PROOFSTEP] rw [← inv_inj, mul_inv_rev, inv_inv, ← ha, mul_inv_rev, inv_inv] [GOAL] M : Type u_1 inst✝ : Distrib M a b : M ha : a ∈ center M hb : b ∈ center M c : M ⊢ c * (a + b) = (a + b) * c [PROOFSTEP] rw [add_mul, mul_add, ha c, hb c] [GOAL] M : Type u_1 inst✝ : NonUnitalNonAssocRing M a : M ha : a ∈ center M c : M ⊢ c * -a = -a * c [PROOFSTEP] rw [← neg_mul_comm, ha (-c), neg_mul_comm] [GOAL] M : Type u_1 inst✝ : GroupWithZero M a : Mˣ ha : a ∈ center Mˣ b : M ⊢ b * ↑a = ↑a * b [PROOFSTEP] obtain rfl | hb := eq_or_ne b 0 [GOAL] case inl M : Type u_1 inst✝ : GroupWithZero M a : Mˣ ha : a ∈ center Mˣ ⊢ 0 * ↑a = ↑a * 0 [PROOFSTEP] rw [zero_mul, mul_zero] [GOAL] case inr M : Type u_1 inst✝ : GroupWithZero M a : Mˣ ha : a ∈ center Mˣ b : M hb : b ≠ 0 ⊢ b * ↑a = ↑a * b [PROOFSTEP] exact Units.ext_iff.mp (ha (Units.mk0 _ hb)) [GOAL] M : Type u_1 inst✝ : GroupWithZero M a : M ha : a ∈ center M ⊢ a⁻¹ ∈ center M [PROOFSTEP] obtain rfl | ha0 := eq_or_ne a 0 [GOAL] case inl M : Type u_1 inst✝ : GroupWithZero M ha : 0 ∈ center M ⊢ 0⁻¹ ∈ center M [PROOFSTEP] rw [inv_zero] [GOAL] case inl M : Type u_1 inst✝ : GroupWithZero M ha : 0 ∈ center M ⊢ 0 ∈ center M [PROOFSTEP] exact zero_mem_center M [GOAL] case inr M : Type u_1 inst✝ : GroupWithZero M a : M ha : a ∈ center M ha0 : a ≠ 0 ⊢ a⁻¹ ∈ center M [PROOFSTEP] rcases IsUnit.mk0 _ ha0 with ⟨a, rfl⟩ [GOAL] case inr.intro M : Type u_1 inst✝ : GroupWithZero M a : Mˣ ha : ↑a ∈ center M ha0 : ↑a ≠ 0 ⊢ (↑a)⁻¹ ∈ center M [PROOFSTEP] rw [← Units.val_inv_eq_inv_val] [GOAL] case inr.intro M : Type u_1 inst✝ : GroupWithZero M a : Mˣ ha : ↑a ∈ center M ha0 : ↑a ≠ 0 ⊢ ↑a⁻¹ ∈ center M [PROOFSTEP] exact center_units_subset (inv_mem_center (subset_center_units ha)) [GOAL] M : Type u_1 inst✝ : Group M a b : M ha : a ∈ center M hb : b ∈ center M ⊢ a / b ∈ center M [PROOFSTEP] rw [div_eq_mul_inv] [GOAL] M : Type u_1 inst✝ : Group M a b : M ha : a ∈ center M hb : b ∈ center M ⊢ a * b⁻¹ ∈ center M [PROOFSTEP] exact mul_mem_center ha (inv_mem_center hb) [GOAL] M : Type u_1 inst✝ : GroupWithZero M a b : M ha : a ∈ center M hb : b ∈ center M ⊢ a / b ∈ center M [PROOFSTEP] rw [div_eq_mul_inv] [GOAL] M : Type u_1 inst✝ : GroupWithZero M a b : M ha : a ∈ center M hb : b ∈ center M ⊢ a * b⁻¹ ∈ center M [PROOFSTEP] exact mul_mem_center ha (inv_mem_center₀ hb)
{"mathlib_filename": "Mathlib.GroupTheory.Subsemigroup.Center", "llama_tokens": 1451}
[GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝² : Monoid M inst✝¹ : SetLike B M inst✝ : SubmonoidClass B M S : B l : List M hl : ∀ (x : M), x ∈ l → x ∈ S ⊢ List.prod l ∈ S [PROOFSTEP] lift l to List S using hl [GOAL] case intro M : Type u_1 A : Type u_2 B : Type u_3 inst✝² : Monoid M inst✝¹ : SetLike B M inst✝ : SubmonoidClass B M S : B l : List { x // x ∈ S } ⊢ List.prod (List.map Subtype.val l) ∈ S [PROOFSTEP] rw [← coe_list_prod] [GOAL] case intro M : Type u_1 A : Type u_2 B : Type u_3 inst✝² : Monoid M inst✝¹ : SetLike B M inst✝ : SubmonoidClass B M S : B l : List { x // x ∈ S } ⊢ ↑(List.prod l) ∈ S [PROOFSTEP] exact l.prod.coe_prop [GOAL] M✝ : Type u_1 A : Type u_2 B : Type u_3 inst✝⁵ : Monoid M✝ inst✝⁴ : SetLike B M✝ inst✝³ : SubmonoidClass B M✝ S : B M : Type u_4 inst✝² : CommMonoid M inst✝¹ : SetLike B M inst✝ : SubmonoidClass B M m : Multiset M hm : ∀ (a : M), a ∈ m → a ∈ S ⊢ Multiset.prod m ∈ S [PROOFSTEP] lift m to Multiset S using hm [GOAL] case intro M✝ : Type u_1 A : Type u_2 B : Type u_3 inst✝⁵ : Monoid M✝ inst✝⁴ : SetLike B M✝ inst✝³ : SubmonoidClass B M✝ S : B M : Type u_4 inst✝² : CommMonoid M inst✝¹ : SetLike B M inst✝ : SubmonoidClass B M m : Multiset { x // x ∈ S } ⊢ Multiset.prod (Multiset.map Subtype.val m) ∈ S [PROOFSTEP] rw [← coe_multiset_prod] [GOAL] case intro M✝ : Type u_1 A : Type u_2 B : Type u_3 inst✝⁵ : Monoid M✝ inst✝⁴ : SetLike B M✝ inst✝³ : SubmonoidClass B M✝ S : B M : Type u_4 inst✝² : CommMonoid M inst✝¹ : SetLike B M inst✝ : SubmonoidClass B M m : Multiset { x // x ∈ S } ⊢ ↑(Multiset.prod m) ∈ S [PROOFSTEP] exact m.prod.coe_prop [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝² : Monoid M inst✝¹ : SetLike B M inst✝ : SubmonoidClass B M S : B s : Submonoid M l : List M hl : ∀ (x : M), x ∈ l → x ∈ s ⊢ List.prod l ∈ s [PROOFSTEP] lift l to List s using hl [GOAL] case intro M : Type u_1 A : Type u_2 B : Type u_3 inst✝² : Monoid M inst✝¹ : SetLike B M inst✝ : SubmonoidClass B M S : B s : Submonoid M l : List { x // x ∈ s } ⊢ List.prod (List.map Subtype.val l) ∈ s [PROOFSTEP] rw [← coe_list_prod] [GOAL] case intro M : Type u_1 A : Type u_2 B : Type u_3 inst✝² : Monoid M inst✝¹ : SetLike B M inst✝ : SubmonoidClass B M S : B s : Submonoid M l : List { x // x ∈ s } ⊢ ↑(List.prod l) ∈ s [PROOFSTEP] exact l.prod.coe_prop [GOAL] M✝ : Type u_1 A : Type u_2 B : Type u_3 inst✝³ : Monoid M✝ inst✝² : SetLike B M✝ inst✝¹ : SubmonoidClass B M✝ S✝ : B s : Submonoid M✝ M : Type u_4 inst✝ : CommMonoid M S : Submonoid M m : Multiset M hm : ∀ (a : M), a ∈ m → a ∈ S ⊢ Multiset.prod m ∈ S [PROOFSTEP] lift m to Multiset S using hm [GOAL] case intro M✝ : Type u_1 A : Type u_2 B : Type u_3 inst✝³ : Monoid M✝ inst✝² : SetLike B M✝ inst✝¹ : SubmonoidClass B M✝ S✝ : B s : Submonoid M✝ M : Type u_4 inst✝ : CommMonoid M S : Submonoid M m : Multiset { x // x ∈ S } ⊢ Multiset.prod (Multiset.map Subtype.val m) ∈ S [PROOFSTEP] rw [← coe_multiset_prod] [GOAL] case intro M✝ : Type u_1 A : Type u_2 B : Type u_3 inst✝³ : Monoid M✝ inst✝² : SetLike B M✝ inst✝¹ : SubmonoidClass B M✝ S✝ : B s : Submonoid M✝ M : Type u_4 inst✝ : CommMonoid M S : Submonoid M m : Multiset { x // x ∈ S } ⊢ ↑(Multiset.prod m) ∈ S [PROOFSTEP] exact m.prod.coe_prop [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝² : Monoid M inst✝¹ : SetLike B M inst✝ : SubmonoidClass B M S✝ : B s S : Submonoid M m : Multiset M comm : Set.Pairwise {x | x ∈ m} Commute h : ∀ (x : M), x ∈ m → x ∈ S ⊢ Multiset.noncommProd m comm ∈ S [PROOFSTEP] induction' m using Quotient.inductionOn with l [GOAL] case h M : Type u_1 A : Type u_2 B : Type u_3 inst✝² : Monoid M inst✝¹ : SetLike B M inst✝ : SubmonoidClass B M S✝ : B s S : Submonoid M m : Multiset M comm✝ : Set.Pairwise {x | x ∈ m} Commute h✝ : ∀ (x : M), x ∈ m → x ∈ S l : List M comm : Set.Pairwise {x | x ∈ Quotient.mk (List.isSetoid M) l} Commute h : ∀ (x : M), x ∈ Quotient.mk (List.isSetoid M) l → x ∈ S ⊢ Multiset.noncommProd (Quotient.mk (List.isSetoid M) l) comm ∈ S [PROOFSTEP] simp only [Multiset.quot_mk_to_coe, Multiset.noncommProd_coe] [GOAL] case h M : Type u_1 A : Type u_2 B : Type u_3 inst✝² : Monoid M inst✝¹ : SetLike B M inst✝ : SubmonoidClass B M S✝ : B s S : Submonoid M m : Multiset M comm✝ : Set.Pairwise {x | x ∈ m} Commute h✝ : ∀ (x : M), x ∈ m → x ∈ S l : List M comm : Set.Pairwise {x | x ∈ Quotient.mk (List.isSetoid M) l} Commute h : ∀ (x : M), x ∈ Quotient.mk (List.isSetoid M) l → x ∈ S ⊢ List.prod l ∈ S [PROOFSTEP] exact Submonoid.list_prod_mem _ h [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝² : Monoid M inst✝¹ : SetLike B M inst✝ : SubmonoidClass B M S✝ : B s S : Submonoid M ι : Type u_4 t : Finset ι f : ι → M comm : Set.Pairwise ↑t fun a b => Commute (f a) (f b) h : ∀ (c : ι), c ∈ t → f c ∈ S ⊢ Finset.noncommProd t f comm ∈ S [PROOFSTEP] apply multiset_noncommProd_mem [GOAL] case h M : Type u_1 A : Type u_2 B : Type u_3 inst✝² : Monoid M inst✝¹ : SetLike B M inst✝ : SubmonoidClass B M S✝ : B s S : Submonoid M ι : Type u_4 t : Finset ι f : ι → M comm : Set.Pairwise ↑t fun a b => Commute (f a) (f b) h : ∀ (c : ι), c ∈ t → f c ∈ S ⊢ ∀ (x : M), x ∈ Multiset.map f t.val → x ∈ S [PROOFSTEP] intro y [GOAL] case h M : Type u_1 A : Type u_2 B : Type u_3 inst✝² : Monoid M inst✝¹ : SetLike B M inst✝ : SubmonoidClass B M S✝ : B s S : Submonoid M ι : Type u_4 t : Finset ι f : ι → M comm : Set.Pairwise ↑t fun a b => Commute (f a) (f b) h : ∀ (c : ι), c ∈ t → f c ∈ S y : M ⊢ y ∈ Multiset.map f t.val → y ∈ S [PROOFSTEP] rw [Multiset.mem_map] [GOAL] case h M : Type u_1 A : Type u_2 B : Type u_3 inst✝² : Monoid M inst✝¹ : SetLike B M inst✝ : SubmonoidClass B M S✝ : B s S : Submonoid M ι : Type u_4 t : Finset ι f : ι → M comm : Set.Pairwise ↑t fun a b => Commute (f a) (f b) h : ∀ (c : ι), c ∈ t → f c ∈ S y : M ⊢ (∃ a, a ∈ t.val ∧ f a = y) → y ∈ S [PROOFSTEP] rintro ⟨x, ⟨hx, rfl⟩⟩ [GOAL] case h.intro.intro M : Type u_1 A : Type u_2 B : Type u_3 inst✝² : Monoid M inst✝¹ : SetLike B M inst✝ : SubmonoidClass B M S✝ : B s S : Submonoid M ι : Type u_4 t : Finset ι f : ι → M comm : Set.Pairwise ↑t fun a b => Commute (f a) (f b) h : ∀ (c : ι), c ∈ t → f c ∈ S x : ι hx : x ∈ t.val ⊢ f x ∈ S [PROOFSTEP] exact h x hx [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : MulOneClass M ι : Sort u_4 hι : Nonempty ι S : ι → Submonoid M hS : Directed (fun x x_1 => x ≤ x_1) S x : M ⊢ x ∈ ⨆ (i : ι), S i ↔ ∃ i, x ∈ S i [PROOFSTEP] refine' ⟨_, fun ⟨i, hi⟩ => (SetLike.le_def.1 <| le_iSup S i) hi⟩ [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : MulOneClass M ι : Sort u_4 hι : Nonempty ι S : ι → Submonoid M hS : Directed (fun x x_1 => x ≤ x_1) S x : M ⊢ x ∈ ⨆ (i : ι), S i → ∃ i, x ∈ S i [PROOFSTEP] suffices x ∈ closure (⋃ i, (S i : Set M)) → ∃ i, x ∈ S i by simpa only [closure_iUnion, closure_eq (S _)] using this [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : MulOneClass M ι : Sort u_4 hι : Nonempty ι S : ι → Submonoid M hS : Directed (fun x x_1 => x ≤ x_1) S x : M this : x ∈ closure (⋃ (i : ι), ↑(S i)) → ∃ i, x ∈ S i ⊢ x ∈ ⨆ (i : ι), S i → ∃ i, x ∈ S i [PROOFSTEP] simpa only [closure_iUnion, closure_eq (S _)] using this [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : MulOneClass M ι : Sort u_4 hι : Nonempty ι S : ι → Submonoid M hS : Directed (fun x x_1 => x ≤ x_1) S x : M ⊢ x ∈ closure (⋃ (i : ι), ↑(S i)) → ∃ i, x ∈ S i [PROOFSTEP] refine' fun hx => closure_induction hx (fun _ => mem_iUnion.1) _ _ [GOAL] case refine'_1 M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : MulOneClass M ι : Sort u_4 hι : Nonempty ι S : ι → Submonoid M hS : Directed (fun x x_1 => x ≤ x_1) S x : M hx : x ∈ closure (⋃ (i : ι), ↑(S i)) ⊢ ∃ i, 1 ∈ S i [PROOFSTEP] exact hι.elim fun i => ⟨i, (S i).one_mem⟩ [GOAL] case refine'_2 M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : MulOneClass M ι : Sort u_4 hι : Nonempty ι S : ι → Submonoid M hS : Directed (fun x x_1 => x ≤ x_1) S x : M hx : x ∈ closure (⋃ (i : ι), ↑(S i)) ⊢ ∀ (x y : M), (∃ i, x ∈ S i) → (∃ i, y ∈ S i) → ∃ i, x * y ∈ S i [PROOFSTEP] rintro x y ⟨i, hi⟩ ⟨j, hj⟩ [GOAL] case refine'_2.intro.intro M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : MulOneClass M ι : Sort u_4 hι : Nonempty ι S : ι → Submonoid M hS : Directed (fun x x_1 => x ≤ x_1) S x✝ : M hx : x✝ ∈ closure (⋃ (i : ι), ↑(S i)) x y : M i : ι hi : x ∈ S i j : ι hj : y ∈ S j ⊢ ∃ i, x * y ∈ S i [PROOFSTEP] rcases hS i j with ⟨k, hki, hkj⟩ [GOAL] case refine'_2.intro.intro.intro.intro M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : MulOneClass M ι : Sort u_4 hι : Nonempty ι S : ι → Submonoid M hS : Directed (fun x x_1 => x ≤ x_1) S x✝ : M hx : x✝ ∈ closure (⋃ (i : ι), ↑(S i)) x y : M i : ι hi : x ∈ S i j : ι hj : y ∈ S j k : ι hki : S i ≤ S k hkj : S j ≤ S k ⊢ ∃ i, x * y ∈ S i [PROOFSTEP] exact ⟨k, (S k).mul_mem (hki hi) (hkj hj)⟩ [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝¹ : MulOneClass M ι : Sort u_4 inst✝ : Nonempty ι S : ι → Submonoid M hS : Directed (fun x x_1 => x ≤ x_1) S x : M ⊢ x ∈ ↑(⨆ (i : ι), S i) ↔ x ∈ ⋃ (i : ι), ↑(S i) [PROOFSTEP] simp [mem_iSup_of_directed hS] [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : MulOneClass M S : Set (Submonoid M) Sne : Set.Nonempty S hS : DirectedOn (fun x x_1 => x ≤ x_1) S x : M ⊢ x ∈ sSup S ↔ ∃ s, s ∈ S ∧ x ∈ s [PROOFSTEP] haveI : Nonempty S := Sne.to_subtype [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : MulOneClass M S : Set (Submonoid M) Sne : Set.Nonempty S hS : DirectedOn (fun x x_1 => x ≤ x_1) S x : M this : Nonempty ↑S ⊢ x ∈ sSup S ↔ ∃ s, s ∈ S ∧ x ∈ s [PROOFSTEP] simp [sSup_eq_iSup', mem_iSup_of_directed hS.directed_val, SetCoe.exists, Subtype.coe_mk] [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : MulOneClass M S : Set (Submonoid M) Sne : Set.Nonempty S hS : DirectedOn (fun x x_1 => x ≤ x_1) S x : M ⊢ x ∈ ↑(sSup S) ↔ x ∈ ⋃ (s : Submonoid M) (_ : s ∈ S), ↑s [PROOFSTEP] simp [mem_sSup_of_directedOn Sne hS] [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : MulOneClass M S T : Submonoid M ⊢ ∀ {x : M}, x ∈ S → x ∈ S ⊔ T [PROOFSTEP] rw [← SetLike.le_def] [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : MulOneClass M S T : Submonoid M ⊢ S ≤ S ⊔ T [PROOFSTEP] exact le_sup_left [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : MulOneClass M S T : Submonoid M ⊢ ∀ {x : M}, x ∈ T → x ∈ S ⊔ T [PROOFSTEP] rw [← SetLike.le_def] [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : MulOneClass M S T : Submonoid M ⊢ T ≤ S ⊔ T [PROOFSTEP] exact le_sup_right [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : MulOneClass M ι : Sort u_4 S : ι → Submonoid M i : ι ⊢ ∀ {x : M}, x ∈ S i → x ∈ iSup S [PROOFSTEP] rw [← SetLike.le_def] [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : MulOneClass M ι : Sort u_4 S : ι → Submonoid M i : ι ⊢ S i ≤ iSup S [PROOFSTEP] exact le_iSup _ _ [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : MulOneClass M S : Set (Submonoid M) s : Submonoid M hs : s ∈ S ⊢ ∀ {x : M}, x ∈ s → x ∈ sSup S [PROOFSTEP] rw [← SetLike.le_def] [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : MulOneClass M S : Set (Submonoid M) s : Submonoid M hs : s ∈ S ⊢ s ≤ sSup S [PROOFSTEP] exact le_sSup hs [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : MulOneClass M ι : Sort u_4 S : ι → Submonoid M C : M → Prop x : M hx : x ∈ ⨆ (i : ι), S i hp : ∀ (i : ι) (x : M), x ∈ S i → C x h1 : C 1 hmul : ∀ (x y : M), C x → C y → C (x * y) ⊢ C x [PROOFSTEP] rw [iSup_eq_closure] at hx [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : MulOneClass M ι : Sort u_4 S : ι → Submonoid M C : M → Prop x : M hx : x ∈ closure (⋃ (i : ι), ↑(S i)) hp : ∀ (i : ι) (x : M), x ∈ S i → C x h1 : C 1 hmul : ∀ (x y : M), C x → C y → C (x * y) ⊢ C x [PROOFSTEP] refine closure_induction hx (fun x hx => ?_) h1 hmul [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : MulOneClass M ι : Sort u_4 S : ι → Submonoid M C : M → Prop x✝ : M hx✝ : x✝ ∈ closure (⋃ (i : ι), ↑(S i)) hp : ∀ (i : ι) (x : M), x ∈ S i → C x h1 : C 1 hmul : ∀ (x y : M), C x → C y → C (x * y) x : M hx : x ∈ ⋃ (i : ι), ↑(S i) ⊢ C x [PROOFSTEP] obtain ⟨i, hi⟩ := Set.mem_iUnion.mp hx [GOAL] case intro M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : MulOneClass M ι : Sort u_4 S : ι → Submonoid M C : M → Prop x✝ : M hx✝ : x✝ ∈ closure (⋃ (i : ι), ↑(S i)) hp : ∀ (i : ι) (x : M), x ∈ S i → C x h1 : C 1 hmul : ∀ (x y : M), C x → C y → C (x * y) x : M hx : x ∈ ⋃ (i : ι), ↑(S i) i : ι hi : x ∈ ↑(S i) ⊢ C x [PROOFSTEP] exact hp _ _ hi [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : MulOneClass M ι : Sort u_4 S : ι → Submonoid M C : (x : M) → x ∈ ⨆ (i : ι), S i → Prop hp : ∀ (i : ι) (x : M) (hxS : x ∈ S i), C x (_ : x ∈ ⨆ (i : ι), S i) h1 : C 1 (_ : 1 ∈ ⨆ (i : ι), S i) hmul : ∀ (x y : M) (hx : x ∈ ⨆ (i : ι), S i) (hy : y ∈ ⨆ (i : ι), S i), C x hx → C y hy → C (x * y) (_ : x * y ∈ ⨆ (i : ι), S i) x : M hx : x ∈ ⨆ (i : ι), S i ⊢ C x hx [PROOFSTEP] refine' Exists.elim (_ : ∃ Hx, C x Hx) fun (hx : x ∈ ⨆ i, S i) (hc : C x hx) => hc [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : MulOneClass M ι : Sort u_4 S : ι → Submonoid M C : (x : M) → x ∈ ⨆ (i : ι), S i → Prop hp : ∀ (i : ι) (x : M) (hxS : x ∈ S i), C x (_ : x ∈ ⨆ (i : ι), S i) h1 : C 1 (_ : 1 ∈ ⨆ (i : ι), S i) hmul : ∀ (x y : M) (hx : x ∈ ⨆ (i : ι), S i) (hy : y ∈ ⨆ (i : ι), S i), C x hx → C y hy → C (x * y) (_ : x * y ∈ ⨆ (i : ι), S i) x : M hx : x ∈ ⨆ (i : ι), S i ⊢ ∃ Hx, C x Hx [PROOFSTEP] refine' @iSup_induction _ _ ι S (fun m => ∃ hm, C m hm) _ hx (fun i x hx => _) _ fun x y => _ [GOAL] case refine'_1 M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : MulOneClass M ι : Sort u_4 S : ι → Submonoid M C : (x : M) → x ∈ ⨆ (i : ι), S i → Prop hp : ∀ (i : ι) (x : M) (hxS : x ∈ S i), C x (_ : x ∈ ⨆ (i : ι), S i) h1 : C 1 (_ : 1 ∈ ⨆ (i : ι), S i) hmul : ∀ (x y : M) (hx : x ∈ ⨆ (i : ι), S i) (hy : y ∈ ⨆ (i : ι), S i), C x hx → C y hy → C (x * y) (_ : x * y ∈ ⨆ (i : ι), S i) x✝ : M hx✝ : x✝ ∈ ⨆ (i : ι), S i i : ι x : M hx : x ∈ S i ⊢ (fun m => ∃ hm, C m hm) x [PROOFSTEP] exact ⟨_, hp _ _ hx⟩ [GOAL] case refine'_2 M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : MulOneClass M ι : Sort u_4 S : ι → Submonoid M C : (x : M) → x ∈ ⨆ (i : ι), S i → Prop hp : ∀ (i : ι) (x : M) (hxS : x ∈ S i), C x (_ : x ∈ ⨆ (i : ι), S i) h1 : C 1 (_ : 1 ∈ ⨆ (i : ι), S i) hmul : ∀ (x y : M) (hx : x ∈ ⨆ (i : ι), S i) (hy : y ∈ ⨆ (i : ι), S i), C x hx → C y hy → C (x * y) (_ : x * y ∈ ⨆ (i : ι), S i) x : M hx : x ∈ ⨆ (i : ι), S i ⊢ (fun m => ∃ hm, C m hm) 1 [PROOFSTEP] exact ⟨_, h1⟩ [GOAL] case refine'_3 M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : MulOneClass M ι : Sort u_4 S : ι → Submonoid M C : (x : M) → x ∈ ⨆ (i : ι), S i → Prop hp : ∀ (i : ι) (x : M) (hxS : x ∈ S i), C x (_ : x ∈ ⨆ (i : ι), S i) h1 : C 1 (_ : 1 ∈ ⨆ (i : ι), S i) hmul : ∀ (x y : M) (hx : x ∈ ⨆ (i : ι), S i) (hy : y ∈ ⨆ (i : ι), S i), C x hx → C y hy → C (x * y) (_ : x * y ∈ ⨆ (i : ι), S i) x✝ : M hx : x✝ ∈ ⨆ (i : ι), S i x y : M ⊢ (fun m => ∃ hm, C m hm) x → (fun m => ∃ hm, C m hm) y → (fun m => ∃ hm, C m hm) (x * y) [PROOFSTEP] rintro ⟨_, Cx⟩ ⟨_, Cy⟩ [GOAL] case refine'_3.intro.intro M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : MulOneClass M ι : Sort u_4 S : ι → Submonoid M C : (x : M) → x ∈ ⨆ (i : ι), S i → Prop hp : ∀ (i : ι) (x : M) (hxS : x ∈ S i), C x (_ : x ∈ ⨆ (i : ι), S i) h1 : C 1 (_ : 1 ∈ ⨆ (i : ι), S i) hmul : ∀ (x y : M) (hx : x ∈ ⨆ (i : ι), S i) (hy : y ∈ ⨆ (i : ι), S i), C x hx → C y hy → C (x * y) (_ : x * y ∈ ⨆ (i : ι), S i) x✝ : M hx : x✝ ∈ ⨆ (i : ι), S i x y : M w✝¹ : x ∈ ⨆ (i : ι), S i Cx : C x w✝¹ w✝ : y ∈ ⨆ (i : ι), S i Cy : C y w✝ ⊢ ∃ hm, C (x * y) hm [PROOFSTEP] refine' ⟨_, hmul _ _ _ _ Cx Cy⟩ [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : Monoid M x y : M ⊢ y ∈ closure {x} ↔ ∃ n, x ^ n = y [PROOFSTEP] rw [closure_singleton_eq, mem_mrange] [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : Monoid M x y : M ⊢ (∃ x_1, ↑(↑(powersHom M) x) x_1 = y) ↔ ∃ n, x ^ n = y [PROOFSTEP] rfl [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : Monoid M ⊢ closure {1} = ⊥ [PROOFSTEP] simp [eq_bot_iff_forall, mem_closure_singleton] [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : Monoid M α : Type u_4 f : α → M ⊢ mrange (↑FreeMonoid.lift f) = closure (Set.range f) [PROOFSTEP] rw [mrange_eq_map, ← FreeMonoid.closure_range_of, map_mclosure, ← Set.range_comp, FreeMonoid.lift_comp_of] [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : Monoid M s : Set M ⊢ closure s = mrange (↑FreeMonoid.lift Subtype.val) [PROOFSTEP] rw [FreeMonoid.mrange_lift, Subtype.range_coe] [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : Monoid M s : Set M ⊢ ↑(closure s) = List.prod '' {l | ∀ (x : M), x ∈ l → x ∈ s} [PROOFSTEP] rw [closure_eq_mrange, coe_mrange, ← Set.range_list_map_coe, ← Set.range_comp] [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : Monoid M s : Set M ⊢ Set.range ↑(↑FreeMonoid.lift Subtype.val) = Set.range (List.prod ∘ List.map Subtype.val) [PROOFSTEP] exact congrArg _ (funext <| FreeMonoid.lift_apply _) [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : Monoid M s : Set M x : M hx : x ∈ closure s ⊢ ∃ l x_1, List.prod l = x [PROOFSTEP] rwa [← SetLike.mem_coe, closure_eq_image_prod, Set.mem_image_iff_bex] at hx [GOAL] M✝ : Type u_1 A : Type u_2 B : Type u_3 inst✝¹ : Monoid M✝ M : Type u_4 inst✝ : CommMonoid M s : Set M x : M hx : x ∈ closure s ⊢ ∃ l x_1, Multiset.prod l = x [PROOFSTEP] obtain ⟨l, h1, h2⟩ := exists_list_of_mem_closure hx [GOAL] case intro.intro M✝ : Type u_1 A : Type u_2 B : Type u_3 inst✝¹ : Monoid M✝ M : Type u_4 inst✝ : CommMonoid M s : Set M x : M hx : x ∈ closure s l : List M h1 : ∀ (y : M), y ∈ l → y ∈ s h2 : List.prod l = x ⊢ ∃ l x_1, Multiset.prod l = x [PROOFSTEP] exact ⟨l, h1, (Multiset.coe_prod l).trans h2⟩ [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : Monoid M s : Set M p : M → Prop x : M h : x ∈ closure s H1 : p 1 Hmul : ∀ (x : M), x ∈ s → ∀ (y : M), p y → p (x * y) ⊢ p x [PROOFSTEP] rw [closure_eq_mrange] at h [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : Monoid M s : Set M p : M → Prop x : M h : x ∈ mrange (↑FreeMonoid.lift Subtype.val) H1 : p 1 Hmul : ∀ (x : M), x ∈ s → ∀ (y : M), p y → p (x * y) ⊢ p x [PROOFSTEP] obtain ⟨l, rfl⟩ := h [GOAL] case intro M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : Monoid M s : Set M p : M → Prop H1 : p 1 Hmul : ∀ (x : M), x ∈ s → ∀ (y : M), p y → p (x * y) l : FreeMonoid { x // x ∈ s } ⊢ p (↑(↑FreeMonoid.lift Subtype.val) l) [PROOFSTEP] induction' l using FreeMonoid.recOn with x y ih [GOAL] case intro.h0 M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : Monoid M s : Set M p : M → Prop H1 : p 1 Hmul : ∀ (x : M), x ∈ s → ∀ (y : M), p y → p (x * y) ⊢ p (↑(↑FreeMonoid.lift Subtype.val) 1) [PROOFSTEP] exact H1 [GOAL] case intro.ih M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : Monoid M s : Set M p : M → Prop H1 : p 1 Hmul : ∀ (x : M), x ∈ s → ∀ (y : M), p y → p (x * y) x : { x // x ∈ s } y : FreeMonoid { x // x ∈ s } ih : p (↑(↑FreeMonoid.lift Subtype.val) y) ⊢ p (↑(↑FreeMonoid.lift Subtype.val) (FreeMonoid.of x * y)) [PROOFSTEP] simpa only [map_mul, FreeMonoid.lift_eval_of] using Hmul _ x.prop _ ih [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : Monoid M s : Set M p : M → Prop hs : closure s = ⊤ x : M H1 : p 1 Hmul : ∀ (x : M), x ∈ s → ∀ (y : M), p y → p (x * y) ⊢ x ∈ closure s [PROOFSTEP] rw [hs] [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : Monoid M s : Set M p : M → Prop hs : closure s = ⊤ x : M H1 : p 1 Hmul : ∀ (x : M), x ∈ s → ∀ (y : M), p y → p (x * y) ⊢ x ∈ ⊤ [PROOFSTEP] exact mem_top _ [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : Monoid M s : Set M p : M → Prop hs : closure s = ⊤ x : M H1 : p 1 Hmul : ∀ (x y : M), y ∈ s → p x → p (x * y) ⊢ x ∈ closure s [PROOFSTEP] rw [hs] [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : Monoid M s : Set M p : M → Prop hs : closure s = ⊤ x : M H1 : p 1 Hmul : ∀ (x y : M), y ∈ s → p x → p (x * y) ⊢ x ∈ ⊤ [PROOFSTEP] exact mem_top _ [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : Monoid M n✝ n : M i : ℕ ⊢ (fun x x_1 => x ^ x_1) n✝ i = n ↔ ↑(↑(powersHom M) n✝) i = n [PROOFSTEP] simp [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : Monoid M n✝ n : M i : ℕ ⊢ n✝ ^ i = n ↔ n✝ ^ ↑Multiplicative.toAdd i = n [PROOFSTEP] rfl [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : Monoid M n : M ⊢ powers n = closure {n} [PROOFSTEP] ext [GOAL] case h M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : Monoid M n x✝ : M ⊢ x✝ ∈ powers n ↔ x✝ ∈ closure {n} [PROOFSTEP] exact mem_closure_singleton.symm [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝¹ : Monoid M inst✝ : DecidableEq M n : M h : Function.Injective fun m => n ^ m x✝¹ x✝ : Multiplicative ℕ ⊢ Equiv.toFun { toFun := fun m => pow n (↑Multiplicative.toAdd m), invFun := fun m => ↑Multiplicative.ofAdd (log m), left_inv := (_ : ∀ (m : ℕ), log (pow n m) = m), right_inv := (_ : ∀ (p : { x // x ∈ powers n }), pow n (log p) = p) } (x✝¹ * x✝) = Equiv.toFun { toFun := fun m => pow n (↑Multiplicative.toAdd m), invFun := fun m => ↑Multiplicative.ofAdd (log m), left_inv := (_ : ∀ (m : ℕ), log (pow n m) = m), right_inv := (_ : ∀ (p : { x // x ∈ powers n }), pow n (log p) = p) } x✝¹ * Equiv.toFun { toFun := fun m => pow n (↑Multiplicative.toAdd m), invFun := fun m => ↑Multiplicative.ofAdd (log m), left_inv := (_ : ∀ (m : ℕ), log (pow n m) = m), right_inv := (_ : ∀ (p : { x // x ∈ powers n }), pow n (log p) = p) } x✝ [PROOFSTEP] simp only [pow, map_mul, ofAdd_add, toAdd_mul] [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝² : Monoid M N : Type u_4 F : Type u_5 inst✝¹ : Monoid N inst✝ : MonoidHomClass F M N f : F m : M ⊢ map f (powers m) = powers (↑f m) [PROOFSTEP] simp only [powers_eq_closure, map_mclosure f, Set.image_singleton] [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : Monoid M s : Set M hcomm : ∀ (a : M), a ∈ s → ∀ (b : M), b ∈ s → a * b = b * a src✝ : Monoid { x // x ∈ closure s } := toMonoid (closure s) x y : { x // x ∈ closure s } ⊢ x * y = y * x [PROOFSTEP] ext [GOAL] case a M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : Monoid M s : Set M hcomm : ∀ (a : M), a ∈ s → ∀ (b : M), b ∈ s → a * b = b * a src✝ : Monoid { x // x ∈ closure s } := toMonoid (closure s) x y : { x // x ∈ closure s } ⊢ ↑(x * y) = ↑(y * x) [PROOFSTEP] simp only [Submonoid.coe_mul] [GOAL] case a M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : Monoid M s : Set M hcomm : ∀ (a : M), a ∈ s → ∀ (b : M), b ∈ s → a * b = b * a src✝ : Monoid { x // x ∈ closure s } := toMonoid (closure s) x y : { x // x ∈ closure s } ⊢ ↑x * ↑y = ↑y * ↑x [PROOFSTEP] exact closure_induction₂ x.prop y.prop hcomm Commute.one_left Commute.one_right (fun x y z => Commute.mul_left) fun x y z => Commute.mul_right [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 N : Type u_4 α : Type u_5 inst✝³ : Monoid M inst✝² : MulAction M N inst✝¹ : SMul N α inst✝ : MulAction M α s : Set M htop : Submonoid.closure s = ⊤ hs : ∀ (x : M), x ∈ s → ∀ (y : N) (z : α), (x • y) • z = x • y • z ⊢ IsScalarTower M N α [PROOFSTEP] refine' ⟨fun x => Submonoid.induction_of_closure_eq_top_left htop x _ _⟩ [GOAL] case refine'_1 M : Type u_1 A : Type u_2 B : Type u_3 N : Type u_4 α : Type u_5 inst✝³ : Monoid M inst✝² : MulAction M N inst✝¹ : SMul N α inst✝ : MulAction M α s : Set M htop : Submonoid.closure s = ⊤ hs : ∀ (x : M), x ∈ s → ∀ (y : N) (z : α), (x • y) • z = x • y • z x : M ⊢ ∀ (y : N) (z : α), (1 • y) • z = 1 • y • z [PROOFSTEP] intro y z [GOAL] case refine'_1 M : Type u_1 A : Type u_2 B : Type u_3 N : Type u_4 α : Type u_5 inst✝³ : Monoid M inst✝² : MulAction M N inst✝¹ : SMul N α inst✝ : MulAction M α s : Set M htop : Submonoid.closure s = ⊤ hs : ∀ (x : M), x ∈ s → ∀ (y : N) (z : α), (x • y) • z = x • y • z x : M y : N z : α ⊢ (1 • y) • z = 1 • y • z [PROOFSTEP] rw [one_smul, one_smul] [GOAL] case refine'_2 M : Type u_1 A : Type u_2 B : Type u_3 N : Type u_4 α : Type u_5 inst✝³ : Monoid M inst✝² : MulAction M N inst✝¹ : SMul N α inst✝ : MulAction M α s : Set M htop : Submonoid.closure s = ⊤ hs : ∀ (x : M), x ∈ s → ∀ (y : N) (z : α), (x • y) • z = x • y • z x : M ⊢ ∀ (x : M), x ∈ s → ∀ (y : M), (∀ (y_1 : N) (z : α), (y • y_1) • z = y • y_1 • z) → ∀ (y_1 : N) (z : α), ((x * y) • y_1) • z = (x * y) • y_1 • z [PROOFSTEP] clear x [GOAL] case refine'_2 M : Type u_1 A : Type u_2 B : Type u_3 N : Type u_4 α : Type u_5 inst✝³ : Monoid M inst✝² : MulAction M N inst✝¹ : SMul N α inst✝ : MulAction M α s : Set M htop : Submonoid.closure s = ⊤ hs : ∀ (x : M), x ∈ s → ∀ (y : N) (z : α), (x • y) • z = x • y • z ⊢ ∀ (x : M), x ∈ s → ∀ (y : M), (∀ (y_1 : N) (z : α), (y • y_1) • z = y • y_1 • z) → ∀ (y_1 : N) (z : α), ((x * y) • y_1) • z = (x * y) • y_1 • z [PROOFSTEP] intro x hx x' hx' y z [GOAL] case refine'_2 M : Type u_1 A : Type u_2 B : Type u_3 N : Type u_4 α : Type u_5 inst✝³ : Monoid M inst✝² : MulAction M N inst✝¹ : SMul N α inst✝ : MulAction M α s : Set M htop : Submonoid.closure s = ⊤ hs : ∀ (x : M), x ∈ s → ∀ (y : N) (z : α), (x • y) • z = x • y • z x : M hx : x ∈ s x' : M hx' : ∀ (y : N) (z : α), (x' • y) • z = x' • y • z y : N z : α ⊢ ((x * x') • y) • z = (x * x') • y • z [PROOFSTEP] rw [mul_smul, mul_smul, hs x hx, hx'] [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 N : Type u_4 α : Type u_5 inst✝² : Monoid M inst✝¹ : SMul N α inst✝ : MulAction M α s : Set M htop : Submonoid.closure s = ⊤ hs : ∀ (x : M), x ∈ s → ∀ (y : N) (z : α), x • y • z = y • x • z ⊢ SMulCommClass M N α [PROOFSTEP] refine' ⟨fun x => Submonoid.induction_of_closure_eq_top_left htop x _ _⟩ [GOAL] case refine'_1 M : Type u_1 A : Type u_2 B : Type u_3 N : Type u_4 α : Type u_5 inst✝² : Monoid M inst✝¹ : SMul N α inst✝ : MulAction M α s : Set M htop : Submonoid.closure s = ⊤ hs : ∀ (x : M), x ∈ s → ∀ (y : N) (z : α), x • y • z = y • x • z x : M ⊢ ∀ (n : N) (a : α), 1 • n • a = n • 1 • a [PROOFSTEP] intro y z [GOAL] case refine'_1 M : Type u_1 A : Type u_2 B : Type u_3 N : Type u_4 α : Type u_5 inst✝² : Monoid M inst✝¹ : SMul N α inst✝ : MulAction M α s : Set M htop : Submonoid.closure s = ⊤ hs : ∀ (x : M), x ∈ s → ∀ (y : N) (z : α), x • y • z = y • x • z x : M y : N z : α ⊢ 1 • y • z = y • 1 • z [PROOFSTEP] rw [one_smul, one_smul] [GOAL] case refine'_2 M : Type u_1 A : Type u_2 B : Type u_3 N : Type u_4 α : Type u_5 inst✝² : Monoid M inst✝¹ : SMul N α inst✝ : MulAction M α s : Set M htop : Submonoid.closure s = ⊤ hs : ∀ (x : M), x ∈ s → ∀ (y : N) (z : α), x • y • z = y • x • z x : M ⊢ ∀ (x : M), x ∈ s → ∀ (y : M), (∀ (n : N) (a : α), y • n • a = n • y • a) → ∀ (n : N) (a : α), (x * y) • n • a = n • (x * y) • a [PROOFSTEP] clear x [GOAL] case refine'_2 M : Type u_1 A : Type u_2 B : Type u_3 N : Type u_4 α : Type u_5 inst✝² : Monoid M inst✝¹ : SMul N α inst✝ : MulAction M α s : Set M htop : Submonoid.closure s = ⊤ hs : ∀ (x : M), x ∈ s → ∀ (y : N) (z : α), x • y • z = y • x • z ⊢ ∀ (x : M), x ∈ s → ∀ (y : M), (∀ (n : N) (a : α), y • n • a = n • y • a) → ∀ (n : N) (a : α), (x * y) • n • a = n • (x * y) • a [PROOFSTEP] intro x hx x' hx' y z [GOAL] case refine'_2 M : Type u_1 A : Type u_2 B : Type u_3 N : Type u_4 α : Type u_5 inst✝² : Monoid M inst✝¹ : SMul N α inst✝ : MulAction M α s : Set M htop : Submonoid.closure s = ⊤ hs : ∀ (x : M), x ∈ s → ∀ (y : N) (z : α), x • y • z = y • x • z x : M hx : x ∈ s x' : M hx' : ∀ (n : N) (a : α), x' • n • a = n • x' • a y : N z : α ⊢ (x * x') • y • z = y • (x * x') • z [PROOFSTEP] rw [mul_smul, mul_smul, hx', hs x hx] [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 N : Type u_4 inst✝ : CommMonoid N s t : Submonoid N ⊢ s ⊔ t = mrange (coprod (subtype s) (subtype t)) [PROOFSTEP] rw [mrange_eq_map, ← mrange_inl_sup_mrange_inr, map_sup, map_mrange, coprod_comp_inl, map_mrange, coprod_comp_inr, range_subtype, range_subtype] [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 N : Type u_4 inst✝ : CommMonoid N s t : Submonoid N x : N ⊢ x ∈ s ⊔ t ↔ ∃ y, y ∈ s ∧ ∃ z, z ∈ t ∧ y * z = x [PROOFSTEP] simp only [ge_iff_le, sup_eq_range, mem_mrange, coprod_apply, coe_subtype, Prod.exists, Subtype.exists, exists_prop] [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : AddMonoid A x y : A ⊢ y ∈ closure {x} ↔ ∃ n, n • x = y [PROOFSTEP] rw [closure_singleton_eq, AddMonoidHom.mem_mrange] [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : AddMonoid A x y : A ⊢ (∃ x_1, ↑(↑(multiplesHom A) x) x_1 = y) ↔ ∃ n, n • x = y [PROOFSTEP] rfl [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : AddMonoid A ⊢ closure {0} = ⊥ [PROOFSTEP] simp [eq_bot_iff_forall, mem_closure_singleton, nsmul_zero] [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : AddMonoid A x n : A i : ℕ ⊢ (fun i => i • x) i = n ↔ ↑(↑(multiplesHom A) x) i = n [PROOFSTEP] simp [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 R : Type u_4 inst✝² : NonUnitalNonAssocSemiring R inst✝¹ : SetLike M R inst✝ : MulMemClass M R S : M a b : R ha : a ∈ AddSubmonoid.closure ↑S hb : b ∈ S ⊢ a * b ∈ AddSubmonoid.closure ↑S [PROOFSTEP] revert b [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 R : Type u_4 inst✝² : NonUnitalNonAssocSemiring R inst✝¹ : SetLike M R inst✝ : MulMemClass M R S : M a : R ha : a ∈ AddSubmonoid.closure ↑S ⊢ ∀ {b : R}, b ∈ S → a * b ∈ AddSubmonoid.closure ↑S [PROOFSTEP] refine' @AddSubmonoid.closure_induction _ _ _ (fun z => ∀ (b : R), b ∈ S → z * b ∈ AddSubmonoid.closure S) _ ha _ _ _ [GOAL] case refine'_1 M : Type u_1 A : Type u_2 B : Type u_3 R : Type u_4 inst✝² : NonUnitalNonAssocSemiring R inst✝¹ : SetLike M R inst✝ : MulMemClass M R S : M a : R ha : a ∈ AddSubmonoid.closure ↑S ⊢ ∀ (x : R), x ∈ ↑S → (fun z => ∀ (b : R), b ∈ S → z * b ∈ AddSubmonoid.closure ↑S) x [PROOFSTEP] clear ha a [GOAL] case refine'_2 M : Type u_1 A : Type u_2 B : Type u_3 R : Type u_4 inst✝² : NonUnitalNonAssocSemiring R inst✝¹ : SetLike M R inst✝ : MulMemClass M R S : M a : R ha : a ∈ AddSubmonoid.closure ↑S ⊢ (fun z => ∀ (b : R), b ∈ S → z * b ∈ AddSubmonoid.closure ↑S) 0 [PROOFSTEP] clear ha a [GOAL] case refine'_3 M : Type u_1 A : Type u_2 B : Type u_3 R : Type u_4 inst✝² : NonUnitalNonAssocSemiring R inst✝¹ : SetLike M R inst✝ : MulMemClass M R S : M a : R ha : a ∈ AddSubmonoid.closure ↑S ⊢ ∀ (x y : R), (fun z => ∀ (b : R), b ∈ S → z * b ∈ AddSubmonoid.closure ↑S) x → (fun z => ∀ (b : R), b ∈ S → z * b ∈ AddSubmonoid.closure ↑S) y → (fun z => ∀ (b : R), b ∈ S → z * b ∈ AddSubmonoid.closure ↑S) (x + y) [PROOFSTEP] clear ha a [GOAL] case refine'_1 M : Type u_1 A : Type u_2 B : Type u_3 R : Type u_4 inst✝² : NonUnitalNonAssocSemiring R inst✝¹ : SetLike M R inst✝ : MulMemClass M R S : M ⊢ ∀ (x : R), x ∈ ↑S → (fun z => ∀ (b : R), b ∈ S → z * b ∈ AddSubmonoid.closure ↑S) x [PROOFSTEP] exact fun r hr b hb => AddSubmonoid.mem_closure.mpr fun y hy => hy (mul_mem hr hb) [GOAL] case refine'_2 M : Type u_1 A : Type u_2 B : Type u_3 R : Type u_4 inst✝² : NonUnitalNonAssocSemiring R inst✝¹ : SetLike M R inst✝ : MulMemClass M R S : M ⊢ (fun z => ∀ (b : R), b ∈ S → z * b ∈ AddSubmonoid.closure ↑S) 0 [PROOFSTEP] exact fun b _ => by simp only [zero_mul, (AddSubmonoid.closure (S : Set R)).zero_mem] [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 R : Type u_4 inst✝² : NonUnitalNonAssocSemiring R inst✝¹ : SetLike M R inst✝ : MulMemClass M R S : M b : R x✝ : b ∈ S ⊢ 0 * b ∈ AddSubmonoid.closure ↑S [PROOFSTEP] simp only [zero_mul, (AddSubmonoid.closure (S : Set R)).zero_mem] [GOAL] case refine'_3 M : Type u_1 A : Type u_2 B : Type u_3 R : Type u_4 inst✝² : NonUnitalNonAssocSemiring R inst✝¹ : SetLike M R inst✝ : MulMemClass M R S : M ⊢ ∀ (x y : R), (fun z => ∀ (b : R), b ∈ S → z * b ∈ AddSubmonoid.closure ↑S) x → (fun z => ∀ (b : R), b ∈ S → z * b ∈ AddSubmonoid.closure ↑S) y → (fun z => ∀ (b : R), b ∈ S → z * b ∈ AddSubmonoid.closure ↑S) (x + y) [PROOFSTEP] simp_rw [add_mul] [GOAL] case refine'_3 M : Type u_1 A : Type u_2 B : Type u_3 R : Type u_4 inst✝² : NonUnitalNonAssocSemiring R inst✝¹ : SetLike M R inst✝ : MulMemClass M R S : M ⊢ ∀ (x y : R), (∀ (b : R), b ∈ S → x * b ∈ AddSubmonoid.closure ↑S) → (∀ (b : R), b ∈ S → y * b ∈ AddSubmonoid.closure ↑S) → ∀ (b : R), b ∈ S → x * b + y * b ∈ AddSubmonoid.closure ↑S [PROOFSTEP] exact fun r s hr hs b hb => (AddSubmonoid.closure (S : Set R)).add_mem (hr _ hb) (hs _ hb) [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 R : Type u_4 inst✝² : NonUnitalNonAssocSemiring R inst✝¹ : SetLike M R inst✝ : MulMemClass M R S : M a b : R ha : a ∈ AddSubmonoid.closure ↑S hb : b ∈ AddSubmonoid.closure ↑S ⊢ a * b ∈ AddSubmonoid.closure ↑S [PROOFSTEP] revert a [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 R : Type u_4 inst✝² : NonUnitalNonAssocSemiring R inst✝¹ : SetLike M R inst✝ : MulMemClass M R S : M b : R hb : b ∈ AddSubmonoid.closure ↑S ⊢ ∀ {a : R}, a ∈ AddSubmonoid.closure ↑S → a * b ∈ AddSubmonoid.closure ↑S [PROOFSTEP] refine' @AddSubmonoid.closure_induction _ _ _ (fun z => ∀ {a : R}, a ∈ AddSubmonoid.closure ↑S → a * z ∈ AddSubmonoid.closure ↑S) _ hb _ _ _ [GOAL] case refine'_1 M : Type u_1 A : Type u_2 B : Type u_3 R : Type u_4 inst✝² : NonUnitalNonAssocSemiring R inst✝¹ : SetLike M R inst✝ : MulMemClass M R S : M b : R hb : b ∈ AddSubmonoid.closure ↑S ⊢ ∀ (x : R), x ∈ ↑S → (fun z => ∀ {a : R}, a ∈ AddSubmonoid.closure ↑S → a * z ∈ AddSubmonoid.closure ↑S) x [PROOFSTEP] clear hb b [GOAL] case refine'_2 M : Type u_1 A : Type u_2 B : Type u_3 R : Type u_4 inst✝² : NonUnitalNonAssocSemiring R inst✝¹ : SetLike M R inst✝ : MulMemClass M R S : M b : R hb : b ∈ AddSubmonoid.closure ↑S ⊢ (fun z => ∀ {a : R}, a ∈ AddSubmonoid.closure ↑S → a * z ∈ AddSubmonoid.closure ↑S) 0 [PROOFSTEP] clear hb b [GOAL] case refine'_3 M : Type u_1 A : Type u_2 B : Type u_3 R : Type u_4 inst✝² : NonUnitalNonAssocSemiring R inst✝¹ : SetLike M R inst✝ : MulMemClass M R S : M b : R hb : b ∈ AddSubmonoid.closure ↑S ⊢ ∀ (x y : R), (fun z => ∀ {a : R}, a ∈ AddSubmonoid.closure ↑S → a * z ∈ AddSubmonoid.closure ↑S) x → (fun z => ∀ {a : R}, a ∈ AddSubmonoid.closure ↑S → a * z ∈ AddSubmonoid.closure ↑S) y → (fun z => ∀ {a : R}, a ∈ AddSubmonoid.closure ↑S → a * z ∈ AddSubmonoid.closure ↑S) (x + y) [PROOFSTEP] clear hb b [GOAL] case refine'_1 M : Type u_1 A : Type u_2 B : Type u_3 R : Type u_4 inst✝² : NonUnitalNonAssocSemiring R inst✝¹ : SetLike M R inst✝ : MulMemClass M R S : M ⊢ ∀ (x : R), x ∈ ↑S → (fun z => ∀ {a : R}, a ∈ AddSubmonoid.closure ↑S → a * z ∈ AddSubmonoid.closure ↑S) x [PROOFSTEP] exact fun r hr b hb => MulMemClass.mul_right_mem_add_closure hb hr [GOAL] case refine'_2 M : Type u_1 A : Type u_2 B : Type u_3 R : Type u_4 inst✝² : NonUnitalNonAssocSemiring R inst✝¹ : SetLike M R inst✝ : MulMemClass M R S : M ⊢ (fun z => ∀ {a : R}, a ∈ AddSubmonoid.closure ↑S → a * z ∈ AddSubmonoid.closure ↑S) 0 [PROOFSTEP] exact fun _ => by simp only [mul_zero, (AddSubmonoid.closure (S : Set R)).zero_mem] [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 R : Type u_4 inst✝² : NonUnitalNonAssocSemiring R inst✝¹ : SetLike M R inst✝ : MulMemClass M R S : M a✝ : R x✝ : a✝ ∈ AddSubmonoid.closure ↑S ⊢ a✝ * 0 ∈ AddSubmonoid.closure ↑S [PROOFSTEP] simp only [mul_zero, (AddSubmonoid.closure (S : Set R)).zero_mem] [GOAL] case refine'_3 M : Type u_1 A : Type u_2 B : Type u_3 R : Type u_4 inst✝² : NonUnitalNonAssocSemiring R inst✝¹ : SetLike M R inst✝ : MulMemClass M R S : M ⊢ ∀ (x y : R), (fun z => ∀ {a : R}, a ∈ AddSubmonoid.closure ↑S → a * z ∈ AddSubmonoid.closure ↑S) x → (fun z => ∀ {a : R}, a ∈ AddSubmonoid.closure ↑S → a * z ∈ AddSubmonoid.closure ↑S) y → (fun z => ∀ {a : R}, a ∈ AddSubmonoid.closure ↑S → a * z ∈ AddSubmonoid.closure ↑S) (x + y) [PROOFSTEP] simp_rw [mul_add] [GOAL] case refine'_3 M : Type u_1 A : Type u_2 B : Type u_3 R : Type u_4 inst✝² : NonUnitalNonAssocSemiring R inst✝¹ : SetLike M R inst✝ : MulMemClass M R S : M ⊢ ∀ (x y : R), (∀ {a : R}, a ∈ AddSubmonoid.closure ↑S → a * x ∈ AddSubmonoid.closure ↑S) → (∀ {a : R}, a ∈ AddSubmonoid.closure ↑S → a * y ∈ AddSubmonoid.closure ↑S) → ∀ {a : R}, a ∈ AddSubmonoid.closure ↑S → a * x + a * y ∈ AddSubmonoid.closure ↑S [PROOFSTEP] exact fun r s hr hs b hb => (AddSubmonoid.closure (S : Set R)).add_mem (hr hb) (hs hb) [GOAL] M : Type u_1 A✝ : Type u_2 B : Type u_3 A : Type u_4 inst✝ : CommMonoid A a b c : A ⊢ c ∈ closure {a, b} ↔ ∃ m n, a ^ m * b ^ n = c [PROOFSTEP] rw [← Set.singleton_union, Submonoid.closure_union, mem_sup] [GOAL] M : Type u_1 A✝ : Type u_2 B : Type u_3 A : Type u_4 inst✝ : CommMonoid A a b c : A ⊢ (∃ y, y ∈ closure {a} ∧ ∃ z, z ∈ closure {b} ∧ y * z = c) ↔ ∃ m n, a ^ m * b ^ n = c [PROOFSTEP] simp_rw [mem_closure_singleton, exists_exists_eq_and] [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : Monoid M x : M ⊢ ↑Additive.ofMul '' ↑(Submonoid.powers x) = ↑(AddSubmonoid.multiples (↑Additive.ofMul x)) [PROOFSTEP] ext [GOAL] case h M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : Monoid M x : M x✝ : Additive M ⊢ x✝ ∈ ↑Additive.ofMul '' ↑(Submonoid.powers x) ↔ x✝ ∈ ↑(AddSubmonoid.multiples (↑Additive.ofMul x)) [PROOFSTEP] constructor [GOAL] case h.mp M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : Monoid M x : M x✝ : Additive M ⊢ x✝ ∈ ↑Additive.ofMul '' ↑(Submonoid.powers x) → x✝ ∈ ↑(AddSubmonoid.multiples (↑Additive.ofMul x)) [PROOFSTEP] rintro ⟨y, ⟨n, hy1⟩, hy2⟩ [GOAL] case h.mp.intro.intro.intro M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : Monoid M x : M x✝ : Additive M y : M hy2 : ↑Additive.ofMul y = x✝ n : ℕ hy1 : (fun x x_1 => x ^ x_1) x n = y ⊢ x✝ ∈ ↑(AddSubmonoid.multiples (↑Additive.ofMul x)) [PROOFSTEP] use n [GOAL] case h M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : Monoid M x : M x✝ : Additive M y : M hy2 : ↑Additive.ofMul y = x✝ n : ℕ hy1 : (fun x x_1 => x ^ x_1) x n = y ⊢ (fun i => i • ↑Additive.ofMul x) n = x✝ [PROOFSTEP] simpa [← ofMul_pow, hy1] [GOAL] case h.mpr M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : Monoid M x : M x✝ : Additive M ⊢ x✝ ∈ ↑(AddSubmonoid.multiples (↑Additive.ofMul x)) → x✝ ∈ ↑Additive.ofMul '' ↑(Submonoid.powers x) [PROOFSTEP] rintro ⟨n, hn⟩ [GOAL] case h.mpr.intro M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : Monoid M x : M x✝ : Additive M n : ℕ hn : (fun i => i • ↑Additive.ofMul x) n = x✝ ⊢ x✝ ∈ ↑Additive.ofMul '' ↑(Submonoid.powers x) [PROOFSTEP] refine' ⟨x ^ n, ⟨n, rfl⟩, _⟩ [GOAL] case h.mpr.intro M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : Monoid M x : M x✝ : Additive M n : ℕ hn : (fun i => i • ↑Additive.ofMul x) n = x✝ ⊢ ↑Additive.ofMul (x ^ n) = x✝ [PROOFSTEP] rwa [ofMul_pow] [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : AddMonoid A x : A ⊢ ↑Multiplicative.ofAdd '' ↑(AddSubmonoid.multiples x) = ↑(Submonoid.powers (↑Multiplicative.ofAdd x)) [PROOFSTEP] symm [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : AddMonoid A x : A ⊢ ↑(Submonoid.powers (↑Multiplicative.ofAdd x)) = ↑Multiplicative.ofAdd '' ↑(AddSubmonoid.multiples x) [PROOFSTEP] rw [Equiv.eq_image_iff_symm_image_eq] [GOAL] M : Type u_1 A : Type u_2 B : Type u_3 inst✝ : AddMonoid A x : A ⊢ ↑Multiplicative.ofAdd.symm '' ↑(Submonoid.powers (↑Multiplicative.ofAdd x)) = ↑(AddSubmonoid.multiples x) [PROOFSTEP] exact ofMul_image_powers_eq_multiples_ofMul
{"mathlib_filename": "Mathlib.GroupTheory.Submonoid.Membership", "llama_tokens": 21056}
[GOAL] n : ℕ ⊢ ∀ (a b c : DihedralGroup n), a * b * c = a * (b * c) [PROOFSTEP] rintro (a | a) (b | b) (c | c) [GOAL] case r.r.r n : ℕ a b c : ZMod n ⊢ r a * r b * r c = r a * (r b * r c) [PROOFSTEP] simp only [(· * ·), mul] [GOAL] case r.r.sr n : ℕ a b c : ZMod n ⊢ r a * r b * sr c = r a * (r b * sr c) [PROOFSTEP] simp only [(· * ·), mul] [GOAL] case r.sr.r n : ℕ a b c : ZMod n ⊢ r a * sr b * r c = r a * (sr b * r c) [PROOFSTEP] simp only [(· * ·), mul] [GOAL] case r.sr.sr n : ℕ a b c : ZMod n ⊢ r a * sr b * sr c = r a * (sr b * sr c) [PROOFSTEP] simp only [(· * ·), mul] [GOAL] case sr.r.r n : ℕ a b c : ZMod n ⊢ sr a * r b * r c = sr a * (r b * r c) [PROOFSTEP] simp only [(· * ·), mul] [GOAL] case sr.r.sr n : ℕ a b c : ZMod n ⊢ sr a * r b * sr c = sr a * (r b * sr c) [PROOFSTEP] simp only [(· * ·), mul] [GOAL] case sr.sr.r n : ℕ a b c : ZMod n ⊢ sr a * sr b * r c = sr a * (sr b * r c) [PROOFSTEP] simp only [(· * ·), mul] [GOAL] case sr.sr.sr n : ℕ a b c : ZMod n ⊢ sr a * sr b * sr c = sr a * (sr b * sr c) [PROOFSTEP] simp only [(· * ·), mul] [GOAL] case r.r.r n : ℕ a b c : ZMod n ⊢ r (a + b + c) = r (a + (b + c)) [PROOFSTEP] ring_nf [GOAL] case r.r.sr n : ℕ a b c : ZMod n ⊢ sr (c - (a + b)) = sr (c - b - a) [PROOFSTEP] ring_nf [GOAL] case r.sr.r n : ℕ a b c : ZMod n ⊢ sr (b - a + c) = sr (b + c - a) [PROOFSTEP] ring_nf [GOAL] case r.sr.sr n : ℕ a b c : ZMod n ⊢ r (c - (b - a)) = r (a + (c - b)) [PROOFSTEP] ring_nf [GOAL] case sr.r.r n : ℕ a b c : ZMod n ⊢ sr (a + b + c) = sr (a + (b + c)) [PROOFSTEP] ring_nf [GOAL] case sr.r.sr n : ℕ a b c : ZMod n ⊢ r (c - (a + b)) = r (c - b - a) [PROOFSTEP] ring_nf [GOAL] case sr.sr.r n : ℕ a b c : ZMod n ⊢ r (b - a + c) = r (b + c - a) [PROOFSTEP] ring_nf [GOAL] case sr.sr.sr n : ℕ a b c : ZMod n ⊢ sr (c - (b - a)) = sr (a + (c - b)) [PROOFSTEP] ring_nf [GOAL] n : ℕ ⊢ ∀ (a : DihedralGroup n), 1 * a = a [PROOFSTEP] rintro (a | a) [GOAL] case r n : ℕ a : ZMod n ⊢ 1 * r a = r a case sr n : ℕ a : ZMod n ⊢ 1 * sr a = sr a [PROOFSTEP] exact congr_arg r (zero_add a) [GOAL] case sr n : ℕ a : ZMod n ⊢ 1 * sr a = sr a [PROOFSTEP] exact congr_arg sr (sub_zero a) [GOAL] n : ℕ ⊢ ∀ (a : DihedralGroup n), a * 1 = a [PROOFSTEP] rintro (a | a) [GOAL] case r n : ℕ a : ZMod n ⊢ r a * 1 = r a case sr n : ℕ a : ZMod n ⊢ sr a * 1 = sr a [PROOFSTEP] exact congr_arg r (add_zero a) [GOAL] case sr n : ℕ a : ZMod n ⊢ sr a * 1 = sr a [PROOFSTEP] exact congr_arg sr (add_zero a) [GOAL] n : ℕ ⊢ ∀ (a : DihedralGroup n), a⁻¹ * a = 1 [PROOFSTEP] rintro (a | a) [GOAL] case r n : ℕ a : ZMod n ⊢ (r a)⁻¹ * r a = 1 case sr n : ℕ a : ZMod n ⊢ (sr a)⁻¹ * sr a = 1 [PROOFSTEP] exact congr_arg r (neg_add_self a) [GOAL] case sr n : ℕ a : ZMod n ⊢ (sr a)⁻¹ * sr a = 1 [PROOFSTEP] exact congr_arg r (sub_self a) [GOAL] n : ℕ ⊢ Function.LeftInverse (fun i => match i with | r j => Sum.inl j | sr j => Sum.inr j) fun i => match i with | Sum.inl j => r j | Sum.inr j => sr j [PROOFSTEP] rintro (x | x) [GOAL] case inl n : ℕ x : ZMod n ⊢ (fun i => match i with | r j => Sum.inl j | sr j => Sum.inr j) ((fun i => match i with | Sum.inl j => r j | Sum.inr j => sr j) (Sum.inl x)) = Sum.inl x [PROOFSTEP] rfl [GOAL] case inr n : ℕ x : ZMod n ⊢ (fun i => match i with | r j => Sum.inl j | sr j => Sum.inr j) ((fun i => match i with | Sum.inl j => r j | Sum.inr j => sr j) (Sum.inr x)) = Sum.inr x [PROOFSTEP] rfl [GOAL] n : ℕ ⊢ Function.RightInverse (fun i => match i with | r j => Sum.inl j | sr j => Sum.inr j) fun i => match i with | Sum.inl j => r j | Sum.inr j => sr j [PROOFSTEP] rintro (x | x) [GOAL] case r n : ℕ x : ZMod n ⊢ (fun i => match i with | Sum.inl j => r j | Sum.inr j => sr j) ((fun i => match i with | r j => Sum.inl j | sr j => Sum.inr j) (r x)) = r x [PROOFSTEP] rfl [GOAL] case sr n : ℕ x : ZMod n ⊢ (fun i => match i with | Sum.inl j => r j | Sum.inr j => sr j) ((fun i => match i with | r j => Sum.inl j | sr j => Sum.inr j) (sr x)) = sr x [PROOFSTEP] rfl [GOAL] n : ℕ ⊢ r 0 ≠ sr 0 [PROOFSTEP] simp_rw [ne_eq] [GOAL] n : ℕ inst✝ : NeZero n ⊢ Fintype.card (DihedralGroup n) = 2 * n [PROOFSTEP] rw [← Fintype.card_eq.mpr ⟨fintypeHelper⟩, Fintype.card_sum, ZMod.card, two_mul] [GOAL] n : ℕ ⊢ Nat.card (DihedralGroup n) = 2 * n [PROOFSTEP] cases n [GOAL] case zero ⊢ Nat.card (DihedralGroup Nat.zero) = 2 * Nat.zero [PROOFSTEP] rw [Nat.card_eq_zero_of_infinite] [GOAL] case succ n✝ : ℕ ⊢ Nat.card (DihedralGroup (Nat.succ n✝)) = 2 * Nat.succ n✝ [PROOFSTEP] rw [Nat.card_eq_fintype_card, card] [GOAL] n k : ℕ ⊢ r 1 ^ k = r ↑k [PROOFSTEP] induction' k with k IH [GOAL] case zero n : ℕ ⊢ r 1 ^ Nat.zero = r ↑Nat.zero [PROOFSTEP] rw [Nat.cast_zero] [GOAL] case zero n : ℕ ⊢ r 1 ^ Nat.zero = r 0 [PROOFSTEP] rfl [GOAL] case succ n k : ℕ IH : r 1 ^ k = r ↑k ⊢ r 1 ^ Nat.succ k = r ↑(Nat.succ k) [PROOFSTEP] rw [pow_succ, IH, r_mul_r] [GOAL] case succ n k : ℕ IH : r 1 ^ k = r ↑k ⊢ r (1 + ↑k) = r ↑(Nat.succ k) [PROOFSTEP] congr 1 [GOAL] case succ.e_a n k : ℕ IH : r 1 ^ k = r ↑k ⊢ 1 + ↑k = ↑(Nat.succ k) [PROOFSTEP] norm_cast [GOAL] case succ.e_a n k : ℕ IH : r 1 ^ k = r ↑k ⊢ ↑(1 + k) = ↑(Nat.succ k) [PROOFSTEP] rw [Nat.one_add] [GOAL] n : ℕ ⊢ r 1 ^ n = 1 [PROOFSTEP] rw [r_one_pow, one_def] [GOAL] n : ℕ ⊢ r ↑n = r 0 [PROOFSTEP] congr 1 [GOAL] case e_a n : ℕ ⊢ ↑n = 0 [PROOFSTEP] exact ZMod.nat_cast_self _ [GOAL] n : ℕ i : ZMod n ⊢ sr i * sr i = 1 [PROOFSTEP] rw [sr_mul_sr, sub_self, one_def] [GOAL] n : ℕ i : ZMod n ⊢ orderOf (sr i) = 2 [PROOFSTEP] apply orderOf_eq_prime [GOAL] case hg n : ℕ i : ZMod n ⊢ sr i ^ 2 = 1 [PROOFSTEP] rw [sq, sr_mul_self] [GOAL] case hg1 n : ℕ i : ZMod n ⊢ sr i ≠ 1 [PROOFSTEP] revert n [GOAL] case hg1 ⊢ ∀ {n : ℕ} (i : ZMod n), sr i ≠ 1 [PROOFSTEP] simp_rw [one_def, ne_eq, forall_const] [GOAL] n : ℕ ⊢ orderOf (r 1) = n [PROOFSTEP] rcases eq_zero_or_neZero n with (rfl | hn) [GOAL] case inl ⊢ orderOf (r 1) = 0 [PROOFSTEP] rw [orderOf_eq_zero_iff'] [GOAL] case inl ⊢ ∀ (n : ℕ), 0 < n → r 1 ^ n ≠ 1 [PROOFSTEP] intro n hn [GOAL] case inl n : ℕ hn : 0 < n ⊢ r 1 ^ n ≠ 1 [PROOFSTEP] rw [r_one_pow, one_def] [GOAL] case inl n : ℕ hn : 0 < n ⊢ r ↑n ≠ r 0 [PROOFSTEP] apply mt r.inj [GOAL] case inl n : ℕ hn : 0 < n ⊢ ¬↑n = 0 [PROOFSTEP] simpa using hn.ne' [GOAL] case inr n : ℕ hn : NeZero n ⊢ orderOf (r 1) = n [PROOFSTEP] apply (Nat.le_of_dvd (NeZero.pos n) <| orderOf_dvd_of_pow_eq_one <| @r_one_pow_n n).lt_or_eq.resolve_left [GOAL] case inr n : ℕ hn : NeZero n ⊢ ¬orderOf (r 1) < n [PROOFSTEP] intro h [GOAL] case inr n : ℕ hn : NeZero n h : orderOf (r 1) < n ⊢ False [PROOFSTEP] have h1 : (r 1 : DihedralGroup n) ^ orderOf (r 1) = 1 := pow_orderOf_eq_one _ [GOAL] case inr n : ℕ hn : NeZero n h : orderOf (r 1) < n h1 : r 1 ^ orderOf (r 1) = 1 ⊢ False [PROOFSTEP] rw [r_one_pow] at h1 [GOAL] case inr n : ℕ hn : NeZero n h : orderOf (r 1) < n h1 : r ↑(orderOf (r 1)) = 1 ⊢ False [PROOFSTEP] injection h1 with h2 [GOAL] case inr n : ℕ hn : NeZero n h : orderOf (r 1) < n h2 : ↑(orderOf (r 1)) = 0 ⊢ False [PROOFSTEP] rw [← ZMod.val_eq_zero, ZMod.val_nat_cast, Nat.mod_eq_of_lt h] at h2 [GOAL] case inr n : ℕ hn : NeZero n h : orderOf (r 1) < n h2 : orderOf (r 1) = 0 ⊢ False [PROOFSTEP] exact absurd h2.symm (orderOf_pos _).ne [GOAL] n : ℕ inst✝ : NeZero n i : ZMod n ⊢ orderOf (r i) = n / Nat.gcd n (ZMod.val i) [PROOFSTEP] conv_lhs => rw [← ZMod.nat_cast_zmod_val i] [GOAL] n : ℕ inst✝ : NeZero n i : ZMod n | orderOf (r i) [PROOFSTEP] rw [← ZMod.nat_cast_zmod_val i] [GOAL] n : ℕ inst✝ : NeZero n i : ZMod n | orderOf (r i) [PROOFSTEP] rw [← ZMod.nat_cast_zmod_val i] [GOAL] n : ℕ inst✝ : NeZero n i : ZMod n | orderOf (r i) [PROOFSTEP] rw [← ZMod.nat_cast_zmod_val i] [GOAL] n : ℕ inst✝ : NeZero n i : ZMod n ⊢ orderOf (r ↑(ZMod.val i)) = n / Nat.gcd n (ZMod.val i) [PROOFSTEP] rw [← r_one_pow, orderOf_pow, orderOf_r_one] [GOAL] n : ℕ ⊢ Monoid.exponent (DihedralGroup n) = lcm n 2 [PROOFSTEP] rcases eq_zero_or_neZero n with (rfl | hn) [GOAL] case inl ⊢ Monoid.exponent (DihedralGroup 0) = lcm 0 2 [PROOFSTEP] exact Monoid.exponent_eq_zero_of_order_zero orderOf_r_one [GOAL] case inr n : ℕ hn : NeZero n ⊢ Monoid.exponent (DihedralGroup n) = lcm n 2 [PROOFSTEP] apply Nat.dvd_antisymm [GOAL] case inr.a n : ℕ hn : NeZero n ⊢ Monoid.exponent (DihedralGroup n) ∣ lcm n 2 [PROOFSTEP] apply Monoid.exponent_dvd_of_forall_pow_eq_one [GOAL] case inr.a.hG n : ℕ hn : NeZero n ⊢ ∀ (g : DihedralGroup n), g ^ lcm n 2 = 1 [PROOFSTEP] rintro (m | m) [GOAL] case inr.a.hG.r n : ℕ hn : NeZero n m : ZMod n ⊢ r m ^ lcm n 2 = 1 [PROOFSTEP] rw [← orderOf_dvd_iff_pow_eq_one, orderOf_r] [GOAL] case inr.a.hG.r n : ℕ hn : NeZero n m : ZMod n ⊢ n / Nat.gcd n (ZMod.val m) ∣ lcm n 2 [PROOFSTEP] refine' Nat.dvd_trans ⟨gcd n m.val, _⟩ (dvd_lcm_left n 2) [GOAL] case inr.a.hG.r n : ℕ hn : NeZero n m : ZMod n ⊢ n = n / Nat.gcd n (ZMod.val m) * gcd n (ZMod.val m) [PROOFSTEP] exact (Nat.div_mul_cancel (Nat.gcd_dvd_left n m.val)).symm [GOAL] case inr.a.hG.sr n : ℕ hn : NeZero n m : ZMod n ⊢ sr m ^ lcm n 2 = 1 [PROOFSTEP] rw [← orderOf_dvd_iff_pow_eq_one, orderOf_sr] [GOAL] case inr.a.hG.sr n : ℕ hn : NeZero n m : ZMod n ⊢ 2 ∣ lcm n 2 [PROOFSTEP] exact dvd_lcm_right n 2 [GOAL] case inr.a n : ℕ hn : NeZero n ⊢ lcm n 2 ∣ Monoid.exponent (DihedralGroup n) [PROOFSTEP] apply lcm_dvd [GOAL] case inr.a.hab n : ℕ hn : NeZero n ⊢ n ∣ Monoid.exponent (DihedralGroup n) [PROOFSTEP] convert Monoid.order_dvd_exponent (r (1 : ZMod n)) [GOAL] case h.e'_3 n : ℕ hn : NeZero n ⊢ n = orderOf (r 1) [PROOFSTEP] exact orderOf_r_one.symm [GOAL] case inr.a.hcb n : ℕ hn : NeZero n ⊢ 2 ∣ Monoid.exponent (DihedralGroup n) [PROOFSTEP] convert Monoid.order_dvd_exponent (sr (0 : ZMod n)) [GOAL] case h.e'_3 n : ℕ hn : NeZero n ⊢ 2 = orderOf (sr 0) [PROOFSTEP] exact (orderOf_sr 0).symm [GOAL] n : ℕ hn : Odd n u : (ZMod n)ˣ := ZMod.unitOfCoprime 2 (_ : Nat.coprime 2 n) hu : ∀ (a : ZMod n), a + a = 0 ↔ a = 0 i j : ZMod n h : Commute (r i, sr j).fst (r i, sr j).snd ⊢ (fun x => match x with | Sum.inl i => { val := (sr i, r 0), property := (_ : sr (i + 0) = sr (i - 0)) } | Sum.inr (Sum.inl j) => { val := (r 0, sr j), property := (_ : sr (j - 0) = sr (j + 0)) } | Sum.inr (Sum.inr (Sum.inl k)) => { val := (sr (↑u⁻¹ * k), sr (↑u⁻¹ * k)), property := (_ : (sr (↑u⁻¹ * k), sr (↑u⁻¹ * k)).fst * (sr (↑u⁻¹ * k), sr (↑u⁻¹ * k)).snd = (sr (↑u⁻¹ * k), sr (↑u⁻¹ * k)).fst * (sr (↑u⁻¹ * k), sr (↑u⁻¹ * k)).snd) } | Sum.inr (Sum.inr (Sum.inr (i, j))) => { val := (r i, r j), property := (_ : r (i + j) = r (j + i)) }) ((fun x => match x with | { val := (sr i, r a), property := property } => Sum.inl i | { val := (r a, sr j), property := property } => Sum.inr (Sum.inl j) | { val := (sr i, sr j), property := property } => Sum.inr (Sum.inr (Sum.inl (i + j))) | { val := (r i, r j), property := property } => Sum.inr (Sum.inr (Sum.inr (i, j)))) { val := (r i, sr j), property := h }) = { val := (r i, sr j), property := h } [PROOFSTEP] simpa [sub_eq_add_neg, neg_eq_iff_add_eq_zero, hu, eq_comm (a := i) (b := 0)] using h.eq [GOAL] n : ℕ hn : Odd n u : (ZMod n)ˣ := ZMod.unitOfCoprime 2 (_ : Nat.coprime 2 n) hu : ∀ (a : ZMod n), a + a = 0 ↔ a = 0 i j : ZMod n h : Commute (sr i, r j).fst (sr i, r j).snd ⊢ (fun x => match x with | Sum.inl i => { val := (sr i, r 0), property := (_ : sr (i + 0) = sr (i - 0)) } | Sum.inr (Sum.inl j) => { val := (r 0, sr j), property := (_ : sr (j - 0) = sr (j + 0)) } | Sum.inr (Sum.inr (Sum.inl k)) => { val := (sr (↑u⁻¹ * k), sr (↑u⁻¹ * k)), property := (_ : (sr (↑u⁻¹ * k), sr (↑u⁻¹ * k)).fst * (sr (↑u⁻¹ * k), sr (↑u⁻¹ * k)).snd = (sr (↑u⁻¹ * k), sr (↑u⁻¹ * k)).fst * (sr (↑u⁻¹ * k), sr (↑u⁻¹ * k)).snd) } | Sum.inr (Sum.inr (Sum.inr (i, j))) => { val := (r i, r j), property := (_ : r (i + j) = r (j + i)) }) ((fun x => match x with | { val := (sr i, r a), property := property } => Sum.inl i | { val := (r a, sr j), property := property } => Sum.inr (Sum.inl j) | { val := (sr i, sr j), property := property } => Sum.inr (Sum.inr (Sum.inl (i + j))) | { val := (r i, r j), property := property } => Sum.inr (Sum.inr (Sum.inr (i, j)))) { val := (sr i, r j), property := h }) = { val := (sr i, r j), property := h } [PROOFSTEP] simpa [sub_eq_add_neg, eq_neg_iff_add_eq_zero, hu, eq_comm (a := j) (b := 0)] using h.eq [GOAL] n : ℕ hn : Odd n u : (ZMod n)ˣ := ZMod.unitOfCoprime 2 (_ : Nat.coprime 2 n) hu : ∀ (a : ZMod n), a + a = 0 ↔ a = 0 i j : ZMod n h : Commute (sr i, sr j).fst (sr i, sr j).snd ⊢ (fun x => match x with | Sum.inl i => { val := (sr i, r 0), property := (_ : sr (i + 0) = sr (i - 0)) } | Sum.inr (Sum.inl j) => { val := (r 0, sr j), property := (_ : sr (j - 0) = sr (j + 0)) } | Sum.inr (Sum.inr (Sum.inl k)) => { val := (sr (↑u⁻¹ * k), sr (↑u⁻¹ * k)), property := (_ : (sr (↑u⁻¹ * k), sr (↑u⁻¹ * k)).fst * (sr (↑u⁻¹ * k), sr (↑u⁻¹ * k)).snd = (sr (↑u⁻¹ * k), sr (↑u⁻¹ * k)).fst * (sr (↑u⁻¹ * k), sr (↑u⁻¹ * k)).snd) } | Sum.inr (Sum.inr (Sum.inr (i, j))) => { val := (r i, r j), property := (_ : r (i + j) = r (j + i)) }) ((fun x => match x with | { val := (sr i, r a), property := property } => Sum.inl i | { val := (r a, sr j), property := property } => Sum.inr (Sum.inl j) | { val := (sr i, sr j), property := property } => Sum.inr (Sum.inr (Sum.inl (i + j))) | { val := (r i, r j), property := property } => Sum.inr (Sum.inr (Sum.inr (i, j)))) { val := (sr i, sr j), property := h }) = { val := (sr i, sr j), property := h } [PROOFSTEP] replace h := r.inj h [GOAL] n : ℕ hn : Odd n u : (ZMod n)ˣ := ZMod.unitOfCoprime 2 (_ : Nat.coprime 2 n) hu : ∀ (a : ZMod n), a + a = 0 ↔ a = 0 i j : ZMod n h✝ : Commute (sr i, sr j).fst (sr i, sr j).snd h : j - i = i - j ⊢ (fun x => match x with | Sum.inl i => { val := (sr i, r 0), property := (_ : sr (i + 0) = sr (i - 0)) } | Sum.inr (Sum.inl j) => { val := (r 0, sr j), property := (_ : sr (j - 0) = sr (j + 0)) } | Sum.inr (Sum.inr (Sum.inl k)) => { val := (sr (↑u⁻¹ * k), sr (↑u⁻¹ * k)), property := (_ : (sr (↑u⁻¹ * k), sr (↑u⁻¹ * k)).fst * (sr (↑u⁻¹ * k), sr (↑u⁻¹ * k)).snd = (sr (↑u⁻¹ * k), sr (↑u⁻¹ * k)).fst * (sr (↑u⁻¹ * k), sr (↑u⁻¹ * k)).snd) } | Sum.inr (Sum.inr (Sum.inr (i, j))) => { val := (r i, r j), property := (_ : r (i + j) = r (j + i)) }) ((fun x => match x with | { val := (sr i, r a), property := property } => Sum.inl i | { val := (r a, sr j), property := property } => Sum.inr (Sum.inl j) | { val := (sr i, sr j), property := property } => Sum.inr (Sum.inr (Sum.inl (i + j))) | { val := (r i, r j), property := property } => Sum.inr (Sum.inr (Sum.inr (i, j)))) { val := (sr i, sr j), property := h✝ }) = { val := (sr i, sr j), property := h✝ } [PROOFSTEP] rw [← neg_sub, neg_eq_iff_add_eq_zero, hu, sub_eq_zero] at h [GOAL] n : ℕ hn : Odd n u : (ZMod n)ˣ := ZMod.unitOfCoprime 2 (_ : Nat.coprime 2 n) hu : ∀ (a : ZMod n), a + a = 0 ↔ a = 0 i j : ZMod n h✝ : Commute (sr i, sr j).fst (sr i, sr j).snd h : i = j ⊢ (fun x => match x with | Sum.inl i => { val := (sr i, r 0), property := (_ : sr (i + 0) = sr (i - 0)) } | Sum.inr (Sum.inl j) => { val := (r 0, sr j), property := (_ : sr (j - 0) = sr (j + 0)) } | Sum.inr (Sum.inr (Sum.inl k)) => { val := (sr (↑u⁻¹ * k), sr (↑u⁻¹ * k)), property := (_ : (sr (↑u⁻¹ * k), sr (↑u⁻¹ * k)).fst * (sr (↑u⁻¹ * k), sr (↑u⁻¹ * k)).snd = (sr (↑u⁻¹ * k), sr (↑u⁻¹ * k)).fst * (sr (↑u⁻¹ * k), sr (↑u⁻¹ * k)).snd) } | Sum.inr (Sum.inr (Sum.inr (i, j))) => { val := (r i, r j), property := (_ : r (i + j) = r (j + i)) }) ((fun x => match x with | { val := (sr i, r a), property := property } => Sum.inl i | { val := (r a, sr j), property := property } => Sum.inr (Sum.inl j) | { val := (sr i, sr j), property := property } => Sum.inr (Sum.inr (Sum.inl (i + j))) | { val := (r i, r j), property := property } => Sum.inr (Sum.inr (Sum.inr (i, j)))) { val := (sr i, sr j), property := h✝ }) = { val := (sr i, sr j), property := h✝ } [PROOFSTEP] rw [Subtype.ext_iff, Prod.ext_iff, sr.injEq, sr.injEq, h, and_self, ← two_mul] [GOAL] n : ℕ hn : Odd n u : (ZMod n)ˣ := ZMod.unitOfCoprime 2 (_ : Nat.coprime 2 n) hu : ∀ (a : ZMod n), a + a = 0 ↔ a = 0 i j : ZMod n h✝ : Commute (sr i, sr j).fst (sr i, sr j).snd h : i = j ⊢ ↑u⁻¹ * (2 * j) = j [PROOFSTEP] exact u.inv_mul_cancel_left j [GOAL] n : ℕ hn : Odd n ⊢ Nat.card { p // Commute p.fst p.snd } = n * (n + 3) [PROOFSTEP] have hn' : NeZero n := ⟨hn.pos.ne'⟩ [GOAL] n : ℕ hn : Odd n hn' : NeZero n ⊢ Nat.card { p // Commute p.fst p.snd } = n * (n + 3) [PROOFSTEP] simp_rw [Nat.card_congr (OddCommuteEquiv hn), Nat.card_sum, Nat.card_prod, Nat.card_zmod] [GOAL] n : ℕ hn : Odd n hn' : NeZero n ⊢ n + (n + (n + n * n)) = n * (n + 3) [PROOFSTEP] ring [GOAL] n : ℕ hn : Odd n ⊢ Nat.card (ConjClasses (DihedralGroup n)) = (n + 3) / 2 [PROOFSTEP] rw [← Nat.mul_div_mul_left _ 2 hn.pos, ← card_commute_odd hn, mul_comm, card_comm_eq_card_conjClasses_mul_card, nat_card, Nat.mul_div_left _ (mul_pos two_pos hn.pos)]
{"mathlib_filename": "Mathlib.GroupTheory.SpecificGroups.Dihedral", "llama_tokens": 8950}
{"mathlib_filename": "Mathlib.GroupTheory.Subgroup.MulOpposite", "llama_tokens": 0}
[GOAL] α : Type u_1 f g h : Perm α ⊢ Disjoint f g → Disjoint g f [PROOFSTEP] simp only [Disjoint, or_comm, imp_self] [GOAL] α : Type u_1 f g h✝ : Perm α h : Disjoint f g x : α hf : ↑f x = x hg : ↑f (↑g x) = ↑g x ⊢ ↑(f * g) x = ↑(g * f) x [PROOFSTEP] simp [mul_apply, hf, hg] [GOAL] α : Type u_1 f g h✝ : Perm α h : Disjoint f g x : α hf : ↑f x = x hg : ↑g (↑g x) = ↑g x ⊢ ↑(f * g) x = ↑(g * f) x [PROOFSTEP] simp [mul_apply, hf, g.injective hg] [GOAL] α : Type u_1 f g h✝ : Perm α h : Disjoint f g x : α hg : ↑g x = x hf : ↑f (↑f x) = ↑f x ⊢ ↑(f * g) x = ↑(g * f) x [PROOFSTEP] simp [mul_apply, f.injective hf, hg] [GOAL] α : Type u_1 f g h✝ : Perm α h : Disjoint f g x : α hg : ↑g x = x hf : ↑g (↑f x) = ↑f x ⊢ ↑(f * g) x = ↑(g * f) x [PROOFSTEP] simp [mul_apply, hf, hg] [GOAL] α : Type u_1 f g h : Perm α ⊢ Disjoint f f ↔ f = 1 [PROOFSTEP] refine' ⟨fun h => _, fun h => h.symm ▸ disjoint_one_left 1⟩ [GOAL] α : Type u_1 f g h✝ : Perm α h : Disjoint f f ⊢ f = 1 [PROOFSTEP] ext x [GOAL] case H α : Type u_1 f g h✝ : Perm α h : Disjoint f f x : α ⊢ ↑f x = ↑1 x [PROOFSTEP] cases' h x with hx hx [GOAL] case H.inl α : Type u_1 f g h✝ : Perm α h : Disjoint f f x : α hx : ↑f x = x ⊢ ↑f x = ↑1 x [PROOFSTEP] simp [hx] [GOAL] case H.inr α : Type u_1 f g h✝ : Perm α h : Disjoint f f x : α hx : ↑f x = x ⊢ ↑f x = ↑1 x [PROOFSTEP] simp [hx] [GOAL] α : Type u_1 f g h✝ : Perm α h : Disjoint f g ⊢ Disjoint f⁻¹ g [PROOFSTEP] intro x [GOAL] α : Type u_1 f g h✝ : Perm α h : Disjoint f g x : α ⊢ ↑f⁻¹ x = x ∨ ↑g x = x [PROOFSTEP] rw [inv_eq_iff_eq, eq_comm] [GOAL] α : Type u_1 f g h✝ : Perm α h : Disjoint f g x : α ⊢ ↑f x = x ∨ ↑g x = x [PROOFSTEP] exact h x [GOAL] α : Type u_1 f g h : Perm α ⊢ Disjoint f⁻¹ g ↔ Disjoint f g [PROOFSTEP] refine' ⟨fun h => _, Disjoint.inv_left⟩ [GOAL] α : Type u_1 f g h✝ : Perm α h : Disjoint f⁻¹ g ⊢ Disjoint f g [PROOFSTEP] convert h.inv_left [GOAL] α : Type u_1 f g h : Perm α ⊢ Disjoint f g⁻¹ ↔ Disjoint f g [PROOFSTEP] rw [disjoint_comm, disjoint_inv_left_iff, disjoint_comm] [GOAL] α : Type u_1 f g h : Perm α H1 : Disjoint f h H2 : Disjoint g h x : α ⊢ ↑(f * g) x = x ∨ ↑h x = x [PROOFSTEP] cases H1 x [GOAL] case inl α : Type u_1 f g h : Perm α H1 : Disjoint f h H2 : Disjoint g h x : α h✝ : ↑f x = x ⊢ ↑(f * g) x = x ∨ ↑h x = x [PROOFSTEP] cases H2 x [GOAL] case inr α : Type u_1 f g h : Perm α H1 : Disjoint f h H2 : Disjoint g h x : α h✝ : ↑h x = x ⊢ ↑(f * g) x = x ∨ ↑h x = x [PROOFSTEP] cases H2 x [GOAL] case inl.inl α : Type u_1 f g h : Perm α H1 : Disjoint f h H2 : Disjoint g h x : α h✝¹ : ↑f x = x h✝ : ↑g x = x ⊢ ↑(f * g) x = x ∨ ↑h x = x [PROOFSTEP] simp [*] [GOAL] case inl.inr α : Type u_1 f g h : Perm α H1 : Disjoint f h H2 : Disjoint g h x : α h✝¹ : ↑f x = x h✝ : ↑h x = x ⊢ ↑(f * g) x = x ∨ ↑h x = x [PROOFSTEP] simp [*] [GOAL] case inr.inl α : Type u_1 f g h : Perm α H1 : Disjoint f h H2 : Disjoint g h x : α h✝¹ : ↑h x = x h✝ : ↑g x = x ⊢ ↑(f * g) x = x ∨ ↑h x = x [PROOFSTEP] simp [*] [GOAL] case inr.inr α : Type u_1 f g h : Perm α H1 : Disjoint f h H2 : Disjoint g h x : α h✝¹ h✝ : ↑h x = x ⊢ ↑(f * g) x = x ∨ ↑h x = x [PROOFSTEP] simp [*] [GOAL] α : Type u_1 f g h : Perm α H1 : Disjoint f g H2 : Disjoint f h ⊢ Disjoint f (g * h) [PROOFSTEP] rw [disjoint_comm] [GOAL] α : Type u_1 f g h : Perm α H1 : Disjoint f g H2 : Disjoint f h ⊢ Disjoint (g * h) f [PROOFSTEP] exact H1.symm.mul_left H2.symm [GOAL] α : Type u_1 f g h✝ h : Perm α x✝ : α ⊢ ↑(h * f * h⁻¹) x✝ = x✝ ∨ ↑(h * g * h⁻¹) x✝ = x✝ ↔ ↑f (↑h⁻¹ x✝) = ↑h⁻¹ x✝ ∨ ↑g (↑h⁻¹ x✝) = ↑h⁻¹ x✝ [PROOFSTEP] simp only [mul_apply, eq_inv_iff_eq] [GOAL] α : Type u_1 f g h✝ : Perm α l : List (Perm α) h : ∀ (g : Perm α), g ∈ l → Disjoint f g ⊢ Disjoint f (List.prod l) [PROOFSTEP] induction' l with g l ih [GOAL] case nil α : Type u_1 f g h✝¹ : Perm α l : List (Perm α) h✝ : ∀ (g : Perm α), g ∈ l → Disjoint f g h : ∀ (g : Perm α), g ∈ [] → Disjoint f g ⊢ Disjoint f (List.prod []) [PROOFSTEP] exact disjoint_one_right _ [GOAL] case cons α : Type u_1 f g✝ h✝¹ : Perm α l✝ : List (Perm α) h✝ : ∀ (g : Perm α), g ∈ l✝ → Disjoint f g g : Perm α l : List (Perm α) ih : (∀ (g : Perm α), g ∈ l → Disjoint f g) → Disjoint f (List.prod l) h : ∀ (g_1 : Perm α), g_1 ∈ g :: l → Disjoint f g_1 ⊢ Disjoint f (List.prod (g :: l)) [PROOFSTEP] rw [List.prod_cons] [GOAL] case cons α : Type u_1 f g✝ h✝¹ : Perm α l✝ : List (Perm α) h✝ : ∀ (g : Perm α), g ∈ l✝ → Disjoint f g g : Perm α l : List (Perm α) ih : (∀ (g : Perm α), g ∈ l → Disjoint f g) → Disjoint f (List.prod l) h : ∀ (g_1 : Perm α), g_1 ∈ g :: l → Disjoint f g_1 ⊢ Disjoint f (g * List.prod l) [PROOFSTEP] exact (h _ (List.mem_cons_self _ _)).mul_right (ih fun g hg => h g (List.mem_cons_of_mem _ hg)) [GOAL] α : Type u_1 f g h : Perm α l : List (Perm α) h1 : ¬1 ∈ l h2 : List.Pairwise Disjoint l ⊢ List.Nodup l [PROOFSTEP] refine' List.Pairwise.imp_of_mem _ h2 [GOAL] α : Type u_1 f g h : Perm α l : List (Perm α) h1 : ¬1 ∈ l h2 : List.Pairwise Disjoint l ⊢ ∀ {a b : Perm α}, a ∈ l → b ∈ l → Disjoint a b → a ≠ b [PROOFSTEP] intro τ σ h_mem _ h_disjoint _ [GOAL] α : Type u_1 f g h : Perm α l : List (Perm α) h1 : ¬1 ∈ l h2 : List.Pairwise Disjoint l τ σ : Perm α h_mem : τ ∈ l a✝¹ : σ ∈ l h_disjoint : Disjoint τ σ a✝ : τ = σ ⊢ False [PROOFSTEP] subst τ [GOAL] α : Type u_1 f g h : Perm α l : List (Perm α) h1 : ¬1 ∈ l h2 : List.Pairwise Disjoint l σ : Perm α a✝ h_mem : σ ∈ l h_disjoint : Disjoint σ σ ⊢ False [PROOFSTEP] suffices (σ : Perm α) = 1 by rw [this] at h_mem exact h1 h_mem [GOAL] α : Type u_1 f g h : Perm α l : List (Perm α) h1 : ¬1 ∈ l h2 : List.Pairwise Disjoint l σ : Perm α a✝ h_mem : σ ∈ l h_disjoint : Disjoint σ σ this : σ = 1 ⊢ False [PROOFSTEP] rw [this] at h_mem [GOAL] α : Type u_1 f g h : Perm α l : List (Perm α) h1 : ¬1 ∈ l h2 : List.Pairwise Disjoint l σ : Perm α a✝ : σ ∈ l h_mem : 1 ∈ l h_disjoint : Disjoint σ σ this : σ = 1 ⊢ False [PROOFSTEP] exact h1 h_mem [GOAL] α : Type u_1 f g h : Perm α l : List (Perm α) h1 : ¬1 ∈ l h2 : List.Pairwise Disjoint l σ : Perm α a✝ h_mem : σ ∈ l h_disjoint : Disjoint σ σ ⊢ σ = 1 [PROOFSTEP] exact ext fun a => (or_self_iff _).mp (h_disjoint a) [GOAL] α : Type u_1 f g h : Perm α x : α hfx : ↑f x = x n : ℕ ⊢ ↑(f ^ (n + 1)) x = x [PROOFSTEP] rw [pow_succ', mul_apply, hfx, pow_apply_eq_self_of_apply_eq_self hfx n] [GOAL] α : Type u_1 f g h : Perm α x : α hfx : ↑f x = x n : ℕ ⊢ ↑(f ^ Int.negSucc n) x = x [PROOFSTEP] rw [zpow_negSucc, inv_eq_iff_eq, pow_apply_eq_self_of_apply_eq_self hfx] [GOAL] α : Type u_1 f g h✝ : Perm α x : α hffx : ↑f (↑f x) = x n : ℕ h : ↑(f ^ n) x = x ⊢ ↑(f ^ (n + 1)) x = ↑f x [PROOFSTEP] rw [pow_succ, mul_apply, h] [GOAL] α : Type u_1 f g h✝ : Perm α x : α hffx : ↑f (↑f x) = x n : ℕ h : ↑(f ^ n) x = ↑f x ⊢ ↑(f ^ (n + 1)) x = x [PROOFSTEP] rw [pow_succ, mul_apply, h, hffx] [GOAL] α : Type u_1 f g h : Perm α x : α hffx : ↑f (↑f x) = x n : ℕ ⊢ ↑(f ^ Int.negSucc n) x = x ∨ ↑(f ^ Int.negSucc n) x = ↑f x [PROOFSTEP] rw [zpow_negSucc, inv_eq_iff_eq, ← f.injective.eq_iff, ← mul_apply, ← pow_succ, eq_comm, inv_eq_iff_eq, ← mul_apply, ← pow_succ', @eq_comm _ x, or_comm] [GOAL] α : Type u_1 f g h : Perm α x : α hffx : ↑f (↑f x) = x n : ℕ ⊢ ↑(f ^ (n + 1 + 1)) x = x ∨ ↑(f ^ (n + 1 + 1)) x = ↑f x [PROOFSTEP] exact pow_apply_eq_of_apply_apply_eq_self hffx _ [GOAL] α : Type u_1 f g h σ τ : Perm α hστ : Disjoint σ τ a : α ⊢ ↑(σ * τ) a = a ↔ ↑σ a = a ∧ ↑τ a = a [PROOFSTEP] refine' ⟨fun h => _, fun h => by rw [mul_apply, h.2, h.1]⟩ [GOAL] α : Type u_1 f g h✝ σ τ : Perm α hστ : Disjoint σ τ a : α h : ↑σ a = a ∧ ↑τ a = a ⊢ ↑(σ * τ) a = a [PROOFSTEP] rw [mul_apply, h.2, h.1] [GOAL] α : Type u_1 f g h✝ σ τ : Perm α hστ : Disjoint σ τ a : α h : ↑(σ * τ) a = a ⊢ ↑σ a = a ∧ ↑τ a = a [PROOFSTEP] cases' hστ a with hσ hτ [GOAL] case inl α : Type u_1 f g h✝ σ τ : Perm α hστ : Disjoint σ τ a : α h : ↑(σ * τ) a = a hσ : ↑σ a = a ⊢ ↑σ a = a ∧ ↑τ a = a [PROOFSTEP] exact ⟨hσ, σ.injective (h.trans hσ.symm)⟩ [GOAL] case inr α : Type u_1 f g h✝ σ τ : Perm α hστ : Disjoint σ τ a : α h : ↑(σ * τ) a = a hτ : ↑τ a = a ⊢ ↑σ a = a ∧ ↑τ a = a [PROOFSTEP] exact ⟨(congr_arg σ hτ).symm.trans h, hτ⟩ [GOAL] α : Type u_1 f g h σ τ : Perm α hστ : Disjoint σ τ ⊢ σ * τ = 1 ↔ σ = 1 ∧ τ = 1 [PROOFSTEP] simp_rw [ext_iff, one_apply, hστ.mul_apply_eq_iff, forall_and] [GOAL] α : Type u_1 inst✝¹ : DecidableEq α p : α → Prop inst✝ : DecidablePred p x y : Subtype p z : α ⊢ ↑(↑ofSubtype (swap x y)) z = ↑(swap ↑x ↑y) z [PROOFSTEP] by_cases hz : p z [GOAL] case pos α : Type u_1 inst✝¹ : DecidableEq α p : α → Prop inst✝ : DecidablePred p x y : Subtype p z : α hz : p z ⊢ ↑(↑ofSubtype (swap x y)) z = ↑(swap ↑x ↑y) z [PROOFSTEP] rw [swap_apply_def, ofSubtype_apply_of_mem _ hz] [GOAL] case pos α : Type u_1 inst✝¹ : DecidableEq α p : α → Prop inst✝ : DecidablePred p x y : Subtype p z : α hz : p z ⊢ ↑(↑(swap x y) { val := z, property := hz }) = if z = ↑x then ↑y else if z = ↑y then ↑x else z [PROOFSTEP] split_ifs with hzx hzy [GOAL] case pos α : Type u_1 inst✝¹ : DecidableEq α p : α → Prop inst✝ : DecidablePred p x y : Subtype p z : α hz : p z hzx : z = ↑x ⊢ ↑(↑(swap x y) { val := z, property := hz }) = ↑y [PROOFSTEP] simp_rw [hzx, Subtype.coe_eta, swap_apply_left] [GOAL] case pos α : Type u_1 inst✝¹ : DecidableEq α p : α → Prop inst✝ : DecidablePred p x y : Subtype p z : α hz : p z hzx : ¬z = ↑x hzy : z = ↑y ⊢ ↑(↑(swap x y) { val := z, property := hz }) = ↑x [PROOFSTEP] simp_rw [hzy, Subtype.coe_eta, swap_apply_right] [GOAL] case neg α : Type u_1 inst✝¹ : DecidableEq α p : α → Prop inst✝ : DecidablePred p x y : Subtype p z : α hz : p z hzx : ¬z = ↑x hzy : ¬z = ↑y ⊢ ↑(↑(swap x y) { val := z, property := hz }) = z [PROOFSTEP] rw [swap_apply_of_ne_of_ne] [GOAL] case neg.a α : Type u_1 inst✝¹ : DecidableEq α p : α → Prop inst✝ : DecidablePred p x y : Subtype p z : α hz : p z hzx : ¬z = ↑x hzy : ¬z = ↑y ⊢ { val := z, property := hz } ≠ x [PROOFSTEP] simp [Subtype.ext_iff, *] [GOAL] case neg.a α : Type u_1 inst✝¹ : DecidableEq α p : α → Prop inst✝ : DecidablePred p x y : Subtype p z : α hz : p z hzx : ¬z = ↑x hzy : ¬z = ↑y ⊢ { val := z, property := hz } ≠ y [PROOFSTEP] simp [Subtype.ext_iff, *] [GOAL] case neg α : Type u_1 inst✝¹ : DecidableEq α p : α → Prop inst✝ : DecidablePred p x y : Subtype p z : α hz : ¬p z ⊢ ↑(↑ofSubtype (swap x y)) z = ↑(swap ↑x ↑y) z [PROOFSTEP] rw [ofSubtype_apply_of_not_mem _ hz, swap_apply_of_ne_of_ne] [GOAL] case neg.a α : Type u_1 inst✝¹ : DecidableEq α p : α → Prop inst✝ : DecidablePred p x y : Subtype p z : α hz : ¬p z ⊢ z ≠ ↑x case neg.a α : Type u_1 inst✝¹ : DecidableEq α p : α → Prop inst✝ : DecidablePred p x y : Subtype p z : α hz : ¬p z ⊢ z ≠ ↑y [PROOFSTEP] intro h [GOAL] case neg.a α : Type u_1 inst✝¹ : DecidableEq α p : α → Prop inst✝ : DecidablePred p x y : Subtype p z : α hz : ¬p z h : z = ↑x ⊢ False case neg.a α : Type u_1 inst✝¹ : DecidableEq α p : α → Prop inst✝ : DecidablePred p x y : Subtype p z : α hz : ¬p z ⊢ z ≠ ↑y [PROOFSTEP] apply hz [GOAL] case neg.a α : Type u_1 inst✝¹ : DecidableEq α p : α → Prop inst✝ : DecidablePred p x y : Subtype p z : α hz : ¬p z h : z = ↑x ⊢ p z case neg.a α : Type u_1 inst✝¹ : DecidableEq α p : α → Prop inst✝ : DecidablePred p x y : Subtype p z : α hz : ¬p z ⊢ z ≠ ↑y [PROOFSTEP] rw [h] [GOAL] case neg.a α : Type u_1 inst✝¹ : DecidableEq α p : α → Prop inst✝ : DecidablePred p x y : Subtype p z : α hz : ¬p z h : z = ↑x ⊢ p ↑x case neg.a α : Type u_1 inst✝¹ : DecidableEq α p : α → Prop inst✝ : DecidablePred p x y : Subtype p z : α hz : ¬p z ⊢ z ≠ ↑y [PROOFSTEP] exact Subtype.prop x [GOAL] case neg.a α : Type u_1 inst✝¹ : DecidableEq α p : α → Prop inst✝ : DecidablePred p x y : Subtype p z : α hz : ¬p z ⊢ z ≠ ↑y [PROOFSTEP] intro h [GOAL] case neg.a α : Type u_1 inst✝¹ : DecidableEq α p : α → Prop inst✝ : DecidablePred p x y : Subtype p z : α hz : ¬p z h : z = ↑y ⊢ False [PROOFSTEP] apply hz [GOAL] case neg.a α : Type u_1 inst✝¹ : DecidableEq α p : α → Prop inst✝ : DecidablePred p x y : Subtype p z : α hz : ¬p z h : z = ↑y ⊢ p z [PROOFSTEP] rw [h] [GOAL] case neg.a α : Type u_1 inst✝¹ : DecidableEq α p : α → Prop inst✝ : DecidablePred p x y : Subtype p z : α hz : ¬p z h : z = ↑y ⊢ p ↑y [PROOFSTEP] exact Subtype.prop y [GOAL] α : Type u_1 inst✝¹ : DecidableEq α p : α → Prop inst✝ : DecidablePred p f : Perm (Subtype p) h : IsSwap f x : α hx : p x y : α hy : p y hxy : { val := x, property := hx } ≠ { val := y, property := hy } ∧ f = swap { val := x, property := hx } { val := y, property := hy } ⊢ x ≠ y [PROOFSTEP] simp only [Ne.def, Subtype.ext_iff] at hxy [GOAL] α : Type u_1 inst✝¹ : DecidableEq α p : α → Prop inst✝ : DecidablePred p f : Perm (Subtype p) h : IsSwap f x : α hx : p x y : α hy : p y hxy : ¬x = y ∧ f = swap { val := x, property := hx } { val := y, property := hy } ⊢ x ≠ y [PROOFSTEP] exact hxy.1 [GOAL] α : Type u_1 inst✝¹ : DecidableEq α p : α → Prop inst✝ : DecidablePred p f : Perm (Subtype p) h : IsSwap f x : α hx : p x y : α hy : p y hxy : { val := x, property := hx } ≠ { val := y, property := hy } ∧ f = swap { val := x, property := hx } { val := y, property := hy } ⊢ ↑ofSubtype f = swap x y [PROOFSTEP] rw [hxy.2, ofSubtype_swap_eq] [GOAL] α : Type u_1 inst✝ : DecidableEq α f : Perm α x y : α hy : ↑(swap x (↑f x) * f) y ≠ y ⊢ ↑f y ≠ y ∧ y ≠ x [PROOFSTEP] simp only [swap_apply_def, mul_apply, f.injective.eq_iff] at * [GOAL] α : Type u_1 inst✝ : DecidableEq α f : Perm α x y : α hy : (if ↑f y = x then ↑f x else if y = x then x else ↑f y) ≠ y ⊢ ↑f y ≠ y ∧ y ≠ x [PROOFSTEP] by_cases h : f y = x [GOAL] case pos α : Type u_1 inst✝ : DecidableEq α f : Perm α x y : α hy : (if ↑f y = x then ↑f x else if y = x then x else ↑f y) ≠ y h : ↑f y = x ⊢ ↑f y ≠ y ∧ y ≠ x [PROOFSTEP] constructor [GOAL] case pos.left α : Type u_1 inst✝ : DecidableEq α f : Perm α x y : α hy : (if ↑f y = x then ↑f x else if y = x then x else ↑f y) ≠ y h : ↑f y = x ⊢ ↑f y ≠ y [PROOFSTEP] intro [GOAL] case pos.right α : Type u_1 inst✝ : DecidableEq α f : Perm α x y : α hy : (if ↑f y = x then ↑f x else if y = x then x else ↑f y) ≠ y h : ↑f y = x ⊢ y ≠ x [PROOFSTEP] intro [GOAL] case pos.left α : Type u_1 inst✝ : DecidableEq α f : Perm α x y : α hy : (if ↑f y = x then ↑f x else if y = x then x else ↑f y) ≠ y h : ↑f y = x a✝ : ↑f y = y ⊢ False [PROOFSTEP] simp_all only [if_true, eq_self_iff_true, not_true, Ne.def] [GOAL] case pos.right α : Type u_1 inst✝ : DecidableEq α f : Perm α x y : α hy : (if ↑f y = x then ↑f x else if y = x then x else ↑f y) ≠ y h : ↑f y = x a✝ : y = x ⊢ False [PROOFSTEP] simp_all only [if_true, eq_self_iff_true, not_true, Ne.def] [GOAL] case neg α : Type u_1 inst✝ : DecidableEq α f : Perm α x y : α hy : (if ↑f y = x then ↑f x else if y = x then x else ↑f y) ≠ y h : ¬↑f y = x ⊢ ↑f y ≠ y ∧ y ≠ x [PROOFSTEP] split_ifs at hy with h h [GOAL] case pos α : Type u_1 inst✝ : DecidableEq α f : Perm α x y : α h✝ : ¬↑f y = x h : ↑f y = x hy : ↑f x ≠ y ⊢ ↑f y ≠ y ∧ y ≠ x [PROOFSTEP] try {subst x } [GOAL] case pos α : Type u_1 inst✝ : DecidableEq α f : Perm α x y : α h✝ : ¬↑f y = x h : ↑f y = x hy : ↑f x ≠ y ⊢ ↑f y ≠ y ∧ y ≠ x [PROOFSTEP] {subst x } [GOAL] case pos α : Type u_1 inst✝ : DecidableEq α f : Perm α x y : α h✝ : ¬↑f y = x h : ↑f y = x hy : ↑f x ≠ y ⊢ ↑f y ≠ y ∧ y ≠ x [PROOFSTEP] subst x [GOAL] case pos α : Type u_1 inst✝ : DecidableEq α f : Perm α x y : α h✝¹ : ¬↑f y = x h✝ : ¬↑f y = x h : y = x hy : x ≠ y ⊢ ↑f y ≠ y ∧ y ≠ x [PROOFSTEP] try {subst x } [GOAL] case pos α : Type u_1 inst✝ : DecidableEq α f : Perm α x y : α h✝¹ : ¬↑f y = x h✝ : ¬↑f y = x h : y = x hy : x ≠ y ⊢ ↑f y ≠ y ∧ y ≠ x [PROOFSTEP] {subst x } [GOAL] case pos α : Type u_1 inst✝ : DecidableEq α f : Perm α x y : α h✝¹ : ¬↑f y = x h✝ : ¬↑f y = x h : y = x hy : x ≠ y ⊢ ↑f y ≠ y ∧ y ≠ x [PROOFSTEP] subst x [GOAL] case neg α : Type u_1 inst✝ : DecidableEq α f : Perm α x y : α h✝¹ : ¬↑f y = x h✝ : ¬↑f y = x h : ¬y = x hy : ↑f y ≠ y ⊢ ↑f y ≠ y ∧ y ≠ x [PROOFSTEP] try {subst x } [GOAL] case neg α : Type u_1 inst✝ : DecidableEq α f : Perm α x y : α h✝¹ : ¬↑f y = x h✝ : ¬↑f y = x h : ¬y = x hy : ↑f y ≠ y ⊢ ↑f y ≠ y ∧ y ≠ x [PROOFSTEP] {subst x } [GOAL] case neg α : Type u_1 inst✝ : DecidableEq α f : Perm α x y : α h✝¹ : ¬↑f y = x h✝ : ¬↑f y = x h : ¬y = x hy : ↑f y ≠ y ⊢ ↑f y ≠ y ∧ y ≠ x [PROOFSTEP] subst x [GOAL] case pos α : Type u_1 inst✝ : DecidableEq α f : Perm α x y : α h✝ : ¬↑f y = x h : ↑f y = x hy : ↑f x ≠ y ⊢ ↑f y ≠ y ∧ y ≠ x [PROOFSTEP] try {simp [*] at * } [GOAL] case pos α : Type u_1 inst✝ : DecidableEq α f : Perm α x y : α h✝ : ¬↑f y = x h : ↑f y = x hy : ↑f x ≠ y ⊢ ↑f y ≠ y ∧ y ≠ x [PROOFSTEP] {simp [*] at * } [GOAL] case pos α : Type u_1 inst✝ : DecidableEq α f : Perm α x y : α h✝ : ¬↑f y = x h : ↑f y = x hy : ↑f x ≠ y ⊢ ↑f y ≠ y ∧ y ≠ x [PROOFSTEP] simp [*] at * [GOAL] case pos α : Type u_1 inst✝ : DecidableEq α f : Perm α x y : α h✝¹ : ¬↑f y = x h✝ : ¬↑f y = x h : y = x hy : x ≠ y ⊢ ↑f y ≠ y ∧ y ≠ x [PROOFSTEP] try {simp [*] at * } [GOAL] case pos α : Type u_1 inst✝ : DecidableEq α f : Perm α x y : α h✝¹ : ¬↑f y = x h✝ : ¬↑f y = x h : y = x hy : x ≠ y ⊢ ↑f y ≠ y ∧ y ≠ x [PROOFSTEP] {simp [*] at * } [GOAL] case pos α : Type u_1 inst✝ : DecidableEq α f : Perm α x y : α h✝¹ : ¬↑f y = x h✝ : ¬↑f y = x h : y = x hy : x ≠ y ⊢ ↑f y ≠ y ∧ y ≠ x [PROOFSTEP] simp [*] at * [GOAL] case neg α : Type u_1 inst✝ : DecidableEq α f : Perm α x y : α h✝¹ : ¬↑f y = x h✝ : ¬↑f y = x h : ¬y = x hy : ↑f y ≠ y ⊢ ↑f y ≠ y ∧ y ≠ x [PROOFSTEP] try {simp [*] at * } [GOAL] case neg α : Type u_1 inst✝ : DecidableEq α f : Perm α x y : α h✝¹ : ¬↑f y = x h✝ : ¬↑f y = x h : ¬y = x hy : ↑f y ≠ y ⊢ ↑f y ≠ y ∧ y ≠ x [PROOFSTEP] {simp [*] at * } [GOAL] case neg α : Type u_1 inst✝ : DecidableEq α f : Perm α x y : α h✝¹ : ¬↑f y = x h✝ : ¬↑f y = x h : ¬y = x hy : ↑f y ≠ y ⊢ ↑f y ≠ y ∧ y ≠ x [PROOFSTEP] simp [*] at * [GOAL] α : Type u_1 p q : Perm α ⊢ {x | ↑p⁻¹ x ≠ x} = {x | ↑p x ≠ x} [PROOFSTEP] ext x [GOAL] case h α : Type u_1 p q : Perm α x : α ⊢ x ∈ {x | ↑p⁻¹ x ≠ x} ↔ x ∈ {x | ↑p x ≠ x} [PROOFSTEP] simp only [Set.mem_setOf_eq, Ne.def] [GOAL] case h α : Type u_1 p q : Perm α x : α ⊢ ¬↑p⁻¹ x = x ↔ ¬↑p x = x [PROOFSTEP] rw [inv_def, symm_apply_eq, eq_comm] [GOAL] α : Type u_1 p✝ q p : Perm α a : α ⊢ ↑p a ∈ {x | ↑p x ≠ x} ↔ a ∈ {x | ↑p x ≠ x} [PROOFSTEP] simp [GOAL] α : Type u_1 p q : Perm α n : ℤ ⊢ {x | ↑(p ^ n) x ≠ x} ⊆ {x | ↑p x ≠ x} [PROOFSTEP] intro x [GOAL] α : Type u_1 p q : Perm α n : ℤ x : α ⊢ x ∈ {x | ↑(p ^ n) x ≠ x} → x ∈ {x | ↑p x ≠ x} [PROOFSTEP] simp only [Set.mem_setOf_eq, Ne.def] [GOAL] α : Type u_1 p q : Perm α n : ℤ x : α ⊢ ¬↑(p ^ n) x = x → ¬↑p x = x [PROOFSTEP] intro hx H [GOAL] α : Type u_1 p q : Perm α n : ℤ x : α hx : ¬↑(p ^ n) x = x H : ↑p x = x ⊢ False [PROOFSTEP] simp [zpow_apply_eq_self_of_apply_eq_self H] at hx [GOAL] α : Type u_1 p q : Perm α ⊢ {x | ↑(p * q) x ≠ x} ⊆ {x | ↑p x ≠ x} ∪ {x | ↑q x ≠ x} [PROOFSTEP] intro x [GOAL] α : Type u_1 p q : Perm α x : α ⊢ x ∈ {x | ↑(p * q) x ≠ x} → x ∈ {x | ↑p x ≠ x} ∪ {x | ↑q x ≠ x} [PROOFSTEP] simp only [Perm.coe_mul, Function.comp_apply, Ne.def, Set.mem_union, Set.mem_setOf_eq] [GOAL] α : Type u_1 p q : Perm α x : α ⊢ ¬↑p (↑q x) = x → ¬↑p x = x ∨ ¬↑q x = x [PROOFSTEP] by_cases hq : q x = x [GOAL] case pos α : Type u_1 p q : Perm α x : α hq : ↑q x = x ⊢ ¬↑p (↑q x) = x → ¬↑p x = x ∨ ¬↑q x = x [PROOFSTEP] simp [hq] [GOAL] case neg α : Type u_1 p q : Perm α x : α hq : ¬↑q x = x ⊢ ¬↑p (↑q x) = x → ¬↑p x = x ∨ ¬↑q x = x [PROOFSTEP] simp [hq] [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x : α ⊢ x ∈ support f ↔ ↑f x ≠ x [PROOFSTEP] rw [support, mem_filter, and_iff_right (mem_univ x)] [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x : α ⊢ ¬x ∈ support f ↔ ↑f x = x [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g f : Perm α ⊢ ↑(support f) = {x | ↑f x ≠ x} [PROOFSTEP] ext [GOAL] case h α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g f : Perm α x✝ : α ⊢ x✝ ∈ ↑(support f) ↔ x✝ ∈ {x | ↑f x ≠ x} [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g σ : Perm α ⊢ support σ = ∅ ↔ σ = 1 [PROOFSTEP] simp_rw [Finset.ext_iff, mem_support, Finset.not_mem_empty, iff_false_iff, not_not, Equiv.Perm.ext_iff, one_apply] [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α ⊢ support 1 = ∅ [PROOFSTEP] rw [support_eq_empty_iff] [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α h : support f ⊆ support g h' : ∀ (x : α), x ∈ support g → ↑f x = ↑g x ⊢ f = g [PROOFSTEP] ext x [GOAL] case H α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α h : support f ⊆ support g h' : ∀ (x : α), x ∈ support g → ↑f x = ↑g x x : α ⊢ ↑f x = ↑g x [PROOFSTEP] by_cases hx : x ∈ g.support [GOAL] case pos α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α h : support f ⊆ support g h' : ∀ (x : α), x ∈ support g → ↑f x = ↑g x x : α hx : x ∈ support g ⊢ ↑f x = ↑g x [PROOFSTEP] exact h' x hx [GOAL] case neg α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α h : support f ⊆ support g h' : ∀ (x : α), x ∈ support g → ↑f x = ↑g x x : α hx : ¬x ∈ support g ⊢ ↑f x = ↑g x [PROOFSTEP] rw [not_mem_support.mp hx, ← not_mem_support] [GOAL] case neg α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α h : support f ⊆ support g h' : ∀ (x : α), x ∈ support g → ↑f x = ↑g x x : α hx : ¬x ∈ support g ⊢ ¬x ∈ support f [PROOFSTEP] exact fun H => hx (h H) [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g✝ f g : Perm α x : α ⊢ x ∈ support (f * g) → x ∈ support f ⊔ support g [PROOFSTEP] simp only [sup_eq_union] [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g✝ f g : Perm α x : α ⊢ x ∈ support (f * g) → x ∈ support f ∪ support g [PROOFSTEP] rw [mem_union, mem_support, mem_support, mem_support, mul_apply, ← not_and_or, not_imp_not] [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g✝ f g : Perm α x : α ⊢ ↑f x = x ∧ ↑g x = x → ↑f (↑g x) = x [PROOFSTEP] rintro ⟨hf, hg⟩ [GOAL] case intro α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g✝ f g : Perm α x : α hf : ↑f x = x hg : ↑g x = x ⊢ ↑f (↑g x) = x [PROOFSTEP] rw [hg, hf] [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α l : List (Perm α) x : α hx : x ∈ support (List.prod l) ⊢ ∃ f, f ∈ l ∧ x ∈ support f [PROOFSTEP] contrapose! hx [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α l : List (Perm α) x : α hx : ∀ (f : Perm α), f ∈ l → ¬x ∈ support f ⊢ ¬x ∈ support (List.prod l) [PROOFSTEP] simp_rw [mem_support, not_not] at hx ⊢ [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α l : List (Perm α) x : α hx : ∀ (f : Perm α), f ∈ l → ↑f x = x ⊢ ↑(List.prod l) x = x [PROOFSTEP] induction' l with f l ih [GOAL] case nil α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α l : List (Perm α) x : α hx✝ : ∀ (f : Perm α), f ∈ l → ↑f x = x hx : ∀ (f : Perm α), f ∈ [] → ↑f x = x ⊢ ↑(List.prod []) x = x [PROOFSTEP] rfl [GOAL] case cons α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g : Perm α l✝ : List (Perm α) x : α hx✝ : ∀ (f : Perm α), f ∈ l✝ → ↑f x = x f : Perm α l : List (Perm α) ih : (∀ (f : Perm α), f ∈ l → ↑f x = x) → ↑(List.prod l) x = x hx : ∀ (f_1 : Perm α), f_1 ∈ f :: l → ↑f_1 x = x ⊢ ↑(List.prod (f :: l)) x = x [PROOFSTEP] rw [List.prod_cons, mul_apply, ih, hx] [GOAL] case cons._ α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g : Perm α l✝ : List (Perm α) x : α hx✝ : ∀ (f : Perm α), f ∈ l✝ → ↑f x = x f : Perm α l : List (Perm α) ih : (∀ (f : Perm α), f ∈ l → ↑f x = x) → ↑(List.prod l) x = x hx : ∀ (f_1 : Perm α), f_1 ∈ f :: l → ↑f_1 x = x ⊢ f ∈ f :: l case cons α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g : Perm α l✝ : List (Perm α) x : α hx✝ : ∀ (f : Perm α), f ∈ l✝ → ↑f x = x f : Perm α l : List (Perm α) ih : (∀ (f : Perm α), f ∈ l → ↑f x = x) → ↑(List.prod l) x = x hx : ∀ (f_1 : Perm α), f_1 ∈ f :: l → ↑f_1 x = x ⊢ ∀ (f : Perm α), f ∈ l → ↑f x = x [PROOFSTEP] simp only [List.find?, List.mem_cons, true_or] [GOAL] case cons α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g : Perm α l✝ : List (Perm α) x : α hx✝ : ∀ (f : Perm α), f ∈ l✝ → ↑f x = x f : Perm α l : List (Perm α) ih : (∀ (f : Perm α), f ∈ l → ↑f x = x) → ↑(List.prod l) x = x hx : ∀ (f_1 : Perm α), f_1 ∈ f :: l → ↑f_1 x = x ⊢ ∀ (f : Perm α), f ∈ l → ↑f x = x [PROOFSTEP] intros f' hf' [GOAL] case cons α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g : Perm α l✝ : List (Perm α) x : α hx✝ : ∀ (f : Perm α), f ∈ l✝ → ↑f x = x f : Perm α l : List (Perm α) ih : (∀ (f : Perm α), f ∈ l → ↑f x = x) → ↑(List.prod l) x = x hx : ∀ (f_1 : Perm α), f_1 ∈ f :: l → ↑f_1 x = x f' : Perm α hf' : f' ∈ l ⊢ ↑f' x = x [PROOFSTEP] refine' hx f' _ [GOAL] case cons α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g : Perm α l✝ : List (Perm α) x : α hx✝ : ∀ (f : Perm α), f ∈ l✝ → ↑f x = x f : Perm α l : List (Perm α) ih : (∀ (f : Perm α), f ∈ l → ↑f x = x) → ↑(List.prod l) x = x hx : ∀ (f_1 : Perm α), f_1 ∈ f :: l → ↑f_1 x = x f' : Perm α hf' : f' ∈ l ⊢ f' ∈ f :: l [PROOFSTEP] simp only [List.find?, List.mem_cons] [GOAL] case cons α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g : Perm α l✝ : List (Perm α) x : α hx✝ : ∀ (f : Perm α), f ∈ l✝ → ↑f x = x f : Perm α l : List (Perm α) ih : (∀ (f : Perm α), f ∈ l → ↑f x = x) → ↑(List.prod l) x = x hx : ∀ (f_1 : Perm α), f_1 ∈ f :: l → ↑f_1 x = x f' : Perm α hf' : f' ∈ l ⊢ f' = f ∨ f' ∈ l [PROOFSTEP] exact Or.inr hf' [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g σ : Perm α ⊢ support σ⁻¹ = support σ [PROOFSTEP] simp_rw [Finset.ext_iff, mem_support, not_iff_not, inv_eq_iff_eq.trans eq_comm, imp_true_iff] [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x : α ⊢ ↑f x ∈ support f ↔ x ∈ support f [PROOFSTEP] rw [mem_support, mem_support, Ne.def, Ne.def, apply_eq_iff_eq] [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g f : Perm α n : ℕ x : α ⊢ ↑f (↑(f ^ n) x) = ↑(f ^ n) x ↔ ↑f x = x [PROOFSTEP] rw [← mul_apply, Commute.self_pow f, mul_apply, apply_eq_iff_eq] -- @[simp] -- Porting note: simp can prove this [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α n : ℕ x : α ⊢ ↑(f ^ n) x ∈ support f ↔ x ∈ support f [PROOFSTEP] simp only [mem_support, ne_eq, apply_pow_apply_eq_iff] [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g f : Perm α n : ℤ x : α ⊢ ↑f (↑(f ^ n) x) = ↑(f ^ n) x ↔ ↑f x = x [PROOFSTEP] rw [← mul_apply, Commute.self_zpow f, mul_apply, apply_eq_iff_eq] -- @[simp] -- Porting note: simp can prove this [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α n : ℤ x : α ⊢ ↑(f ^ n) x ∈ support f ↔ x ∈ support f [PROOFSTEP] simp only [mem_support, ne_eq, apply_zpow_apply_eq_iff] [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α h : ∀ (x : α), x ∈ support f ∩ support g → ↑f x = ↑g x k : ℕ ⊢ ∀ (x : α), x ∈ support f ∩ support g → ↑(f ^ k) x = ↑(g ^ k) x [PROOFSTEP] induction' k with k hk [GOAL] case zero α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α h : ∀ (x : α), x ∈ support f ∩ support g → ↑f x = ↑g x ⊢ ∀ (x : α), x ∈ support f ∩ support g → ↑(f ^ Nat.zero) x = ↑(g ^ Nat.zero) x [PROOFSTEP] simp [GOAL] case succ α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α h : ∀ (x : α), x ∈ support f ∩ support g → ↑f x = ↑g x k : ℕ hk : ∀ (x : α), x ∈ support f ∩ support g → ↑(f ^ k) x = ↑(g ^ k) x ⊢ ∀ (x : α), x ∈ support f ∩ support g → ↑(f ^ Nat.succ k) x = ↑(g ^ Nat.succ k) x [PROOFSTEP] intro x hx [GOAL] case succ α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α h : ∀ (x : α), x ∈ support f ∩ support g → ↑f x = ↑g x k : ℕ hk : ∀ (x : α), x ∈ support f ∩ support g → ↑(f ^ k) x = ↑(g ^ k) x x : α hx : x ∈ support f ∩ support g ⊢ ↑(f ^ Nat.succ k) x = ↑(g ^ Nat.succ k) x [PROOFSTEP] rw [pow_succ', mul_apply, pow_succ', mul_apply, h _ hx, hk] [GOAL] case succ.a α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α h : ∀ (x : α), x ∈ support f ∩ support g → ↑f x = ↑g x k : ℕ hk : ∀ (x : α), x ∈ support f ∩ support g → ↑(f ^ k) x = ↑(g ^ k) x x : α hx : x ∈ support f ∩ support g ⊢ ↑g x ∈ support f ∩ support g [PROOFSTEP] rwa [mem_inter, apply_mem_support, ← h _ hx, apply_mem_support, ← mem_inter] [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α ⊢ Disjoint f g ↔ _root_.Disjoint (support f) (support g) [PROOFSTEP] simp [disjoint_iff_eq_or_eq, disjoint_iff, disjoint_iff, Finset.ext_iff, not_and_or, imp_iff_not_or] [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α h : Disjoint f g ⊢ support (f * g) = support f ∪ support g [PROOFSTEP] refine' le_antisymm (support_mul_le _ _) fun a => _ [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α h : Disjoint f g a : α ⊢ a ∈ support f ∪ support g → a ∈ support (f * g) [PROOFSTEP] rw [mem_union, mem_support, mem_support, mem_support, mul_apply, ← not_and_or, not_imp_not] [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α h : Disjoint f g a : α ⊢ ↑f (↑g a) = a → ↑f a = a ∧ ↑g a = a [PROOFSTEP] exact (h a).elim (fun hf h => ⟨hf, f.apply_eq_iff_eq.mp (h.trans hf.symm)⟩) fun hg h => ⟨(congr_arg f hg).symm.trans h, hg⟩ [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α l : List (Perm α) h : List.Pairwise Disjoint l ⊢ support (List.prod l) = List.foldr (fun x x_1 => x ⊔ x_1) ⊥ (List.map support l) [PROOFSTEP] induction' l with hd tl hl [GOAL] case nil α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α l : List (Perm α) h✝ : List.Pairwise Disjoint l h : List.Pairwise Disjoint [] ⊢ support (List.prod []) = List.foldr (fun x x_1 => x ⊔ x_1) ⊥ (List.map support []) [PROOFSTEP] simp [GOAL] case cons α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α l : List (Perm α) h✝ : List.Pairwise Disjoint l hd : Perm α tl : List (Perm α) hl : List.Pairwise Disjoint tl → support (List.prod tl) = List.foldr (fun x x_1 => x ⊔ x_1) ⊥ (List.map support tl) h : List.Pairwise Disjoint (hd :: tl) ⊢ support (List.prod (hd :: tl)) = List.foldr (fun x x_1 => x ⊔ x_1) ⊥ (List.map support (hd :: tl)) [PROOFSTEP] rw [List.pairwise_cons] at h [GOAL] case cons α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α l : List (Perm α) h✝ : List.Pairwise Disjoint l hd : Perm α tl : List (Perm α) hl : List.Pairwise Disjoint tl → support (List.prod tl) = List.foldr (fun x x_1 => x ⊔ x_1) ⊥ (List.map support tl) h : (∀ (a' : Perm α), a' ∈ tl → Disjoint hd a') ∧ List.Pairwise Disjoint tl ⊢ support (List.prod (hd :: tl)) = List.foldr (fun x x_1 => x ⊔ x_1) ⊥ (List.map support (hd :: tl)) [PROOFSTEP] have : Disjoint hd tl.prod := disjoint_prod_right _ h.left [GOAL] case cons α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α l : List (Perm α) h✝ : List.Pairwise Disjoint l hd : Perm α tl : List (Perm α) hl : List.Pairwise Disjoint tl → support (List.prod tl) = List.foldr (fun x x_1 => x ⊔ x_1) ⊥ (List.map support tl) h : (∀ (a' : Perm α), a' ∈ tl → Disjoint hd a') ∧ List.Pairwise Disjoint tl this : Disjoint hd (List.prod tl) ⊢ support (List.prod (hd :: tl)) = List.foldr (fun x x_1 => x ⊔ x_1) ⊥ (List.map support (hd :: tl)) [PROOFSTEP] simp [this.support_mul, hl h.right] [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α l : List (Perm α) ⊢ support (List.prod l) ≤ List.foldr (fun x x_1 => x ⊔ x_1) ⊥ (List.map support l) [PROOFSTEP] induction' l with hd tl hl [GOAL] case nil α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α ⊢ support (List.prod []) ≤ List.foldr (fun x x_1 => x ⊔ x_1) ⊥ (List.map support []) [PROOFSTEP] simp [GOAL] case cons α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g hd : Perm α tl : List (Perm α) hl : support (List.prod tl) ≤ List.foldr (fun x x_1 => x ⊔ x_1) ⊥ (List.map support tl) ⊢ support (List.prod (hd :: tl)) ≤ List.foldr (fun x x_1 => x ⊔ x_1) ⊥ (List.map support (hd :: tl)) [PROOFSTEP] rw [List.prod_cons, List.map_cons, List.foldr_cons] [GOAL] case cons α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g hd : Perm α tl : List (Perm α) hl : support (List.prod tl) ≤ List.foldr (fun x x_1 => x ⊔ x_1) ⊥ (List.map support tl) ⊢ support (hd * List.prod tl) ≤ support hd ⊔ List.foldr (fun x x_1 => x ⊔ x_1) ⊥ (List.map support tl) [PROOFSTEP] refine' (support_mul_le hd tl.prod).trans _ [GOAL] case cons α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g hd : Perm α tl : List (Perm α) hl : support (List.prod tl) ≤ List.foldr (fun x x_1 => x ⊔ x_1) ⊥ (List.map support tl) ⊢ support hd ⊔ support (List.prod tl) ≤ support hd ⊔ List.foldr (fun x x_1 => x ⊔ x_1) ⊥ (List.map support tl) [PROOFSTEP] exact sup_le_sup le_rfl hl [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x y : α h : x ≠ y ⊢ support (swap x y) = {x, y} [PROOFSTEP] ext z [GOAL] case a α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x y : α h : x ≠ y z : α ⊢ z ∈ support (swap x y) ↔ z ∈ {x, y} [PROOFSTEP] by_cases hx : z = x [GOAL] case pos α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x y : α h : x ≠ y z : α hx : z = x ⊢ z ∈ support (swap x y) ↔ z ∈ {x, y} case neg α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x y : α h : x ≠ y z : α hx : ¬z = x ⊢ z ∈ support (swap x y) ↔ z ∈ {x, y} [PROOFSTEP] any_goals simpa [hx] using h.symm [GOAL] case pos α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x y : α h : x ≠ y z : α hx : z = x ⊢ z ∈ support (swap x y) ↔ z ∈ {x, y} [PROOFSTEP] simpa [hx] using h.symm [GOAL] case neg α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x y : α h : x ≠ y z : α hx : ¬z = x ⊢ z ∈ support (swap x y) ↔ z ∈ {x, y} [PROOFSTEP] simpa [hx] using h.symm [GOAL] case neg α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x y : α h : x ≠ y z : α hx : ¬z = x ⊢ z ∈ support (swap x y) ↔ z ∈ {x, y} [PROOFSTEP] by_cases hy : z = y [GOAL] case pos α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x y : α h : x ≠ y z : α hx : ¬z = x hy : z = y ⊢ z ∈ support (swap x y) ↔ z ∈ {x, y} [PROOFSTEP] simp [swap_apply_of_ne_of_ne, hx, hy] [GOAL] case pos α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x y : α h : x ≠ y z : α hx : ¬z = x hy : z = y ⊢ ¬x = y [PROOFSTEP] exact h [GOAL] case neg α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x y : α h : x ≠ y z : α hx : ¬z = x hy : ¬z = y ⊢ z ∈ support (swap x y) ↔ z ∈ {x, y} [PROOFSTEP] simp [swap_apply_of_ne_of_ne, hx, hy] [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x y : α ⊢ support (swap x y) = {x, y} ↔ x ≠ y [PROOFSTEP] refine' ⟨fun h => _, fun h => support_swap h⟩ [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x y : α h : support (swap x y) = {x, y} ⊢ x ≠ y [PROOFSTEP] by_contra' [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x y : α h : support (swap x y) = {x, y} this : x = y ⊢ False [PROOFSTEP] rw [← this] at h [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x y : α h : support (swap x x) = {x, x} this : x = y ⊢ False [PROOFSTEP] simp only [swap_self, support_refl, pair_eq_singleton] at h [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x y : α this : x = y h : ∅ = {x} ⊢ False [PROOFSTEP] have : x ∈ ∅ := by rw [h] exact mem_singleton.mpr rfl [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x y : α this : x = y h : ∅ = {x} ⊢ x ∈ ∅ [PROOFSTEP] rw [h] [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x y : α this : x = y h : ∅ = {x} ⊢ x ∈ {x} α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x y : α this : x = y h : ∅ = {x} ⊢ Membership α (Finset α) [PROOFSTEP] exact mem_singleton.mpr rfl [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x y : α this✝ : x = y h : ∅ = {x} this : x ∈ ∅ ⊢ False [PROOFSTEP] have := (Finset.ne_empty_of_mem this) [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x y : α this✝¹ : x = y h : ∅ = {x} this✝ : x ∈ ∅ this : ∅ ≠ ∅ ⊢ False [PROOFSTEP] exact this rfl [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x y z : α h : List.Nodup [x, y, z] ⊢ support (swap x y * swap y z) = {x, y, z} [PROOFSTEP] simp only [List.not_mem_nil, and_true_iff, List.mem_cons, not_false_iff, List.nodup_cons, List.mem_singleton, and_self_iff, List.nodup_nil] at h [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x y z : α h : ¬(x = y ∨ x = z ∨ False) ∧ ¬(y = z ∨ False) ⊢ support (swap x y * swap y z) = {x, y, z} [PROOFSTEP] push_neg at h [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x y z : α h : (x ≠ y ∧ x ≠ z ∧ ¬False) ∧ y ≠ z ∧ ¬False ⊢ support (swap x y * swap y z) = {x, y, z} [PROOFSTEP] apply le_antisymm [GOAL] case a α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x y z : α h : (x ≠ y ∧ x ≠ z ∧ ¬False) ∧ y ≠ z ∧ ¬False ⊢ support (swap x y * swap y z) ≤ {x, y, z} [PROOFSTEP] convert support_mul_le (swap x y) (swap y z) using 1 [GOAL] case h.e'_4 α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x y z : α h : (x ≠ y ∧ x ≠ z ∧ ¬False) ∧ y ≠ z ∧ ¬False ⊢ {x, y, z} = support (swap x y) ⊔ support (swap y z) [PROOFSTEP] rw [support_swap h.left.left, support_swap h.right.left] [GOAL] case h.e'_4 α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x y z : α h : (x ≠ y ∧ x ≠ z ∧ ¬False) ∧ y ≠ z ∧ ¬False ⊢ {x, y, z} = {x, y} ⊔ {y, z} [PROOFSTEP] simp only [sup_eq_union] [GOAL] case h.e'_4 α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x y z : α h : (x ≠ y ∧ x ≠ z ∧ ¬False) ∧ y ≠ z ∧ ¬False ⊢ {x, y, z} = {x, y} ∪ {y, z} [PROOFSTEP] simp only [mem_singleton, mem_insert, union_insert, insert_union, mem_union, true_or, or_true, insert_eq_of_mem] [GOAL] case h.e'_4 α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x y z : α h : (x ≠ y ∧ x ≠ z ∧ ¬False) ∧ y ≠ z ∧ ¬False ⊢ {x, y, z} = insert x ({y} ∪ {z}) [PROOFSTEP] rfl [GOAL] case a α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x y z : α h : (x ≠ y ∧ x ≠ z ∧ ¬False) ∧ y ≠ z ∧ ¬False ⊢ {x, y, z} ≤ support (swap x y * swap y z) [PROOFSTEP] intro [GOAL] case a α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x y z : α h : (x ≠ y ∧ x ≠ z ∧ ¬False) ∧ y ≠ z ∧ ¬False a✝ : α ⊢ a✝ ∈ {x, y, z} → a✝ ∈ support (swap x y * swap y z) [PROOFSTEP] simp only [mem_insert, mem_singleton] [GOAL] case a α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x y z : α h : (x ≠ y ∧ x ≠ z ∧ ¬False) ∧ y ≠ z ∧ ¬False a✝ : α ⊢ a✝ = x ∨ a✝ = y ∨ a✝ = z → a✝ ∈ support (swap x y * swap y z) [PROOFSTEP] rintro (rfl | rfl | rfl | _) [GOAL] case a.inl α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α y z a✝ : α h : (a✝ ≠ y ∧ a✝ ≠ z ∧ ¬False) ∧ y ≠ z ∧ ¬False ⊢ a✝ ∈ support (swap a✝ y * swap y z) [PROOFSTEP] simp [swap_apply_of_ne_of_ne, h.left.left, h.left.left.symm, h.left.right.symm, h.left.right.left.symm, h.right.left.symm] [GOAL] case a.inr.inl α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x z a✝ : α h : (x ≠ a✝ ∧ x ≠ z ∧ ¬False) ∧ a✝ ≠ z ∧ ¬False ⊢ a✝ ∈ support (swap x a✝ * swap a✝ z) [PROOFSTEP] simp [swap_apply_of_ne_of_ne, h.left.left, h.left.left.symm, h.left.right.symm, h.left.right.left.symm, h.right.left.symm] [GOAL] case a.inr.inr.refl α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x y z : α h : (x ≠ y ∧ x ≠ z ∧ ¬False) ∧ y ≠ z ∧ ¬False ⊢ z ∈ support (swap x y * swap y z) [PROOFSTEP] simp [swap_apply_of_ne_of_ne, h.left.left, h.left.left.symm, h.left.right.symm, h.left.right.left.symm, h.right.left.symm] [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g f : Perm α x y : α ⊢ support f \ {x, y} ≤ support (swap x y * f) [PROOFSTEP] intro [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g f : Perm α x y a✝ : α ⊢ a✝ ∈ support f \ {x, y} → a✝ ∈ support (swap x y * f) [PROOFSTEP] simp only [and_imp, Perm.coe_mul, Function.comp_apply, Ne.def, mem_support, mem_insert, mem_sdiff, mem_singleton] [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g f : Perm α x y a✝ : α ⊢ ¬↑f a✝ = a✝ → ¬(a✝ = x ∨ a✝ = y) → ¬↑(swap x y) (↑f a✝) = a✝ [PROOFSTEP] push_neg [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g f : Perm α x y a✝ : α ⊢ ↑f a✝ ≠ a✝ → a✝ ≠ x ∧ a✝ ≠ y → ↑(swap x y) (↑f a✝) ≠ a✝ [PROOFSTEP] rintro ha ⟨hx, hy⟩ H [GOAL] case intro α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g f : Perm α x y a✝ : α ha : ↑f a✝ ≠ a✝ hx : a✝ ≠ x hy : a✝ ≠ y H : ↑(swap x y) (↑f a✝) = a✝ ⊢ False [PROOFSTEP] rw [swap_apply_eq_iff, swap_apply_of_ne_of_ne hx hy] at H [GOAL] case intro α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g f : Perm α x y a✝ : α ha : ↑f a✝ ≠ a✝ hx : a✝ ≠ x hy : a✝ ≠ y H : ↑f a✝ = a✝ ⊢ False [PROOFSTEP] exact ha H [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g f : Perm α x : α h : ↑f (↑f x) ≠ x ⊢ support (swap x (↑f x) * f) = support f \ {x} [PROOFSTEP] by_cases hx : f x = x [GOAL] case pos α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g f : Perm α x : α h : ↑f (↑f x) ≠ x hx : ↑f x = x ⊢ support (swap x (↑f x) * f) = support f \ {x} [PROOFSTEP] simp [hx, sdiff_singleton_eq_erase, not_mem_support.mpr hx, erase_eq_of_not_mem] [GOAL] case neg α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g f : Perm α x : α h : ↑f (↑f x) ≠ x hx : ¬↑f x = x ⊢ support (swap x (↑f x) * f) = support f \ {x} [PROOFSTEP] ext z [GOAL] case neg.a α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g f : Perm α x : α h : ↑f (↑f x) ≠ x hx : ¬↑f x = x z : α ⊢ z ∈ support (swap x (↑f x) * f) ↔ z ∈ support f \ {x} [PROOFSTEP] by_cases hzx : z = x [GOAL] case pos α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g f : Perm α x : α h : ↑f (↑f x) ≠ x hx : ¬↑f x = x z : α hzx : z = x ⊢ z ∈ support (swap x (↑f x) * f) ↔ z ∈ support f \ {x} [PROOFSTEP] simp [hzx] [GOAL] case neg α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g f : Perm α x : α h : ↑f (↑f x) ≠ x hx : ¬↑f x = x z : α hzx : ¬z = x ⊢ z ∈ support (swap x (↑f x) * f) ↔ z ∈ support f \ {x} [PROOFSTEP] by_cases hzf : z = f x [GOAL] case pos α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g f : Perm α x : α h : ↑f (↑f x) ≠ x hx : ¬↑f x = x z : α hzx : ¬z = x hzf : z = ↑f x ⊢ z ∈ support (swap x (↑f x) * f) ↔ z ∈ support f \ {x} [PROOFSTEP] simp [hzf, hx, h, swap_apply_of_ne_of_ne] [GOAL] case neg α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g f : Perm α x : α h : ↑f (↑f x) ≠ x hx : ¬↑f x = x z : α hzx : ¬z = x hzf : ¬z = ↑f x ⊢ z ∈ support (swap x (↑f x) * f) ↔ z ∈ support f \ {x} [PROOFSTEP] by_cases hzfx : f z = x [GOAL] case pos α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g f : Perm α x : α h : ↑f (↑f x) ≠ x hx : ¬↑f x = x z : α hzx : ¬z = x hzf : ¬z = ↑f x hzfx : ↑f z = x ⊢ z ∈ support (swap x (↑f x) * f) ↔ z ∈ support f \ {x} [PROOFSTEP] simp [Ne.symm hzx, hzx, Ne.symm hzf, hzfx] [GOAL] case neg α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g f : Perm α x : α h : ↑f (↑f x) ≠ x hx : ¬↑f x = x z : α hzx : ¬z = x hzf : ¬z = ↑f x hzfx : ¬↑f z = x ⊢ z ∈ support (swap x (↑f x) * f) ↔ z ∈ support f \ {x} [PROOFSTEP] simp [Ne.symm hzx, hzx, Ne.symm hzf, hzfx, f.injective.ne hzx, swap_apply_of_ne_of_ne] [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x y : α hy : y ∈ support (swap x (↑f x) * f) ⊢ y ∈ support f ∧ y ≠ x [PROOFSTEP] simp only [mem_support, swap_apply_def, mul_apply, f.injective.eq_iff] at * [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x y : α hy : (if ↑f y = x then ↑f x else if y = x then x else ↑f y) ≠ y ⊢ ↑f y ≠ y ∧ y ≠ x [PROOFSTEP] by_cases h : f y = x [GOAL] case pos α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x y : α hy : (if ↑f y = x then ↑f x else if y = x then x else ↑f y) ≠ y h : ↑f y = x ⊢ ↑f y ≠ y ∧ y ≠ x [PROOFSTEP] constructor [GOAL] case pos.left α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x y : α hy : (if ↑f y = x then ↑f x else if y = x then x else ↑f y) ≠ y h : ↑f y = x ⊢ ↑f y ≠ y [PROOFSTEP] intro [GOAL] case pos.right α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x y : α hy : (if ↑f y = x then ↑f x else if y = x then x else ↑f y) ≠ y h : ↑f y = x ⊢ y ≠ x [PROOFSTEP] intro [GOAL] case pos.left α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x y : α hy : (if ↑f y = x then ↑f x else if y = x then x else ↑f y) ≠ y h : ↑f y = x a✝ : ↑f y = y ⊢ False [PROOFSTEP] simp_all only [if_true, eq_self_iff_true, not_true, Ne.def] [GOAL] case pos.right α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x y : α hy : (if ↑f y = x then ↑f x else if y = x then x else ↑f y) ≠ y h : ↑f y = x a✝ : y = x ⊢ False [PROOFSTEP] simp_all only [if_true, eq_self_iff_true, not_true, Ne.def] [GOAL] case neg α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x y : α hy : (if ↑f y = x then ↑f x else if y = x then x else ↑f y) ≠ y h : ¬↑f y = x ⊢ ↑f y ≠ y ∧ y ≠ x [PROOFSTEP] split_ifs at hy with hf heq [GOAL] case pos α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x y : α h : ¬↑f y = x hf : ↑f y = x hy : ↑f x ≠ y ⊢ ↑f y ≠ y ∧ y ≠ x [PROOFSTEP] simp_all only [not_true] [GOAL] case pos α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x y : α h : ¬↑f y = x hf : ¬↑f y = x heq : y = x hy : x ≠ y ⊢ ↑f y ≠ y ∧ y ≠ x [PROOFSTEP] simp_all only [not_true] [GOAL] case neg α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x y : α h : ¬↑f y = x hf : ¬↑f y = x heq : ¬y = x hy : ↑f y ≠ y ⊢ ↑f y ≠ y ∧ y ≠ x [PROOFSTEP] simp_all only [not_true] [GOAL] case pos α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x y : α h : ¬↑f x = x heq : y = x hy : x ≠ x ⊢ ↑f x ≠ x ∧ x ≠ x case neg α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x y : α hf : ¬↑f y = x heq : ¬y = x hy : ↑f y ≠ y ⊢ ↑f y ≠ y ∧ y ≠ x [PROOFSTEP] exact ⟨h, hy⟩ [GOAL] case neg α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x y : α hf : ¬↑f y = x heq : ¬y = x hy : ↑f y ≠ y ⊢ ↑f y ≠ y ∧ y ≠ x [PROOFSTEP] refine' ⟨hy, heq⟩ [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α l : List (Perm α) h : f ∈ l hl : List.Pairwise Disjoint l ⊢ ∀ (x : α), x ∈ support f → ↑f x = ↑(List.prod l) x [PROOFSTEP] induction' l with hd tl IH [GOAL] case nil α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α l : List (Perm α) h✝ : f ∈ l hl✝ : List.Pairwise Disjoint l h : f ∈ [] hl : List.Pairwise Disjoint [] ⊢ ∀ (x : α), x ∈ support f → ↑f x = ↑(List.prod []) x [PROOFSTEP] simp at h [GOAL] case cons α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α l : List (Perm α) h✝ : f ∈ l hl✝ : List.Pairwise Disjoint l hd : Perm α tl : List (Perm α) IH : f ∈ tl → List.Pairwise Disjoint tl → ∀ (x : α), x ∈ support f → ↑f x = ↑(List.prod tl) x h : f ∈ hd :: tl hl : List.Pairwise Disjoint (hd :: tl) ⊢ ∀ (x : α), x ∈ support f → ↑f x = ↑(List.prod (hd :: tl)) x [PROOFSTEP] intro x hx [GOAL] case cons α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α l : List (Perm α) h✝ : f ∈ l hl✝ : List.Pairwise Disjoint l hd : Perm α tl : List (Perm α) IH : f ∈ tl → List.Pairwise Disjoint tl → ∀ (x : α), x ∈ support f → ↑f x = ↑(List.prod tl) x h : f ∈ hd :: tl hl : List.Pairwise Disjoint (hd :: tl) x : α hx : x ∈ support f ⊢ ↑f x = ↑(List.prod (hd :: tl)) x [PROOFSTEP] rw [List.pairwise_cons] at hl [GOAL] case cons α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α l : List (Perm α) h✝ : f ∈ l hl✝ : List.Pairwise Disjoint l hd : Perm α tl : List (Perm α) IH : f ∈ tl → List.Pairwise Disjoint tl → ∀ (x : α), x ∈ support f → ↑f x = ↑(List.prod tl) x h : f ∈ hd :: tl hl : (∀ (a' : Perm α), a' ∈ tl → Disjoint hd a') ∧ List.Pairwise Disjoint tl x : α hx : x ∈ support f ⊢ ↑f x = ↑(List.prod (hd :: tl)) x [PROOFSTEP] rw [List.mem_cons] at h [GOAL] case cons α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α l : List (Perm α) h✝ : f ∈ l hl✝ : List.Pairwise Disjoint l hd : Perm α tl : List (Perm α) IH : f ∈ tl → List.Pairwise Disjoint tl → ∀ (x : α), x ∈ support f → ↑f x = ↑(List.prod tl) x h : f = hd ∨ f ∈ tl hl : (∀ (a' : Perm α), a' ∈ tl → Disjoint hd a') ∧ List.Pairwise Disjoint tl x : α hx : x ∈ support f ⊢ ↑f x = ↑(List.prod (hd :: tl)) x [PROOFSTEP] rcases h with (rfl | h) [GOAL] case cons.inl α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α l : List (Perm α) h : f ∈ l hl✝ : List.Pairwise Disjoint l tl : List (Perm α) IH : f ∈ tl → List.Pairwise Disjoint tl → ∀ (x : α), x ∈ support f → ↑f x = ↑(List.prod tl) x x : α hx : x ∈ support f hl : (∀ (a' : Perm α), a' ∈ tl → Disjoint f a') ∧ List.Pairwise Disjoint tl ⊢ ↑f x = ↑(List.prod (f :: tl)) x [PROOFSTEP] rw [List.prod_cons, mul_apply, not_mem_support.mp ((disjoint_prod_right tl hl.left).mem_imp hx)] [GOAL] case cons.inr α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α l : List (Perm α) h✝ : f ∈ l hl✝ : List.Pairwise Disjoint l hd : Perm α tl : List (Perm α) IH : f ∈ tl → List.Pairwise Disjoint tl → ∀ (x : α), x ∈ support f → ↑f x = ↑(List.prod tl) x hl : (∀ (a' : Perm α), a' ∈ tl → Disjoint hd a') ∧ List.Pairwise Disjoint tl x : α hx : x ∈ support f h : f ∈ tl ⊢ ↑f x = ↑(List.prod (hd :: tl)) x [PROOFSTEP] rw [List.prod_cons, mul_apply, ← IH h hl.right _ hx, eq_comm, ← not_mem_support] [GOAL] case cons.inr α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α l : List (Perm α) h✝ : f ∈ l hl✝ : List.Pairwise Disjoint l hd : Perm α tl : List (Perm α) IH : f ∈ tl → List.Pairwise Disjoint tl → ∀ (x : α), x ∈ support f → ↑f x = ↑(List.prod tl) x hl : (∀ (a' : Perm α), a' ∈ tl → Disjoint hd a') ∧ List.Pairwise Disjoint tl x : α hx : x ∈ support f h : f ∈ tl ⊢ ¬↑f x ∈ support hd [PROOFSTEP] refine' (hl.left _ h).symm.mem_imp _ [GOAL] case cons.inr α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α l : List (Perm α) h✝ : f ∈ l hl✝ : List.Pairwise Disjoint l hd : Perm α tl : List (Perm α) IH : f ∈ tl → List.Pairwise Disjoint tl → ∀ (x : α), x ∈ support f → ↑f x = ↑(List.prod tl) x hl : (∀ (a' : Perm α), a' ∈ tl → Disjoint hd a') ∧ List.Pairwise Disjoint tl x : α hx : x ∈ support f h : f ∈ tl ⊢ ↑f x ∈ support f [PROOFSTEP] simpa using hx [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g x y : Perm α h : Disjoint f g hf : support x ≤ support f hg : support y ≤ support g ⊢ Disjoint x y [PROOFSTEP] rw [disjoint_iff_disjoint_support] at h ⊢ [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g x y : Perm α h✝ : Disjoint f g h : _root_.Disjoint (support f) (support g) hf : support x ≤ support f hg : support y ≤ support g ⊢ _root_.Disjoint (support x) (support y) [PROOFSTEP] exact h.mono hf hg [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α l : List (Perm α) h : f ∈ l hl : List.Pairwise Disjoint l ⊢ support f ≤ support (List.prod l) [PROOFSTEP] intro x hx [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α l : List (Perm α) h : f ∈ l hl : List.Pairwise Disjoint l x : α hx : x ∈ support f ⊢ x ∈ support (List.prod l) [PROOFSTEP] rwa [mem_support, ← eq_on_support_mem_disjoint h hl _ hx, ← mem_support] [GOAL] α : Type u_1 inst✝⁴ : DecidableEq α inst✝³ : Fintype α f✝ g✝ : Perm α β : Type u_2 inst✝² : DecidableEq β inst✝¹ : Fintype β p : β → Prop inst✝ : DecidablePred p f : α ≃ Subtype p g : Perm α ⊢ support (extendDomain g f) = map (asEmbedding f) (support g) [PROOFSTEP] ext b [GOAL] case a α : Type u_1 inst✝⁴ : DecidableEq α inst✝³ : Fintype α f✝ g✝ : Perm α β : Type u_2 inst✝² : DecidableEq β inst✝¹ : Fintype β p : β → Prop inst✝ : DecidablePred p f : α ≃ Subtype p g : Perm α b : β ⊢ b ∈ support (extendDomain g f) ↔ b ∈ map (asEmbedding f) (support g) [PROOFSTEP] simp only [exists_prop, Function.Embedding.coeFn_mk, toEmbedding_apply, mem_map, Ne.def, Function.Embedding.trans_apply, mem_support] [GOAL] case a α : Type u_1 inst✝⁴ : DecidableEq α inst✝³ : Fintype α f✝ g✝ : Perm α β : Type u_2 inst✝² : DecidableEq β inst✝¹ : Fintype β p : β → Prop inst✝ : DecidablePred p f : α ≃ Subtype p g : Perm α b : β ⊢ ¬↑(extendDomain g f) b = b ↔ ∃ a, ¬↑g a = a ∧ ↑(asEmbedding f) a = b [PROOFSTEP] by_cases pb : p b [GOAL] case pos α : Type u_1 inst✝⁴ : DecidableEq α inst✝³ : Fintype α f✝ g✝ : Perm α β : Type u_2 inst✝² : DecidableEq β inst✝¹ : Fintype β p : β → Prop inst✝ : DecidablePred p f : α ≃ Subtype p g : Perm α b : β pb : p b ⊢ ¬↑(extendDomain g f) b = b ↔ ∃ a, ¬↑g a = a ∧ ↑(asEmbedding f) a = b [PROOFSTEP] rw [extendDomain_apply_subtype _ _ pb] [GOAL] case pos α : Type u_1 inst✝⁴ : DecidableEq α inst✝³ : Fintype α f✝ g✝ : Perm α β : Type u_2 inst✝² : DecidableEq β inst✝¹ : Fintype β p : β → Prop inst✝ : DecidablePred p f : α ≃ Subtype p g : Perm α b : β pb : p b ⊢ ¬↑(↑f (↑g (↑f.symm { val := b, property := pb }))) = b ↔ ∃ a, ¬↑g a = a ∧ ↑(asEmbedding f) a = b [PROOFSTEP] constructor [GOAL] case pos.mp α : Type u_1 inst✝⁴ : DecidableEq α inst✝³ : Fintype α f✝ g✝ : Perm α β : Type u_2 inst✝² : DecidableEq β inst✝¹ : Fintype β p : β → Prop inst✝ : DecidablePred p f : α ≃ Subtype p g : Perm α b : β pb : p b ⊢ ¬↑(↑f (↑g (↑f.symm { val := b, property := pb }))) = b → ∃ a, ¬↑g a = a ∧ ↑(asEmbedding f) a = b [PROOFSTEP] rintro h [GOAL] case pos.mp α : Type u_1 inst✝⁴ : DecidableEq α inst✝³ : Fintype α f✝ g✝ : Perm α β : Type u_2 inst✝² : DecidableEq β inst✝¹ : Fintype β p : β → Prop inst✝ : DecidablePred p f : α ≃ Subtype p g : Perm α b : β pb : p b h : ¬↑(↑f (↑g (↑f.symm { val := b, property := pb }))) = b ⊢ ∃ a, ¬↑g a = a ∧ ↑(asEmbedding f) a = b [PROOFSTEP] refine' ⟨f.symm ⟨b, pb⟩, _, by simp⟩ [GOAL] α : Type u_1 inst✝⁴ : DecidableEq α inst✝³ : Fintype α f✝ g✝ : Perm α β : Type u_2 inst✝² : DecidableEq β inst✝¹ : Fintype β p : β → Prop inst✝ : DecidablePred p f : α ≃ Subtype p g : Perm α b : β pb : p b h : ¬↑(↑f (↑g (↑f.symm { val := b, property := pb }))) = b ⊢ ↑(asEmbedding f) (↑f.symm { val := b, property := pb }) = b [PROOFSTEP] simp [GOAL] case pos.mp α : Type u_1 inst✝⁴ : DecidableEq α inst✝³ : Fintype α f✝ g✝ : Perm α β : Type u_2 inst✝² : DecidableEq β inst✝¹ : Fintype β p : β → Prop inst✝ : DecidablePred p f : α ≃ Subtype p g : Perm α b : β pb : p b h : ¬↑(↑f (↑g (↑f.symm { val := b, property := pb }))) = b ⊢ ¬↑g (↑f.symm { val := b, property := pb }) = ↑f.symm { val := b, property := pb } [PROOFSTEP] contrapose! h [GOAL] case pos.mp α : Type u_1 inst✝⁴ : DecidableEq α inst✝³ : Fintype α f✝ g✝ : Perm α β : Type u_2 inst✝² : DecidableEq β inst✝¹ : Fintype β p : β → Prop inst✝ : DecidablePred p f : α ≃ Subtype p g : Perm α b : β pb : p b h : ↑g (↑f.symm { val := b, property := pb }) = ↑f.symm { val := b, property := pb } ⊢ ↑(↑f (↑g (↑f.symm { val := b, property := pb }))) = b [PROOFSTEP] simp [h] [GOAL] case pos.mpr α : Type u_1 inst✝⁴ : DecidableEq α inst✝³ : Fintype α f✝ g✝ : Perm α β : Type u_2 inst✝² : DecidableEq β inst✝¹ : Fintype β p : β → Prop inst✝ : DecidablePred p f : α ≃ Subtype p g : Perm α b : β pb : p b ⊢ (∃ a, ¬↑g a = a ∧ ↑(asEmbedding f) a = b) → ¬↑(↑f (↑g (↑f.symm { val := b, property := pb }))) = b [PROOFSTEP] rintro ⟨a, ha, hb⟩ [GOAL] case pos.mpr.intro.intro α : Type u_1 inst✝⁴ : DecidableEq α inst✝³ : Fintype α f✝ g✝ : Perm α β : Type u_2 inst✝² : DecidableEq β inst✝¹ : Fintype β p : β → Prop inst✝ : DecidablePred p f : α ≃ Subtype p g : Perm α b : β pb : p b a : α ha : ¬↑g a = a hb : ↑(asEmbedding f) a = b ⊢ ¬↑(↑f (↑g (↑f.symm { val := b, property := pb }))) = b [PROOFSTEP] contrapose! ha [GOAL] case pos.mpr.intro.intro α : Type u_1 inst✝⁴ : DecidableEq α inst✝³ : Fintype α f✝ g✝ : Perm α β : Type u_2 inst✝² : DecidableEq β inst✝¹ : Fintype β p : β → Prop inst✝ : DecidablePred p f : α ≃ Subtype p g : Perm α b : β pb : p b a : α hb : ↑(asEmbedding f) a = b ha : ↑(↑f (↑g (↑f.symm { val := b, property := pb }))) = b ⊢ ↑g a = a [PROOFSTEP] obtain rfl : a = f.symm ⟨b, pb⟩ := by rw [eq_symm_apply] exact Subtype.coe_injective hb [GOAL] α : Type u_1 inst✝⁴ : DecidableEq α inst✝³ : Fintype α f✝ g✝ : Perm α β : Type u_2 inst✝² : DecidableEq β inst✝¹ : Fintype β p : β → Prop inst✝ : DecidablePred p f : α ≃ Subtype p g : Perm α b : β pb : p b a : α hb : ↑(asEmbedding f) a = b ha : ↑(↑f (↑g (↑f.symm { val := b, property := pb }))) = b ⊢ a = ↑f.symm { val := b, property := pb } [PROOFSTEP] rw [eq_symm_apply] [GOAL] α : Type u_1 inst✝⁴ : DecidableEq α inst✝³ : Fintype α f✝ g✝ : Perm α β : Type u_2 inst✝² : DecidableEq β inst✝¹ : Fintype β p : β → Prop inst✝ : DecidablePred p f : α ≃ Subtype p g : Perm α b : β pb : p b a : α hb : ↑(asEmbedding f) a = b ha : ↑(↑f (↑g (↑f.symm { val := b, property := pb }))) = b ⊢ ↑f a = { val := b, property := pb } [PROOFSTEP] exact Subtype.coe_injective hb [GOAL] case pos.mpr.intro.intro α : Type u_1 inst✝⁴ : DecidableEq α inst✝³ : Fintype α f✝ g✝ : Perm α β : Type u_2 inst✝² : DecidableEq β inst✝¹ : Fintype β p : β → Prop inst✝ : DecidablePred p f : α ≃ Subtype p g : Perm α b : β pb : p b ha : ↑(↑f (↑g (↑f.symm { val := b, property := pb }))) = b hb : ↑(asEmbedding f) (↑f.symm { val := b, property := pb }) = b ⊢ ↑g (↑f.symm { val := b, property := pb }) = ↑f.symm { val := b, property := pb } [PROOFSTEP] rw [eq_symm_apply] [GOAL] case pos.mpr.intro.intro α : Type u_1 inst✝⁴ : DecidableEq α inst✝³ : Fintype α f✝ g✝ : Perm α β : Type u_2 inst✝² : DecidableEq β inst✝¹ : Fintype β p : β → Prop inst✝ : DecidablePred p f : α ≃ Subtype p g : Perm α b : β pb : p b ha : ↑(↑f (↑g (↑f.symm { val := b, property := pb }))) = b hb : ↑(asEmbedding f) (↑f.symm { val := b, property := pb }) = b ⊢ ↑f (↑g (↑f.symm { val := b, property := pb })) = { val := b, property := pb } [PROOFSTEP] exact Subtype.coe_injective ha [GOAL] case neg α : Type u_1 inst✝⁴ : DecidableEq α inst✝³ : Fintype α f✝ g✝ : Perm α β : Type u_2 inst✝² : DecidableEq β inst✝¹ : Fintype β p : β → Prop inst✝ : DecidablePred p f : α ≃ Subtype p g : Perm α b : β pb : ¬p b ⊢ ¬↑(extendDomain g f) b = b ↔ ∃ a, ¬↑g a = a ∧ ↑(asEmbedding f) a = b [PROOFSTEP] rw [extendDomain_apply_not_subtype _ _ pb] [GOAL] case neg α : Type u_1 inst✝⁴ : DecidableEq α inst✝³ : Fintype α f✝ g✝ : Perm α β : Type u_2 inst✝² : DecidableEq β inst✝¹ : Fintype β p : β → Prop inst✝ : DecidablePred p f : α ≃ Subtype p g : Perm α b : β pb : ¬p b ⊢ ¬b = b ↔ ∃ a, ¬↑g a = a ∧ ↑(asEmbedding f) a = b [PROOFSTEP] simp only [not_exists, false_iff_iff, not_and, eq_self_iff_true, not_true] [GOAL] case neg α : Type u_1 inst✝⁴ : DecidableEq α inst✝³ : Fintype α f✝ g✝ : Perm α β : Type u_2 inst✝² : DecidableEq β inst✝¹ : Fintype β p : β → Prop inst✝ : DecidablePred p f : α ≃ Subtype p g : Perm α b : β pb : ¬p b ⊢ ∀ (x : α), ¬↑g x = x → ¬↑(asEmbedding f) x = b [PROOFSTEP] rintro a _ rfl [GOAL] case neg α : Type u_1 inst✝⁴ : DecidableEq α inst✝³ : Fintype α f✝ g✝ : Perm α β : Type u_2 inst✝² : DecidableEq β inst✝¹ : Fintype β p : β → Prop inst✝ : DecidablePred p f : α ≃ Subtype p g : Perm α a : α a✝ : ¬↑g a = a pb : ¬p (↑(asEmbedding f) a) ⊢ False [PROOFSTEP] exact pb (Subtype.prop _) [GOAL] α : Type u_1 inst✝⁴ : DecidableEq α inst✝³ : Fintype α f✝ g✝ : Perm α β : Type u_2 inst✝² : DecidableEq β inst✝¹ : Fintype β p : β → Prop inst✝ : DecidablePred p f : α ≃ Subtype p g : Perm α ⊢ card (support (extendDomain g f)) = card (support g) [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g f : Perm α ⊢ card (support f) = 0 ↔ f = 1 [PROOFSTEP] rw [Finset.card_eq_zero, support_eq_empty_iff] [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g f : Perm α h : f ≠ 1 ⊢ 1 < card (support f) [PROOFSTEP] simp_rw [one_lt_card_iff, mem_support, ← not_or] [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g f : Perm α h : f ≠ 1 ⊢ ∃ a b, ¬(↑f a = a ∨ ↑f b = b ∨ a = b) [PROOFSTEP] contrapose! h [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g f : Perm α h : ∀ (a b : α), ↑f a = a ∨ ↑f b = b ∨ a = b ⊢ f = 1 [PROOFSTEP] ext a [GOAL] case H α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g f : Perm α h : ∀ (a b : α), ↑f a = a ∨ ↑f b = b ∨ a = b a : α ⊢ ↑f a = ↑1 a [PROOFSTEP] specialize h (f a) a [GOAL] case H α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g f : Perm α a : α h : ↑f (↑f a) = ↑f a ∨ ↑f a = a ∨ ↑f a = a ⊢ ↑f a = ↑1 a [PROOFSTEP] rwa [apply_eq_iff_eq, or_self_iff, or_self_iff] at h [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g f : Perm α ⊢ card (support f) ≠ 1 [PROOFSTEP] by_cases h : f = 1 [GOAL] case pos α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g f : Perm α h : f = 1 ⊢ card (support f) ≠ 1 [PROOFSTEP] exact ne_of_eq_of_ne (card_support_eq_zero.mpr h) zero_ne_one [GOAL] case neg α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g f : Perm α h : ¬f = 1 ⊢ card (support f) ≠ 1 [PROOFSTEP] exact ne_of_gt (one_lt_card_support_of_ne_one h) [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g f : Perm α ⊢ card (support f) ≤ 1 ↔ f = 1 [PROOFSTEP] rw [le_iff_lt_or_eq, Nat.lt_succ_iff, le_zero_iff, card_support_eq_zero, or_iff_not_imp_right, imp_iff_right f.card_support_ne_one] [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g f : Perm α x : α hx : ↑f x ≠ x h : support f ⊆ support (swap x (↑f x) * f) ⊢ ¬↑(swap x (↑f x) * f) x ≠ x [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x y : α hxy : x ≠ y ⊢ Multiset.Nodup (x ::ₘ y ::ₘ 0) [PROOFSTEP] simp [hxy] [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x y : α hxy : x ≠ y ⊢ support (swap x y) = { val := x ::ₘ y ::ₘ 0, nodup := (_ : Multiset.Nodup (x ::ₘ {y})) } [PROOFSTEP] simp [support_swap hxy, *, Finset.ext_iff] [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g f : Perm α ⊢ card (support f) = 2 ↔ IsSwap f [PROOFSTEP] constructor [GOAL] case mp α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g f : Perm α ⊢ card (support f) = 2 → IsSwap f [PROOFSTEP] intro h [GOAL] case mpr α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g f : Perm α ⊢ IsSwap f → card (support f) = 2 [PROOFSTEP] intro h [GOAL] case mp α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g f : Perm α h : card (support f) = 2 ⊢ IsSwap f [PROOFSTEP] obtain ⟨x, t, hmem, hins, ht⟩ := card_eq_succ.1 h [GOAL] case mp.intro.intro.intro.intro α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g f : Perm α h : card (support f) = 2 x : α t : Finset α hmem : ¬x ∈ t hins : insert x t = support f ht : card t = 1 ⊢ IsSwap f [PROOFSTEP] obtain ⟨y, rfl⟩ := card_eq_one.1 ht [GOAL] case mp.intro.intro.intro.intro.intro α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g f : Perm α h : card (support f) = 2 x y : α hmem : ¬x ∈ {y} hins : {x, y} = support f ht : card {y} = 1 ⊢ IsSwap f [PROOFSTEP] rw [mem_singleton] at hmem [GOAL] case mp.intro.intro.intro.intro.intro α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g f : Perm α h : card (support f) = 2 x y : α hmem : ¬x = y hins : {x, y} = support f ht : card {y} = 1 ⊢ IsSwap f [PROOFSTEP] refine' ⟨x, y, hmem, _⟩ [GOAL] case mp.intro.intro.intro.intro.intro α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g f : Perm α h : card (support f) = 2 x y : α hmem : ¬x = y hins : {x, y} = support f ht : card {y} = 1 ⊢ f = swap x y [PROOFSTEP] ext a [GOAL] case mp.intro.intro.intro.intro.intro.H α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g f : Perm α h : card (support f) = 2 x y : α hmem : ¬x = y hins : {x, y} = support f ht : card {y} = 1 a : α ⊢ ↑f a = ↑(swap x y) a [PROOFSTEP] have key : ∀ b, f b ≠ b ↔ _ := fun b => by rw [← mem_support, ← hins, mem_insert, mem_singleton] [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g f : Perm α h : card (support f) = 2 x y : α hmem : ¬x = y hins : {x, y} = support f ht : card {y} = 1 a b : α ⊢ ↑f b ≠ b ↔ ?m.195733 b [PROOFSTEP] rw [← mem_support, ← hins, mem_insert, mem_singleton] [GOAL] case mp.intro.intro.intro.intro.intro.H α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g f : Perm α h : card (support f) = 2 x y : α hmem : ¬x = y hins : {x, y} = support f ht : card {y} = 1 a : α key : ∀ (b : α), ↑f b ≠ b ↔ b = x ∨ b = y ⊢ ↑f a = ↑(swap x y) a [PROOFSTEP] by_cases ha : f a = a [GOAL] case pos α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g f : Perm α h : card (support f) = 2 x y : α hmem : ¬x = y hins : {x, y} = support f ht : card {y} = 1 a : α key : ∀ (b : α), ↑f b ≠ b ↔ b = x ∨ b = y ha : ↑f a = a ⊢ ↑f a = ↑(swap x y) a [PROOFSTEP] have ha' := not_or.mp (mt (key a).mpr (not_not.mpr ha)) [GOAL] case pos α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g f : Perm α h : card (support f) = 2 x y : α hmem : ¬x = y hins : {x, y} = support f ht : card {y} = 1 a : α key : ∀ (b : α), ↑f b ≠ b ↔ b = x ∨ b = y ha : ↑f a = a ha' : ¬a = x ∧ ¬a = y ⊢ ↑f a = ↑(swap x y) a [PROOFSTEP] rw [ha, swap_apply_of_ne_of_ne ha'.1 ha'.2] [GOAL] case neg α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g f : Perm α h : card (support f) = 2 x y : α hmem : ¬x = y hins : {x, y} = support f ht : card {y} = 1 a : α key : ∀ (b : α), ↑f b ≠ b ↔ b = x ∨ b = y ha : ¬↑f a = a ⊢ ↑f a = ↑(swap x y) a [PROOFSTEP] have ha' := (key (f a)).mp (mt f.apply_eq_iff_eq.mp ha) [GOAL] case neg α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g f : Perm α h : card (support f) = 2 x y : α hmem : ¬x = y hins : {x, y} = support f ht : card {y} = 1 a : α key : ∀ (b : α), ↑f b ≠ b ↔ b = x ∨ b = y ha : ¬↑f a = a ha' : ↑f a = x ∨ ↑f a = y ⊢ ↑f a = ↑(swap x y) a [PROOFSTEP] obtain rfl | rfl := (key a).mp ha [GOAL] case neg.inl α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g f : Perm α h : card (support f) = 2 y : α ht : card {y} = 1 a : α ha : ¬↑f a = a hmem : ¬a = y hins : {a, y} = support f key : ∀ (b : α), ↑f b ≠ b ↔ b = a ∨ b = y ha' : ↑f a = a ∨ ↑f a = y ⊢ ↑f a = ↑(swap a y) a [PROOFSTEP] rw [Or.resolve_left ha' ha, swap_apply_left] [GOAL] case neg.inr α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g f : Perm α h : card (support f) = 2 x a : α ha : ¬↑f a = a hmem : ¬x = a hins : {x, a} = support f ht : card {a} = 1 key : ∀ (b : α), ↑f b ≠ b ↔ b = x ∨ b = a ha' : ↑f a = x ∨ ↑f a = a ⊢ ↑f a = ↑(swap x a) a [PROOFSTEP] rw [Or.resolve_right ha' ha, swap_apply_right] [GOAL] case mpr α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g f : Perm α h : IsSwap f ⊢ card (support f) = 2 [PROOFSTEP] obtain ⟨x, y, hxy, rfl⟩ := h [GOAL] case mpr.intro.intro.intro α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α x y : α hxy : x ≠ y ⊢ card (support (swap x y)) = 2 [PROOFSTEP] exact card_support_swap hxy [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α h : Disjoint f g ⊢ card (support (f * g)) = card (support f) + card (support g) [PROOFSTEP] rw [← Finset.card_disjoint_union] [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α h : Disjoint f g ⊢ card (support (f * g)) = card (support f ∪ support g) [PROOFSTEP] congr [GOAL] case e_s α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α h : Disjoint f g ⊢ support (f * g) = support f ∪ support g [PROOFSTEP] ext [GOAL] case e_s.a α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α h : Disjoint f g a✝ : α ⊢ a✝ ∈ support (f * g) ↔ a✝ ∈ support f ∪ support g [PROOFSTEP] simp [h.support_mul] [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α h : Disjoint f g ⊢ _root_.Disjoint (support f) (support g) [PROOFSTEP] simpa using h.disjoint_support [GOAL] α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α l : List (Perm α) h : List.Pairwise Disjoint l ⊢ card (support (List.prod l)) = List.sum (List.map (card ∘ support) l) [PROOFSTEP] induction' l with a t ih [GOAL] case nil α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α l : List (Perm α) h✝ : List.Pairwise Disjoint l h : List.Pairwise Disjoint [] ⊢ card (support (List.prod [])) = List.sum (List.map (card ∘ support) []) [PROOFSTEP] exact card_support_eq_zero.mpr rfl [GOAL] case cons α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α l : List (Perm α) h✝ : List.Pairwise Disjoint l a : Perm α t : List (Perm α) ih : List.Pairwise Disjoint t → card (support (List.prod t)) = List.sum (List.map (card ∘ support) t) h : List.Pairwise Disjoint (a :: t) ⊢ card (support (List.prod (a :: t))) = List.sum (List.map (card ∘ support) (a :: t)) [PROOFSTEP] obtain ⟨ha, ht⟩ := List.pairwise_cons.1 h [GOAL] case cons.intro α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α l : List (Perm α) h✝ : List.Pairwise Disjoint l a : Perm α t : List (Perm α) ih : List.Pairwise Disjoint t → card (support (List.prod t)) = List.sum (List.map (card ∘ support) t) h : List.Pairwise Disjoint (a :: t) ha : ∀ (a' : Perm α), a' ∈ t → Disjoint a a' ht : List.Pairwise Disjoint t ⊢ card (support (List.prod (a :: t))) = List.sum (List.map (card ∘ support) (a :: t)) [PROOFSTEP] rw [List.prod_cons, List.map_cons, List.sum_cons, ← ih ht] [GOAL] case cons.intro α : Type u_1 inst✝¹ : DecidableEq α inst✝ : Fintype α f g : Perm α l : List (Perm α) h✝ : List.Pairwise Disjoint l a : Perm α t : List (Perm α) ih : List.Pairwise Disjoint t → card (support (List.prod t)) = List.sum (List.map (card ∘ support) t) h : List.Pairwise Disjoint (a :: t) ha : ∀ (a' : Perm α), a' ∈ t → Disjoint a a' ht : List.Pairwise Disjoint t ⊢ card (support (a * List.prod t)) = (card ∘ support) a + card (support (List.prod t)) [PROOFSTEP] exact (disjoint_prod_right _ ha).card_support_mul [GOAL] α : Type u_1 inst✝ : DecidableEq α s : Finset α f : Perm α h : ∀ (x : α), x ∈ s ↔ ↑f x ∈ s ⊢ support (subtypePerm f h) = filter (fun x => decide (↑f ↑x ≠ ↑x) = true) (attach s) [PROOFSTEP] ext [GOAL] case a α : Type u_1 inst✝ : DecidableEq α s : Finset α f : Perm α h : ∀ (x : α), x ∈ s ↔ ↑f x ∈ s a✝ : { x // x ∈ s } ⊢ a✝ ∈ support (subtypePerm f h) ↔ a✝ ∈ filter (fun x => decide (↑f ↑x ≠ ↑x) = true) (attach s) [PROOFSTEP] simp [Subtype.ext_iff]
{"mathlib_filename": "Mathlib.GroupTheory.Perm.Support", "llama_tokens": 37836}
[GOAL] G : Type u_1 inst✝ : Group G H : Subgroup G ⊢ Saturated H ↔ ∀ (n : ℤ) (g : G), g ^ n ∈ H → n = 0 ∨ g ∈ H [PROOFSTEP] constructor [GOAL] case mp G : Type u_1 inst✝ : Group G H : Subgroup G ⊢ Saturated H → ∀ (n : ℤ) (g : G), g ^ n ∈ H → n = 0 ∨ g ∈ H [PROOFSTEP] intros hH n g hgn [GOAL] case mp G : Type u_1 inst✝ : Group G H : Subgroup G hH : Saturated H n : ℤ g : G hgn : g ^ n ∈ H ⊢ n = 0 ∨ g ∈ H [PROOFSTEP] induction' n with n n [GOAL] case mp.ofNat G : Type u_1 inst✝ : Group G H : Subgroup G hH : Saturated H n✝ : ℤ g : G hgn✝ : g ^ n✝ ∈ H n : ℕ hgn : g ^ Int.ofNat n ∈ H ⊢ Int.ofNat n = 0 ∨ g ∈ H [PROOFSTEP] simp only [Int.coe_nat_eq_zero, Int.ofNat_eq_coe, zpow_ofNat] at hgn ⊢ [GOAL] case mp.ofNat G : Type u_1 inst✝ : Group G H : Subgroup G hH : Saturated H n✝ : ℤ g : G hgn✝ : g ^ n✝ ∈ H n : ℕ hgn : g ^ n ∈ H ⊢ n = 0 ∨ g ∈ H [PROOFSTEP] exact hH hgn [GOAL] case mp.negSucc G : Type u_1 inst✝ : Group G H : Subgroup G hH : Saturated H n✝ : ℤ g : G hgn✝ : g ^ n✝ ∈ H n : ℕ hgn : g ^ Int.negSucc n ∈ H ⊢ Int.negSucc n = 0 ∨ g ∈ H [PROOFSTEP] suffices g ^ (n + 1) ∈ H by refine' (hH this).imp _ id simp only [IsEmpty.forall_iff, Nat.succ_ne_zero] [GOAL] G : Type u_1 inst✝ : Group G H : Subgroup G hH : Saturated H n✝ : ℤ g : G hgn✝ : g ^ n✝ ∈ H n : ℕ hgn : g ^ Int.negSucc n ∈ H this : g ^ (n + 1) ∈ H ⊢ Int.negSucc n = 0 ∨ g ∈ H [PROOFSTEP] refine' (hH this).imp _ id [GOAL] G : Type u_1 inst✝ : Group G H : Subgroup G hH : Saturated H n✝ : ℤ g : G hgn✝ : g ^ n✝ ∈ H n : ℕ hgn : g ^ Int.negSucc n ∈ H this : g ^ (n + 1) ∈ H ⊢ n + 1 = 0 → Int.negSucc n = 0 [PROOFSTEP] simp only [IsEmpty.forall_iff, Nat.succ_ne_zero] [GOAL] case mp.negSucc G : Type u_1 inst✝ : Group G H : Subgroup G hH : Saturated H n✝ : ℤ g : G hgn✝ : g ^ n✝ ∈ H n : ℕ hgn : g ^ Int.negSucc n ∈ H ⊢ g ^ (n + 1) ∈ H [PROOFSTEP] simpa only [inv_mem_iff, zpow_negSucc] using hgn [GOAL] case mpr G : Type u_1 inst✝ : Group G H : Subgroup G ⊢ (∀ (n : ℤ) (g : G), g ^ n ∈ H → n = 0 ∨ g ∈ H) → Saturated H [PROOFSTEP] intro h n g hgn [GOAL] case mpr G : Type u_1 inst✝ : Group G H : Subgroup G h : ∀ (n : ℤ) (g : G), g ^ n ∈ H → n = 0 ∨ g ∈ H n : ℕ g : G hgn : g ^ n ∈ H ⊢ n = 0 ∨ g ∈ H [PROOFSTEP] specialize h n g [GOAL] case mpr G : Type u_1 inst✝ : Group G H : Subgroup G n : ℕ g : G hgn : g ^ n ∈ H h : g ^ ↑n ∈ H → ↑n = 0 ∨ g ∈ H ⊢ n = 0 ∨ g ∈ H [PROOFSTEP] simp only [Int.coe_nat_eq_zero, zpow_ofNat] at h [GOAL] case mpr G : Type u_1 inst✝ : Group G H : Subgroup G n : ℕ g : G hgn : g ^ n ∈ H h : g ^ n ∈ H → n = 0 ∨ g ∈ H ⊢ n = 0 ∨ g ∈ H [PROOFSTEP] apply h hgn [GOAL] A₁ : Type u_1 A₂ : Type u_2 inst✝² : AddCommGroup A₁ inst✝¹ : AddCommGroup A₂ inst✝ : NoZeroSMulDivisors ℕ A₂ f : A₁ →+ A₂ ⊢ Saturated (AddMonoidHom.ker f) [PROOFSTEP] intro n g hg [GOAL] A₁ : Type u_1 A₂ : Type u_2 inst✝² : AddCommGroup A₁ inst✝¹ : AddCommGroup A₂ inst✝ : NoZeroSMulDivisors ℕ A₂ f : A₁ →+ A₂ n : ℕ g : A₁ hg : n • g ∈ AddMonoidHom.ker f ⊢ n = 0 ∨ g ∈ AddMonoidHom.ker f [PROOFSTEP] simpa only [f.mem_ker, nsmul_eq_smul, f.map_nsmul, smul_eq_zero] using hg
{"mathlib_filename": "Mathlib.GroupTheory.Subgroup.Saturated", "llama_tokens": 1725}
[GOAL] M : Type u_1 N : Type u_2 P : Type u_3 σ : Type u_4 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P S✝ : Subsemigroup M f : M →ₙ* N S : Subsemigroup N a✝ b✝ : M ha : a✝ ∈ ↑f ⁻¹' ↑S hb : b✝ ∈ ↑f ⁻¹' ↑S ⊢ ↑f (a✝ * b✝) ∈ S [PROOFSTEP] rw [map_mul] [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 σ : Type u_4 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P S✝ : Subsemigroup M f : M →ₙ* N S : Subsemigroup N a✝ b✝ : M ha : a✝ ∈ ↑f ⁻¹' ↑S hb : b✝ ∈ ↑f ⁻¹' ↑S ⊢ ↑f a✝ * ↑f b✝ ∈ S [PROOFSTEP] exact mul_mem ha hb [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 σ : Type u_4 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P S✝ : Subsemigroup M S : Subsemigroup P ⊢ ∀ (x : P), x ∈ comap (MulHom.id P) S ↔ x ∈ S [PROOFSTEP] simp [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 σ : Type u_4 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P S✝ : Subsemigroup M f : M →ₙ* N S : Subsemigroup M ⊢ ∀ {a b : N}, a ∈ ↑f '' ↑S → b ∈ ↑f '' ↑S → a * b ∈ ↑f '' ↑S [PROOFSTEP] rintro _ _ ⟨x, hx, rfl⟩ ⟨y, hy, rfl⟩ [GOAL] case intro.intro.intro.intro M : Type u_1 N : Type u_2 P : Type u_3 σ : Type u_4 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P S✝ : Subsemigroup M f : M →ₙ* N S : Subsemigroup M x : M hx : x ∈ ↑S y : M hy : y ∈ ↑S ⊢ ↑f x * ↑f y ∈ ↑f '' ↑S [PROOFSTEP] exact ⟨x * y, @mul_mem (Subsemigroup M) M _ _ _ _ _ _ hx hy, by rw [map_mul]⟩ [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 σ : Type u_4 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P S✝ : Subsemigroup M f : M →ₙ* N S : Subsemigroup M x : M hx : x ∈ ↑S y : M hy : y ∈ ↑S ⊢ ↑f (x * y) = ↑f x * ↑f y [PROOFSTEP] rw [map_mul] [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 σ : Type u_4 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P S✝ : Subsemigroup M ι : Type u_5 f : M →ₙ* N hf : Function.Injective ↑f S : Subsemigroup M x : M ⊢ x ∈ comap f (map f S) → x ∈ S [PROOFSTEP] simp [mem_comap, mem_map, hf.eq_iff] [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 σ : Type u_4 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P S✝ : Subsemigroup M ι : Type u_5 f : M →ₙ* N hf : Function.Surjective ↑f S : Subsemigroup N x : N h : x ∈ S y : M hy : ↑f y = x ⊢ y ∈ comap f S ∧ ↑f y = x [PROOFSTEP] simp [hy, h] [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 σ : Type u_4 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P S : Subsemigroup M s : Set M x✝¹ : { x // x ∈ closure s } x : M hx : x ∈ closure s x✝ : { val := x, property := hx } ∈ ⊤ ⊢ { val := x, property := hx } ∈ closure (Subtype.val ⁻¹' s) [PROOFSTEP] refine' closure_induction' _ (fun g hg => subset_closure hg) (fun g₁ g₂ hg₁ hg₂ => _) hx [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 σ : Type u_4 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P S : Subsemigroup M s : Set M x✝¹ : { x // x ∈ closure s } x : M hx : x ∈ closure s x✝ : { val := x, property := hx } ∈ ⊤ g₁ : M g₂ : g₁ ∈ closure s hg₁ : M hg₂ : hg₁ ∈ closure s ⊢ { val := g₁, property := g₂ } ∈ closure (Subtype.val ⁻¹' s) → { val := hg₁, property := hg₂ } ∈ closure (Subtype.val ⁻¹' s) → { val := g₁ * hg₁, property := (_ : g₁ * hg₁ ∈ closure s) } ∈ closure (Subtype.val ⁻¹' s) [PROOFSTEP] exact Subsemigroup.mul_mem _ [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 σ : Type u_4 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P S s : Subsemigroup M x : M × N ⊢ x ∈ prod s ⊤ ↔ x ∈ comap (MulHom.fst M N) s [PROOFSTEP] simp [mem_prod, MulHom.coe_fst] [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 σ : Type u_4 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P S : Subsemigroup M s : Subsemigroup N x : M × N ⊢ x ∈ prod ⊤ s ↔ x ∈ comap (MulHom.snd M N) s [PROOFSTEP] simp [mem_prod, MulHom.coe_snd] [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 σ : Type u_4 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P S : Subsemigroup M ⊢ ↑(prod ⊥ ⊥) = ↑⊥ [PROOFSTEP] simp [coe_prod, Prod.one_eq_mk] [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 σ : Type u_4 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P S s : Subsemigroup M t : Subsemigroup N u : Subsemigroup (M × N) ⊢ u ≤ prod s t ↔ map (fst M N) u ≤ s ∧ map (snd M N) u ≤ t [PROOFSTEP] constructor [GOAL] case mp M : Type u_1 N : Type u_2 P : Type u_3 σ : Type u_4 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P S s : Subsemigroup M t : Subsemigroup N u : Subsemigroup (M × N) ⊢ u ≤ prod s t → map (fst M N) u ≤ s ∧ map (snd M N) u ≤ t [PROOFSTEP] intro h [GOAL] case mp M : Type u_1 N : Type u_2 P : Type u_3 σ : Type u_4 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P S s : Subsemigroup M t : Subsemigroup N u : Subsemigroup (M × N) h : u ≤ prod s t ⊢ map (fst M N) u ≤ s ∧ map (snd M N) u ≤ t [PROOFSTEP] constructor [GOAL] case mp.left M : Type u_1 N : Type u_2 P : Type u_3 σ : Type u_4 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P S s : Subsemigroup M t : Subsemigroup N u : Subsemigroup (M × N) h : u ≤ prod s t ⊢ map (fst M N) u ≤ s [PROOFSTEP] rintro x ⟨⟨y1, y2⟩, ⟨hy1, rfl⟩⟩ [GOAL] case mp.left.intro.mk.intro M : Type u_1 N : Type u_2 P : Type u_3 σ : Type u_4 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P S s : Subsemigroup M t : Subsemigroup N u : Subsemigroup (M × N) h : u ≤ prod s t y1 : M y2 : N hy1 : (y1, y2) ∈ ↑u ⊢ ↑(fst M N) (y1, y2) ∈ s [PROOFSTEP] exact (h hy1).1 [GOAL] case mp.right M : Type u_1 N : Type u_2 P : Type u_3 σ : Type u_4 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P S s : Subsemigroup M t : Subsemigroup N u : Subsemigroup (M × N) h : u ≤ prod s t ⊢ map (snd M N) u ≤ t [PROOFSTEP] rintro x ⟨⟨y1, y2⟩, ⟨hy1, rfl⟩⟩ [GOAL] case mp.right.intro.mk.intro M : Type u_1 N : Type u_2 P : Type u_3 σ : Type u_4 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P S s : Subsemigroup M t : Subsemigroup N u : Subsemigroup (M × N) h : u ≤ prod s t y1 : M y2 : N hy1 : (y1, y2) ∈ ↑u ⊢ ↑(snd M N) (y1, y2) ∈ t [PROOFSTEP] exact (h hy1).2 [GOAL] case mpr M : Type u_1 N : Type u_2 P : Type u_3 σ : Type u_4 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P S s : Subsemigroup M t : Subsemigroup N u : Subsemigroup (M × N) ⊢ map (fst M N) u ≤ s ∧ map (snd M N) u ≤ t → u ≤ prod s t [PROOFSTEP] rintro ⟨hH, hK⟩ ⟨x1, x2⟩ h [GOAL] case mpr.intro.mk M : Type u_1 N : Type u_2 P : Type u_3 σ : Type u_4 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P S s : Subsemigroup M t : Subsemigroup N u : Subsemigroup (M × N) hH : map (fst M N) u ≤ s hK : map (snd M N) u ≤ t x1 : M x2 : N h : (x1, x2) ∈ u ⊢ (x1, x2) ∈ prod s t [PROOFSTEP] exact ⟨hH ⟨_, h, rfl⟩, hK ⟨_, h, rfl⟩⟩ [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 σ : Type u_4 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P S : Subsemigroup M g : N →ₙ* P f : M →ₙ* N ⊢ map g (srange f) = srange (comp g f) [PROOFSTEP] simpa only [srange_eq_map] using (⊤ : Subsemigroup M).map_map g f [GOAL] M : Type u_1 N✝ : Type u_2 P : Type u_3 σ : Type u_4 inst✝³ : Mul M inst✝² : Mul N✝ inst✝¹ : Mul P S : Subsemigroup M N : Type u_5 inst✝ : Mul N f : M →ₙ* N ⊢ ↑(srange f) = ↑⊤ ↔ Set.range ↑f = Set.univ [PROOFSTEP] rw [coe_srange, coe_top] [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 σ : Type u_4 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P S : Subsemigroup M f : M →ₙ* N M' : Subsemigroup M ⊢ Function.Surjective ↑(subsemigroupMap f M') [PROOFSTEP] rintro ⟨_, x, hx, rfl⟩ [GOAL] case mk.intro.intro M : Type u_1 N : Type u_2 P : Type u_3 σ : Type u_4 inst✝² : Mul M inst✝¹ : Mul N inst✝ : Mul P S : Subsemigroup M f : M →ₙ* N M' : Subsemigroup M x : M hx : x ∈ ↑M' ⊢ ∃ a, ↑(subsemigroupMap f M') a = { val := ↑f x, property := (_ : ∃ a, a ∈ ↑M' ∧ ↑f a = ↑f x) } [PROOFSTEP] exact ⟨⟨x, hx⟩, rfl⟩ [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 σ : Type u_4 inst✝⁴ : Mul M inst✝³ : Mul N inst✝² : Mul P S : Subsemigroup M inst✝¹ : Nonempty M inst✝ : Nonempty N s : Subsemigroup M t : Subsemigroup N ⊢ prod s t = ⊤ ↔ s = ⊤ ∧ t = ⊤ [PROOFSTEP] simp only [eq_top_iff, le_prod_iff, ← (gc_map_comap _).le_iff_le, ← srange_eq_map, srange_fst, srange_snd] [GOAL] M : Type u_1 N : Type u_2 P : Type u_3 σ : Type u_4 inst✝¹ : Mul M inst✝ : Mul N S T : Subsemigroup M f : M →ₙ* N g : N → M h : Function.LeftInverse g ↑f src✝ : M →ₙ* { x // x ∈ MulHom.srange f } := MulHom.srangeRestrict f x : { x // x ∈ MulHom.srange f } x' : M hx' : ↑f x' = ↑x ⊢ ↑f (g ↑x) = ↑x [PROOFSTEP] rw [← hx', h x']
{"mathlib_filename": "Mathlib.GroupTheory.Subsemigroup.Operations", "llama_tokens": 4449}
{"mathlib_filename": "Mathlib.GroupTheory.Subgroup.Actions", "llama_tokens": 0}
[GOAL] M : Type u_1 N : Type u_2 A : Type u_3 inst✝¹ : Mul M s : Set M inst✝ : Add A t : Set A p q : Subsemigroup M h : p.carrier = q.carrier ⊢ p = q [PROOFSTEP] cases p [GOAL] case mk M : Type u_1 N : Type u_2 A : Type u_3 inst✝¹ : Mul M s : Set M inst✝ : Add A t : Set A q : Subsemigroup M carrier✝ : Set M mul_mem'✝ : ∀ {a b : M}, a ∈ carrier✝ → b ∈ carrier✝ → a * b ∈ carrier✝ h : { carrier := carrier✝, mul_mem' := mul_mem'✝ }.carrier = q.carrier ⊢ { carrier := carrier✝, mul_mem' := mul_mem'✝ } = q [PROOFSTEP] cases q [GOAL] case mk.mk M : Type u_1 N : Type u_2 A : Type u_3 inst✝¹ : Mul M s : Set M inst✝ : Add A t : Set A carrier✝¹ : Set M mul_mem'✝¹ : ∀ {a b : M}, a ∈ carrier✝¹ → b ∈ carrier✝¹ → a * b ∈ carrier✝¹ carrier✝ : Set M mul_mem'✝ : ∀ {a b : M}, a ∈ carrier✝ → b ∈ carrier✝ → a * b ∈ carrier✝ h : { carrier := carrier✝¹, mul_mem' := mul_mem'✝¹ }.carrier = { carrier := carrier✝, mul_mem' := mul_mem'✝ }.carrier ⊢ { carrier := carrier✝¹, mul_mem' := mul_mem'✝¹ } = { carrier := carrier✝, mul_mem' := mul_mem'✝ } [PROOFSTEP] congr [GOAL] M : Type u_1 N : Type u_2 A : Type u_3 inst✝¹ : Mul M s✝ : Set M inst✝ : Add A t : Set A S : Subsemigroup M s : Set (Subsemigroup M) a✝ b✝ : M hx : a✝ ∈ ⋂ (t : Subsemigroup M) (_ : t ∈ s), ↑t hy : b✝ ∈ ⋂ (t : Subsemigroup M) (_ : t ∈ s), ↑t i : Subsemigroup M h : i ∈ s ⊢ a✝ ∈ i [PROOFSTEP] apply Set.mem_iInter₂.1 hx i h [GOAL] M : Type u_1 N : Type u_2 A : Type u_3 inst✝¹ : Mul M s✝ : Set M inst✝ : Add A t : Set A S : Subsemigroup M s : Set (Subsemigroup M) a✝ b✝ : M hx : a✝ ∈ ⋂ (t : Subsemigroup M) (_ : t ∈ s), ↑t hy : b✝ ∈ ⋂ (t : Subsemigroup M) (_ : t ∈ s), ↑t i : Subsemigroup M h : i ∈ s ⊢ b✝ ∈ i [PROOFSTEP] apply Set.mem_iInter₂.1 hy i h [GOAL] M : Type u_1 N : Type u_2 A : Type u_3 inst✝¹ : Mul M s : Set M inst✝ : Add A t : Set A S✝ : Subsemigroup M ι : Sort u_4 S : ι → Subsemigroup M x : M ⊢ x ∈ ⨅ (i : ι), S i ↔ ∀ (i : ι), x ∈ S i [PROOFSTEP] simp only [iInf, mem_sInf, Set.forall_range_iff] [GOAL] M : Type u_1 N : Type u_2 A : Type u_3 inst✝¹ : Mul M s : Set M inst✝ : Add A t : Set A S✝ : Subsemigroup M ι : Sort u_4 S : ι → Subsemigroup M ⊢ ↑(⨅ (i : ι), S i) = ⋂ (i : ι), ↑(S i) [PROOFSTEP] simp only [iInf, coe_sInf, Set.biInter_range] [GOAL] M : Type u_1 N : Type u_2 A : Type u_3 inst✝² : Mul M s : Set M inst✝¹ : Add A t : Set A S : Subsemigroup M inst✝ : Subsingleton (Subsemigroup M) ⊢ Subsingleton M [PROOFSTEP] constructor [GOAL] case allEq M : Type u_1 N : Type u_2 A : Type u_3 inst✝² : Mul M s : Set M inst✝¹ : Add A t : Set A S : Subsemigroup M inst✝ : Subsingleton (Subsemigroup M) ⊢ ∀ (a b : M), a = b [PROOFSTEP] intro x y [GOAL] case allEq M : Type u_1 N : Type u_2 A : Type u_3 inst✝² : Mul M s : Set M inst✝¹ : Add A t : Set A S : Subsemigroup M inst✝ : Subsingleton (Subsemigroup M) x y : M ⊢ x = y [PROOFSTEP] have : ∀ a : M, a ∈ (⊥ : Subsemigroup M) := by simp [Subsingleton.elim (⊥ : Subsemigroup M) ⊤] [GOAL] M : Type u_1 N : Type u_2 A : Type u_3 inst✝² : Mul M s : Set M inst✝¹ : Add A t : Set A S : Subsemigroup M inst✝ : Subsingleton (Subsemigroup M) x y : M ⊢ ∀ (a : M), a ∈ ⊥ [PROOFSTEP] simp [Subsingleton.elim (⊥ : Subsemigroup M) ⊤] [GOAL] case allEq M : Type u_1 N : Type u_2 A : Type u_3 inst✝² : Mul M s : Set M inst✝¹ : Add A t : Set A S : Subsemigroup M inst✝ : Subsingleton (Subsemigroup M) x y : M this : ∀ (a : M), a ∈ ⊥ ⊢ x = y [PROOFSTEP] exact absurd (this x) not_mem_bot [GOAL] M : Type u_1 N : Type u_2 A : Type u_3 inst✝¹ : Mul M s : Set M inst✝ : Add A t : Set A S : Subsemigroup M hn : Nonempty M h : ⊥ = ⊤ ⊢ False [PROOFSTEP] obtain ⟨x⟩ := id hn [GOAL] case intro M : Type u_1 N : Type u_2 A : Type u_3 inst✝¹ : Mul M s : Set M inst✝ : Add A t : Set A S : Subsemigroup M hn : Nonempty M h : ⊥ = ⊤ x : M ⊢ False [PROOFSTEP] refine' absurd (_ : x ∈ ⊥) not_mem_bot [GOAL] case intro M : Type u_1 N : Type u_2 A : Type u_3 inst✝¹ : Mul M s : Set M inst✝ : Add A t : Set A S : Subsemigroup M hn : Nonempty M h : ⊥ = ⊤ x : M ⊢ x ∈ ⊥ [PROOFSTEP] simp [h] [GOAL] M : Type u_1 N : Type u_2 A : Type u_3 inst✝¹ : Mul M s✝ : Set M inst✝ : Add A t : Set A S : Subsemigroup M s : Set M p : (x : M) → x ∈ closure s → Prop Hs : ∀ (x : M) (h : x ∈ s), p x (_ : x ∈ ↑(closure s)) Hmul : ∀ (x : M) (hx : x ∈ closure s) (y : M) (hy : y ∈ closure s), p x hx → p y hy → p (x * y) (_ : x * y ∈ closure s) x : M hx : x ∈ closure s ⊢ p x hx [PROOFSTEP] refine' Exists.elim _ fun (hx : x ∈ closure s) (hc : p x hx) => hc [GOAL] M : Type u_1 N : Type u_2 A : Type u_3 inst✝¹ : Mul M s✝ : Set M inst✝ : Add A t : Set A S : Subsemigroup M s : Set M p : (x : M) → x ∈ closure s → Prop Hs : ∀ (x : M) (h : x ∈ s), p x (_ : x ∈ ↑(closure s)) Hmul : ∀ (x : M) (hx : x ∈ closure s) (y : M) (hy : y ∈ closure s), p x hx → p y hy → p (x * y) (_ : x * y ∈ closure s) x : M hx : x ∈ closure s ⊢ ∃ x_1, p x x_1 [PROOFSTEP] exact closure_induction hx (fun x hx => ⟨_, Hs x hx⟩) fun x y ⟨hx', hx⟩ ⟨hy', hy⟩ => ⟨_, Hmul _ _ _ _ hx hy⟩ [GOAL] M : Type u_1 N : Type u_2 A : Type u_3 inst✝¹ : Mul M s✝ : Set M inst✝ : Add A t : Set A S : Subsemigroup M p : M → Prop x : M s : Set M hs : closure s = ⊤ Hs : ∀ (x : M), x ∈ s → p x Hmul : ∀ (x y : M), p x → p y → p (x * y) ⊢ p x [PROOFSTEP] have : ∀ x ∈ closure s, p x := fun x hx => closure_induction hx Hs Hmul [GOAL] M : Type u_1 N : Type u_2 A : Type u_3 inst✝¹ : Mul M s✝ : Set M inst✝ : Add A t : Set A S : Subsemigroup M p : M → Prop x : M s : Set M hs : closure s = ⊤ Hs : ∀ (x : M), x ∈ s → p x Hmul : ∀ (x y : M), p x → p y → p (x * y) this : ∀ (x : M), x ∈ closure s → p x ⊢ p x [PROOFSTEP] simpa [hs] using this x [GOAL] M : Type u_1 N : Type u_2 A : Type u_3 inst✝¹ : Mul M s : Set M inst✝ : Add A t : Set A S : Subsemigroup M m : M p : Subsemigroup M ⊢ closure {m} ≤ p ↔ m ∈ p [PROOFSTEP] rw [closure_le, singleton_subset_iff, SetLike.mem_coe] [GOAL] M : Type u_1 N : Type u_2 A : Type u_3 inst✝¹ : Mul M s : Set M inst✝ : Add A t : Set A S : Subsemigroup M ι : Sort u_4 p : ι → Subsemigroup M m : M ⊢ m ∈ ⨆ (i : ι), p i ↔ ∀ (N : Subsemigroup M), (∀ (i : ι), p i ≤ N) → m ∈ N [PROOFSTEP] rw [← closure_singleton_le_iff_mem, le_iSup_iff] [GOAL] M : Type u_1 N : Type u_2 A : Type u_3 inst✝¹ : Mul M s : Set M inst✝ : Add A t : Set A S : Subsemigroup M ι : Sort u_4 p : ι → Subsemigroup M m : M ⊢ (∀ (b : Subsemigroup M), (∀ (i : ι), p i ≤ b) → closure {m} ≤ b) ↔ ∀ (N : Subsemigroup M), (∀ (i : ι), p i ≤ N) → m ∈ N [PROOFSTEP] simp only [closure_singleton_le_iff_mem] [GOAL] M : Type u_1 N : Type u_2 A : Type u_3 inst✝¹ : Mul M s : Set M inst✝ : Add A t : Set A S : Subsemigroup M ι : Sort u_4 p : ι → Subsemigroup M ⊢ ⨆ (i : ι), p i = closure (⋃ (i : ι), ↑(p i)) [PROOFSTEP] simp_rw [Subsemigroup.closure_iUnion, Subsemigroup.closure_eq] [GOAL] M : Type u_1 N : Type u_2 A : Type u_3 inst✝² : Mul M s : Set M inst✝¹ : Add A t : Set A inst✝ : Mul N f g : M →ₙ* N a✝ b✝ : M hx : ↑f a✝ = ↑g a✝ hy : ↑f b✝ = ↑g b✝ ⊢ a✝ * b✝ ∈ {x | ↑f x = ↑g x} [PROOFSTEP] simp [*] [GOAL] M✝ : Type u_1 N✝ : Type u_2 A : Type u_3 M : Type ?u.26668 N : Type ?u.26671 inst✝¹ : Semigroup M inst✝ : Semigroup N s : Set M f : M → N hs : closure s = ⊤ hmul : ∀ (x y : M), y ∈ s → f (x * y) = f x * f y x✝ y y₁ y₂ : M h₁ : ∀ (x : M), f (x * y₁) = f x * f y₁ h₂ : ∀ (x : M), f (x * y₂) = f x * f y₂ x : M ⊢ f (x * (y₁ * y₂)) = f x * f (y₁ * y₂) [PROOFSTEP] simp only [← mul_assoc, h₁, h₂]
{"mathlib_filename": "Mathlib.GroupTheory.Subsemigroup.Basic", "llama_tokens": 3980}
[GOAL] n : ℕ ⊢ ∀ (a b c : QuaternionGroup n), a * b * c = a * (b * c) [PROOFSTEP] rintro (i | i) (j | j) (k | k) [GOAL] case a.a.a n : ℕ i j k : ZMod (2 * n) ⊢ a i * a j * a k = a i * (a j * a k) [PROOFSTEP] simp only [(· * ·), mul] [GOAL] case a.a.xa n : ℕ i j k : ZMod (2 * n) ⊢ a i * a j * xa k = a i * (a j * xa k) [PROOFSTEP] simp only [(· * ·), mul] [GOAL] case a.xa.a n : ℕ i j k : ZMod (2 * n) ⊢ a i * xa j * a k = a i * (xa j * a k) [PROOFSTEP] simp only [(· * ·), mul] [GOAL] case a.xa.xa n : ℕ i j k : ZMod (2 * n) ⊢ a i * xa j * xa k = a i * (xa j * xa k) [PROOFSTEP] simp only [(· * ·), mul] [GOAL] case xa.a.a n : ℕ i j k : ZMod (2 * n) ⊢ xa i * a j * a k = xa i * (a j * a k) [PROOFSTEP] simp only [(· * ·), mul] [GOAL] case xa.a.xa n : ℕ i j k : ZMod (2 * n) ⊢ xa i * a j * xa k = xa i * (a j * xa k) [PROOFSTEP] simp only [(· * ·), mul] [GOAL] case xa.xa.a n : ℕ i j k : ZMod (2 * n) ⊢ xa i * xa j * a k = xa i * (xa j * a k) [PROOFSTEP] simp only [(· * ·), mul] [GOAL] case xa.xa.xa n : ℕ i j k : ZMod (2 * n) ⊢ xa i * xa j * xa k = xa i * (xa j * xa k) [PROOFSTEP] simp only [(· * ·), mul] [GOAL] case a.a.a n : ℕ i j k : ZMod (2 * n) ⊢ a (i + j + k) = a (i + (j + k)) [PROOFSTEP] ring_nf [GOAL] case a.a.xa n : ℕ i j k : ZMod (2 * n) ⊢ xa (k - (i + j)) = xa (k - j - i) [PROOFSTEP] ring_nf [GOAL] case a.xa.a n : ℕ i j k : ZMod (2 * n) ⊢ xa (j - i + k) = xa (j + k - i) [PROOFSTEP] ring_nf [GOAL] case a.xa.xa n : ℕ i j k : ZMod (2 * n) ⊢ a (↑n + k - (j - i)) = a (i + (↑n + k - j)) [PROOFSTEP] ring_nf [GOAL] case xa.a.a n : ℕ i j k : ZMod (2 * n) ⊢ xa (i + j + k) = xa (i + (j + k)) [PROOFSTEP] ring_nf [GOAL] case xa.a.xa n : ℕ i j k : ZMod (2 * n) ⊢ a (↑n + k - (i + j)) = a (↑n + (k - j) - i) [PROOFSTEP] ring_nf [GOAL] case xa.xa.a n : ℕ i j k : ZMod (2 * n) ⊢ a (↑n + j - i + k) = a (↑n + (j + k) - i) [PROOFSTEP] ring_nf [GOAL] case xa.xa.xa n : ℕ i j k : ZMod (2 * n) ⊢ xa (k - (↑n + j - i)) = xa (i + (↑n + k - j)) [PROOFSTEP] ring_nf [GOAL] case xa.xa.xa n : ℕ i j k : ZMod (2 * n) ⊢ xa (k + (-↑n - j) + i) = xa (k + (↑n - j) + i) [PROOFSTEP] congr [GOAL] case xa.xa.xa.e_a.e_a.e_a.e_a n : ℕ i j k : ZMod (2 * n) ⊢ -↑n = ↑n [PROOFSTEP] calc -(n : ZMod (2 * n)) = 0 - n := by rw [zero_sub] _ = 2 * n - n := by norm_cast; simp _ = n := by ring [GOAL] n : ℕ i j k : ZMod (2 * n) ⊢ -↑n = 0 - ↑n [PROOFSTEP] rw [zero_sub] [GOAL] n : ℕ i j k : ZMod (2 * n) ⊢ 0 - ↑n = 2 * ↑n - ↑n [PROOFSTEP] norm_cast [GOAL] n : ℕ i j k : ZMod (2 * n) ⊢ ↑(Int.subNatNat 0 n) = ↑(Int.subNatNat (2 * n) n) [PROOFSTEP] simp [GOAL] n : ℕ i j k : ZMod (2 * n) ⊢ 2 * ↑n - ↑n = ↑n [PROOFSTEP] ring [GOAL] n : ℕ ⊢ ∀ (a : QuaternionGroup n), 1 * a = a [PROOFSTEP] rintro (i | i) [GOAL] case a n : ℕ i : ZMod (2 * n) ⊢ 1 * a i = a i [PROOFSTEP] exact congr_arg a (zero_add i) [GOAL] case xa n : ℕ i : ZMod (2 * n) ⊢ 1 * xa i = xa i [PROOFSTEP] exact congr_arg xa (sub_zero i) [GOAL] n : ℕ ⊢ ∀ (a : QuaternionGroup n), a * 1 = a [PROOFSTEP] rintro (i | i) [GOAL] case a n : ℕ i : ZMod (2 * n) ⊢ a i * 1 = a i [PROOFSTEP] exact congr_arg a (add_zero i) [GOAL] case xa n : ℕ i : ZMod (2 * n) ⊢ xa i * 1 = xa i [PROOFSTEP] exact congr_arg xa (add_zero i) [GOAL] n : ℕ ⊢ ∀ (a : QuaternionGroup n), a⁻¹ * a = 1 [PROOFSTEP] rintro (i | i) [GOAL] case a n : ℕ i : ZMod (2 * n) ⊢ (a i)⁻¹ * a i = 1 [PROOFSTEP] exact congr_arg a (neg_add_self i) [GOAL] case xa n : ℕ i : ZMod (2 * n) ⊢ (xa i)⁻¹ * xa i = 1 [PROOFSTEP] exact congr_arg a (sub_self (n + i)) [GOAL] n : ℕ ⊢ Function.LeftInverse (fun i => match i with | a j => Sum.inl j | xa j => Sum.inr j) fun i => match i with | Sum.inl j => a j | Sum.inr j => xa j [PROOFSTEP] rintro (x | x) [GOAL] case inl n : ℕ x : ZMod (2 * n) ⊢ (fun i => match i with | a j => Sum.inl j | xa j => Sum.inr j) ((fun i => match i with | Sum.inl j => a j | Sum.inr j => xa j) (Sum.inl x)) = Sum.inl x [PROOFSTEP] rfl [GOAL] case inr n : ℕ x : ZMod (2 * n) ⊢ (fun i => match i with | a j => Sum.inl j | xa j => Sum.inr j) ((fun i => match i with | Sum.inl j => a j | Sum.inr j => xa j) (Sum.inr x)) = Sum.inr x [PROOFSTEP] rfl [GOAL] n : ℕ ⊢ Function.RightInverse (fun i => match i with | a j => Sum.inl j | xa j => Sum.inr j) fun i => match i with | Sum.inl j => a j | Sum.inr j => xa j [PROOFSTEP] rintro (x | x) [GOAL] case a n : ℕ x : ZMod (2 * n) ⊢ (fun i => match i with | Sum.inl j => a j | Sum.inr j => xa j) ((fun i => match i with | a j => Sum.inl j | xa j => Sum.inr j) (a x)) = a x [PROOFSTEP] rfl [GOAL] case xa n : ℕ x : ZMod (2 * n) ⊢ (fun i => match i with | Sum.inl j => a j | Sum.inr j => xa j) ((fun i => match i with | a j => Sum.inl j | xa j => Sum.inr j) (xa x)) = xa x [PROOFSTEP] rfl [GOAL] n : ℕ ⊢ Function.LeftInverse (fun i => match i with | DihedralGroup.r j => a j | DihedralGroup.sr j => xa j) fun i => match i with | a j => DihedralGroup.r j | xa j => DihedralGroup.sr j [PROOFSTEP] rintro (k | k) [GOAL] case a n : ℕ k : ZMod (2 * 0) ⊢ (fun i => match i with | DihedralGroup.r j => a j | DihedralGroup.sr j => xa j) ((fun i => match i with | a j => DihedralGroup.r j | xa j => DihedralGroup.sr j) (a k)) = a k [PROOFSTEP] rfl [GOAL] case xa n : ℕ k : ZMod (2 * 0) ⊢ (fun i => match i with | DihedralGroup.r j => a j | DihedralGroup.sr j => xa j) ((fun i => match i with | a j => DihedralGroup.r j | xa j => DihedralGroup.sr j) (xa k)) = xa k [PROOFSTEP] rfl [GOAL] n : ℕ ⊢ Function.RightInverse (fun i => match i with | DihedralGroup.r j => a j | DihedralGroup.sr j => xa j) fun i => match i with | a j => DihedralGroup.r j | xa j => DihedralGroup.sr j [PROOFSTEP] rintro (k | k) [GOAL] case r n : ℕ k : ZMod 0 ⊢ (fun i => match i with | a j => DihedralGroup.r j | xa j => DihedralGroup.sr j) ((fun i => match i with | DihedralGroup.r j => a j | DihedralGroup.sr j => xa j) (DihedralGroup.r k)) = DihedralGroup.r k [PROOFSTEP] rfl [GOAL] case sr n : ℕ k : ZMod 0 ⊢ (fun i => match i with | a j => DihedralGroup.r j | xa j => DihedralGroup.sr j) ((fun i => match i with | DihedralGroup.r j => a j | DihedralGroup.sr j => xa j) (DihedralGroup.sr k)) = DihedralGroup.sr k [PROOFSTEP] rfl [GOAL] n : ℕ ⊢ ∀ (x y : QuaternionGroup 0), Equiv.toFun { toFun := fun i => match i with | a j => DihedralGroup.r j | xa j => DihedralGroup.sr j, invFun := fun i => match i with | DihedralGroup.r j => a j | DihedralGroup.sr j => xa j, left_inv := (_ : ∀ (x : QuaternionGroup 0), (fun i => match i with | DihedralGroup.r j => a j | DihedralGroup.sr j => xa j) ((fun i => match i with | a j => DihedralGroup.r j | xa j => DihedralGroup.sr j) x) = x), right_inv := (_ : ∀ (x : DihedralGroup 0), (fun i => match i with | a j => DihedralGroup.r j | xa j => DihedralGroup.sr j) ((fun i => match i with | DihedralGroup.r j => a j | DihedralGroup.sr j => xa j) x) = x) } (x * y) = Equiv.toFun { toFun := fun i => match i with | a j => DihedralGroup.r j | xa j => DihedralGroup.sr j, invFun := fun i => match i with | DihedralGroup.r j => a j | DihedralGroup.sr j => xa j, left_inv := (_ : ∀ (x : QuaternionGroup 0), (fun i => match i with | DihedralGroup.r j => a j | DihedralGroup.sr j => xa j) ((fun i => match i with | a j => DihedralGroup.r j | xa j => DihedralGroup.sr j) x) = x), right_inv := (_ : ∀ (x : DihedralGroup 0), (fun i => match i with | a j => DihedralGroup.r j | xa j => DihedralGroup.sr j) ((fun i => match i with | DihedralGroup.r j => a j | DihedralGroup.sr j => xa j) x) = x) } x * Equiv.toFun { toFun := fun i => match i with | a j => DihedralGroup.r j | xa j => DihedralGroup.sr j, invFun := fun i => match i with | DihedralGroup.r j => a j | DihedralGroup.sr j => xa j, left_inv := (_ : ∀ (x : QuaternionGroup 0), (fun i => match i with | DihedralGroup.r j => a j | DihedralGroup.sr j => xa j) ((fun i => match i with | a j => DihedralGroup.r j | xa j => DihedralGroup.sr j) x) = x), right_inv := (_ : ∀ (x : DihedralGroup 0), (fun i => match i with | a j => DihedralGroup.r j | xa j => DihedralGroup.sr j) ((fun i => match i with | DihedralGroup.r j => a j | DihedralGroup.sr j => xa j) x) = x) } y [PROOFSTEP] rintro (k | k) (l | l) [GOAL] case a.a n : ℕ k l : ZMod (2 * 0) ⊢ Equiv.toFun { toFun := fun i => match i with | a j => DihedralGroup.r j | xa j => DihedralGroup.sr j, invFun := fun i => match i with | DihedralGroup.r j => a j | DihedralGroup.sr j => xa j, left_inv := (_ : ∀ (x : QuaternionGroup 0), (fun i => match i with | DihedralGroup.r j => a j | DihedralGroup.sr j => xa j) ((fun i => match i with | a j => DihedralGroup.r j | xa j => DihedralGroup.sr j) x) = x), right_inv := (_ : ∀ (x : DihedralGroup 0), (fun i => match i with | a j => DihedralGroup.r j | xa j => DihedralGroup.sr j) ((fun i => match i with | DihedralGroup.r j => a j | DihedralGroup.sr j => xa j) x) = x) } (a k * a l) = Equiv.toFun { toFun := fun i => match i with | a j => DihedralGroup.r j | xa j => DihedralGroup.sr j, invFun := fun i => match i with | DihedralGroup.r j => a j | DihedralGroup.sr j => xa j, left_inv := (_ : ∀ (x : QuaternionGroup 0), (fun i => match i with | DihedralGroup.r j => a j | DihedralGroup.sr j => xa j) ((fun i => match i with | a j => DihedralGroup.r j | xa j => DihedralGroup.sr j) x) = x), right_inv := (_ : ∀ (x : DihedralGroup 0), (fun i => match i with | a j => DihedralGroup.r j | xa j => DihedralGroup.sr j) ((fun i => match i with | DihedralGroup.r j => a j | DihedralGroup.sr j => xa j) x) = x) } (a k) * Equiv.toFun { toFun := fun i => match i with | a j => DihedralGroup.r j | xa j => DihedralGroup.sr j, invFun := fun i => match i with | DihedralGroup.r j => a j | DihedralGroup.sr j => xa j, left_inv := (_ : ∀ (x : QuaternionGroup 0), (fun i => match i with | DihedralGroup.r j => a j | DihedralGroup.sr j => xa j) ((fun i => match i with | a j => DihedralGroup.r j | xa j => DihedralGroup.sr j) x) = x), right_inv := (_ : ∀ (x : DihedralGroup 0), (fun i => match i with | a j => DihedralGroup.r j | xa j => DihedralGroup.sr j) ((fun i => match i with | DihedralGroup.r j => a j | DihedralGroup.sr j => xa j) x) = x) } (a l) [PROOFSTEP] simp [GOAL] case a.xa n : ℕ k l : ZMod (2 * 0) ⊢ Equiv.toFun { toFun := fun i => match i with | a j => DihedralGroup.r j | xa j => DihedralGroup.sr j, invFun := fun i => match i with | DihedralGroup.r j => a j | DihedralGroup.sr j => xa j, left_inv := (_ : ∀ (x : QuaternionGroup 0), (fun i => match i with | DihedralGroup.r j => a j | DihedralGroup.sr j => xa j) ((fun i => match i with | a j => DihedralGroup.r j | xa j => DihedralGroup.sr j) x) = x), right_inv := (_ : ∀ (x : DihedralGroup 0), (fun i => match i with | a j => DihedralGroup.r j | xa j => DihedralGroup.sr j) ((fun i => match i with | DihedralGroup.r j => a j | DihedralGroup.sr j => xa j) x) = x) } (a k * xa l) = Equiv.toFun { toFun := fun i => match i with | a j => DihedralGroup.r j | xa j => DihedralGroup.sr j, invFun := fun i => match i with | DihedralGroup.r j => a j | DihedralGroup.sr j => xa j, left_inv := (_ : ∀ (x : QuaternionGroup 0), (fun i => match i with | DihedralGroup.r j => a j | DihedralGroup.sr j => xa j) ((fun i => match i with | a j => DihedralGroup.r j | xa j => DihedralGroup.sr j) x) = x), right_inv := (_ : ∀ (x : DihedralGroup 0), (fun i => match i with | a j => DihedralGroup.r j | xa j => DihedralGroup.sr j) ((fun i => match i with | DihedralGroup.r j => a j | DihedralGroup.sr j => xa j) x) = x) } (a k) * Equiv.toFun { toFun := fun i => match i with | a j => DihedralGroup.r j | xa j => DihedralGroup.sr j, invFun := fun i => match i with | DihedralGroup.r j => a j | DihedralGroup.sr j => xa j, left_inv := (_ : ∀ (x : QuaternionGroup 0), (fun i => match i with | DihedralGroup.r j => a j | DihedralGroup.sr j => xa j) ((fun i => match i with | a j => DihedralGroup.r j | xa j => DihedralGroup.sr j) x) = x), right_inv := (_ : ∀ (x : DihedralGroup 0), (fun i => match i with | a j => DihedralGroup.r j | xa j => DihedralGroup.sr j) ((fun i => match i with | DihedralGroup.r j => a j | DihedralGroup.sr j => xa j) x) = x) } (xa l) [PROOFSTEP] simp [GOAL] case xa.a n : ℕ k l : ZMod (2 * 0) ⊢ Equiv.toFun { toFun := fun i => match i with | a j => DihedralGroup.r j | xa j => DihedralGroup.sr j, invFun := fun i => match i with | DihedralGroup.r j => a j | DihedralGroup.sr j => xa j, left_inv := (_ : ∀ (x : QuaternionGroup 0), (fun i => match i with | DihedralGroup.r j => a j | DihedralGroup.sr j => xa j) ((fun i => match i with | a j => DihedralGroup.r j | xa j => DihedralGroup.sr j) x) = x), right_inv := (_ : ∀ (x : DihedralGroup 0), (fun i => match i with | a j => DihedralGroup.r j | xa j => DihedralGroup.sr j) ((fun i => match i with | DihedralGroup.r j => a j | DihedralGroup.sr j => xa j) x) = x) } (xa k * a l) = Equiv.toFun { toFun := fun i => match i with | a j => DihedralGroup.r j | xa j => DihedralGroup.sr j, invFun := fun i => match i with | DihedralGroup.r j => a j | DihedralGroup.sr j => xa j, left_inv := (_ : ∀ (x : QuaternionGroup 0), (fun i => match i with | DihedralGroup.r j => a j | DihedralGroup.sr j => xa j) ((fun i => match i with | a j => DihedralGroup.r j | xa j => DihedralGroup.sr j) x) = x), right_inv := (_ : ∀ (x : DihedralGroup 0), (fun i => match i with | a j => DihedralGroup.r j | xa j => DihedralGroup.sr j) ((fun i => match i with | DihedralGroup.r j => a j | DihedralGroup.sr j => xa j) x) = x) } (xa k) * Equiv.toFun { toFun := fun i => match i with | a j => DihedralGroup.r j | xa j => DihedralGroup.sr j, invFun := fun i => match i with | DihedralGroup.r j => a j | DihedralGroup.sr j => xa j, left_inv := (_ : ∀ (x : QuaternionGroup 0), (fun i => match i with | DihedralGroup.r j => a j | DihedralGroup.sr j => xa j) ((fun i => match i with | a j => DihedralGroup.r j | xa j => DihedralGroup.sr j) x) = x), right_inv := (_ : ∀ (x : DihedralGroup 0), (fun i => match i with | a j => DihedralGroup.r j | xa j => DihedralGroup.sr j) ((fun i => match i with | DihedralGroup.r j => a j | DihedralGroup.sr j => xa j) x) = x) } (a l) [PROOFSTEP] simp [GOAL] case xa.xa n : ℕ k l : ZMod (2 * 0) ⊢ Equiv.toFun { toFun := fun i => match i with | a j => DihedralGroup.r j | xa j => DihedralGroup.sr j, invFun := fun i => match i with | DihedralGroup.r j => a j | DihedralGroup.sr j => xa j, left_inv := (_ : ∀ (x : QuaternionGroup 0), (fun i => match i with | DihedralGroup.r j => a j | DihedralGroup.sr j => xa j) ((fun i => match i with | a j => DihedralGroup.r j | xa j => DihedralGroup.sr j) x) = x), right_inv := (_ : ∀ (x : DihedralGroup 0), (fun i => match i with | a j => DihedralGroup.r j | xa j => DihedralGroup.sr j) ((fun i => match i with | DihedralGroup.r j => a j | DihedralGroup.sr j => xa j) x) = x) } (xa k * xa l) = Equiv.toFun { toFun := fun i => match i with | a j => DihedralGroup.r j | xa j => DihedralGroup.sr j, invFun := fun i => match i with | DihedralGroup.r j => a j | DihedralGroup.sr j => xa j, left_inv := (_ : ∀ (x : QuaternionGroup 0), (fun i => match i with | DihedralGroup.r j => a j | DihedralGroup.sr j => xa j) ((fun i => match i with | a j => DihedralGroup.r j | xa j => DihedralGroup.sr j) x) = x), right_inv := (_ : ∀ (x : DihedralGroup 0), (fun i => match i with | a j => DihedralGroup.r j | xa j => DihedralGroup.sr j) ((fun i => match i with | DihedralGroup.r j => a j | DihedralGroup.sr j => xa j) x) = x) } (xa k) * Equiv.toFun { toFun := fun i => match i with | a j => DihedralGroup.r j | xa j => DihedralGroup.sr j, invFun := fun i => match i with | DihedralGroup.r j => a j | DihedralGroup.sr j => xa j, left_inv := (_ : ∀ (x : QuaternionGroup 0), (fun i => match i with | DihedralGroup.r j => a j | DihedralGroup.sr j => xa j) ((fun i => match i with | a j => DihedralGroup.r j | xa j => DihedralGroup.sr j) x) = x), right_inv := (_ : ∀ (x : DihedralGroup 0), (fun i => match i with | a j => DihedralGroup.r j | xa j => DihedralGroup.sr j) ((fun i => match i with | DihedralGroup.r j => a j | DihedralGroup.sr j => xa j) x) = x) } (xa l) [PROOFSTEP] simp [GOAL] n : ℕ ⊢ a 0 ≠ xa 0 [PROOFSTEP] revert n [GOAL] ⊢ ∀ {n : ℕ}, a 0 ≠ xa 0 [PROOFSTEP] simp [GOAL] n : ℕ inst✝ : NeZero n ⊢ Fintype.card (QuaternionGroup n) = 4 * n [PROOFSTEP] rw [← Fintype.card_eq.mpr ⟨fintypeHelper⟩, Fintype.card_sum, ZMod.card, two_mul] [GOAL] n : ℕ inst✝ : NeZero n ⊢ n + n + (n + n) = 4 * n [PROOFSTEP] ring [GOAL] n k : ℕ ⊢ a 1 ^ k = a ↑k [PROOFSTEP] induction' k with k IH [GOAL] case zero n : ℕ ⊢ a 1 ^ Nat.zero = a ↑Nat.zero [PROOFSTEP] rw [Nat.cast_zero] [GOAL] case zero n : ℕ ⊢ a 1 ^ Nat.zero = a 0 [PROOFSTEP] rfl [GOAL] case succ n k : ℕ IH : a 1 ^ k = a ↑k ⊢ a 1 ^ Nat.succ k = a ↑(Nat.succ k) [PROOFSTEP] rw [pow_succ, IH, a_mul_a] [GOAL] case succ n k : ℕ IH : a 1 ^ k = a ↑k ⊢ a (1 + ↑k) = a ↑(Nat.succ k) [PROOFSTEP] congr 1 [GOAL] case succ.e_a n k : ℕ IH : a 1 ^ k = a ↑k ⊢ 1 + ↑k = ↑(Nat.succ k) [PROOFSTEP] norm_cast [GOAL] case succ.e_a n k : ℕ IH : a 1 ^ k = a ↑k ⊢ ↑(1 + k) = ↑(Nat.succ k) [PROOFSTEP] rw [Nat.one_add] [GOAL] n : ℕ ⊢ a 1 ^ (2 * n) = 1 [PROOFSTEP] rw [a_one_pow, one_def] [GOAL] n : ℕ ⊢ a ↑(2 * n) = a 0 [PROOFSTEP] congr 1 [GOAL] case e_a n : ℕ ⊢ ↑(2 * n) = 0 [PROOFSTEP] exact ZMod.nat_cast_self _ [GOAL] n : ℕ i : ZMod (2 * n) ⊢ xa i ^ 2 = a ↑n [PROOFSTEP] simp [sq] [GOAL] n : ℕ i : ZMod (2 * n) ⊢ xa i ^ 4 = 1 [PROOFSTEP] rw [pow_succ, pow_succ, sq, xa_mul_xa, xa_mul_a, xa_mul_xa, add_sub_cancel, add_sub_assoc, add_sub_cancel'] [GOAL] n : ℕ i : ZMod (2 * n) ⊢ a (↑n + ↑n) = 1 [PROOFSTEP] norm_cast [GOAL] n : ℕ i : ZMod (2 * n) ⊢ a ↑(n + n) = 1 [PROOFSTEP] rw [← two_mul] [GOAL] n : ℕ i : ZMod (2 * n) ⊢ a ↑(2 * n) = 1 [PROOFSTEP] simp [one_def] [GOAL] n : ℕ inst✝ : NeZero n i : ZMod (2 * n) ⊢ orderOf (xa i) = 4 [PROOFSTEP] change _ = 2 ^ 2 [GOAL] n : ℕ inst✝ : NeZero n i : ZMod (2 * n) ⊢ orderOf (xa i) = 2 ^ 2 [PROOFSTEP] haveI : Fact (Nat.Prime 2) := Fact.mk Nat.prime_two [GOAL] n : ℕ inst✝ : NeZero n i : ZMod (2 * n) this : Fact (Nat.Prime 2) ⊢ orderOf (xa i) = 2 ^ 2 [PROOFSTEP] apply orderOf_eq_prime_pow [GOAL] case hnot n : ℕ inst✝ : NeZero n i : ZMod (2 * n) this : Fact (Nat.Prime 2) ⊢ ¬xa i ^ 2 ^ 1 = 1 [PROOFSTEP] intro h [GOAL] case hnot n : ℕ inst✝ : NeZero n i : ZMod (2 * n) this : Fact (Nat.Prime 2) h : xa i ^ 2 ^ 1 = 1 ⊢ False [PROOFSTEP] simp only [pow_one, xa_sq] at h [GOAL] case hnot n : ℕ inst✝ : NeZero n i : ZMod (2 * n) this : Fact (Nat.Prime 2) h : a ↑n = 1 ⊢ False [PROOFSTEP] injection h with h' [GOAL] case hnot n : ℕ inst✝ : NeZero n i : ZMod (2 * n) this : Fact (Nat.Prime 2) h' : ↑n = 0 ⊢ False [PROOFSTEP] apply_fun ZMod.val at h' [GOAL] case hnot n : ℕ inst✝ : NeZero n i : ZMod (2 * n) this : Fact (Nat.Prime 2) h' : ZMod.val ↑n = ZMod.val 0 ⊢ False [PROOFSTEP] apply_fun (· / n) at h' [GOAL] case hnot n : ℕ inst✝ : NeZero n i : ZMod (2 * n) this : Fact (Nat.Prime 2) h' : ZMod.val ↑n / n = ZMod.val 0 / n ⊢ False [PROOFSTEP] simp only [ZMod.val_nat_cast, ZMod.val_zero, Nat.zero_div, Nat.mod_mul_left_div_self, Nat.div_self (NeZero.pos n)] at h' [GOAL] case hfin n : ℕ inst✝ : NeZero n i : ZMod (2 * n) this : Fact (Nat.Prime 2) ⊢ xa i ^ 2 ^ (1 + 1) = 1 [PROOFSTEP] norm_num [GOAL] n : ℕ ⊢ IsCyclic (QuaternionGroup 1) [PROOFSTEP] apply isCyclic_of_orderOf_eq_card [GOAL] case hx n : ℕ ⊢ orderOf ?x = Fintype.card (QuaternionGroup 1) case x n : ℕ ⊢ QuaternionGroup 1 [PROOFSTEP] rw [card, mul_one] [GOAL] case hx n : ℕ ⊢ orderOf ?x = 4 case x n : ℕ ⊢ QuaternionGroup 1 case x n : ℕ ⊢ QuaternionGroup 1 case x n : ℕ ⊢ QuaternionGroup 1 [PROOFSTEP] exact orderOf_xa 0 [GOAL] n : ℕ ⊢ orderOf (a 1) = 2 * n [PROOFSTEP] cases' eq_zero_or_neZero n with hn hn [GOAL] case inl n : ℕ hn : n = 0 ⊢ orderOf (a 1) = 2 * n [PROOFSTEP] subst hn [GOAL] case inl ⊢ orderOf (a 1) = 2 * 0 [PROOFSTEP] simp_rw [mul_zero, orderOf_eq_zero_iff'] [GOAL] case inl ⊢ ∀ (n : ℕ), 0 < n → QuaternionGroup.a 1 ^ n ≠ 1 [PROOFSTEP] intro n h [GOAL] case inl n : ℕ h : 0 < n ⊢ a 1 ^ n ≠ 1 [PROOFSTEP] rw [one_def, a_one_pow] [GOAL] case inl n : ℕ h : 0 < n ⊢ a ↑n ≠ a 0 [PROOFSTEP] apply mt a.inj [GOAL] case inl n : ℕ h : 0 < n ⊢ ¬↑n = 0 [PROOFSTEP] haveI : CharZero (ZMod (2 * 0)) := ZMod.charZero [GOAL] case inl n : ℕ h : 0 < n this : CharZero (ZMod (2 * 0)) ⊢ ¬↑n = 0 [PROOFSTEP] simpa using h.ne' [GOAL] case inr n : ℕ hn : NeZero n ⊢ orderOf (a 1) = 2 * n [PROOFSTEP] apply (Nat.le_of_dvd (NeZero.pos _) (orderOf_dvd_of_pow_eq_one (@a_one_pow_n n))).lt_or_eq.resolve_left [GOAL] case inr n : ℕ hn : NeZero n ⊢ ¬orderOf (a 1) < 2 * n [PROOFSTEP] intro h [GOAL] case inr n : ℕ hn : NeZero n h : orderOf (a 1) < 2 * n ⊢ False [PROOFSTEP] have h1 : (a 1 : QuaternionGroup n) ^ orderOf (a 1) = 1 := pow_orderOf_eq_one _ [GOAL] case inr n : ℕ hn : NeZero n h : orderOf (a 1) < 2 * n h1 : a 1 ^ orderOf (a 1) = 1 ⊢ False [PROOFSTEP] rw [a_one_pow] at h1 [GOAL] case inr n : ℕ hn : NeZero n h : orderOf (a 1) < 2 * n h1 : a ↑(orderOf (a 1)) = 1 ⊢ False [PROOFSTEP] injection h1 with h2 [GOAL] case inr n : ℕ hn : NeZero n h : orderOf (a 1) < 2 * n h2 : ↑(orderOf (a 1)) = 0 ⊢ False [PROOFSTEP] rw [← ZMod.val_eq_zero, ZMod.val_nat_cast, Nat.mod_eq_of_lt h] at h2 [GOAL] case inr n : ℕ hn : NeZero n h : orderOf (a 1) < 2 * n h2 : orderOf (a 1) = 0 ⊢ False [PROOFSTEP] exact absurd h2.symm (orderOf_pos _).ne [GOAL] n : ℕ inst✝ : NeZero n i : ZMod (2 * n) ⊢ orderOf (a i) = 2 * n / Nat.gcd (2 * n) (ZMod.val i) [PROOFSTEP] conv_lhs => rw [← ZMod.nat_cast_zmod_val i] [GOAL] n : ℕ inst✝ : NeZero n i : ZMod (2 * n) | orderOf (a i) [PROOFSTEP] rw [← ZMod.nat_cast_zmod_val i] [GOAL] n : ℕ inst✝ : NeZero n i : ZMod (2 * n) | orderOf (a i) [PROOFSTEP] rw [← ZMod.nat_cast_zmod_val i] [GOAL] n : ℕ inst✝ : NeZero n i : ZMod (2 * n) | orderOf (a i) [PROOFSTEP] rw [← ZMod.nat_cast_zmod_val i] [GOAL] n : ℕ inst✝ : NeZero n i : ZMod (2 * n) ⊢ orderOf (a ↑(ZMod.val i)) = 2 * n / Nat.gcd (2 * n) (ZMod.val i) [PROOFSTEP] rw [← a_one_pow, orderOf_pow, orderOf_a_one] [GOAL] n : ℕ ⊢ Monoid.exponent (QuaternionGroup n) = 2 * lcm n 2 [PROOFSTEP] rw [← normalize_eq 2, ← lcm_mul_left, normalize_eq] [GOAL] n : ℕ ⊢ Monoid.exponent (QuaternionGroup n) = lcm (2 * n) (2 * 2) [PROOFSTEP] norm_num [GOAL] n : ℕ ⊢ Monoid.exponent (QuaternionGroup n) = lcm (2 * n) 4 [PROOFSTEP] cases' eq_zero_or_neZero n with hn hn [GOAL] case inl n : ℕ hn : n = 0 ⊢ Monoid.exponent (QuaternionGroup n) = lcm (2 * n) 4 [PROOFSTEP] subst hn [GOAL] case inl ⊢ Monoid.exponent (QuaternionGroup 0) = lcm (2 * 0) 4 [PROOFSTEP] simp only [lcm_zero_left, mul_zero] [GOAL] case inl ⊢ Monoid.exponent (QuaternionGroup 0) = 0 [PROOFSTEP] exact Monoid.exponent_eq_zero_of_order_zero orderOf_a_one [GOAL] case inr n : ℕ hn : NeZero n ⊢ Monoid.exponent (QuaternionGroup n) = lcm (2 * n) 4 [PROOFSTEP] apply Nat.dvd_antisymm [GOAL] case inr.a n : ℕ hn : NeZero n ⊢ Monoid.exponent (QuaternionGroup n) ∣ lcm (2 * n) 4 [PROOFSTEP] apply Monoid.exponent_dvd_of_forall_pow_eq_one [GOAL] case inr.a.hG n : ℕ hn : NeZero n ⊢ ∀ (g : QuaternionGroup n), g ^ lcm (2 * n) 4 = 1 [PROOFSTEP] rintro (m | m) [GOAL] case inr.a.hG.a n : ℕ hn : NeZero n m : ZMod (2 * n) ⊢ a m ^ lcm (2 * n) 4 = 1 [PROOFSTEP] rw [← orderOf_dvd_iff_pow_eq_one, orderOf_a] [GOAL] case inr.a.hG.a n : ℕ hn : NeZero n m : ZMod (2 * n) ⊢ 2 * n / Nat.gcd (2 * n) (ZMod.val m) ∣ lcm (2 * n) 4 [PROOFSTEP] refine' Nat.dvd_trans ⟨gcd (2 * n) m.val, _⟩ (dvd_lcm_left (2 * n) 4) [GOAL] case inr.a.hG.a n : ℕ hn : NeZero n m : ZMod (2 * n) ⊢ 2 * n = 2 * n / Nat.gcd (2 * n) (ZMod.val m) * gcd (2 * n) (ZMod.val m) [PROOFSTEP] exact (Nat.div_mul_cancel (Nat.gcd_dvd_left (2 * n) m.val)).symm [GOAL] case inr.a.hG.xa n : ℕ hn : NeZero n m : ZMod (2 * n) ⊢ xa m ^ lcm (2 * n) 4 = 1 [PROOFSTEP] rw [← orderOf_dvd_iff_pow_eq_one, orderOf_xa] [GOAL] case inr.a.hG.xa n : ℕ hn : NeZero n m : ZMod (2 * n) ⊢ 4 ∣ lcm (2 * n) 4 [PROOFSTEP] exact dvd_lcm_right (2 * n) 4 [GOAL] case inr.a n : ℕ hn : NeZero n ⊢ lcm (2 * n) 4 ∣ Monoid.exponent (QuaternionGroup n) [PROOFSTEP] apply lcm_dvd [GOAL] case inr.a.hab n : ℕ hn : NeZero n ⊢ 2 * n ∣ Monoid.exponent (QuaternionGroup n) [PROOFSTEP] convert Monoid.order_dvd_exponent (a 1) [GOAL] case h.e'_3 n : ℕ hn : NeZero n ⊢ 2 * n = orderOf (a 1) [PROOFSTEP] exact orderOf_a_one.symm [GOAL] case inr.a.hcb n : ℕ hn : NeZero n ⊢ 4 ∣ Monoid.exponent (QuaternionGroup n) [PROOFSTEP] convert Monoid.order_dvd_exponent (xa (0 : ZMod (2 * n))) [GOAL] case h.e'_3 n : ℕ hn : NeZero n ⊢ 4 = orderOf (xa 0) [PROOFSTEP] exact (orderOf_xa 0).symm
{"mathlib_filename": "Mathlib.GroupTheory.SpecificGroups.Quaternion", "llama_tokens": 13339}
[GOAL] n : ℕ p : Fin (n + 1) ⊢ ↑decomposeFin.symm (p, Equiv.refl (Fin n)) = swap 0 p [PROOFSTEP] simp [Equiv.Perm.decomposeFin, Equiv.permCongr_def] [GOAL] n : ℕ p : Fin (n + 1) e : Perm (Fin n) ⊢ ↑(↑decomposeFin.symm (p, e)) 0 = p [PROOFSTEP] simp [Equiv.Perm.decomposeFin] [GOAL] n : ℕ e : Perm (Fin n) p : Fin (n + 1) x : Fin n ⊢ ↑(↑decomposeFin.symm (p, e)) (Fin.succ x) = ↑(swap 0 p) (Fin.succ (↑e x)) [PROOFSTEP] refine' Fin.cases _ _ p [GOAL] case refine'_1 n : ℕ e : Perm (Fin n) p : Fin (n + 1) x : Fin n ⊢ ↑(↑decomposeFin.symm (0, e)) (Fin.succ x) = ↑(swap 0 0) (Fin.succ (↑e x)) [PROOFSTEP] simp [Equiv.Perm.decomposeFin, EquivFunctor.map] [GOAL] case refine'_2 n : ℕ e : Perm (Fin n) p : Fin (n + 1) x : Fin n ⊢ ∀ (i : Fin n), ↑(↑decomposeFin.symm (Fin.succ i, e)) (Fin.succ x) = ↑(swap 0 (Fin.succ i)) (Fin.succ (↑e x)) [PROOFSTEP] intro i [GOAL] case refine'_2 n : ℕ e : Perm (Fin n) p : Fin (n + 1) x i : Fin n ⊢ ↑(↑decomposeFin.symm (Fin.succ i, e)) (Fin.succ x) = ↑(swap 0 (Fin.succ i)) (Fin.succ (↑e x)) [PROOFSTEP] by_cases h : i = e x [GOAL] case pos n : ℕ e : Perm (Fin n) p : Fin (n + 1) x i : Fin n h : i = ↑e x ⊢ ↑(↑decomposeFin.symm (Fin.succ i, e)) (Fin.succ x) = ↑(swap 0 (Fin.succ i)) (Fin.succ (↑e x)) [PROOFSTEP] simp [h, Equiv.Perm.decomposeFin, EquivFunctor.map] [GOAL] case neg n : ℕ e : Perm (Fin n) p : Fin (n + 1) x i : Fin n h : ¬i = ↑e x ⊢ ↑(↑decomposeFin.symm (Fin.succ i, e)) (Fin.succ x) = ↑(swap 0 (Fin.succ i)) (Fin.succ (↑e x)) [PROOFSTEP] simp [h, Fin.succ_ne_zero, Equiv.Perm.decomposeFin, EquivFunctor.map, swap_apply_def, Ne.symm h] [GOAL] n : ℕ e : Perm (Fin (n + 1)) p : Fin (n + 2) ⊢ ↑(↑decomposeFin.symm (p, e)) 1 = ↑(swap 0 p) (Fin.succ (↑e 0)) [PROOFSTEP] rw [← Fin.succ_zero_eq_one, Equiv.Perm.decomposeFin_symm_apply_succ e p 0] [GOAL] n : ℕ p : Fin (n + 1) e : Perm (Fin n) ⊢ ↑sign (↑decomposeFin.symm (p, e)) = (if p = 0 then 1 else -1) * ↑sign e [PROOFSTEP] refine' Fin.cases _ _ p [GOAL] case refine'_1 n : ℕ p : Fin (n + 1) e : Perm (Fin n) ⊢ ↑sign (↑decomposeFin.symm (0, e)) = (if 0 = 0 then 1 else -1) * ↑sign e [PROOFSTEP] simp [Equiv.Perm.decomposeFin, Fin.succ_ne_zero] [GOAL] case refine'_2 n : ℕ p : Fin (n + 1) e : Perm (Fin n) ⊢ ∀ (i : Fin n), ↑sign (↑decomposeFin.symm (Fin.succ i, e)) = (if Fin.succ i = 0 then 1 else -1) * ↑sign e [PROOFSTEP] simp [Equiv.Perm.decomposeFin, Fin.succ_ne_zero] [GOAL] n : ℕ ⊢ finRotate (Nat.succ n) = ↑decomposeFin.symm (1, finRotate n) [PROOFSTEP] ext i [GOAL] case H.h n : ℕ i : Fin (Nat.succ n) ⊢ ↑(↑(finRotate (Nat.succ n)) i) = ↑(↑(↑decomposeFin.symm (1, finRotate n)) i) [PROOFSTEP] cases n [GOAL] case H.h.zero i : Fin (Nat.succ Nat.zero) ⊢ ↑(↑(finRotate (Nat.succ Nat.zero)) i) = ↑(↑(↑decomposeFin.symm (1, finRotate Nat.zero)) i) [PROOFSTEP] simp [GOAL] case H.h.succ n✝ : ℕ i : Fin (Nat.succ (Nat.succ n✝)) ⊢ ↑(↑(finRotate (Nat.succ (Nat.succ n✝))) i) = ↑(↑(↑decomposeFin.symm (1, finRotate (Nat.succ n✝))) i) [PROOFSTEP] refine' Fin.cases _ (fun i => _) i [GOAL] case H.h.succ.refine'_1 n✝ : ℕ i : Fin (Nat.succ (Nat.succ n✝)) ⊢ ↑(↑(finRotate (Nat.succ (Nat.succ n✝))) 0) = ↑(↑(↑decomposeFin.symm (1, finRotate (Nat.succ n✝))) 0) [PROOFSTEP] simp [GOAL] case H.h.succ.refine'_2 n✝ : ℕ i✝ : Fin (Nat.succ (Nat.succ n✝)) i : Fin (n✝ + 1) ⊢ ↑(↑(finRotate (Nat.succ (Nat.succ n✝))) (Fin.succ i)) = ↑(↑(↑decomposeFin.symm (1, finRotate (Nat.succ n✝))) (Fin.succ i)) [PROOFSTEP] rw [coe_finRotate, decomposeFin_symm_apply_succ, if_congr i.succ_eq_last_succ rfl rfl] [GOAL] case H.h.succ.refine'_2 n✝ : ℕ i✝ : Fin (Nat.succ (Nat.succ n✝)) i : Fin (n✝ + 1) ⊢ (if i = Fin.last n✝ then 0 else ↑(Fin.succ i) + 1) = ↑(↑(swap 0 1) (Fin.succ (↑(finRotate (Nat.succ n✝)) i))) [PROOFSTEP] split_ifs with h [GOAL] case pos n✝ : ℕ i✝ : Fin (Nat.succ (Nat.succ n✝)) i : Fin (n✝ + 1) h : i = Fin.last n✝ ⊢ 0 = ↑(↑(swap 0 1) (Fin.succ (↑(finRotate (Nat.succ n✝)) i))) [PROOFSTEP] simp [h] [GOAL] case neg n✝ : ℕ i✝ : Fin (Nat.succ (Nat.succ n✝)) i : Fin (n✝ + 1) h : ¬i = Fin.last n✝ ⊢ ↑(Fin.succ i) + 1 = ↑(↑(swap 0 1) (Fin.succ (↑(finRotate (Nat.succ n✝)) i))) [PROOFSTEP] rw [Fin.val_succ, Function.Injective.map_swap Fin.val_injective, Fin.val_succ, coe_finRotate, if_neg h, Fin.val_zero, Fin.val_one, swap_apply_of_ne_of_ne (Nat.succ_ne_zero _) (Nat.succ_succ_ne_one _)] [GOAL] n : ℕ ⊢ ↑sign (finRotate (n + 1)) = (-1) ^ n [PROOFSTEP] induction' n with n ih [GOAL] case zero ⊢ ↑sign (finRotate (Nat.zero + 1)) = (-1) ^ Nat.zero [PROOFSTEP] simp [GOAL] case succ n : ℕ ih : ↑sign (finRotate (n + 1)) = (-1) ^ n ⊢ ↑sign (finRotate (Nat.succ n + 1)) = (-1) ^ Nat.succ n [PROOFSTEP] rw [finRotate_succ_eq_decomposeFin] [GOAL] case succ n : ℕ ih : ↑sign (finRotate (n + 1)) = (-1) ^ n ⊢ ↑sign (↑decomposeFin.symm (1, finRotate (n + 1))) = (-1) ^ Nat.succ n [PROOFSTEP] simp [ih, pow_succ] [GOAL] n : ℕ ⊢ support (finRotate (n + 2)) = Finset.univ [PROOFSTEP] ext [GOAL] case a n : ℕ a✝ : Fin (n + 2) ⊢ a✝ ∈ support (finRotate (n + 2)) ↔ a✝ ∈ Finset.univ [PROOFSTEP] simp [GOAL] n : ℕ h : 2 ≤ n ⊢ support (finRotate n) = Finset.univ [PROOFSTEP] obtain ⟨m, rfl⟩ := exists_add_of_le h [GOAL] case intro m : ℕ h : 2 ≤ 2 + m ⊢ support (finRotate (2 + m)) = Finset.univ [PROOFSTEP] rw [add_comm, support_finRotate] [GOAL] n : ℕ ⊢ IsCycle (finRotate (n + 2)) [PROOFSTEP] refine' ⟨0, by simp, fun x hx' => ⟨x, _⟩⟩ [GOAL] n : ℕ ⊢ ↑(finRotate (n + 2)) 0 ≠ 0 [PROOFSTEP] simp [GOAL] n : ℕ x : Fin (n + 2) hx' : ↑(finRotate (n + 2)) x ≠ x ⊢ ↑(finRotate (n + 2) ^ ↑↑x) 0 = x [PROOFSTEP] clear hx' [GOAL] n : ℕ x : Fin (n + 2) ⊢ ↑(finRotate (n + 2) ^ ↑↑x) 0 = x [PROOFSTEP] cases' x with x hx [GOAL] case mk n x : ℕ hx : x < n + 2 ⊢ ↑(finRotate (n + 2) ^ ↑↑{ val := x, isLt := hx }) 0 = { val := x, isLt := hx } [PROOFSTEP] rw [zpow_ofNat, Fin.ext_iff, Fin.val_mk] [GOAL] case mk n x : ℕ hx : x < n + 2 ⊢ ↑(↑(finRotate (n + 2) ^ ↑{ val := x, isLt := hx }) 0) = ↑{ val := x, isLt := hx } [PROOFSTEP] induction' x with x ih [GOAL] case mk.zero n x : ℕ hx✝ : x < n + 2 hx : Nat.zero < n + 2 ⊢ ↑(↑(finRotate (n + 2) ^ ↑{ val := Nat.zero, isLt := hx }) 0) = ↑{ val := Nat.zero, isLt := hx } [PROOFSTEP] rfl [GOAL] case mk.succ n x✝ : ℕ hx✝ : x✝ < n + 2 x : ℕ ih : ∀ (hx : x < n + 2), ↑(↑(finRotate (n + 2) ^ ↑{ val := x, isLt := hx }) 0) = ↑{ val := x, isLt := hx } hx : Nat.succ x < n + 2 ⊢ ↑(↑(finRotate (n + 2) ^ ↑{ val := Nat.succ x, isLt := hx }) 0) = ↑{ val := Nat.succ x, isLt := hx } [PROOFSTEP] rw [pow_succ, Perm.mul_apply, coe_finRotate_of_ne_last, ih (lt_trans x.lt_succ_self hx)] [GOAL] case mk.succ n x✝ : ℕ hx✝ : x✝ < n + 2 x : ℕ ih : ∀ (hx : x < n + 2), ↑(↑(finRotate (n + 2) ^ ↑{ val := x, isLt := hx }) 0) = ↑{ val := x, isLt := hx } hx : Nat.succ x < n + 2 ⊢ ↑(finRotate (n + 2) ^ x) 0 ≠ Fin.last (n + 1) [PROOFSTEP] rw [Ne.def, Fin.ext_iff, ih (lt_trans x.lt_succ_self hx), Fin.val_last] [GOAL] case mk.succ n x✝ : ℕ hx✝ : x✝ < n + 2 x : ℕ ih : ∀ (hx : x < n + 2), ↑(↑(finRotate (n + 2) ^ ↑{ val := x, isLt := hx }) 0) = ↑{ val := x, isLt := hx } hx : Nat.succ x < n + 2 ⊢ ¬↑{ val := x, isLt := (_ : x < n + 2) } = n + 1 [PROOFSTEP] exact ne_of_lt (Nat.lt_of_succ_lt_succ hx) [GOAL] n : ℕ h : 2 ≤ n ⊢ IsCycle (finRotate n) [PROOFSTEP] obtain ⟨m, rfl⟩ := exists_add_of_le h [GOAL] case intro m : ℕ h : 2 ≤ 2 + m ⊢ IsCycle (finRotate (2 + m)) [PROOFSTEP] rw [add_comm] [GOAL] case intro m : ℕ h : 2 ≤ 2 + m ⊢ IsCycle (finRotate (m + 2)) [PROOFSTEP] exact isCycle_finRotate [GOAL] n : ℕ ⊢ cycleType (finRotate (n + 2)) = {n + 2} [PROOFSTEP] rw [isCycle_finRotate.cycleType, support_finRotate, ← Fintype.card, Fintype.card_fin] [GOAL] n : ℕ ⊢ ↑[n + 2] = {n + 2} [PROOFSTEP] rfl [GOAL] n : ℕ h : 2 ≤ n ⊢ cycleType (finRotate n) = {n} [PROOFSTEP] obtain ⟨m, rfl⟩ := exists_add_of_le h [GOAL] case intro m : ℕ h : 2 ≤ 2 + m ⊢ cycleType (finRotate (2 + m)) = {2 + m} [PROOFSTEP] rw [add_comm, cycleType_finRotate] [GOAL] n : ℕ i : Fin n ⊢ Function.LeftInverse (fun x => ↑↑x) ↑(castLEEmb (_ : Nat.succ ↑i ≤ n)).toEmbedding [PROOFSTEP] intro x [GOAL] n : ℕ i : Fin n x : Fin (Nat.succ ↑i) ⊢ (fun x => ↑↑x) (↑(castLEEmb (_ : Nat.succ ↑i ≤ n)).toEmbedding x) = x [PROOFSTEP] ext [GOAL] case h n : ℕ i : Fin n x : Fin (Nat.succ ↑i) ⊢ ↑((fun x => ↑↑x) (↑(castLEEmb (_ : Nat.succ ↑i ≤ n)).toEmbedding x)) = ↑x [PROOFSTEP] simp [GOAL] n : ℕ i j : Fin (Nat.succ n) h : i < j ⊢ ↑(cycleRange i) j = j [PROOFSTEP] rw [cycleRange, ofLeftInverse'_eq_ofInjective, ← Function.Embedding.toEquivRange_eq_ofInjective, ← viaFintypeEmbedding, viaFintypeEmbedding_apply_not_mem_range] [GOAL] case h n : ℕ i j : Fin (Nat.succ n) h : i < j ⊢ ¬j ∈ Set.range ↑(castLEEmb (_ : Nat.succ ↑i ≤ Nat.succ n)).toEmbedding [PROOFSTEP] simpa [GOAL] n : ℕ i j : Fin (Nat.succ n) h : j ≤ i ⊢ ↑(cycleRange i) j = if j = i then 0 else j + 1 [PROOFSTEP] cases n [GOAL] case zero i j : Fin (Nat.succ Nat.zero) h : j ≤ i ⊢ ↑(cycleRange i) j = if j = i then 0 else j + 1 [PROOFSTEP] exact Subsingleton.elim (α := Fin 1) _ _ --Porting note; was `simp` [GOAL] case succ n✝ : ℕ i j : Fin (Nat.succ (Nat.succ n✝)) h : j ≤ i ⊢ ↑(cycleRange i) j = if j = i then 0 else j + 1 [PROOFSTEP] have : j = (Fin.castLE (Nat.succ_le_of_lt i.is_lt)) ⟨j, lt_of_le_of_lt h (Nat.lt_succ_self i)⟩ := by simp [GOAL] n✝ : ℕ i j : Fin (Nat.succ (Nat.succ n✝)) h : j ≤ i ⊢ j = castLE (_ : Nat.succ ↑i ≤ Nat.succ (Nat.succ n✝)) { val := ↑j, isLt := (_ : ↑j < Nat.succ ↑i) } [PROOFSTEP] simp [GOAL] case succ n✝ : ℕ i j : Fin (Nat.succ (Nat.succ n✝)) h : j ≤ i this : j = castLE (_ : Nat.succ ↑i ≤ Nat.succ (Nat.succ n✝)) { val := ↑j, isLt := (_ : ↑j < Nat.succ ↑i) } ⊢ ↑(cycleRange i) j = if j = i then 0 else j + 1 [PROOFSTEP] ext [GOAL] case succ.h n✝ : ℕ i j : Fin (Nat.succ (Nat.succ n✝)) h : j ≤ i this : j = castLE (_ : Nat.succ ↑i ≤ Nat.succ (Nat.succ n✝)) { val := ↑j, isLt := (_ : ↑j < Nat.succ ↑i) } ⊢ ↑(↑(cycleRange i) j) = ↑(if j = i then 0 else j + 1) [PROOFSTEP] erw [this, cycleRange, ofLeftInverse'_eq_ofInjective, ← Function.Embedding.toEquivRange_eq_ofInjective, ← viaFintypeEmbedding, viaFintypeEmbedding_apply_image, castLEEmb_toEmbedding, Function.Embedding.coeFn_mk, coe_castLE, coe_finRotate] [GOAL] case succ.h n✝ : ℕ i j : Fin (Nat.succ (Nat.succ n✝)) h : j ≤ i this : j = castLE (_ : Nat.succ ↑i ≤ Nat.succ (Nat.succ n✝)) { val := ↑j, isLt := (_ : ↑j < Nat.succ ↑i) } ⊢ (if { val := ↑j, isLt := (_ : ↑j < Nat.succ ↑i) } = last ↑i then 0 else ↑{ val := ↑j, isLt := (_ : ↑j < Nat.succ ↑i) } + 1) = ↑(if castLE (_ : Nat.succ ↑i ≤ Nat.succ (Nat.succ n✝)) { val := ↑j, isLt := (_ : ↑j < Nat.succ ↑i) } = i then 0 else castLE (_ : Nat.succ ↑i ≤ Nat.succ (Nat.succ n✝)) { val := ↑j, isLt := (_ : ↑j < Nat.succ ↑i) } + 1) [PROOFSTEP] simp only [Fin.ext_iff, val_last, val_mk, val_zero, Fin.eta, castLE_mk] [GOAL] case succ.h n✝ : ℕ i j : Fin (Nat.succ (Nat.succ n✝)) h : j ≤ i this : j = castLE (_ : Nat.succ ↑i ≤ Nat.succ (Nat.succ n✝)) { val := ↑j, isLt := (_ : ↑j < Nat.succ ↑i) } ⊢ (if ↑j = ↑i then 0 else ↑j + 1) = ↑(if ↑j = ↑i then 0 else j + 1) [PROOFSTEP] split_ifs with heq [GOAL] case pos n✝ : ℕ i j : Fin (Nat.succ (Nat.succ n✝)) h : j ≤ i this : j = castLE (_ : Nat.succ ↑i ≤ Nat.succ (Nat.succ n✝)) { val := ↑j, isLt := (_ : ↑j < Nat.succ ↑i) } heq : ↑j = ↑i ⊢ 0 = ↑0 [PROOFSTEP] rfl [GOAL] case neg n✝ : ℕ i j : Fin (Nat.succ (Nat.succ n✝)) h : j ≤ i this : j = castLE (_ : Nat.succ ↑i ≤ Nat.succ (Nat.succ n✝)) { val := ↑j, isLt := (_ : ↑j < Nat.succ ↑i) } heq : ¬↑j = ↑i ⊢ ↑j + 1 = ↑(j + 1) [PROOFSTEP] rw [Fin.val_add_one_of_lt] [GOAL] case neg n✝ : ℕ i j : Fin (Nat.succ (Nat.succ n✝)) h : j ≤ i this : j = castLE (_ : Nat.succ ↑i ≤ Nat.succ (Nat.succ n✝)) { val := ↑j, isLt := (_ : ↑j < Nat.succ ↑i) } heq : ¬↑j = ↑i ⊢ j < last (n✝ + 1) [PROOFSTEP] exact lt_of_lt_of_le (lt_of_le_of_ne h (mt (congr_arg _) heq)) (le_last i) [GOAL] n : ℕ i j : Fin (Nat.succ n) h : j ≤ i ⊢ ↑(↑(cycleRange i) j) = if j = i then 0 else ↑j + 1 [PROOFSTEP] rw [cycleRange_of_le h] [GOAL] n : ℕ i j : Fin (Nat.succ n) h : j ≤ i ⊢ ↑(if j = i then 0 else j + 1) = if j = i then 0 else ↑j + 1 [PROOFSTEP] split_ifs with h' [GOAL] case pos n : ℕ i j : Fin (Nat.succ n) h : j ≤ i h' : j = i ⊢ ↑0 = 0 [PROOFSTEP] rfl [GOAL] case neg n : ℕ i j : Fin (Nat.succ n) h : j ≤ i h' : ¬j = i ⊢ ↑(j + 1) = ↑j + 1 [PROOFSTEP] exact val_add_one_of_lt (calc (j : ℕ) < i := Fin.lt_iff_val_lt_val.mp (lt_of_le_of_ne h h') _ ≤ n := Nat.lt_succ_iff.mp i.2) [GOAL] n : ℕ i j : Fin (Nat.succ n) h : j < i ⊢ ↑(cycleRange i) j = j + 1 [PROOFSTEP] rw [cycleRange_of_le h.le, if_neg h.ne] [GOAL] n : ℕ i j : Fin (Nat.succ n) h : j < i ⊢ ↑(↑(cycleRange i) j) = ↑j + 1 [PROOFSTEP] rw [coe_cycleRange_of_le h.le, if_neg h.ne] [GOAL] n : ℕ i j : Fin (Nat.succ n) h : j = i ⊢ ↑(cycleRange i) j = 0 [PROOFSTEP] rw [cycleRange_of_le h.le, if_pos h] [GOAL] n : ℕ i j : Fin (Nat.succ n) ⊢ ↑(cycleRange i) j = if j < i then j + 1 else if j = i then 0 else j [PROOFSTEP] split_ifs with h₁ h₂ [GOAL] case pos n : ℕ i j : Fin (Nat.succ n) h₁ : j < i ⊢ ↑(cycleRange i) j = j + 1 [PROOFSTEP] exact cycleRange_of_lt h₁ [GOAL] case pos n : ℕ i j : Fin (Nat.succ n) h₁ : ¬j < i h₂ : j = i ⊢ ↑(cycleRange i) j = 0 [PROOFSTEP] exact cycleRange_of_eq h₂ [GOAL] case neg n : ℕ i j : Fin (Nat.succ n) h₁ : ¬j < i h₂ : ¬j = i ⊢ ↑(cycleRange i) j = j [PROOFSTEP] exact cycleRange_of_gt (lt_of_le_of_ne (le_of_not_gt h₁) (Ne.symm h₂)) [GOAL] n : ℕ ⊢ cycleRange 0 = 1 [PROOFSTEP] ext j [GOAL] case H.h n : ℕ j : Fin (Nat.succ n) ⊢ ↑(↑(cycleRange 0) j) = ↑(↑1 j) [PROOFSTEP] refine' Fin.cases _ (fun j => _) j [GOAL] case H.h.refine'_1 n : ℕ j : Fin (Nat.succ n) ⊢ ↑(↑(cycleRange 0) 0) = ↑(↑1 0) [PROOFSTEP] simp [GOAL] case H.h.refine'_2 n : ℕ j✝ : Fin (Nat.succ n) j : Fin n ⊢ ↑(↑(cycleRange 0) (succ j)) = ↑(↑1 (succ j)) [PROOFSTEP] rw [cycleRange_of_gt (Fin.succ_pos j), one_apply] [GOAL] n : ℕ ⊢ cycleRange (last n) = finRotate (n + 1) [PROOFSTEP] ext i [GOAL] case H.h n : ℕ i : Fin (n + 1) ⊢ ↑(↑(cycleRange (last n)) i) = ↑(↑(finRotate (n + 1)) i) [PROOFSTEP] rw [coe_cycleRange_of_le (le_last _), coe_finRotate] [GOAL] n : ℕ h : 0 < n ⊢ cycleRange { val := 0, isLt := h } = 1 [PROOFSTEP] cases' n with n [GOAL] case zero h : 0 < Nat.zero ⊢ cycleRange { val := 0, isLt := h } = 1 [PROOFSTEP] cases h [GOAL] case succ n : ℕ h : 0 < Nat.succ n ⊢ cycleRange { val := 0, isLt := h } = 1 [PROOFSTEP] exact cycleRange_zero n [GOAL] n : ℕ i : Fin n ⊢ ↑sign (cycleRange i) = (-1) ^ ↑i [PROOFSTEP] simp [cycleRange] [GOAL] n : ℕ i j : Fin n ⊢ succAbove (succ i) (↑(cycleRange i) j) = ↑(swap 0 (succ i)) (succ j) [PROOFSTEP] cases n [GOAL] case zero i j : Fin Nat.zero ⊢ succAbove (succ i) (↑(cycleRange i) j) = ↑(swap 0 (succ i)) (succ j) [PROOFSTEP] rcases j with ⟨_, ⟨⟩⟩ [GOAL] case succ n✝ : ℕ i j : Fin (Nat.succ n✝) ⊢ succAbove (succ i) (↑(cycleRange i) j) = ↑(swap 0 (succ i)) (succ j) [PROOFSTEP] rcases lt_trichotomy j i with (hlt | heq | hgt) [GOAL] case succ.inl n✝ : ℕ i j : Fin (Nat.succ n✝) hlt : j < i ⊢ succAbove (succ i) (↑(cycleRange i) j) = ↑(swap 0 (succ i)) (succ j) [PROOFSTEP] have : castSucc (j + 1) = j.succ := by ext rw [coe_castSucc, val_succ, Fin.val_add_one_of_lt (lt_of_lt_of_le hlt i.le_last)] [GOAL] n✝ : ℕ i j : Fin (Nat.succ n✝) hlt : j < i ⊢ castSucc (j + 1) = succ j [PROOFSTEP] ext [GOAL] case h n✝ : ℕ i j : Fin (Nat.succ n✝) hlt : j < i ⊢ ↑(castSucc (j + 1)) = ↑(succ j) [PROOFSTEP] rw [coe_castSucc, val_succ, Fin.val_add_one_of_lt (lt_of_lt_of_le hlt i.le_last)] [GOAL] case succ.inl n✝ : ℕ i j : Fin (Nat.succ n✝) hlt : j < i this : castSucc (j + 1) = succ j ⊢ succAbove (succ i) (↑(cycleRange i) j) = ↑(swap 0 (succ i)) (succ j) [PROOFSTEP] rw [Fin.cycleRange_of_lt hlt, Fin.succAbove_below, this, swap_apply_of_ne_of_ne] [GOAL] case succ.inl.a n✝ : ℕ i j : Fin (Nat.succ n✝) hlt : j < i this : castSucc (j + 1) = succ j ⊢ succ j ≠ 0 [PROOFSTEP] apply Fin.succ_ne_zero [GOAL] case succ.inl.a n✝ : ℕ i j : Fin (Nat.succ n✝) hlt : j < i this : castSucc (j + 1) = succ j ⊢ succ j ≠ succ i [PROOFSTEP] exact (Fin.succ_injective _).ne hlt.ne [GOAL] case succ.inl.h n✝ : ℕ i j : Fin (Nat.succ n✝) hlt : j < i this : castSucc (j + 1) = succ j ⊢ castSucc (j + 1) < succ i [PROOFSTEP] rw [Fin.lt_iff_val_lt_val] [GOAL] case succ.inl.h n✝ : ℕ i j : Fin (Nat.succ n✝) hlt : j < i this : castSucc (j + 1) = succ j ⊢ ↑(castSucc (j + 1)) < ↑(succ i) [PROOFSTEP] simpa [this] using hlt [GOAL] case succ.inr.inl n✝ : ℕ i j : Fin (Nat.succ n✝) heq : j = i ⊢ succAbove (succ i) (↑(cycleRange i) j) = ↑(swap 0 (succ i)) (succ j) [PROOFSTEP] rw [heq, Fin.cycleRange_self, Fin.succAbove_below, swap_apply_right, Fin.castSucc_zero] [GOAL] case succ.inr.inl.h n✝ : ℕ i j : Fin (Nat.succ n✝) heq : j = i ⊢ castSucc 0 < succ i [PROOFSTEP] rw [Fin.castSucc_zero] [GOAL] case succ.inr.inl.h n✝ : ℕ i j : Fin (Nat.succ n✝) heq : j = i ⊢ 0 < succ i [PROOFSTEP] apply Fin.succ_pos [GOAL] case succ.inr.inr n✝ : ℕ i j : Fin (Nat.succ n✝) hgt : i < j ⊢ succAbove (succ i) (↑(cycleRange i) j) = ↑(swap 0 (succ i)) (succ j) [PROOFSTEP] rw [Fin.cycleRange_of_gt hgt, Fin.succAbove_above, swap_apply_of_ne_of_ne] [GOAL] case succ.inr.inr.a n✝ : ℕ i j : Fin (Nat.succ n✝) hgt : i < j ⊢ succ j ≠ 0 [PROOFSTEP] apply Fin.succ_ne_zero [GOAL] case succ.inr.inr.a n✝ : ℕ i j : Fin (Nat.succ n✝) hgt : i < j ⊢ succ j ≠ succ i [PROOFSTEP] apply (Fin.succ_injective _).ne hgt.ne.symm [GOAL] case succ.inr.inr.h n✝ : ℕ i j : Fin (Nat.succ n✝) hgt : i < j ⊢ succ i ≤ castSucc j [PROOFSTEP] simpa [Fin.le_iff_val_le_val] using hgt [GOAL] n : ℕ i : Fin (n + 1) j : Fin n ⊢ ↑(cycleRange i) (succAbove i j) = succ j [PROOFSTEP] cases' lt_or_ge (castSucc j) i with h h [GOAL] case inl n : ℕ i : Fin (n + 1) j : Fin n h : castSucc j < i ⊢ ↑(cycleRange i) (succAbove i j) = succ j [PROOFSTEP] rw [Fin.succAbove_below _ _ h, Fin.cycleRange_of_lt h, Fin.coeSucc_eq_succ] [GOAL] case inr n : ℕ i : Fin (n + 1) j : Fin n h : castSucc j ≥ i ⊢ ↑(cycleRange i) (succAbove i j) = succ j [PROOFSTEP] rw [Fin.succAbove_above _ _ h, Fin.cycleRange_of_gt (Fin.le_castSucc_iff.mp h)] [GOAL] n : ℕ i : Fin (n + 1) ⊢ ↑(cycleRange i) (↑(cycleRange i).symm 0) = ↑(cycleRange i) i [PROOFSTEP] simp [GOAL] n : ℕ i : Fin (n + 1) j : Fin n ⊢ ↑(cycleRange i) (↑(cycleRange i).symm (succ j)) = ↑(cycleRange i) (succAbove i j) [PROOFSTEP] simp [GOAL] n : ℕ i : Fin (n + 1) h0 : i ≠ 0 ⊢ IsCycle (cycleRange i) [PROOFSTEP] cases' i with i hi [GOAL] case mk n i : ℕ hi : i < n + 1 h0 : { val := i, isLt := hi } ≠ 0 ⊢ IsCycle (cycleRange { val := i, isLt := hi }) [PROOFSTEP] cases i [GOAL] case mk.zero n : ℕ hi : Nat.zero < n + 1 h0 : { val := Nat.zero, isLt := hi } ≠ 0 ⊢ IsCycle (cycleRange { val := Nat.zero, isLt := hi }) [PROOFSTEP] exact (h0 rfl).elim [GOAL] case mk.succ n n✝ : ℕ hi : Nat.succ n✝ < n + 1 h0 : { val := Nat.succ n✝, isLt := hi } ≠ 0 ⊢ IsCycle (cycleRange { val := Nat.succ n✝, isLt := hi }) [PROOFSTEP] exact isCycle_finRotate.extendDomain _ [GOAL] n : ℕ i : Fin (n + 1) h0 : i ≠ 0 ⊢ cycleType (cycleRange i) = {↑i + 1} [PROOFSTEP] cases' i with i hi [GOAL] case mk n i : ℕ hi : i < n + 1 h0 : { val := i, isLt := hi } ≠ 0 ⊢ cycleType (cycleRange { val := i, isLt := hi }) = {↑{ val := i, isLt := hi } + 1} [PROOFSTEP] cases i [GOAL] case mk.zero n : ℕ hi : Nat.zero < n + 1 h0 : { val := Nat.zero, isLt := hi } ≠ 0 ⊢ cycleType (cycleRange { val := Nat.zero, isLt := hi }) = {↑{ val := Nat.zero, isLt := hi } + 1} [PROOFSTEP] exact (h0 rfl).elim [GOAL] case mk.succ n n✝ : ℕ hi : Nat.succ n✝ < n + 1 h0 : { val := Nat.succ n✝, isLt := hi } ≠ 0 ⊢ cycleType (cycleRange { val := Nat.succ n✝, isLt := hi }) = {↑{ val := Nat.succ n✝, isLt := hi } + 1} [PROOFSTEP] rw [cycleRange, cycleType_extendDomain] [GOAL] case mk.succ n n✝ : ℕ hi : Nat.succ n✝ < n + 1 h0 : { val := Nat.succ n✝, isLt := hi } ≠ 0 ⊢ cycleType (finRotate (↑{ val := Nat.succ n✝, isLt := hi } + 1)) = {↑{ val := Nat.succ n✝, isLt := hi } + 1} [PROOFSTEP] exact cycleType_finRotate [GOAL] n : ℕ ⊢ IsThreeCycle (cycleRange 2) [PROOFSTEP] rw [IsThreeCycle, cycleType_cycleRange] [GOAL] n : ℕ ⊢ {↑2 + 1} = {3} [PROOFSTEP] simp [Fin.eq_iff_veq] [GOAL] n : ℕ ⊢ 2 ≠ 0 [PROOFSTEP] simp [Fin.eq_iff_veq]
{"mathlib_filename": "Mathlib.GroupTheory.Perm.Fin", "llama_tokens": 11059}
[GOAL] α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝¹ : Monoid M inst✝ : AddMonoid A s t u : Set M S : Submonoid M hs : s ⊆ ↑S ht : t ⊆ ↑S ⊢ s * t ⊆ ↑S [PROOFSTEP] rintro _ ⟨p, q, hp, hq, rfl⟩ [GOAL] case intro.intro.intro.intro α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝¹ : Monoid M inst✝ : AddMonoid A s t u : Set M S : Submonoid M hs : s ⊆ ↑S ht : t ⊆ ↑S p q : M hp : p ∈ s hq : q ∈ t ⊢ (fun x x_1 => x * x_1) p q ∈ ↑S [PROOFSTEP] exact Submonoid.mul_mem _ (hs hp) (ht hq) [GOAL] α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝¹ : Monoid M inst✝ : AddMonoid A s✝ t u : Set M s : Submonoid M ⊢ ↑s * ↑s = ↑s [PROOFSTEP] ext x [GOAL] case h α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝¹ : Monoid M inst✝ : AddMonoid A s✝ t u : Set M s : Submonoid M x : M ⊢ x ∈ ↑s * ↑s ↔ x ∈ ↑s [PROOFSTEP] refine' ⟨_, fun h => ⟨x, 1, h, s.one_mem, mul_one x⟩⟩ [GOAL] case h α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝¹ : Monoid M inst✝ : AddMonoid A s✝ t u : Set M s : Submonoid M x : M ⊢ x ∈ ↑s * ↑s → x ∈ ↑s [PROOFSTEP] rintro ⟨a, b, ha, hb, rfl⟩ [GOAL] case h.intro.intro.intro.intro α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝¹ : Monoid M inst✝ : AddMonoid A s✝ t u : Set M s : Submonoid M a b : M ha : a ∈ ↑s hb : b ∈ ↑s ⊢ (fun x x_1 => x * x_1) a b ∈ ↑s [PROOFSTEP] exact s.mul_mem ha hb [GOAL] α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝¹ : Monoid M inst✝ : AddMonoid A s t u : Set M H K : Submonoid M ⊢ closure ↑H ⊔ closure ↑K ≤ H ⊔ K [PROOFSTEP] rw [closure_eq, closure_eq] [GOAL] α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝⁴ : Monoid M inst✝³ : AddMonoid A s✝ t u : Set M N : Type u_6 inst✝² : CommMonoid N inst✝¹ : MulAction M N inst✝ : IsScalarTower M N N r : M s : Set N x : N hx : x ∈ closure s ⊢ ∃ n, r ^ n • x ∈ closure (r • s) [PROOFSTEP] refine' @closure_induction N _ s (fun x : N => ∃ n : ℕ, r ^ n • x ∈ closure (r • s)) _ hx _ _ _ [GOAL] case refine'_1 α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝⁴ : Monoid M inst✝³ : AddMonoid A s✝ t u : Set M N : Type u_6 inst✝² : CommMonoid N inst✝¹ : MulAction M N inst✝ : IsScalarTower M N N r : M s : Set N x : N hx : x ∈ closure s ⊢ ∀ (x : N), x ∈ s → (fun x => ∃ n, r ^ n • x ∈ closure (r • s)) x [PROOFSTEP] intro x hx [GOAL] case refine'_1 α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝⁴ : Monoid M inst✝³ : AddMonoid A s✝ t u : Set M N : Type u_6 inst✝² : CommMonoid N inst✝¹ : MulAction M N inst✝ : IsScalarTower M N N r : M s : Set N x✝ : N hx✝ : x✝ ∈ closure s x : N hx : x ∈ s ⊢ ∃ n, r ^ n • x ∈ closure (r • s) [PROOFSTEP] exact ⟨1, subset_closure ⟨_, hx, by rw [pow_one]⟩⟩ [GOAL] α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝⁴ : Monoid M inst✝³ : AddMonoid A s✝ t u : Set M N : Type u_6 inst✝² : CommMonoid N inst✝¹ : MulAction M N inst✝ : IsScalarTower M N N r : M s : Set N x✝ : N hx✝ : x✝ ∈ closure s x : N hx : x ∈ s ⊢ (fun x => r • x) x = r ^ 1 • x [PROOFSTEP] rw [pow_one] [GOAL] case refine'_2 α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝⁴ : Monoid M inst✝³ : AddMonoid A s✝ t u : Set M N : Type u_6 inst✝² : CommMonoid N inst✝¹ : MulAction M N inst✝ : IsScalarTower M N N r : M s : Set N x : N hx : x ∈ closure s ⊢ (fun x => ∃ n, r ^ n • x ∈ closure (r • s)) 1 [PROOFSTEP] exact ⟨0, by simpa using one_mem _⟩ [GOAL] α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝⁴ : Monoid M inst✝³ : AddMonoid A s✝ t u : Set M N : Type u_6 inst✝² : CommMonoid N inst✝¹ : MulAction M N inst✝ : IsScalarTower M N N r : M s : Set N x : N hx : x ∈ closure s ⊢ r ^ 0 • 1 ∈ closure (r • s) [PROOFSTEP] simpa using one_mem _ [GOAL] case refine'_3 α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝⁴ : Monoid M inst✝³ : AddMonoid A s✝ t u : Set M N : Type u_6 inst✝² : CommMonoid N inst✝¹ : MulAction M N inst✝ : IsScalarTower M N N r : M s : Set N x : N hx : x ∈ closure s ⊢ ∀ (x y : N), (fun x => ∃ n, r ^ n • x ∈ closure (r • s)) x → (fun x => ∃ n, r ^ n • x ∈ closure (r • s)) y → (fun x => ∃ n, r ^ n • x ∈ closure (r • s)) (x * y) [PROOFSTEP] rintro x y ⟨nx, hx⟩ ⟨ny, hy⟩ [GOAL] case refine'_3.intro.intro α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝⁴ : Monoid M inst✝³ : AddMonoid A s✝ t u : Set M N : Type u_6 inst✝² : CommMonoid N inst✝¹ : MulAction M N inst✝ : IsScalarTower M N N r : M s : Set N x✝ : N hx✝ : x✝ ∈ closure s x y : N nx : ℕ hx : r ^ nx • x ∈ closure (r • s) ny : ℕ hy : r ^ ny • y ∈ closure (r • s) ⊢ ∃ n, r ^ n • (x * y) ∈ closure (r • s) [PROOFSTEP] use ny + nx [GOAL] case h α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝⁴ : Monoid M inst✝³ : AddMonoid A s✝ t u : Set M N : Type u_6 inst✝² : CommMonoid N inst✝¹ : MulAction M N inst✝ : IsScalarTower M N N r : M s : Set N x✝ : N hx✝ : x✝ ∈ closure s x y : N nx : ℕ hx : r ^ nx • x ∈ closure (r • s) ny : ℕ hy : r ^ ny • y ∈ closure (r • s) ⊢ r ^ (ny + nx) • (x * y) ∈ closure (r • s) [PROOFSTEP] rw [pow_add, mul_smul, ← smul_mul_assoc, mul_comm, ← smul_mul_assoc] [GOAL] case h α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝⁴ : Monoid M inst✝³ : AddMonoid A s✝ t u : Set M N : Type u_6 inst✝² : CommMonoid N inst✝¹ : MulAction M N inst✝ : IsScalarTower M N N r : M s : Set N x✝ : N hx✝ : x✝ ∈ closure s x y : N nx : ℕ hx : r ^ nx • x ∈ closure (r • s) ny : ℕ hy : r ^ ny • y ∈ closure (r • s) ⊢ r ^ ny • y * r ^ nx • x ∈ closure (r • s) [PROOFSTEP] exact mul_mem hy hx [GOAL] α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝² : Monoid M inst✝¹ : AddMonoid A s t u : Set M inst✝ : Group G S : Submonoid G a✝ b✝ : G ha : a✝ ∈ (↑S)⁻¹ hb : b✝ ∈ (↑S)⁻¹ ⊢ a✝ * b✝ ∈ (↑S)⁻¹ [PROOFSTEP] rw [mem_inv, mul_inv_rev] [GOAL] α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝² : Monoid M inst✝¹ : AddMonoid A s t u : Set M inst✝ : Group G S : Submonoid G a✝ b✝ : G ha : a✝ ∈ (↑S)⁻¹ hb : b✝ ∈ (↑S)⁻¹ ⊢ b✝⁻¹ * a✝⁻¹ ∈ ↑S [PROOFSTEP] exact mul_mem hb ha [GOAL] α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝² : Monoid M inst✝¹ : AddMonoid A s t u : Set M inst✝ : Group G S : Submonoid G ⊢ 1⁻¹ ∈ ↑S [PROOFSTEP] rw [inv_one] [GOAL] α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝² : Monoid M inst✝¹ : AddMonoid A s t u : Set M inst✝ : Group G S : Submonoid G ⊢ 1 ∈ ↑S [PROOFSTEP] exact S.one_mem' [GOAL] α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝² : Monoid M inst✝¹ : AddMonoid A s✝ t u : Set M inst✝ : Group G s : Set G ⊢ closure s⁻¹ = (closure s)⁻¹ [PROOFSTEP] apply le_antisymm [GOAL] case a α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝² : Monoid M inst✝¹ : AddMonoid A s✝ t u : Set M inst✝ : Group G s : Set G ⊢ closure s⁻¹ ≤ (closure s)⁻¹ [PROOFSTEP] rw [closure_le, coe_inv, ← Set.inv_subset, inv_inv] [GOAL] case a α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝² : Monoid M inst✝¹ : AddMonoid A s✝ t u : Set M inst✝ : Group G s : Set G ⊢ s ⊆ ↑(closure s) [PROOFSTEP] exact subset_closure [GOAL] case a α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝² : Monoid M inst✝¹ : AddMonoid A s✝ t u : Set M inst✝ : Group G s : Set G ⊢ (closure s)⁻¹ ≤ closure s⁻¹ [PROOFSTEP] rw [inv_le, closure_le, coe_inv, ← Set.inv_subset] [GOAL] case a α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝² : Monoid M inst✝¹ : AddMonoid A s✝ t u : Set M inst✝ : Group G s : Set G ⊢ s⁻¹ ⊆ ↑(closure s⁻¹) [PROOFSTEP] exact subset_closure [GOAL] α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝³ : Monoid M inst✝² : AddMonoid A inst✝¹ : Monoid α inst✝ : MulDistribMulAction α M S : Submonoid M ⊢ 1 • S = S [PROOFSTEP] change S.map _ = S [GOAL] α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝³ : Monoid M inst✝² : AddMonoid A inst✝¹ : Monoid α inst✝ : MulDistribMulAction α M S : Submonoid M ⊢ map (↑(MulDistribMulAction.toMonoidEnd α M) 1) S = S [PROOFSTEP] simpa only [map_one] using S.map_id [GOAL] α : Type u_1 G✝ : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝² : Monoid M inst✝¹ : AddMonoid A G : Type u_6 inst✝ : Group G S : Set G x : G ⊢ x ∈ closure S⁻¹ ↔ x⁻¹ ∈ closure S [PROOFSTEP] rw [closure_inv, mem_inv] [GOAL] α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝² : Monoid M inst✝¹ : AddMonoid A inst✝ : AddMonoidWithOne R ⊢ 1 = closure {1} [PROOFSTEP] rw [closure_singleton_eq, one_eq_mrange] [GOAL] α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝² : Monoid M inst✝¹ : AddMonoid A inst✝ : AddMonoidWithOne R ⊢ AddMonoidHom.mrange (Nat.castAddMonoidHom R) = AddMonoidHom.mrange (↑(multiplesHom R) 1) [PROOFSTEP] congr 1 [GOAL] case e_f α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝² : Monoid M inst✝¹ : AddMonoid A inst✝ : AddMonoidWithOne R ⊢ Nat.castAddMonoidHom R = ↑(multiplesHom R) 1 [PROOFSTEP] ext [GOAL] case e_f.a α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝² : Monoid M inst✝¹ : AddMonoid A inst✝ : AddMonoidWithOne R ⊢ ↑(Nat.castAddMonoidHom R) 1 = ↑(↑(multiplesHom R) 1) 1 [PROOFSTEP] simp [GOAL] α : Type u_1 G : Type u_2 M✝ : Type u_3 R : Type u_4 A : Type u_5 inst✝² : Monoid M✝ inst✝¹ : AddMonoid A inst✝ : NonUnitalNonAssocSemiring R M N : AddSubmonoid R m n : R hm : m ∈ M hn : n ∈ N ⊢ ↑(↑AddMonoidHom.mul ↑{ val := m, property := hm }) n = m * n [PROOFSTEP] rfl [GOAL] α : Type u_1 G : Type u_2 M✝ : Type u_3 R : Type u_4 A : Type u_5 inst✝² : Monoid M✝ inst✝¹ : AddMonoid A inst✝ : NonUnitalNonAssocSemiring R M N : AddSubmonoid R C : R → Prop r : R hr : r ∈ M * N hm : ∀ (m : R), m ∈ M → ∀ (n : R), n ∈ N → C (m * n) ha : ∀ (x y : R), C x → C y → C (x + y) ⊢ 0 ∈ { carrier := setOf C, add_mem' := (_ : ∀ {a b : R}, C a → C b → C (a + b)) }.carrier [PROOFSTEP] simpa only [zero_mul] using hm _ (zero_mem _) _ (zero_mem _) [GOAL] α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝² : Monoid M inst✝¹ : AddMonoid A inst✝ : NonUnitalNonAssocSemiring R S T : Set R ⊢ closure S * closure T = closure (S * T) [PROOFSTEP] apply le_antisymm [GOAL] case a α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝² : Monoid M inst✝¹ : AddMonoid A inst✝ : NonUnitalNonAssocSemiring R S T : Set R ⊢ closure S * closure T ≤ closure (S * T) [PROOFSTEP] refine mul_le.2 fun a ha b hb => ?_ [GOAL] case a α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝² : Monoid M inst✝¹ : AddMonoid A inst✝ : NonUnitalNonAssocSemiring R S T : Set R a : R ha : a ∈ closure S b : R hb : b ∈ closure T ⊢ a * b ∈ closure (S * T) [PROOFSTEP] rw [← AddMonoidHom.mulRight_apply, ← AddSubmonoid.mem_comap] [GOAL] case a α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝² : Monoid M inst✝¹ : AddMonoid A inst✝ : NonUnitalNonAssocSemiring R S T : Set R a : R ha : a ∈ closure S b : R hb : b ∈ closure T ⊢ a ∈ comap (AddMonoidHom.mulRight b) (closure (S * T)) [PROOFSTEP] refine (closure_le.2 fun a' ha' => ?_) ha [GOAL] case a α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝² : Monoid M inst✝¹ : AddMonoid A inst✝ : NonUnitalNonAssocSemiring R S T : Set R a : R ha : a ∈ closure S b : R hb : b ∈ closure T a' : R ha' : a' ∈ S ⊢ a' ∈ ↑(comap (AddMonoidHom.mulRight b) (closure (S * T))) [PROOFSTEP] change b ∈ (closure (S * T)).comap (AddMonoidHom.mulLeft a') [GOAL] case a α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝² : Monoid M inst✝¹ : AddMonoid A inst✝ : NonUnitalNonAssocSemiring R S T : Set R a : R ha : a ∈ closure S b : R hb : b ∈ closure T a' : R ha' : a' ∈ S ⊢ b ∈ comap (AddMonoidHom.mulLeft a') (closure (S * T)) [PROOFSTEP] refine (closure_le.2 fun b' hb' => ?_) hb [GOAL] case a α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝² : Monoid M inst✝¹ : AddMonoid A inst✝ : NonUnitalNonAssocSemiring R S T : Set R a : R ha : a ∈ closure S b : R hb : b ∈ closure T a' : R ha' : a' ∈ S b' : R hb' : b' ∈ T ⊢ b' ∈ ↑(comap (AddMonoidHom.mulLeft a') (closure (S * T))) [PROOFSTEP] change a' * b' ∈ closure (S * T) [GOAL] case a α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝² : Monoid M inst✝¹ : AddMonoid A inst✝ : NonUnitalNonAssocSemiring R S T : Set R a : R ha : a ∈ closure S b : R hb : b ∈ closure T a' : R ha' : a' ∈ S b' : R hb' : b' ∈ T ⊢ a' * b' ∈ closure (S * T) [PROOFSTEP] exact subset_closure (Set.mul_mem_mul ha' hb') [GOAL] case a α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝² : Monoid M inst✝¹ : AddMonoid A inst✝ : NonUnitalNonAssocSemiring R S T : Set R ⊢ closure (S * T) ≤ closure S * closure T [PROOFSTEP] rw [closure_le] [GOAL] case a α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝² : Monoid M inst✝¹ : AddMonoid A inst✝ : NonUnitalNonAssocSemiring R S T : Set R ⊢ S * T ⊆ ↑(closure S * closure T) [PROOFSTEP] rintro _ ⟨a, b, ha, hb, rfl⟩ [GOAL] case a.intro.intro.intro.intro α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝² : Monoid M inst✝¹ : AddMonoid A inst✝ : NonUnitalNonAssocSemiring R S T : Set R a b : R ha : a ∈ S hb : b ∈ T ⊢ (fun x x_1 => x * x_1) a b ∈ ↑(closure S * closure T) [PROOFSTEP] exact mul_mem_mul (subset_closure ha) (subset_closure hb) [GOAL] α : Type u_1 G : Type u_2 M✝ : Type u_3 R : Type u_4 A : Type u_5 inst✝² : Monoid M✝ inst✝¹ : AddMonoid A inst✝ : NonUnitalNonAssocSemiring R M N : AddSubmonoid R ⊢ M * N = closure (↑M * ↑N) [PROOFSTEP] rw [← closure_mul_closure, closure_eq, closure_eq] [GOAL] α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝² : Monoid M inst✝¹ : AddMonoid A inst✝ : NonUnitalNonAssocSemiring R S : AddSubmonoid R m : R x✝ : m ∈ S n : R hn : n ∈ ⊥ ⊢ m * n ∈ ⊥ [PROOFSTEP] rw [AddSubmonoid.mem_bot] at hn ⊢ [GOAL] α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝² : Monoid M inst✝¹ : AddMonoid A inst✝ : NonUnitalNonAssocSemiring R S : AddSubmonoid R m : R x✝ : m ∈ S n : R hn : n = 0 ⊢ m * n = 0 [PROOFSTEP] rw [hn, mul_zero] [GOAL] α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝² : Monoid M inst✝¹ : AddMonoid A inst✝ : NonUnitalNonAssocSemiring R S : AddSubmonoid R m : R hm : m ∈ ⊥ n : R hn : n ∈ S ⊢ m * n ∈ ⊥ [PROOFSTEP] rw [AddSubmonoid.mem_bot] at hm ⊢ [GOAL] α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝² : Monoid M inst✝¹ : AddMonoid A inst✝ : NonUnitalNonAssocSemiring R S : AddSubmonoid R m : R hm : m = 0 n : R hn : n ∈ S ⊢ m * n = 0 [PROOFSTEP] rw [hm, zero_mul] [GOAL] α : Type u_1 G : Type u_2 M✝ : Type u_3 R : Type u_4 A : Type u_5 inst✝² : Monoid M✝ inst✝¹ : AddMonoid A inst✝ : NonUnitalNonAssocSemiring R M N : AddSubmonoid R ⊢ ↑M * ↑N ⊆ ↑(M * N) [PROOFSTEP] rintro _ ⟨i, j, hi, hj, rfl⟩ [GOAL] case intro.intro.intro.intro α : Type u_1 G : Type u_2 M✝ : Type u_3 R : Type u_4 A : Type u_5 inst✝² : Monoid M✝ inst✝¹ : AddMonoid A inst✝ : NonUnitalNonAssocSemiring R M N : AddSubmonoid R i j : R hi : i ∈ ↑M hj : j ∈ ↑N ⊢ (fun x x_1 => x * x_1) i j ∈ ↑(M * N) [PROOFSTEP] exact mul_mem_mul hi hj [GOAL] α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝² : Monoid M inst✝¹ : AddMonoid A inst✝ : NonUnitalNonAssocRing R src✝ : InvolutiveNeg (AddSubmonoid R) := involutiveNeg x y : AddSubmonoid R ⊢ -x * y = -(x * y) [PROOFSTEP] refine' le_antisymm (mul_le.2 fun m hm n hn => _) ((AddSubmonoid.neg_le _ _).2 <| mul_le.2 fun m hm n hn => _) [GOAL] case refine'_1 α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝² : Monoid M inst✝¹ : AddMonoid A inst✝ : NonUnitalNonAssocRing R src✝ : InvolutiveNeg (AddSubmonoid R) := involutiveNeg x y : AddSubmonoid R m : R hm : m ∈ -x n : R hn : n ∈ y ⊢ m * n ∈ -(x * y) [PROOFSTEP] simp only [AddSubmonoid.mem_neg, ← neg_mul] at * [GOAL] case refine'_2 α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝² : Monoid M inst✝¹ : AddMonoid A inst✝ : NonUnitalNonAssocRing R src✝ : InvolutiveNeg (AddSubmonoid R) := involutiveNeg x y : AddSubmonoid R m : R hm : m ∈ x n : R hn : n ∈ y ⊢ m * n ∈ -(-x * y) [PROOFSTEP] simp only [AddSubmonoid.mem_neg, ← neg_mul] at * [GOAL] case refine'_1 α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝² : Monoid M inst✝¹ : AddMonoid A inst✝ : NonUnitalNonAssocRing R src✝ : InvolutiveNeg (AddSubmonoid R) := involutiveNeg x y : AddSubmonoid R m n : R hn : n ∈ y hm : -m ∈ x ⊢ -m * n ∈ x * y [PROOFSTEP] exact mul_mem_mul hm hn [GOAL] case refine'_2 α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝² : Monoid M inst✝¹ : AddMonoid A inst✝ : NonUnitalNonAssocRing R src✝ : InvolutiveNeg (AddSubmonoid R) := involutiveNeg x y : AddSubmonoid R m : R hm : m ∈ x n : R hn : n ∈ y ⊢ -m * n ∈ -x * y [PROOFSTEP] exact mul_mem_mul (neg_mem_neg.2 hm) hn [GOAL] α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝² : Monoid M inst✝¹ : AddMonoid A inst✝ : NonUnitalNonAssocRing R src✝ : InvolutiveNeg (AddSubmonoid R) := involutiveNeg x y : AddSubmonoid R ⊢ x * -y = -(x * y) [PROOFSTEP] refine' le_antisymm (mul_le.2 fun m hm n hn => _) ((AddSubmonoid.neg_le _ _).2 <| mul_le.2 fun m hm n hn => _) [GOAL] case refine'_1 α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝² : Monoid M inst✝¹ : AddMonoid A inst✝ : NonUnitalNonAssocRing R src✝ : InvolutiveNeg (AddSubmonoid R) := involutiveNeg x y : AddSubmonoid R m : R hm : m ∈ x n : R hn : n ∈ -y ⊢ m * n ∈ -(x * y) [PROOFSTEP] simp only [AddSubmonoid.mem_neg, ← mul_neg] at * [GOAL] case refine'_2 α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝² : Monoid M inst✝¹ : AddMonoid A inst✝ : NonUnitalNonAssocRing R src✝ : InvolutiveNeg (AddSubmonoid R) := involutiveNeg x y : AddSubmonoid R m : R hm : m ∈ x n : R hn : n ∈ y ⊢ m * n ∈ -(x * -y) [PROOFSTEP] simp only [AddSubmonoid.mem_neg, ← mul_neg] at * [GOAL] case refine'_1 α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝² : Monoid M inst✝¹ : AddMonoid A inst✝ : NonUnitalNonAssocRing R src✝ : InvolutiveNeg (AddSubmonoid R) := involutiveNeg x y : AddSubmonoid R m : R hm : m ∈ x n : R hn : -n ∈ y ⊢ m * -n ∈ x * y [PROOFSTEP] exact mul_mem_mul hm hn [GOAL] case refine'_2 α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝² : Monoid M inst✝¹ : AddMonoid A inst✝ : NonUnitalNonAssocRing R src✝ : InvolutiveNeg (AddSubmonoid R) := involutiveNeg x y : AddSubmonoid R m : R hm : m ∈ x n : R hn : n ∈ y ⊢ m * -n ∈ x * -y [PROOFSTEP] exact mul_mem_mul hm (neg_mem_neg.2 hn) [GOAL] α : Type u_1 G : Type u_2 M✝ : Type u_3 R : Type u_4 A : Type u_5 inst✝² : Monoid M✝ inst✝¹ : AddMonoid A inst✝ : NonAssocSemiring R M : AddSubmonoid R ⊢ 1 * M = M [PROOFSTEP] rw [one_eq_closure_one_set, ← closure_eq M, closure_mul_closure, one_mul] [GOAL] α : Type u_1 G : Type u_2 M✝ : Type u_3 R : Type u_4 A : Type u_5 inst✝² : Monoid M✝ inst✝¹ : AddMonoid A inst✝ : NonAssocSemiring R M : AddSubmonoid R ⊢ M * 1 = M [PROOFSTEP] rw [one_eq_closure_one_set, ← closure_eq M, closure_mul_closure, mul_one] [GOAL] α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝² : Monoid M inst✝¹ : AddMonoid A inst✝ : Semiring R s : Set R ⊢ closure s ^ 0 = closure (s ^ 0) [PROOFSTEP] rw [pow_zero, pow_zero, one_eq_closure_one_set] [GOAL] α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝² : Monoid M inst✝¹ : AddMonoid A inst✝ : Semiring R s : Set R n : ℕ ⊢ closure s ^ (n + 1) = closure (s ^ (n + 1)) [PROOFSTEP] rw [pow_succ, pow_succ, closure_pow s n, closure_mul_closure] [GOAL] α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝² : Monoid M inst✝¹ : AddMonoid A inst✝ : Semiring R s : AddSubmonoid R n : ℕ ⊢ s ^ n = closure (↑s ^ n) [PROOFSTEP] rw [← closure_pow, closure_eq] [GOAL] α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝² : Monoid M inst✝¹ : AddMonoid A inst✝ : OrderedCancelCommMonoid α s : Set α hpos : ∀ (x : α), x ∈ s → 1 ≤ x h : IsPwo s ⊢ IsPwo ↑(Submonoid.closure s) [PROOFSTEP] rw [Submonoid.closure_eq_image_prod] [GOAL] α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝² : Monoid M inst✝¹ : AddMonoid A inst✝ : OrderedCancelCommMonoid α s : Set α hpos : ∀ (x : α), x ∈ s → 1 ≤ x h : IsPwo s ⊢ IsPwo (List.prod '' {l | ∀ (x : α), x ∈ l → x ∈ s}) [PROOFSTEP] refine' (h.partiallyWellOrderedOn_sublistForall₂ (· ≤ ·)).image_of_monotone_on _ [GOAL] α : Type u_1 G : Type u_2 M : Type u_3 R : Type u_4 A : Type u_5 inst✝² : Monoid M inst✝¹ : AddMonoid A inst✝ : OrderedCancelCommMonoid α s : Set α hpos : ∀ (x : α), x ∈ s → 1 ≤ x h : IsPwo s ⊢ ∀ (a₁ : List α), a₁ ∈ {l | ∀ (x : α), x ∈ l → x ∈ s} → ∀ (a₂ : List α), a₂ ∈ {l | ∀ (x : α), x ∈ l → x ∈ s} → List.SublistForall₂ (fun x x_1 => x ≤ x_1) a₁ a₂ → List.prod a₁ ≤ List.prod a₂ [PROOFSTEP] exact fun l1 _ l2 hl2 h12 => h12.prod_le_prod' fun x hx => hpos x <| hl2 x hx
{"mathlib_filename": "Mathlib.GroupTheory.Submonoid.Pointwise", "llama_tokens": 11258}
[GOAL] G : Type u_1 inst✝² : Group G A : Type u_2 inst✝¹ : AddGroup A N : Type u_3 inst✝ : Group N g : G ⊢ zpowers g = closure {g} [PROOFSTEP] ext [GOAL] case h G : Type u_1 inst✝² : Group G A : Type u_2 inst✝¹ : AddGroup A N : Type u_3 inst✝ : Group N g x✝ : G ⊢ x✝ ∈ zpowers g ↔ x✝ ∈ closure {g} [PROOFSTEP] exact mem_closure_singleton.symm [GOAL] G : Type u_1 inst✝³ : Group G A : Type u_2 inst✝² : AddGroup A N : Type u_3 inst✝¹ : Group N R : Type u_4 inst✝ : Ring R r : R k : ℤ ⊢ ↑k * r ∈ zmultiples r [PROOFSTEP] simpa only [← zsmul_eq_mul] using zsmul_mem_zmultiples r k [GOAL] G : Type u_1 inst✝³ : Group G A : Type u_2 inst✝² : AddGroup A N : Type u_3 inst✝¹ : Group N R : Type u_4 inst✝ : Ring R r : R k : ℤ ⊢ (fun x => x • 1) k = ↑k [PROOFSTEP] simp [GOAL] G : Type u_1 inst✝³ : Group G A✝ : Type u_2 inst✝² : AddGroup A✝ N : Type u_3 inst✝¹ : Group N A : Type u_4 inst✝ : AddGroupWithOne A ⊢ AddMonoidHom.range (castAddHom A) = AddSubgroup.zmultiples 1 [PROOFSTEP] ext a [GOAL] case h G : Type u_1 inst✝³ : Group G A✝ : Type u_2 inst✝² : AddGroup A✝ N : Type u_3 inst✝¹ : Group N A : Type u_4 inst✝ : AddGroupWithOne A a : A ⊢ a ∈ AddMonoidHom.range (castAddHom A) ↔ a ∈ AddSubgroup.zmultiples 1 [PROOFSTEP] simp_rw [AddMonoidHom.mem_range, Int.coe_castAddHom, AddSubgroup.mem_zmultiples_iff, zsmul_one] [GOAL] G : Type u_1 inst✝² : Group G A : Type u_2 inst✝¹ : AddGroup A N : Type u_3 inst✝ : Group N f : G →* N x : G ⊢ Subgroup.map f (Subgroup.zpowers x) = Subgroup.zpowers (↑f x) [PROOFSTEP] rw [Subgroup.zpowers_eq_closure, Subgroup.zpowers_eq_closure, f.map_closure, Set.image_singleton] [GOAL] G : Type u_1 inst✝² : Group G A : Type u_2 inst✝¹ : AddGroup A N : Type u_3 inst✝ : Group N a b k : ℤ ⊢ (fun x => x • a) k = b ↔ b = a * k [PROOFSTEP] rw [mul_comm, eq_comm, ← smul_eq_mul] [GOAL] G : Type u_1 inst✝² : Group G A : Type u_2 inst✝¹ : AddGroup A N : Type u_3 inst✝ : Group N x : G ⊢ ↑Additive.ofMul '' ↑(Subgroup.zpowers x) = ↑(AddSubgroup.zmultiples (↑Additive.ofMul x)) [PROOFSTEP] ext y [GOAL] case h G : Type u_1 inst✝² : Group G A : Type u_2 inst✝¹ : AddGroup A N : Type u_3 inst✝ : Group N x : G y : Additive G ⊢ y ∈ ↑Additive.ofMul '' ↑(Subgroup.zpowers x) ↔ y ∈ ↑(AddSubgroup.zmultiples (↑Additive.ofMul x)) [PROOFSTEP] constructor [GOAL] case h.mp G : Type u_1 inst✝² : Group G A : Type u_2 inst✝¹ : AddGroup A N : Type u_3 inst✝ : Group N x : G y : Additive G ⊢ y ∈ ↑Additive.ofMul '' ↑(Subgroup.zpowers x) → y ∈ ↑(AddSubgroup.zmultiples (↑Additive.ofMul x)) [PROOFSTEP] rintro ⟨z, ⟨m, hm⟩, hz2⟩ [GOAL] case h.mp.intro.intro.intro G : Type u_1 inst✝² : Group G A : Type u_2 inst✝¹ : AddGroup A N : Type u_3 inst✝ : Group N x : G y : Additive G z : G hz2 : ↑Additive.ofMul z = y m : ℤ hm : (fun x x_1 => x ^ x_1) x m = z ⊢ y ∈ ↑(AddSubgroup.zmultiples (↑Additive.ofMul x)) [PROOFSTEP] use m [GOAL] case h G : Type u_1 inst✝² : Group G A : Type u_2 inst✝¹ : AddGroup A N : Type u_3 inst✝ : Group N x : G y : Additive G z : G hz2 : ↑Additive.ofMul z = y m : ℤ hm : (fun x x_1 => x ^ x_1) x m = z ⊢ (fun x_1 => x_1 • ↑Additive.ofMul x) m = y [PROOFSTEP] simp only at * [GOAL] case h G : Type u_1 inst✝² : Group G A : Type u_2 inst✝¹ : AddGroup A N : Type u_3 inst✝ : Group N x : G y : Additive G z : G hz2 : ↑Additive.ofMul z = y m : ℤ hm : x ^ m = z ⊢ m • ↑Additive.ofMul x = y [PROOFSTEP] rwa [← ofMul_zpow, hm] [GOAL] case h.mpr G : Type u_1 inst✝² : Group G A : Type u_2 inst✝¹ : AddGroup A N : Type u_3 inst✝ : Group N x : G y : Additive G ⊢ y ∈ ↑(AddSubgroup.zmultiples (↑Additive.ofMul x)) → y ∈ ↑Additive.ofMul '' ↑(Subgroup.zpowers x) [PROOFSTEP] rintro ⟨n, hn⟩ [GOAL] case h.mpr.intro G : Type u_1 inst✝² : Group G A : Type u_2 inst✝¹ : AddGroup A N : Type u_3 inst✝ : Group N x : G y : Additive G n : ℤ hn : (fun x_1 => x_1 • ↑Additive.ofMul x) n = y ⊢ y ∈ ↑Additive.ofMul '' ↑(Subgroup.zpowers x) [PROOFSTEP] refine' ⟨x ^ n, ⟨n, rfl⟩, _⟩ [GOAL] case h.mpr.intro G : Type u_1 inst✝² : Group G A : Type u_2 inst✝¹ : AddGroup A N : Type u_3 inst✝ : Group N x : G y : Additive G n : ℤ hn : (fun x_1 => x_1 • ↑Additive.ofMul x) n = y ⊢ ↑Additive.ofMul (x ^ n) = y [PROOFSTEP] rwa [ofMul_zpow] [GOAL] G : Type u_1 inst✝² : Group G A : Type u_2 inst✝¹ : AddGroup A N : Type u_3 inst✝ : Group N x : A ⊢ ↑Multiplicative.ofAdd '' ↑(AddSubgroup.zmultiples x) = ↑(Subgroup.zpowers (↑Multiplicative.ofAdd x)) [PROOFSTEP] symm [GOAL] G : Type u_1 inst✝² : Group G A : Type u_2 inst✝¹ : AddGroup A N : Type u_3 inst✝ : Group N x : A ⊢ ↑(Subgroup.zpowers (↑Multiplicative.ofAdd x)) = ↑Multiplicative.ofAdd '' ↑(AddSubgroup.zmultiples x) [PROOFSTEP] rw [Equiv.eq_image_iff_symm_image_eq] [GOAL] G : Type u_1 inst✝² : Group G A : Type u_2 inst✝¹ : AddGroup A N : Type u_3 inst✝ : Group N x : A ⊢ ↑Multiplicative.ofAdd.symm '' ↑(Subgroup.zpowers (↑Multiplicative.ofAdd x)) = ↑(AddSubgroup.zmultiples x) [PROOFSTEP] exact ofMul_image_zpowers_eq_zmultiples_ofMul [GOAL] G : Type u_1 inst✝² : Group G A : Type u_2 inst✝¹ : AddGroup A N : Type u_3 inst✝ : Group N s : Set G g✝ g : G x✝¹ x✝ : { x // x ∈ zpowers g } val✝¹ : G w✝¹ : ℤ h₁ : (fun x x_1 => x ^ x_1) g w✝¹ = val✝¹ val✝ : G w✝ : ℤ h₂ : (fun x x_1 => x ^ x_1) g w✝ = val✝ ⊢ { val := val✝¹, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) g y = val✝¹) } * { val := val✝, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) g y = val✝) } = { val := val✝, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) g y = val✝) } * { val := val✝¹, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) g y = val✝¹) } [PROOFSTEP] rw [Subtype.ext_iff, coe_mul, coe_mul, Subtype.coe_mk, Subtype.coe_mk, ← h₁, ← h₂, zpow_mul_comm] [GOAL] G : Type u_1 inst✝² : Group G A : Type u_2 inst✝¹ : AddGroup A N : Type u_3 inst✝ : Group N s : Set G g✝ g : G H : Subgroup G ⊢ zpowers g ≤ H ↔ g ∈ H [PROOFSTEP] rw [zpowers_eq_closure, closure_le, Set.singleton_subset_iff, SetLike.mem_coe] [GOAL] G : Type u_1 inst✝² : Group G A : Type u_2 inst✝¹ : AddGroup A N : Type u_3 inst✝ : Group N s : Set G g✝ g : G ⊢ zpowers g = ⊥ ↔ g = 1 [PROOFSTEP] rw [eq_bot_iff, zpowers_le, mem_bot] [GOAL] G : Type u_1 inst✝² : Group G A : Type u_2 inst✝¹ : AddGroup A N : Type u_3 inst✝ : Group N s : Set G g : G S : Set G hS : closure S = ⊤ ⊢ center G = ⨅ (g : G) (_ : g ∈ S), centralizer ↑(zpowers g) [PROOFSTEP] rw [← centralizer_univ, ← coe_top, ← hS, centralizer_closure] [GOAL] G : Type u_1 inst✝² : Group G A : Type u_2 inst✝¹ : AddGroup A N : Type u_3 inst✝ : Group N s : Set G g : G S : Set G hS : closure S = ⊤ ⊢ center G = ⨅ (g : ↑S), centralizer ↑(zpowers ↑g) [PROOFSTEP] rw [center_eq_iInf S hS, ← iInf_subtype'']
{"mathlib_filename": "Mathlib.GroupTheory.Subgroup.ZPowers", "llama_tokens": 3460}
[GOAL] p : ℕ G : Type u_1 inst✝ : Group G P Q : Sylow p G h : ↑P = ↑Q ⊢ P = Q [PROOFSTEP] cases P [GOAL] case mk p : ℕ G : Type u_1 inst✝ : Group G Q : Sylow p G toSubgroup✝ : Subgroup G isPGroup'✝ : IsPGroup p { x // x ∈ toSubgroup✝ } is_maximal'✝ : ∀ {Q : Subgroup G}, IsPGroup p { x // x ∈ Q } → toSubgroup✝ ≤ Q → Q = toSubgroup✝ h : ↑{ toSubgroup := toSubgroup✝, isPGroup' := isPGroup'✝, is_maximal' := is_maximal'✝ } = ↑Q ⊢ { toSubgroup := toSubgroup✝, isPGroup' := isPGroup'✝, is_maximal' := is_maximal'✝ } = Q [PROOFSTEP] cases Q [GOAL] case mk.mk p : ℕ G : Type u_1 inst✝ : Group G toSubgroup✝¹ : Subgroup G isPGroup'✝¹ : IsPGroup p { x // x ∈ toSubgroup✝¹ } is_maximal'✝¹ : ∀ {Q : Subgroup G}, IsPGroup p { x // x ∈ Q } → toSubgroup✝¹ ≤ Q → Q = toSubgroup✝¹ toSubgroup✝ : Subgroup G isPGroup'✝ : IsPGroup p { x // x ∈ toSubgroup✝ } is_maximal'✝ : ∀ {Q : Subgroup G}, IsPGroup p { x // x ∈ Q } → toSubgroup✝ ≤ Q → Q = toSubgroup✝ h : ↑{ toSubgroup := toSubgroup✝¹, isPGroup' := isPGroup'✝¹, is_maximal' := is_maximal'✝¹ } = ↑{ toSubgroup := toSubgroup✝, isPGroup' := isPGroup'✝, is_maximal' := is_maximal'✝ } ⊢ { toSubgroup := toSubgroup✝¹, isPGroup' := isPGroup'✝¹, is_maximal' := is_maximal'✝¹ } = { toSubgroup := toSubgroup✝, isPGroup' := isPGroup'✝, is_maximal' := is_maximal'✝ } [PROOFSTEP] congr [GOAL] p : ℕ G : Type u_1 inst✝¹ : Group G P : Sylow p G K : Type u_2 inst✝ : Group K ϕ : K →* G N : Subgroup G hϕ : IsPGroup p { x // x ∈ MonoidHom.ker ϕ } h : ↑P ≤ MonoidHom.range ϕ src✝ : Subgroup K := comap ϕ ↑P Q : Subgroup K hQ : IsPGroup p { x // x ∈ Q } hle : { toSubmonoid := src✝.toSubmonoid, inv_mem' := (_ : ∀ {x : K}, x ∈ src✝.carrier → x⁻¹ ∈ src✝.carrier) } ≤ Q ⊢ Q = { toSubmonoid := src✝.toSubmonoid, inv_mem' := (_ : ∀ {x : K}, x ∈ src✝.carrier → x⁻¹ ∈ src✝.carrier) } [PROOFSTEP] show Q = P.1.comap ϕ [GOAL] p : ℕ G : Type u_1 inst✝¹ : Group G P : Sylow p G K : Type u_2 inst✝ : Group K ϕ : K →* G N : Subgroup G hϕ : IsPGroup p { x // x ∈ MonoidHom.ker ϕ } h : ↑P ≤ MonoidHom.range ϕ src✝ : Subgroup K := comap ϕ ↑P Q : Subgroup K hQ : IsPGroup p { x // x ∈ Q } hle : { toSubmonoid := src✝.toSubmonoid, inv_mem' := (_ : ∀ {x : K}, x ∈ src✝.carrier → x⁻¹ ∈ src✝.carrier) } ≤ Q ⊢ Q = comap ϕ ↑P [PROOFSTEP] rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] [GOAL] p : ℕ G : Type u_1 inst✝¹ : Group G P : Sylow p G K : Type u_2 inst✝ : Group K ϕ : K →* G N : Subgroup G hϕ : IsPGroup p { x // x ∈ MonoidHom.ker ϕ } h : ↑P ≤ MonoidHom.range ϕ src✝ : Subgroup K := comap ϕ ↑P Q : Subgroup K hQ : IsPGroup p { x // x ∈ Q } hle : { toSubmonoid := src✝.toSubmonoid, inv_mem' := (_ : ∀ {x : K}, x ∈ src✝.carrier → x⁻¹ ∈ src✝.carrier) } ≤ Q ⊢ Q = comap ϕ (map ϕ Q) [PROOFSTEP] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm [GOAL] p : ℕ G : Type u_1 inst✝¹ : Group G P : Sylow p G K : Type u_2 inst✝ : Group K ϕ : K →* G N : Subgroup G h : ↑P ≤ N ⊢ ↑P ≤ MonoidHom.range (Subgroup.subtype N) [PROOFSTEP] rwa [subtype_range] [GOAL] p : ℕ G : Type u_1 inst✝¹ : Group G P✝ : Sylow p G K : Type u_2 inst✝ : Group K ϕ : K →* G N : Subgroup G P Q : Sylow p G hP : ↑P ≤ N hQ : ↑Q ≤ N h : Sylow.subtype P hP = Sylow.subtype Q hQ ⊢ P = Q [PROOFSTEP] rw [SetLike.ext_iff] at h ⊢ [GOAL] p : ℕ G : Type u_1 inst✝¹ : Group G P✝ : Sylow p G K : Type u_2 inst✝ : Group K ϕ : K →* G N : Subgroup G P Q : Sylow p G hP : ↑P ≤ N hQ : ↑Q ≤ N h✝ : Sylow.subtype P hP = Sylow.subtype Q hQ h : ∀ (x : { x // x ∈ N }), x ∈ Sylow.subtype P hP ↔ x ∈ Sylow.subtype Q hQ ⊢ ∀ (x : G), x ∈ P ↔ x ∈ Q [PROOFSTEP] exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ [GOAL] p : ℕ G : Type u_1 inst✝ : Group G P : Subgroup G hP : IsPGroup p { x // x ∈ P } c : Set (Subgroup G) hc1 : c ⊆ {Q | IsPGroup p { x // x ∈ Q }} hc2 : IsChain (fun x x_1 => x ≤ x_1) c Q : Subgroup G hQ : Q ∈ c x✝ : { x // x ∈ { toSubmonoid := { toSubsemigroup := { carrier := ⋃ (R : ↑c), ↑↑R, mul_mem' := (_ : ∀ {g : G} (h : G), g ∈ ⋃ (R : ↑c), ↑↑R → h ∈ ⋃ (R : ↑c), ↑↑R → g * h ∈ ⋃ (R : ↑c), ↑↑R) }, one_mem' := (_ : ∃ t, (t ∈ Set.range fun R => ↑↑R) ∧ 1 ∈ t) }, inv_mem' := (_ : ∀ {g : G}, g ∈ { toSubsemigroup := { carrier := ⋃ (R : ↑c), ↑↑R, mul_mem' := (_ : ∀ {g : G} (h : G), g ∈ ⋃ (R : ↑c), ↑↑R → h ∈ ⋃ (R : ↑c), ↑↑R → g * h ∈ ⋃ (R : ↑c), ↑↑R) }, one_mem' := (_ : ∃ t, (t ∈ Set.range fun R => ↑↑R) ∧ 1 ∈ t) }.toSubsemigroup.carrier → g⁻¹ ∈ { toSubsemigroup := { carrier := ⋃ (R : ↑c), ↑↑R, mul_mem' := (_ : ∀ {g : G} (h : G), g ∈ ⋃ (R : ↑c), ↑↑R → h ∈ ⋃ (R : ↑c), ↑↑R → g * h ∈ ⋃ (R : ↑c), ↑↑R) }, one_mem' := (_ : ∃ t, (t ∈ Set.range fun R => ↑↑R) ∧ 1 ∈ t) }.toSubsemigroup.carrier) } } g : G S : ↑c hg : g ∈ (fun R => ↑↑R) S ⊢ ∃ k, { val := g, property := (_ : ∃ t, (t ∈ Set.range fun R => ↑↑R) ∧ g ∈ t) } ^ p ^ k = 1 [PROOFSTEP] refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) [GOAL] p : ℕ G : Type u_1 inst✝ : Group G P : Subgroup G hP : IsPGroup p { x // x ∈ P } c : Set (Subgroup G) hc1 : c ⊆ {Q | IsPGroup p { x // x ∈ Q }} hc2 : IsChain (fun x x_1 => x ≤ x_1) c Q : Subgroup G hQ : Q ∈ c x✝ : { x // x ∈ { toSubmonoid := { toSubsemigroup := { carrier := ⋃ (R : ↑c), ↑↑R, mul_mem' := (_ : ∀ {g : G} (h : G), g ∈ ⋃ (R : ↑c), ↑↑R → h ∈ ⋃ (R : ↑c), ↑↑R → g * h ∈ ⋃ (R : ↑c), ↑↑R) }, one_mem' := (_ : ∃ t, (t ∈ Set.range fun R => ↑↑R) ∧ 1 ∈ t) }, inv_mem' := (_ : ∀ {g : G}, g ∈ { toSubsemigroup := { carrier := ⋃ (R : ↑c), ↑↑R, mul_mem' := (_ : ∀ {g : G} (h : G), g ∈ ⋃ (R : ↑c), ↑↑R → h ∈ ⋃ (R : ↑c), ↑↑R → g * h ∈ ⋃ (R : ↑c), ↑↑R) }, one_mem' := (_ : ∃ t, (t ∈ Set.range fun R => ↑↑R) ∧ 1 ∈ t) }.toSubsemigroup.carrier → g⁻¹ ∈ { toSubsemigroup := { carrier := ⋃ (R : ↑c), ↑↑R, mul_mem' := (_ : ∀ {g : G} (h : G), g ∈ ⋃ (R : ↑c), ↑↑R → h ∈ ⋃ (R : ↑c), ↑↑R → g * h ∈ ⋃ (R : ↑c), ↑↑R) }, one_mem' := (_ : ∃ t, (t ∈ Set.range fun R => ↑↑R) ∧ 1 ∈ t) }.toSubsemigroup.carrier) } } g : G S : ↑c hg : g ∈ (fun R => ↑↑R) S k : ℕ hk : { val := g, property := hg } ^ p ^ k = 1 ⊢ { val := g, property := (_ : ∃ t, (t ∈ Set.range fun R => ↑↑R) ∧ g ∈ t) } ^ p ^ k = 1 [PROOFSTEP] rwa [Subtype.ext_iff, coe_pow] at hk ⊢ [GOAL] p : ℕ G : Type u_1 inst✝² : Group G H : Type u_2 inst✝¹ : Group H f : H →* G hf : IsPGroup p { x // x ∈ MonoidHom.ker f } inst✝ : Fintype (Sylow p G) h_exists : ∀ (P : Sylow p H), ∃ Q, comap f ↑Q = ↑P := fun P => exists_comap_eq_of_ker_isPGroup P hf g : Sylow p H → Sylow p G := fun P => Classical.choose (_ : ∃ Q, comap f ↑Q = ↑P) hg : ∀ (P : Sylow p H), comap f ↑(g P) = ↑P P Q : Sylow p H h : g P = g Q ⊢ ↑P = ↑Q [PROOFSTEP] rw [← hg, h] [GOAL] p : ℕ G : Type u_1 inst✝² : Group G H : Type u_2 inst✝¹ : Group H f : H →* G hf : IsPGroup p { x // x ∈ MonoidHom.ker f } inst✝ : Fintype (Sylow p G) h_exists : ∀ (P : Sylow p H), ∃ Q, comap f ↑Q = ↑P := fun P => exists_comap_eq_of_ker_isPGroup P hf g : Sylow p H → Sylow p G := fun P => Classical.choose (_ : ∃ Q, comap f ↑Q = ↑P) hg : ∀ (P : Sylow p H), comap f ↑(g P) = ↑P P Q : Sylow p H h : g P = g Q ⊢ comap f ↑(g Q) = ↑Q [PROOFSTEP] exact (h_exists Q).choose_spec [GOAL] p : ℕ G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Finite (Sylow p G) ⊢ Finite (Sylow p { x // x ∈ H }) [PROOFSTEP] cases nonempty_fintype (Sylow p G) [GOAL] case intro p : ℕ G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Finite (Sylow p G) val✝ : Fintype (Sylow p G) ⊢ Finite (Sylow p { x // x ∈ H }) [PROOFSTEP] infer_instance [GOAL] p : ℕ G : Type u_1 inst✝ : Group G g : G P : Sylow p G ⊢ g • P = P ↔ g ∈ normalizer ↑P [PROOFSTEP] rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] [GOAL] p : ℕ G : Type u_1 inst✝ : Group G g : G P : Sylow p G ⊢ (∀ (x : G), x ∈ P ↔ x ∈ g • P) ↔ ∀ (h : G), h ∈ ↑P ↔ g⁻¹ * h * g ∈ ↑P [PROOFSTEP] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ [GOAL] p : ℕ G : Type u_1 inst✝ : Group G g : G P : Sylow p G h : G x✝ : h ∈ g • P a : G b : a ∈ ↑↑P c : ↑(↑(MulDistribMulAction.toMonoidEnd (MulAut G) G) (↑MulAut.conj g)) a = h ⊢ g⁻¹ * ↑(↑(MulDistribMulAction.toMonoidEnd (MulAut G) G) (↑MulAut.conj g)) a * g ∈ ↑P [PROOFSTEP] simpa [mul_assoc] using b [GOAL] p : ℕ G : Type u_1 inst✝ : Group G g : G P : Sylow p G h : Normal ↑P ⊢ g • P = P [PROOFSTEP] simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] [GOAL] p : ℕ G : Type u_1 inst✝ : Group G H : Subgroup G P : Sylow p G ⊢ P ∈ fixedPoints { x // x ∈ H } (Sylow p G) ↔ H ≤ normalizer ↑P [PROOFSTEP] simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer] [GOAL] p : ℕ G : Type u_1 inst✝ : Group G H : Subgroup G P : Sylow p G ⊢ P ∈ fixedPoints { x // x ∈ H } (Sylow p G) ↔ ∀ ⦃x : G⦄, x ∈ H → x • P = P [PROOFSTEP] exact Subtype.forall [GOAL] p : ℕ G : Type u_1 inst✝ : Group G P : Subgroup G hP : IsPGroup p { x // x ∈ P } Q : Sylow p G ⊢ Q ∈ fixedPoints { x // x ∈ P } (Sylow p G) ↔ P ≤ ↑Q [PROOFSTEP] rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] [GOAL] p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P Q : Sylow p G ⊢ ∃ g, g • P = Q [PROOFSTEP] classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩ [GOAL] p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P Q : Sylow p G ⊢ ∃ g, g • P = Q [PROOFSTEP] cases nonempty_fintype (Sylow p G) [GOAL] case intro p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P Q : Sylow p G val✝ : Fintype (Sylow p G) ⊢ ∃ g, g • P = Q [PROOFSTEP] have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ [GOAL] case intro p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P Q : Sylow p G val✝ : Fintype (Sylow p G) H : ∀ {R : Sylow p G} {S : ↑(orbit G P)}, S ∈ fixedPoints { x // x ∈ ↑R } ↑(orbit G P) ↔ ↑↑S = ↑R ⊢ ∃ g, g • P = Q [PROOFSTEP] suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 [GOAL] p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P Q : Sylow p G val✝ : Fintype (Sylow p G) H : ∀ {R : Sylow p G} {S : ↑(orbit G P)}, S ∈ fixedPoints { x // x ∈ ↑R } ↑(orbit G P) ↔ ↑↑S = ↑R this : Set.Nonempty (fixedPoints { x // x ∈ ↑Q } ↑(orbit G P)) ⊢ ∃ g, g • P = Q [PROOFSTEP] exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 [GOAL] p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P Q : Sylow p G val✝ : Fintype (Sylow p G) H : ∀ {R : Sylow p G} {S : ↑(orbit G P)}, S ∈ fixedPoints { x // x ∈ ↑R } ↑(orbit G P) ↔ ↑↑S = ↑R this : Set.Nonempty (fixedPoints { x // x ∈ ↑Q } ↑(orbit G P)) R : ↑(orbit G P) hR : R ∈ fixedPoints { x // x ∈ ↑Q } ↑(orbit G P) ⊢ ∃ g, g • P = Q [PROOFSTEP] rw [← Sylow.ext (H.mp hR)] [GOAL] p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P Q : Sylow p G val✝ : Fintype (Sylow p G) H : ∀ {R : Sylow p G} {S : ↑(orbit G P)}, S ∈ fixedPoints { x // x ∈ ↑R } ↑(orbit G P) ↔ ↑↑S = ↑R this : Set.Nonempty (fixedPoints { x // x ∈ ↑Q } ↑(orbit G P)) R : ↑(orbit G P) hR : R ∈ fixedPoints { x // x ∈ ↑Q } ↑(orbit G P) ⊢ ∃ g, g • P = ↑R [PROOFSTEP] exact R.2 [GOAL] case intro p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P Q : Sylow p G val✝ : Fintype (Sylow p G) H : ∀ {R : Sylow p G} {S : ↑(orbit G P)}, S ∈ fixedPoints { x // x ∈ ↑R } ↑(orbit G P) ↔ ↑↑S = ↑R ⊢ Set.Nonempty (fixedPoints { x // x ∈ ↑Q } ↑(orbit G P)) [PROOFSTEP] apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card [GOAL] case intro.hpα p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P Q : Sylow p G val✝ : Fintype (Sylow p G) H : ∀ {R : Sylow p G} {S : ↑(orbit G P)}, S ∈ fixedPoints { x // x ∈ ↑R } ↑(orbit G P) ↔ ↑↑S = ↑R ⊢ ¬p ∣ card ↑(orbit G P) [PROOFSTEP] refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) [GOAL] case intro.hpα p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P Q : Sylow p G val✝ : Fintype (Sylow p G) H : ∀ {R : Sylow p G} {S : ↑(orbit G P)}, S ∈ fixedPoints { x // x ∈ ↑R } ↑(orbit G P) ↔ ↑↑S = ↑R h : p ∣ card ↑(orbit G P) ⊢ 1 ≡ 0 [MOD p] [PROOFSTEP] calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h [GOAL] case intro.hpα p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P Q : Sylow p G val✝ : Fintype (Sylow p G) H : ∀ {R : Sylow p G} {S : ↑(orbit G P)}, S ∈ fixedPoints { x // x ∈ ↑R } ↑(orbit G P) ↔ ↑↑S = ↑R h : p ∣ card ↑(orbit G P) ⊢ 1 = card ↑(fixedPoints { x // x ∈ ↑P } ↑(orbit G P)) [PROOFSTEP] rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] [GOAL] case intro.hpα p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P Q : Sylow p G val✝ : Fintype (Sylow p G) H : ∀ {R : Sylow p G} {S : ↑(orbit G P)}, S ∈ fixedPoints { x // x ∈ ↑R } ↑(orbit G P) ↔ ↑↑S = ↑R h : p ∣ card ↑(orbit G P) ⊢ card ↑{{ val := P, property := (_ : P ∈ orbit G P) }} = card ↑(fixedPoints { x // x ∈ ↑P } ↑(orbit G P)) [PROOFSTEP] refine' card_congr' (congr_arg _ (Eq.symm _)) [GOAL] case intro.hpα p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P Q : Sylow p G val✝ : Fintype (Sylow p G) H : ∀ {R : Sylow p G} {S : ↑(orbit G P)}, S ∈ fixedPoints { x // x ∈ ↑R } ↑(orbit G P) ↔ ↑↑S = ↑R h : p ∣ card ↑(orbit G P) ⊢ fixedPoints { x // x ∈ ↑P } ↑(orbit G P) = {{ val := P, property := (_ : P ∈ orbit G P) }} [PROOFSTEP] rw [Set.eq_singleton_iff_unique_mem] [GOAL] case intro.hpα p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P Q : Sylow p G val✝ : Fintype (Sylow p G) H : ∀ {R : Sylow p G} {S : ↑(orbit G P)}, S ∈ fixedPoints { x // x ∈ ↑R } ↑(orbit G P) ↔ ↑↑S = ↑R h : p ∣ card ↑(orbit G P) ⊢ { val := P, property := (_ : P ∈ orbit G P) } ∈ fixedPoints { x // x ∈ ↑P } ↑(orbit G P) ∧ ∀ (x : ↑(orbit G P)), x ∈ fixedPoints { x // x ∈ ↑P } ↑(orbit G P) → x = { val := P, property := (_ : P ∈ orbit G P) } [PROOFSTEP] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩ [GOAL] p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Fintype (Sylow p G) ⊢ card (Sylow p G) ≡ 1 [MOD p] [PROOFSTEP] refine' Sylow.nonempty.elim fun P : Sylow p G => _ [GOAL] p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Fintype (Sylow p G) P : Sylow p G ⊢ card (Sylow p G) ≡ 1 [MOD p] [PROOFSTEP] have : fixedPoints P.1 (Sylow p G) = { P } := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ { P } := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm [GOAL] p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Fintype (Sylow p G) P : Sylow p G this : fixedPoints { x // x ∈ ↑P } (Sylow p G) = {P} ⊢ card (Sylow p G) ≡ 1 [MOD p] [PROOFSTEP] have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance [GOAL] p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Fintype (Sylow p G) P : Sylow p G this : fixedPoints { x // x ∈ ↑P } (Sylow p G) = {P} ⊢ Fintype ↑(fixedPoints { x // x ∈ ↑P } (Sylow p G)) [PROOFSTEP] rw [this] [GOAL] p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Fintype (Sylow p G) P : Sylow p G this : fixedPoints { x // x ∈ ↑P } (Sylow p G) = {P} ⊢ Fintype ↑{P} [PROOFSTEP] infer_instance [GOAL] p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Fintype (Sylow p G) P : Sylow p G this : fixedPoints { x // x ∈ ↑P } (Sylow p G) = {P} fin : Fintype ↑(fixedPoints { x // x ∈ ↑P } (Sylow p G)) ⊢ card (Sylow p G) ≡ 1 [MOD p] [PROOFSTEP] have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] [GOAL] p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Fintype (Sylow p G) P : Sylow p G this : fixedPoints { x // x ∈ ↑P } (Sylow p G) = {P} fin : Fintype ↑(fixedPoints { x // x ∈ ↑P } (Sylow p G)) ⊢ card ↑(fixedPoints { x // x ∈ ↑P } (Sylow p G)) = 1 [PROOFSTEP] simp [this] [GOAL] p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Fintype (Sylow p G) P : Sylow p G this✝ : fixedPoints { x // x ∈ ↑P } (Sylow p G) = {P} fin : Fintype ↑(fixedPoints { x // x ∈ ↑P } (Sylow p G)) this : card ↑(fixedPoints { x // x ∈ ↑P } (Sylow p G)) = 1 ⊢ card (Sylow p G) ≡ 1 [MOD p] [PROOFSTEP] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) [GOAL] p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Fintype (Sylow p G) P : Sylow p G this✝ : fixedPoints { x // x ∈ ↑P } (Sylow p G) = {P} fin : Fintype ↑(fixedPoints { x // x ∈ ↑P } (Sylow p G)) this : card ↑(fixedPoints { x // x ∈ ↑P } (Sylow p G)) = 1 ⊢ card ↑(fixedPoints { x // x ∈ ↑P } (Sylow p G)) ≡ 1 [MOD p] [PROOFSTEP] rw [this] [GOAL] p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P Q : Sylow p G ⊢ { x // x ∈ ↑P } ≃* { x // x ∈ ↑Q } [PROOFSTEP] rw [← Classical.choose_spec (exists_smul_eq G P Q)] [GOAL] p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P Q : Sylow p G ⊢ { x // x ∈ ↑P } ≃* { x // x ∈ ↑(Classical.choose (_ : ∃ m, m • P = Q) • P) } [PROOFSTEP] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) [GOAL] p : ℕ G : Type u_1 inst✝ : Group G P : Sylow p G ⊢ stabilizer G P = normalizer ↑P [PROOFSTEP] ext [GOAL] case h p : ℕ G : Type u_1 inst✝ : Group G P : Sylow p G x✝ : G ⊢ x✝ ∈ stabilizer G P ↔ x✝ ∈ normalizer ↑P [PROOFSTEP] simp [Sylow.smul_eq_iff_mem_normalizer] [GOAL] p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G x g : G hx : x ∈ centralizer ↑P hy : g⁻¹ * x * g ∈ centralizer ↑P ⊢ ∃ n, n ∈ normalizer ↑P ∧ g⁻¹ * x * g = n⁻¹ * x * n [PROOFSTEP] have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] [GOAL] p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G x g : G hx : x ∈ centralizer ↑P hy : g⁻¹ * x * g ∈ centralizer ↑P ⊢ ↑P ≤ centralizer ↑(zpowers x) [PROOFSTEP] rwa [le_centralizer_iff, zpowers_le] [GOAL] p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G x g : G hx : x ∈ centralizer ↑P hy : g⁻¹ * x * g ∈ centralizer ↑P h1 : ↑P ≤ centralizer ↑(zpowers x) ⊢ ∃ n, n ∈ normalizer ↑P ∧ g⁻¹ * x * g = n⁻¹ * x * n [PROOFSTEP] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy [GOAL] p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G x g : G hx : x ∈ centralizer ↑P hy : g⁻¹ * x * g ∈ centralizer ↑P h1 : ↑P ≤ centralizer ↑(zpowers x) ⊢ ↑(g • P) ≤ centralizer ↑(zpowers x) [PROOFSTEP] rw [le_centralizer_iff, zpowers_le] [GOAL] p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G x g : G hx : x ∈ centralizer ↑P hy : g⁻¹ * x * g ∈ centralizer ↑P h1 : ↑P ≤ centralizer ↑(zpowers x) ⊢ x ∈ centralizer ↑↑(g • P) [PROOFSTEP] rintro - ⟨z, hz, rfl⟩ [GOAL] case intro.intro p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G x g : G hx : x ∈ centralizer ↑P hy : g⁻¹ * x * g ∈ centralizer ↑P h1 : ↑P ≤ centralizer ↑(zpowers x) z : G hz : z ∈ ↑↑P ⊢ ↑(↑(MulDistribMulAction.toMonoidEnd (MulAut G) G) (↑MulAut.conj g)) z * x = x * ↑(↑(MulDistribMulAction.toMonoidEnd (MulAut G) G) (↑MulAut.conj g)) z [PROOFSTEP] specialize hy z hz [GOAL] case intro.intro p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G x g : G hx : x ∈ centralizer ↑P h1 : ↑P ≤ centralizer ↑(zpowers x) z : G hz : z ∈ ↑↑P hy : z * (g⁻¹ * x * g) = g⁻¹ * x * g * z ⊢ ↑(↑(MulDistribMulAction.toMonoidEnd (MulAut G) G) (↑MulAut.conj g)) z * x = x * ↑(↑(MulDistribMulAction.toMonoidEnd (MulAut G) G) (↑MulAut.conj g)) z [PROOFSTEP] rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy [GOAL] p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G x g : G hx : x ∈ centralizer ↑P hy : g⁻¹ * x * g ∈ centralizer ↑P h1 : ↑P ≤ centralizer ↑(zpowers x) h2 : ↑(g • P) ≤ centralizer ↑(zpowers x) ⊢ ∃ n, n ∈ normalizer ↑P ∧ g⁻¹ * x * g = n⁻¹ * x * n [PROOFSTEP] obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) [GOAL] case intro p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G x g : G hx : x ∈ centralizer ↑P hy : g⁻¹ * x * g ∈ centralizer ↑P h1 : ↑P ≤ centralizer ↑(zpowers x) h2 : ↑(g • P) ≤ centralizer ↑(zpowers x) h : { x_1 // x_1 ∈ centralizer ↑(zpowers x) } hh : h • Sylow.subtype (g • P) h2 = Sylow.subtype P h1 ⊢ ∃ n, n ∈ normalizer ↑P ∧ g⁻¹ * x * g = n⁻¹ * x * n [PROOFSTEP] simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh [GOAL] case intro p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G x g : G hx : x ∈ centralizer ↑P hy : g⁻¹ * x * g ∈ centralizer ↑P h1 : ↑P ≤ centralizer ↑(zpowers x) h2 : ↑(g • P) ≤ centralizer ↑(zpowers x) h : { x_1 // x_1 ∈ centralizer ↑(zpowers x) } hh : Sylow.subtype ((↑h * g) • P) (_ : ↑((↑h * g) • P) ≤ centralizer ↑(zpowers x)) = Sylow.subtype P h1 ⊢ ∃ n, n ∈ normalizer ↑P ∧ g⁻¹ * x * g = n⁻¹ * x * n [PROOFSTEP] refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ [GOAL] case intro p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G x g : G hx : x ∈ centralizer ↑P hy : g⁻¹ * x * g ∈ centralizer ↑P h1 : ↑P ≤ centralizer ↑(zpowers x) h2 : ↑(g • P) ≤ centralizer ↑(zpowers x) h : { x_1 // x_1 ∈ centralizer ↑(zpowers x) } hh : Sylow.subtype ((↑h * g) • P) (_ : ↑((↑h * g) • P) ≤ centralizer ↑(zpowers x)) = Sylow.subtype P h1 ⊢ g⁻¹ * x * g = (↑h * g)⁻¹ * x * (↑h * g) [PROOFSTEP] rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] [GOAL] p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Fintype (Sylow p G) P : Sylow p G ⊢ ↑⊤ ≃ ↑(orbit G P) [PROOFSTEP] rw [P.orbit_eq_top] [GOAL] p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Fintype (Sylow p G) P : Sylow p G ⊢ G ⧸ stabilizer G P ≃ G ⧸ normalizer ↑P [PROOFSTEP] rw [P.stabilizer_eq_normalizer] [GOAL] p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) P : Sylow p G inst✝ : Normal ↑P fP : FiniteIndex ↑P ⊢ ¬p ∣ index ↑P [PROOFSTEP] intro h [GOAL] p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) P : Sylow p G inst✝ : Normal ↑P fP : FiniteIndex ↑P h : p ∣ index ↑P ⊢ False [PROOFSTEP] letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex [GOAL] p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) P : Sylow p G inst✝ : Normal ↑P fP : FiniteIndex ↑P h : p ∣ index ↑P this : Fintype (G ⧸ ↑P) := fintypeQuotientOfFiniteIndex ↑P ⊢ False [PROOFSTEP] rw [index_eq_card (P : Subgroup G)] at h [GOAL] p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) P : Sylow p G inst✝ : Normal ↑P fP : FiniteIndex ↑P this : Fintype (G ⧸ ↑P) := fintypeQuotientOfFiniteIndex ↑P h : p ∣ card (G ⧸ ↑P) ⊢ False [PROOFSTEP] obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h [GOAL] case intro p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) P : Sylow p G inst✝ : Normal ↑P fP : FiniteIndex ↑P this : Fintype (G ⧸ ↑P) := fintypeQuotientOfFiniteIndex ↑P h : p ∣ card (G ⧸ ↑P) x : G ⧸ ↑P hx : orderOf x = p ⊢ False [PROOFSTEP] have h := IsPGroup.of_card ((orderOf_eq_card_zpowers.symm.trans hx).trans (pow_one p).symm) [GOAL] case intro p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) P : Sylow p G inst✝ : Normal ↑P fP : FiniteIndex ↑P this : Fintype (G ⧸ ↑P) := fintypeQuotientOfFiniteIndex ↑P h✝ : p ∣ card (G ⧸ ↑P) x : G ⧸ ↑P hx : orderOf x = p h : IsPGroup p { x_1 // x_1 ∈ zpowers x } ⊢ False [PROOFSTEP] let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) [GOAL] case intro p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) P : Sylow p G inst✝ : Normal ↑P fP : FiniteIndex ↑P this : Fintype (G ⧸ ↑P) := fintypeQuotientOfFiniteIndex ↑P h✝ : p ∣ card (G ⧸ ↑P) x : G ⧸ ↑P hx : orderOf x = p h : IsPGroup p { x_1 // x_1 ∈ zpowers x } Q : Subgroup G := comap (QuotientGroup.mk' ↑P) (zpowers x) ⊢ False [PROOFSTEP] have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 [GOAL] p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) P : Sylow p G inst✝ : Normal ↑P fP : FiniteIndex ↑P this : Fintype (G ⧸ ↑P) := fintypeQuotientOfFiniteIndex ↑P h✝ : p ∣ card (G ⧸ ↑P) x : G ⧸ ↑P hx : orderOf x = p h : IsPGroup p { x_1 // x_1 ∈ zpowers x } Q : Subgroup G := comap (QuotientGroup.mk' ↑P) (zpowers x) ⊢ IsPGroup p { x // x ∈ Q } [PROOFSTEP] apply h.comap_of_ker_isPGroup [GOAL] case hϕ p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) P : Sylow p G inst✝ : Normal ↑P fP : FiniteIndex ↑P this : Fintype (G ⧸ ↑P) := fintypeQuotientOfFiniteIndex ↑P h✝ : p ∣ card (G ⧸ ↑P) x : G ⧸ ↑P hx : orderOf x = p h : IsPGroup p { x_1 // x_1 ∈ zpowers x } Q : Subgroup G := comap (QuotientGroup.mk' ↑P) (zpowers x) ⊢ IsPGroup p { x // x ∈ MonoidHom.ker (QuotientGroup.mk' ↑P) } [PROOFSTEP] rw [QuotientGroup.ker_mk'] [GOAL] case hϕ p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) P : Sylow p G inst✝ : Normal ↑P fP : FiniteIndex ↑P this : Fintype (G ⧸ ↑P) := fintypeQuotientOfFiniteIndex ↑P h✝ : p ∣ card (G ⧸ ↑P) x : G ⧸ ↑P hx : orderOf x = p h : IsPGroup p { x_1 // x_1 ∈ zpowers x } Q : Subgroup G := comap (QuotientGroup.mk' ↑P) (zpowers x) ⊢ IsPGroup p { x // x ∈ ↑P } [PROOFSTEP] exact P.2 [GOAL] case intro p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) P : Sylow p G inst✝ : Normal ↑P fP : FiniteIndex ↑P this : Fintype (G ⧸ ↑P) := fintypeQuotientOfFiniteIndex ↑P h✝ : p ∣ card (G ⧸ ↑P) x : G ⧸ ↑P hx : orderOf x = p h : IsPGroup p { x_1 // x_1 ∈ zpowers x } Q : Subgroup G := comap (QuotientGroup.mk' ↑P) (zpowers x) hQ : IsPGroup p { x // x ∈ Q } ⊢ False [PROOFSTEP] replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) [GOAL] case intro p : ℕ G : Type u_1 inst✝¹ : Group G P : Sylow p G inst✝ : Normal ↑P fP : FiniteIndex ↑P this : Fintype (G ⧸ ↑P) := fintypeQuotientOfFiniteIndex ↑P h✝ : p ∣ card (G ⧸ ↑P) x : G ⧸ ↑P hx : orderOf x = p h : IsPGroup p { x_1 // x_1 ∈ zpowers x } Q : Subgroup G := comap (QuotientGroup.mk' ↑P) (zpowers x) hQ : IsPGroup p { x // x ∈ Q } hp : ¬x = 1 ⊢ False [PROOFSTEP] rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp [GOAL] case intro p : ℕ G : Type u_1 inst✝¹ : Group G P : Sylow p G inst✝ : Normal ↑P fP : FiniteIndex ↑P this : Fintype (G ⧸ ↑P) := fintypeQuotientOfFiniteIndex ↑P h✝ : p ∣ card (G ⧸ ↑P) x : G ⧸ ↑P hx : orderOf x = p h : IsPGroup p { x_1 // x_1 ∈ zpowers x } Q : Subgroup G := comap (QuotientGroup.mk' ↑P) (zpowers x) hQ : IsPGroup p { x // x ∈ Q } hp : ↑P < comap (QuotientGroup.mk' ↑P) (zpowers x) ⊢ False [PROOFSTEP] exact hp.ne' (P.3 hQ hp.le) [GOAL] p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G hP : relindex (↑P) (normalizer ↑P) ≠ 0 ⊢ ¬p ∣ index ↑P [PROOFSTEP] cases nonempty_fintype (Sylow p G) [GOAL] case intro p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G hP : relindex (↑P) (normalizer ↑P) ≠ 0 val✝ : Fintype (Sylow p G) ⊢ ¬p ∣ index ↑P [PROOFSTEP] rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] [GOAL] case intro p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G hP : relindex (↑P) (normalizer ↑P) ≠ 0 val✝ : Fintype (Sylow p G) ⊢ ¬p ∣ relindex (↑P) (normalizer ↑P) * card (Sylow p G) [PROOFSTEP] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer [GOAL] case intro p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G hP : relindex (↑P) (normalizer ↑P) ≠ 0 val✝ : Fintype (Sylow p G) this : Normal ↑(Sylow.subtype P (_ : ↑P ≤ normalizer ↑P)) ⊢ ¬p ∣ relindex (↑P) (normalizer ↑P) * card (Sylow p G) [PROOFSTEP] haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ [GOAL] case intro p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G hP : relindex (↑P) (normalizer ↑P) ≠ 0 val✝ : Fintype (Sylow p G) this✝ : Normal ↑(Sylow.subtype P (_ : ↑P ≤ normalizer ↑P)) this : FiniteIndex ↑(Sylow.subtype P (_ : ↑P ≤ normalizer ↑P)) ⊢ ¬p ∣ relindex (↑P) (normalizer ↑P) * card (Sylow p G) [PROOFSTEP] replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) [GOAL] case intro p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G val✝ : Fintype (Sylow p G) this✝ : Normal ↑(Sylow.subtype P (_ : ↑P ≤ normalizer ↑P)) this : FiniteIndex ↑(Sylow.subtype P (_ : ↑P ≤ normalizer ↑P)) hP : ¬p ∣ index ↑(Sylow.subtype P (_ : ↑P ≤ normalizer ↑P)) ⊢ ¬p ∣ relindex (↑P) (normalizer ↑P) * card (Sylow p G) [PROOFSTEP] exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) [GOAL] p✝ : ℕ G : Type u_1 inst✝³ : Group G p : ℕ inst✝² : Fact (Nat.Prime p) N : Subgroup G inst✝¹ : Normal N inst✝ : Finite (Sylow p { x // x ∈ N }) P : Sylow p { x // x ∈ N } ⊢ normalizer (map (Subgroup.subtype N) ↑P) ⊔ N = ⊤ [PROOFSTEP] refine' top_le_iff.mp fun g _ => _ [GOAL] p✝ : ℕ G : Type u_1 inst✝³ : Group G p : ℕ inst✝² : Fact (Nat.Prime p) N : Subgroup G inst✝¹ : Normal N inst✝ : Finite (Sylow p { x // x ∈ N }) P : Sylow p { x // x ∈ N } g : G x✝ : g ∈ ⊤ ⊢ g ∈ normalizer (map (Subgroup.subtype N) ↑P) ⊔ N [PROOFSTEP] obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P [GOAL] case intro p✝ : ℕ G : Type u_1 inst✝³ : Group G p : ℕ inst✝² : Fact (Nat.Prime p) N : Subgroup G inst✝¹ : Normal N inst✝ : Finite (Sylow p { x // x ∈ N }) P : Sylow p { x // x ∈ N } g : G x✝ : g ∈ ⊤ n : { x // x ∈ N } hn : n • ↑MulAut.conjNormal g • P = P ⊢ g ∈ normalizer (map (Subgroup.subtype N) ↑P) ⊔ N [PROOFSTEP] rw [← inv_mul_cancel_left (↑n) g, sup_comm] [GOAL] case intro p✝ : ℕ G : Type u_1 inst✝³ : Group G p : ℕ inst✝² : Fact (Nat.Prime p) N : Subgroup G inst✝¹ : Normal N inst✝ : Finite (Sylow p { x // x ∈ N }) P : Sylow p { x // x ∈ N } g : G x✝ : g ∈ ⊤ n : { x // x ∈ N } hn : n • ↑MulAut.conjNormal g • P = P ⊢ (↑n)⁻¹ * (↑n * g) ∈ N ⊔ normalizer (map (Subgroup.subtype N) ↑P) [PROOFSTEP] apply mul_mem_sup (N.inv_mem n.2) [GOAL] case intro p✝ : ℕ G : Type u_1 inst✝³ : Group G p : ℕ inst✝² : Fact (Nat.Prime p) N : Subgroup G inst✝¹ : Normal N inst✝ : Finite (Sylow p { x // x ∈ N }) P : Sylow p { x // x ∈ N } g : G x✝ : g ∈ ⊤ n : { x // x ∈ N } hn : n • ↑MulAut.conjNormal g • P = P ⊢ ↑n * g ∈ normalizer (map (Subgroup.subtype N) ↑P) [PROOFSTEP] rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn [GOAL] case intro p✝ : ℕ G : Type u_1 inst✝³ : Group G p : ℕ inst✝² : Fact (Nat.Prime p) N : Subgroup G inst✝¹ : Normal N inst✝ : Finite (Sylow p { x // x ∈ N }) P : Sylow p { x // x ∈ N } g : G x✝ : g ∈ ⊤ n : { x // x ∈ N } hn✝ : (↑MulAut.conj n * ↑MulAut.conjNormal g) • P = P hn : map (↑(MulDistribMulAction.toMonoidEnd ((fun x => MulAut { x // x ∈ N }) n) { x // x ∈ N }) (↑MulAut.conjNormal (↑n * g))) ↑P = ↑P ⊢ ↑n * g ∈ normalizer (map (Subgroup.subtype N) ↑P) [PROOFSTEP] refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ [GOAL] case intro p✝ : ℕ G : Type u_1 inst✝³ : Group G p : ℕ inst✝² : Fact (Nat.Prime p) N : Subgroup G inst✝¹ : Normal N inst✝ : Finite (Sylow p { x // x ∈ N }) P : Sylow p { x // x ∈ N } g : G x✝ : g ∈ ⊤ n : { x // x ∈ N } hn✝ : (↑MulAut.conj n * ↑MulAut.conjNormal g) • P = P hn : map (↑(MulDistribMulAction.toMonoidEnd ((fun x => MulAut { x // x ∈ N }) n) { x // x ∈ N }) (↑MulAut.conjNormal (↑n * g))) ↑P = ↑P x : G ⊢ ↑(MulEquiv.toMonoidHom (↑MulAut.conj (↑n * g))) x ∈ map (MulEquiv.toMonoidHom (↑MulAut.conj (↑n * g))) (map (Subgroup.subtype N) ↑P) ↔ ↑n * g * x * (↑n * g)⁻¹ ∈ map (Subgroup.subtype N) ↑P [PROOFSTEP] rw [map_map, ← congr_arg (map N.subtype) hn, map_map] [GOAL] case intro p✝ : ℕ G : Type u_1 inst✝³ : Group G p : ℕ inst✝² : Fact (Nat.Prime p) N : Subgroup G inst✝¹ : Normal N inst✝ : Finite (Sylow p { x // x ∈ N }) P : Sylow p { x // x ∈ N } g : G x✝ : g ∈ ⊤ n : { x // x ∈ N } hn✝ : (↑MulAut.conj n * ↑MulAut.conjNormal g) • P = P hn : map (↑(MulDistribMulAction.toMonoidEnd ((fun x => MulAut { x // x ∈ N }) n) { x // x ∈ N }) (↑MulAut.conjNormal (↑n * g))) ↑P = ↑P x : G ⊢ ↑(MulEquiv.toMonoidHom (↑MulAut.conj (↑n * g))) x ∈ map (MonoidHom.comp (MulEquiv.toMonoidHom (↑MulAut.conj (↑n * g))) (Subgroup.subtype N)) ↑P ↔ ↑n * g * x * (↑n * g)⁻¹ ∈ map (MonoidHom.comp (Subgroup.subtype N) (↑(MulDistribMulAction.toMonoidEnd ((fun x => MulAut { x // x ∈ N }) n) { x // x ∈ N }) (↑MulAut.conjNormal (↑n * g)))) ↑P [PROOFSTEP] rfl [GOAL] p✝ : ℕ G : Type u_1 inst✝³ : Group G p : ℕ inst✝² : Fact (Nat.Prime p) N : Subgroup G inst✝¹ : Normal N inst✝ : Finite (Sylow p { x // x ∈ N }) P : Sylow p G hP : ↑P ≤ N ⊢ normalizer ↑P ⊔ N = ⊤ [PROOFSTEP] rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] [GOAL] G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G s : Subgroup G t : Set (G ⧸ s) ⊢ Fintype.card ↑(mk ⁻¹' t) = Fintype.card { x // x ∈ s } * Fintype.card ↑t [PROOFSTEP] rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] [GOAL] G : Type u α : Type v β : Type w inst✝¹ : Group G H : Subgroup G inst✝ : Finite ↑↑H x : G hx : ↑x ∈ MulAction.fixedPoints { x // x ∈ H } (G ⧸ H) ha : ∀ {y : G ⧸ H}, y ∈ orbit { x // x ∈ H } ↑x → y = ↑x n : G hn : n ∈ H this : (n⁻¹ * x)⁻¹ * x ∈ H ⊢ x⁻¹ * n * x⁻¹⁻¹ ∈ H [PROOFSTEP] rw [mul_inv_rev, inv_inv] at this [GOAL] G : Type u α : Type v β : Type w inst✝¹ : Group G H : Subgroup G inst✝ : Finite ↑↑H x : G hx : ↑x ∈ MulAction.fixedPoints { x // x ∈ H } (G ⧸ H) ha : ∀ {y : G ⧸ H}, y ∈ orbit { x // x ∈ H } ↑x → y = ↑x n : G hn : n ∈ H this : x⁻¹ * n * x ∈ H ⊢ x⁻¹ * n * x⁻¹⁻¹ ∈ H [PROOFSTEP] convert this [GOAL] case h.e'_4.h.e'_6 G : Type u α : Type v β : Type w inst✝¹ : Group G H : Subgroup G inst✝ : Finite ↑↑H x : G hx : ↑x ∈ MulAction.fixedPoints { x // x ∈ H } (G ⧸ H) ha : ∀ {y : G ⧸ H}, y ∈ orbit { x // x ∈ H } ↑x → y = ↑x n : G hn : n ∈ H this : x⁻¹ * n * x ∈ H ⊢ x⁻¹⁻¹ = x [PROOFSTEP] rw [inv_inv] [GOAL] G : Type u α : Type v β : Type w inst✝¹ : Group G H : Subgroup G inst✝ : Finite ↑↑H x : G hx : ∀ (n : G), n ∈ H ↔ x * n * x⁻¹ ∈ H y✝ : G ⧸ H y : G hy : Quotient.mk'' y ∈ orbit { x // x ∈ H } ↑x b : G hb₁ : b ∈ H hb₂✝ : (fun m => m • ↑x) { val := b, property := hb₁ } = Quotient.mk'' y hb₂ : (b * x)⁻¹ * y ∈ H ⊢ b⁻¹ * (x * (y⁻¹ * x)⁻¹ * x⁻¹) ∈ H [PROOFSTEP] rw [hx] at hb₂ [GOAL] G : Type u α : Type v β : Type w inst✝¹ : Group G H : Subgroup G inst✝ : Finite ↑↑H x : G hx : ∀ (n : G), n ∈ H ↔ x * n * x⁻¹ ∈ H y✝ : G ⧸ H y : G hy : Quotient.mk'' y ∈ orbit { x // x ∈ H } ↑x b : G hb₁ : b ∈ H hb₂✝ : (fun m => m • ↑x) { val := b, property := hb₁ } = Quotient.mk'' y hb₂ : x * ((b * x)⁻¹ * y) * x⁻¹ ∈ H ⊢ b⁻¹ * (x * (y⁻¹ * x)⁻¹ * x⁻¹) ∈ H [PROOFSTEP] simpa [mul_inv_rev, mul_assoc] using hb₂ [GOAL] G : Type u α : Type v β : Type w inst✝¹ : Group G H : Subgroup G inst✝ : Finite ↑↑H ⊢ ∀ (x y : Subtype ↑(normalizer H)), Setoid.r x y ↔ ↑x ≈ ↑y [PROOFSTEP] intros [GOAL] G : Type u α : Type v β : Type w inst✝¹ : Group G H : Subgroup G inst✝ : Finite ↑↑H x✝ y✝ : Subtype ↑(normalizer H) ⊢ Setoid.r x✝ y✝ ↔ ↑x✝ ≈ ↑y✝ [PROOFSTEP] dsimp only [instHasEquiv] [GOAL] G : Type u α : Type v β : Type w inst✝¹ : Group G H : Subgroup G inst✝ : Finite ↑↑H x✝ y✝ : Subtype ↑(normalizer H) ⊢ Setoid.r x✝ y✝ ↔ Setoid.r ↑x✝ ↑y✝ [PROOFSTEP] rw [leftRel_apply (α := normalizer H), leftRel_apply] [GOAL] G : Type u α : Type v β : Type w inst✝¹ : Group G H : Subgroup G inst✝ : Finite ↑↑H x✝ y✝ : Subtype ↑(normalizer H) ⊢ x✝⁻¹ * y✝ ∈ Subgroup.comap (Subgroup.subtype (normalizer H)) H ↔ (↑x✝)⁻¹ * ↑y✝ ∈ H [PROOFSTEP] rfl [GOAL] G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p n : ℕ hp : Fact (Nat.Prime p) H : Subgroup G hH : Fintype.card { x // x ∈ H } = p ^ n ⊢ Fintype.card ({ x // x ∈ normalizer H } ⧸ Subgroup.comap (Subgroup.subtype (normalizer H)) H) ≡ Fintype.card (G ⧸ H) [MOD p] [PROOFSTEP] rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] [GOAL] G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p n : ℕ hp : Fact (Nat.Prime p) H : Subgroup G hH : Fintype.card { x // x ∈ H } = p ^ n ⊢ Fintype.card ↑(MulAction.fixedPoints { x // x ∈ H } (G ⧸ H)) ≡ Fintype.card (G ⧸ H) [MOD p] [PROOFSTEP] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm [GOAL] G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p n : ℕ hp : Fact (Nat.Prime p) H : Subgroup G hH : Fintype.card { x // x ∈ H } = p ^ n ⊢ Fintype.card { x // x ∈ normalizer H } ≡ Fintype.card G [MOD p ^ (n + 1)] [PROOFSTEP] have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv [GOAL] G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p n : ℕ hp : Fact (Nat.Prime p) H : Subgroup G hH : Fintype.card { x // x ∈ H } = p ^ n this : { x // x ∈ subgroupOf H (normalizer H) } ≃ { x // x ∈ H } ⊢ Fintype.card { x // x ∈ normalizer H } ≡ Fintype.card G [MOD p ^ (n + 1)] [PROOFSTEP] rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] [GOAL] G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p n : ℕ hp : Fact (Nat.Prime p) H : Subgroup G hH : Fintype.card { x // x ∈ H } = p ^ n this : { x // x ∈ subgroupOf H (normalizer H) } ≃ { x // x ∈ H } ⊢ Fintype.card ({ x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H)) * p ^ n ≡ Fintype.card (G ⧸ H) * p ^ n [MOD p * p ^ n] [PROOFSTEP] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ [GOAL] G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p n : ℕ hp : Fact (Nat.Prime p) hdvd : p ^ (n + 1) ∣ Fintype.card G H : Subgroup G hH : Fintype.card { x // x ∈ H } = p ^ n s : ℕ hs : Fintype.card G = s * p ^ (n + 1) ⊢ Fintype.card (G ⧸ H) * Fintype.card { x // x ∈ H } = s * p * Fintype.card { x // x ∈ H } [PROOFSTEP] rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p] [GOAL] G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p n : ℕ hp : Fact (Nat.Prime p) hdvd : p ^ (n + 1) ∣ Fintype.card G H : Subgroup G hH : Fintype.card { x // x ∈ H } = p ^ n s : ℕ hs : Fintype.card G = s * p ^ (n + 1) hcard : Fintype.card (G ⧸ H) = s * p hm : s * p % p = Fintype.card ({ x // x ∈ normalizer H } ⧸ Subgroup.comap (Subgroup.subtype (normalizer H)) H) % p ⊢ Fintype.card ({ x // x ∈ normalizer H } ⧸ Subgroup.comap (Subgroup.subtype (normalizer H)) H) % p = 0 [PROOFSTEP] rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm [GOAL] G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p n : ℕ hp : Fact (Nat.Prime p) hdvd : p ^ (n + 1) ∣ Fintype.card G H : Subgroup G hH : Fintype.card { x // x ∈ H } = p ^ n s : ℕ hs : Fintype.card G = s * p ^ (n + 1) ⊢ Fintype.card (G ⧸ H) * Fintype.card { x // x ∈ H } = s * p * Fintype.card { x // x ∈ H } [PROOFSTEP] rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p] [GOAL] G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p n : ℕ hp : Fact (Nat.Prime p) hdvd : p ^ (n + 1) ∣ Fintype.card G H : Subgroup G hH : Fintype.card { x // x ∈ H } = p ^ n s : ℕ hs : Fintype.card G = s * p ^ (n + 1) hcard : Fintype.card (G ⧸ H) = s * p hm : s * p % p = Fintype.card ({ x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H)) % p ⊢ Fintype.card ({ x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H)) % p = 0 [PROOFSTEP] rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm [GOAL] G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p n : ℕ hp : Fact (Nat.Prime p) hdvd : p ^ (n + 1) ∣ Fintype.card G H : Subgroup G hH : Fintype.card { x // x ∈ H } = p ^ n s : ℕ hs : Fintype.card G = s * p ^ (n + 1) hcard : Fintype.card (G ⧸ H) = s * p hm : s * p % p = Fintype.card ({ x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H)) % p hm' : p ∣ Fintype.card ({ x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H)) x : { x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H) hx : orderOf x = p hequiv : { x // x ∈ H } ≃ { x // x ∈ subgroupOf H (normalizer H) } ⊢ Fintype.card { x_1 // x_1 ∈ Subgroup.map (Subgroup.subtype (normalizer H)) (Subgroup.comap (mk' (subgroupOf H (normalizer H))) (zpowers x)) } = p ^ (n + 1) [PROOFSTEP] show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) [GOAL] G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p n : ℕ hp : Fact (Nat.Prime p) hdvd : p ^ (n + 1) ∣ Fintype.card G H : Subgroup G hH : Fintype.card { x // x ∈ H } = p ^ n s : ℕ hs : Fintype.card G = s * p ^ (n + 1) hcard : Fintype.card (G ⧸ H) = s * p hm : s * p % p = Fintype.card ({ x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H)) % p hm' : p ∣ Fintype.card ({ x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H)) x : { x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H) hx : orderOf x = p hequiv : { x // x ∈ H } ≃ { x // x ∈ subgroupOf H (normalizer H) } ⊢ Fintype.card { x_1 // x_1 ∈ Subgroup.map (Subgroup.subtype (normalizer H)) (Subgroup.comap (mk' (subgroupOf H (normalizer H))) (zpowers x)) } = p ^ (n + 1) [PROOFSTEP] suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 [GOAL] G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p n : ℕ hp : Fact (Nat.Prime p) hdvd : p ^ (n + 1) ∣ Fintype.card G H : Subgroup G hH : Fintype.card { x // x ∈ H } = p ^ n s : ℕ hs : Fintype.card G = s * p ^ (n + 1) hcard : Fintype.card (G ⧸ H) = s * p hm : s * p % p = Fintype.card ({ x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H)) % p hm' : p ∣ Fintype.card ({ x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H)) x : { x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H) hx : orderOf x = p hequiv : { x // x ∈ H } ≃ { x // x ∈ subgroupOf H (normalizer H) } this : Fintype.card ↑(Subtype.val '' ↑(Subgroup.comap (mk' (subgroupOf H (normalizer H))) (zpowers x))) = p ^ (n + 1) ⊢ Fintype.card { x_1 // x_1 ∈ Subgroup.map (Subgroup.subtype (normalizer H)) (Subgroup.comap (mk' (subgroupOf H (normalizer H))) (zpowers x)) } = p ^ (n + 1) [PROOFSTEP] convert this using 2 [GOAL] G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p n : ℕ hp : Fact (Nat.Prime p) hdvd : p ^ (n + 1) ∣ Fintype.card G H : Subgroup G hH : Fintype.card { x // x ∈ H } = p ^ n s : ℕ hs : Fintype.card G = s * p ^ (n + 1) hcard : Fintype.card (G ⧸ H) = s * p hm : s * p % p = Fintype.card ({ x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H)) % p hm' : p ∣ Fintype.card ({ x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H)) x : { x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H) hx : orderOf x = p hequiv : { x // x ∈ H } ≃ { x // x ∈ subgroupOf H (normalizer H) } ⊢ Fintype.card ↑(Subtype.val '' ↑(Subgroup.comap (mk' (subgroupOf H (normalizer H))) (zpowers x))) = p ^ (n + 1) [PROOFSTEP] rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, orderOf_eq_card_zpowers, ← Fintype.card_prod] [GOAL] G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p n : ℕ hp : Fact (Nat.Prime p) hdvd : p ^ (n + 1) ∣ Fintype.card G H : Subgroup G hH : Fintype.card { x // x ∈ H } = p ^ n s : ℕ hs : Fintype.card G = s * p ^ (n + 1) hcard : Fintype.card (G ⧸ H) = s * p hm : s * p % p = Fintype.card ({ x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H)) % p hm' : p ∣ Fintype.card ({ x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H)) x : { x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H) hx : orderOf x = p hequiv : { x // x ∈ H } ≃ { x // x ∈ subgroupOf H (normalizer H) } ⊢ Fintype.card ↑↑(Subgroup.comap (mk' (subgroupOf H (normalizer H))) (zpowers x)) = Fintype.card ({ x // x ∈ subgroupOf H (normalizer H) } × { x_1 // x_1 ∈ zpowers x }) [PROOFSTEP] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)) [GOAL] G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p n : ℕ hp : Fact (Nat.Prime p) hdvd : p ^ (n + 1) ∣ Fintype.card G H : Subgroup G hH : Fintype.card { x // x ∈ H } = p ^ n s : ℕ hs : Fintype.card G = s * p ^ (n + 1) hcard : Fintype.card (G ⧸ H) = s * p hm : s * p % p = Fintype.card ({ x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H)) % p hm' : p ∣ Fintype.card ({ x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H)) x : { x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H) hx : orderOf x = p hequiv : { x // x ∈ H } ≃ { x // x ∈ subgroupOf H (normalizer H) } ⊢ H ≤ Subgroup.map (Subgroup.subtype (normalizer H)) (Subgroup.comap (mk' (subgroupOf H (normalizer H))) (zpowers x)) [PROOFSTEP] intro y hy [GOAL] G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p n : ℕ hp : Fact (Nat.Prime p) hdvd : p ^ (n + 1) ∣ Fintype.card G H : Subgroup G hH : Fintype.card { x // x ∈ H } = p ^ n s : ℕ hs : Fintype.card G = s * p ^ (n + 1) hcard : Fintype.card (G ⧸ H) = s * p hm : s * p % p = Fintype.card ({ x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H)) % p hm' : p ∣ Fintype.card ({ x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H)) x : { x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H) hx : orderOf x = p hequiv : { x // x ∈ H } ≃ { x // x ∈ subgroupOf H (normalizer H) } y : G hy : y ∈ H ⊢ y ∈ Subgroup.map (Subgroup.subtype (normalizer H)) (Subgroup.comap (mk' (subgroupOf H (normalizer H))) (zpowers x)) [PROOFSTEP] simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] [GOAL] G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p n : ℕ hp : Fact (Nat.Prime p) hdvd : p ^ (n + 1) ∣ Fintype.card G H : Subgroup G hH : Fintype.card { x // x ∈ H } = p ^ n s : ℕ hs : Fintype.card G = s * p ^ (n + 1) hcard : Fintype.card (G ⧸ H) = s * p hm : s * p % p = Fintype.card ({ x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H)) % p hm' : p ∣ Fintype.card ({ x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H)) x : { x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H) hx : orderOf x = p hequiv : { x // x ∈ H } ≃ { x // x ∈ subgroupOf H (normalizer H) } y : G hy : y ∈ H ⊢ ∃ x_1, ↑x_1 ∈ zpowers x ∧ ↑x_1 = y [PROOFSTEP] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ [GOAL] G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p n : ℕ hp : Fact (Nat.Prime p) hdvd : p ^ (n + 1) ∣ Fintype.card G H : Subgroup G hH : Fintype.card { x // x ∈ H } = p ^ n s : ℕ hs : Fintype.card G = s * p ^ (n + 1) hcard : Fintype.card (G ⧸ H) = s * p hm : s * p % p = Fintype.card ({ x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H)) % p hm' : p ∣ Fintype.card ({ x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H)) x : { x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H) hx : orderOf x = p hequiv : { x // x ∈ H } ≃ { x // x ∈ subgroupOf H (normalizer H) } y : G hy : y ∈ H ⊢ (fun x x_1 => x ^ x_1) x 0 = ↑{ val := y, property := (_ : y ∈ normalizer H) } [PROOFSTEP] dsimp only [GOAL] G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p n : ℕ hp : Fact (Nat.Prime p) hdvd : p ^ (n + 1) ∣ Fintype.card G H : Subgroup G hH : Fintype.card { x // x ∈ H } = p ^ n s : ℕ hs : Fintype.card G = s * p ^ (n + 1) hcard : Fintype.card (G ⧸ H) = s * p hm : s * p % p = Fintype.card ({ x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H)) % p hm' : p ∣ Fintype.card ({ x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H)) x : { x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H) hx : orderOf x = p hequiv : { x // x ∈ H } ≃ { x // x ∈ subgroupOf H (normalizer H) } y : G hy : y ∈ H ⊢ x ^ 0 = ↑{ val := y, property := (_ : y ∈ normalizer H) } [PROOFSTEP] rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] [GOAL] G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p n : ℕ hp : Fact (Nat.Prime p) hdvd : p ^ (n + 1) ∣ Fintype.card G H : Subgroup G hH : Fintype.card { x // x ∈ H } = p ^ n s : ℕ hs : Fintype.card G = s * p ^ (n + 1) hcard : Fintype.card (G ⧸ H) = s * p hm : s * p % p = Fintype.card ({ x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H)) % p hm' : p ∣ Fintype.card ({ x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H)) x : { x // x ∈ normalizer H } ⧸ subgroupOf H (normalizer H) hx : orderOf x = p hequiv : { x // x ∈ H } ≃ { x // x ∈ subgroupOf H (normalizer H) } y : G hy : y ∈ H ⊢ { val := y, property := (_ : y ∈ normalizer H) } ∈ subgroupOf H (normalizer H) [PROOFSTEP] simpa using hy [GOAL] G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p : ℕ _hp✝ : Fact (Nat.Prime p) n m : ℕ hdvd : p ^ m ∣ Fintype.card G H : Subgroup G hH : Fintype.card { x // x ∈ H } = p ^ n hnm✝ : n ≤ m hnm : n < m h0m : 0 < m _wf : m - 1 < m hnm1 : n ≤ m - 1 K : Subgroup G hK : Fintype.card { x // x ∈ K } = p ^ (m - 1) ∧ H ≤ K ⊢ p ^ (m - 1 + 1) ∣ Fintype.card G [PROOFSTEP] rwa [tsub_add_cancel_of_le h0m.nat_succ_le] [GOAL] G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p : ℕ _hp✝ : Fact (Nat.Prime p) n m : ℕ hdvd : p ^ m ∣ Fintype.card G H : Subgroup G hH : Fintype.card { x // x ∈ H } = p ^ n hnm✝ : n ≤ m hnm : n < m h0m : 0 < m _wf : m - 1 < m hnm1 : n ≤ m - 1 K : Subgroup G hK : Fintype.card { x // x ∈ K } = p ^ (m - 1) ∧ H ≤ K hdvd' : p ^ (m - 1 + 1) ∣ Fintype.card G K' : Subgroup G hK' : Fintype.card { x // x ∈ K' } = p ^ (m - 1 + 1) ∧ K ≤ K' ⊢ Fintype.card { x // x ∈ K' } = p ^ m [PROOFSTEP] rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le] [GOAL] G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p : ℕ _hp✝ : Fact (Nat.Prime p) n m : ℕ hdvd : p ^ m ∣ Fintype.card G H : Subgroup G hH : Fintype.card { x // x ∈ H } = p ^ n hnm✝ : n ≤ m hnm : n = m ⊢ Fintype.card { x // x ∈ H } = p ^ m ∧ H ≤ H [PROOFSTEP] simp [hH, hnm] [GOAL] G : Type u α : Type v β : Type w inst✝² : Group G inst✝¹ : Fintype G p n : ℕ inst✝ : Fact (Nat.Prime p) hdvd : p ^ n ∣ Fintype.card G ⊢ 1 = p ^ 0 [PROOFSTEP] simp [GOAL] G : Type u α : Type v β : Type w inst✝² : Group G inst✝¹ : Fintype G p : ℕ inst✝ : Fact (Nat.Prime p) P : Sylow p G hdvd : p ∣ Fintype.card G ⊢ p ∣ Fintype.card { x // x ∈ ↑P } [PROOFSTEP] rw [← pow_one p] at hdvd [GOAL] G : Type u α : Type v β : Type w inst✝² : Group G inst✝¹ : Fintype G p : ℕ inst✝ : Fact (Nat.Prime p) P : Sylow p G hdvd : p ^ 1 ∣ Fintype.card G ⊢ p ∣ Fintype.card { x // x ∈ ↑P } [PROOFSTEP] have key := P.pow_dvd_card_of_pow_dvd_card hdvd [GOAL] G : Type u α : Type v β : Type w inst✝² : Group G inst✝¹ : Fintype G p : ℕ inst✝ : Fact (Nat.Prime p) P : Sylow p G hdvd : p ^ 1 ∣ Fintype.card G key : p ^ 1 ∣ Fintype.card { x // x ∈ ↑P } ⊢ p ∣ Fintype.card { x // x ∈ ↑P } [PROOFSTEP] rwa [pow_one] at key [GOAL] G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p : ℕ hp : Fact (Nat.Prime p) P : Sylow p G hdvd : p ∣ Fintype.card G ⊢ ↑P ≠ ⊥ [PROOFSTEP] refine' fun h => hp.out.not_dvd_one _ [GOAL] G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p : ℕ hp : Fact (Nat.Prime p) P : Sylow p G hdvd : p ∣ Fintype.card G h : ↑P = ⊥ ⊢ p ∣ 1 [PROOFSTEP] have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd [GOAL] G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p : ℕ hp : Fact (Nat.Prime p) P : Sylow p G hdvd : p ∣ Fintype.card G h : ↑P = ⊥ key : p ∣ Fintype.card { x // x ∈ ↑P } ⊢ p ∣ 1 [PROOFSTEP] rwa [h, card_bot] at key [GOAL] G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p : ℕ hp : Fact (Nat.Prime p) P : Sylow p G ⊢ Fintype.card { x // x ∈ ↑P } = p ^ ↑(Nat.factorization (Fintype.card G)) p [PROOFSTEP] obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' [GOAL] case intro G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p : ℕ hp : Fact (Nat.Prime p) P : Sylow p G n : ℕ heq : Fintype.card { x // x ∈ ↑P } = p ^ n ⊢ Fintype.card { x // x ∈ ↑P } = p ^ ↑(Nat.factorization (Fintype.card G)) p [PROOFSTEP] refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) [GOAL] case intro G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p : ℕ hp : Fact (Nat.Prime p) P : Sylow p G n : ℕ heq : Fintype.card { x // x ∈ ↑P } = p ^ n ⊢ Fintype.card { x // x ∈ ↑P } ∣ p ^ ↑(Nat.factorization (Fintype.card G)) p [PROOFSTEP] rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G ≠ 0 from card_ne_zero), ← heq] [GOAL] case intro G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p : ℕ hp : Fact (Nat.Prime p) P : Sylow p G n : ℕ heq : Fintype.card { x // x ∈ ↑P } = p ^ n ⊢ Fintype.card { x // x ∈ ↑P } ∣ Fintype.card G [PROOFSTEP] exact P.1.card_subgroup_dvd_card [GOAL] G : Type u α : Type v β : Type w inst✝³ : Group G inst✝² : Fintype G p : ℕ inst✝¹ : Fact (Nat.Prime p) H : Subgroup G inst✝ : Fintype { x // x ∈ H } card_eq : Fintype.card { x // x ∈ H } = p ^ ↑(Nat.factorization (Fintype.card G)) p ⊢ ∀ {Q : Subgroup G}, IsPGroup p { x // x ∈ Q } → H ≤ Q → Q = H [PROOFSTEP] obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow [GOAL] case intro G : Type u α : Type v β : Type w inst✝³ : Group G inst✝² : Fintype G p : ℕ inst✝¹ : Fact (Nat.Prime p) H : Subgroup G inst✝ : Fintype { x // x ∈ H } card_eq : Fintype.card { x // x ∈ H } = p ^ ↑(Nat.factorization (Fintype.card G)) p P : Sylow p G hHP : H ≤ ↑P ⊢ ∀ {Q : Subgroup G}, IsPGroup p { x // x ∈ Q } → H ≤ Q → Q = H [PROOFSTEP] exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm ▸ P.3 [GOAL] G : Type u α : Type v β : Type w inst✝² : Group G p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G h : Normal ↑P ⊢ Subsingleton (Sylow p G) [PROOFSTEP] apply Subsingleton.intro [GOAL] case allEq G : Type u α : Type v β : Type w inst✝² : Group G p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G h : Normal ↑P ⊢ ∀ (a b : Sylow p G), a = b [PROOFSTEP] intro Q R [GOAL] case allEq G : Type u α : Type v β : Type w inst✝² : Group G p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G h : Normal ↑P Q R : Sylow p G ⊢ Q = R [PROOFSTEP] obtain ⟨x, h1⟩ := exists_smul_eq G P Q [GOAL] case allEq.intro G : Type u α : Type v β : Type w inst✝² : Group G p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G h : Normal ↑P Q R : Sylow p G x : G h1 : x • P = Q ⊢ Q = R [PROOFSTEP] obtain ⟨x, h2⟩ := exists_smul_eq G P R [GOAL] case allEq.intro.intro G : Type u α : Type v β : Type w inst✝² : Group G p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G h : Normal ↑P Q R : Sylow p G x✝ : G h1 : x✝ • P = Q x : G h2 : x • P = R ⊢ Q = R [PROOFSTEP] rw [Sylow.smul_eq_of_normal] at h1 h2 [GOAL] case allEq.intro.intro G : Type u α : Type v β : Type w inst✝² : Group G p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G h : Normal ↑P Q R : Sylow p G x✝ : G h1 : P = Q x : G h2 : P = R ⊢ Q = R [PROOFSTEP] rw [← h1, ← h2] [GOAL] G : Type u α : Type v β : Type w inst✝² : Group G p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G h : Normal ↑P ⊢ Characteristic ↑P [PROOFSTEP] haveI := Sylow.subsingleton_of_normal P h [GOAL] G : Type u α : Type v β : Type w inst✝² : Group G p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G h : Normal ↑P this : Subsingleton (Sylow p G) ⊢ Characteristic ↑P [PROOFSTEP] rw [characteristic_iff_map_eq] [GOAL] G : Type u α : Type v β : Type w inst✝² : Group G p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G h : Normal ↑P this : Subsingleton (Sylow p G) ⊢ ∀ (ϕ : G ≃* G), Subgroup.map (MulEquiv.toMonoidHom ϕ) ↑P = ↑P [PROOFSTEP] intro Φ [GOAL] G : Type u α : Type v β : Type w inst✝² : Group G p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G h : Normal ↑P this : Subsingleton (Sylow p G) Φ : G ≃* G ⊢ Subgroup.map (MulEquiv.toMonoidHom Φ) ↑P = ↑P [PROOFSTEP] show (Φ • P).toSubgroup = P.toSubgroup [GOAL] G : Type u α : Type v β : Type w inst✝² : Group G p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G h : Normal ↑P this : Subsingleton (Sylow p G) Φ : G ≃* G ⊢ ↑(Φ • P) = ↑P [PROOFSTEP] congr [GOAL] case e_self G : Type u α : Type v β : Type w inst✝² : Group G p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G h : Normal ↑P this : Subsingleton (Sylow p G) Φ : G ≃* G ⊢ Φ • P = P [PROOFSTEP] simp [GOAL] G : Type u α : Type v β : Type w inst✝² : Group G p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G hn : Normal (normalizer ↑P) ⊢ Normal ↑P [PROOFSTEP] rw [← normalizer_eq_top, ← normalizer_sup_eq_top' P le_normalizer, sup_idem] [GOAL] G : Type u α : Type v β : Type w inst✝² : Group G p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G ⊢ normalizer (normalizer ↑P) = normalizer ↑P [PROOFSTEP] have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer)) [GOAL] G : Type u α : Type v β : Type w inst✝² : Group G p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G this : Normal (normalizer ↑(Sylow.subtype P (_ : ↑P ≤ normalizer (normalizer ↑P)))) → Normal ↑(Sylow.subtype P (_ : ↑P ≤ normalizer (normalizer ↑P))) ⊢ normalizer (normalizer ↑P) = normalizer ↑P [PROOFSTEP] simp_rw [← normalizer_eq_top, Sylow.coe_subtype, ← subgroupOf_normalizer_eq le_normalizer, ← subgroupOf_normalizer_eq le_rfl, subgroupOf_self] at this [GOAL] G : Type u α : Type v β : Type w inst✝² : Group G p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G this : True → subgroupOf (normalizer ↑P) (normalizer (normalizer ↑P)) = ⊤ ⊢ normalizer (normalizer ↑P) = normalizer ↑P [PROOFSTEP] rw [← subtype_range (P : Subgroup G).normalizer.normalizer, MonoidHom.range_eq_map, ← this trivial] [GOAL] G : Type u α : Type v β : Type w inst✝² : Group G p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G this : True → subgroupOf (normalizer ↑P) (normalizer (normalizer ↑P)) = ⊤ ⊢ Subgroup.map (Subgroup.subtype (normalizer (normalizer ↑P))) (subgroupOf (normalizer ↑P) (normalizer (normalizer ↑P))) = normalizer ↑P [PROOFSTEP] exact map_comap_eq_self (le_normalizer.trans (ge_of_eq (subtype_range _))) [GOAL] G : Type u α : Type v β : Type w inst✝³ : Group G inst✝² : Finite G hnc : ∀ (H : Subgroup G), IsCoatom H → Normal H p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G ⊢ normalizer ↑P = ⊤ [PROOFSTEP] rcases eq_top_or_exists_le_coatom (↑P : Subgroup G).normalizer with (heq | ⟨K, hK, hNK⟩) [GOAL] case inl G : Type u α : Type v β : Type w inst✝³ : Group G inst✝² : Finite G hnc : ∀ (H : Subgroup G), IsCoatom H → Normal H p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G heq : normalizer ↑P = ⊤ ⊢ normalizer ↑P = ⊤ [PROOFSTEP] exact heq [GOAL] case inr.intro.intro G : Type u α : Type v β : Type w inst✝³ : Group G inst✝² : Finite G hnc : ∀ (H : Subgroup G), IsCoatom H → Normal H p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G K : Subgroup G hK : IsCoatom K hNK : normalizer ↑P ≤ K ⊢ normalizer ↑P = ⊤ [PROOFSTEP] haveI := hnc _ hK [GOAL] case inr.intro.intro G : Type u α : Type v β : Type w inst✝³ : Group G inst✝² : Finite G hnc : ∀ (H : Subgroup G), IsCoatom H → Normal H p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G K : Subgroup G hK : IsCoatom K hNK : normalizer ↑P ≤ K this : Normal K ⊢ normalizer ↑P = ⊤ [PROOFSTEP] have hPK : ↑P ≤ K := le_trans le_normalizer hNK [GOAL] case inr.intro.intro G : Type u α : Type v β : Type w inst✝³ : Group G inst✝² : Finite G hnc : ∀ (H : Subgroup G), IsCoatom H → Normal H p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G K : Subgroup G hK : IsCoatom K hNK : normalizer ↑P ≤ K this : Normal K hPK : ↑P ≤ K ⊢ normalizer ↑P = ⊤ [PROOFSTEP] refine' (hK.1 _).elim [GOAL] case inr.intro.intro G : Type u α : Type v β : Type w inst✝³ : Group G inst✝² : Finite G hnc : ∀ (H : Subgroup G), IsCoatom H → Normal H p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G K : Subgroup G hK : IsCoatom K hNK : normalizer ↑P ≤ K this : Normal K hPK : ↑P ≤ K ⊢ K = ⊤ [PROOFSTEP] rw [← sup_of_le_right hNK, P.normalizer_sup_eq_top' hPK] [GOAL] G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ⊢ ((p : { x // x ∈ (Nat.factorization (Fintype.card G)).support }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G [PROOFSTEP] set ps := (Fintype.card G).factorization.support [GOAL] G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support ⊢ ((p : { x // x ∈ ps }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G [PROOFSTEP] let P : ∀ p, Sylow p G := default [GOAL] G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support P : (p : ℕ) → Sylow p G := default ⊢ ((p : { x // x ∈ ps }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G [PROOFSTEP] have hcomm : Pairwise fun p₁ p₂ : ps => ∀ x y : G, x ∈ P p₁ → y ∈ P p₂ → Commute x y := by rintro ⟨p₁, hp₁⟩ ⟨p₂, hp₂⟩ hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_factorization hp₁) haveI hp₂' := Fact.mk (Nat.prime_of_mem_factorization hp₂) have hne' : p₁ ≠ p₂ := by simpa using hne apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P p₂)) apply IsPGroup.disjoint_of_ne p₁ p₂ hne' _ _ (P p₁).isPGroup' (P p₂).isPGroup' [GOAL] G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support P : (p : ℕ) → Sylow p G := default ⊢ _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y [PROOFSTEP] rintro ⟨p₁, hp₁⟩ ⟨p₂, hp₂⟩ hne [GOAL] case mk.mk G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support P : (p : ℕ) → Sylow p G := default p₁ : ℕ hp₁ : p₁ ∈ ps p₂ : ℕ hp₂ : p₂ ∈ ps hne : { val := p₁, property := hp₁ } ≠ { val := p₂, property := hp₂ } ⊢ ∀ (x y : G), x ∈ P ↑{ val := p₁, property := hp₁ } → y ∈ P ↑{ val := p₂, property := hp₂ } → Commute x y [PROOFSTEP] haveI hp₁' := Fact.mk (Nat.prime_of_mem_factorization hp₁) [GOAL] case mk.mk G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support P : (p : ℕ) → Sylow p G := default p₁ : ℕ hp₁ : p₁ ∈ ps p₂ : ℕ hp₂ : p₂ ∈ ps hne : { val := p₁, property := hp₁ } ≠ { val := p₂, property := hp₂ } hp₁' : Fact (Nat.Prime p₁) ⊢ ∀ (x y : G), x ∈ P ↑{ val := p₁, property := hp₁ } → y ∈ P ↑{ val := p₂, property := hp₂ } → Commute x y [PROOFSTEP] haveI hp₂' := Fact.mk (Nat.prime_of_mem_factorization hp₂) [GOAL] case mk.mk G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support P : (p : ℕ) → Sylow p G := default p₁ : ℕ hp₁ : p₁ ∈ ps p₂ : ℕ hp₂ : p₂ ∈ ps hne : { val := p₁, property := hp₁ } ≠ { val := p₂, property := hp₂ } hp₁' : Fact (Nat.Prime p₁) hp₂' : Fact (Nat.Prime p₂) ⊢ ∀ (x y : G), x ∈ P ↑{ val := p₁, property := hp₁ } → y ∈ P ↑{ val := p₂, property := hp₂ } → Commute x y [PROOFSTEP] have hne' : p₁ ≠ p₂ := by simpa using hne [GOAL] G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support P : (p : ℕ) → Sylow p G := default p₁ : ℕ hp₁ : p₁ ∈ ps p₂ : ℕ hp₂ : p₂ ∈ ps hne : { val := p₁, property := hp₁ } ≠ { val := p₂, property := hp₂ } hp₁' : Fact (Nat.Prime p₁) hp₂' : Fact (Nat.Prime p₂) ⊢ p₁ ≠ p₂ [PROOFSTEP] simpa using hne [GOAL] case mk.mk G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support P : (p : ℕ) → Sylow p G := default p₁ : ℕ hp₁ : p₁ ∈ ps p₂ : ℕ hp₂ : p₂ ∈ ps hne : { val := p₁, property := hp₁ } ≠ { val := p₂, property := hp₂ } hp₁' : Fact (Nat.Prime p₁) hp₂' : Fact (Nat.Prime p₂) hne' : p₁ ≠ p₂ ⊢ ∀ (x y : G), x ∈ P ↑{ val := p₁, property := hp₁ } → y ∈ P ↑{ val := p₂, property := hp₂ } → Commute x y [PROOFSTEP] apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P p₂)) [GOAL] case mk.mk G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support P : (p : ℕ) → Sylow p G := default p₁ : ℕ hp₁ : p₁ ∈ ps p₂ : ℕ hp₂ : p₂ ∈ ps hne : { val := p₁, property := hp₁ } ≠ { val := p₂, property := hp₂ } hp₁' : Fact (Nat.Prime p₁) hp₂' : Fact (Nat.Prime p₂) hne' : p₁ ≠ p₂ ⊢ _root_.Disjoint ↑(P p₁) ↑(P p₂) [PROOFSTEP] apply IsPGroup.disjoint_of_ne p₁ p₂ hne' _ _ (P p₁).isPGroup' (P p₂).isPGroup' [GOAL] G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support P : (p : ℕ) → Sylow p G := default hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y ⊢ ((p : { x // x ∈ ps }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* G [PROOFSTEP] refine' MulEquiv.trans (N := ∀ p : ps, P p) _ _ -- There is only one Sylow subgroup for each p, so the inner product is trivial [GOAL] case refine'_1 G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support P : (p : ℕ) → Sylow p G := default hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y ⊢ ((p : { x // x ∈ ps }) → (P : Sylow (↑p) G) → { x // x ∈ ↑P }) ≃* ((p : { x // x ∈ ps }) → { x // x ∈ P ↑p }) case refine'_2 G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support P : (p : ℕ) → Sylow p G := default hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y ⊢ ((p : { x // x ∈ ps }) → { x // x ∈ P ↑p }) ≃* G [PROOFSTEP] show (∀ p : ps, ∀ P : Sylow p G, P) ≃* ∀ p : ps, P p [GOAL] case refine'_1 G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support P : (p : ℕ) → Sylow p G := default hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y ⊢ ((p : { x // x ∈ ps }) → (P : Sylow (↑p) G) → { x // x ∈ P }) ≃* ((p : { x // x ∈ ps }) → { x // x ∈ P ↑p }) [PROOFSTEP] apply @MulEquiv.piCongrRight ps (fun p => ∀ P : Sylow p G, P) (fun p => P p) _ _ [GOAL] case refine'_1 G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support P : (p : ℕ) → Sylow p G := default hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y ⊢ (j : { x // x ∈ ps }) → ((P : Sylow (↑j) G) → { x // x ∈ P }) ≃* { x // x ∈ ↑(P ↑j) } [PROOFSTEP] rintro ⟨p, hp⟩ [GOAL] case refine'_1.mk G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support P : (p : ℕ) → Sylow p G := default hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y p : ℕ hp : p ∈ ps ⊢ ((P : Sylow (↑{ val := p, property := hp }) G) → { x // x ∈ P }) ≃* { x // x ∈ ↑(P ↑{ val := p, property := hp }) } [PROOFSTEP] haveI hp' := Fact.mk (Nat.prime_of_mem_factorization hp) [GOAL] case refine'_1.mk G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support P : (p : ℕ) → Sylow p G := default hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y p : ℕ hp : p ∈ ps hp' : Fact (Nat.Prime p) ⊢ ((P : Sylow (↑{ val := p, property := hp }) G) → { x // x ∈ P }) ≃* { x // x ∈ ↑(P ↑{ val := p, property := hp }) } [PROOFSTEP] haveI := subsingleton_of_normal _ (hn (P p)) [GOAL] case refine'_1.mk G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support P : (p : ℕ) → Sylow p G := default hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y p : ℕ hp : p ∈ ps hp' : Fact (Nat.Prime p) this : Subsingleton (Sylow p G) ⊢ ((P : Sylow (↑{ val := p, property := hp }) G) → { x // x ∈ P }) ≃* { x // x ∈ ↑(P ↑{ val := p, property := hp }) } [PROOFSTEP] change (∀ P : Sylow p G, P) ≃* P p [GOAL] case refine'_1.mk G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support P : (p : ℕ) → Sylow p G := default hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y p : ℕ hp : p ∈ ps hp' : Fact (Nat.Prime p) this : Subsingleton (Sylow p G) ⊢ ((P : Sylow p G) → { x // x ∈ P }) ≃* { x // x ∈ ↑(P p) } [PROOFSTEP] exact MulEquiv.piSubsingleton _ _ [GOAL] case refine'_2 G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support P : (p : ℕ) → Sylow p G := default hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y ⊢ ((p : { x // x ∈ ps }) → { x // x ∈ P ↑p }) ≃* G [PROOFSTEP] show (∀ p : ps, P p) ≃* G [GOAL] case refine'_2 G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support P : (p : ℕ) → Sylow p G := default hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y ⊢ ((p : { x // x ∈ ps }) → { x // x ∈ P ↑p }) ≃* G [PROOFSTEP] apply MulEquiv.ofBijective (Subgroup.noncommPiCoprod hcomm) [GOAL] case refine'_2 G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support P : (p : ℕ) → Sylow p G := default hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y ⊢ Bijective ↑(noncommPiCoprod hcomm) [PROOFSTEP] apply (bijective_iff_injective_and_card _).mpr [GOAL] case refine'_2 G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support P : (p : ℕ) → Sylow p G := default hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y ⊢ Injective ↑(noncommPiCoprod hcomm) ∧ Fintype.card ((i : { x // x ∈ ps }) → { x // x ∈ ↑(P ↑i) }) = Fintype.card G [PROOFSTEP] constructor [GOAL] case refine'_2.left G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support P : (p : ℕ) → Sylow p G := default hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y ⊢ Injective ↑(noncommPiCoprod hcomm) case refine'_2.right G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support P : (p : ℕ) → Sylow p G := default hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y ⊢ Fintype.card ((i : { x // x ∈ ps }) → { x // x ∈ ↑(P ↑i) }) = Fintype.card G [PROOFSTEP] show Injective _ [GOAL] case refine'_2.left G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support P : (p : ℕ) → Sylow p G := default hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y ⊢ Injective ↑(noncommPiCoprod hcomm) [PROOFSTEP] apply Subgroup.injective_noncommPiCoprod_of_independent [GOAL] case refine'_2.left.hind G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support P : (p : ℕ) → Sylow p G := default hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y ⊢ CompleteLattice.Independent fun i => ↑(P ↑i) [PROOFSTEP] apply independent_of_coprime_order hcomm [GOAL] case refine'_2.left.hind G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support P : (p : ℕ) → Sylow p G := default hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y ⊢ ∀ (i j : { x // x ∈ ps }), i ≠ j → Nat.coprime (Fintype.card { x // x ∈ ↑(P ↑i) }) (Fintype.card { x // x ∈ ↑(P ↑j) }) [PROOFSTEP] rintro ⟨p₁, hp₁⟩ ⟨p₂, hp₂⟩ hne [GOAL] case refine'_2.left.hind.mk.mk G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support P : (p : ℕ) → Sylow p G := default hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y p₁ : ℕ hp₁ : p₁ ∈ ps p₂ : ℕ hp₂ : p₂ ∈ ps hne : { val := p₁, property := hp₁ } ≠ { val := p₂, property := hp₂ } ⊢ Nat.coprime (Fintype.card { x // x ∈ ↑(P ↑{ val := p₁, property := hp₁ }) }) (Fintype.card { x // x ∈ ↑(P ↑{ val := p₂, property := hp₂ }) }) [PROOFSTEP] haveI hp₁' := Fact.mk (Nat.prime_of_mem_factorization hp₁) [GOAL] case refine'_2.left.hind.mk.mk G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support P : (p : ℕ) → Sylow p G := default hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y p₁ : ℕ hp₁ : p₁ ∈ ps p₂ : ℕ hp₂ : p₂ ∈ ps hne : { val := p₁, property := hp₁ } ≠ { val := p₂, property := hp₂ } hp₁' : Fact (Nat.Prime p₁) ⊢ Nat.coprime (Fintype.card { x // x ∈ ↑(P ↑{ val := p₁, property := hp₁ }) }) (Fintype.card { x // x ∈ ↑(P ↑{ val := p₂, property := hp₂ }) }) [PROOFSTEP] haveI hp₂' := Fact.mk (Nat.prime_of_mem_factorization hp₂) [GOAL] case refine'_2.left.hind.mk.mk G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support P : (p : ℕ) → Sylow p G := default hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y p₁ : ℕ hp₁ : p₁ ∈ ps p₂ : ℕ hp₂ : p₂ ∈ ps hne : { val := p₁, property := hp₁ } ≠ { val := p₂, property := hp₂ } hp₁' : Fact (Nat.Prime p₁) hp₂' : Fact (Nat.Prime p₂) ⊢ Nat.coprime (Fintype.card { x // x ∈ ↑(P ↑{ val := p₁, property := hp₁ }) }) (Fintype.card { x // x ∈ ↑(P ↑{ val := p₂, property := hp₂ }) }) [PROOFSTEP] have hne' : p₁ ≠ p₂ := by simpa using hne [GOAL] G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support P : (p : ℕ) → Sylow p G := default hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y p₁ : ℕ hp₁ : p₁ ∈ ps p₂ : ℕ hp₂ : p₂ ∈ ps hne : { val := p₁, property := hp₁ } ≠ { val := p₂, property := hp₂ } hp₁' : Fact (Nat.Prime p₁) hp₂' : Fact (Nat.Prime p₂) ⊢ p₁ ≠ p₂ [PROOFSTEP] simpa using hne [GOAL] case refine'_2.left.hind.mk.mk G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support P : (p : ℕ) → Sylow p G := default hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y p₁ : ℕ hp₁ : p₁ ∈ ps p₂ : ℕ hp₂ : p₂ ∈ ps hne : { val := p₁, property := hp₁ } ≠ { val := p₂, property := hp₂ } hp₁' : Fact (Nat.Prime p₁) hp₂' : Fact (Nat.Prime p₂) hne' : p₁ ≠ p₂ ⊢ Nat.coprime (Fintype.card { x // x ∈ ↑(P ↑{ val := p₁, property := hp₁ }) }) (Fintype.card { x // x ∈ ↑(P ↑{ val := p₂, property := hp₂ }) }) [PROOFSTEP] apply IsPGroup.coprime_card_of_ne p₁ p₂ hne' _ _ (P p₁).isPGroup' (P p₂).isPGroup' [GOAL] case refine'_2.right G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support P : (p : ℕ) → Sylow p G := default hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y ⊢ Fintype.card ((i : { x // x ∈ ps }) → { x // x ∈ ↑(P ↑i) }) = Fintype.card G [PROOFSTEP] show card (∀ p : ps, P p) = card G [GOAL] case refine'_2.right G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support P : (p : ℕ) → Sylow p G := default hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y ⊢ Fintype.card ((p : { x // x ∈ ps }) → { x // x ∈ P ↑p }) = Fintype.card G [PROOFSTEP] calc card (∀ p : ps, P p) = ∏ p : ps, card (P p) := Fintype.card_pi _ = ∏ p : ps, p.1 ^ (card G).factorization p.1 := by congr 1 with ⟨p, hp⟩ exact @card_eq_multiplicity _ _ _ p ⟨Nat.prime_of_mem_factorization hp⟩ (P p) _ = ∏ p in ps, p ^ (card G).factorization p := (Finset.prod_finset_coe (fun p => p ^ (card G).factorization p) _) _ = (card G).factorization.prod (· ^ ·) := rfl _ = card G := Nat.factorization_prod_pow_eq_self Fintype.card_ne_zero [GOAL] G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support P : (p : ℕ) → Sylow p G := default hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y ⊢ ∏ p : { x // x ∈ ps }, Fintype.card { x // x ∈ ↑(P ↑p) } = ∏ p : { x // x ∈ ps }, ↑p ^ ↑(Nat.factorization (Fintype.card G)) ↑p [PROOFSTEP] congr 1 with ⟨p, hp⟩ [GOAL] case e_f.h.mk G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset ℕ := (Nat.factorization (Fintype.card G)).support P : (p : ℕ) → Sylow p G := default hcomm : _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y p : ℕ hp : p ∈ ps ⊢ Fintype.card { x // x ∈ ↑(P ↑{ val := p, property := hp }) } = ↑{ val := p, property := hp } ^ ↑(Nat.factorization (Fintype.card G)) ↑{ val := p, property := hp } [PROOFSTEP] exact @card_eq_multiplicity _ _ _ p ⟨Nat.prime_of_mem_factorization hp⟩ (P p)
{"mathlib_filename": "Mathlib.GroupTheory.Sylow", "llama_tokens": 42647}
[GOAL] G : Type u_1 inst✝⁴ : Group G A : Type u_2 inst✝³ : AddGroup A H✝ : Type u_3 inst✝² : Group H✝ inst✝¹ : IsSimpleGroup G inst✝ : Nontrivial H✝ f : G →* H✝ hf : Function.Surjective ↑f H : Subgroup H✝ iH : Normal H ⊢ H = ⊥ ∨ H = ⊤ [PROOFSTEP] refine' (iH.comap f).eq_bot_or_eq_top.imp (fun h => _) fun h => _ [GOAL] case refine'_1 G : Type u_1 inst✝⁴ : Group G A : Type u_2 inst✝³ : AddGroup A H✝ : Type u_3 inst✝² : Group H✝ inst✝¹ : IsSimpleGroup G inst✝ : Nontrivial H✝ f : G →* H✝ hf : Function.Surjective ↑f H : Subgroup H✝ iH : Normal H h : comap f H = ⊥ ⊢ H = ⊥ [PROOFSTEP] rw [← map_bot f, ← h, map_comap_eq_self_of_surjective hf] [GOAL] case refine'_2 G : Type u_1 inst✝⁴ : Group G A : Type u_2 inst✝³ : AddGroup A H✝ : Type u_3 inst✝² : Group H✝ inst✝¹ : IsSimpleGroup G inst✝ : Nontrivial H✝ f : G →* H✝ hf : Function.Surjective ↑f H : Subgroup H✝ iH : Normal H h : comap f H = ⊤ ⊢ H = ⊤ [PROOFSTEP] rw [← comap_top f] at h [GOAL] case refine'_2 G : Type u_1 inst✝⁴ : Group G A : Type u_2 inst✝³ : AddGroup A H✝ : Type u_3 inst✝² : Group H✝ inst✝¹ : IsSimpleGroup G inst✝ : Nontrivial H✝ f : G →* H✝ hf : Function.Surjective ↑f H : Subgroup H✝ iH : Normal H h : comap f H = comap f ⊤ ⊢ H = ⊤ [PROOFSTEP] exact comap_injective hf h
{"mathlib_filename": "Mathlib.GroupTheory.Subgroup.Simple", "llama_tokens": 674}
[GOAL] G : Type u_1 inst✝¹ : Group G A : Type u_2 inst✝ : AddGroup A H K : Subgroup G ⊢ ∀ (x : { x // x ∈ ⊥ }), x ∈ {1} [PROOFSTEP] rintro ⟨x, ⟨hx⟩⟩ [GOAL] case mk.refl G : Type u_1 inst✝¹ : Group G A : Type u_2 inst✝ : AddGroup A H K : Subgroup G ⊢ { val := 1, property := (_ : 1 = 1) } ∈ {1} [PROOFSTEP] exact Finset.mem_singleton_self _ [GOAL] G : Type u_1 inst✝² : Group G A : Type u_2 inst✝¹ : AddGroup A H K : Subgroup G inst✝ : Fintype G ⊢ Fintype.card { x // x ∈ ⊤ } = Fintype.card G [PROOFSTEP] rw [Fintype.card_eq] [GOAL] G : Type u_1 inst✝² : Group G A : Type u_2 inst✝¹ : AddGroup A H K : Subgroup G inst✝ : Fintype G ⊢ Nonempty ({ x // x ∈ ⊤ } ≃ G) [PROOFSTEP] exact Nonempty.intro Subgroup.topEquiv.toEquiv [GOAL] G : Type u_1 inst✝³ : Group G A : Type u_2 inst✝² : AddGroup A H K : Subgroup G inst✝¹ : Fintype { x // x ∈ H } inst✝ : Fintype G h : Fintype.card { x // x ∈ H } = Fintype.card G ⊢ H = ⊤ [PROOFSTEP] letI : Fintype (H : Set G) := ‹Fintype H› [GOAL] G : Type u_1 inst✝³ : Group G A : Type u_2 inst✝² : AddGroup A H K : Subgroup G inst✝¹ : Fintype { x // x ∈ H } inst✝ : Fintype G h : Fintype.card { x // x ∈ H } = Fintype.card G this : Fintype ↑↑H := inst✝¹ ⊢ H = ⊤ [PROOFSTEP] rw [SetLike.ext'_iff, coe_top, ← Finset.coe_univ, ← (H : Set G).coe_toFinset, Finset.coe_inj, ← Finset.card_eq_iff_eq_univ, ← h, Set.toFinset_card] [GOAL] G : Type u_1 inst✝³ : Group G A : Type u_2 inst✝² : AddGroup A H K : Subgroup G inst✝¹ : Fintype { x // x ∈ H } inst✝ : Fintype G h : Fintype.card { x // x ∈ H } = Fintype.card G this : Fintype ↑↑H := inst✝¹ ⊢ Fintype.card ↑↑H = Fintype.card { x // x ∈ H } [PROOFSTEP] congr [GOAL] G : Type u_1 inst✝³ : Group G A : Type u_2 inst✝² : AddGroup A H K : Subgroup G inst✝¹ : Fintype { x // x ∈ H } inst✝ : Fintype G h : H = ⊤ ⊢ Fintype.card { x // x ∈ H } = Fintype.card G [PROOFSTEP] simpa only [h] using card_top [GOAL] G : Type u_1 inst✝² : Group G A : Type u_2 inst✝¹ : AddGroup A H K : Subgroup G inst✝ : Fintype { x // x ∈ H } h : Fintype.card { x // x ∈ H } ≤ 1 x : G hx : x ∈ H ⊢ x = 1 [PROOFSTEP] simpa [Subtype.ext_iff] using Fintype.card_le_one_iff.1 h ⟨x, hx⟩ 1 [GOAL] G : Type u_1 inst✝² : Group G A : Type u_2 inst✝¹ : AddGroup A H K : Subgroup G inst✝ : Fintype { x // x ∈ H } h : H = ⊥ ⊢ Fintype.card { x // x ∈ H } ≤ 1 [PROOFSTEP] simp [h] [GOAL] G : Type u_1 inst✝³ : Group G A : Type u_2 inst✝² : AddGroup A η : Type u_3 f : η → Type u_4 inst✝¹ : (i : η) → Group (f i) inst✝ : DecidableEq η I : Finset η H : Subgroup ((i : η) → f i) x : (i : η) → f i h1 : ∀ (i : η), ¬i ∈ I → x i = 1 h2 : ∀ (i : η), i ∈ I → Pi.mulSingle i (x i) ∈ H ⊢ x ∈ H [PROOFSTEP] induction' I using Finset.induction_on with i I hnmem ih generalizing x [GOAL] case empty G : Type u_1 inst✝³ : Group G A : Type u_2 inst✝² : AddGroup A η : Type u_3 f : η → Type u_4 inst✝¹ : (i : η) → Group (f i) inst✝ : DecidableEq η I : Finset η H : Subgroup ((i : η) → f i) x✝ : (i : η) → f i h1✝ : ∀ (i : η), ¬i ∈ I → x✝ i = 1 h2✝ : ∀ (i : η), i ∈ I → Pi.mulSingle i (x✝ i) ∈ H x : (i : η) → f i h1 : ∀ (i : η), ¬i ∈ ∅ → x i = 1 h2 : ∀ (i : η), i ∈ ∅ → Pi.mulSingle i (x i) ∈ H ⊢ x ∈ H [PROOFSTEP] convert one_mem H [GOAL] case h.e'_4 G : Type u_1 inst✝³ : Group G A : Type u_2 inst✝² : AddGroup A η : Type u_3 f : η → Type u_4 inst✝¹ : (i : η) → Group (f i) inst✝ : DecidableEq η I : Finset η H : Subgroup ((i : η) → f i) x✝ : (i : η) → f i h1✝ : ∀ (i : η), ¬i ∈ I → x✝ i = 1 h2✝ : ∀ (i : η), i ∈ I → Pi.mulSingle i (x✝ i) ∈ H x : (i : η) → f i h1 : ∀ (i : η), ¬i ∈ ∅ → x i = 1 h2 : ∀ (i : η), i ∈ ∅ → Pi.mulSingle i (x i) ∈ H ⊢ x = 1 [PROOFSTEP] ext i [GOAL] case h.e'_4.h G : Type u_1 inst✝³ : Group G A : Type u_2 inst✝² : AddGroup A η : Type u_3 f : η → Type u_4 inst✝¹ : (i : η) → Group (f i) inst✝ : DecidableEq η I : Finset η H : Subgroup ((i : η) → f i) x✝ : (i : η) → f i h1✝ : ∀ (i : η), ¬i ∈ I → x✝ i = 1 h2✝ : ∀ (i : η), i ∈ I → Pi.mulSingle i (x✝ i) ∈ H x : (i : η) → f i h1 : ∀ (i : η), ¬i ∈ ∅ → x i = 1 h2 : ∀ (i : η), i ∈ ∅ → Pi.mulSingle i (x i) ∈ H i : η ⊢ x i = OfNat.ofNat 1 i [PROOFSTEP] exact h1 i (Finset.not_mem_empty i) [GOAL] case insert G : Type u_1 inst✝³ : Group G A : Type u_2 inst✝² : AddGroup A η : Type u_3 f : η → Type u_4 inst✝¹ : (i : η) → Group (f i) inst✝ : DecidableEq η I✝ : Finset η H : Subgroup ((i : η) → f i) x✝ : (i : η) → f i h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1 h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H i : η I : Finset η hnmem : ¬i ∈ I ih : ∀ (x : (i : η) → f i), (∀ (i : η), ¬i ∈ I → x i = 1) → (∀ (i : η), i ∈ I → Pi.mulSingle i (x i) ∈ H) → x ∈ H x : (i : η) → f i h1 : ∀ (i_1 : η), ¬i_1 ∈ insert i I → x i_1 = 1 h2 : ∀ (i_1 : η), i_1 ∈ insert i I → Pi.mulSingle i_1 (x i_1) ∈ H ⊢ x ∈ H [PROOFSTEP] have : x = Function.update x i 1 * Pi.mulSingle i (x i) := by ext j by_cases heq : j = i · subst heq simp · simp [heq] [GOAL] G : Type u_1 inst✝³ : Group G A : Type u_2 inst✝² : AddGroup A η : Type u_3 f : η → Type u_4 inst✝¹ : (i : η) → Group (f i) inst✝ : DecidableEq η I✝ : Finset η H : Subgroup ((i : η) → f i) x✝ : (i : η) → f i h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1 h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H i : η I : Finset η hnmem : ¬i ∈ I ih : ∀ (x : (i : η) → f i), (∀ (i : η), ¬i ∈ I → x i = 1) → (∀ (i : η), i ∈ I → Pi.mulSingle i (x i) ∈ H) → x ∈ H x : (i : η) → f i h1 : ∀ (i_1 : η), ¬i_1 ∈ insert i I → x i_1 = 1 h2 : ∀ (i_1 : η), i_1 ∈ insert i I → Pi.mulSingle i_1 (x i_1) ∈ H ⊢ x = Function.update x i 1 * Pi.mulSingle i (x i) [PROOFSTEP] ext j [GOAL] case h G : Type u_1 inst✝³ : Group G A : Type u_2 inst✝² : AddGroup A η : Type u_3 f : η → Type u_4 inst✝¹ : (i : η) → Group (f i) inst✝ : DecidableEq η I✝ : Finset η H : Subgroup ((i : η) → f i) x✝ : (i : η) → f i h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1 h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H i : η I : Finset η hnmem : ¬i ∈ I ih : ∀ (x : (i : η) → f i), (∀ (i : η), ¬i ∈ I → x i = 1) → (∀ (i : η), i ∈ I → Pi.mulSingle i (x i) ∈ H) → x ∈ H x : (i : η) → f i h1 : ∀ (i_1 : η), ¬i_1 ∈ insert i I → x i_1 = 1 h2 : ∀ (i_1 : η), i_1 ∈ insert i I → Pi.mulSingle i_1 (x i_1) ∈ H j : η ⊢ x j = (Function.update x i 1 * Pi.mulSingle i (x i)) j [PROOFSTEP] by_cases heq : j = i [GOAL] case pos G : Type u_1 inst✝³ : Group G A : Type u_2 inst✝² : AddGroup A η : Type u_3 f : η → Type u_4 inst✝¹ : (i : η) → Group (f i) inst✝ : DecidableEq η I✝ : Finset η H : Subgroup ((i : η) → f i) x✝ : (i : η) → f i h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1 h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H i : η I : Finset η hnmem : ¬i ∈ I ih : ∀ (x : (i : η) → f i), (∀ (i : η), ¬i ∈ I → x i = 1) → (∀ (i : η), i ∈ I → Pi.mulSingle i (x i) ∈ H) → x ∈ H x : (i : η) → f i h1 : ∀ (i_1 : η), ¬i_1 ∈ insert i I → x i_1 = 1 h2 : ∀ (i_1 : η), i_1 ∈ insert i I → Pi.mulSingle i_1 (x i_1) ∈ H j : η heq : j = i ⊢ x j = (Function.update x i 1 * Pi.mulSingle i (x i)) j [PROOFSTEP] subst heq [GOAL] case pos G : Type u_1 inst✝³ : Group G A : Type u_2 inst✝² : AddGroup A η : Type u_3 f : η → Type u_4 inst✝¹ : (i : η) → Group (f i) inst✝ : DecidableEq η I✝ : Finset η H : Subgroup ((i : η) → f i) x✝ : (i : η) → f i h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1 h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H I : Finset η ih : ∀ (x : (i : η) → f i), (∀ (i : η), ¬i ∈ I → x i = 1) → (∀ (i : η), i ∈ I → Pi.mulSingle i (x i) ∈ H) → x ∈ H x : (i : η) → f i j : η hnmem : ¬j ∈ I h1 : ∀ (i : η), ¬i ∈ insert j I → x i = 1 h2 : ∀ (i : η), i ∈ insert j I → Pi.mulSingle i (x i) ∈ H ⊢ x j = (Function.update x j 1 * Pi.mulSingle j (x j)) j [PROOFSTEP] simp [GOAL] case neg G : Type u_1 inst✝³ : Group G A : Type u_2 inst✝² : AddGroup A η : Type u_3 f : η → Type u_4 inst✝¹ : (i : η) → Group (f i) inst✝ : DecidableEq η I✝ : Finset η H : Subgroup ((i : η) → f i) x✝ : (i : η) → f i h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1 h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H i : η I : Finset η hnmem : ¬i ∈ I ih : ∀ (x : (i : η) → f i), (∀ (i : η), ¬i ∈ I → x i = 1) → (∀ (i : η), i ∈ I → Pi.mulSingle i (x i) ∈ H) → x ∈ H x : (i : η) → f i h1 : ∀ (i_1 : η), ¬i_1 ∈ insert i I → x i_1 = 1 h2 : ∀ (i_1 : η), i_1 ∈ insert i I → Pi.mulSingle i_1 (x i_1) ∈ H j : η heq : ¬j = i ⊢ x j = (Function.update x i 1 * Pi.mulSingle i (x i)) j [PROOFSTEP] simp [heq] [GOAL] case insert G : Type u_1 inst✝³ : Group G A : Type u_2 inst✝² : AddGroup A η : Type u_3 f : η → Type u_4 inst✝¹ : (i : η) → Group (f i) inst✝ : DecidableEq η I✝ : Finset η H : Subgroup ((i : η) → f i) x✝ : (i : η) → f i h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1 h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H i : η I : Finset η hnmem : ¬i ∈ I ih : ∀ (x : (i : η) → f i), (∀ (i : η), ¬i ∈ I → x i = 1) → (∀ (i : η), i ∈ I → Pi.mulSingle i (x i) ∈ H) → x ∈ H x : (i : η) → f i h1 : ∀ (i_1 : η), ¬i_1 ∈ insert i I → x i_1 = 1 h2 : ∀ (i_1 : η), i_1 ∈ insert i I → Pi.mulSingle i_1 (x i_1) ∈ H this : x = Function.update x i 1 * Pi.mulSingle i (x i) ⊢ x ∈ H [PROOFSTEP] rw [this] [GOAL] case insert G : Type u_1 inst✝³ : Group G A : Type u_2 inst✝² : AddGroup A η : Type u_3 f : η → Type u_4 inst✝¹ : (i : η) → Group (f i) inst✝ : DecidableEq η I✝ : Finset η H : Subgroup ((i : η) → f i) x✝ : (i : η) → f i h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1 h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H i : η I : Finset η hnmem : ¬i ∈ I ih : ∀ (x : (i : η) → f i), (∀ (i : η), ¬i ∈ I → x i = 1) → (∀ (i : η), i ∈ I → Pi.mulSingle i (x i) ∈ H) → x ∈ H x : (i : η) → f i h1 : ∀ (i_1 : η), ¬i_1 ∈ insert i I → x i_1 = 1 h2 : ∀ (i_1 : η), i_1 ∈ insert i I → Pi.mulSingle i_1 (x i_1) ∈ H this : x = Function.update x i 1 * Pi.mulSingle i (x i) ⊢ Function.update x i 1 * Pi.mulSingle i (x i) ∈ H [PROOFSTEP] clear this [GOAL] case insert G : Type u_1 inst✝³ : Group G A : Type u_2 inst✝² : AddGroup A η : Type u_3 f : η → Type u_4 inst✝¹ : (i : η) → Group (f i) inst✝ : DecidableEq η I✝ : Finset η H : Subgroup ((i : η) → f i) x✝ : (i : η) → f i h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1 h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H i : η I : Finset η hnmem : ¬i ∈ I ih : ∀ (x : (i : η) → f i), (∀ (i : η), ¬i ∈ I → x i = 1) → (∀ (i : η), i ∈ I → Pi.mulSingle i (x i) ∈ H) → x ∈ H x : (i : η) → f i h1 : ∀ (i_1 : η), ¬i_1 ∈ insert i I → x i_1 = 1 h2 : ∀ (i_1 : η), i_1 ∈ insert i I → Pi.mulSingle i_1 (x i_1) ∈ H ⊢ Function.update x i 1 * Pi.mulSingle i (x i) ∈ H [PROOFSTEP] apply mul_mem [GOAL] case insert.a G : Type u_1 inst✝³ : Group G A : Type u_2 inst✝² : AddGroup A η : Type u_3 f : η → Type u_4 inst✝¹ : (i : η) → Group (f i) inst✝ : DecidableEq η I✝ : Finset η H : Subgroup ((i : η) → f i) x✝ : (i : η) → f i h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1 h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H i : η I : Finset η hnmem : ¬i ∈ I ih : ∀ (x : (i : η) → f i), (∀ (i : η), ¬i ∈ I → x i = 1) → (∀ (i : η), i ∈ I → Pi.mulSingle i (x i) ∈ H) → x ∈ H x : (i : η) → f i h1 : ∀ (i_1 : η), ¬i_1 ∈ insert i I → x i_1 = 1 h2 : ∀ (i_1 : η), i_1 ∈ insert i I → Pi.mulSingle i_1 (x i_1) ∈ H ⊢ Function.update x i 1 ∈ H [PROOFSTEP] apply ih [GOAL] case insert.a.h1 G : Type u_1 inst✝³ : Group G A : Type u_2 inst✝² : AddGroup A η : Type u_3 f : η → Type u_4 inst✝¹ : (i : η) → Group (f i) inst✝ : DecidableEq η I✝ : Finset η H : Subgroup ((i : η) → f i) x✝ : (i : η) → f i h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1 h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H i : η I : Finset η hnmem : ¬i ∈ I ih : ∀ (x : (i : η) → f i), (∀ (i : η), ¬i ∈ I → x i = 1) → (∀ (i : η), i ∈ I → Pi.mulSingle i (x i) ∈ H) → x ∈ H x : (i : η) → f i h1 : ∀ (i_1 : η), ¬i_1 ∈ insert i I → x i_1 = 1 h2 : ∀ (i_1 : η), i_1 ∈ insert i I → Pi.mulSingle i_1 (x i_1) ∈ H ⊢ ∀ (i_1 : η), ¬i_1 ∈ I → Function.update x i 1 i_1 = 1 [PROOFSTEP] clear ih [GOAL] case insert.a.h2 G : Type u_1 inst✝³ : Group G A : Type u_2 inst✝² : AddGroup A η : Type u_3 f : η → Type u_4 inst✝¹ : (i : η) → Group (f i) inst✝ : DecidableEq η I✝ : Finset η H : Subgroup ((i : η) → f i) x✝ : (i : η) → f i h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1 h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H i : η I : Finset η hnmem : ¬i ∈ I ih : ∀ (x : (i : η) → f i), (∀ (i : η), ¬i ∈ I → x i = 1) → (∀ (i : η), i ∈ I → Pi.mulSingle i (x i) ∈ H) → x ∈ H x : (i : η) → f i h1 : ∀ (i_1 : η), ¬i_1 ∈ insert i I → x i_1 = 1 h2 : ∀ (i_1 : η), i_1 ∈ insert i I → Pi.mulSingle i_1 (x i_1) ∈ H ⊢ ∀ (i_1 : η), i_1 ∈ I → Pi.mulSingle i_1 (Function.update x i 1 i_1) ∈ H [PROOFSTEP] clear ih [GOAL] case insert.a.h1 G : Type u_1 inst✝³ : Group G A : Type u_2 inst✝² : AddGroup A η : Type u_3 f : η → Type u_4 inst✝¹ : (i : η) → Group (f i) inst✝ : DecidableEq η I✝ : Finset η H : Subgroup ((i : η) → f i) x✝ : (i : η) → f i h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1 h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H i : η I : Finset η hnmem : ¬i ∈ I x : (i : η) → f i h1 : ∀ (i_1 : η), ¬i_1 ∈ insert i I → x i_1 = 1 h2 : ∀ (i_1 : η), i_1 ∈ insert i I → Pi.mulSingle i_1 (x i_1) ∈ H ⊢ ∀ (i_1 : η), ¬i_1 ∈ I → Function.update x i 1 i_1 = 1 [PROOFSTEP] intro j hj [GOAL] case insert.a.h1 G : Type u_1 inst✝³ : Group G A : Type u_2 inst✝² : AddGroup A η : Type u_3 f : η → Type u_4 inst✝¹ : (i : η) → Group (f i) inst✝ : DecidableEq η I✝ : Finset η H : Subgroup ((i : η) → f i) x✝ : (i : η) → f i h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1 h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H i : η I : Finset η hnmem : ¬i ∈ I x : (i : η) → f i h1 : ∀ (i_1 : η), ¬i_1 ∈ insert i I → x i_1 = 1 h2 : ∀ (i_1 : η), i_1 ∈ insert i I → Pi.mulSingle i_1 (x i_1) ∈ H j : η hj : ¬j ∈ I ⊢ Function.update x i 1 j = 1 [PROOFSTEP] by_cases heq : j = i [GOAL] case pos G : Type u_1 inst✝³ : Group G A : Type u_2 inst✝² : AddGroup A η : Type u_3 f : η → Type u_4 inst✝¹ : (i : η) → Group (f i) inst✝ : DecidableEq η I✝ : Finset η H : Subgroup ((i : η) → f i) x✝ : (i : η) → f i h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1 h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H i : η I : Finset η hnmem : ¬i ∈ I x : (i : η) → f i h1 : ∀ (i_1 : η), ¬i_1 ∈ insert i I → x i_1 = 1 h2 : ∀ (i_1 : η), i_1 ∈ insert i I → Pi.mulSingle i_1 (x i_1) ∈ H j : η hj : ¬j ∈ I heq : j = i ⊢ Function.update x i 1 j = 1 [PROOFSTEP] subst heq [GOAL] case pos G : Type u_1 inst✝³ : Group G A : Type u_2 inst✝² : AddGroup A η : Type u_3 f : η → Type u_4 inst✝¹ : (i : η) → Group (f i) inst✝ : DecidableEq η I✝ : Finset η H : Subgroup ((i : η) → f i) x✝ : (i : η) → f i h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1 h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H I : Finset η x : (i : η) → f i j : η hj hnmem : ¬j ∈ I h1 : ∀ (i : η), ¬i ∈ insert j I → x i = 1 h2 : ∀ (i : η), i ∈ insert j I → Pi.mulSingle i (x i) ∈ H ⊢ Function.update x j 1 j = 1 [PROOFSTEP] simp [GOAL] case neg G : Type u_1 inst✝³ : Group G A : Type u_2 inst✝² : AddGroup A η : Type u_3 f : η → Type u_4 inst✝¹ : (i : η) → Group (f i) inst✝ : DecidableEq η I✝ : Finset η H : Subgroup ((i : η) → f i) x✝ : (i : η) → f i h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1 h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H i : η I : Finset η hnmem : ¬i ∈ I x : (i : η) → f i h1 : ∀ (i_1 : η), ¬i_1 ∈ insert i I → x i_1 = 1 h2 : ∀ (i_1 : η), i_1 ∈ insert i I → Pi.mulSingle i_1 (x i_1) ∈ H j : η hj : ¬j ∈ I heq : ¬j = i ⊢ Function.update x i 1 j = 1 [PROOFSTEP] simp [heq] [GOAL] case neg G : Type u_1 inst✝³ : Group G A : Type u_2 inst✝² : AddGroup A η : Type u_3 f : η → Type u_4 inst✝¹ : (i : η) → Group (f i) inst✝ : DecidableEq η I✝ : Finset η H : Subgroup ((i : η) → f i) x✝ : (i : η) → f i h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1 h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H i : η I : Finset η hnmem : ¬i ∈ I x : (i : η) → f i h1 : ∀ (i_1 : η), ¬i_1 ∈ insert i I → x i_1 = 1 h2 : ∀ (i_1 : η), i_1 ∈ insert i I → Pi.mulSingle i_1 (x i_1) ∈ H j : η hj : ¬j ∈ I heq : ¬j = i ⊢ x j = 1 [PROOFSTEP] apply h1 j [GOAL] case neg G : Type u_1 inst✝³ : Group G A : Type u_2 inst✝² : AddGroup A η : Type u_3 f : η → Type u_4 inst✝¹ : (i : η) → Group (f i) inst✝ : DecidableEq η I✝ : Finset η H : Subgroup ((i : η) → f i) x✝ : (i : η) → f i h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1 h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H i : η I : Finset η hnmem : ¬i ∈ I x : (i : η) → f i h1 : ∀ (i_1 : η), ¬i_1 ∈ insert i I → x i_1 = 1 h2 : ∀ (i_1 : η), i_1 ∈ insert i I → Pi.mulSingle i_1 (x i_1) ∈ H j : η hj : ¬j ∈ I heq : ¬j = i ⊢ ¬j ∈ insert i I [PROOFSTEP] simpa [heq] using hj [GOAL] case insert.a.h2 G : Type u_1 inst✝³ : Group G A : Type u_2 inst✝² : AddGroup A η : Type u_3 f : η → Type u_4 inst✝¹ : (i : η) → Group (f i) inst✝ : DecidableEq η I✝ : Finset η H : Subgroup ((i : η) → f i) x✝ : (i : η) → f i h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1 h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H i : η I : Finset η hnmem : ¬i ∈ I x : (i : η) → f i h1 : ∀ (i_1 : η), ¬i_1 ∈ insert i I → x i_1 = 1 h2 : ∀ (i_1 : η), i_1 ∈ insert i I → Pi.mulSingle i_1 (x i_1) ∈ H ⊢ ∀ (i_1 : η), i_1 ∈ I → Pi.mulSingle i_1 (Function.update x i 1 i_1) ∈ H [PROOFSTEP] intro j hj [GOAL] case insert.a.h2 G : Type u_1 inst✝³ : Group G A : Type u_2 inst✝² : AddGroup A η : Type u_3 f : η → Type u_4 inst✝¹ : (i : η) → Group (f i) inst✝ : DecidableEq η I✝ : Finset η H : Subgroup ((i : η) → f i) x✝ : (i : η) → f i h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1 h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H i : η I : Finset η hnmem : ¬i ∈ I x : (i : η) → f i h1 : ∀ (i_1 : η), ¬i_1 ∈ insert i I → x i_1 = 1 h2 : ∀ (i_1 : η), i_1 ∈ insert i I → Pi.mulSingle i_1 (x i_1) ∈ H j : η hj : j ∈ I ⊢ Pi.mulSingle j (Function.update x i 1 j) ∈ H [PROOFSTEP] have : j ≠ i := by rintro rfl contradiction [GOAL] G : Type u_1 inst✝³ : Group G A : Type u_2 inst✝² : AddGroup A η : Type u_3 f : η → Type u_4 inst✝¹ : (i : η) → Group (f i) inst✝ : DecidableEq η I✝ : Finset η H : Subgroup ((i : η) → f i) x✝ : (i : η) → f i h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1 h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H i : η I : Finset η hnmem : ¬i ∈ I x : (i : η) → f i h1 : ∀ (i_1 : η), ¬i_1 ∈ insert i I → x i_1 = 1 h2 : ∀ (i_1 : η), i_1 ∈ insert i I → Pi.mulSingle i_1 (x i_1) ∈ H j : η hj : j ∈ I ⊢ j ≠ i [PROOFSTEP] rintro rfl [GOAL] G : Type u_1 inst✝³ : Group G A : Type u_2 inst✝² : AddGroup A η : Type u_3 f : η → Type u_4 inst✝¹ : (i : η) → Group (f i) inst✝ : DecidableEq η I✝ : Finset η H : Subgroup ((i : η) → f i) x✝ : (i : η) → f i h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1 h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H I : Finset η x : (i : η) → f i j : η hj : j ∈ I hnmem : ¬j ∈ I h1 : ∀ (i : η), ¬i ∈ insert j I → x i = 1 h2 : ∀ (i : η), i ∈ insert j I → Pi.mulSingle i (x i) ∈ H ⊢ False [PROOFSTEP] contradiction [GOAL] case insert.a.h2 G : Type u_1 inst✝³ : Group G A : Type u_2 inst✝² : AddGroup A η : Type u_3 f : η → Type u_4 inst✝¹ : (i : η) → Group (f i) inst✝ : DecidableEq η I✝ : Finset η H : Subgroup ((i : η) → f i) x✝ : (i : η) → f i h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1 h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H i : η I : Finset η hnmem : ¬i ∈ I x : (i : η) → f i h1 : ∀ (i_1 : η), ¬i_1 ∈ insert i I → x i_1 = 1 h2 : ∀ (i_1 : η), i_1 ∈ insert i I → Pi.mulSingle i_1 (x i_1) ∈ H j : η hj : j ∈ I this : j ≠ i ⊢ Pi.mulSingle j (Function.update x i 1 j) ∈ H [PROOFSTEP] simp [this] [GOAL] case insert.a.h2 G : Type u_1 inst✝³ : Group G A : Type u_2 inst✝² : AddGroup A η : Type u_3 f : η → Type u_4 inst✝¹ : (i : η) → Group (f i) inst✝ : DecidableEq η I✝ : Finset η H : Subgroup ((i : η) → f i) x✝ : (i : η) → f i h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1 h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H i : η I : Finset η hnmem : ¬i ∈ I x : (i : η) → f i h1 : ∀ (i_1 : η), ¬i_1 ∈ insert i I → x i_1 = 1 h2 : ∀ (i_1 : η), i_1 ∈ insert i I → Pi.mulSingle i_1 (x i_1) ∈ H j : η hj : j ∈ I this : j ≠ i ⊢ Pi.mulSingle j (x j) ∈ H [PROOFSTEP] exact h2 _ (Finset.mem_insert_of_mem hj) [GOAL] case insert.a G : Type u_1 inst✝³ : Group G A : Type u_2 inst✝² : AddGroup A η : Type u_3 f : η → Type u_4 inst✝¹ : (i : η) → Group (f i) inst✝ : DecidableEq η I✝ : Finset η H : Subgroup ((i : η) → f i) x✝ : (i : η) → f i h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1 h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H i : η I : Finset η hnmem : ¬i ∈ I ih : ∀ (x : (i : η) → f i), (∀ (i : η), ¬i ∈ I → x i = 1) → (∀ (i : η), i ∈ I → Pi.mulSingle i (x i) ∈ H) → x ∈ H x : (i : η) → f i h1 : ∀ (i_1 : η), ¬i_1 ∈ insert i I → x i_1 = 1 h2 : ∀ (i_1 : η), i_1 ∈ insert i I → Pi.mulSingle i_1 (x i_1) ∈ H ⊢ Pi.mulSingle i (x i) ∈ H [PROOFSTEP] apply h2 [GOAL] case insert.a.a G : Type u_1 inst✝³ : Group G A : Type u_2 inst✝² : AddGroup A η : Type u_3 f : η → Type u_4 inst✝¹ : (i : η) → Group (f i) inst✝ : DecidableEq η I✝ : Finset η H : Subgroup ((i : η) → f i) x✝ : (i : η) → f i h1✝ : ∀ (i : η), ¬i ∈ I✝ → x✝ i = 1 h2✝ : ∀ (i : η), i ∈ I✝ → Pi.mulSingle i (x✝ i) ∈ H i : η I : Finset η hnmem : ¬i ∈ I ih : ∀ (x : (i : η) → f i), (∀ (i : η), ¬i ∈ I → x i = 1) → (∀ (i : η), i ∈ I → Pi.mulSingle i (x i) ∈ H) → x ∈ H x : (i : η) → f i h1 : ∀ (i_1 : η), ¬i_1 ∈ insert i I → x i_1 = 1 h2 : ∀ (i_1 : η), i_1 ∈ insert i I → Pi.mulSingle i_1 (x i_1) ∈ H ⊢ i ∈ insert i I [PROOFSTEP] simp [GOAL] G : Type u_1 inst✝⁴ : Group G A : Type u_2 inst✝³ : AddGroup A η : Type u_3 f : η → Type u_4 inst✝² : (i : η) → Group (f i) inst✝¹ : Finite η inst✝ : DecidableEq η H : Subgroup ((i : η) → f i) x : (i : η) → f i h : ∀ (i : η), Pi.mulSingle i (x i) ∈ H ⊢ x ∈ H [PROOFSTEP] cases nonempty_fintype η [GOAL] case intro G : Type u_1 inst✝⁴ : Group G A : Type u_2 inst✝³ : AddGroup A η : Type u_3 f : η → Type u_4 inst✝² : (i : η) → Group (f i) inst✝¹ : Finite η inst✝ : DecidableEq η H : Subgroup ((i : η) → f i) x : (i : η) → f i h : ∀ (i : η), Pi.mulSingle i (x i) ∈ H val✝ : Fintype η ⊢ x ∈ H [PROOFSTEP] exact pi_mem_of_mulSingle_mem_aux Finset.univ x (by simp) fun i _ => h i [GOAL] G : Type u_1 inst✝⁴ : Group G A : Type u_2 inst✝³ : AddGroup A η : Type u_3 f : η → Type u_4 inst✝² : (i : η) → Group (f i) inst✝¹ : Finite η inst✝ : DecidableEq η H : Subgroup ((i : η) → f i) x : (i : η) → f i h : ∀ (i : η), Pi.mulSingle i (x i) ∈ H val✝ : Fintype η ⊢ ∀ (i : η), ¬i ∈ Finset.univ → x i = 1 [PROOFSTEP] simp [GOAL] G : Type u_1 inst✝⁴ : Group G A : Type u_2 inst✝³ : AddGroup A η : Type u_3 f : η → Type u_4 inst✝² : (i : η) → Group (f i) inst✝¹ : DecidableEq η inst✝ : Finite η H : (i : η) → Subgroup (f i) J : Subgroup ((i : η) → f i) ⊢ pi univ H ≤ J ↔ ∀ (i : η), map (MonoidHom.single f i) (H i) ≤ J [PROOFSTEP] constructor [GOAL] case mp G : Type u_1 inst✝⁴ : Group G A : Type u_2 inst✝³ : AddGroup A η : Type u_3 f : η → Type u_4 inst✝² : (i : η) → Group (f i) inst✝¹ : DecidableEq η inst✝ : Finite η H : (i : η) → Subgroup (f i) J : Subgroup ((i : η) → f i) ⊢ pi univ H ≤ J → ∀ (i : η), map (MonoidHom.single f i) (H i) ≤ J [PROOFSTEP] rintro h i _ ⟨x, hx, rfl⟩ [GOAL] case mp.intro.intro G : Type u_1 inst✝⁴ : Group G A : Type u_2 inst✝³ : AddGroup A η : Type u_3 f : η → Type u_4 inst✝² : (i : η) → Group (f i) inst✝¹ : DecidableEq η inst✝ : Finite η H : (i : η) → Subgroup (f i) J : Subgroup ((i : η) → f i) h : pi univ H ≤ J i : η x : f i hx : x ∈ ↑(H i) ⊢ ↑(MonoidHom.single f i) x ∈ J [PROOFSTEP] apply h [GOAL] case mp.intro.intro.a G : Type u_1 inst✝⁴ : Group G A : Type u_2 inst✝³ : AddGroup A η : Type u_3 f : η → Type u_4 inst✝² : (i : η) → Group (f i) inst✝¹ : DecidableEq η inst✝ : Finite η H : (i : η) → Subgroup (f i) J : Subgroup ((i : η) → f i) h : pi univ H ≤ J i : η x : f i hx : x ∈ ↑(H i) ⊢ ↑(MonoidHom.single f i) x ∈ pi univ H [PROOFSTEP] simpa using hx [GOAL] case mpr G : Type u_1 inst✝⁴ : Group G A : Type u_2 inst✝³ : AddGroup A η : Type u_3 f : η → Type u_4 inst✝² : (i : η) → Group (f i) inst✝¹ : DecidableEq η inst✝ : Finite η H : (i : η) → Subgroup (f i) J : Subgroup ((i : η) → f i) ⊢ (∀ (i : η), map (MonoidHom.single f i) (H i) ≤ J) → pi univ H ≤ J [PROOFSTEP] exact fun h x hx => pi_mem_of_mulSingle_mem x fun i => h i (mem_map_of_mem _ (hx i trivial)) [GOAL] G : Type u_1 inst✝² : Group G A : Type u_2 inst✝¹ : AddGroup A S : Set G inst✝ : Finite ↑S x : G h : ∀ (n : G), n ∈ S → x * n * x⁻¹ ∈ S ⊢ x ∈ setNormalizer S [PROOFSTEP] haveI := Classical.propDecidable [GOAL] G : Type u_1 inst✝² : Group G A : Type u_2 inst✝¹ : AddGroup A S : Set G inst✝ : Finite ↑S x : G h : ∀ (n : G), n ∈ S → x * n * x⁻¹ ∈ S this : (a : Prop) → Decidable a ⊢ x ∈ setNormalizer S [PROOFSTEP] cases nonempty_fintype S [GOAL] case intro G : Type u_1 inst✝² : Group G A : Type u_2 inst✝¹ : AddGroup A S : Set G inst✝ : Finite ↑S x : G h : ∀ (n : G), n ∈ S → x * n * x⁻¹ ∈ S this : (a : Prop) → Decidable a val✝ : Fintype ↑S ⊢ x ∈ setNormalizer S [PROOFSTEP] haveI := Set.fintypeImage S fun n => x * n * x⁻¹ [GOAL] case intro G : Type u_1 inst✝² : Group G A : Type u_2 inst✝¹ : AddGroup A S : Set G inst✝ : Finite ↑S x : G h : ∀ (n : G), n ∈ S → x * n * x⁻¹ ∈ S this✝ : (a : Prop) → Decidable a val✝ : Fintype ↑S this : Fintype ↑((fun n => x * n * x⁻¹) '' S) ⊢ x ∈ setNormalizer S [PROOFSTEP] exact fun n => ⟨h n, fun h₁ => have heq : (fun n => x * n * x⁻¹) '' S = S := Set.eq_of_subset_of_card_le (fun n ⟨y, hy⟩ => hy.2 ▸ h y hy.1) (by rw [Set.card_image_of_injective S conj_injective]) have : x * n * x⁻¹ ∈ (fun n => x * n * x⁻¹) '' S := heq.symm ▸ h₁ let ⟨y, hy⟩ := this conj_injective hy.2 ▸ hy.1⟩ [GOAL] G : Type u_1 inst✝² : Group G A : Type u_2 inst✝¹ : AddGroup A S : Set G inst✝ : Finite ↑S x : G h : ∀ (n : G), n ∈ S → x * n * x⁻¹ ∈ S this✝ : (a : Prop) → Decidable a val✝ : Fintype ↑S this : Fintype ↑((fun n => x * n * x⁻¹) '' S) n : G h₁ : x * n * x⁻¹ ∈ S ⊢ Fintype.card ↑S ≤ Fintype.card ↑((fun n => x * n * x⁻¹) '' S) [PROOFSTEP] rw [Set.card_image_of_injective S conj_injective]
{"mathlib_filename": "Mathlib.GroupTheory.Subgroup.Finite", "llama_tokens": 15117}
[GOAL] ι : Type u_1 M : ι → Type u_2 inst✝ : (i : ι) → Monoid (M i) ⊢ Monoid (Monoid.CoprodI M) [PROOFSTEP] delta Monoid.CoprodI [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝ : (i : ι) → Monoid (M i) ⊢ Monoid (Con.Quotient (conGen (Monoid.CoprodI.Rel M))) [PROOFSTEP] infer_instance [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N f g : CoprodI M →* N h : ∀ (i : ι), MonoidHom.comp f of = MonoidHom.comp g of x✝ : (i : ι) × M i i : ι x : M i ⊢ ↑(MonoidHom.comp f (Con.mk' (conGen (Rel M)))) (FreeMonoid.of { fst := i, snd := x }) = ↑(MonoidHom.comp g (Con.mk' (conGen (Rel M)))) (FreeMonoid.of { fst := i, snd := x }) [PROOFSTEP] rw [MonoidHom.comp_apply, MonoidHom.comp_apply, ← of_apply, ← MonoidHom.comp_apply, ← MonoidHom.comp_apply, h] [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N fi : (i : ι) → M i →* N ⊢ ∀ (x y : FreeMonoid ((i : ι) × M i)), Rel M x y → Setoid.r x y [PROOFSTEP] simp_rw [Con.rel_eq_coe, Con.ker_rel] [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N fi : (i : ι) → M i →* N ⊢ ∀ (x y : FreeMonoid ((i : ι) × M i)), Rel M x y → ↑(↑FreeMonoid.lift fun p => ↑(fi p.fst) p.snd) x = ↑(↑FreeMonoid.lift fun p => ↑(fi p.fst) p.snd) y [PROOFSTEP] rintro _ _ (i | ⟨x, y⟩) [GOAL] case of_one ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N fi : (i : ι) → M i →* N i : ι ⊢ ↑(↑FreeMonoid.lift fun p => ↑(fi p.fst) p.snd) (FreeMonoid.of { fst := i, snd := 1 }) = ↑(↑FreeMonoid.lift fun p => ↑(fi p.fst) p.snd) 1 [PROOFSTEP] change FreeMonoid.lift _ (FreeMonoid.of _) = FreeMonoid.lift _ 1 [GOAL] case of_one ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N fi : (i : ι) → M i →* N i : ι ⊢ ↑(↑FreeMonoid.lift fun p => ↑(fi p.fst) p.snd) (FreeMonoid.of { fst := i, snd := 1 }) = ↑(↑FreeMonoid.lift fun p => ↑(fi p.fst) p.snd) 1 [PROOFSTEP] simp only [MonoidHom.map_one, FreeMonoid.lift_eval_of] [GOAL] case of_mul ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N fi : (i : ι) → M i →* N i✝ : ι x y : M i✝ ⊢ ↑(↑FreeMonoid.lift fun p => ↑(fi p.fst) p.snd) (FreeMonoid.of { fst := i✝, snd := x } * FreeMonoid.of { fst := i✝, snd := y }) = ↑(↑FreeMonoid.lift fun p => ↑(fi p.fst) p.snd) (FreeMonoid.of { fst := i✝, snd := x * y }) [PROOFSTEP] change FreeMonoid.lift _ (FreeMonoid.of _ * FreeMonoid.of _) = FreeMonoid.lift _ (FreeMonoid.of _) [GOAL] case of_mul ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N fi : (i : ι) → M i →* N i✝ : ι x y : M i✝ ⊢ ↑(↑FreeMonoid.lift fun p => ↑(fi p.fst) p.snd) (FreeMonoid.of { fst := i✝, snd := x } * FreeMonoid.of { fst := i✝, snd := y }) = ↑(↑FreeMonoid.lift fun p => ↑(fi p.fst) p.snd) (FreeMonoid.of { fst := i✝, snd := x * y }) [PROOFSTEP] simp only [MonoidHom.map_mul, FreeMonoid.lift_eval_of] [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N ⊢ Function.LeftInverse (fun f i => MonoidHom.comp f of) fun fi => Con.lift (conGen (Rel M)) (↑FreeMonoid.lift fun p => ↑(fi p.fst) p.snd) (_ : conGen (Rel M) ≤ Con.ker (↑FreeMonoid.lift fun p => ↑(fi p.fst) p.snd)) [PROOFSTEP] intro fi [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N fi : (i : ι) → M i →* N ⊢ (fun f i => MonoidHom.comp f of) ((fun fi => Con.lift (conGen (Rel M)) (↑FreeMonoid.lift fun p => ↑(fi p.fst) p.snd) (_ : conGen (Rel M) ≤ Con.ker (↑FreeMonoid.lift fun p => ↑(fi p.fst) p.snd))) fi) = fi [PROOFSTEP] ext i x [GOAL] case h.h ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N fi : (i : ι) → M i →* N i : ι x : M i ⊢ ↑((fun f i => MonoidHom.comp f of) ((fun fi => Con.lift (conGen (Rel M)) (↑FreeMonoid.lift fun p => ↑(fi p.fst) p.snd) (_ : conGen (Rel M) ≤ Con.ker (↑FreeMonoid.lift fun p => ↑(fi p.fst) p.snd))) fi) i) x = ↑(fi i) x [PROOFSTEP] rw [MonoidHom.comp_apply, of_apply, Con.lift_mk', FreeMonoid.lift_eval_of] [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N ⊢ Function.RightInverse (fun f i => MonoidHom.comp f of) fun fi => Con.lift (conGen (Rel M)) (↑FreeMonoid.lift fun p => ↑(fi p.fst) p.snd) (_ : conGen (Rel M) ≤ Con.ker (↑FreeMonoid.lift fun p => ↑(fi p.fst) p.snd)) [PROOFSTEP] intro f [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N f : CoprodI M →* N ⊢ (fun fi => Con.lift (conGen (Rel M)) (↑FreeMonoid.lift fun p => ↑(fi p.fst) p.snd) (_ : conGen (Rel M) ≤ Con.ker (↑FreeMonoid.lift fun p => ↑(fi p.fst) p.snd))) ((fun f i => MonoidHom.comp f of) f) = f [PROOFSTEP] ext i x [GOAL] case h.h ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N f : CoprodI M →* N i : ι x : M i ⊢ ↑(MonoidHom.comp ((fun fi => Con.lift (conGen (Rel M)) (↑FreeMonoid.lift fun p => ↑(fi p.fst) p.snd) (_ : conGen (Rel M) ≤ Con.ker (↑FreeMonoid.lift fun p => ↑(fi p.fst) p.snd))) ((fun f i => MonoidHom.comp f of) f)) of) x = ↑(MonoidHom.comp f of) x [PROOFSTEP] rfl [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N✝ : Type u_3 inst✝¹ : Monoid N✝ N : Type u_4 inst✝ : Monoid N fi : (i : ι) → M i →* N i : ι m : M i ⊢ ↑(↑lift fi) (↑of m) = ↑(fi i) m [PROOFSTEP] conv_rhs => rw [← lift.symm_apply_apply fi, lift_symm_apply, MonoidHom.comp_apply] [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N✝ : Type u_3 inst✝¹ : Monoid N✝ N : Type u_4 inst✝ : Monoid N fi : (i : ι) → M i →* N i : ι m : M i | ↑(fi i) m [PROOFSTEP] rw [← lift.symm_apply_apply fi, lift_symm_apply, MonoidHom.comp_apply] [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N✝ : Type u_3 inst✝¹ : Monoid N✝ N : Type u_4 inst✝ : Monoid N fi : (i : ι) → M i →* N i : ι m : M i | ↑(fi i) m [PROOFSTEP] rw [← lift.symm_apply_apply fi, lift_symm_apply, MonoidHom.comp_apply] [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N✝ : Type u_3 inst✝¹ : Monoid N✝ N : Type u_4 inst✝ : Monoid N fi : (i : ι) → M i →* N i : ι m : M i | ↑(fi i) m [PROOFSTEP] rw [← lift.symm_apply_apply fi, lift_symm_apply, MonoidHom.comp_apply] [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N C : CoprodI M → Prop m : CoprodI M h_one : C 1 h_of : ∀ (i : ι) (m : M i), C (↑of m) h_mul : ∀ (x y : CoprodI M), C x → C y → C (x * y) ⊢ C m [PROOFSTEP] let S : Submonoid (CoprodI M) := { carrier := setOf C mul_mem' := h_mul _ _ one_mem' := h_one } [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N C : CoprodI M → Prop m : CoprodI M h_one : C 1 h_of : ∀ (i : ι) (m : M i), C (↑of m) h_mul : ∀ (x y : CoprodI M), C x → C y → C (x * y) S : Submonoid (CoprodI M) := { toSubsemigroup := { carrier := setOf C, mul_mem' := (_ : ∀ {a b : CoprodI M}, C a → C b → C (a * b)) }, one_mem' := h_one } ⊢ C m [PROOFSTEP] have : C _ := Subtype.prop (lift (fun i => of.codRestrict S (h_of i)) m) [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N C : CoprodI M → Prop m : CoprodI M h_one : C 1 h_of : ∀ (i : ι) (m : M i), C (↑of m) h_mul : ∀ (x y : CoprodI M), C x → C y → C (x * y) S : Submonoid (CoprodI M) := { toSubsemigroup := { carrier := setOf C, mul_mem' := (_ : ∀ {a b : CoprodI M}, C a → C b → C (a * b)) }, one_mem' := h_one } this : C ↑(↑(↑lift fun i => MonoidHom.codRestrict of S (_ : ∀ (m : M i), C (↑of m))) m) ⊢ C m [PROOFSTEP] convert this [GOAL] case h.e'_1 ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N C : CoprodI M → Prop m : CoprodI M h_one : C 1 h_of : ∀ (i : ι) (m : M i), C (↑of m) h_mul : ∀ (x y : CoprodI M), C x → C y → C (x * y) S : Submonoid (CoprodI M) := { toSubsemigroup := { carrier := setOf C, mul_mem' := (_ : ∀ {a b : CoprodI M}, C a → C b → C (a * b)) }, one_mem' := h_one } this : C ↑(↑(↑lift fun i => MonoidHom.codRestrict of S (_ : ∀ (m : M i), C (↑of m))) m) ⊢ m = ↑(↑(↑lift fun i => MonoidHom.codRestrict of S (_ : ∀ (m : M i), C (↑of m))) m) [PROOFSTEP] change MonoidHom.id _ m = S.subtype.comp _ m [GOAL] case h.e'_1 ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N C : CoprodI M → Prop m : CoprodI M h_one : C 1 h_of : ∀ (i : ι) (m : M i), C (↑of m) h_mul : ∀ (x y : CoprodI M), C x → C y → C (x * y) S : Submonoid (CoprodI M) := { toSubsemigroup := { carrier := setOf C, mul_mem' := (_ : ∀ {a b : CoprodI M}, C a → C b → C (a * b)) }, one_mem' := h_one } this : C ↑(↑(↑lift fun i => MonoidHom.codRestrict of S (_ : ∀ (m : M i), C (↑of m))) m) ⊢ ↑(MonoidHom.id (CoprodI M)) m = ↑(MonoidHom.comp (Submonoid.subtype S) (↑lift fun i => MonoidHom.codRestrict of S (_ : ∀ (m : M i), C (↑of m)))) m [PROOFSTEP] congr [GOAL] case h.e'_1.e_a ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N C : CoprodI M → Prop m : CoprodI M h_one : C 1 h_of : ∀ (i : ι) (m : M i), C (↑of m) h_mul : ∀ (x y : CoprodI M), C x → C y → C (x * y) S : Submonoid (CoprodI M) := { toSubsemigroup := { carrier := setOf C, mul_mem' := (_ : ∀ {a b : CoprodI M}, C a → C b → C (a * b)) }, one_mem' := h_one } this : C ↑(↑(↑lift fun i => MonoidHom.codRestrict of S (_ : ∀ (m : M i), C (↑of m))) m) ⊢ MonoidHom.id (CoprodI M) = MonoidHom.comp (Submonoid.subtype S) (↑lift fun i => MonoidHom.codRestrict of S (_ : ∀ (m : M i), C (↑of m))) [PROOFSTEP] ext i [GOAL] case h.e'_1.e_a.h.h ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N C : CoprodI M → Prop m : CoprodI M h_one : C 1 h_of : ∀ (i : ι) (m : M i), C (↑of m) h_mul : ∀ (x y : CoprodI M), C x → C y → C (x * y) S : Submonoid (CoprodI M) := { toSubsemigroup := { carrier := setOf C, mul_mem' := (_ : ∀ {a b : CoprodI M}, C a → C b → C (a * b)) }, one_mem' := h_one } this : C ↑(↑(↑lift fun i => MonoidHom.codRestrict of S (_ : ∀ (m : M i), C (↑of m))) m) i : ι x✝ : M i ⊢ ↑(MonoidHom.comp (MonoidHom.id (CoprodI M)) of) x✝ = ↑(MonoidHom.comp (MonoidHom.comp (Submonoid.subtype S) (↑lift fun i => MonoidHom.codRestrict of S (_ : ∀ (m : M i), C (↑of m)))) of) x✝ [PROOFSTEP] rfl [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N inst✝ : DecidableEq ι i : ι x : M i ⊢ ↑(↑lift (Pi.mulSingle i (MonoidHom.id (M i)))) (↑of x) = x [PROOFSTEP] simp only [lift_of, Pi.mulSingle_eq_same, MonoidHom.id_apply] [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i : ι ⊢ Function.Injective ↑of [PROOFSTEP] classical exact (of_leftInverse i).injective [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i : ι ⊢ Function.Injective ↑of [PROOFSTEP] exact (of_leftInverse i).injective [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N✝ : Type u_3 inst✝¹ : Monoid N✝ N : Type u_4 inst✝ : Monoid N f : (i : ι) → M i →* N s : Submonoid N h : ∀ (i : ι), MonoidHom.mrange (f i) ≤ s ⊢ MonoidHom.mrange (↑lift f) ≤ s [PROOFSTEP] rintro _ ⟨x, rfl⟩ [GOAL] case intro ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N✝ : Type u_3 inst✝¹ : Monoid N✝ N : Type u_4 inst✝ : Monoid N f : (i : ι) → M i →* N s : Submonoid N h : ∀ (i : ι), MonoidHom.mrange (f i) ≤ s x : CoprodI fun i => M i ⊢ ↑(↑lift f) x ∈ s [PROOFSTEP] induction' x using CoprodI.induction_on with i x x y hx hy [GOAL] case intro.h_one ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N✝ : Type u_3 inst✝¹ : Monoid N✝ N : Type u_4 inst✝ : Monoid N f : (i : ι) → M i →* N s : Submonoid N h : ∀ (i : ι), MonoidHom.mrange (f i) ≤ s ⊢ ↑(↑lift f) 1 ∈ s [PROOFSTEP] exact s.one_mem [GOAL] case intro.h_of ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N✝ : Type u_3 inst✝¹ : Monoid N✝ N : Type u_4 inst✝ : Monoid N f : (i : ι) → M i →* N s : Submonoid N h : ∀ (i : ι), MonoidHom.mrange (f i) ≤ s i : ι x : M i ⊢ ↑(↑lift f) (↑of x) ∈ s [PROOFSTEP] simp only [lift_of, SetLike.mem_coe] [GOAL] case intro.h_of ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N✝ : Type u_3 inst✝¹ : Monoid N✝ N : Type u_4 inst✝ : Monoid N f : (i : ι) → M i →* N s : Submonoid N h : ∀ (i : ι), MonoidHom.mrange (f i) ≤ s i : ι x : M i ⊢ ↑(f i) x ∈ s [PROOFSTEP] exact h i (Set.mem_range_self x) [GOAL] case intro.h_mul ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N✝ : Type u_3 inst✝¹ : Monoid N✝ N : Type u_4 inst✝ : Monoid N f : (i : ι) → M i →* N s : Submonoid N h : ∀ (i : ι), MonoidHom.mrange (f i) ≤ s x y : CoprodI fun i => M i hx : ↑(↑lift f) x ∈ s hy : ↑(↑lift f) y ∈ s ⊢ ↑(↑lift f) (x * y) ∈ s [PROOFSTEP] simp only [map_mul, SetLike.mem_coe] [GOAL] case intro.h_mul ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N✝ : Type u_3 inst✝¹ : Monoid N✝ N : Type u_4 inst✝ : Monoid N f : (i : ι) → M i →* N s : Submonoid N h : ∀ (i : ι), MonoidHom.mrange (f i) ≤ s x y : CoprodI fun i => M i hx : ↑(↑lift f) x ∈ s hy : ↑(↑lift f) y ∈ s ⊢ ↑(↑lift f) x * ↑(↑lift f) y ∈ s [PROOFSTEP] exact s.mul_mem hx hy [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N✝ : Type u_3 inst✝¹ : Monoid N✝ N : Type u_4 inst✝ : Monoid N f : (i : ι) → M i →* N ⊢ MonoidHom.mrange (↑lift f) = ⨆ (i : ι), MonoidHom.mrange (f i) [PROOFSTEP] apply le_antisymm (lift_mrange_le f fun i => le_iSup (fun i => MonoidHom.mrange (f i)) i) [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N✝ : Type u_3 inst✝¹ : Monoid N✝ N : Type u_4 inst✝ : Monoid N f : (i : ι) → M i →* N ⊢ ⨆ (i : ι), MonoidHom.mrange (f i) ≤ MonoidHom.mrange (↑lift f) [PROOFSTEP] apply iSup_le _ [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N✝ : Type u_3 inst✝¹ : Monoid N✝ N : Type u_4 inst✝ : Monoid N f : (i : ι) → M i →* N ⊢ ∀ (i : ι), MonoidHom.mrange (f i) ≤ MonoidHom.mrange (↑lift f) [PROOFSTEP] rintro i _ ⟨x, rfl⟩ [GOAL] case intro ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N✝ : Type u_3 inst✝¹ : Monoid N✝ N : Type u_4 inst✝ : Monoid N f : (i : ι) → M i →* N i : ι x : M i ⊢ ↑(f i) x ∈ MonoidHom.mrange (↑lift f) [PROOFSTEP] exact ⟨of x, by simp only [lift_of]⟩ [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N✝ : Type u_3 inst✝¹ : Monoid N✝ N : Type u_4 inst✝ : Monoid N f : (i : ι) → M i →* N i : ι x : M i ⊢ ↑(↑lift f) (↑of x) = ↑(f i) x [PROOFSTEP] simp only [lift_of] [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N G : ι → Type u_4 inst✝ : (i : ι) → Group (G i) src✝¹ : Inv (CoprodI G) := inferInstanceAs (Inv (CoprodI G)) src✝ : Monoid (CoprodI G) := inferInstanceAs (Monoid (CoprodI G)) ⊢ ∀ (a : CoprodI G), a⁻¹ * a = 1 [PROOFSTEP] intro m [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N G : ι → Type u_4 inst✝ : (i : ι) → Group (G i) src✝¹ : Inv (CoprodI G) := inferInstanceAs (Inv (CoprodI G)) src✝ : Monoid (CoprodI G) := inferInstanceAs (Monoid (CoprodI G)) m : CoprodI G ⊢ m⁻¹ * m = 1 [PROOFSTEP] rw [inv_def] [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N G : ι → Type u_4 inst✝ : (i : ι) → Group (G i) src✝¹ : Inv (CoprodI G) := inferInstanceAs (Inv (CoprodI G)) src✝ : Monoid (CoprodI G) := inferInstanceAs (Monoid (CoprodI G)) m : CoprodI G ⊢ MulOpposite.unop (↑(↑lift fun i => MonoidHom.comp (↑MonoidHom.op of) (MulEquiv.toMonoidHom (MulEquiv.inv' (G i)))) m) * m = 1 [PROOFSTEP] induction m using CoprodI.induction_on with | h_one => rw [MonoidHom.map_one, MulOpposite.unop_one, one_mul] | h_of m ih => change of _⁻¹ * of _ = 1 rw [← of.map_mul, mul_left_inv, of.map_one] | h_mul x y ihx ihy => rw [MonoidHom.map_mul, MulOpposite.unop_mul, mul_assoc, ← mul_assoc _ x y, ihx, one_mul, ihy] [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N G : ι → Type u_4 inst✝ : (i : ι) → Group (G i) src✝¹ : Inv (CoprodI G) := inferInstanceAs (Inv (CoprodI G)) src✝ : Monoid (CoprodI G) := inferInstanceAs (Monoid (CoprodI G)) m : CoprodI G ⊢ MulOpposite.unop (↑(↑lift fun i => MonoidHom.comp (↑MonoidHom.op of) (MulEquiv.toMonoidHom (MulEquiv.inv' (G i)))) m) * m = 1 [PROOFSTEP] induction m using CoprodI.induction_on with | h_one => rw [MonoidHom.map_one, MulOpposite.unop_one, one_mul] | h_of m ih => change of _⁻¹ * of _ = 1 rw [← of.map_mul, mul_left_inv, of.map_one] | h_mul x y ihx ihy => rw [MonoidHom.map_mul, MulOpposite.unop_mul, mul_assoc, ← mul_assoc _ x y, ihx, one_mul, ihy] [GOAL] case h_one ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N G : ι → Type u_4 inst✝ : (i : ι) → Group (G i) src✝¹ : Inv (CoprodI G) := inferInstanceAs (Inv (CoprodI G)) src✝ : Monoid (CoprodI G) := inferInstanceAs (Monoid (CoprodI G)) ⊢ MulOpposite.unop (↑(↑lift fun i => MonoidHom.comp (↑MonoidHom.op of) (MulEquiv.toMonoidHom (MulEquiv.inv' (G i)))) 1) * 1 = 1 [PROOFSTEP] | h_one => rw [MonoidHom.map_one, MulOpposite.unop_one, one_mul] [GOAL] case h_one ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N G : ι → Type u_4 inst✝ : (i : ι) → Group (G i) src✝¹ : Inv (CoprodI G) := inferInstanceAs (Inv (CoprodI G)) src✝ : Monoid (CoprodI G) := inferInstanceAs (Monoid (CoprodI G)) ⊢ MulOpposite.unop (↑(↑lift fun i => MonoidHom.comp (↑MonoidHom.op of) (MulEquiv.toMonoidHom (MulEquiv.inv' (G i)))) 1) * 1 = 1 [PROOFSTEP] rw [MonoidHom.map_one, MulOpposite.unop_one, one_mul] [GOAL] case h_of ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N G : ι → Type u_4 inst✝ : (i : ι) → Group (G i) src✝¹ : Inv (CoprodI G) := inferInstanceAs (Inv (CoprodI G)) src✝ : Monoid (CoprodI G) := inferInstanceAs (Monoid (CoprodI G)) m : ι ih : G m ⊢ MulOpposite.unop (↑(↑lift fun i => MonoidHom.comp (↑MonoidHom.op of) (MulEquiv.toMonoidHom (MulEquiv.inv' (G i)))) (↑of ih)) * ↑of ih = 1 [PROOFSTEP] | h_of m ih => change of _⁻¹ * of _ = 1 rw [← of.map_mul, mul_left_inv, of.map_one] [GOAL] case h_of ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N G : ι → Type u_4 inst✝ : (i : ι) → Group (G i) src✝¹ : Inv (CoprodI G) := inferInstanceAs (Inv (CoprodI G)) src✝ : Monoid (CoprodI G) := inferInstanceAs (Monoid (CoprodI G)) m : ι ih : G m ⊢ MulOpposite.unop (↑(↑lift fun i => MonoidHom.comp (↑MonoidHom.op of) (MulEquiv.toMonoidHom (MulEquiv.inv' (G i)))) (↑of ih)) * ↑of ih = 1 [PROOFSTEP] change of _⁻¹ * of _ = 1 [GOAL] case h_of ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N G : ι → Type u_4 inst✝ : (i : ι) → Group (G i) src✝¹ : Inv (CoprodI G) := inferInstanceAs (Inv (CoprodI G)) src✝ : Monoid (CoprodI G) := inferInstanceAs (Monoid (CoprodI G)) m : ι ih : G m ⊢ ↑of { fst := m, snd := ih }.snd⁻¹ * ↑of ih = 1 [PROOFSTEP] rw [← of.map_mul, mul_left_inv, of.map_one] [GOAL] case h_mul ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N G : ι → Type u_4 inst✝ : (i : ι) → Group (G i) src✝¹ : Inv (CoprodI G) := inferInstanceAs (Inv (CoprodI G)) src✝ : Monoid (CoprodI G) := inferInstanceAs (Monoid (CoprodI G)) x y : CoprodI G ihx : MulOpposite.unop (↑(↑lift fun i => MonoidHom.comp (↑MonoidHom.op of) (MulEquiv.toMonoidHom (MulEquiv.inv' (G i)))) x) * x = 1 ihy : MulOpposite.unop (↑(↑lift fun i => MonoidHom.comp (↑MonoidHom.op of) (MulEquiv.toMonoidHom (MulEquiv.inv' (G i)))) y) * y = 1 ⊢ MulOpposite.unop (↑(↑lift fun i => MonoidHom.comp (↑MonoidHom.op of) (MulEquiv.toMonoidHom (MulEquiv.inv' (G i)))) (x * y)) * (x * y) = 1 [PROOFSTEP] | h_mul x y ihx ihy => rw [MonoidHom.map_mul, MulOpposite.unop_mul, mul_assoc, ← mul_assoc _ x y, ihx, one_mul, ihy] [GOAL] case h_mul ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N G : ι → Type u_4 inst✝ : (i : ι) → Group (G i) src✝¹ : Inv (CoprodI G) := inferInstanceAs (Inv (CoprodI G)) src✝ : Monoid (CoprodI G) := inferInstanceAs (Monoid (CoprodI G)) x y : CoprodI G ihx : MulOpposite.unop (↑(↑lift fun i => MonoidHom.comp (↑MonoidHom.op of) (MulEquiv.toMonoidHom (MulEquiv.inv' (G i)))) x) * x = 1 ihy : MulOpposite.unop (↑(↑lift fun i => MonoidHom.comp (↑MonoidHom.op of) (MulEquiv.toMonoidHom (MulEquiv.inv' (G i)))) y) * y = 1 ⊢ MulOpposite.unop (↑(↑lift fun i => MonoidHom.comp (↑MonoidHom.op of) (MulEquiv.toMonoidHom (MulEquiv.inv' (G i)))) (x * y)) * (x * y) = 1 [PROOFSTEP] rw [MonoidHom.map_mul, MulOpposite.unop_mul, mul_assoc, ← mul_assoc _ x y, ihx, one_mul, ihy] [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N✝ : Type u_3 inst✝² : Monoid N✝ G : ι → Type u_4 inst✝¹ : (i : ι) → Group (G i) N : Type u_5 inst✝ : Group N f : (i : ι) → G i →* N s : Subgroup N h : ∀ (i : ι), MonoidHom.range (f i) ≤ s ⊢ MonoidHom.range (↑lift f) ≤ s [PROOFSTEP] rintro _ ⟨x, rfl⟩ [GOAL] case intro ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N✝ : Type u_3 inst✝² : Monoid N✝ G : ι → Type u_4 inst✝¹ : (i : ι) → Group (G i) N : Type u_5 inst✝ : Group N f : (i : ι) → G i →* N s : Subgroup N h : ∀ (i : ι), MonoidHom.range (f i) ≤ s x : CoprodI fun i => G i ⊢ ↑(↑lift f) x ∈ s [PROOFSTEP] induction' x using CoprodI.induction_on with i x x y hx hy [GOAL] case intro.h_one ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N✝ : Type u_3 inst✝² : Monoid N✝ G : ι → Type u_4 inst✝¹ : (i : ι) → Group (G i) N : Type u_5 inst✝ : Group N f : (i : ι) → G i →* N s : Subgroup N h : ∀ (i : ι), MonoidHom.range (f i) ≤ s ⊢ ↑(↑lift f) 1 ∈ s [PROOFSTEP] exact s.one_mem [GOAL] case intro.h_of ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N✝ : Type u_3 inst✝² : Monoid N✝ G : ι → Type u_4 inst✝¹ : (i : ι) → Group (G i) N : Type u_5 inst✝ : Group N f : (i : ι) → G i →* N s : Subgroup N h : ∀ (i : ι), MonoidHom.range (f i) ≤ s i : ι x : G i ⊢ ↑(↑lift f) (↑of x) ∈ s [PROOFSTEP] simp only [lift_of, SetLike.mem_coe] [GOAL] case intro.h_of ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N✝ : Type u_3 inst✝² : Monoid N✝ G : ι → Type u_4 inst✝¹ : (i : ι) → Group (G i) N : Type u_5 inst✝ : Group N f : (i : ι) → G i →* N s : Subgroup N h : ∀ (i : ι), MonoidHom.range (f i) ≤ s i : ι x : G i ⊢ ↑(f i) x ∈ s [PROOFSTEP] exact h i (Set.mem_range_self x) [GOAL] case intro.h_mul ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N✝ : Type u_3 inst✝² : Monoid N✝ G : ι → Type u_4 inst✝¹ : (i : ι) → Group (G i) N : Type u_5 inst✝ : Group N f : (i : ι) → G i →* N s : Subgroup N h : ∀ (i : ι), MonoidHom.range (f i) ≤ s x y : CoprodI fun i => G i hx : ↑(↑lift f) x ∈ s hy : ↑(↑lift f) y ∈ s ⊢ ↑(↑lift f) (x * y) ∈ s [PROOFSTEP] simp only [map_mul, SetLike.mem_coe] [GOAL] case intro.h_mul ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N✝ : Type u_3 inst✝² : Monoid N✝ G : ι → Type u_4 inst✝¹ : (i : ι) → Group (G i) N : Type u_5 inst✝ : Group N f : (i : ι) → G i →* N s : Subgroup N h : ∀ (i : ι), MonoidHom.range (f i) ≤ s x y : CoprodI fun i => G i hx : ↑(↑lift f) x ∈ s hy : ↑(↑lift f) y ∈ s ⊢ ↑(↑lift f) x * ↑(↑lift f) y ∈ s [PROOFSTEP] exact s.mul_mem hx hy [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N✝ : Type u_3 inst✝² : Monoid N✝ G : ι → Type u_4 inst✝¹ : (i : ι) → Group (G i) N : Type u_5 inst✝ : Group N f : (i : ι) → G i →* N ⊢ MonoidHom.range (↑lift f) = ⨆ (i : ι), MonoidHom.range (f i) [PROOFSTEP] apply le_antisymm (lift_range_le _ f fun i => le_iSup (fun i => MonoidHom.range (f i)) i) [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N✝ : Type u_3 inst✝² : Monoid N✝ G : ι → Type u_4 inst✝¹ : (i : ι) → Group (G i) N : Type u_5 inst✝ : Group N f : (i : ι) → G i →* N ⊢ ⨆ (i : ι), MonoidHom.range (f i) ≤ MonoidHom.range (↑lift f) [PROOFSTEP] apply iSup_le _ [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N✝ : Type u_3 inst✝² : Monoid N✝ G : ι → Type u_4 inst✝¹ : (i : ι) → Group (G i) N : Type u_5 inst✝ : Group N f : (i : ι) → G i →* N ⊢ ∀ (i : ι), MonoidHom.range (f i) ≤ MonoidHom.range (↑lift f) [PROOFSTEP] rintro i _ ⟨x, rfl⟩ [GOAL] case intro ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N✝ : Type u_3 inst✝² : Monoid N✝ G : ι → Type u_4 inst✝¹ : (i : ι) → Group (G i) N : Type u_5 inst✝ : Group N f : (i : ι) → G i →* N i : ι x : G i ⊢ ↑(f i) x ∈ MonoidHom.range (↑lift f) [PROOFSTEP] exact ⟨of x, by simp only [lift_of]⟩ [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N✝ : Type u_3 inst✝² : Monoid N✝ G : ι → Type u_4 inst✝¹ : (i : ι) → Group (G i) N : Type u_5 inst✝ : Group N f : (i : ι) → G i →* N i : ι x : G i ⊢ ↑(↑lift f) (↑of x) = ↑(f i) x [PROOFSTEP] simp only [lift_of] [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N ⊢ ∀ (l : (i : ι) × M i), l ∈ [] → l.snd ≠ 1 [PROOFSTEP] simp [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N w : Word M i : ι ⊢ ¬fstIdx w ≠ some i ↔ ¬∀ (l : (i : ι) × M i), l ∈ List.head? w.toList → i ≠ l.fst [PROOFSTEP] simp [fstIdx] [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i : ι ⊢ fstIdx empty ≠ some i [PROOFSTEP] tauto [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N inst✝ : (i : ι) → DecidableEq (M i) i : ι p : Pair M i h : ¬p.head = 1 ⊢ ∀ (l : (i : ι) × M i), l ∈ { fst := i, snd := p.head } :: p.tail.toList → l.snd ≠ 1 [PROOFSTEP] simp only [List.mem_cons] [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N inst✝ : (i : ι) → DecidableEq (M i) i : ι p : Pair M i h : ¬p.head = 1 ⊢ ∀ (l : (i : ι) × M i), l = { fst := i, snd := p.head } ∨ l ∈ p.tail.toList → l.snd ≠ 1 [PROOFSTEP] rintro l (rfl | hl) [GOAL] case inl ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N inst✝ : (i : ι) → DecidableEq (M i) i : ι p : Pair M i h : ¬p.head = 1 ⊢ { fst := i, snd := p.head }.snd ≠ 1 case inr ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N inst✝ : (i : ι) → DecidableEq (M i) i : ι p : Pair M i h : ¬p.head = 1 l : (i : ι) × M i hl : l ∈ p.tail.toList ⊢ l.snd ≠ 1 [PROOFSTEP] exact h [GOAL] case inr ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N inst✝ : (i : ι) → DecidableEq (M i) i : ι p : Pair M i h : ¬p.head = 1 l : (i : ι) × M i hl : l ∈ p.tail.toList ⊢ l.snd ≠ 1 [PROOFSTEP] exact p.tail.ne_one l hl [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N inst✝ : (i : ι) → DecidableEq (M i) i : ι m : M i ls : List ((i : ι) × M i) h1 : ∀ (l : (i : ι) × M i), l ∈ { fst := i, snd := m } :: ls → l.snd ≠ 1 h2 : List.Chain' (fun l l' => l.fst ≠ l'.fst) ({ fst := i, snd := m } :: ls) ⊢ { toList := { fst := i, snd := m } :: ls, ne_one := h1, chain_ne := h2 } = rcons { head := m, tail := Monoid.CoprodI.Word.mkAux ls h1 h2, fstIdx_ne := (_ : fstIdx (Monoid.CoprodI.Word.mkAux ls h1 h2) ≠ some i) } [PROOFSTEP] rw [rcons, dif_neg] [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N inst✝ : (i : ι) → DecidableEq (M i) i : ι m : M i ls : List ((i : ι) × M i) h1 : ∀ (l : (i : ι) × M i), l ∈ { fst := i, snd := m } :: ls → l.snd ≠ 1 h2 : List.Chain' (fun l l' => l.fst ≠ l'.fst) ({ fst := i, snd := m } :: ls) ⊢ { toList := { fst := i, snd := m } :: ls, ne_one := h1, chain_ne := h2 } = { toList := { fst := i, snd := { head := m, tail := Monoid.CoprodI.Word.mkAux ls h1 h2, fstIdx_ne := (_ : fstIdx (Monoid.CoprodI.Word.mkAux ls h1 h2) ≠ some i) }.head } :: { head := m, tail := Monoid.CoprodI.Word.mkAux ls h1 h2, fstIdx_ne := (_ : fstIdx (Monoid.CoprodI.Word.mkAux ls h1 h2) ≠ some i) }.tail.toList, ne_one := (_ : ∀ (l : (i : ι) × M i), l ∈ { fst := i, snd := { head := m, tail := Monoid.CoprodI.Word.mkAux ls h1 h2, fstIdx_ne := (_ : fstIdx (Monoid.CoprodI.Word.mkAux ls h1 h2) ≠ some i) }.head } :: { head := m, tail := Monoid.CoprodI.Word.mkAux ls h1 h2, fstIdx_ne := (_ : fstIdx (Monoid.CoprodI.Word.mkAux ls h1 h2) ≠ some i) }.tail.toList → l.snd ≠ 1), chain_ne := (_ : List.Chain' (fun l l' => l.fst ≠ l'.fst) ({ fst := i, snd := { head := m, tail := Monoid.CoprodI.Word.mkAux ls h1 h2, fstIdx_ne := (_ : fstIdx (Monoid.CoprodI.Word.mkAux ls h1 h2) ≠ some i) }.head } :: { head := m, tail := Monoid.CoprodI.Word.mkAux ls h1 h2, fstIdx_ne := (_ : fstIdx (Monoid.CoprodI.Word.mkAux ls h1 h2) ≠ some i) }.tail.toList)) } case hnc ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N inst✝ : (i : ι) → DecidableEq (M i) i : ι m : M i ls : List ((i : ι) × M i) h1 : ∀ (l : (i : ι) × M i), l ∈ { fst := i, snd := m } :: ls → l.snd ≠ 1 h2 : List.Chain' (fun l l' => l.fst ≠ l'.fst) ({ fst := i, snd := m } :: ls) ⊢ ¬{ head := m, tail := Monoid.CoprodI.Word.mkAux ls h1 h2, fstIdx_ne := (_ : fstIdx (Monoid.CoprodI.Word.mkAux ls h1 h2) ≠ some i) }.head = 1 [PROOFSTEP] rfl [GOAL] case hnc ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N inst✝ : (i : ι) → DecidableEq (M i) i : ι m : M i ls : List ((i : ι) × M i) h1 : ∀ (l : (i : ι) × M i), l ∈ { fst := i, snd := m } :: ls → l.snd ≠ 1 h2 : List.Chain' (fun l l' => l.fst ≠ l'.fst) ({ fst := i, snd := m } :: ls) ⊢ ¬{ head := m, tail := Monoid.CoprodI.Word.mkAux ls h1 h2, fstIdx_ne := (_ : fstIdx (Monoid.CoprodI.Word.mkAux ls h1 h2) ≠ some i) }.head = 1 [PROOFSTEP] exact h1 ⟨i, m⟩ (ls.mem_cons_self _) [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N inst✝ : (i : ι) → DecidableEq (M i) i : ι p : Pair M i hm : p.head = 1 ⊢ prod (rcons p) = ↑of p.head * prod p.tail [PROOFSTEP] rw [rcons, dif_pos hm, hm, MonoidHom.map_one, one_mul] [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N inst✝ : (i : ι) → DecidableEq (M i) i : ι p : Pair M i hm : ¬p.head = 1 ⊢ prod (rcons p) = ↑of p.head * prod p.tail [PROOFSTEP] rw [rcons, dif_neg hm, prod, List.map_cons, List.prod_cons, prod] [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N inst✝ : (i : ι) → DecidableEq (M i) i : ι ⊢ Function.Injective rcons [PROOFSTEP] rintro ⟨m, w, h⟩ ⟨m', w', h'⟩ he [GOAL] case mk.mk ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N inst✝ : (i : ι) → DecidableEq (M i) i : ι m : M i w : Word M h : fstIdx w ≠ some i m' : M i w' : Word M h' : fstIdx w' ≠ some i he : rcons { head := m, tail := w, fstIdx_ne := h } = rcons { head := m', tail := w', fstIdx_ne := h' } ⊢ { head := m, tail := w, fstIdx_ne := h } = { head := m', tail := w', fstIdx_ne := h' } [PROOFSTEP] by_cases hm : m = 1 [GOAL] case pos ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N inst✝ : (i : ι) → DecidableEq (M i) i : ι m : M i w : Word M h : fstIdx w ≠ some i m' : M i w' : Word M h' : fstIdx w' ≠ some i he : rcons { head := m, tail := w, fstIdx_ne := h } = rcons { head := m', tail := w', fstIdx_ne := h' } hm : m = 1 ⊢ { head := m, tail := w, fstIdx_ne := h } = { head := m', tail := w', fstIdx_ne := h' } [PROOFSTEP] by_cases hm' : m' = 1 [GOAL] case neg ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N inst✝ : (i : ι) → DecidableEq (M i) i : ι m : M i w : Word M h : fstIdx w ≠ some i m' : M i w' : Word M h' : fstIdx w' ≠ some i he : rcons { head := m, tail := w, fstIdx_ne := h } = rcons { head := m', tail := w', fstIdx_ne := h' } hm : ¬m = 1 ⊢ { head := m, tail := w, fstIdx_ne := h } = { head := m', tail := w', fstIdx_ne := h' } [PROOFSTEP] by_cases hm' : m' = 1 [GOAL] case pos ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N inst✝ : (i : ι) → DecidableEq (M i) i : ι m : M i w : Word M h : fstIdx w ≠ some i m' : M i w' : Word M h' : fstIdx w' ≠ some i he : rcons { head := m, tail := w, fstIdx_ne := h } = rcons { head := m', tail := w', fstIdx_ne := h' } hm : m = 1 hm' : m' = 1 ⊢ { head := m, tail := w, fstIdx_ne := h } = { head := m', tail := w', fstIdx_ne := h' } [PROOFSTEP] simp only [rcons, dif_pos hm, dif_pos hm'] at he [GOAL] case pos ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N inst✝ : (i : ι) → DecidableEq (M i) i : ι m : M i w : Word M h : fstIdx w ≠ some i m' : M i w' : Word M h' : fstIdx w' ≠ some i hm : m = 1 hm' : m' = 1 he : w = w' ⊢ { head := m, tail := w, fstIdx_ne := h } = { head := m', tail := w', fstIdx_ne := h' } [PROOFSTEP] aesop [GOAL] case neg ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N inst✝ : (i : ι) → DecidableEq (M i) i : ι m : M i w : Word M h : fstIdx w ≠ some i m' : M i w' : Word M h' : fstIdx w' ≠ some i he : rcons { head := m, tail := w, fstIdx_ne := h } = rcons { head := m', tail := w', fstIdx_ne := h' } hm : m = 1 hm' : ¬m' = 1 ⊢ { head := m, tail := w, fstIdx_ne := h } = { head := m', tail := w', fstIdx_ne := h' } [PROOFSTEP] exfalso [GOAL] case neg.h ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N inst✝ : (i : ι) → DecidableEq (M i) i : ι m : M i w : Word M h : fstIdx w ≠ some i m' : M i w' : Word M h' : fstIdx w' ≠ some i he : rcons { head := m, tail := w, fstIdx_ne := h } = rcons { head := m', tail := w', fstIdx_ne := h' } hm : m = 1 hm' : ¬m' = 1 ⊢ False [PROOFSTEP] simp only [rcons, dif_pos hm, dif_neg hm'] at he [GOAL] case neg.h ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N inst✝ : (i : ι) → DecidableEq (M i) i : ι m : M i w : Word M h : fstIdx w ≠ some i m' : M i w' : Word M h' : fstIdx w' ≠ some i hm : m = 1 hm' : ¬m' = 1 he : w = { toList := { fst := i, snd := m' } :: w'.toList, ne_one := (_ : ∀ (l : (i : ι) × M i), l ∈ { fst := i, snd := { head := m', tail := w', fstIdx_ne := h' }.head } :: { head := m', tail := w', fstIdx_ne := h' }.tail.toList → l.snd ≠ 1), chain_ne := (_ : List.Chain' (fun l l' => l.fst ≠ l'.fst) ({ fst := i, snd := { head := m', tail := w', fstIdx_ne := h' }.head } :: { head := m', tail := w', fstIdx_ne := h' }.tail.toList)) } ⊢ False [PROOFSTEP] rw [he] at h [GOAL] case neg.h ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N inst✝ : (i : ι) → DecidableEq (M i) i : ι m : M i w : Word M m' : M i w' : Word M h' : fstIdx w' ≠ some i hm : m = 1 hm' : ¬m' = 1 h : fstIdx { toList := { fst := i, snd := m' } :: w'.toList, ne_one := (_ : ∀ (l : (i : ι) × M i), l ∈ { fst := i, snd := { head := m', tail := w', fstIdx_ne := h' }.head } :: { head := m', tail := w', fstIdx_ne := h' }.tail.toList → l.snd ≠ 1), chain_ne := (_ : List.Chain' (fun l l' => l.fst ≠ l'.fst) ({ fst := i, snd := { head := m', tail := w', fstIdx_ne := h' }.head } :: { head := m', tail := w', fstIdx_ne := h' }.tail.toList)) } ≠ some i he : w = { toList := { fst := i, snd := m' } :: w'.toList, ne_one := (_ : ∀ (l : (i : ι) × M i), l ∈ { fst := i, snd := { head := m', tail := w', fstIdx_ne := h' }.head } :: { head := m', tail := w', fstIdx_ne := h' }.tail.toList → l.snd ≠ 1), chain_ne := (_ : List.Chain' (fun l l' => l.fst ≠ l'.fst) ({ fst := i, snd := { head := m', tail := w', fstIdx_ne := h' }.head } :: { head := m', tail := w', fstIdx_ne := h' }.tail.toList)) } ⊢ False [PROOFSTEP] exact h rfl [GOAL] case pos ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N inst✝ : (i : ι) → DecidableEq (M i) i : ι m : M i w : Word M h : fstIdx w ≠ some i m' : M i w' : Word M h' : fstIdx w' ≠ some i he : rcons { head := m, tail := w, fstIdx_ne := h } = rcons { head := m', tail := w', fstIdx_ne := h' } hm : ¬m = 1 hm' : m' = 1 ⊢ { head := m, tail := w, fstIdx_ne := h } = { head := m', tail := w', fstIdx_ne := h' } [PROOFSTEP] exfalso [GOAL] case pos.h ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N inst✝ : (i : ι) → DecidableEq (M i) i : ι m : M i w : Word M h : fstIdx w ≠ some i m' : M i w' : Word M h' : fstIdx w' ≠ some i he : rcons { head := m, tail := w, fstIdx_ne := h } = rcons { head := m', tail := w', fstIdx_ne := h' } hm : ¬m = 1 hm' : m' = 1 ⊢ False [PROOFSTEP] simp only [rcons, dif_pos hm', dif_neg hm] at he [GOAL] case pos.h ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N inst✝ : (i : ι) → DecidableEq (M i) i : ι m : M i w : Word M h : fstIdx w ≠ some i m' : M i w' : Word M h' : fstIdx w' ≠ some i hm : ¬m = 1 hm' : m' = 1 he : { toList := { fst := i, snd := m } :: w.toList, ne_one := (_ : ∀ (l : (i : ι) × M i), l ∈ { fst := i, snd := { head := m, tail := w, fstIdx_ne := h }.head } :: { head := m, tail := w, fstIdx_ne := h }.tail.toList → l.snd ≠ 1), chain_ne := (_ : List.Chain' (fun l l' => l.fst ≠ l'.fst) ({ fst := i, snd := { head := m, tail := w, fstIdx_ne := h }.head } :: { head := m, tail := w, fstIdx_ne := h }.tail.toList)) } = w' ⊢ False [PROOFSTEP] rw [← he] at h' [GOAL] case pos.h ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N inst✝ : (i : ι) → DecidableEq (M i) i : ι m : M i w : Word M h : fstIdx w ≠ some i m' : M i w' : Word M hm : ¬m = 1 h' : fstIdx { toList := { fst := i, snd := m } :: w.toList, ne_one := (_ : ∀ (l : (i : ι) × M i), l ∈ { fst := i, snd := { head := m, tail := w, fstIdx_ne := h }.head } :: { head := m, tail := w, fstIdx_ne := h }.tail.toList → l.snd ≠ 1), chain_ne := (_ : List.Chain' (fun l l' => l.fst ≠ l'.fst) ({ fst := i, snd := { head := m, tail := w, fstIdx_ne := h }.head } :: { head := m, tail := w, fstIdx_ne := h }.tail.toList)) } ≠ some i hm' : m' = 1 he : { toList := { fst := i, snd := m } :: w.toList, ne_one := (_ : ∀ (l : (i : ι) × M i), l ∈ { fst := i, snd := { head := m, tail := w, fstIdx_ne := h }.head } :: { head := m, tail := w, fstIdx_ne := h }.tail.toList → l.snd ≠ 1), chain_ne := (_ : List.Chain' (fun l l' => l.fst ≠ l'.fst) ({ fst := i, snd := { head := m, tail := w, fstIdx_ne := h }.head } :: { head := m, tail := w, fstIdx_ne := h }.tail.toList)) } = w' ⊢ False [PROOFSTEP] exact h' rfl [GOAL] case neg ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N inst✝ : (i : ι) → DecidableEq (M i) i : ι m : M i w : Word M h : fstIdx w ≠ some i m' : M i w' : Word M h' : fstIdx w' ≠ some i he : rcons { head := m, tail := w, fstIdx_ne := h } = rcons { head := m', tail := w', fstIdx_ne := h' } hm : ¬m = 1 hm' : ¬m' = 1 ⊢ { head := m, tail := w, fstIdx_ne := h } = { head := m', tail := w', fstIdx_ne := h' } [PROOFSTEP] have : m = m' ∧ w.toList = w'.toList := by simpa [rcons, dif_neg hm, dif_neg hm', true_and_iff, eq_self_iff_true, Subtype.mk_eq_mk, heq_iff_eq, ← Subtype.ext_iff_val] using he [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N inst✝ : (i : ι) → DecidableEq (M i) i : ι m : M i w : Word M h : fstIdx w ≠ some i m' : M i w' : Word M h' : fstIdx w' ≠ some i he : rcons { head := m, tail := w, fstIdx_ne := h } = rcons { head := m', tail := w', fstIdx_ne := h' } hm : ¬m = 1 hm' : ¬m' = 1 ⊢ m = m' ∧ w.toList = w'.toList [PROOFSTEP] simpa [rcons, dif_neg hm, dif_neg hm', true_and_iff, eq_self_iff_true, Subtype.mk_eq_mk, heq_iff_eq, ← Subtype.ext_iff_val] using he [GOAL] case neg ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N inst✝ : (i : ι) → DecidableEq (M i) i : ι m : M i w : Word M h : fstIdx w ≠ some i m' : M i w' : Word M h' : fstIdx w' ≠ some i he : rcons { head := m, tail := w, fstIdx_ne := h } = rcons { head := m', tail := w', fstIdx_ne := h' } hm : ¬m = 1 hm' : ¬m' = 1 this : m = m' ∧ w.toList = w'.toList ⊢ { head := m, tail := w, fstIdx_ne := h } = { head := m', tail := w', fstIdx_ne := h' } [PROOFSTEP] rcases this with ⟨rfl, h⟩ [GOAL] case neg.intro ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N inst✝ : (i : ι) → DecidableEq (M i) i : ι m : M i w : Word M h✝ : fstIdx w ≠ some i w' : Word M h' : fstIdx w' ≠ some i hm : ¬m = 1 h : w.toList = w'.toList he : rcons { head := m, tail := w, fstIdx_ne := h✝ } = rcons { head := m, tail := w', fstIdx_ne := h' } hm' : ¬m = 1 ⊢ { head := m, tail := w, fstIdx_ne := h✝ } = { head := m, tail := w', fstIdx_ne := h' } [PROOFSTEP] congr [GOAL] case neg.intro.e_tail ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N inst✝ : (i : ι) → DecidableEq (M i) i : ι m : M i w : Word M h✝ : fstIdx w ≠ some i w' : Word M h' : fstIdx w' ≠ some i hm : ¬m = 1 h : w.toList = w'.toList he : rcons { head := m, tail := w, fstIdx_ne := h✝ } = rcons { head := m, tail := w', fstIdx_ne := h' } hm' : ¬m = 1 ⊢ w = w' [PROOFSTEP] exact Word.ext _ _ h [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N : Type u_3 inst✝² : Monoid N inst✝¹ : (i : ι) → DecidableEq (M i) inst✝ : DecidableEq ι i : ι w : Word M ne_one✝ : ∀ (l : (i : ι) × M i), l ∈ [] → l.snd ≠ 1 chain_ne✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) [] h✝ : w = { toList := [], ne_one := ne_one✝, chain_ne := chain_ne✝ } ⊢ fstIdx w ≠ some i [PROOFSTEP] subst w [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N : Type u_3 inst✝² : Monoid N inst✝¹ : (i : ι) → DecidableEq (M i) inst✝ : DecidableEq ι i : ι ne_one✝ : ∀ (l : (i : ι) × M i), l ∈ [] → l.snd ≠ 1 chain_ne✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) [] ⊢ fstIdx { toList := [], ne_one := ne_one✝, chain_ne := chain_ne✝ } ≠ some i [PROOFSTEP] simp [fstIdx] [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N : Type u_3 inst✝² : Monoid N inst✝¹ : (i : ι) → DecidableEq (M i) inst✝ : DecidableEq ι i : ι w : Word M ne_one✝ : ∀ (l : (i : ι) × M i), l ∈ [] → l.snd ≠ 1 chain_ne✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) [] h✝ : w = { toList := [], ne_one := ne_one✝, chain_ne := chain_ne✝ } ⊢ rcons { head := 1, tail := w, fstIdx_ne := (_ : fstIdx w ≠ some i) } = namedPattern w { toList := [], ne_one := ne_one✝, chain_ne := chain_ne✝ } h✝ [PROOFSTEP] subst w [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N : Type u_3 inst✝² : Monoid N inst✝¹ : (i : ι) → DecidableEq (M i) inst✝ : DecidableEq ι i : ι ne_one✝ : ∀ (l : (i : ι) × M i), l ∈ [] → l.snd ≠ 1 chain_ne✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) [] ⊢ rcons { head := 1, tail := { toList := [], ne_one := ne_one✝, chain_ne := chain_ne✝ }, fstIdx_ne := (_ : fstIdx { toList := [], ne_one := ne_one✝, chain_ne := chain_ne✝ } ≠ some i) } = namedPattern { toList := [], ne_one := ne_one✝, chain_ne := chain_ne✝ } { toList := [], ne_one := ne_one✝, chain_ne := chain_ne✝ } (_ : { toList := [], ne_one := ne_one✝, chain_ne := chain_ne✝ } = { toList := [], ne_one := ne_one✝, chain_ne := chain_ne✝ }) [PROOFSTEP] simp [rcons] [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N : Type u_3 inst✝² : Monoid N inst✝¹ : (i : ι) → DecidableEq (M i) inst✝ : DecidableEq ι i : ι w : Word M j : ι m : M j ls : List ((i : ι) × M i) h1 : ∀ (l : (i : ι) × M i), l ∈ { fst := j, snd := m } :: ls → l.snd ≠ 1 h2 : List.Chain' (fun l l' => l.fst ≠ l'.fst) ({ fst := j, snd := m } :: ls) h✝ : w = { toList := { fst := j, snd := m } :: ls, ne_one := h1, chain_ne := h2 } ij : i = j ⊢ fstIdx (Monoid.CoprodI.Word.mkAux ls h1 h2) ≠ some i [PROOFSTEP] cases ij [GOAL] case refl ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N : Type u_3 inst✝² : Monoid N inst✝¹ : (i : ι) → DecidableEq (M i) inst✝ : DecidableEq ι i : ι w : Word M ls : List ((i : ι) × M i) m : M i h1 : ∀ (l : (i : ι) × M i), l ∈ { fst := i, snd := m } :: ls → l.snd ≠ 1 h2 : List.Chain' (fun l l' => l.fst ≠ l'.fst) ({ fst := i, snd := m } :: ls) h✝ : w = { toList := { fst := i, snd := m } :: ls, ne_one := h1, chain_ne := h2 } ⊢ fstIdx (Monoid.CoprodI.Word.mkAux ls h1 h2) ≠ some i [PROOFSTEP] exact fstIdx_ne_iff.mpr h2.rel_head? [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N : Type u_3 inst✝² : Monoid N inst✝¹ : (i : ι) → DecidableEq (M i) inst✝ : DecidableEq ι i : ι w : Word M j : ι m : M j ls : List ((i : ι) × M i) h1 : ∀ (l : (i : ι) × M i), l ∈ { fst := j, snd := m } :: ls → l.snd ≠ 1 h2 : List.Chain' (fun l l' => l.fst ≠ l'.fst) ({ fst := j, snd := m } :: ls) h✝ : w = { toList := { fst := j, snd := m } :: ls, ne_one := h1, chain_ne := h2 } ij : i = j ⊢ rcons { head := (_ : j = i) ▸ m, tail := Monoid.CoprodI.Word.mkAux ls h1 h2, fstIdx_ne := (_ : fstIdx (Monoid.CoprodI.Word.mkAux ls h1 h2) ≠ some i) } = namedPattern w { toList := { fst := j, snd := m } :: ls, ne_one := h1, chain_ne := h2 } h✝ [PROOFSTEP] cases ij [GOAL] case refl ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N : Type u_3 inst✝² : Monoid N inst✝¹ : (i : ι) → DecidableEq (M i) inst✝ : DecidableEq ι i : ι w : Word M ls : List ((i : ι) × M i) m : M i h1 : ∀ (l : (i : ι) × M i), l ∈ { fst := i, snd := m } :: ls → l.snd ≠ 1 h2 : List.Chain' (fun l l' => l.fst ≠ l'.fst) ({ fst := i, snd := m } :: ls) h✝ : w = { toList := { fst := i, snd := m } :: ls, ne_one := h1, chain_ne := h2 } ⊢ rcons { head := (_ : i = i) ▸ m, tail := Monoid.CoprodI.Word.mkAux ls h1 h2, fstIdx_ne := (_ : fstIdx (Monoid.CoprodI.Word.mkAux ls h1 h2) ≠ some i) } = namedPattern w { toList := { fst := i, snd := m } :: ls, ne_one := h1, chain_ne := h2 } h✝ [PROOFSTEP] exact cons_eq_rcons.symm [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N : Type u_3 inst✝² : Monoid N inst✝¹ : (i : ι) → DecidableEq (M i) inst✝ : DecidableEq ι i : ι w : Word M j : ι m : M j ls : List ((i : ι) × M i) h1 : ∀ (l : (i : ι) × M i), l ∈ { fst := j, snd := m } :: ls → l.snd ≠ 1 h2 : List.Chain' (fun l l' => l.fst ≠ l'.fst) ({ fst := j, snd := m } :: ls) h✝ : w = { toList := { fst := j, snd := m } :: ls, ne_one := h1, chain_ne := h2 } ij : ¬i = j ⊢ fstIdx w ≠ some i [PROOFSTEP] subst w [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N : Type u_3 inst✝² : Monoid N inst✝¹ : (i : ι) → DecidableEq (M i) inst✝ : DecidableEq ι i j : ι m : M j ls : List ((i : ι) × M i) h1 : ∀ (l : (i : ι) × M i), l ∈ { fst := j, snd := m } :: ls → l.snd ≠ 1 h2 : List.Chain' (fun l l' => l.fst ≠ l'.fst) ({ fst := j, snd := m } :: ls) ij : ¬i = j ⊢ fstIdx { toList := { fst := j, snd := m } :: ls, ne_one := h1, chain_ne := h2 } ≠ some i [PROOFSTEP] exact (Option.some_injective _).ne (Ne.symm ij) [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N : Type u_3 inst✝² : Monoid N inst✝¹ : (i : ι) → DecidableEq (M i) inst✝ : DecidableEq ι i : ι w : Word M j : ι m : M j ls : List ((i : ι) × M i) h1 : ∀ (l : (i : ι) × M i), l ∈ { fst := j, snd := m } :: ls → l.snd ≠ 1 h2 : List.Chain' (fun l l' => l.fst ≠ l'.fst) ({ fst := j, snd := m } :: ls) h✝ : w = { toList := { fst := j, snd := m } :: ls, ne_one := h1, chain_ne := h2 } ij : ¬i = j ⊢ rcons { head := 1, tail := w, fstIdx_ne := (_ : fstIdx w ≠ some i) } = namedPattern w { toList := { fst := j, snd := m } :: ls, ne_one := h1, chain_ne := h2 } h✝ [PROOFSTEP] subst w [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N : Type u_3 inst✝² : Monoid N inst✝¹ : (i : ι) → DecidableEq (M i) inst✝ : DecidableEq ι i j : ι m : M j ls : List ((i : ι) × M i) h1 : ∀ (l : (i : ι) × M i), l ∈ { fst := j, snd := m } :: ls → l.snd ≠ 1 h2 : List.Chain' (fun l l' => l.fst ≠ l'.fst) ({ fst := j, snd := m } :: ls) ij : ¬i = j ⊢ rcons { head := 1, tail := { toList := { fst := j, snd := m } :: ls, ne_one := h1, chain_ne := h2 }, fstIdx_ne := (_ : fstIdx { toList := { fst := j, snd := m } :: ls, ne_one := h1, chain_ne := h2 } ≠ some i) } = namedPattern { toList := { fst := j, snd := m } :: ls, ne_one := h1, chain_ne := h2 } { toList := { fst := j, snd := m } :: ls, ne_one := h1, chain_ne := h2 } (_ : { toList := { fst := j, snd := m } :: ls, ne_one := h1, chain_ne := h2 } = { toList := { fst := j, snd := m } :: ls, ne_one := h1, chain_ne := h2 }) [PROOFSTEP] simp [rcons] [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N : Type u_3 inst✝² : Monoid N inst✝¹ : (i : ι) → DecidableEq (M i) inst✝ : DecidableEq ι i : ι w : Word M ⊢ 1 • w = w [PROOFSTEP] apply (equivPair i).symm_apply_eq.mpr [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N : Type u_3 inst✝² : Monoid N inst✝¹ : (i : ι) → DecidableEq (M i) inst✝ : DecidableEq ι i : ι w : Word M ⊢ (let src := ↑(equivPair i) w; { head := 1 * (↑(equivPair i) w).head, tail := src.tail, fstIdx_ne := (_ : fstIdx src.tail ≠ some i) }) = ↑(equivPair i) w [PROOFSTEP] simp [equivPair] [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N : Type u_3 inst✝² : Monoid N inst✝¹ : (i : ι) → DecidableEq (M i) inst✝ : DecidableEq ι i : ι m m' : M i w : Word M ⊢ (m * m') • w = m • m' • w [PROOFSTEP] dsimp [instHSMul] [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N : Type u_3 inst✝² : Monoid N inst✝¹ : (i : ι) → DecidableEq (M i) inst✝ : DecidableEq ι i : ι m m' : M i w : Word M ⊢ rcons { head := m * m' * (↑(equivPair i) w).head, tail := (↑(equivPair i) w).tail, fstIdx_ne := (_ : fstIdx (↑(equivPair i) w).tail ≠ some i) } = rcons { head := m * (↑(equivPair i) (rcons { head := m' * (↑(equivPair i) w).head, tail := (↑(equivPair i) w).tail, fstIdx_ne := (_ : fstIdx (↑(equivPair i) w).tail ≠ some i) })).head, tail := (↑(equivPair i) (rcons { head := m' * (↑(equivPair i) w).head, tail := (↑(equivPair i) w).tail, fstIdx_ne := (_ : fstIdx (↑(equivPair i) w).tail ≠ some i) })).tail, fstIdx_ne := (_ : fstIdx (↑(equivPair i) (rcons { head := m' * (↑(equivPair i) w).head, tail := (↑(equivPair i) w).tail, fstIdx_ne := (_ : fstIdx (↑(equivPair i) w).tail ≠ some i) })).tail ≠ some i) } [PROOFSTEP] simp [mul_assoc, ← equivPair_symm, Equiv.apply_symm_apply] [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N : Type u_3 inst✝² : Monoid N inst✝¹ : (i : ι) → DecidableEq (M i) inst✝ : DecidableEq ι i : ι m : M i ls : List ((i : ι) × M i) h1 : ∀ (l : (i : ι) × M i), l ∈ { fst := i, snd := m } :: ls → l.snd ≠ 1 h2 : List.Chain' (fun l l' => l.fst ≠ l'.fst) ({ fst := i, snd := m } :: ls) ⊢ { toList := { fst := i, snd := m } :: ls, ne_one := h1, chain_ne := h2 } = ↑of m • Monoid.CoprodI.Word.mkAux ls h1 h2 [PROOFSTEP] rw [cons_eq_rcons, of_smul_def, equivPair_eq_of_fstIdx_ne _] [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N : Type u_3 inst✝² : Monoid N inst✝¹ : (i : ι) → DecidableEq (M i) inst✝ : DecidableEq ι i : ι m : M i ls : List ((i : ι) × M i) h1 : ∀ (l : (i : ι) × M i), l ∈ { fst := i, snd := m } :: ls → l.snd ≠ 1 h2 : List.Chain' (fun l l' => l.fst ≠ l'.fst) ({ fst := i, snd := m } :: ls) ⊢ rcons { head := m, tail := Monoid.CoprodI.Word.mkAux ls h1 h2, fstIdx_ne := (_ : fstIdx (Monoid.CoprodI.Word.mkAux ls h1 h2) ≠ some i) } = rcons (let src := { head := 1, tail := Monoid.CoprodI.Word.mkAux ls h1 h2, fstIdx_ne := ?m.459575 }; { head := m * { head := 1, tail := Monoid.CoprodI.Word.mkAux ls h1 h2, fstIdx_ne := ?m.459575 }.head, tail := src.tail, fstIdx_ne := (_ : fstIdx src.tail ≠ some i) }) [PROOFSTEP] simp [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N : Type u_3 inst✝² : Monoid N inst✝¹ : (i : ι) → DecidableEq (M i) inst✝ : DecidableEq ι i : ι m : M i ls : List ((i : ι) × M i) h1 : ∀ (l : (i : ι) × M i), l ∈ { fst := i, snd := m } :: ls → l.snd ≠ 1 h2 : List.Chain' (fun l l' => l.fst ≠ l'.fst) ({ fst := i, snd := m } :: ls) ⊢ fstIdx (Monoid.CoprodI.Word.mkAux ls h1 h2) ≠ some i [PROOFSTEP] rw [fstIdx_ne_iff] [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N : Type u_3 inst✝² : Monoid N inst✝¹ : (i : ι) → DecidableEq (M i) inst✝ : DecidableEq ι i : ι m : M i ls : List ((i : ι) × M i) h1 : ∀ (l : (i : ι) × M i), l ∈ { fst := i, snd := m } :: ls → l.snd ≠ 1 h2 : List.Chain' (fun l l' => l.fst ≠ l'.fst) ({ fst := i, snd := m } :: ls) ⊢ ∀ (l : (i : ι) × M i), l ∈ List.head? (Monoid.CoprodI.Word.mkAux ls h1 h2).toList → i ≠ l.fst [PROOFSTEP] exact (List.chain'_cons'.1 h2).1 [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N : Type u_3 inst✝² : Monoid N inst✝¹ : (i : ι) → DecidableEq (M i) inst✝ : DecidableEq ι C : Word M → Prop h_empty : C empty h_smul : ∀ (i : ι) (m : M i) (w : Word M), C w → C (↑of m • w) w : Word M ⊢ C w [PROOFSTEP] cases' w with ls h1 h2 [GOAL] case mk ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N : Type u_3 inst✝² : Monoid N inst✝¹ : (i : ι) → DecidableEq (M i) inst✝ : DecidableEq ι C : Word M → Prop h_empty : C empty h_smul : ∀ (i : ι) (m : M i) (w : Word M), C w → C (↑of m • w) ls : List ((i : ι) × M i) h1 : ∀ (l : (i : ι) × M i), l ∈ ls → l.snd ≠ 1 h2 : List.Chain' (fun l l' => l.fst ≠ l'.fst) ls ⊢ C { toList := ls, ne_one := h1, chain_ne := h2 } [PROOFSTEP] induction' ls with l ls ih [GOAL] case mk.nil ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N : Type u_3 inst✝² : Monoid N inst✝¹ : (i : ι) → DecidableEq (M i) inst✝ : DecidableEq ι C : Word M → Prop h_empty : C empty h_smul : ∀ (i : ι) (m : M i) (w : Word M), C w → C (↑of m • w) ls : List ((i : ι) × M i) h1✝ : ∀ (l : (i : ι) × M i), l ∈ ls → l.snd ≠ 1 h2✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) ls h1 : ∀ (l : (i : ι) × M i), l ∈ [] → l.snd ≠ 1 h2 : List.Chain' (fun l l' => l.fst ≠ l'.fst) [] ⊢ C { toList := [], ne_one := h1, chain_ne := h2 } [PROOFSTEP] exact h_empty [GOAL] case mk.cons ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N : Type u_3 inst✝² : Monoid N inst✝¹ : (i : ι) → DecidableEq (M i) inst✝ : DecidableEq ι C : Word M → Prop h_empty : C empty h_smul : ∀ (i : ι) (m : M i) (w : Word M), C w → C (↑of m • w) ls✝ : List ((i : ι) × M i) h1✝ : ∀ (l : (i : ι) × M i), l ∈ ls✝ → l.snd ≠ 1 h2✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) ls✝ l : (i : ι) × M i ls : List ((i : ι) × M i) ih : ∀ (h1 : ∀ (l : (i : ι) × M i), l ∈ ls → l.snd ≠ 1) (h2 : List.Chain' (fun l l' => l.fst ≠ l'.fst) ls), C { toList := ls, ne_one := h1, chain_ne := h2 } h1 : ∀ (l_1 : (i : ι) × M i), l_1 ∈ l :: ls → l_1.snd ≠ 1 h2 : List.Chain' (fun l l' => l.fst ≠ l'.fst) (l :: ls) ⊢ C { toList := l :: ls, ne_one := h1, chain_ne := h2 } [PROOFSTEP] cases' l with i m [GOAL] case mk.cons.mk ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N : Type u_3 inst✝² : Monoid N inst✝¹ : (i : ι) → DecidableEq (M i) inst✝ : DecidableEq ι C : Word M → Prop h_empty : C empty h_smul : ∀ (i : ι) (m : M i) (w : Word M), C w → C (↑of m • w) ls✝ : List ((i : ι) × M i) h1✝ : ∀ (l : (i : ι) × M i), l ∈ ls✝ → l.snd ≠ 1 h2✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) ls✝ ls : List ((i : ι) × M i) ih : ∀ (h1 : ∀ (l : (i : ι) × M i), l ∈ ls → l.snd ≠ 1) (h2 : List.Chain' (fun l l' => l.fst ≠ l'.fst) ls), C { toList := ls, ne_one := h1, chain_ne := h2 } i : ι m : M i h1 : ∀ (l : (i : ι) × M i), l ∈ { fst := i, snd := m } :: ls → l.snd ≠ 1 h2 : List.Chain' (fun l l' => l.fst ≠ l'.fst) ({ fst := i, snd := m } :: ls) ⊢ C { toList := { fst := i, snd := m } :: ls, ne_one := h1, chain_ne := h2 } [PROOFSTEP] rw [cons_eq_smul] [GOAL] case mk.cons.mk ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N : Type u_3 inst✝² : Monoid N inst✝¹ : (i : ι) → DecidableEq (M i) inst✝ : DecidableEq ι C : Word M → Prop h_empty : C empty h_smul : ∀ (i : ι) (m : M i) (w : Word M), C w → C (↑of m • w) ls✝ : List ((i : ι) × M i) h1✝ : ∀ (l : (i : ι) × M i), l ∈ ls✝ → l.snd ≠ 1 h2✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) ls✝ ls : List ((i : ι) × M i) ih : ∀ (h1 : ∀ (l : (i : ι) × M i), l ∈ ls → l.snd ≠ 1) (h2 : List.Chain' (fun l l' => l.fst ≠ l'.fst) ls), C { toList := ls, ne_one := h1, chain_ne := h2 } i : ι m : M i h1 : ∀ (l : (i : ι) × M i), l ∈ { fst := i, snd := m } :: ls → l.snd ≠ 1 h2 : List.Chain' (fun l l' => l.fst ≠ l'.fst) ({ fst := i, snd := m } :: ls) ⊢ C (↑of m • Monoid.CoprodI.Word.mkAux ls h1 h2) [PROOFSTEP] exact h_smul _ _ _ (ih _ _) [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N : Type u_3 inst✝² : Monoid N inst✝¹ : (i : ι) → DecidableEq (M i) inst✝ : DecidableEq ι m : CoprodI M ⊢ ∀ (w : Word M), prod (m • w) = m * prod w [PROOFSTEP] induction m using CoprodI.induction_on with | h_one => intro rw [one_smul, one_mul] | h_of _ => intros rw [of_smul_def, prod_rcons, of.map_mul, mul_assoc, ← prod_rcons, ← equivPair_symm, Equiv.symm_apply_apply] | h_mul x y hx hy => intro w rw [mul_smul, hx, hy, mul_assoc] [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N : Type u_3 inst✝² : Monoid N inst✝¹ : (i : ι) → DecidableEq (M i) inst✝ : DecidableEq ι m : CoprodI M ⊢ ∀ (w : Word M), prod (m • w) = m * prod w [PROOFSTEP] induction m using CoprodI.induction_on with | h_one => intro rw [one_smul, one_mul] | h_of _ => intros rw [of_smul_def, prod_rcons, of.map_mul, mul_assoc, ← prod_rcons, ← equivPair_symm, Equiv.symm_apply_apply] | h_mul x y hx hy => intro w rw [mul_smul, hx, hy, mul_assoc] [GOAL] case h_one ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N : Type u_3 inst✝² : Monoid N inst✝¹ : (i : ι) → DecidableEq (M i) inst✝ : DecidableEq ι ⊢ ∀ (w : Word M), prod (1 • w) = 1 * prod w [PROOFSTEP] | h_one => intro rw [one_smul, one_mul] [GOAL] case h_one ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N : Type u_3 inst✝² : Monoid N inst✝¹ : (i : ι) → DecidableEq (M i) inst✝ : DecidableEq ι ⊢ ∀ (w : Word M), prod (1 • w) = 1 * prod w [PROOFSTEP] intro [GOAL] case h_one ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N : Type u_3 inst✝² : Monoid N inst✝¹ : (i : ι) → DecidableEq (M i) inst✝ : DecidableEq ι w✝ : Word M ⊢ prod (1 • w✝) = 1 * prod w✝ [PROOFSTEP] rw [one_smul, one_mul] [GOAL] case h_of ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N : Type u_3 inst✝² : Monoid N inst✝¹ : (i : ι) → DecidableEq (M i) inst✝ : DecidableEq ι i✝ : ι m✝ : M i✝ ⊢ ∀ (w : Word M), prod (↑of m✝ • w) = ↑of m✝ * prod w [PROOFSTEP] | h_of _ => intros rw [of_smul_def, prod_rcons, of.map_mul, mul_assoc, ← prod_rcons, ← equivPair_symm, Equiv.symm_apply_apply] [GOAL] case h_of ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N : Type u_3 inst✝² : Monoid N inst✝¹ : (i : ι) → DecidableEq (M i) inst✝ : DecidableEq ι i✝ : ι m✝ : M i✝ ⊢ ∀ (w : Word M), prod (↑of m✝ • w) = ↑of m✝ * prod w [PROOFSTEP] intros [GOAL] case h_of ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N : Type u_3 inst✝² : Monoid N inst✝¹ : (i : ι) → DecidableEq (M i) inst✝ : DecidableEq ι i✝ : ι m✝ : M i✝ w✝ : Word M ⊢ prod (↑of m✝ • w✝) = ↑of m✝ * prod w✝ [PROOFSTEP] rw [of_smul_def, prod_rcons, of.map_mul, mul_assoc, ← prod_rcons, ← equivPair_symm, Equiv.symm_apply_apply] [GOAL] case h_mul ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N : Type u_3 inst✝² : Monoid N inst✝¹ : (i : ι) → DecidableEq (M i) inst✝ : DecidableEq ι x y : CoprodI M hx : ∀ (w : Word M), prod (x • w) = x * prod w hy : ∀ (w : Word M), prod (y • w) = y * prod w ⊢ ∀ (w : Word M), prod ((x * y) • w) = x * y * prod w [PROOFSTEP] | h_mul x y hx hy => intro w rw [mul_smul, hx, hy, mul_assoc] [GOAL] case h_mul ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N : Type u_3 inst✝² : Monoid N inst✝¹ : (i : ι) → DecidableEq (M i) inst✝ : DecidableEq ι x y : CoprodI M hx : ∀ (w : Word M), prod (x • w) = x * prod w hy : ∀ (w : Word M), prod (y • w) = y * prod w ⊢ ∀ (w : Word M), prod ((x * y) • w) = x * y * prod w [PROOFSTEP] intro w [GOAL] case h_mul ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N : Type u_3 inst✝² : Monoid N inst✝¹ : (i : ι) → DecidableEq (M i) inst✝ : DecidableEq ι x y : CoprodI M hx : ∀ (w : Word M), prod (x • w) = x * prod w hy : ∀ (w : Word M), prod (y • w) = y * prod w w : Word M ⊢ prod ((x * y) • w) = x * y * prod w [PROOFSTEP] rw [mul_smul, hx, hy, mul_assoc] [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N : Type u_3 inst✝² : Monoid N inst✝¹ : (i : ι) → DecidableEq (M i) inst✝ : DecidableEq ι m : CoprodI M ⊢ (fun w => prod w) ((fun m => m • empty) m) = m [PROOFSTEP] dsimp only [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N : Type u_3 inst✝² : Monoid N inst✝¹ : (i : ι) → DecidableEq (M i) inst✝ : DecidableEq ι m : CoprodI M ⊢ prod (m • empty) = m [PROOFSTEP] rw [prod_smul, prod_empty, mul_one] [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N : Type u_3 inst✝² : Monoid N inst✝¹ : (i : ι) → DecidableEq (M i) inst✝ : DecidableEq ι ⊢ Function.RightInverse (fun w => prod w) fun m => m • empty [PROOFSTEP] apply smul_induction [GOAL] case h_empty ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N : Type u_3 inst✝² : Monoid N inst✝¹ : (i : ι) → DecidableEq (M i) inst✝ : DecidableEq ι ⊢ (fun m => m • empty) ((fun w => prod w) empty) = empty [PROOFSTEP] dsimp only [GOAL] case h_empty ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N : Type u_3 inst✝² : Monoid N inst✝¹ : (i : ι) → DecidableEq (M i) inst✝ : DecidableEq ι ⊢ prod empty • empty = empty [PROOFSTEP] rw [prod_empty, one_smul] [GOAL] case h_smul ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N : Type u_3 inst✝² : Monoid N inst✝¹ : (i : ι) → DecidableEq (M i) inst✝ : DecidableEq ι ⊢ ∀ (i : ι) (m : M i) (w : Word M), (fun m => m • empty) ((fun w => prod w) w) = w → (fun m => m • empty) ((fun w => prod w) (↑of m • w)) = ↑of m • w [PROOFSTEP] dsimp only [GOAL] case h_smul ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N : Type u_3 inst✝² : Monoid N inst✝¹ : (i : ι) → DecidableEq (M i) inst✝ : DecidableEq ι ⊢ ∀ (i : ι) (m : M i) (w : Word M), prod w • empty = w → prod (↑of m • w) • empty = ↑of m • w [PROOFSTEP] intro i m w ih [GOAL] case h_smul ι : Type u_1 M : ι → Type u_2 inst✝³ : (i : ι) → Monoid (M i) N : Type u_3 inst✝² : Monoid N inst✝¹ : (i : ι) → DecidableEq (M i) inst✝ : DecidableEq ι i : ι m : M i w : Word M ih : prod w • empty = w ⊢ prod (↑of m • w) • empty = ↑of m • w [PROOFSTEP] rw [prod_smul, mul_smul, ih] [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i j : ι w : NeWord M i j ⊢ toList w ≠ [] [PROOFSTEP] induction w [GOAL] case singleton ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i j i✝ : ι x✝ : M i✝ a✝ : x✝ ≠ 1 ⊢ toList (singleton x✝ a✝) ≠ [] [PROOFSTEP] rintro ⟨rfl⟩ [GOAL] case append ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i j i✝ j✝ k✝ l✝ : ι _w₁✝ : NeWord M i✝ j✝ _hne✝ : j✝ ≠ k✝ _w₂✝ : NeWord M k✝ l✝ _w₁_ih✝ : toList _w₁✝ ≠ [] _w₂_ih✝ : toList _w₂✝ ≠ [] ⊢ toList (append _w₁✝ _hne✝ _w₂✝) ≠ [] [PROOFSTEP] apply List.append_ne_nil_of_ne_nil_left [GOAL] case append.a ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i j i✝ j✝ k✝ l✝ : ι _w₁✝ : NeWord M i✝ j✝ _hne✝ : j✝ ≠ k✝ _w₂✝ : NeWord M k✝ l✝ _w₁_ih✝ : toList _w₁✝ ≠ [] _w₂_ih✝ : toList _w₂✝ ≠ [] ⊢ toList _w₁✝ ≠ [] [PROOFSTEP] assumption [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i j : ι w : NeWord M i j ⊢ List.head? (toList w) = some { fst := i, snd := head w } [PROOFSTEP] rw [← Option.mem_def] [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i j : ι w : NeWord M i j ⊢ { fst := i, snd := head w } ∈ List.head? (toList w) [PROOFSTEP] induction w [GOAL] case singleton ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i j i✝ : ι x✝ : M i✝ a✝ : x✝ ≠ 1 ⊢ { fst := i✝, snd := head (singleton x✝ a✝) } ∈ List.head? (toList (singleton x✝ a✝)) [PROOFSTEP] rw [Option.mem_def] [GOAL] case singleton ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i j i✝ : ι x✝ : M i✝ a✝ : x✝ ≠ 1 ⊢ List.head? (toList (singleton x✝ a✝)) = some { fst := i✝, snd := head (singleton x✝ a✝) } [PROOFSTEP] rfl [GOAL] case append ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i j i✝ j✝ k✝ l✝ : ι _w₁✝ : NeWord M i✝ j✝ _hne✝ : j✝ ≠ k✝ _w₂✝ : NeWord M k✝ l✝ _w₁_ih✝ : { fst := i✝, snd := head _w₁✝ } ∈ List.head? (toList _w₁✝) _w₂_ih✝ : { fst := k✝, snd := head _w₂✝ } ∈ List.head? (toList _w₂✝) ⊢ { fst := i✝, snd := head (append _w₁✝ _hne✝ _w₂✝) } ∈ List.head? (toList (append _w₁✝ _hne✝ _w₂✝)) [PROOFSTEP] exact List.head?_append (by assumption) [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i j i✝ j✝ k✝ l✝ : ι _w₁✝ : NeWord M i✝ j✝ _hne✝ : j✝ ≠ k✝ _w₂✝ : NeWord M k✝ l✝ _w₁_ih✝ : { fst := i✝, snd := head _w₁✝ } ∈ List.head? (toList _w₁✝) _w₂_ih✝ : { fst := k✝, snd := head _w₂✝ } ∈ List.head? (toList _w₂✝) ⊢ { fst := i✝, snd := head (append _w₁✝ _hne✝ _w₂✝) } ∈ List.head? (toList _w₁✝) [PROOFSTEP] assumption [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i j : ι w : NeWord M i j ⊢ List.getLast? (toList w) = some { fst := j, snd := last w } [PROOFSTEP] rw [← Option.mem_def] [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i j : ι w : NeWord M i j ⊢ { fst := j, snd := last w } ∈ List.getLast? (toList w) [PROOFSTEP] induction w [GOAL] case singleton ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i j i✝ : ι x✝ : M i✝ a✝ : x✝ ≠ 1 ⊢ { fst := i✝, snd := last (singleton x✝ a✝) } ∈ List.getLast? (toList (singleton x✝ a✝)) [PROOFSTEP] rw [Option.mem_def] [GOAL] case singleton ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i j i✝ : ι x✝ : M i✝ a✝ : x✝ ≠ 1 ⊢ List.getLast? (toList (singleton x✝ a✝)) = some { fst := i✝, snd := last (singleton x✝ a✝) } [PROOFSTEP] rfl [GOAL] case append ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i j i✝ j✝ k✝ l✝ : ι _w₁✝ : NeWord M i✝ j✝ _hne✝ : j✝ ≠ k✝ _w₂✝ : NeWord M k✝ l✝ _w₁_ih✝ : { fst := j✝, snd := last _w₁✝ } ∈ List.getLast? (toList _w₁✝) _w₂_ih✝ : { fst := l✝, snd := last _w₂✝ } ∈ List.getLast? (toList _w₂✝) ⊢ { fst := l✝, snd := last (append _w₁✝ _hne✝ _w₂✝) } ∈ List.getLast? (toList (append _w₁✝ _hne✝ _w₂✝)) [PROOFSTEP] exact List.getLast?_append (by assumption) [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i j i✝ j✝ k✝ l✝ : ι _w₁✝ : NeWord M i✝ j✝ _hne✝ : j✝ ≠ k✝ _w₂✝ : NeWord M k✝ l✝ _w₁_ih✝ : { fst := j✝, snd := last _w₁✝ } ∈ List.getLast? (toList _w₁✝) _w₂_ih✝ : { fst := l✝, snd := last _w₂✝ } ∈ List.getLast? (toList _w₂✝) ⊢ { fst := l✝, snd := last (append _w₁✝ _hne✝ _w₂✝) } ∈ List.getLast? (toList _w₂✝) [PROOFSTEP] assumption [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i j : ι w : NeWord M i j ⊢ ∀ (l : (i : ι) × M i), l ∈ toList w → l.snd ≠ 1 [PROOFSTEP] induction w [GOAL] case singleton ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i j i✝ : ι x✝ : M i✝ a✝ : x✝ ≠ 1 ⊢ ∀ (l : (i : ι) × M i), l ∈ toList (singleton x✝ a✝) → l.snd ≠ 1 [PROOFSTEP] simpa only [toList, List.mem_singleton, ne_eq, forall_eq] [GOAL] case append ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i j i✝ j✝ k✝ l✝ : ι _w₁✝ : NeWord M i✝ j✝ _hne✝ : j✝ ≠ k✝ _w₂✝ : NeWord M k✝ l✝ _w₁_ih✝ : ∀ (l : (i : ι) × M i), l ∈ toList _w₁✝ → l.snd ≠ 1 _w₂_ih✝ : ∀ (l : (i : ι) × M i), l ∈ toList _w₂✝ → l.snd ≠ 1 ⊢ ∀ (l : (i : ι) × M i), l ∈ toList (append _w₁✝ _hne✝ _w₂✝) → l.snd ≠ 1 [PROOFSTEP] intro l h [GOAL] case append ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i j i✝ j✝ k✝ l✝ : ι _w₁✝ : NeWord M i✝ j✝ _hne✝ : j✝ ≠ k✝ _w₂✝ : NeWord M k✝ l✝ _w₁_ih✝ : ∀ (l : (i : ι) × M i), l ∈ toList _w₁✝ → l.snd ≠ 1 _w₂_ih✝ : ∀ (l : (i : ι) × M i), l ∈ toList _w₂✝ → l.snd ≠ 1 l : (i : ι) × M i h : l ∈ toList (append _w₁✝ _hne✝ _w₂✝) ⊢ l.snd ≠ 1 [PROOFSTEP] simp only [toList, List.mem_append] at h [GOAL] case append ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i j i✝ j✝ k✝ l✝ : ι _w₁✝ : NeWord M i✝ j✝ _hne✝ : j✝ ≠ k✝ _w₂✝ : NeWord M k✝ l✝ _w₁_ih✝ : ∀ (l : (i : ι) × M i), l ∈ toList _w₁✝ → l.snd ≠ 1 _w₂_ih✝ : ∀ (l : (i : ι) × M i), l ∈ toList _w₂✝ → l.snd ≠ 1 l : (i : ι) × M i h : l ∈ toList _w₁✝ ∨ l ∈ toList _w₂✝ ⊢ l.snd ≠ 1 [PROOFSTEP] cases h [GOAL] case append.inl ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i j i✝ j✝ k✝ l✝ : ι _w₁✝ : NeWord M i✝ j✝ _hne✝ : j✝ ≠ k✝ _w₂✝ : NeWord M k✝ l✝ _w₁_ih✝ : ∀ (l : (i : ι) × M i), l ∈ toList _w₁✝ → l.snd ≠ 1 _w₂_ih✝ : ∀ (l : (i : ι) × M i), l ∈ toList _w₂✝ → l.snd ≠ 1 l : (i : ι) × M i h✝ : l ∈ toList _w₁✝ ⊢ l.snd ≠ 1 [PROOFSTEP] aesop [GOAL] case append.inr ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i j i✝ j✝ k✝ l✝ : ι _w₁✝ : NeWord M i✝ j✝ _hne✝ : j✝ ≠ k✝ _w₂✝ : NeWord M k✝ l✝ _w₁_ih✝ : ∀ (l : (i : ι) × M i), l ∈ toList _w₁✝ → l.snd ≠ 1 _w₂_ih✝ : ∀ (l : (i : ι) × M i), l ∈ toList _w₂✝ → l.snd ≠ 1 l : (i : ι) × M i h✝ : l ∈ toList _w₂✝ ⊢ l.snd ≠ 1 [PROOFSTEP] aesop [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i j : ι w : NeWord M i j ⊢ List.Chain' (fun l l' => l.fst ≠ l'.fst) (toList w) [PROOFSTEP] induction w [GOAL] case singleton ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i j i✝ : ι x✝ : M i✝ a✝ : x✝ ≠ 1 ⊢ List.Chain' (fun l l' => l.fst ≠ l'.fst) (toList (singleton x✝ a✝)) [PROOFSTEP] exact List.chain'_singleton _ [GOAL] case append ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i j i✝ j✝ k✝ l✝ : ι _w₁✝ : NeWord M i✝ j✝ _hne✝ : j✝ ≠ k✝ _w₂✝ : NeWord M k✝ l✝ _w₁_ih✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (toList _w₁✝) _w₂_ih✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (toList _w₂✝) ⊢ List.Chain' (fun l l' => l.fst ≠ l'.fst) (toList (append _w₁✝ _hne✝ _w₂✝)) [PROOFSTEP] refine List.Chain'.append (by assumption) (by assumption) ?_ [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i j i✝ j✝ k✝ l✝ : ι _w₁✝ : NeWord M i✝ j✝ _hne✝ : j✝ ≠ k✝ _w₂✝ : NeWord M k✝ l✝ _w₁_ih✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (toList _w₁✝) _w₂_ih✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (toList _w₂✝) ⊢ List.Chain' (fun l l' => l.fst ≠ l'.fst) (toList _w₁✝) [PROOFSTEP] assumption [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i j i✝ j✝ k✝ l✝ : ι _w₁✝ : NeWord M i✝ j✝ _hne✝ : j✝ ≠ k✝ _w₂✝ : NeWord M k✝ l✝ _w₁_ih✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (toList _w₁✝) _w₂_ih✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (toList _w₂✝) ⊢ List.Chain' (fun l l' => l.fst ≠ l'.fst) (toList _w₂✝) [PROOFSTEP] assumption [GOAL] case append ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i j i✝ j✝ k✝ l✝ : ι _w₁✝ : NeWord M i✝ j✝ _hne✝ : j✝ ≠ k✝ _w₂✝ : NeWord M k✝ l✝ _w₁_ih✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (toList _w₁✝) _w₂_ih✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (toList _w₂✝) ⊢ ∀ (x : (i : ι) × M i), x ∈ List.getLast? (toList _w₁✝) → ∀ (y : (i : ι) × M i), y ∈ List.head? (toList _w₂✝) → x.fst ≠ y.fst [PROOFSTEP] intro x hx y hy [GOAL] case append ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i j i✝ j✝ k✝ l✝ : ι _w₁✝ : NeWord M i✝ j✝ _hne✝ : j✝ ≠ k✝ _w₂✝ : NeWord M k✝ l✝ _w₁_ih✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (toList _w₁✝) _w₂_ih✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (toList _w₂✝) x : (i : ι) × M i hx : x ∈ List.getLast? (toList _w₁✝) y : (i : ι) × M i hy : y ∈ List.head? (toList _w₂✝) ⊢ x.fst ≠ y.fst [PROOFSTEP] rw [toList_getLast?, Option.mem_some_iff] at hx [GOAL] case append ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i j i✝ j✝ k✝ l✝ : ι _w₁✝ : NeWord M i✝ j✝ _hne✝ : j✝ ≠ k✝ _w₂✝ : NeWord M k✝ l✝ _w₁_ih✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (toList _w₁✝) _w₂_ih✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (toList _w₂✝) x : (i : ι) × M i hx : { fst := j✝, snd := last _w₁✝ } = x y : (i : ι) × M i hy : y ∈ List.head? (toList _w₂✝) ⊢ x.fst ≠ y.fst [PROOFSTEP] rw [toList_head?, Option.mem_some_iff] at hy [GOAL] case append ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i j i✝ j✝ k✝ l✝ : ι _w₁✝ : NeWord M i✝ j✝ _hne✝ : j✝ ≠ k✝ _w₂✝ : NeWord M k✝ l✝ _w₁_ih✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (toList _w₁✝) _w₂_ih✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (toList _w₂✝) x : (i : ι) × M i hx : { fst := j✝, snd := last _w₁✝ } = x y : (i : ι) × M i hy : { fst := k✝, snd := head _w₂✝ } = y ⊢ x.fst ≠ y.fst [PROOFSTEP] subst hx [GOAL] case append ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i j i✝ j✝ k✝ l✝ : ι _w₁✝ : NeWord M i✝ j✝ _hne✝ : j✝ ≠ k✝ _w₂✝ : NeWord M k✝ l✝ _w₁_ih✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (toList _w₁✝) _w₂_ih✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (toList _w₂✝) y : (i : ι) × M i hy : { fst := k✝, snd := head _w₂✝ } = y ⊢ { fst := j✝, snd := last _w₁✝ }.fst ≠ y.fst [PROOFSTEP] subst hy [GOAL] case append ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i j i✝ j✝ k✝ l✝ : ι _w₁✝ : NeWord M i✝ j✝ _hne✝ : j✝ ≠ k✝ _w₂✝ : NeWord M k✝ l✝ _w₁_ih✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (toList _w₁✝) _w₂_ih✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (toList _w₂✝) ⊢ { fst := j✝, snd := last _w₁✝ }.fst ≠ { fst := k✝, snd := head _w₂✝ }.fst [PROOFSTEP] assumption [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N w : Word M h : w ≠ empty ⊢ ∃ i j w', toWord w' = w [PROOFSTEP] suffices : ∃ (i j : _) (w' : NeWord M i j), w'.toWord.toList = w.toList [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N w : Word M h : w ≠ empty this : ∃ i j w', (toWord w').toList = w.toList ⊢ ∃ i j w', toWord w' = w [PROOFSTEP] rcases this with ⟨i, j, w, h⟩ [GOAL] case intro.intro.intro ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N w✝ : Word M h✝ : w✝ ≠ empty i j : ι w : NeWord M i j h : (toWord w).toList = w✝.toList ⊢ ∃ i j w', toWord w' = w✝ [PROOFSTEP] refine' ⟨i, j, w, _⟩ [GOAL] case intro.intro.intro ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N w✝ : Word M h✝ : w✝ ≠ empty i j : ι w : NeWord M i j h : (toWord w).toList = w✝.toList ⊢ toWord w = w✝ [PROOFSTEP] ext [GOAL] case intro.intro.intro.toList.a.a ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N w✝ : Word M h✝ : w✝ ≠ empty i j : ι w : NeWord M i j h : (toWord w).toList = w✝.toList n✝ : ℕ a✝ : (i : ι) × M i ⊢ a✝ ∈ List.get? (toWord w).toList n✝ ↔ a✝ ∈ List.get? w✝.toList n✝ [PROOFSTEP] rw [h] [GOAL] case this ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N w : Word M h : w ≠ empty ⊢ ∃ i j w', (toWord w').toList = w.toList [PROOFSTEP] cases' w with l hnot1 hchain [GOAL] case this.mk ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N l : List ((i : ι) × M i) hnot1 : ∀ (l_1 : (i : ι) × M i), l_1 ∈ l → l_1.snd ≠ 1 hchain : List.Chain' (fun l l' => l.fst ≠ l'.fst) l h : { toList := l, ne_one := hnot1, chain_ne := hchain } ≠ empty ⊢ ∃ i j w', (toWord w').toList = { toList := l, ne_one := hnot1, chain_ne := hchain }.toList [PROOFSTEP] induction' l with x l hi [GOAL] case this.mk.nil ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N l : List ((i : ι) × M i) hnot1✝ : ∀ (l_1 : (i : ι) × M i), l_1 ∈ l → l_1.snd ≠ 1 hchain✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) l h✝ : { toList := l, ne_one := hnot1✝, chain_ne := hchain✝ } ≠ empty hnot1 : ∀ (l : (i : ι) × M i), l ∈ [] → l.snd ≠ 1 hchain : List.Chain' (fun l l' => l.fst ≠ l'.fst) [] h : { toList := [], ne_one := hnot1, chain_ne := hchain } ≠ empty ⊢ ∃ i j w', (toWord w').toList = { toList := [], ne_one := hnot1, chain_ne := hchain }.toList [PROOFSTEP] contradiction [GOAL] case this.mk.cons ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N l✝ : List ((i : ι) × M i) hnot1✝ : ∀ (l : (i : ι) × M i), l ∈ l✝ → l.snd ≠ 1 hchain✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) l✝ h✝ : { toList := l✝, ne_one := hnot1✝, chain_ne := hchain✝ } ≠ empty x : (i : ι) × M i l : List ((i : ι) × M i) hi : ∀ (hnot1 : ∀ (l_1 : (i : ι) × M i), l_1 ∈ l → l_1.snd ≠ 1) (hchain : List.Chain' (fun l l' => l.fst ≠ l'.fst) l), { toList := l, ne_one := hnot1, chain_ne := hchain } ≠ empty → ∃ i j w', (toWord w').toList = { toList := l, ne_one := hnot1, chain_ne := hchain }.toList hnot1 : ∀ (l_1 : (i : ι) × M i), l_1 ∈ x :: l → l_1.snd ≠ 1 hchain : List.Chain' (fun l l' => l.fst ≠ l'.fst) (x :: l) h : { toList := x :: l, ne_one := hnot1, chain_ne := hchain } ≠ empty ⊢ ∃ i j w', (toWord w').toList = { toList := x :: l, ne_one := hnot1, chain_ne := hchain }.toList [PROOFSTEP] rw [List.forall_mem_cons] at hnot1 [GOAL] case this.mk.cons ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N l✝ : List ((i : ι) × M i) hnot1✝¹ : ∀ (l : (i : ι) × M i), l ∈ l✝ → l.snd ≠ 1 hchain✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) l✝ h✝ : { toList := l✝, ne_one := hnot1✝¹, chain_ne := hchain✝ } ≠ empty x : (i : ι) × M i l : List ((i : ι) × M i) hi : ∀ (hnot1 : ∀ (l_1 : (i : ι) × M i), l_1 ∈ l → l_1.snd ≠ 1) (hchain : List.Chain' (fun l l' => l.fst ≠ l'.fst) l), { toList := l, ne_one := hnot1, chain_ne := hchain } ≠ empty → ∃ i j w', (toWord w').toList = { toList := l, ne_one := hnot1, chain_ne := hchain }.toList hnot1✝ : ∀ (l_1 : (i : ι) × M i), l_1 ∈ x :: l → l_1.snd ≠ 1 hnot1 : x.snd ≠ 1 ∧ ∀ (x : (i : ι) × M i), x ∈ l → x.snd ≠ 1 hchain : List.Chain' (fun l l' => l.fst ≠ l'.fst) (x :: l) h : { toList := x :: l, ne_one := hnot1✝, chain_ne := hchain } ≠ empty ⊢ ∃ i j w', (toWord w').toList = { toList := x :: l, ne_one := hnot1✝, chain_ne := hchain }.toList [PROOFSTEP] cases' l with y l [GOAL] case this.mk.cons.nil ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N l : List ((i : ι) × M i) hnot1✝¹ : ∀ (l_1 : (i : ι) × M i), l_1 ∈ l → l_1.snd ≠ 1 hchain✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) l h✝ : { toList := l, ne_one := hnot1✝¹, chain_ne := hchain✝ } ≠ empty x : (i : ι) × M i hi : ∀ (hnot1 : ∀ (l : (i : ι) × M i), l ∈ [] → l.snd ≠ 1) (hchain : List.Chain' (fun l l' => l.fst ≠ l'.fst) []), { toList := [], ne_one := hnot1, chain_ne := hchain } ≠ empty → ∃ i j w', (toWord w').toList = { toList := [], ne_one := hnot1, chain_ne := hchain }.toList hnot1✝ : ∀ (l : (i : ι) × M i), l ∈ [x] → l.snd ≠ 1 hnot1 : x.snd ≠ 1 ∧ ∀ (x : (i : ι) × M i), x ∈ [] → x.snd ≠ 1 hchain : List.Chain' (fun l l' => l.fst ≠ l'.fst) [x] h : { toList := [x], ne_one := hnot1✝, chain_ne := hchain } ≠ empty ⊢ ∃ i j w', (toWord w').toList = { toList := [x], ne_one := hnot1✝, chain_ne := hchain }.toList [PROOFSTEP] refine' ⟨x.1, x.1, singleton x.2 hnot1.1, _⟩ [GOAL] case this.mk.cons.nil ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N l : List ((i : ι) × M i) hnot1✝¹ : ∀ (l_1 : (i : ι) × M i), l_1 ∈ l → l_1.snd ≠ 1 hchain✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) l h✝ : { toList := l, ne_one := hnot1✝¹, chain_ne := hchain✝ } ≠ empty x : (i : ι) × M i hi : ∀ (hnot1 : ∀ (l : (i : ι) × M i), l ∈ [] → l.snd ≠ 1) (hchain : List.Chain' (fun l l' => l.fst ≠ l'.fst) []), { toList := [], ne_one := hnot1, chain_ne := hchain } ≠ empty → ∃ i j w', (toWord w').toList = { toList := [], ne_one := hnot1, chain_ne := hchain }.toList hnot1✝ : ∀ (l : (i : ι) × M i), l ∈ [x] → l.snd ≠ 1 hnot1 : x.snd ≠ 1 ∧ ∀ (x : (i : ι) × M i), x ∈ [] → x.snd ≠ 1 hchain : List.Chain' (fun l l' => l.fst ≠ l'.fst) [x] h : { toList := [x], ne_one := hnot1✝, chain_ne := hchain } ≠ empty ⊢ (toWord (singleton x.snd (_ : x.snd ≠ 1))).toList = { toList := [x], ne_one := hnot1✝, chain_ne := hchain }.toList [PROOFSTEP] simp [toWord] [GOAL] case this.mk.cons.cons ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N l✝ : List ((i : ι) × M i) hnot1✝¹ : ∀ (l : (i : ι) × M i), l ∈ l✝ → l.snd ≠ 1 hchain✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) l✝ h✝ : { toList := l✝, ne_one := hnot1✝¹, chain_ne := hchain✝ } ≠ empty x y : (i : ι) × M i l : List ((i : ι) × M i) hi : ∀ (hnot1 : ∀ (l_1 : (i : ι) × M i), l_1 ∈ y :: l → l_1.snd ≠ 1) (hchain : List.Chain' (fun l l' => l.fst ≠ l'.fst) (y :: l)), { toList := y :: l, ne_one := hnot1, chain_ne := hchain } ≠ empty → ∃ i j w', (toWord w').toList = { toList := y :: l, ne_one := hnot1, chain_ne := hchain }.toList hnot1✝ : ∀ (l_1 : (i : ι) × M i), l_1 ∈ x :: y :: l → l_1.snd ≠ 1 hnot1 : x.snd ≠ 1 ∧ ∀ (x : (i : ι) × M i), x ∈ y :: l → x.snd ≠ 1 hchain : List.Chain' (fun l l' => l.fst ≠ l'.fst) (x :: y :: l) h : { toList := x :: y :: l, ne_one := hnot1✝, chain_ne := hchain } ≠ empty ⊢ ∃ i j w', (toWord w').toList = { toList := x :: y :: l, ne_one := hnot1✝, chain_ne := hchain }.toList [PROOFSTEP] rw [List.chain'_cons] at hchain [GOAL] case this.mk.cons.cons ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N l✝ : List ((i : ι) × M i) hnot1✝¹ : ∀ (l : (i : ι) × M i), l ∈ l✝ → l.snd ≠ 1 hchain✝¹ : List.Chain' (fun l l' => l.fst ≠ l'.fst) l✝ h✝ : { toList := l✝, ne_one := hnot1✝¹, chain_ne := hchain✝¹ } ≠ empty x y : (i : ι) × M i l : List ((i : ι) × M i) hi : ∀ (hnot1 : ∀ (l_1 : (i : ι) × M i), l_1 ∈ y :: l → l_1.snd ≠ 1) (hchain : List.Chain' (fun l l' => l.fst ≠ l'.fst) (y :: l)), { toList := y :: l, ne_one := hnot1, chain_ne := hchain } ≠ empty → ∃ i j w', (toWord w').toList = { toList := y :: l, ne_one := hnot1, chain_ne := hchain }.toList hnot1✝ : ∀ (l_1 : (i : ι) × M i), l_1 ∈ x :: y :: l → l_1.snd ≠ 1 hnot1 : x.snd ≠ 1 ∧ ∀ (x : (i : ι) × M i), x ∈ y :: l → x.snd ≠ 1 hchain✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (x :: y :: l) hchain : x.fst ≠ y.fst ∧ List.Chain' (fun l l' => l.fst ≠ l'.fst) (y :: l) h : { toList := x :: y :: l, ne_one := hnot1✝, chain_ne := hchain✝ } ≠ empty ⊢ ∃ i j w', (toWord w').toList = { toList := x :: y :: l, ne_one := hnot1✝, chain_ne := hchain✝ }.toList [PROOFSTEP] specialize hi hnot1.2 hchain.2 (by rintro ⟨rfl⟩) [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N l✝ : List ((i : ι) × M i) hnot1✝¹ : ∀ (l : (i : ι) × M i), l ∈ l✝ → l.snd ≠ 1 hchain✝¹ : List.Chain' (fun l l' => l.fst ≠ l'.fst) l✝ h✝ : { toList := l✝, ne_one := hnot1✝¹, chain_ne := hchain✝¹ } ≠ empty x y : (i : ι) × M i l : List ((i : ι) × M i) hi : ∀ (hnot1 : ∀ (l_1 : (i : ι) × M i), l_1 ∈ y :: l → l_1.snd ≠ 1) (hchain : List.Chain' (fun l l' => l.fst ≠ l'.fst) (y :: l)), { toList := y :: l, ne_one := hnot1, chain_ne := hchain } ≠ empty → ∃ i j w', (toWord w').toList = { toList := y :: l, ne_one := hnot1, chain_ne := hchain }.toList hnot1✝ : ∀ (l_1 : (i : ι) × M i), l_1 ∈ x :: y :: l → l_1.snd ≠ 1 hnot1 : x.snd ≠ 1 ∧ ∀ (x : (i : ι) × M i), x ∈ y :: l → x.snd ≠ 1 hchain✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (x :: y :: l) hchain : x.fst ≠ y.fst ∧ List.Chain' (fun l l' => l.fst ≠ l'.fst) (y :: l) h : { toList := x :: y :: l, ne_one := hnot1✝, chain_ne := hchain✝ } ≠ empty ⊢ { toList := y :: l, ne_one := (_ : ∀ (x : (i : ι) × M i), x ∈ y :: l → x.snd ≠ 1), chain_ne := (_ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (y :: l)) } ≠ empty [PROOFSTEP] rintro ⟨rfl⟩ [GOAL] case this.mk.cons.cons ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N l✝ : List ((i : ι) × M i) hnot1✝¹ : ∀ (l : (i : ι) × M i), l ∈ l✝ → l.snd ≠ 1 hchain✝¹ : List.Chain' (fun l l' => l.fst ≠ l'.fst) l✝ h✝ : { toList := l✝, ne_one := hnot1✝¹, chain_ne := hchain✝¹ } ≠ empty x y : (i : ι) × M i l : List ((i : ι) × M i) hnot1✝ : ∀ (l_1 : (i : ι) × M i), l_1 ∈ x :: y :: l → l_1.snd ≠ 1 hnot1 : x.snd ≠ 1 ∧ ∀ (x : (i : ι) × M i), x ∈ y :: l → x.snd ≠ 1 hchain✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (x :: y :: l) hchain : x.fst ≠ y.fst ∧ List.Chain' (fun l l' => l.fst ≠ l'.fst) (y :: l) h : { toList := x :: y :: l, ne_one := hnot1✝, chain_ne := hchain✝ } ≠ empty hi : ∃ i j w', (toWord w').toList = { toList := y :: l, ne_one := (_ : ∀ (x : (i : ι) × M i), x ∈ y :: l → x.snd ≠ 1), chain_ne := (_ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (y :: l)) }.toList ⊢ ∃ i j w', (toWord w').toList = { toList := x :: y :: l, ne_one := hnot1✝, chain_ne := hchain✝ }.toList [PROOFSTEP] obtain ⟨i, j, w', hw' : w'.toList = y :: l⟩ := hi [GOAL] case this.mk.cons.cons.intro.intro.intro ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N l✝ : List ((i : ι) × M i) hnot1✝¹ : ∀ (l : (i : ι) × M i), l ∈ l✝ → l.snd ≠ 1 hchain✝¹ : List.Chain' (fun l l' => l.fst ≠ l'.fst) l✝ h✝ : { toList := l✝, ne_one := hnot1✝¹, chain_ne := hchain✝¹ } ≠ empty x y : (i : ι) × M i l : List ((i : ι) × M i) hnot1✝ : ∀ (l_1 : (i : ι) × M i), l_1 ∈ x :: y :: l → l_1.snd ≠ 1 hnot1 : x.snd ≠ 1 ∧ ∀ (x : (i : ι) × M i), x ∈ y :: l → x.snd ≠ 1 hchain✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (x :: y :: l) hchain : x.fst ≠ y.fst ∧ List.Chain' (fun l l' => l.fst ≠ l'.fst) (y :: l) h : { toList := x :: y :: l, ne_one := hnot1✝, chain_ne := hchain✝ } ≠ empty i j : ι w' : NeWord M i j hw' : toList w' = y :: l ⊢ ∃ i j w', (toWord w').toList = { toList := x :: y :: l, ne_one := hnot1✝, chain_ne := hchain✝ }.toList [PROOFSTEP] obtain rfl : y = ⟨i, w'.head⟩ := by simpa [hw'] using w'.toList_head? [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N l✝ : List ((i : ι) × M i) hnot1✝¹ : ∀ (l : (i : ι) × M i), l ∈ l✝ → l.snd ≠ 1 hchain✝¹ : List.Chain' (fun l l' => l.fst ≠ l'.fst) l✝ h✝ : { toList := l✝, ne_one := hnot1✝¹, chain_ne := hchain✝¹ } ≠ empty x y : (i : ι) × M i l : List ((i : ι) × M i) hnot1✝ : ∀ (l_1 : (i : ι) × M i), l_1 ∈ x :: y :: l → l_1.snd ≠ 1 hnot1 : x.snd ≠ 1 ∧ ∀ (x : (i : ι) × M i), x ∈ y :: l → x.snd ≠ 1 hchain✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (x :: y :: l) hchain : x.fst ≠ y.fst ∧ List.Chain' (fun l l' => l.fst ≠ l'.fst) (y :: l) h : { toList := x :: y :: l, ne_one := hnot1✝, chain_ne := hchain✝ } ≠ empty i j : ι w' : NeWord M i j hw' : toList w' = y :: l ⊢ y = { fst := i, snd := head w' } [PROOFSTEP] simpa [hw'] using w'.toList_head? [GOAL] case this.mk.cons.cons.intro.intro.intro ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N l✝ : List ((i : ι) × M i) hnot1✝¹ : ∀ (l : (i : ι) × M i), l ∈ l✝ → l.snd ≠ 1 hchain✝¹ : List.Chain' (fun l l' => l.fst ≠ l'.fst) l✝ h✝ : { toList := l✝, ne_one := hnot1✝¹, chain_ne := hchain✝¹ } ≠ empty x : (i : ι) × M i l : List ((i : ι) × M i) i j : ι w' : NeWord M i j hnot1✝ : ∀ (l_1 : (i : ι) × M i), l_1 ∈ x :: { fst := i, snd := head w' } :: l → l_1.snd ≠ 1 hnot1 : x.snd ≠ 1 ∧ ∀ (x : (i : ι) × M i), x ∈ { fst := i, snd := head w' } :: l → x.snd ≠ 1 hchain✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (x :: { fst := i, snd := head w' } :: l) hchain : x.fst ≠ { fst := i, snd := head w' }.fst ∧ List.Chain' (fun l l' => l.fst ≠ l'.fst) ({ fst := i, snd := head w' } :: l) h : { toList := x :: { fst := i, snd := head w' } :: l, ne_one := hnot1✝, chain_ne := hchain✝ } ≠ empty hw' : toList w' = { fst := i, snd := head w' } :: l ⊢ ∃ i_1 j_1 w'_1, (toWord w'_1).toList = { toList := x :: { fst := i, snd := head w' } :: l, ne_one := hnot1✝, chain_ne := hchain✝ }.toList [PROOFSTEP] refine' ⟨x.1, j, append (singleton x.2 hnot1.1) hchain.1 w', _⟩ [GOAL] case this.mk.cons.cons.intro.intro.intro ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N l✝ : List ((i : ι) × M i) hnot1✝¹ : ∀ (l : (i : ι) × M i), l ∈ l✝ → l.snd ≠ 1 hchain✝¹ : List.Chain' (fun l l' => l.fst ≠ l'.fst) l✝ h✝ : { toList := l✝, ne_one := hnot1✝¹, chain_ne := hchain✝¹ } ≠ empty x : (i : ι) × M i l : List ((i : ι) × M i) i j : ι w' : NeWord M i j hnot1✝ : ∀ (l_1 : (i : ι) × M i), l_1 ∈ x :: { fst := i, snd := head w' } :: l → l_1.snd ≠ 1 hnot1 : x.snd ≠ 1 ∧ ∀ (x : (i : ι) × M i), x ∈ { fst := i, snd := head w' } :: l → x.snd ≠ 1 hchain✝ : List.Chain' (fun l l' => l.fst ≠ l'.fst) (x :: { fst := i, snd := head w' } :: l) hchain : x.fst ≠ { fst := i, snd := head w' }.fst ∧ List.Chain' (fun l l' => l.fst ≠ l'.fst) ({ fst := i, snd := head w' } :: l) h : { toList := x :: { fst := i, snd := head w' } :: l, ne_one := hnot1✝, chain_ne := hchain✝ } ≠ empty hw' : toList w' = { fst := i, snd := head w' } :: l ⊢ (toWord (append (singleton x.snd (_ : x.snd ≠ 1)) (_ : x.fst ≠ { fst := i, snd := head w' }.fst) w')).toList = { toList := x :: { fst := i, snd := head w' } :: l, ne_one := hnot1✝, chain_ne := hchain✝ }.toList [PROOFSTEP] simpa [toWord] using hw' [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i : ι x : M i hne_one : x ≠ 1 ⊢ prod (singleton x hne_one) = ↑of x [PROOFSTEP] simp [toWord, prod, Word.prod] [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i j k l : ι w₁ : NeWord M i j hne : j ≠ k w₂ : NeWord M k l ⊢ prod (append w₁ hne w₂) = prod w₁ * prod w₂ [PROOFSTEP] simp [toWord, prod, Word.prod] [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i j : ι x : M i hnotone : x ≠ 1 w : NeWord M i j ⊢ head (replaceHead x hnotone w) = x [PROOFSTEP] induction w [GOAL] case singleton ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i j i✝ : ι x✝ : M i✝ a✝ : x✝ ≠ 1 x : M i✝ hnotone : x ≠ 1 ⊢ head (replaceHead x hnotone (singleton x✝ a✝)) = x case append ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i j i✝ j✝ k✝ l✝ : ι _w₁✝ : NeWord M i✝ j✝ _hne✝ : j✝ ≠ k✝ _w₂✝ : NeWord M k✝ l✝ _w₁_ih✝ : ∀ (x : M i✝) (hnotone : x ≠ 1), head (replaceHead x hnotone _w₁✝) = x _w₂_ih✝ : ∀ (x : M k✝) (hnotone : x ≠ 1), head (replaceHead x hnotone _w₂✝) = x x : M i✝ hnotone : x ≠ 1 ⊢ head (replaceHead x hnotone (append _w₁✝ _hne✝ _w₂✝)) = x [PROOFSTEP] rfl [GOAL] case append ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i j i✝ j✝ k✝ l✝ : ι _w₁✝ : NeWord M i✝ j✝ _hne✝ : j✝ ≠ k✝ _w₂✝ : NeWord M k✝ l✝ _w₁_ih✝ : ∀ (x : M i✝) (hnotone : x ≠ 1), head (replaceHead x hnotone _w₁✝) = x _w₂_ih✝ : ∀ (x : M k✝) (hnotone : x ≠ 1), head (replaceHead x hnotone _w₂✝) = x x : M i✝ hnotone : x ≠ 1 ⊢ head (replaceHead x hnotone (append _w₁✝ _hne✝ _w₂✝)) = x [PROOFSTEP] simp [*] [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i j : ι w : NeWord M i j x : M i hnotone : x * head w ≠ 1 ⊢ head (mulHead w x hnotone) = x * head w [PROOFSTEP] induction w [GOAL] case singleton ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i j i✝ : ι x✝ : M i✝ a✝ : x✝ ≠ 1 x : M i✝ hnotone : x * head (singleton x✝ a✝) ≠ 1 ⊢ head (mulHead (singleton x✝ a✝) x hnotone) = x * head (singleton x✝ a✝) case append ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i j i✝ j✝ k✝ l✝ : ι _w₁✝ : NeWord M i✝ j✝ _hne✝ : j✝ ≠ k✝ _w₂✝ : NeWord M k✝ l✝ _w₁_ih✝ : ∀ (x : M i✝) (hnotone : x * head _w₁✝ ≠ 1), head (mulHead _w₁✝ x hnotone) = x * head _w₁✝ _w₂_ih✝ : ∀ (x : M k✝) (hnotone : x * head _w₂✝ ≠ 1), head (mulHead _w₂✝ x hnotone) = x * head _w₂✝ x : M i✝ hnotone : x * head (append _w₁✝ _hne✝ _w₂✝) ≠ 1 ⊢ head (mulHead (append _w₁✝ _hne✝ _w₂✝) x hnotone) = x * head (append _w₁✝ _hne✝ _w₂✝) [PROOFSTEP] rfl [GOAL] case append ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i j i✝ j✝ k✝ l✝ : ι _w₁✝ : NeWord M i✝ j✝ _hne✝ : j✝ ≠ k✝ _w₂✝ : NeWord M k✝ l✝ _w₁_ih✝ : ∀ (x : M i✝) (hnotone : x * head _w₁✝ ≠ 1), head (mulHead _w₁✝ x hnotone) = x * head _w₁✝ _w₂_ih✝ : ∀ (x : M k✝) (hnotone : x * head _w₂✝ ≠ 1), head (mulHead _w₂✝ x hnotone) = x * head _w₂✝ x : M i✝ hnotone : x * head (append _w₁✝ _hne✝ _w₂✝) ≠ 1 ⊢ head (mulHead (append _w₁✝ _hne✝ _w₂✝) x hnotone) = x * head (append _w₁✝ _hne✝ _w₂✝) [PROOFSTEP] simp [*] [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i j : ι w : NeWord M i j x : M i hnotone : x * head w ≠ 1 ⊢ prod (mulHead w x hnotone) = ↑of x * prod w [PROOFSTEP] unfold mulHead [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i j : ι w : NeWord M i j x : M i hnotone : x * head w ≠ 1 ⊢ prod (replaceHead (x * head w) hnotone w) = ↑of x * prod w [PROOFSTEP] induction' w with _ _ _ _ _ _ _ _ _ _ w_ih_w₁ w_ih_w₂ [GOAL] case singleton ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i j : ι w : NeWord M i j x✝¹ : M i hnotone✝ : x✝¹ * head w ≠ 1 i✝ : ι x✝ : M i✝ a✝ : x✝ ≠ 1 x : M i✝ hnotone : x * head (singleton x✝ a✝) ≠ 1 ⊢ prod (replaceHead (x * head (singleton x✝ a✝)) hnotone (singleton x✝ a✝)) = ↑of x * prod (singleton x✝ a✝) [PROOFSTEP] simp [mulHead, replaceHead] [GOAL] case append ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i j : ι w : NeWord M i j x✝ : M i hnotone✝ : x✝ * head w ≠ 1 i✝ j✝ k✝ l✝ : ι _w₁✝ : NeWord M i✝ j✝ _hne✝ : j✝ ≠ k✝ _w₂✝ : NeWord M k✝ l✝ w_ih_w₁ : ∀ (x : M i✝) (hnotone : x * head _w₁✝ ≠ 1), prod (replaceHead (x * head _w₁✝) hnotone _w₁✝) = ↑of x * prod _w₁✝ w_ih_w₂ : ∀ (x : M k✝) (hnotone : x * head _w₂✝ ≠ 1), prod (replaceHead (x * head _w₂✝) hnotone _w₂✝) = ↑of x * prod _w₂✝ x : M i✝ hnotone : x * head (append _w₁✝ _hne✝ _w₂✝) ≠ 1 ⊢ prod (replaceHead (x * head (append _w₁✝ _hne✝ _w₂✝)) hnotone (append _w₁✝ _hne✝ _w₂✝)) = ↑of x * prod (append _w₁✝ _hne✝ _w₂✝) [PROOFSTEP] specialize w_ih_w₁ _ hnotone [GOAL] case append ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i j : ι w : NeWord M i j x✝ : M i hnotone✝ : x✝ * head w ≠ 1 i✝ j✝ k✝ l✝ : ι _w₁✝ : NeWord M i✝ j✝ _hne✝ : j✝ ≠ k✝ _w₂✝ : NeWord M k✝ l✝ w_ih_w₂ : ∀ (x : M k✝) (hnotone : x * head _w₂✝ ≠ 1), prod (replaceHead (x * head _w₂✝) hnotone _w₂✝) = ↑of x * prod _w₂✝ x : M i✝ hnotone : x * head (append _w₁✝ _hne✝ _w₂✝) ≠ 1 w_ih_w₁ : prod (replaceHead (x * head _w₁✝) hnotone _w₁✝) = ↑of x * prod _w₁✝ ⊢ prod (replaceHead (x * head (append _w₁✝ _hne✝ _w₂✝)) hnotone (append _w₁✝ _hne✝ _w₂✝)) = ↑of x * prod (append _w₁✝ _hne✝ _w₂✝) [PROOFSTEP] clear w_ih_w₂ [GOAL] case append ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i j : ι w : NeWord M i j x✝ : M i hnotone✝ : x✝ * head w ≠ 1 i✝ j✝ k✝ l✝ : ι _w₁✝ : NeWord M i✝ j✝ _hne✝ : j✝ ≠ k✝ _w₂✝ : NeWord M k✝ l✝ x : M i✝ hnotone : x * head (append _w₁✝ _hne✝ _w₂✝) ≠ 1 w_ih_w₁ : prod (replaceHead (x * head _w₁✝) hnotone _w₁✝) = ↑of x * prod _w₁✝ ⊢ prod (replaceHead (x * head (append _w₁✝ _hne✝ _w₂✝)) hnotone (append _w₁✝ _hne✝ _w₂✝)) = ↑of x * prod (append _w₁✝ _hne✝ _w₂✝) [PROOFSTEP] simp [replaceHead, ← mul_assoc] at * [GOAL] case append ι : Type u_1 M : ι → Type u_2 inst✝¹ : (i : ι) → Monoid (M i) N : Type u_3 inst✝ : Monoid N i j : ι w : NeWord M i j x✝ : M i hnotone✝ : ¬x✝ * head w = 1 i✝ j✝ k✝ l✝ : ι _w₁✝ : NeWord M i✝ j✝ _hne✝ : j✝ ≠ k✝ _w₂✝ : NeWord M k✝ l✝ x : M i✝ hnotone : x * head (append _w₁✝ _hne✝ _w₂✝) ≠ 1 w_ih_w₁ : prod (replaceHead (x * head _w₁✝) hnotone _w₁✝) = ↑of x * prod _w₁✝ ⊢ prod (replaceHead (x * head _w₁✝) (_ : x * head _w₁✝ ≠ 1) _w₁✝) * prod _w₂✝ = ↑of x * prod _w₁✝ * prod _w₂✝ [PROOFSTEP] congr 1 [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N G : ι → Type u_4 inst✝ : (i : ι) → Group (G i) i j : ι w : NeWord G i j ⊢ prod (inv w) = (prod w)⁻¹ [PROOFSTEP] induction w [GOAL] case singleton ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N G : ι → Type u_4 inst✝ : (i : ι) → Group (G i) i j i✝ : ι x✝ : G i✝ a✝ : x✝ ≠ 1 ⊢ prod (inv (singleton x✝ a✝)) = (prod (singleton x✝ a✝))⁻¹ [PROOFSTEP] simp [inv, *] [GOAL] case append ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N G : ι → Type u_4 inst✝ : (i : ι) → Group (G i) i j i✝ j✝ k✝ l✝ : ι _w₁✝ : NeWord G i✝ j✝ _hne✝ : j✝ ≠ k✝ _w₂✝ : NeWord G k✝ l✝ _w₁_ih✝ : prod (inv _w₁✝) = (prod _w₁✝)⁻¹ _w₂_ih✝ : prod (inv _w₂✝) = (prod _w₂✝)⁻¹ ⊢ prod (inv (append _w₁✝ _hne✝ _w₂✝)) = (prod (append _w₁✝ _hne✝ _w₂✝))⁻¹ [PROOFSTEP] simp [inv, *] [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N G : ι → Type u_4 inst✝ : (i : ι) → Group (G i) i j : ι w : NeWord G i j ⊢ head (inv w) = (last w)⁻¹ [PROOFSTEP] induction w [GOAL] case singleton ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N G : ι → Type u_4 inst✝ : (i : ι) → Group (G i) i j i✝ : ι x✝ : G i✝ a✝ : x✝ ≠ 1 ⊢ head (inv (singleton x✝ a✝)) = (last (singleton x✝ a✝))⁻¹ [PROOFSTEP] simp [inv, *] [GOAL] case append ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N G : ι → Type u_4 inst✝ : (i : ι) → Group (G i) i j i✝ j✝ k✝ l✝ : ι _w₁✝ : NeWord G i✝ j✝ _hne✝ : j✝ ≠ k✝ _w₂✝ : NeWord G k✝ l✝ _w₁_ih✝ : head (inv _w₁✝) = (last _w₁✝)⁻¹ _w₂_ih✝ : head (inv _w₂✝) = (last _w₂✝)⁻¹ ⊢ head (inv (append _w₁✝ _hne✝ _w₂✝)) = (last (append _w₁✝ _hne✝ _w₂✝))⁻¹ [PROOFSTEP] simp [inv, *] [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N G : ι → Type u_4 inst✝ : (i : ι) → Group (G i) i j : ι w : NeWord G i j ⊢ last (inv w) = (head w)⁻¹ [PROOFSTEP] induction w [GOAL] case singleton ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N G : ι → Type u_4 inst✝ : (i : ι) → Group (G i) i j i✝ : ι x✝ : G i✝ a✝ : x✝ ≠ 1 ⊢ last (inv (singleton x✝ a✝)) = (head (singleton x✝ a✝))⁻¹ [PROOFSTEP] simp [inv, *] [GOAL] case append ι : Type u_1 M : ι → Type u_2 inst✝² : (i : ι) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N G : ι → Type u_4 inst✝ : (i : ι) → Group (G i) i j i✝ j✝ k✝ l✝ : ι _w₁✝ : NeWord G i✝ j✝ _hne✝ : j✝ ≠ k✝ _w₂✝ : NeWord G k✝ l✝ _w₁_ih✝ : last (inv _w₁✝) = (head _w₁✝)⁻¹ _w₂_ih✝ : last (inv _w₂✝) = (head _w₂✝)⁻¹ ⊢ last (inv (append _w₁✝ _hne✝ _w₂✝)) = (head (append _w₁✝ _hne✝ _w₂✝))⁻¹ [PROOFSTEP] simp [inv, *] [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G hcard : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i) α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i i j k : ι w : NeWord H i j hk : j ≠ k ⊢ ↑(↑lift f) (NeWord.prod w) • X k ⊆ X i [PROOFSTEP] induction' w with i x hne_one i j k l w₁ hne w₂ hIw₁ hIw₂ generalizing k [GOAL] case singleton ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G hcard : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i) α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i i✝ j k✝ : ι hk✝ : j ≠ k✝ i : ι x : H i hne_one : x ≠ 1 k : ι hk : i ≠ k ⊢ ↑(↑lift f) (NeWord.prod (NeWord.singleton x hne_one)) • X k ⊆ X i [PROOFSTEP] simpa using hpp hk _ hne_one [GOAL] case append ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G hcard : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i) α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i i✝ j✝ k✝¹ : ι hk✝ : j✝ ≠ k✝¹ i j k✝ l : ι w₁ : NeWord H i j hne : j ≠ k✝ w₂ : NeWord H k✝ l hIw₁ : ∀ {k : ι}, j ≠ k → ↑(↑lift f) (NeWord.prod w₁) • X k ⊆ X i hIw₂ : ∀ {k : ι}, l ≠ k → ↑(↑lift f) (NeWord.prod w₂) • X k ⊆ X k✝ k : ι hk : l ≠ k ⊢ ↑(↑lift f) (NeWord.prod (NeWord.append w₁ hne w₂)) • X k ⊆ X i [PROOFSTEP] calc lift f (NeWord.append w₁ hne w₂).prod • X k = lift f w₁.prod • lift f w₂.prod • X k := by simp [MulAction.mul_smul] _ ⊆ lift f w₁.prod • X _ := (set_smul_subset_set_smul_iff.mpr (hIw₂ hk)) _ ⊆ X i := hIw₁ hne [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G hcard : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i) α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i i✝ j✝ k✝¹ : ι hk✝ : j✝ ≠ k✝¹ i j k✝ l : ι w₁ : NeWord H i j hne : j ≠ k✝ w₂ : NeWord H k✝ l hIw₁ : ∀ {k : ι}, j ≠ k → ↑(↑lift f) (NeWord.prod w₁) • X k ⊆ X i hIw₂ : ∀ {k : ι}, l ≠ k → ↑(↑lift f) (NeWord.prod w₂) • X k ⊆ X k✝ k : ι hk : l ≠ k ⊢ ↑(↑lift f) (NeWord.prod (NeWord.append w₁ hne w₂)) • X k = ↑(↑lift f) (NeWord.prod w₁) • ↑(↑lift f) (NeWord.prod w₂) • X k [PROOFSTEP] simp [MulAction.mul_smul] [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G hcard : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i) α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i i j k : ι w : NeWord H i j hhead : k ≠ i hlast : k ≠ j ⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1 [PROOFSTEP] intro heq1 [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G hcard : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i) α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i i j k : ι w : NeWord H i j hhead : k ≠ i hlast : k ≠ j heq1 : ↑(↑lift f) (NeWord.prod w) = 1 ⊢ False [PROOFSTEP] have : X k ⊆ X i := by simpa [heq1] using lift_word_ping_pong f X hpp w hlast.symm [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G hcard : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i) α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i i j k : ι w : NeWord H i j hhead : k ≠ i hlast : k ≠ j heq1 : ↑(↑lift f) (NeWord.prod w) = 1 ⊢ X k ⊆ X i [PROOFSTEP] simpa [heq1] using lift_word_ping_pong f X hpp w hlast.symm [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G hcard : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i) α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i i j k : ι w : NeWord H i j hhead : k ≠ i hlast : k ≠ j heq1 : ↑(↑lift f) (NeWord.prod w) = 1 this : X k ⊆ X i ⊢ False [PROOFSTEP] obtain ⟨x, hx⟩ := hXnonempty k [GOAL] case intro ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G hcard : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i) α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i i j k : ι w : NeWord H i j hhead : k ≠ i hlast : k ≠ j heq1 : ↑(↑lift f) (NeWord.prod w) = 1 this : X k ⊆ X i x : α hx : x ∈ X k ⊢ False [PROOFSTEP] exact (hXdisj hhead).le_bot ⟨hx, this hx⟩ [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G hcard : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i) α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i i : ι w : NeWord H i i ⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1 [PROOFSTEP] obtain ⟨k, hk⟩ := exists_ne i [GOAL] case intro ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G hcard : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i) α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i i : ι w : NeWord H i i k : ι hk : k ≠ i ⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1 [PROOFSTEP] exact lift_word_prod_nontrivial_of_other_i f X hXnonempty hXdisj hpp w hk hk [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G hcard✝ : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i) α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i i j : ι w : NeWord H i j hcard : 3 ≤ #(H i) hheadtail : i ≠ j ⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1 [PROOFSTEP] obtain ⟨h, hn1, hnh⟩ := Cardinal.three_le hcard 1 w.head⁻¹ [GOAL] case intro.intro ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G hcard✝ : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i) α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i i j : ι w : NeWord H i j hcard : 3 ≤ #(H i) hheadtail : i ≠ j h : H i hn1 : h ≠ 1 hnh : h ≠ (NeWord.head w)⁻¹ ⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1 [PROOFSTEP] have hnot1 : h * w.head ≠ 1 := by rw [← div_inv_eq_mul] exact div_ne_one_of_ne hnh [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G hcard✝ : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i) α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i i j : ι w : NeWord H i j hcard : 3 ≤ #(H i) hheadtail : i ≠ j h : H i hn1 : h ≠ 1 hnh : h ≠ (NeWord.head w)⁻¹ ⊢ h * NeWord.head w ≠ 1 [PROOFSTEP] rw [← div_inv_eq_mul] [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G hcard✝ : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i) α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i i j : ι w : NeWord H i j hcard : 3 ≤ #(H i) hheadtail : i ≠ j h : H i hn1 : h ≠ 1 hnh : h ≠ (NeWord.head w)⁻¹ ⊢ h / (NeWord.head w)⁻¹ ≠ 1 [PROOFSTEP] exact div_ne_one_of_ne hnh [GOAL] case intro.intro ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G hcard✝ : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i) α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i i j : ι w : NeWord H i j hcard : 3 ≤ #(H i) hheadtail : i ≠ j h : H i hn1 : h ≠ 1 hnh : h ≠ (NeWord.head w)⁻¹ hnot1 : h * NeWord.head w ≠ 1 ⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1 [PROOFSTEP] let w' : NeWord H i i := NeWord.append (NeWord.mulHead w h hnot1) hheadtail.symm (NeWord.singleton h⁻¹ (inv_ne_one.mpr hn1)) [GOAL] case intro.intro ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G hcard✝ : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i) α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i i j : ι w : NeWord H i j hcard : 3 ≤ #(H i) hheadtail : i ≠ j h : H i hn1 : h ≠ 1 hnh : h ≠ (NeWord.head w)⁻¹ hnot1 : h * NeWord.head w ≠ 1 w' : NeWord H i i := NeWord.append (NeWord.mulHead w h hnot1) (_ : j ≠ i) (NeWord.singleton h⁻¹ (_ : h⁻¹ ≠ 1)) ⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1 [PROOFSTEP] have hw' : lift f w'.prod ≠ 1 := lift_word_prod_nontrivial_of_head_eq_last f X hXnonempty hXdisj hpp w' [GOAL] case intro.intro ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G hcard✝ : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i) α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i i j : ι w : NeWord H i j hcard : 3 ≤ #(H i) hheadtail : i ≠ j h : H i hn1 : h ≠ 1 hnh : h ≠ (NeWord.head w)⁻¹ hnot1 : h * NeWord.head w ≠ 1 w' : NeWord H i i := NeWord.append (NeWord.mulHead w h hnot1) (_ : j ≠ i) (NeWord.singleton h⁻¹ (_ : h⁻¹ ≠ 1)) hw' : ↑(↑lift f) (NeWord.prod w') ≠ 1 ⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1 [PROOFSTEP] intro heq1 [GOAL] case intro.intro ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G hcard✝ : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i) α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i i j : ι w : NeWord H i j hcard : 3 ≤ #(H i) hheadtail : i ≠ j h : H i hn1 : h ≠ 1 hnh : h ≠ (NeWord.head w)⁻¹ hnot1 : h * NeWord.head w ≠ 1 w' : NeWord H i i := NeWord.append (NeWord.mulHead w h hnot1) (_ : j ≠ i) (NeWord.singleton h⁻¹ (_ : h⁻¹ ≠ 1)) hw' : ↑(↑lift f) (NeWord.prod w') ≠ 1 heq1 : ↑(↑lift f) (NeWord.prod w) = 1 ⊢ False [PROOFSTEP] apply hw' [GOAL] case intro.intro ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G hcard✝ : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i) α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i i j : ι w : NeWord H i j hcard : 3 ≤ #(H i) hheadtail : i ≠ j h : H i hn1 : h ≠ 1 hnh : h ≠ (NeWord.head w)⁻¹ hnot1 : h * NeWord.head w ≠ 1 w' : NeWord H i i := NeWord.append (NeWord.mulHead w h hnot1) (_ : j ≠ i) (NeWord.singleton h⁻¹ (_ : h⁻¹ ≠ 1)) hw' : ↑(↑lift f) (NeWord.prod w') ≠ 1 heq1 : ↑(↑lift f) (NeWord.prod w) = 1 ⊢ ↑(↑lift f) (NeWord.prod w') = 1 [PROOFSTEP] simp [heq1] [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G hcard : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i) α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i i j : ι w : NeWord H i j ⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1 [PROOFSTEP] classical cases' hcard with hcard hcard · obtain ⟨i, h1, h2⟩ := Cardinal.three_le hcard i j exact lift_word_prod_nontrivial_of_other_i f X hXnonempty hXdisj hpp w h1 h2 · cases' hcard with k hcard by_cases hh : i = k <;> by_cases hl : j = k · subst hh subst hl exact lift_word_prod_nontrivial_of_head_eq_last f X hXnonempty hXdisj hpp w · subst hh change j ≠ i at hl exact lift_word_prod_nontrivial_of_head_card f X hXnonempty hXdisj hpp w hcard hl.symm · subst hl change i ≠ j at hh have : lift f w.inv.prod ≠ 1 := lift_word_prod_nontrivial_of_head_card f X hXnonempty hXdisj hpp w.inv hcard hh.symm intro heq apply this simpa using heq · change i ≠ k at hh change j ≠ k at hl obtain ⟨h, hn1, -⟩ := Cardinal.three_le hcard 1 1 let w' : NeWord H k k := NeWord.append (NeWord.append (NeWord.singleton h hn1) hh.symm w) hl (NeWord.singleton h⁻¹ (inv_ne_one.mpr hn1)) have hw' : lift f w'.prod ≠ 1 := lift_word_prod_nontrivial_of_head_eq_last f X hXnonempty hXdisj hpp w' intro heq1 apply hw' simp [heq1] [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G hcard : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i) α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i i j : ι w : NeWord H i j ⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1 [PROOFSTEP] cases' hcard with hcard hcard [GOAL] case inl ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i i j : ι w : NeWord H i j hcard : 3 ≤ #ι ⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1 [PROOFSTEP] obtain ⟨i, h1, h2⟩ := Cardinal.three_le hcard i j [GOAL] case inl.intro.intro ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i i✝ j : ι w : NeWord H i✝ j hcard : 3 ≤ #ι i : ι h1 : i ≠ i✝ h2 : i ≠ j ⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1 [PROOFSTEP] exact lift_word_prod_nontrivial_of_other_i f X hXnonempty hXdisj hpp w h1 h2 [GOAL] case inr ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i i j : ι w : NeWord H i j hcard : ∃ i, 3 ≤ #(H i) ⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1 [PROOFSTEP] cases' hcard with k hcard [GOAL] case inr.intro ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i i j : ι w : NeWord H i j k : ι hcard : 3 ≤ #(H k) ⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1 [PROOFSTEP] by_cases hh : i = k [GOAL] case pos ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i i j : ι w : NeWord H i j k : ι hcard : 3 ≤ #(H k) hh : i = k ⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1 [PROOFSTEP] by_cases hl : j = k [GOAL] case neg ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i i j : ι w : NeWord H i j k : ι hcard : 3 ≤ #(H k) hh : ¬i = k ⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1 [PROOFSTEP] by_cases hl : j = k [GOAL] case pos ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i i j : ι w : NeWord H i j k : ι hcard : 3 ≤ #(H k) hh : i = k hl : j = k ⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1 [PROOFSTEP] subst hh [GOAL] case pos ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i i j : ι w : NeWord H i j hcard : 3 ≤ #(H i) hl : j = i ⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1 [PROOFSTEP] subst hl [GOAL] case pos ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i j : ι w : NeWord H j j hcard : 3 ≤ #(H j) ⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1 [PROOFSTEP] exact lift_word_prod_nontrivial_of_head_eq_last f X hXnonempty hXdisj hpp w [GOAL] case neg ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i i j : ι w : NeWord H i j k : ι hcard : 3 ≤ #(H k) hh : i = k hl : ¬j = k ⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1 [PROOFSTEP] subst hh [GOAL] case neg ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i i j : ι w : NeWord H i j hcard : 3 ≤ #(H i) hl : ¬j = i ⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1 [PROOFSTEP] change j ≠ i at hl [GOAL] case neg ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i i j : ι w : NeWord H i j hcard : 3 ≤ #(H i) hl : j ≠ i ⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1 [PROOFSTEP] exact lift_word_prod_nontrivial_of_head_card f X hXnonempty hXdisj hpp w hcard hl.symm [GOAL] case pos ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i i j : ι w : NeWord H i j k : ι hcard : 3 ≤ #(H k) hh : ¬i = k hl : j = k ⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1 [PROOFSTEP] subst hl [GOAL] case pos ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i i j : ι w : NeWord H i j hcard : 3 ≤ #(H j) hh : ¬i = j ⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1 [PROOFSTEP] change i ≠ j at hh [GOAL] case pos ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i i j : ι w : NeWord H i j hcard : 3 ≤ #(H j) hh : i ≠ j ⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1 [PROOFSTEP] have : lift f w.inv.prod ≠ 1 := lift_word_prod_nontrivial_of_head_card f X hXnonempty hXdisj hpp w.inv hcard hh.symm [GOAL] case pos ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i i j : ι w : NeWord H i j hcard : 3 ≤ #(H j) hh : i ≠ j this : ↑(↑lift f) (NeWord.prod (NeWord.inv w)) ≠ 1 ⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1 [PROOFSTEP] intro heq [GOAL] case pos ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i i j : ι w : NeWord H i j hcard : 3 ≤ #(H j) hh : i ≠ j this : ↑(↑lift f) (NeWord.prod (NeWord.inv w)) ≠ 1 heq : ↑(↑lift f) (NeWord.prod w) = 1 ⊢ False [PROOFSTEP] apply this [GOAL] case pos ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i i j : ι w : NeWord H i j hcard : 3 ≤ #(H j) hh : i ≠ j this : ↑(↑lift f) (NeWord.prod (NeWord.inv w)) ≠ 1 heq : ↑(↑lift f) (NeWord.prod w) = 1 ⊢ ↑(↑lift f) (NeWord.prod (NeWord.inv w)) = 1 [PROOFSTEP] simpa using heq [GOAL] case neg ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i i j : ι w : NeWord H i j k : ι hcard : 3 ≤ #(H k) hh : ¬i = k hl : ¬j = k ⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1 [PROOFSTEP] change i ≠ k at hh [GOAL] case neg ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i i j : ι w : NeWord H i j k : ι hcard : 3 ≤ #(H k) hl : ¬j = k hh : i ≠ k ⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1 [PROOFSTEP] change j ≠ k at hl [GOAL] case neg ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i i j : ι w : NeWord H i j k : ι hcard : 3 ≤ #(H k) hh : i ≠ k hl : j ≠ k ⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1 [PROOFSTEP] obtain ⟨h, hn1, -⟩ := Cardinal.three_le hcard 1 1 [GOAL] case neg.intro.intro ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i i j : ι w : NeWord H i j k : ι hcard : 3 ≤ #(H k) hh : i ≠ k hl : j ≠ k h : H k hn1 : h ≠ 1 ⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1 [PROOFSTEP] let w' : NeWord H k k := NeWord.append (NeWord.append (NeWord.singleton h hn1) hh.symm w) hl (NeWord.singleton h⁻¹ (inv_ne_one.mpr hn1)) [GOAL] case neg.intro.intro ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i i j : ι w : NeWord H i j k : ι hcard : 3 ≤ #(H k) hh : i ≠ k hl : j ≠ k h : H k hn1 : h ≠ 1 w' : NeWord H k k := NeWord.append (NeWord.append (NeWord.singleton h hn1) (_ : k ≠ i) w) hl (NeWord.singleton h⁻¹ (_ : h⁻¹ ≠ 1)) ⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1 [PROOFSTEP] have hw' : lift f w'.prod ≠ 1 := lift_word_prod_nontrivial_of_head_eq_last f X hXnonempty hXdisj hpp w' [GOAL] case neg.intro.intro ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i i j : ι w : NeWord H i j k : ι hcard : 3 ≤ #(H k) hh : i ≠ k hl : j ≠ k h : H k hn1 : h ≠ 1 w' : NeWord H k k := NeWord.append (NeWord.append (NeWord.singleton h hn1) (_ : k ≠ i) w) hl (NeWord.singleton h⁻¹ (_ : h⁻¹ ≠ 1)) hw' : ↑(↑lift f) (NeWord.prod w') ≠ 1 ⊢ ↑(↑lift f) (NeWord.prod w) ≠ 1 [PROOFSTEP] intro heq1 [GOAL] case neg.intro.intro ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i i j : ι w : NeWord H i j k : ι hcard : 3 ≤ #(H k) hh : i ≠ k hl : j ≠ k h : H k hn1 : h ≠ 1 w' : NeWord H k k := NeWord.append (NeWord.append (NeWord.singleton h hn1) (_ : k ≠ i) w) hl (NeWord.singleton h⁻¹ (_ : h⁻¹ ≠ 1)) hw' : ↑(↑lift f) (NeWord.prod w') ≠ 1 heq1 : ↑(↑lift f) (NeWord.prod w) = 1 ⊢ False [PROOFSTEP] apply hw' [GOAL] case neg.intro.intro ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i i j : ι w : NeWord H i j k : ι hcard : 3 ≤ #(H k) hh : i ≠ k hl : j ≠ k h : H k hn1 : h ≠ 1 w' : NeWord H k k := NeWord.append (NeWord.append (NeWord.singleton h hn1) (_ : k ≠ i) w) hl (NeWord.singleton h⁻¹ (_ : h⁻¹ ≠ 1)) hw' : ↑(↑lift f) (NeWord.prod w') ≠ 1 heq1 : ↑(↑lift f) (NeWord.prod w) = 1 ⊢ ↑(↑lift f) (NeWord.prod w') = 1 [PROOFSTEP] simp [heq1] [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G hcard : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i) α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i w : Word H h : ↑(↑lift f) (Word.prod w) = 1 ⊢ w = Word.empty [PROOFSTEP] by_contra hnotempty [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G hcard : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i) α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i w : Word H h : ↑(↑lift f) (Word.prod w) = 1 hnotempty : ¬w = Word.empty ⊢ False [PROOFSTEP] obtain ⟨i, j, w, rfl⟩ := NeWord.of_word w hnotempty [GOAL] case intro.intro.intro ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G hcard : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i) α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i i j : ι w : NeWord H i j h : ↑(↑lift f) (Word.prod (NeWord.toWord w)) = 1 hnotempty : ¬NeWord.toWord w = Word.empty ⊢ False [PROOFSTEP] exact lift_word_prod_nontrivial_of_not_empty f hcard X hXnonempty hXdisj hpp w h [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G hcard : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i) α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i ⊢ Function.Injective ↑(↑lift f) [PROOFSTEP] classical apply (injective_iff_map_eq_one (lift f)).mpr rw [(CoprodI.Word.equiv).forall_congr_left'] · intro w Heq dsimp [Word.equiv] at * · rw [empty_of_word_prod_eq_one f hcard X hXnonempty hXdisj hpp Heq] rfl [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G hcard : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i) α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i ⊢ Function.Injective ↑(↑lift f) [PROOFSTEP] apply (injective_iff_map_eq_one (lift f)).mpr [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G hcard : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i) α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i ⊢ ∀ (a : CoprodI fun i => H i), ↑(↑lift f) a = 1 → a = 1 [PROOFSTEP] rw [(CoprodI.Word.equiv).forall_congr_left'] [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G hcard : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i) α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i ⊢ ∀ (y : Word fun i => H i), ↑(↑lift f) (↑Word.equiv.symm y) = 1 → ↑Word.equiv.symm y = 1 [PROOFSTEP] intro w Heq [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G hcard : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i) α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X j ⊆ X i w : Word fun i => H i Heq : ↑(↑lift f) (↑Word.equiv.symm w) = 1 ⊢ ↑Word.equiv.symm w = 1 [PROOFSTEP] dsimp [Word.equiv] at * [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G hcard : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i) α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), ¬h = 1 → ↑(f i) h • X j ⊆ X i w : Word fun i => H i Heq : ↑(↑lift f) (Word.prod w) = 1 ⊢ Word.prod w = 1 [PROOFSTEP] rw [empty_of_word_prod_eq_one f hcard X hXnonempty hXdisj hpp Heq] [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N hnontriv : Nontrivial ι G : Type u_4 inst✝² : Group G H : ι → Type u_5 inst✝¹ : (i : ι) → Group (H i) f : (i : ι) → H i →* G hcard : 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i) α : Type u_6 inst✝ : MulAction G α X : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hpp : Pairwise fun i j => ∀ (h : H i), ¬h = 1 → ↑(f i) h • X j ⊆ X i w : Word fun i => H i Heq : ↑(↑lift f) (Word.prod w) = 1 ⊢ Word.prod Word.empty = 1 [PROOFSTEP] rfl [GOAL] ι✝ : Type u_1 M : ι✝ → Type u_2 inst✝² : (i : ι✝) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N ι : Type u_4 G : ι → Type u_5 inst✝ : (i : ι) → Group (G i) hG : (i : ι) → IsFreeGroup (G i) ⊢ MonoidHom.comp (↑lift fun i => ↑IsFreeGroup.lift fun x => FreeGroup.of { fst := i, snd := x }) (↑FreeGroup.lift fun x => ↑of (IsFreeGroup.of x.snd)) = MonoidHom.id (FreeGroup ((i : ι) × IsFreeGroup.Generators (G i))) [PROOFSTEP] ext [GOAL] case h ι✝ : Type u_1 M : ι✝ → Type u_2 inst✝² : (i : ι✝) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N ι : Type u_4 G : ι → Type u_5 inst✝ : (i : ι) → Group (G i) hG : (i : ι) → IsFreeGroup (G i) a✝ : IsFreeGroup.Generators (FreeGroup ((i : ι) × IsFreeGroup.Generators (G i))) ⊢ ↑(MonoidHom.comp (↑lift fun i => ↑IsFreeGroup.lift fun x => FreeGroup.of { fst := i, snd := x }) (↑FreeGroup.lift fun x => ↑of (IsFreeGroup.of x.snd))) (IsFreeGroup.of a✝) = ↑(MonoidHom.id (FreeGroup ((i : ι) × IsFreeGroup.Generators (G i)))) (IsFreeGroup.of a✝) [PROOFSTEP] simp [GOAL] ι✝ : Type u_1 M : ι✝ → Type u_2 inst✝² : (i : ι✝) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N ι : Type u_4 G : ι → Type u_5 inst✝ : (i : ι) → Group (G i) hG : (i : ι) → IsFreeGroup (G i) ⊢ MonoidHom.comp (↑FreeGroup.lift fun x => ↑of (IsFreeGroup.of x.snd)) (↑lift fun i => ↑IsFreeGroup.lift fun x => FreeGroup.of { fst := i, snd := x }) = MonoidHom.id (CoprodI G) [PROOFSTEP] ext [GOAL] case h.h ι✝ : Type u_1 M : ι✝ → Type u_2 inst✝² : (i : ι✝) → Monoid (M i) N : Type u_3 inst✝¹ : Monoid N ι : Type u_4 G : ι → Type u_5 inst✝ : (i : ι) → Group (G i) hG : (i : ι) → IsFreeGroup (G i) i✝ : ι a✝ : IsFreeGroup.Generators (G i✝) ⊢ ↑(MonoidHom.comp (MonoidHom.comp (↑FreeGroup.lift fun x => ↑of (IsFreeGroup.of x.snd)) (↑lift fun i => ↑IsFreeGroup.lift fun x => FreeGroup.of { fst := i, snd := x })) of) (IsFreeGroup.of a✝) = ↑(MonoidHom.comp (MonoidHom.id (CoprodI G)) of) (IsFreeGroup.of a✝) [PROOFSTEP] simp [GOAL] ι✝ : Type u_1 M : ι✝ → Type u_2 inst✝¹ : (i : ι✝) → Monoid (M i) N : Type u_3 inst✝ : Monoid N ι : Type u_1 ⊢ FreeGroup ι ≃* CoprodI fun x => FreeGroup Unit [PROOFSTEP] refine' MonoidHom.toMulEquiv _ _ _ _ [GOAL] case refine'_1 ι✝ : Type u_1 M : ι✝ → Type u_2 inst✝¹ : (i : ι✝) → Monoid (M i) N : Type u_3 inst✝ : Monoid N ι : Type u_1 ⊢ FreeGroup ι →* CoprodI fun x => FreeGroup Unit case refine'_2 ι✝ : Type u_1 M : ι✝ → Type u_2 inst✝¹ : (i : ι✝) → Monoid (M i) N : Type u_3 inst✝ : Monoid N ι : Type u_1 ⊢ (CoprodI fun x => FreeGroup Unit) →* FreeGroup ι case refine'_3 ι✝ : Type u_1 M : ι✝ → Type u_2 inst✝¹ : (i : ι✝) → Monoid (M i) N : Type u_3 inst✝ : Monoid N ι : Type u_1 ⊢ MonoidHom.comp ?refine'_2 ?refine'_1 = MonoidHom.id (FreeGroup ι) case refine'_4 ι✝ : Type u_1 M : ι✝ → Type u_2 inst✝¹ : (i : ι✝) → Monoid (M i) N : Type u_3 inst✝ : Monoid N ι : Type u_1 ⊢ MonoidHom.comp ?refine'_1 ?refine'_2 = MonoidHom.id (CoprodI fun x => FreeGroup Unit) [PROOFSTEP] exact FreeGroup.lift fun i => @CoprodI.of ι _ _ i (FreeGroup.of Unit.unit) [GOAL] case refine'_2 ι✝ : Type u_1 M : ι✝ → Type u_2 inst✝¹ : (i : ι✝) → Monoid (M i) N : Type u_3 inst✝ : Monoid N ι : Type u_1 ⊢ (CoprodI fun x => FreeGroup Unit) →* FreeGroup ι case refine'_3 ι✝ : Type u_1 M : ι✝ → Type u_2 inst✝¹ : (i : ι✝) → Monoid (M i) N : Type u_3 inst✝ : Monoid N ι : Type u_1 ⊢ MonoidHom.comp ?refine'_2 (↑FreeGroup.lift fun i => ↑of (FreeGroup.of ())) = MonoidHom.id (FreeGroup ι) case refine'_4 ι✝ : Type u_1 M : ι✝ → Type u_2 inst✝¹ : (i : ι✝) → Monoid (M i) N : Type u_3 inst✝ : Monoid N ι : Type u_1 ⊢ MonoidHom.comp (↑FreeGroup.lift fun i => ↑of (FreeGroup.of ())) ?refine'_2 = MonoidHom.id (CoprodI fun x => FreeGroup Unit) [PROOFSTEP] exact CoprodI.lift fun i => FreeGroup.lift fun _ => FreeGroup.of i [GOAL] case refine'_3 ι✝ : Type u_1 M : ι✝ → Type u_2 inst✝¹ : (i : ι✝) → Monoid (M i) N : Type u_3 inst✝ : Monoid N ι : Type u_1 ⊢ MonoidHom.comp (↑lift fun i => ↑FreeGroup.lift fun x => FreeGroup.of i) (↑FreeGroup.lift fun i => ↑of (FreeGroup.of ())) = MonoidHom.id (FreeGroup ι) [PROOFSTEP] ext [GOAL] case refine'_3.h ι✝ : Type u_1 M : ι✝ → Type u_2 inst✝¹ : (i : ι✝) → Monoid (M i) N : Type u_3 inst✝ : Monoid N ι : Type u_1 a✝ : IsFreeGroup.Generators (FreeGroup ι) ⊢ ↑(MonoidHom.comp (↑lift fun i => ↑FreeGroup.lift fun x => FreeGroup.of i) (↑FreeGroup.lift fun i => ↑of (FreeGroup.of ()))) (IsFreeGroup.of a✝) = ↑(MonoidHom.id (FreeGroup ι)) (IsFreeGroup.of a✝) [PROOFSTEP] simp [GOAL] case refine'_4 ι✝ : Type u_1 M : ι✝ → Type u_2 inst✝¹ : (i : ι✝) → Monoid (M i) N : Type u_3 inst✝ : Monoid N ι : Type u_1 ⊢ MonoidHom.comp (↑FreeGroup.lift fun i => ↑of (FreeGroup.of ())) (↑lift fun i => ↑FreeGroup.lift fun x => FreeGroup.of i) = MonoidHom.id (CoprodI fun x => FreeGroup Unit) [PROOFSTEP] ext i a [GOAL] case refine'_4.h.h ι✝ : Type u_1 M : ι✝ → Type u_2 inst✝¹ : (i : ι✝) → Monoid (M i) N : Type u_3 inst✝ : Monoid N ι : Type u_1 i : ι a : IsFreeGroup.Generators (FreeGroup Unit) ⊢ ↑(MonoidHom.comp (MonoidHom.comp (↑FreeGroup.lift fun i => ↑of (FreeGroup.of ())) (↑lift fun i => ↑FreeGroup.lift fun x => FreeGroup.of i)) of) (IsFreeGroup.of a) = ↑(MonoidHom.comp (MonoidHom.id (CoprodI fun x => FreeGroup Unit)) of) (IsFreeGroup.of a) [PROOFSTEP] cases a [GOAL] case refine'_4.h.h.unit ι✝ : Type u_1 M : ι✝ → Type u_2 inst✝¹ : (i : ι✝) → Monoid (M i) N : Type u_3 inst✝ : Monoid N ι : Type u_1 i : ι ⊢ ↑(MonoidHom.comp (MonoidHom.comp (↑FreeGroup.lift fun i => ↑of (FreeGroup.of ())) (↑lift fun i => ↑FreeGroup.lift fun x => FreeGroup.of i)) of) (IsFreeGroup.of PUnit.unit) = ↑(MonoidHom.comp (MonoidHom.id (CoprodI fun x => FreeGroup Unit)) of) (IsFreeGroup.of PUnit.unit) [PROOFSTEP] simp [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i ⊢ Function.Injective ↑(↑FreeGroup.lift a) [PROOFSTEP] have : FreeGroup.lift a = (CoprodI.lift fun i => FreeGroup.lift fun _ => a i).comp (@freeGroupEquivCoprodI ι).toMonoidHom := by ext i simp [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i ⊢ ↑FreeGroup.lift a = MonoidHom.comp (↑lift fun i => ↑FreeGroup.lift fun x => a i) (MulEquiv.toMonoidHom freeGroupEquivCoprodI) [PROOFSTEP] ext i [GOAL] case h ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i i : IsFreeGroup.Generators (FreeGroup ι) ⊢ ↑(↑FreeGroup.lift a) (IsFreeGroup.of i) = ↑(MonoidHom.comp (↑lift fun i => ↑FreeGroup.lift fun x => a i) (MulEquiv.toMonoidHom freeGroupEquivCoprodI)) (IsFreeGroup.of i) [PROOFSTEP] simp [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i this : ↑FreeGroup.lift a = MonoidHom.comp (↑lift fun i => ↑FreeGroup.lift fun x => a i) (MulEquiv.toMonoidHom freeGroupEquivCoprodI) ⊢ Function.Injective ↑(↑FreeGroup.lift a) [PROOFSTEP] rw [this, MonoidHom.coe_comp] [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i this : ↑FreeGroup.lift a = MonoidHom.comp (↑lift fun i => ↑FreeGroup.lift fun x => a i) (MulEquiv.toMonoidHom freeGroupEquivCoprodI) ⊢ Function.Injective (↑(↑lift fun i => ↑FreeGroup.lift fun x => a i) ∘ ↑(MulEquiv.toMonoidHom freeGroupEquivCoprodI)) [PROOFSTEP] clear this [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i ⊢ Function.Injective (↑(↑lift fun i => ↑FreeGroup.lift fun x => a i) ∘ ↑(MulEquiv.toMonoidHom freeGroupEquivCoprodI)) [PROOFSTEP] refine' Function.Injective.comp _ (MulEquiv.injective freeGroupEquivCoprodI) -- Step two: Invoke the ping-pong lemma for free products [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i ⊢ Function.Injective ↑(↑lift fun i => ↑FreeGroup.lift fun x => a i) [PROOFSTEP] show Function.Injective (lift fun i : ι => FreeGroup.lift fun _ => a i) -- Prepare to instantiate lift_injective_of_ping_pong [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i ⊢ Function.Injective ↑(↑lift fun i => ↑FreeGroup.lift fun x => a i) [PROOFSTEP] let H : ι → Type _ := fun _i => FreeGroup Unit [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit ⊢ Function.Injective ↑(↑lift fun i => ↑FreeGroup.lift fun x => a i) [PROOFSTEP] let f : ∀ i, H i →* G := fun i => FreeGroup.lift fun _ => a i [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i ⊢ Function.Injective ↑(↑lift fun i => ↑FreeGroup.lift fun x => a i) [PROOFSTEP] let X' : ι → Set α := fun i => X i ∪ Y i [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i ⊢ Function.Injective ↑(↑lift fun i => ↑FreeGroup.lift fun x => a i) [PROOFSTEP] apply lift_injective_of_ping_pong f _ X' [GOAL] case hXnonempty ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i ⊢ ∀ (i : ι), Set.Nonempty (X' i) case hXdisj ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i ⊢ Pairwise fun i j => Disjoint (X' i) (X' j) case hpp ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i ⊢ Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X' j ⊆ X' i ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i ⊢ 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i) [PROOFSTEP] show ∀ i, (X' i).Nonempty [GOAL] case hXnonempty ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i ⊢ ∀ (i : ι), Set.Nonempty (X' i) [PROOFSTEP] exact fun i => Set.Nonempty.inl (hXnonempty i) [GOAL] case hXdisj ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i ⊢ Pairwise fun i j => Disjoint (X' i) (X' j) case hpp ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i ⊢ Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X' j ⊆ X' i ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i ⊢ 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i) [PROOFSTEP] show Pairwise fun i j => Disjoint (X' i) (X' j) [GOAL] case hXdisj ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i ⊢ Pairwise fun i j => Disjoint (X' i) (X' j) [PROOFSTEP] intro i j hij [GOAL] case hXdisj ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i i j : ι hij : i ≠ j ⊢ Disjoint (X' i) (X' j) [PROOFSTEP] simp only [GOAL] case hXdisj ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i i j : ι hij : i ≠ j ⊢ Disjoint (X i ∪ Y i) (X j ∪ Y j) [PROOFSTEP] apply Disjoint.union_left [GOAL] case hXdisj.hs ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i i j : ι hij : i ≠ j ⊢ Disjoint (X i) (X j ∪ Y j) [PROOFSTEP] apply Disjoint.union_right [GOAL] case hXdisj.ht ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i i j : ι hij : i ≠ j ⊢ Disjoint (Y i) (X j ∪ Y j) [PROOFSTEP] apply Disjoint.union_right [GOAL] case hXdisj.hs.ht ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i i j : ι hij : i ≠ j ⊢ Disjoint (X i) (X j) [PROOFSTEP] exact hXdisj hij [GOAL] case hXdisj.hs.hu ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i i j : ι hij : i ≠ j ⊢ Disjoint (X i) (Y j) [PROOFSTEP] exact hXYdisj i j [GOAL] case hXdisj.ht.ht ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i i j : ι hij : i ≠ j ⊢ Disjoint (Y i) (X j) [PROOFSTEP] exact (hXYdisj j i).symm [GOAL] case hXdisj.ht.hu ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i i j : ι hij : i ≠ j ⊢ Disjoint (Y i) (Y j) [PROOFSTEP] exact hYdisj hij [GOAL] case hpp ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i ⊢ Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X' j ⊆ X' i ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i ⊢ 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i) [PROOFSTEP] show Pairwise fun i j => ∀ h : H i, h ≠ 1 → f i h • X' j ⊆ X' i [GOAL] case hpp ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i ⊢ Pairwise fun i j => ∀ (h : H i), h ≠ 1 → ↑(f i) h • X' j ⊆ X' i [PROOFSTEP] rintro i j hij [GOAL] case hpp ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i i j : ι hij : i ≠ j ⊢ ∀ (h : H i), h ≠ 1 → ↑(f i) h • X' j ⊆ X' i [PROOFSTEP] refine' FreeGroup.freeGroupUnitEquivInt.forall_congr_left'.mpr _ [GOAL] case hpp ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i i j : ι hij : i ≠ j ⊢ ∀ (y : ℤ), ↑FreeGroup.freeGroupUnitEquivInt.symm y ≠ 1 → ↑(f i) (↑FreeGroup.freeGroupUnitEquivInt.symm y) • X' j ⊆ X' i [PROOFSTEP] intro n hne1 [GOAL] case hpp ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i i j : ι hij : i ≠ j n : ℤ hne1 : ↑FreeGroup.freeGroupUnitEquivInt.symm n ≠ 1 ⊢ ↑(f i) (↑FreeGroup.freeGroupUnitEquivInt.symm n) • X' j ⊆ X' i [PROOFSTEP] change FreeGroup.lift (fun _ => a i) (FreeGroup.of () ^ n) • X' j ⊆ X' i [GOAL] case hpp ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i i j : ι hij : i ≠ j n : ℤ hne1 : ↑FreeGroup.freeGroupUnitEquivInt.symm n ≠ 1 ⊢ ↑(↑FreeGroup.lift fun x => a i) (FreeGroup.of () ^ n) • X' j ⊆ X' i [PROOFSTEP] simp only [map_zpow, FreeGroup.lift.of] [GOAL] case hpp ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i i j : ι hij : i ≠ j n : ℤ hne1 : ↑FreeGroup.freeGroupUnitEquivInt.symm n ≠ 1 ⊢ a i ^ n • (X j ∪ Y j) ⊆ X i ∪ Y i [PROOFSTEP] change a i ^ n • X' j ⊆ X' i [GOAL] case hpp ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i i j : ι hij : i ≠ j n : ℤ hne1 : ↑FreeGroup.freeGroupUnitEquivInt.symm n ≠ 1 ⊢ a i ^ n • X' j ⊆ X' i [PROOFSTEP] have hnne0 : n ≠ 0 := by rintro rfl apply hne1 simp; rfl [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i i j : ι hij : i ≠ j n : ℤ hne1 : ↑FreeGroup.freeGroupUnitEquivInt.symm n ≠ 1 ⊢ n ≠ 0 [PROOFSTEP] rintro rfl [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i i j : ι hij : i ≠ j hne1 : ↑FreeGroup.freeGroupUnitEquivInt.symm 0 ≠ 1 ⊢ False [PROOFSTEP] apply hne1 [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i i j : ι hij : i ≠ j hne1 : ↑FreeGroup.freeGroupUnitEquivInt.symm 0 ≠ 1 ⊢ ↑FreeGroup.freeGroupUnitEquivInt.symm 0 = 1 [PROOFSTEP] simp [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i i j : ι hij : i ≠ j hne1 : ↑FreeGroup.freeGroupUnitEquivInt.symm 0 ≠ 1 ⊢ ↑FreeGroup.freeGroupUnitEquivInt.symm 0 = 1 [PROOFSTEP] rfl [GOAL] case hpp ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i i j : ι hij : i ≠ j n : ℤ hne1 : ↑FreeGroup.freeGroupUnitEquivInt.symm n ≠ 1 hnne0 : n ≠ 0 ⊢ a i ^ n • X' j ⊆ X' i [PROOFSTEP] clear hne1 [GOAL] case hpp ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i i j : ι hij : i ≠ j n : ℤ hnne0 : n ≠ 0 ⊢ a i ^ n • X' j ⊆ X' i [PROOFSTEP] simp only -- Positive and negative powers separately [GOAL] case hpp ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i i j : ι hij : i ≠ j n : ℤ hnne0 : n ≠ 0 ⊢ a i ^ n • (X j ∪ Y j) ⊆ X i ∪ Y i [PROOFSTEP] cases' (lt_or_gt_of_ne hnne0).symm with hlt hgt [GOAL] case hpp.inl ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i i j : ι hij : i ≠ j n : ℤ hnne0 : n ≠ 0 hlt : n > 0 ⊢ a i ^ n • (X j ∪ Y j) ⊆ X i ∪ Y i [PROOFSTEP] have h1n : 1 ≤ n := hlt [GOAL] case hpp.inl ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i i j : ι hij : i ≠ j n : ℤ hnne0 : n ≠ 0 hlt : n > 0 h1n : 1 ≤ n ⊢ a i ^ n • (X j ∪ Y j) ⊆ X i ∪ Y i [PROOFSTEP] calc a i ^ n • X' j ⊆ a i ^ n • (Y i)ᶜ := smul_set_mono ((hXYdisj j i).union_left <| hYdisj hij.symm).subset_compl_right _ ⊆ X i := by clear hnne0 hlt refine Int.le_induction (P := fun n => a i ^ n • (Y i)ᶜ ⊆ X i) ?_ ?_ n h1n · dsimp rw [zpow_one] exact hX i · dsimp intro n _hle hi calc a i ^ (n + 1) • (Y i)ᶜ = (a i ^ n * a i) • (Y i)ᶜ := by rw [zpow_add, zpow_one] _ = a i ^ n • a i • (Y i)ᶜ := (MulAction.mul_smul _ _ _) _ ⊆ a i ^ n • X i := (smul_set_mono <| hX i) _ ⊆ a i ^ n • (Y i)ᶜ := (smul_set_mono (hXYdisj i i).subset_compl_right) _ ⊆ X i := hi _ ⊆ X' i := Set.subset_union_left _ _ [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i i j : ι hij : i ≠ j n : ℤ hnne0 : n ≠ 0 hlt : n > 0 h1n : 1 ≤ n ⊢ a i ^ n • (Y i)ᶜ ⊆ X i [PROOFSTEP] clear hnne0 hlt [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i i j : ι hij : i ≠ j n : ℤ h1n : 1 ≤ n ⊢ a i ^ n • (Y i)ᶜ ⊆ X i [PROOFSTEP] refine Int.le_induction (P := fun n => a i ^ n • (Y i)ᶜ ⊆ X i) ?_ ?_ n h1n [GOAL] case refine_1 ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i i j : ι hij : i ≠ j n : ℤ h1n : 1 ≤ n ⊢ (fun n => a i ^ n • (Y i)ᶜ ⊆ X i) 1 [PROOFSTEP] dsimp [GOAL] case refine_1 ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i i j : ι hij : i ≠ j n : ℤ h1n : 1 ≤ n ⊢ a i ^ 1 • (Y i)ᶜ ⊆ X i [PROOFSTEP] rw [zpow_one] [GOAL] case refine_1 ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i i j : ι hij : i ≠ j n : ℤ h1n : 1 ≤ n ⊢ a i • (Y i)ᶜ ⊆ X i [PROOFSTEP] exact hX i [GOAL] case refine_2 ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i i j : ι hij : i ≠ j n : ℤ h1n : 1 ≤ n ⊢ ∀ (n : ℤ), 1 ≤ n → (fun n => a i ^ n • (Y i)ᶜ ⊆ X i) n → (fun n => a i ^ n • (Y i)ᶜ ⊆ X i) (n + 1) [PROOFSTEP] dsimp [GOAL] case refine_2 ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i i j : ι hij : i ≠ j n : ℤ h1n : 1 ≤ n ⊢ ∀ (n : ℤ), 1 ≤ n → a i ^ n • (Y i)ᶜ ⊆ X i → a i ^ (n + 1) • (Y i)ᶜ ⊆ X i [PROOFSTEP] intro n _hle hi [GOAL] case refine_2 ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i i j : ι hij : i ≠ j n✝ : ℤ h1n : 1 ≤ n✝ n : ℤ _hle : 1 ≤ n hi : a i ^ n • (Y i)ᶜ ⊆ X i ⊢ a i ^ (n + 1) • (Y i)ᶜ ⊆ X i [PROOFSTEP] calc a i ^ (n + 1) • (Y i)ᶜ = (a i ^ n * a i) • (Y i)ᶜ := by rw [zpow_add, zpow_one] _ = a i ^ n • a i • (Y i)ᶜ := (MulAction.mul_smul _ _ _) _ ⊆ a i ^ n • X i := (smul_set_mono <| hX i) _ ⊆ a i ^ n • (Y i)ᶜ := (smul_set_mono (hXYdisj i i).subset_compl_right) _ ⊆ X i := hi [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i i j : ι hij : i ≠ j n✝ : ℤ h1n : 1 ≤ n✝ n : ℤ _hle : 1 ≤ n hi : a i ^ n • (Y i)ᶜ ⊆ X i ⊢ a i ^ (n + 1) • (Y i)ᶜ = (a i ^ n * a i) • (Y i)ᶜ [PROOFSTEP] rw [zpow_add, zpow_one] [GOAL] case hpp.inr ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i i j : ι hij : i ≠ j n : ℤ hnne0 : n ≠ 0 hgt : n < 0 ⊢ a i ^ n • (X j ∪ Y j) ⊆ X i ∪ Y i [PROOFSTEP] have h1n : n ≤ -1 := by apply Int.le_of_lt_add_one simpa using hgt [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i i j : ι hij : i ≠ j n : ℤ hnne0 : n ≠ 0 hgt : n < 0 ⊢ n ≤ -1 [PROOFSTEP] apply Int.le_of_lt_add_one [GOAL] case H ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i i j : ι hij : i ≠ j n : ℤ hnne0 : n ≠ 0 hgt : n < 0 ⊢ n < -1 + 1 [PROOFSTEP] simpa using hgt [GOAL] case hpp.inr ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i i j : ι hij : i ≠ j n : ℤ hnne0 : n ≠ 0 hgt : n < 0 h1n : n ≤ -1 ⊢ a i ^ n • (X j ∪ Y j) ⊆ X i ∪ Y i [PROOFSTEP] calc a i ^ n • X' j ⊆ a i ^ n • (X i)ᶜ := smul_set_mono ((hXdisj hij.symm).union_left (hXYdisj i j).symm).subset_compl_right _ ⊆ Y i := by refine' Int.le_induction_down (P := fun n => a i ^ n • (X i)ᶜ ⊆ Y i) _ _ _ h1n · dsimp rw [zpow_neg, zpow_one] exact hY i · dsimp intro n _ hi calc a i ^ (n - 1) • (X i)ᶜ = (a i ^ n * (a i)⁻¹) • (X i)ᶜ := by rw [zpow_sub, zpow_one] _ = a i ^ n • (a i)⁻¹ • (X i)ᶜ := (MulAction.mul_smul _ _ _) _ ⊆ a i ^ n • Y i := (smul_set_mono <| hY i) _ ⊆ a i ^ n • (X i)ᶜ := (smul_set_mono (hXYdisj i i).symm.subset_compl_right) _ ⊆ Y i := hi _ ⊆ X' i := Set.subset_union_right _ _ [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i i j : ι hij : i ≠ j n : ℤ hnne0 : n ≠ 0 hgt : n < 0 h1n : n ≤ -1 ⊢ a i ^ n • (X i)ᶜ ⊆ Y i [PROOFSTEP] refine' Int.le_induction_down (P := fun n => a i ^ n • (X i)ᶜ ⊆ Y i) _ _ _ h1n [GOAL] case refine'_1 ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i i j : ι hij : i ≠ j n : ℤ hnne0 : n ≠ 0 hgt : n < 0 h1n : n ≤ -1 ⊢ (fun n => a i ^ n • (X i)ᶜ ⊆ Y i) (-1) [PROOFSTEP] dsimp [GOAL] case refine'_1 ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i i j : ι hij : i ≠ j n : ℤ hnne0 : n ≠ 0 hgt : n < 0 h1n : n ≤ -1 ⊢ a i ^ (-1) • (X i)ᶜ ⊆ Y i [PROOFSTEP] rw [zpow_neg, zpow_one] [GOAL] case refine'_1 ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i i j : ι hij : i ≠ j n : ℤ hnne0 : n ≠ 0 hgt : n < 0 h1n : n ≤ -1 ⊢ (a i)⁻¹ • (X i)ᶜ ⊆ Y i [PROOFSTEP] exact hY i [GOAL] case refine'_2 ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i i j : ι hij : i ≠ j n : ℤ hnne0 : n ≠ 0 hgt : n < 0 h1n : n ≤ -1 ⊢ ∀ (n : ℤ), n ≤ -1 → (fun n => a i ^ n • (X i)ᶜ ⊆ Y i) n → (fun n => a i ^ n • (X i)ᶜ ⊆ Y i) (n - 1) [PROOFSTEP] dsimp [GOAL] case refine'_2 ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i i j : ι hij : i ≠ j n : ℤ hnne0 : n ≠ 0 hgt : n < 0 h1n : n ≤ -1 ⊢ ∀ (n : ℤ), n ≤ -1 → a i ^ n • (X i)ᶜ ⊆ Y i → a i ^ (n - 1) • (X i)ᶜ ⊆ Y i [PROOFSTEP] intro n _ hi [GOAL] case refine'_2 ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i i j : ι hij : i ≠ j n✝ : ℤ hnne0 : n✝ ≠ 0 hgt : n✝ < 0 h1n : n✝ ≤ -1 n : ℤ a✝ : n ≤ -1 hi : a i ^ n • (X i)ᶜ ⊆ Y i ⊢ a i ^ (n - 1) • (X i)ᶜ ⊆ Y i [PROOFSTEP] calc a i ^ (n - 1) • (X i)ᶜ = (a i ^ n * (a i)⁻¹) • (X i)ᶜ := by rw [zpow_sub, zpow_one] _ = a i ^ n • (a i)⁻¹ • (X i)ᶜ := (MulAction.mul_smul _ _ _) _ ⊆ a i ^ n • Y i := (smul_set_mono <| hY i) _ ⊆ a i ^ n • (X i)ᶜ := (smul_set_mono (hXYdisj i i).symm.subset_compl_right) _ ⊆ Y i := hi [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i i j : ι hij : i ≠ j n✝ : ℤ hnne0 : n✝ ≠ 0 hgt : n✝ < 0 h1n : n✝ ≤ -1 n : ℤ a✝ : n ≤ -1 hi : a i ^ n • (X i)ᶜ ⊆ Y i ⊢ a i ^ (n - 1) • (X i)ᶜ = (a i ^ n * (a i)⁻¹) • (X i)ᶜ [PROOFSTEP] rw [zpow_sub, zpow_one] [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i ⊢ 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i) [PROOFSTEP] show _ ∨ ∃ i, 3 ≤ #(H i) [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i ⊢ 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i) [PROOFSTEP] inhabit ι [GOAL] ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i inhabited_h : Inhabited ι ⊢ 3 ≤ #ι ∨ ∃ i, 3 ≤ #(H i) [PROOFSTEP] right [GOAL] case h ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i inhabited_h : Inhabited ι ⊢ ∃ i, 3 ≤ #(H i) [PROOFSTEP] use Inhabited.default [GOAL] case h ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i inhabited_h : Inhabited ι ⊢ 3 ≤ #(H default) [PROOFSTEP] simp only [GOAL] case h ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i inhabited_h : Inhabited ι ⊢ 3 ≤ #(FreeGroup Unit) [PROOFSTEP] rw [FreeGroup.freeGroupUnitEquivInt.cardinal_eq, Cardinal.mk_denumerable] [GOAL] case h ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i inhabited_h : Inhabited ι ⊢ 3 ≤ ℵ₀ [PROOFSTEP] apply le_of_lt [GOAL] case h.a ι : Type u_1 M : ι → Type u_2 inst✝⁴ : (i : ι) → Monoid (M i) N : Type u_3 inst✝³ : Monoid N inst✝² : Nontrivial ι G : Type u_1 inst✝¹ : Group G a : ι → G α : Type u_4 inst✝ : MulAction G α X Y : ι → Set α hXnonempty : ∀ (i : ι), Set.Nonempty (X i) hXdisj : Pairwise fun i j => Disjoint (X i) (X j) hYdisj : Pairwise fun i j => Disjoint (Y i) (Y j) hXYdisj : ∀ (i j : ι), Disjoint (X i) (Y j) hX : ∀ (i : ι), a i • (Y i)ᶜ ⊆ X i hY : ∀ (i : ι), a⁻¹ i • (X i)ᶜ ⊆ Y i H : ι → Type := fun _i => FreeGroup Unit f : (i : ι) → H i →* G := fun i => ↑FreeGroup.lift fun x => a i X' : ι → Set α := fun i => X i ∪ Y i inhabited_h : Inhabited ι ⊢ 3 < ℵ₀ [PROOFSTEP] exact nat_lt_aleph0 3
{"mathlib_filename": "Mathlib.GroupTheory.CoprodI", "llama_tokens": 111473}
[GOAL] p q r : ℕ+ ⊢ sumInv {p, q, r} = (↑↑p)⁻¹ + (↑↑q)⁻¹ + (↑↑r)⁻¹ [PROOFSTEP] simp only [sumInv, add_zero, insert_eq_cons, add_assoc, map_cons, sum_cons, map_singleton, sum_singleton] [GOAL] pqr : Multiset ℕ+ ⊢ Admissible pqr → 1 < sumInv pqr [PROOFSTEP] rw [Admissible] [GOAL] pqr : Multiset ℕ+ ⊢ (∃ q r, A' q r = pqr) ∨ (∃ r, D' r = pqr) ∨ E' 3 = pqr ∨ E' 4 = pqr ∨ E' 5 = pqr → 1 < sumInv pqr [PROOFSTEP] rintro (⟨p', q', H⟩ | ⟨n, H⟩ | H | H | H) [GOAL] case inl.intro.intro pqr : Multiset ℕ+ p' q' : ℕ+ H : A' p' q' = pqr ⊢ 1 < sumInv pqr [PROOFSTEP] rw [← H, A', sumInv_pqr, add_assoc] [GOAL] case inl.intro.intro pqr : Multiset ℕ+ p' q' : ℕ+ H : A' p' q' = pqr ⊢ 1 < (↑↑1)⁻¹ + ((↑↑p')⁻¹ + (↑↑q')⁻¹) [PROOFSTEP] simp only [lt_add_iff_pos_right, PNat.one_coe, inv_one, Nat.cast_one] [GOAL] case inl.intro.intro pqr : Multiset ℕ+ p' q' : ℕ+ H : A' p' q' = pqr ⊢ 0 < (↑↑p')⁻¹ + (↑↑q')⁻¹ [PROOFSTEP] apply add_pos [GOAL] case inl.intro.intro.ha pqr : Multiset ℕ+ p' q' : ℕ+ H : A' p' q' = pqr ⊢ 0 < (↑↑p')⁻¹ [PROOFSTEP] simp only [PNat.pos, Nat.cast_pos, inv_pos] [GOAL] case inl.intro.intro.hb pqr : Multiset ℕ+ p' q' : ℕ+ H : A' p' q' = pqr ⊢ 0 < (↑↑q')⁻¹ [PROOFSTEP] simp only [PNat.pos, Nat.cast_pos, inv_pos] [GOAL] case inr.inl.intro pqr : Multiset ℕ+ n : ℕ+ H : D' n = pqr ⊢ 1 < sumInv pqr [PROOFSTEP] rw [← H, D', sumInv_pqr] [GOAL] case inr.inl.intro pqr : Multiset ℕ+ n : ℕ+ H : D' n = pqr ⊢ 1 < (↑↑2)⁻¹ + (↑↑2)⁻¹ + (↑↑n)⁻¹ [PROOFSTEP] conv_rhs => simp only [OfNat.ofNat, PNat.mk_coe] [GOAL] pqr : Multiset ℕ+ n : ℕ+ H : D' n = pqr | (↑↑2)⁻¹ + (↑↑2)⁻¹ + (↑↑n)⁻¹ [PROOFSTEP] simp only [OfNat.ofNat, PNat.mk_coe] [GOAL] pqr : Multiset ℕ+ n : ℕ+ H : D' n = pqr | (↑↑2)⁻¹ + (↑↑2)⁻¹ + (↑↑n)⁻¹ [PROOFSTEP] simp only [OfNat.ofNat, PNat.mk_coe] [GOAL] pqr : Multiset ℕ+ n : ℕ+ H : D' n = pqr | (↑↑2)⁻¹ + (↑↑2)⁻¹ + (↑↑n)⁻¹ [PROOFSTEP] simp only [OfNat.ofNat, PNat.mk_coe] [GOAL] case inr.inl.intro pqr : Multiset ℕ+ n : ℕ+ H : D' n = pqr ⊢ 1 < (↑(1 + 1))⁻¹ + (↑(1 + 1))⁻¹ + (↑↑n)⁻¹ [PROOFSTEP] norm_num [GOAL] case inr.inr.inl pqr : Multiset ℕ+ H : E' 3 = pqr ⊢ 1 < sumInv pqr case inr.inr.inr.inl pqr : Multiset ℕ+ H : E' 4 = pqr ⊢ 1 < sumInv pqr case inr.inr.inr.inr pqr : Multiset ℕ+ H : E' 5 = pqr ⊢ 1 < sumInv pqr [PROOFSTEP] all_goals rw [← H, E', sumInv_pqr] conv_rhs => simp only [OfNat.ofNat, PNat.mk_coe] [GOAL] case inr.inr.inl pqr : Multiset ℕ+ H : E' 3 = pqr ⊢ 1 < sumInv pqr [PROOFSTEP] rw [← H, E', sumInv_pqr] [GOAL] case inr.inr.inl pqr : Multiset ℕ+ H : E' 3 = pqr ⊢ 1 < (↑↑2)⁻¹ + (↑↑3)⁻¹ + (↑↑3)⁻¹ [PROOFSTEP] conv_rhs => simp only [OfNat.ofNat, PNat.mk_coe] [GOAL] pqr : Multiset ℕ+ H : E' 3 = pqr | (↑↑2)⁻¹ + (↑↑3)⁻¹ + (↑↑3)⁻¹ [PROOFSTEP] simp only [OfNat.ofNat, PNat.mk_coe] [GOAL] pqr : Multiset ℕ+ H : E' 3 = pqr | (↑↑2)⁻¹ + (↑↑3)⁻¹ + (↑↑3)⁻¹ [PROOFSTEP] simp only [OfNat.ofNat, PNat.mk_coe] [GOAL] pqr : Multiset ℕ+ H : E' 3 = pqr | (↑↑2)⁻¹ + (↑↑3)⁻¹ + (↑↑3)⁻¹ [PROOFSTEP] simp only [OfNat.ofNat, PNat.mk_coe] [GOAL] case inr.inr.inr.inl pqr : Multiset ℕ+ H : E' 4 = pqr ⊢ 1 < sumInv pqr [PROOFSTEP] rw [← H, E', sumInv_pqr] [GOAL] case inr.inr.inr.inl pqr : Multiset ℕ+ H : E' 4 = pqr ⊢ 1 < (↑↑2)⁻¹ + (↑↑3)⁻¹ + (↑↑4)⁻¹ [PROOFSTEP] conv_rhs => simp only [OfNat.ofNat, PNat.mk_coe] [GOAL] pqr : Multiset ℕ+ H : E' 4 = pqr | (↑↑2)⁻¹ + (↑↑3)⁻¹ + (↑↑4)⁻¹ [PROOFSTEP] simp only [OfNat.ofNat, PNat.mk_coe] [GOAL] pqr : Multiset ℕ+ H : E' 4 = pqr | (↑↑2)⁻¹ + (↑↑3)⁻¹ + (↑↑4)⁻¹ [PROOFSTEP] simp only [OfNat.ofNat, PNat.mk_coe] [GOAL] pqr : Multiset ℕ+ H : E' 4 = pqr | (↑↑2)⁻¹ + (↑↑3)⁻¹ + (↑↑4)⁻¹ [PROOFSTEP] simp only [OfNat.ofNat, PNat.mk_coe] [GOAL] case inr.inr.inr.inr pqr : Multiset ℕ+ H : E' 5 = pqr ⊢ 1 < sumInv pqr [PROOFSTEP] rw [← H, E', sumInv_pqr] [GOAL] case inr.inr.inr.inr pqr : Multiset ℕ+ H : E' 5 = pqr ⊢ 1 < (↑↑2)⁻¹ + (↑↑3)⁻¹ + (↑↑5)⁻¹ [PROOFSTEP] conv_rhs => simp only [OfNat.ofNat, PNat.mk_coe] [GOAL] pqr : Multiset ℕ+ H : E' 5 = pqr | (↑↑2)⁻¹ + (↑↑3)⁻¹ + (↑↑5)⁻¹ [PROOFSTEP] simp only [OfNat.ofNat, PNat.mk_coe] [GOAL] pqr : Multiset ℕ+ H : E' 5 = pqr | (↑↑2)⁻¹ + (↑↑3)⁻¹ + (↑↑5)⁻¹ [PROOFSTEP] simp only [OfNat.ofNat, PNat.mk_coe] [GOAL] pqr : Multiset ℕ+ H : E' 5 = pqr | (↑↑2)⁻¹ + (↑↑3)⁻¹ + (↑↑5)⁻¹ [PROOFSTEP] simp only [OfNat.ofNat, PNat.mk_coe] [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r H : 1 < sumInv {p, q, r} ⊢ p < 3 [PROOFSTEP] have h3 : (0 : ℚ) < 3 := by norm_num [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r H : 1 < sumInv {p, q, r} ⊢ 0 < 3 [PROOFSTEP] norm_num [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r H : 1 < sumInv {p, q, r} h3 : 0 < 3 ⊢ p < 3 [PROOFSTEP] contrapose! H [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r h3 : 0 < 3 H : 3 ≤ p ⊢ sumInv {p, q, r} ≤ 1 [PROOFSTEP] rw [sumInv_pqr] [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r h3 : 0 < 3 H : 3 ≤ p ⊢ (↑↑p)⁻¹ + (↑↑q)⁻¹ + (↑↑r)⁻¹ ≤ 1 [PROOFSTEP] have h3q := H.trans hpq [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r h3 : 0 < 3 H : 3 ≤ p h3q : 3 ≤ q ⊢ (↑↑p)⁻¹ + (↑↑q)⁻¹ + (↑↑r)⁻¹ ≤ 1 [PROOFSTEP] have h3r := h3q.trans hqr [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r h3 : 0 < 3 H : 3 ≤ p h3q : 3 ≤ q h3r : 3 ≤ r ⊢ (↑↑p)⁻¹ + (↑↑q)⁻¹ + (↑↑r)⁻¹ ≤ 1 [PROOFSTEP] have hp : (p : ℚ)⁻¹ ≤ 3⁻¹ := by rw [inv_le_inv _ h3] assumption_mod_cast norm_num [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r h3 : 0 < 3 H : 3 ≤ p h3q : 3 ≤ q h3r : 3 ≤ r ⊢ (↑↑p)⁻¹ ≤ 3⁻¹ [PROOFSTEP] rw [inv_le_inv _ h3] [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r h3 : 0 < 3 H : 3 ≤ p h3q : 3 ≤ q h3r : 3 ≤ r ⊢ 3 ≤ ↑↑p p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r h3 : 0 < 3 H : 3 ≤ p h3q : 3 ≤ q h3r : 3 ≤ r ⊢ 0 < ↑↑p [PROOFSTEP] assumption_mod_cast [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r h3 : 0 < 3 H : 3 ≤ p h3q : 3 ≤ q h3r : 3 ≤ r ⊢ 0 < ↑↑p [PROOFSTEP] norm_num [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r h3 : 0 < 3 H : 3 ≤ p h3q : 3 ≤ q h3r : 3 ≤ r hp : (↑↑p)⁻¹ ≤ 3⁻¹ ⊢ (↑↑p)⁻¹ + (↑↑q)⁻¹ + (↑↑r)⁻¹ ≤ 1 [PROOFSTEP] have hq : (q : ℚ)⁻¹ ≤ 3⁻¹ := by rw [inv_le_inv _ h3] assumption_mod_cast norm_num [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r h3 : 0 < 3 H : 3 ≤ p h3q : 3 ≤ q h3r : 3 ≤ r hp : (↑↑p)⁻¹ ≤ 3⁻¹ ⊢ (↑↑q)⁻¹ ≤ 3⁻¹ [PROOFSTEP] rw [inv_le_inv _ h3] [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r h3 : 0 < 3 H : 3 ≤ p h3q : 3 ≤ q h3r : 3 ≤ r hp : (↑↑p)⁻¹ ≤ 3⁻¹ ⊢ 3 ≤ ↑↑q p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r h3 : 0 < 3 H : 3 ≤ p h3q : 3 ≤ q h3r : 3 ≤ r hp : (↑↑p)⁻¹ ≤ 3⁻¹ ⊢ 0 < ↑↑q [PROOFSTEP] assumption_mod_cast [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r h3 : 0 < 3 H : 3 ≤ p h3q : 3 ≤ q h3r : 3 ≤ r hp : (↑↑p)⁻¹ ≤ 3⁻¹ ⊢ 0 < ↑↑q [PROOFSTEP] norm_num [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r h3 : 0 < 3 H : 3 ≤ p h3q : 3 ≤ q h3r : 3 ≤ r hp : (↑↑p)⁻¹ ≤ 3⁻¹ hq : (↑↑q)⁻¹ ≤ 3⁻¹ ⊢ (↑↑p)⁻¹ + (↑↑q)⁻¹ + (↑↑r)⁻¹ ≤ 1 [PROOFSTEP] have hr : (r : ℚ)⁻¹ ≤ 3⁻¹ := by rw [inv_le_inv _ h3] assumption_mod_cast norm_num [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r h3 : 0 < 3 H : 3 ≤ p h3q : 3 ≤ q h3r : 3 ≤ r hp : (↑↑p)⁻¹ ≤ 3⁻¹ hq : (↑↑q)⁻¹ ≤ 3⁻¹ ⊢ (↑↑r)⁻¹ ≤ 3⁻¹ [PROOFSTEP] rw [inv_le_inv _ h3] [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r h3 : 0 < 3 H : 3 ≤ p h3q : 3 ≤ q h3r : 3 ≤ r hp : (↑↑p)⁻¹ ≤ 3⁻¹ hq : (↑↑q)⁻¹ ≤ 3⁻¹ ⊢ 3 ≤ ↑↑r p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r h3 : 0 < 3 H : 3 ≤ p h3q : 3 ≤ q h3r : 3 ≤ r hp : (↑↑p)⁻¹ ≤ 3⁻¹ hq : (↑↑q)⁻¹ ≤ 3⁻¹ ⊢ 0 < ↑↑r [PROOFSTEP] assumption_mod_cast [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r h3 : 0 < 3 H : 3 ≤ p h3q : 3 ≤ q h3r : 3 ≤ r hp : (↑↑p)⁻¹ ≤ 3⁻¹ hq : (↑↑q)⁻¹ ≤ 3⁻¹ ⊢ 0 < ↑↑r [PROOFSTEP] norm_num [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r h3 : 0 < 3 H : 3 ≤ p h3q : 3 ≤ q h3r : 3 ≤ r hp : (↑↑p)⁻¹ ≤ 3⁻¹ hq : (↑↑q)⁻¹ ≤ 3⁻¹ hr : (↑↑r)⁻¹ ≤ 3⁻¹ ⊢ (↑↑p)⁻¹ + (↑↑q)⁻¹ + (↑↑r)⁻¹ ≤ 1 [PROOFSTEP] calc (p : ℚ)⁻¹ + (q : ℚ)⁻¹ + (r : ℚ)⁻¹ ≤ 3⁻¹ + 3⁻¹ + 3⁻¹ := add_le_add (add_le_add hp hq) hr _ = 1 := by norm_num [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r h3 : 0 < 3 H : 3 ≤ p h3q : 3 ≤ q h3r : 3 ≤ r hp : (↑↑p)⁻¹ ≤ 3⁻¹ hq : (↑↑q)⁻¹ ≤ 3⁻¹ hr : (↑↑r)⁻¹ ≤ 3⁻¹ ⊢ 3⁻¹ + 3⁻¹ + 3⁻¹ = 1 [PROOFSTEP] norm_num [GOAL] q r : ℕ+ hqr : q ≤ r H : 1 < sumInv {2, q, r} ⊢ q < 4 [PROOFSTEP] have h4 : (0 : ℚ) < 4 := by norm_num [GOAL] q r : ℕ+ hqr : q ≤ r H : 1 < sumInv {2, q, r} ⊢ 0 < 4 [PROOFSTEP] norm_num [GOAL] q r : ℕ+ hqr : q ≤ r H : 1 < sumInv {2, q, r} h4 : 0 < 4 ⊢ q < 4 [PROOFSTEP] contrapose! H [GOAL] q r : ℕ+ hqr : q ≤ r h4 : 0 < 4 H : 4 ≤ q ⊢ sumInv {2, q, r} ≤ 1 [PROOFSTEP] rw [sumInv_pqr] [GOAL] q r : ℕ+ hqr : q ≤ r h4 : 0 < 4 H : 4 ≤ q ⊢ (↑↑2)⁻¹ + (↑↑q)⁻¹ + (↑↑r)⁻¹ ≤ 1 [PROOFSTEP] have h4r := H.trans hqr [GOAL] q r : ℕ+ hqr : q ≤ r h4 : 0 < 4 H : 4 ≤ q h4r : 4 ≤ r ⊢ (↑↑2)⁻¹ + (↑↑q)⁻¹ + (↑↑r)⁻¹ ≤ 1 [PROOFSTEP] have hq : (q : ℚ)⁻¹ ≤ 4⁻¹ := by rw [inv_le_inv _ h4] assumption_mod_cast norm_num [GOAL] q r : ℕ+ hqr : q ≤ r h4 : 0 < 4 H : 4 ≤ q h4r : 4 ≤ r ⊢ (↑↑q)⁻¹ ≤ 4⁻¹ [PROOFSTEP] rw [inv_le_inv _ h4] [GOAL] q r : ℕ+ hqr : q ≤ r h4 : 0 < 4 H : 4 ≤ q h4r : 4 ≤ r ⊢ 4 ≤ ↑↑q q r : ℕ+ hqr : q ≤ r h4 : 0 < 4 H : 4 ≤ q h4r : 4 ≤ r ⊢ 0 < ↑↑q [PROOFSTEP] assumption_mod_cast [GOAL] q r : ℕ+ hqr : q ≤ r h4 : 0 < 4 H : 4 ≤ q h4r : 4 ≤ r ⊢ 0 < ↑↑q [PROOFSTEP] norm_num [GOAL] q r : ℕ+ hqr : q ≤ r h4 : 0 < 4 H : 4 ≤ q h4r : 4 ≤ r hq : (↑↑q)⁻¹ ≤ 4⁻¹ ⊢ (↑↑2)⁻¹ + (↑↑q)⁻¹ + (↑↑r)⁻¹ ≤ 1 [PROOFSTEP] have hr : (r : ℚ)⁻¹ ≤ 4⁻¹ := by rw [inv_le_inv _ h4] assumption_mod_cast norm_num [GOAL] q r : ℕ+ hqr : q ≤ r h4 : 0 < 4 H : 4 ≤ q h4r : 4 ≤ r hq : (↑↑q)⁻¹ ≤ 4⁻¹ ⊢ (↑↑r)⁻¹ ≤ 4⁻¹ [PROOFSTEP] rw [inv_le_inv _ h4] [GOAL] q r : ℕ+ hqr : q ≤ r h4 : 0 < 4 H : 4 ≤ q h4r : 4 ≤ r hq : (↑↑q)⁻¹ ≤ 4⁻¹ ⊢ 4 ≤ ↑↑r q r : ℕ+ hqr : q ≤ r h4 : 0 < 4 H : 4 ≤ q h4r : 4 ≤ r hq : (↑↑q)⁻¹ ≤ 4⁻¹ ⊢ 0 < ↑↑r [PROOFSTEP] assumption_mod_cast [GOAL] q r : ℕ+ hqr : q ≤ r h4 : 0 < 4 H : 4 ≤ q h4r : 4 ≤ r hq : (↑↑q)⁻¹ ≤ 4⁻¹ ⊢ 0 < ↑↑r [PROOFSTEP] norm_num [GOAL] q r : ℕ+ hqr : q ≤ r h4 : 0 < 4 H : 4 ≤ q h4r : 4 ≤ r hq : (↑↑q)⁻¹ ≤ 4⁻¹ hr : (↑↑r)⁻¹ ≤ 4⁻¹ ⊢ (↑↑2)⁻¹ + (↑↑q)⁻¹ + (↑↑r)⁻¹ ≤ 1 [PROOFSTEP] calc (2⁻¹ + (q : ℚ)⁻¹ + (r : ℚ)⁻¹) ≤ 2⁻¹ + 4⁻¹ + 4⁻¹ := add_le_add (add_le_add le_rfl hq) hr _ = 1 := by norm_num [GOAL] q r : ℕ+ hqr : q ≤ r h4 : 0 < 4 H : 4 ≤ q h4r : 4 ≤ r hq : (↑↑q)⁻¹ ≤ 4⁻¹ hr : (↑↑r)⁻¹ ≤ 4⁻¹ ⊢ 2⁻¹ + 4⁻¹ + 4⁻¹ = 1 [PROOFSTEP] norm_num [GOAL] r : ℕ+ H : 1 < sumInv {2, 3, r} ⊢ r < 6 [PROOFSTEP] have h6 : (0 : ℚ) < 6 := by norm_num [GOAL] r : ℕ+ H : 1 < sumInv {2, 3, r} ⊢ 0 < 6 [PROOFSTEP] norm_num [GOAL] r : ℕ+ H : 1 < sumInv {2, 3, r} h6 : 0 < 6 ⊢ r < 6 [PROOFSTEP] contrapose! H [GOAL] r : ℕ+ h6 : 0 < 6 H : 6 ≤ r ⊢ sumInv {2, 3, r} ≤ 1 [PROOFSTEP] rw [sumInv_pqr] [GOAL] r : ℕ+ h6 : 0 < 6 H : 6 ≤ r ⊢ (↑↑2)⁻¹ + (↑↑3)⁻¹ + (↑↑r)⁻¹ ≤ 1 [PROOFSTEP] have hr : (r : ℚ)⁻¹ ≤ 6⁻¹ := by rw [inv_le_inv _ h6] assumption_mod_cast norm_num [GOAL] r : ℕ+ h6 : 0 < 6 H : 6 ≤ r ⊢ (↑↑r)⁻¹ ≤ 6⁻¹ [PROOFSTEP] rw [inv_le_inv _ h6] [GOAL] r : ℕ+ h6 : 0 < 6 H : 6 ≤ r ⊢ 6 ≤ ↑↑r r : ℕ+ h6 : 0 < 6 H : 6 ≤ r ⊢ 0 < ↑↑r [PROOFSTEP] assumption_mod_cast [GOAL] r : ℕ+ h6 : 0 < 6 H : 6 ≤ r ⊢ 0 < ↑↑r [PROOFSTEP] norm_num [GOAL] r : ℕ+ h6 : 0 < 6 H : 6 ≤ r hr : (↑↑r)⁻¹ ≤ 6⁻¹ ⊢ (↑↑2)⁻¹ + (↑↑3)⁻¹ + (↑↑r)⁻¹ ≤ 1 [PROOFSTEP] calc (2⁻¹ + 3⁻¹ + (r : ℚ)⁻¹ : ℚ) ≤ 2⁻¹ + 3⁻¹ + 6⁻¹ := add_le_add (add_le_add le_rfl le_rfl) hr _ = 1 := by norm_num [GOAL] r : ℕ+ h6 : 0 < 6 H : 6 ≤ r hr : (↑↑r)⁻¹ ≤ 6⁻¹ ⊢ 2⁻¹ + 3⁻¹ + 6⁻¹ = 1 [PROOFSTEP] norm_num [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r H : 1 < sumInv {p, q, r} ⊢ Admissible {p, q, r} [PROOFSTEP] have hp3 : p < 3 := lt_three hpq hqr H [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r H : 1 < sumInv {p, q, r} hp3 : p < 3 ⊢ Admissible {p, q, r} [PROOFSTEP] replace hp3 := Finset.mem_Iio.mpr hp3 [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r H : 1 < sumInv {p, q, r} hp3 : p ∈ Finset.Iio 3 ⊢ Admissible {p, q, r} [PROOFSTEP] conv at hp3 => change p ∈ ({1, 2} : Multiset ℕ+) [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r H : 1 < sumInv {p, q, r} hp3 : p ∈ Finset.Iio 3 | p ∈ Finset.Iio 3 [PROOFSTEP] change p ∈ ({1, 2} : Multiset ℕ+) [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r H : 1 < sumInv {p, q, r} hp3 : p ∈ Finset.Iio 3 | p ∈ Finset.Iio 3 [PROOFSTEP] change p ∈ ({1, 2} : Multiset ℕ+) [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r H : 1 < sumInv {p, q, r} hp3 : p ∈ Finset.Iio 3 | p ∈ Finset.Iio 3 [PROOFSTEP] change p ∈ ({1, 2} : Multiset ℕ+) [GOAL] p q r : ℕ+ hpq : p ≤ q hqr : q ≤ r H : 1 < sumInv {p, q, r} hp3 : p ∈ {1, 2} ⊢ Admissible {p, q, r} [PROOFSTEP] fin_cases hp3 [GOAL] case head q r : ℕ+ hqr : q ≤ r hpq : 1 ≤ q H : 1 < sumInv {1, q, r} ⊢ Admissible {1, q, r} [PROOFSTEP] exact admissible_A' q r [GOAL] case tail.head q r : ℕ+ hqr : q ≤ r hpq : 2 ≤ q H : 1 < sumInv {2, q, r} ⊢ Admissible {2, q, r} [PROOFSTEP] have hq4 : q < 4 := lt_four hqr H [GOAL] case tail.head q r : ℕ+ hqr : q ≤ r hpq : 2 ≤ q H : 1 < sumInv {2, q, r} hq4 : q < 4 ⊢ Admissible {2, q, r} [PROOFSTEP] replace hq4 := Finset.mem_Ico.mpr ⟨hpq, hq4⟩ [GOAL] case tail.head q r : ℕ+ hqr : q ≤ r hpq : 2 ≤ q H : 1 < sumInv {2, q, r} hq4 : q ∈ Finset.Ico 2 4 ⊢ Admissible {2, q, r} [PROOFSTEP] clear hpq [GOAL] case tail.head q r : ℕ+ hqr : q ≤ r H : 1 < sumInv {2, q, r} hq4 : q ∈ Finset.Ico 2 4 ⊢ Admissible {2, q, r} [PROOFSTEP] conv at hq4 => change q ∈ ({2, 3} : Multiset ℕ+) [GOAL] q r : ℕ+ hqr : q ≤ r H : 1 < sumInv {2, q, r} hq4 : q ∈ Finset.Ico 2 4 | q ∈ Finset.Ico 2 4 [PROOFSTEP] change q ∈ ({2, 3} : Multiset ℕ+) [GOAL] q r : ℕ+ hqr : q ≤ r H : 1 < sumInv {2, q, r} hq4 : q ∈ Finset.Ico 2 4 | q ∈ Finset.Ico 2 4 [PROOFSTEP] change q ∈ ({2, 3} : Multiset ℕ+) [GOAL] q r : ℕ+ hqr : q ≤ r H : 1 < sumInv {2, q, r} hq4 : q ∈ Finset.Ico 2 4 | q ∈ Finset.Ico 2 4 [PROOFSTEP] change q ∈ ({2, 3} : Multiset ℕ+) [GOAL] case tail.head q r : ℕ+ hqr : q ≤ r H : 1 < sumInv {2, q, r} hq4 : q ∈ {2, 3} ⊢ Admissible {2, q, r} [PROOFSTEP] fin_cases hq4 [GOAL] case tail.head.head r : ℕ+ hqr : 2 ≤ r H : 1 < sumInv {2, 2, r} ⊢ Admissible {2, 2, r} [PROOFSTEP] exact admissible_D' r [GOAL] case tail.head.tail.head r : ℕ+ hqr : 3 ≤ r H : 1 < sumInv {2, 3, r} ⊢ Admissible {2, 3, r} [PROOFSTEP] have hr6 : r < 6 := lt_six H [GOAL] case tail.head.tail.head r : ℕ+ hqr : 3 ≤ r H : 1 < sumInv {2, 3, r} hr6 : r < 6 ⊢ Admissible {2, 3, r} [PROOFSTEP] replace hr6 := Finset.mem_Ico.mpr ⟨hqr, hr6⟩ [GOAL] case tail.head.tail.head r : ℕ+ hqr : 3 ≤ r H : 1 < sumInv {2, 3, r} hr6 : r ∈ Finset.Ico 3 6 ⊢ Admissible {2, 3, r} [PROOFSTEP] clear hqr [GOAL] case tail.head.tail.head r : ℕ+ H : 1 < sumInv {2, 3, r} hr6 : r ∈ Finset.Ico 3 6 ⊢ Admissible {2, 3, r} [PROOFSTEP] conv at hr6 => change r ∈ ({3, 4, 5} : Multiset ℕ+) [GOAL] r : ℕ+ H : 1 < sumInv {2, 3, r} hr6 : r ∈ Finset.Ico 3 6 | r ∈ Finset.Ico 3 6 [PROOFSTEP] change r ∈ ({3, 4, 5} : Multiset ℕ+) [GOAL] r : ℕ+ H : 1 < sumInv {2, 3, r} hr6 : r ∈ Finset.Ico 3 6 | r ∈ Finset.Ico 3 6 [PROOFSTEP] change r ∈ ({3, 4, 5} : Multiset ℕ+) [GOAL] r : ℕ+ H : 1 < sumInv {2, 3, r} hr6 : r ∈ Finset.Ico 3 6 | r ∈ Finset.Ico 3 6 [PROOFSTEP] change r ∈ ({3, 4, 5} : Multiset ℕ+) [GOAL] case tail.head.tail.head r : ℕ+ H : 1 < sumInv {2, 3, r} hr6 : r ∈ {3, 4, 5} ⊢ Admissible {2, 3, r} [PROOFSTEP] fin_cases hr6 [GOAL] case tail.head.tail.head.head H : 1 < sumInv {2, 3, 3} ⊢ Admissible {2, 3, 3} [PROOFSTEP] exact admissible_E6 [GOAL] case tail.head.tail.head.tail.head H : 1 < sumInv {2, 3, 4} ⊢ Admissible {2, 3, 4} [PROOFSTEP] exact admissible_E7 [GOAL] case tail.head.tail.head.tail.tail.head H : 1 < sumInv {2, 3, 5} ⊢ Admissible {2, 3, 5} [PROOFSTEP] exact admissible_E8 [GOAL] p q r : ℕ+ hs : List.Sorted (fun x x_1 => x ≤ x_1) [p, q, r] x✝ : List.length [p, q, r] = 3 H : 1 < sumInv ↑[p, q, r] ⊢ Admissible ↑[p, q, r] [PROOFSTEP] obtain ⟨⟨hpq, -⟩, hqr⟩ : (p ≤ q ∧ p ≤ r) ∧ q ≤ r [GOAL] p q r : ℕ+ hs : List.Sorted (fun x x_1 => x ≤ x_1) [p, q, r] x✝ : List.length [p, q, r] = 3 H : 1 < sumInv ↑[p, q, r] ⊢ (p ≤ q ∧ p ≤ r) ∧ q ≤ r case intro.intro p q r : ℕ+ hs : List.Sorted (fun x x_1 => x ≤ x_1) [p, q, r] x✝ : List.length [p, q, r] = 3 H : 1 < sumInv ↑[p, q, r] hqr : q ≤ r hpq : p ≤ q ⊢ Admissible ↑[p, q, r] [PROOFSTEP] simpa using hs [GOAL] case intro.intro p q r : ℕ+ hs : List.Sorted (fun x x_1 => x ≤ x_1) [p, q, r] x✝ : List.length [p, q, r] = 3 H : 1 < sumInv ↑[p, q, r] hqr : q ≤ r hpq : p ≤ q ⊢ Admissible ↑[p, q, r] [PROOFSTEP] exact admissible_of_one_lt_sumInv_aux' hpq hqr H [GOAL] p q r : ℕ+ H : 1 < sumInv {p, q, r} ⊢ Admissible {p, q, r} [PROOFSTEP] simp only [Admissible] [GOAL] p q r : ℕ+ H : 1 < sumInv {p, q, r} ⊢ (∃ q_1 r_1, A' q_1 r_1 = {p, q, r}) ∨ (∃ r_1, D' r_1 = {p, q, r}) ∨ E' 3 = {p, q, r} ∨ E' 4 = {p, q, r} ∨ E' 5 = {p, q, r} [PROOFSTEP] let S := sort ((· ≤ ·) : ℕ+ → ℕ+ → Prop) { p, q, r } [GOAL] p q r : ℕ+ H : 1 < sumInv {p, q, r} S : List ℕ+ := sort (fun x x_1 => x ≤ x_1) {p, q, r} ⊢ (∃ q_1 r_1, A' q_1 r_1 = {p, q, r}) ∨ (∃ r_1, D' r_1 = {p, q, r}) ∨ E' 3 = {p, q, r} ∨ E' 4 = {p, q, r} ∨ E' 5 = {p, q, r} [PROOFSTEP] have hS : S.Sorted (· ≤ ·) := sort_sorted _ _ [GOAL] p q r : ℕ+ H : 1 < sumInv {p, q, r} S : List ℕ+ := sort (fun x x_1 => x ≤ x_1) {p, q, r} hS : List.Sorted (fun x x_1 => x ≤ x_1) S ⊢ (∃ q_1 r_1, A' q_1 r_1 = {p, q, r}) ∨ (∃ r_1, D' r_1 = {p, q, r}) ∨ E' 3 = {p, q, r} ∨ E' 4 = {p, q, r} ∨ E' 5 = {p, q, r} [PROOFSTEP] have hpqr : ({ p, q, r } : Multiset ℕ+) = S := (sort_eq LE.le { p, q, r }).symm [GOAL] p q r : ℕ+ H : 1 < sumInv {p, q, r} S : List ℕ+ := sort (fun x x_1 => x ≤ x_1) {p, q, r} hS : List.Sorted (fun x x_1 => x ≤ x_1) S hpqr : {p, q, r} = ↑S ⊢ (∃ q_1 r_1, A' q_1 r_1 = {p, q, r}) ∨ (∃ r_1, D' r_1 = {p, q, r}) ∨ E' 3 = {p, q, r} ∨ E' 4 = {p, q, r} ∨ E' 5 = {p, q, r} [PROOFSTEP] rw [hpqr] [GOAL] p q r : ℕ+ H : 1 < sumInv {p, q, r} S : List ℕ+ := sort (fun x x_1 => x ≤ x_1) {p, q, r} hS : List.Sorted (fun x x_1 => x ≤ x_1) S hpqr : {p, q, r} = ↑S ⊢ (∃ q r, A' q r = ↑S) ∨ (∃ r, D' r = ↑S) ∨ E' 3 = ↑S ∨ E' 4 = ↑S ∨ E' 5 = ↑S [PROOFSTEP] rw [hpqr] at H [GOAL] p q r : ℕ+ S : List ℕ+ := sort (fun x x_1 => x ≤ x_1) {p, q, r} H : 1 < sumInv ↑S hS : List.Sorted (fun x x_1 => x ≤ x_1) S hpqr : {p, q, r} = ↑S ⊢ (∃ q r, A' q r = ↑S) ∨ (∃ r, D' r = ↑S) ∨ E' 3 = ↑S ∨ E' 4 = ↑S ∨ E' 5 = ↑S [PROOFSTEP] apply admissible_of_one_lt_sumInv_aux hS _ H [GOAL] p q r : ℕ+ S : List ℕ+ := sort (fun x x_1 => x ≤ x_1) {p, q, r} H : 1 < sumInv ↑S hS : List.Sorted (fun x x_1 => x ≤ x_1) S hpqr : {p, q, r} = ↑S ⊢ List.length S = 3 [PROOFSTEP] simp only [ge_iff_le, insert_eq_cons, length_sort, card_cons, card_singleton]
{"mathlib_filename": "Mathlib.NumberTheory.ADEInequality", "llama_tokens": 11762}